WorldWideScience

Sample records for sunlight photolysis rates

  1. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst.] needles under sunlight irradiation

    International Nuclear Information System (INIS)

    Niu Junfeng; Chen Jingwen; Martens, D.; Quan Xie; Yang Fenglin; Kettrup, A.; Schramm, K.-W.

    2003-01-01

    Photolysis of PAHs on surfaces may determine their ultimate fate in the environment. - Photolysis of polycyclic aromatic hydrocarbons (PAHs) sorbed on surfaces of spruce [Picea abies (L.) Karst.] needles under sunlight irradiation was investigated. PAHs were produced by combustion of polyvinyl chloride (PVC), wood, high-density polyethylene (HDPE), and styrene in a stove. The factors of sunlight irradiation on the surfaces of spruce needles were taken into consideration when investigating the kinetic parameters. The photolysis of the 18 PAHs under study follows first-order kinetics. The photolysis half-lives range from 15 h for dibenzo(a,h)anthracene to 75 h for phenanthrene. Photolysis of some PAHs on surfaces of spruce needles may play an important role on the fate of PAHs in the environment

  2. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Lin, Yen-Ching; Lee, Wan-Ning

    2014-01-01

    This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L −1 level in the hospital effluents and the ng L −1 level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment. - Highlights: • High occurrence of chemotherapeutics and controlled substances in aqueous systems. • Photolysis lowers the detected concentrations of morphine and codeine. • 5-fluorouracil and codeine in hospital effluents have high risk quotients. - Chemotherapeutics and controlled drugs occur at significant levels in hospital effluents and surface waters. Natural sunlight photolysis reduces their environmental occurrence

  3. Direct photolysis rates and transformation pathways of the lampricides TFM and niclosamide in simulated sunlight

    Science.gov (United States)

    McConville, Megan B.; Hubert, Terrance D.; Remucal, Christina K.

    2016-01-01

    The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2′,5-dichloro-4′-nitrosalicylanilide (niclosamide) are directly added to many tributaries of the Great Lakes that harbor the invasive parasitic sea lamprey. Despite their long history of use, the fate of lampricides is not well understood. This study evaluates the rate and pathway of direct photodegradation of both lampricides under simulated sunlight. The estimated half-lives of TFM range from 16.6 ± 0.2 h (pH 9) to 32.9 ± 1.0 h (pH 6), while the half-lives of niclosamide range from 8.88 ± 0.52 days (pH 6) to 382 ± 83 days (pH 9) assuming continuous irradiation over a water depth of 55 cm. Both compounds degrade to form a series of aromatic intermediates, simple organic acids, ring cleavage products, and inorganic ions. Experimental data were used to construct a kinetic model which demonstrates that the aromatic products of TFM undergo rapid photolysis and emphasizes that niclosamide degradation is the rate-limiting step to dehalogenation and mineralization of the lampricide. This study demonstrates that TFM photodegradation is likely to occur on the time scale of lampricide applications (2–5 days), while niclosamide, the less selective lampricide, will undergo minimal direct photodegradation during its passage to the Great Lakes.

  4. Direct Photolysis Rates and Transformation Pathways of the Lampricides TFM and Niclosamide in Simulated Sunlight.

    Science.gov (United States)

    McConville, Megan B; Hubert, Terrance D; Remucal, Christina K

    2016-09-20

    The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are directly added to many tributaries of the Great Lakes that harbor the invasive parasitic sea lamprey. Despite their long history of use, the fate of lampricides is not well understood. This study evaluates the rate and pathway of direct photodegradation of both lampricides under simulated sunlight. The estimated half-lives of TFM range from 16.6 ± 0.2 h (pH 9) to 32.9 ± 1.0 h (pH 6), while the half-lives of niclosamide range from 8.88 ± 0.52 days (pH 6) to 382 ± 83 days (pH 9) assuming continuous irradiation over a water depth of 55 cm. Both compounds degrade to form a series of aromatic intermediates, simple organic acids, ring cleavage products, and inorganic ions. Experimental data were used to construct a kinetic model which demonstrates that the aromatic products of TFM undergo rapid photolysis and emphasizes that niclosamide degradation is the rate-limiting step to dehalogenation and mineralization of the lampricide. This study demonstrates that TFM photodegradation is likely to occur on the time scale of lampricide applications (2-5 days), while niclosamide, the less selective lampricide, will undergo minimal direct photodegradation during its passage to the Great Lakes.

  5. Photolysis of rhodamine-WT dye

    Science.gov (United States)

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  6. Updates to In-Line Calculation of Photolysis Rates

    Science.gov (United States)

    How photolysis rates are calculated affects ozone and aerosol concentrations predicted by the CMAQ model and the model?s run-time. The standard configuration of CMAQ uses the inline option that calculates photolysis rates by solving the radiative transfer equation for the needed ...

  7. Photolysis of oxyfluorfen in aqueous methanol.

    Science.gov (United States)

    Chakraborty, Subhasish K; Chakraborty, Savitri; Bhattacharyya, Anjan; Chowdhury, Ashim

    2013-01-01

    Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250 ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 ± 1°C. Sunlight irradiation was conducted at 28 ± 1°C in borosilicate Erlenmeyer flasks containing 250 ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20 hours and 2.7 days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and (1)H NMR and (13)C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70 eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction.

  8. Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator JS-118 in aqueous solutions under abiotic conditions.

    Science.gov (United States)

    Hu, J-Y; Liu, C; Zhang, Y-C; Zheng, Z-X

    2009-05-01

    JS-118 is a diacylhydrazines-type insect growth regulator which is now used extensively in China. The hydrolysis and photolysis of the pesticide JS-118 in aqueous solutions have been assessed under natural and controlled conditions in this project. Hydrolysis experimental results show that JS-118 is quite stable in aqueous solutions in dark, with no significant variations be observed in degradation under various conditions. Abiotic hydrolysis is relatively unimportant compared to photolysis. The rate of photodecomposition of JS-118 in aqueous solutions follows first-order kinetics both in UV radiation and natural sunlight. The degradation rates are faster under UV light than sunlight, with the half-lives (t (1/2) = ln2/k) of 6.00-10.85 min and 6.63-10.16 day, respectively. Under UV light, two major photoproducts are detected, and tentatively identified according to HPLC-MS spectral information as N-t-butyl-N-(3,5-dimethylbenzoyl) and 3,7-dimethyl-benzoatedihydrofuran. The corresponding photolysis pathways of JS-118 are also proposed. The results obtained indicate that direct photoreaction is an important dissipation pathway of JS-118 in natural water systems.

  9. Preliminary studies on photolysis of polychlorinated dibenzo-p-dioxins on soils surface

    Energy Technology Data Exchange (ETDEWEB)

    Kobara, Y.; Ishihara, S.; Ohtsu, K.; Horio, T.; Endo, S.

    2002-07-01

    samples to UV light emitted by Hg-lamps. The photo characteristics of these lamps were not similar to sunlight. So, it is difficult to predict photolysis of PCDDs/PCDFs in the environment. Photolysis by sunlight is potentially an important process for transformation of higher chlorinated compounds, especially OCDD (relatively lower toxic) to lower chlorinated compounds (relatively higher toxic) or to the other degradation products. However, little data are available concerning the photolysis of PCDDs on soil surface by sunlight. Therefore, the objective of this study is to design the photochemical apparatus for equipped with the solar simulator to evaluate the photolysis of PCDDs/PCDFs on soil surfaces. The apparatus is similar to the spectral characteristics of solar radiation especially the wavelength region of about 280 to 400 nm. (Author)

  10. Relative tropospheric photolysis rates of acetaldehyde and formaldehyde measured at the European Photoreactor Facility

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Bache-Andreassen, Lihn; Johnson, Matthew Stanley

    2009-01-01

    The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0.03 ar.......03 are obtained from three days of experiments for each reaction in the period June 17 to July 7, 2006.......The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0...

  11. Photodegradation of 2,4-Dichlorophenol in Aqueous Systems under Simulated and Natural Sunlight

    Directory of Open Access Journals (Sweden)

    Dorota Gryglik

    2016-01-01

    Full Text Available The work presents results of studies on 2,4-dichlorophenol (2,4-DCP degradation in aqueous solutions using photochemically initiated processes by simulated and natural sunlight. A number of possible substrate photodegradation routes were investigated, by both direct photolysis and photosensitized oxidation process. The major role of singlet oxygen in 2,4-DCP photodegradation was proved. Rose Bengal and derivatives of porphine and phthalocyanine were used as sensitizers. The influences of various process parameters on the reaction rate were investigated. On the basis of experimental data reaction rate constants of 2,4-DCP photosensitized oxidation were determined. The possibility of using natural sunlight to degrade 2,4-DCP in water in the middle latitudes was stated. The acute toxicity bioassay was conducted with the marine bacterium Vibrio fischeri as a bioluminescent indicator. The obtained results encourage further research on this process.

  12. Photolysis of aromatic pollutants in clean and dirty ice

    Science.gov (United States)

    Kahan, T.; Malley, P.; Stathis, A.

    2015-12-01

    Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.

  13. Impacts of cloud water droplets on the OH production rate from peroxide photolysis.

    Science.gov (United States)

    Martins-Costa, M T C; Anglada, J M; Francisco, J S; Ruiz-López, Manuel F

    2017-12-06

    Understanding the difference between observed and modeled concentrations of HO x radicals in the troposphere is a current major issue in atmospheric chemistry. It is widely believed that existing atmospheric models miss a source of such radicals and several potential new sources have been proposed. In recent years, interest has increased on the role played by cloud droplets and organic aerosols. Computer modeling of ozone photolysis, for instance, has shown that atmospheric aqueous interfaces accelerate the associated OH production rate by as much as 3-4 orders of magnitude. Since methylhydroperoxide is a main source and sink of HO x radicals, especially at low NO x concentrations, it is fundamental to assess what is the influence of clouds on its chemistry and photochemistry. In this study, computer simulations for the photolysis of methylhydroperoxide at the air-water interface have been carried out showing that the OH production rate is severely enhanced, reaching a comparable level to ozone photolysis.

  14. Photodegradation of dimethyl sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation.

    Science.gov (United States)

    Bouillon, René-Christian; Miller, William L

    2005-12-15

    The interaction of sunlight and dissolved chromophoric matter produces reactive chemical species that are significant in the removal of dimethyl sulfide (DMS) in the surface ocean. Using artificial solar radiation, we examined the role of several inorganic components of seawater on the kinetics of NO3- -photolysis-induced DMS removal in aqueous solution. This study strongly suggests that NO3- photolysis products react significantly with DMS in aqueous solution possibly via an electrophilic attack on the electron-rich sulfur atom. This supports previous field observations that indicate that NO3- photolysis has a substantial control on DMS photochemistry in nutrient-rich waters. A key finding of this research is that the oxidation rate of DMS induced by NO3- photolysis is dramatically enhanced in the presence of bromide ion. Moreover, our results suggest that bicarbonate/carbonate ions are involved in free radical production/scavenging processes important for DMS photochemistry. These reactions are pH dependent. We propose that DMS removal by some selective free radicals derived from bromide and bicarbonate/carbonate ion oxidation is a potentially important and previously unrecognized pathway for DMS photodegradation in marine waters.

  15. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2004-01-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295K, 760Torr was therefore measured between 182 and 750nm using a Fourier Transform spectrometer at a resolution of 4cm-1 (0.1nm at λ=500nm. The maximum absorption cross-section in the visible region was observed at λ=533.0nm to be σ=(4.24±0.50x10-18cm2molecule-1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03s-1 for the lower troposphere. This is in excellent agreement with the value of 0.12±0.015s-1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  16. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  17. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    Science.gov (United States)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  18. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water

    International Nuclear Information System (INIS)

    Leech, Dina M.; Snyder, Matthew T.; Wetzel, Robert G.

    2009-01-01

    Nanomolar concentrations of steroid hormones such as 17β-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17β-estradiol demonstrated modest photodegradation (∼ 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased (∼ 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone

  19. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water

    Energy Technology Data Exchange (ETDEWEB)

    Leech, Dina M. [Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557 (United States)], E-mail: dmleech@email.unc.edu; Snyder, Matthew T.; Wetzel, Robert G. [Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2009-03-01

    Nanomolar concentrations of steroid hormones such as 17{beta}-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17{beta}-estradiol demonstrated modest photodegradation ({approx} 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased ({approx} 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone.

  20. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    Science.gov (United States)

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  1. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  2. Photolytic debromination pathway of polybrominated diphenyl ethers in hexane by sunlight

    International Nuclear Information System (INIS)

    Wei, Hua; Zou, Yonghong; Li, An; Christensen, Erik R.; Rockne, Karl J.

    2013-01-01

    The objective of this work is to identify the photolytic debromination pathways of polybrominated diphenyl ethers (PBDEs). Thirteen PBDEs (BDEs 209, 208, 207, 206, 196, 183, 154, 153, 100, 99, 85, 47 and 28) in hexane were individually exposed to sunlight for up to 64 h. A total of 180 PBDEs were screened and 74 BDE debromination products were detected. The disappearance rate constant increased exponentially with increasing number of bromines. While no evident difference in debromination preference among ortho, meta and para bromines was found for heavier congeners, the vulnerability rank order was meta ≥ ortho > para for the lighter congeners (≤8 Br). The total molar mass of PBDEs continuously decreased during sunlight exposure, indicating PBDEs were transformed to non-PBDE compounds. A stochastic least squares debromination pathway model was developed to simulate the reactions and determine the yields to extend the results beyond the experimental observations. -- Highlights: ► 74 PBDEs are identified as the products of debromination via photolysis. ► Debromination is more likely at meta than para positions for PBDEs with ≤8 bromines. ► The stochastic least squares model results agree with and expand the experimental observations. ► Mass imbalance indicates a significant loss of PBDE mass during sunlight exposure. -- The PBDE debromination products and pathways identified in this work will assist in future studies on their environmental fate

  3. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.

    Science.gov (United States)

    Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F

    2012-11-20

    Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.

  4. Reactions of uranium hexafluoride photolysis products

    Science.gov (United States)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of krUF6 and UF5 after laser photolysis of the UF6 gas sample.

  5. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    Science.gov (United States)

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Science.gov (United States)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and

  7. Degradação do pesticida Padron® por processos fotoquímicos utilizando luz artificial e solar Degradation of Padron® by photochemical processes using artificial and sunlight radiation

    Directory of Open Access Journals (Sweden)

    Silvio César Godinho Teixeira

    2007-01-01

    Full Text Available Destruction of Padron® (dye and picloram was evaluated using a photoreactor and a solar reactor. Photolysis was observed using only a germicide lamp (GL. Black light (BL and H2O2 (172 mmol L-1 promoted a conversion of 49% and 6% of dye and picloram, respectively. Photocatalytic processes were more efficient using TiO2/GL (96%-dye; 60%-picloram than TiO2/BL (44%-dye; 40%-picloram. Photolysis using sunlight was not observed during PadronÒ recirculation in the reactor constructed with four borosilicate tubes. Meanwhile, adding H2O2 resulted in 12% conversion of dissolved organic compounds. Finally, the most efficient mineralization (60% was obtained using the Fenton reaction ( H2O2-176 mmol L-1; FeSO4x6H2O-90 mmol L-1 and sunlight.

  8. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate

    International Nuclear Information System (INIS)

    Gros, Meritxell; Williams, Mike; Llorca, Marta; Rodriguez-Mozaz, Sara; Barceló, Damià; Kookana, Rai S.

    2015-01-01

    Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t 1/2 approximately 3 h in pure water and 4 h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t 1/2 of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds. - Highlights: • Photolysis of both compounds resulted in several transformation products, some of which were previously unknown. • Short irradiation times may be adequate to degrade amisulpride whereas a longer exposure is required for desipramine. • Transformation of desipramine was enhanced by about three times due to indirect photolysis in wastewaters. • For desipramine, mixture acute toxicity increased after solar irradiation. • Photolysis is unlikely to be the main removal pathway for the two antidepressants during wastewater treatment

  9. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate

    Energy Technology Data Exchange (ETDEWEB)

    Gros, Meritxell [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia); Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala (Sweden); Williams, Mike, E-mail: Mike.Williams@csiro.au [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia); Llorca, Marta; Rodriguez-Mozaz, Sara [Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101 Girona (Spain); Barceló, Damià [Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101 Girona (Spain); Water and Soil Quality Research Group, Department of Environmental IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona (Spain); Kookana, Rai S. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia)

    2015-10-15

    Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t{sub 1/2} approximately 3 h in pure water and 4 h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t{sub 1/2} of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds. - Highlights: • Photolysis of both compounds resulted in several transformation products, some of which were previously unknown. • Short irradiation times may be adequate to degrade amisulpride whereas a longer exposure is required for desipramine. • Transformation of desipramine was enhanced by about three times due to indirect photolysis in wastewaters. • For desipramine, mixture acute toxicity increased after solar irradiation. • Photolysis is unlikely to be the main removal pathway for the two antidepressants during wastewater treatment.

  10. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

    Science.gov (United States)

    Xing, Jia; Wang, Jiandong; Mathur, Rohit; Wang, Shuxiao; Sarwar, Golam; Pleim, Jonathan; Hogrefe, Christian; Zhang, Yuqiang; Jiang, Jingkun; Wong, David C.; Hao, Jiming

    2017-08-01

    Aerosol direct effects (ADEs), i.e., scattering and absorption of incoming solar radiation, reduce radiation reaching the ground and the resultant photolysis attenuation can decrease ozone (O3) formation in polluted areas. One the other hand, evidence also suggests that ADE-associated cooling suppresses atmospheric ventilation, thereby enhancing surface-level O3. Assessment of ADE impacts is thus important for understanding emission reduction strategies that seek co-benefits associated with reductions in both particulate matter and O3 levels. This study quantifies the impacts of ADEs on tropospheric ozone by using a two-way online coupled meteorology and atmospheric chemistry model, WRF-CMAQ, using a process analysis methodology. Two manifestations of ADE impacts on O3 including changes in atmospheric dynamics (ΔDynamics) and changes in photolysis ratesPhotolysis) were assessed separately through multiple scenario simulations for January and July of 2013 over China. Results suggest that ADEs reduced surface daily maxima 1 h O3 (DM1O3) in China by up to 39 µg m-3 through the combination of ΔDynamics and ΔPhotolysis in January but enhanced surface DM1O3 by up to 4 µg m-3 in July. Increased O3 in July is largely attributed to ΔDynamics, which causes a weaker O3 sink of dry deposition and a stronger O3 source of photochemistry due to the stabilization of the atmosphere. Meanwhile, surface OH is also enhanced at noon in July, though its daytime average values are reduced in January. An increased OH chain length and a shift towards more volatile organic compound (VOC)-limited conditions are found due to ADEs in both January and July. This study suggests that reducing ADEs may have the potential risk of increasing O3 in winter, but it will benefit the reduction in maxima O3 in summer.

  11. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Directory of Open Access Journals (Sweden)

    J. Hsu

    2017-07-01

    Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  12. Photodegradation of nonylphenol by simulated sunlight

    International Nuclear Information System (INIS)

    Li, Yanxia; Duan, Xiaoyong; Li, Xianguo; Zhang, Dahai

    2013-01-01

    Highlights: ► The effects of some environmental factors on the photolysis of NP were studied. ► Experimental range of the factors was selected based on their occurrence in water. ► The degradation intermediates were identified by GC–MS. ► The photodegradation mechanism of NP in natural seawater was proposed. -- Abstract: The photodegradation of nonylphenol (NP) was studied to simulate its photolysis process in natural seawater. The effects of the initial NP concentration, the light intensity, the temperature, the initial pH, the dissolved oxygen content and the presence of common water constituents (i.e., Fe(III), NO 3 - and HCO 3 - ) on the photodegradation of NP in pure water have been assessed. The degradation rate increased in the presence of Fe(III), NO 3 - or HCO 3 - , and the photolysis rate of 4-NP was more rapid in alkaline solution than in an acidic medium. The DO content is a key factor in the photodegradation, and the rate of the photoreaction depended on the O 2 concentration. The degradation rate was slower in natural seawater than in pure water. 4-Nonylcatechol was identified as the intermediate of photodegradation of nonylphenol in natural seawater. The proposed pathway involved a reaction between irradiated NP and the reactive oxygen species that existed in the seawater

  13. Pressure dependent deuterium fractionation in the formation of molecular hydrogen in formaldehyde photolysis

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Andersen, Vibeke Friis; Skov, Henrik

    2009-01-01

    The pressure dependence of the relative photolysis rates of HCHO and HCDO has been investigated using a new photochemical reactor at the University of Copenhagen. The relative photolysis rate of HCHO vs. HCDO under UVA lamp irradiation was mea- 5 sured at total pressures of 50, 200, 400, 600...

  14. Comparison of Vanillin and Isovanillin Photolysis in Aqueous Solutions

    Science.gov (United States)

    Vusovich, O. V.; Lapin, I. N.; Svetlichnyi, V. A.; Sul'timova, N. B.; Tchaikovskaya, O. N.

    2014-03-01

    General kinetic regularities of reactions of stationary and laser photolysis of 3-methoxy-4-hydroxybenzaldehyde (vanillin) and 3-hydroxy-4-methoxybenzaldehyde (isovanillin) are investigated by the method of nanosecond laser flash-photolysis. The 4th harmonic of a Nd:YAG laser (λexc = 266 nm) with pulse duration of 7 ns, output power of 100 MW/cm2, and delay time of 30 ns was used as an excitation source. As a result of photolysis, the same photoproducts are formed in the region of absorption at 715 nm. The rate constants of vanillin and isovanillin decomposition obey the first order law and are 2.3ṡ106 and 2.5ṡ106 s-1, respectively.

  15. Photolysis of petroleum

    International Nuclear Information System (INIS)

    Bobra, M.

    1992-05-01

    A study was conducted to examine the chemical and physical changes that occur in oils as a result of photooxidation. A literature review of recent studies in petroleum photochemistry revealed reported effects of photo-induced reactions in petroleum, including changes in color, polymerization, solidification, increases in solubility and toxicity, and changes in interfacial properties. A list of products reported as a result of photolysis of petroleum is presented, including such compounds as aldehydes, ketones, esters, and lactones. The photoreactivity of various petroleum components is discussed and mechanisms of photooxidation of petroleum are suggested. In the experimental portion of the study, a variety of crude oils and petroleum products were used to determine how different oils are affected by photolysis, and to examine the importance of photolysis as a weathering process. Photooxidation products from several oils were isolated and identified, including aliphatic and aromatic acids, alcohols, and phenols. Some physical manifestations attributed to photolysis included yellowing, formation of precipitates or crusts, increases in density and viscosity with time, increases of asphaltene content in some oils, changes in pH of the surrounding water, and emulsification. 51 refs., 38 figs., 18 tabs

  16. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  17. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  18. Use of sunlight to degrade oxytetracycline in marine aquaculture's waters

    International Nuclear Information System (INIS)

    Leal, J.F.; Esteves, V.I.; Santos, E.B.H.

    2016-01-01

    Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV–Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC. - Highlights: • Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. • OTC photolysis in marine aquaculture's water is faster than in deionised water. • The sunlight radiation quickly remove the OTC from aquaculture's water. • Outdoor half-life for a midsummer day is 21–25 min in aquaculture's water. • High pH's and salinities increase the OTC photo-degradation. - This work

  19. Atmospheric degradation of 2- nitrobenzaldehyde: Photolysis and reaction with OH radicals

    Science.gov (United States)

    Bouya, H.; Al Rashidi, M.; Roth, E.; Salghi, R.; Chakir, A.

    2017-12-01

    This work presents an experimental study of the gas phase kinetics of 2-nitrobenzaldehyde (2-NBA) photolysis and oxidation by OH radicals. The experiments were carried out in an atmospheric simulation chamber coupled to an FTIR spectrometer and CG/MS. The UV spectra of 2-NBA were also measured and the experimentally determined absorption cross sections were used to estimate the atmospheric photo-dissociation constant of 2-NBA with a global quantum yield of 0.5. The obtained results indicate that 2-NBA is a highly photolysable. A mechanism of 2-NBA photolysis was proposed based on the identification of photolysis degradation products. The kinetics of oxidation of 2-NBA by OH radicals was investigated over the temperature range 308-352 K. The obtained rate coefficients exhibits slight negative temperature dependence and the Arrhenius expression obtained is as follows: kOH+2-NBA(T)= (7.00 ± 3.40) × 10-12exp (577 ± 156/T) cm3 molecule-1 s-1. The calculated rate coefficients lead to tropospheric lifetimes of 2-NBA that are in the order of a few minutes, relative to photolysis, or a few hours, relative to oxidation by OH radicals.

  20. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis

    KAUST Repository

    Galí, Martí

    2016-11-14

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  1. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis.

    Science.gov (United States)

    Galí, Martí; Kieber, David J; Romera-Castillo, Cristina; Kinsey, Joanna D; Devred, Emmanuel; Pérez, Gonzalo L; Westby, George R; Marrasé, Cèlia; Babin, Marcel; Levasseur, Maurice; Duarte, Carlos M; Agustí, Susana; Simó, Rafel

    2016-12-20

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m 3 (mol quanta) -1 ). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m 3 (mol quanta) -1 . The largest AQY(330), up to 34 m 3 (mol quanta) -1 ), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d -1 ), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  2. Continuous Monitoring of Photolysis Products by Thz Spectroscopy

    Science.gov (United States)

    Omar, Abdelaziz; Cuisset, Arnaud; Mouret, Gaël; Hindle, Francis; Eliet, Sophie; Bocquet, Robin

    2015-06-01

    We demonstrate the potential of THz spectroscopy to monitor the real time evolution of the gas phase concentration of photolysis products and determine the kinetic reaction rate constant. In the primary work, we have chosen to examine the photolysis of formaldehyde (H_2CO). Exposure of H_2CO to a UVB light (250 to 360 nm) in a single pass of 135 cm length cell leads to decomposition via two mechanisms: the radical channel with production of HCO and the molecular channel with production of CO. A commercial THz source (frequency multiplication chain) operating in the range 600-900 GHz was used to detect and quantify the various chemical species as a function of time. Monitoring the concentrations of CO and H_2CO via rotational transitions, allowed the kinetic rate of H_2CO consummation to be obtained, and an estimation of the rate constants for both the molecular and radical photolysis mechanisms. We have modified our experimental setup to increase the sensitivity of the spectrometer and changed sample preparation protocol specifically to quantify the HCO concentration. Acetaldehyde was used as the precursor for photolysis by UVC resulting in the decompositon mechanism can be described by: CH_3CHO+hν→ CH_3 + HCO → CH_4 + CO Frequency modulation of the source and Zeeman modulation is used to achieve the high sensitivity required. Particular attention has been paid to the mercury photosensitization effect that allowed us to increase the HCO production enabling quantification of the monitored radical. We quantify the HCO radical and start a spectroscopic study of the line positions. H. M. Pickett and T. L. Boyd, Chem. Phys. Lett, Vol 58, 446-449, (1978) S. Eliet, A. Cuisset, M Guinet, F. Hindle, G. Mouret, R. Bocquet, and J. Demaison, Journal of Molecular Spectroscopy, Vol 279, 12-15 (2012). G. Mouret, M. Guinet, A. Cuisset, L. Croizé, S. Eliet, R. Bocquet and F. Hindle, Sensors Journal. IEEE, Vol 13, 133 - 138, (2013)

  3. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter

    International Nuclear Information System (INIS)

    Luning Prak, Dianne J.; Breuer, James E.T.; Rios, Evelyn A.; Jedlicka, Erin E.; O'Sullivan, Daniel W.

    2017-01-01

    The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS +® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32 °C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5 mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. - Highlights: • 2,4,6-trinitrotoluene (TNT) was photolyzed in marine, estuary, & laboratory waters. • TNT photolysis rates increased with increasing salinity & dissolved organic matter. • Temperature and pH had minimal impact on TNT photolysis in marine waters. • In seawater, TNT photolysis produced 1,3,5-trinitrobenzene & trinitrobenzaldehyde. • Polar products were 2,4,6-trinobenzoic acid & 2-amino-4,6-dinitrobenzoic acid.

  4. Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

    Science.gov (United States)

    Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M

    2014-01-01

    In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

  5. Flash photolysis of carbon dioxide in the far ultra-violet

    International Nuclear Information System (INIS)

    Barat, F.

    1970-01-01

    The flash photolysis of CO 2 (3 torr) in the far ultra-violet, down to the transparency limit of lithium fluoride, produces vibrationally excited CO in its Χ 1 Σ electronic ground state and an electronically excited oxygen atom O( 1 D). After photolysis, the changes in the concentration of vibrationally de-excited CO in the 0 to 200 μsec, time range are followed using absorption spectroscopy. These changes can be explained on the basis of three main competing reactions: CO(Χ 1 Σ, ν'' = 0) + O( 1 D) → CO 2 ( 1 Σ g + ), O( 1 D) + CO 2 → O( 3 P) + CO 2 and CO 3 , CO(X 1 Σ, ν'' = 1,2) + CO 2 → CO(Χ 1 Σ, ν'' = 0) + CO 2 . The values of the rate constants for these three reactions are determined by analog calculations. The effect of O( 1 D) scavenging or quenching gases on the oxidation reaction of CO by O( 1 D) is examined. A study of the flash photolysis of O 2 in the presence of CO in the far ultra-violet makes it possible to eliminate the hypothesis that CO 3 is involved in the reaction leading to the disappearance of CO after photolysis. (author) [fr

  6. Photolysis of nonylphenol ethoxylates: the determination of the degradation kinetics and the intermediate products.

    Science.gov (United States)

    Chen, Ling; Zhou, Hai-Yun; Deng, Qin-Ying

    2007-06-01

    The photolysis of nonylphenol ethoxylates with an average oligomers length of ten ethoxylate units (NPEO(10)) in aqueous solution under UV, as well as the influence of humic acid (HA) on the photolysis was studied. A 125W high-pressure mercury lamp was employed as the light source. The intermediate products from the photolysis were determined by LC-MS. The results indicated that NPEO(10) underwent direct photolysis upon exposed to UV. The degradation pathway was complex. Besides the generally proposed degradation pathway of ethylene oxide (EO) side chains shortening, the oxidation of alkyl chain and EO chain led to intermediates having both a carboxylated (as well as carbonylated) ethoxylate and alkyl chain of varying lengths. The hydrogenation of benzene ring was also detected. The kinetics data showed that the first order reaction kinetics could be well used to describe the kinetics of NPEO(10) degradation. In the presence of dissolved organic matter by HA addition, the performance of NPEO(10) photodegradation was reduced. The photolysis rate decreased with increased HA concentration.

  7. Photolysis of imidacloprid in aqueous solution

    International Nuclear Information System (INIS)

    Moza, P.N.; Hustert, K.; Feicht, E.; Kettrup, A.

    1998-01-01

    The photolysis of the insecticide imidacloprid in aqueous solution has been examined. Irradiation at 290 nm resulted in 90 % substrate transformation in 4 h. The degradation approximately followed first order kinetics; the rate constant is 1.6 × 10 −4 s −1 and half-life 1.2 h. 6-Chloronicotinaldehyde, N-methylnicotinacidamide, 1-(6-chloronicotinyl)imidazolidone and 6-chloro-3-pyridyl-methylethylendiamine were the main photoproducts identified by CG-MS analysis. (author)

  8. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    Energy Technology Data Exchange (ETDEWEB)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël [Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, F-38041 Grenoble (France); Univ. Grenoble Alpes, LGGE, F-38041 Grenoble (France); Meusinger, Carl; Johnson, Matthew S. [Copenhagen Center for Atmospheric Research (CCAR), Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Jost, Rémy [Laboratoire de Interdisciplinaire de Physique (LIPHY) Univ. de Grenoble, Grenoble (France); Bhattacharya, S. K. [Research Center for Environmental Changes, Academia Sinica, Nangang, Taipei 115, Taiwan (China)

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  9. Fulvic Acid Mediated Photolysis of Ibuprofen in Water.

    Science.gov (United States)

    Photolysis of the nonsteroidal anti-inflammatory drug ibuprofen was studied in solutions of fulvic acid (FA) isolated from Pony Lake, Antarctica; Suwannee River, GA, USA; and Old Woman Creek, OH, USA. At an initial concentration of 10 µM ibuprofen degrades by direct photolysis...

  10. Optical inhomogeneity developing in flashlamp photolysis lasers

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, B V; Borovkov, V V; Brodskii, A Ya; Lazhintsev, B V; Nor-Arevian, V A; Sukhanov, L V

    1980-07-01

    The paper discusses the dynamics of optical inhomogenity developing in the active medium of a high-power flashlamp-pumped photolysis laser in inverse population storage, fast inversion suppression, and free-running lasing regimes. A chemical component of the refractive index was found in a C3F7I photolysis experiment, along with the anomalous growth of a gas refractive index.

  11. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna.

    Science.gov (United States)

    Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen

    2017-09-01

    Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Science.gov (United States)

    2010-07-01

    ... constants and half-lives of test chemicals in PW and SHW. If the photoreaction rate in SHW is significantly.... Test chemicals that are classified as having half-lives in SHW in the range of 1 hour to 50 days in... background information on this test guideline the following references should be consulted. (1) Cooper W.J...

  13. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

    Science.gov (United States)

    Aerosol direct effects (ADE), i.e., scattering and absorption of incoming solar radiation, reduce radiation reaching the ground and the resultant photolysis attenuation can decrease O3 formation in polluted areas. One the other hand, evidence also suggests that ADE associated coo...

  14. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    International Nuclear Information System (INIS)

    Sanches, S.; Leitao, C.; Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Crespo, M.T. Barreto; Pereira, V.J.

    2011-01-01

    Highlights: → Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. → Real water matrices with different compositions were tested. → Photolysis kinetic parameters and by-product formation are described. → The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm 2 , anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  15. Selective laser photolysis of simple molecules

    International Nuclear Information System (INIS)

    Golnabi, Hossein.

    1984-01-01

    A two-photon technique is reported for the measurement of relative cross section for the photolysis of simple molecules into particular product channels. In this method two independently tunable dye lasers were used to sequentially dissociate molecules of Cs 2 and Cs-Kr for the wavelengths in the range 420 to 660 nm, and then to excite the resulting products to determine the relative cross sections for the photolysis of Cs 2 and Cs-kr into each of the lowest four of the energetically possible product states

  16. Synthesis of silver nanoparticles by radiolysis, photolysis and chemical reduction of AgNO3 in Hibiscus sabdariffa infusion (karkade)

    International Nuclear Information System (INIS)

    Cataldo, Franco; Ursini, Ornella; Angelini, Giancarlo

    2016-01-01

    Silver nanoparticles of different average diameters were synthesized by γ-radiolysis, UV-photolysis and chemical reduction of AgNO 3 solutions in Hibiscus sabdariffa infusion commonly known as 'karkade'. The UV-photolysis was performed either by using a conventional Hg low pressure lamp emitting at 254 nm and also by using a new compact UV-LED source emitting at 360 nm. The kinetics rate constant of silver nanoparticles synthesis produced by γ-radiolysis and UV photolysis were determined and the average diameter of the resulting nanoparticles was estimated. (author)

  17. The effect of temperature and wavelength on production and photolysis of a UV-induced photosensitive DNA lesion which is not repaired in xeroderma pigmentosum variant cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Regan, J.D.

    1988-01-01

    Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0 0 C and 37 0 C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0 0 C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and (6-4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine (6-4) photoproducts. (author)

  18. Crystal structure of a photolysis product of vitamin B6: A pyridodihydrofuran-condensed skeleton compound of pyridoxal 5‧-phosphate

    Science.gov (United States)

    Aoki, Katsuyuki; Nakamura, Hideyuki; Hattori, Toshiaki; Hu, Ning-Hai; Onishi, Masayoshi

    2017-11-01

    An aqueous solution dissolving pyridoxal 5‧-phosphate (PLP) was exposed to sun-light at room temperature to yield a photolysis product, 4b,9b-dihydro-4b,9b-dihydroxy-1,6-dimethyl-4,9-bis(phosphonooxymethyl){pyrido[3‧,4‧:2,3]furo[4,5-b]}pyrido[4,3-d]furan (1), whose structure was crystallographically determined. The product 1 was found to be a novel C(sp3)-C(sp3) side-sharing pyridodihydrofuran-condensed skeleton compound with the two pyridodihydrofuran planes taking a 'V-shape'-like molecular configuration. Hydrogen bonding patterns of molecules of 1 in the crystal lattice are analyzed by the graph set approach. The most probable mechanism for the formation of 1 is described.

  19. A thermal lensing study of a photolysis of di- t-butyl peroxide

    Science.gov (United States)

    Fuke, K.; Hasegawa, A.; Ueda, M.; Itoh, M.

    1981-11-01

    A photolysis of di- t-butyl peroxide (BOOB) was studied by using a thermal lensing technique. This technique is found to be applicable to the determination Of the rate Constants of the decay of t-butoxy radical (BO ) and the hydrogen abstraction reaction.

  20. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Caixia [School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, No. 99, Ziyang Road, Nanchang 330022 (China); State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); SmartState Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia 29208,USA (United States); Nie, Minghua [School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, No. 99, Ziyang Road, Nanchang 330022 (China); Department of Environmental Science and Engineering, Fudan University, 220Handan Road, Shanghai 200433 (China); Yang, Yi, E-mail: yyang@geo.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Key Laboratory of Geographic Information Science of the Ministry of Education, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Zhou, Junliang [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Liu, Min [Key Laboratory of Geographic Information Science of the Ministry of Education, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Baalousha, Mohammed; Lead, Jamie R. [SmartState Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia 29208,USA (United States)

    2015-12-15

    Highlights: • Colloidal fractions in wastewaters were isolated using cross flow ultrafiltration. • EOCs exhibited a pseudo - first - order degradation kinetics in all water samples. • Photolysis of EOCs in permeate were accelerated, while inhibited in the retentates. • EOCs with higher degradation rates were detected at low level in natural water. - Abstract: The effect of colloids on the occurrence, phase distribution and photolysis of twenty-seven emerging organic contaminants (EOCs) was studied in domestic and livestock wastewaters (DW and LW), respectively. Filtered water (<1 μm) was separated into permeate (<1 kDa) and retentate (1 kDa-1 μm) by cross flow ultrafiltration. Results indicated that total concentration of EOCs ranged from 1220 ng L{sup −1} in permeate of DW to 5065 ng L{sup −1} in retentate of LW. The average EOC fraction associated with colloids was 13.5% and 14.4% in DW and LW. Most of the EOCs exhibited pseudo-first-order degradation kinetics in all water samples. Control experiments using glass and quartz reactors showed that UV light was more effective on the photolysis of most EOCs. The EOCs photolysis in the three fractions of DW and LW could be accelerated or inhibited compared to ultrapure water with the enhancement factor ranging from −0.94 to 7.33. The impact of colloids on the photolysis of EOCs depended on the compound and the source of water. The photolysis of most EOCs in permeates and filtrates was generally accelerated, while inhibited in the retentates, which could be attributed to the relatively high dissolved organic carbon contents in retentates.

  1. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen

    2011-01-01

    infra-red spectra of MEH-PPV degraded at 1 sun intensity and at high solar concentration only showed minor deviations in degradation mechanisms. The acceleration factor was found to vary linearly with the solar concentration. Finally, a comparison of the degradation rates at 1 sun and 100 suns...... was carried out in a materials study employing five different conjugated polymers relevant to polymer solar cells for which acceleration factors in the range 19–55 were obtained.......A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...

  2. Verification of RDX Photolysis Mechanism

    National Research Council Canada - National Science Library

    Peyton, Gary

    1999-01-01

    ... such as formaldehyde and formic acid, as well as the inorganic ions nitrate and nitrite. This implies that UV photolysis might provide a satisfactory and economical treatment system for RDX in water...

  3. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, M.S., E-mail: mesd@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Salgado, R., E-mail: r.salgado@campus.fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal (Portugal); Pereira, V.J., E-mail: vanessap@itqb.unl.pt [Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Química e Biológica (ITQB)—Universidade Nova de Lisboa (UNL), Estação Agronómica Nacional, Av. da República, 2780-157 Oeiras (Portugal); Carvalho, G., E-mail: gs.carvalho@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Oehmen, A., E-mail: a.oehmen@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Noronha, J.P., E-mail: jpnoronha@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2015-02-01

    The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations < LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s). - Highlights: • Toxicity evaluated for 3 common pharmaceuticals (atenolol, ketoprofen and diclofenac). • Toxicity assessed for the pharmaceuticals and UV photolysis by-products in zebrafish. • Diclofenac photolysis by-products are more toxic than the parent compound. • Ketoprofen and atenolol show stronger oxidative stress response than by-products. • UV photolysis should ensure full removal of diclofenac metabolites to avoid toxicity.

  4. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Diniz, M.S.; Salgado, R.; Pereira, V.J.; Carvalho, G.; Oehmen, A.; Reis, M.A.M.; Noronha, J.P.

    2015-01-01

    The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations < LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s). - Highlights: • Toxicity evaluated for 3 common pharmaceuticals (atenolol, ketoprofen and diclofenac). • Toxicity assessed for the pharmaceuticals and UV photolysis by-products in zebrafish. • Diclofenac photolysis by-products are more toxic than the parent compound. • Ketoprofen and atenolol show stronger oxidative stress response than by-products. • UV photolysis should ensure full removal of diclofenac metabolites to avoid toxicity

  5. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  6. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    DEFF Research Database (Denmark)

    Meusinger, Carl; Berhanu, Tesfaye A.; Erbland, Joseph

    2014-01-01

    undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼ 1%, much lower than reported for aqueous chemistry. A companion paper...... are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude...

  7. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph

    2014-01-01

    in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters....... The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ 15N, δ 18O, and Δ 17O). From these measurements an average photolytic isotopic fractionation of 15ε = (- 15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation...

  8. Effects of concentrated sunlight on organic photovoltaics

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Katz, Eugene A.; Hirsch, Baruch

    2010-01-01

    We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied gradu...

  9. Water balance of goats in Jeneponto - South Sulawesi under sunlight exposure and water restriction

    Directory of Open Access Journals (Sweden)

    Djoni Prawira Rahardja

    2007-10-01

    Full Text Available Water balance of 5 does of Kacang goat of Jeneponto was studied under the condition of sunlight exposure and water restriction. The study was conducted in dry season with 4 consecutive treatments of 10 d with 4-5 d of adjustment period between two consecutive treatments: (1 indoor and unrestricted water; (2 indoor and restricted water; (3 10 h outdoor–and unrestricted water; (4 10 h outdoor – restricted water. The maximum air temperature of outdoor was 39.3OC, and it was 30OC in the indoor environment. In all treatments, the animals were placed in the individual crates. The plasma volume of the goats was higher under sunlight exposure, but it decreased by water restriction, while hematocrite value indicated a reverse responses. Sunlight exposure did not significantly decrease the intake and digestion of organic matter, but water restriction affected significantly and this effect was higher under sunlight exposre. The proportions of water loss through every avenue were maintained relatively constant either under water restriction or sunlight exposure in which the respration rate increased significantly. The findings suggest that sunlight exposure with unrestricted water resulted in a positive water balance without a significant change in organic matter intake and utilization. Water restriction resulted in a negative water balance, reducing organic matter intake and utilization. As the adaptive mechanisms, the goat appeared to be able to withstand in the harsh environment of Jeneponto by expanding plasma volume, increasing body temperature and respiration rate.

  10. Port Sunlight, essai architectural et social

    OpenAIRE

    Machet, Laurence

    2017-01-01

    The purpose of this article is to examine the city of Port Sunlight, its history, design and originality. Created by William Lever in 1888 in order to house his newly-built soap factory, Port Sunlight is part of the numerous “factory villages” built in the wake of the industrial revolution according to philanthropic and utilitarian principles. But this article intends to show that Port Sunlight differs from other factory towns. Its careful design, elaborate architecture and public facilities ...

  11. Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The behavior of H atoms in the solid phase has been reviewed with special attention to comparison of H atoms produced by radiolysis with those produced by photolysis. The paper consists of three parts. I -Production of H atoms: (1) the experimental results which indicate H-atom formation in the radiolysis of solid alkane are summarized; (2) ESR saturation behavior of trapped H atoms depends upon the method of H-atom-production, i.e. photolysis or radiolysis, and upon the initial energy of H atoms in the photolysis. II - Diffusion of H atoms: (1) activation energies for thermally-activated diffusion of H atoms are shown; (2) quantum diffusion of H atoms in solid H 2 is explained in terms of repetition of tunneling reaction H 2 + H → H + H 2 . III -Reaction of H atoms: (1) reactions and trapping processes of hot H atoms have been shown in solid methane and argon by use of hot H atoms with specified initial energy; (2) when H atoms are produced by the radiolysis of solvent alkane or by the photolysis of HI in the alkane mixtures at 77 K, the H atoms react very selectively with solute alkane at low concentration. The selective reaction of the H atom has been found in eight matrices; (3) activation energy for a hydrogen-atom-abstraction reaction by thermal H atoms at low temperatures is less than than several kJ mol -1 because of quantum tunneling. The absolute rate constants for H 2 (D 2 , HD) + H(D) tunneling reactions have been determined experimentally in solid hydrogen at 4.2K; (4) theoretical studies for tunneling reactions H 2 (D 2 ,HD) + H(D) at ultralow temperatures were reviewed. The calculated rate constants were compared with the rate constants obtained experimentally. (author)

  12. Carotenoids content and sunlight susceptibility

    International Nuclear Information System (INIS)

    Oppezzo, Oscar J.; Costa, Cristina; Pizarro, Ramon A.

    2005-01-01

    Full text: An environmental pink pigmented bacterium was isolated and identified as Rhodococcus sp. Pigmentation mutants were obtained by chemical mutagenesis. Pigments present in the wild type strain (RMB90), in a pale yellow mutant (RMB91) and in two mutants exhibiting increased pigmentation (RMB92 and RMB93), were extracted with chloroform-methanol and analyzed by reverse phase HPLC. Survival of these strains after exposure to sunlight and ultraviolet radiation from artificial sources was studied under different physiological and irradiation conditions. The ability of RMB91 to survive sunlight exposure was reduced with respect to that of RMB90. Resistance was similar in both strains when bacteria grew in the presence of a carotenoid synthesis inhibitor, which had no effect on survival of RMB91. Reduced sunlight resistance in RMB91 was also observed during irradiations under N2. Using artificial radiation sources, non pigmented bacteria were less resistant to UVA, but not to UVB or UVC. Lethal effects of sunlight and UVA on RMB92 and RMB93 were increased with respect to the wild type strain. Carotenoids protect Rhodococcus sp against deleterious effects of sunlight. In non-photosynthetic bacteria studied to date, photo protection by carotenoids was dependent on [O 2 ]. This is not the case with Rhodococcus sp RMB90, suggesting the occurrence of a different mechanism for protection. UVA radiation seems to playa key role in photo-damage. (author)

  13. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, J P; Benson, R [Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Chemistry

    1980-05-15

    Photolysis of phosphine (PH/sub 3/) has been investigated because of its potential significance in the atmosphere chemistry of Jupiter. It is reported that P/sub 2/H/sub 4/is the initial product of PH/sub 3/ photolysis and that it is the principal intermediate in the formation of red phosphorus. It is stated that these findings require substantial revision of the previously accepted mechanism for PH/sub 3/ photolysis.

  14. In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water

    International Nuclear Information System (INIS)

    Kusari, Souvik; Prabhakaran, Deivasigamani; Lamshoeft, Marc; Spiteller, Michael

    2009-01-01

    Fluoroquinolones like difloxacin (DIF) and sarafloxacin (SARA) are adsorbed in soil and enter the aquatic environment wherein they are subjected to photolytic degradation. To evaluate the fate of DIF and SARA, their photolysis was performed in water under stimulated natural sunlight conditions. DIF primarily degrades to SARA. On prolonged photodegradation, seven photoproducts were elucidated by HR-LC-MS/MS, three of which were entirely novel. The residual anti-bacterial activities of DIF, SARA and their photoproducts were studied against a group of pathogenic strains. DIF and SARA revealed potency against both Gram-positive and -negative bacteria. The photoproducts also exhibited varying degrees of efficacies against the tested bacteria. Even without isolating the individual photoproducts, their impact on the aquatic environment could be assessed. Therefore, the present results call for prudence in estimating the fate of these compounds in water and in avoiding emergence of resistance in bacteria caused by the photoproducts of DIF and SARA. - Assessment of the residual anti-bacterial efficacies of difloxacin, sarafloxacin and their photoproducts in water, and estimating their impact on the aquatic environment in inducing resistance to microorganisms.

  15. Photolysis of O-nitrobenzoin: a reinvestigation

    International Nuclear Information System (INIS)

    Dicks, P.F.; Goosen, A.; McCleland, C.W.

    1983-01-01

    Photolysis of O-nitrobenzoin produces benzaldehyde and 2-phenylbenzo[b]furan. The addition of a nitrogen dioxide scavenger and a triplet n→πsup(*) carbonyl quencher are shown to inhibit 2-phenylbenzo[b]furan formation. It is proposed that cyclization occurs through the carbonyl n→πsup(*) triplet state. The benzaldehyde could result either from rapid α-cleavage of the carbonyl group, occurring from either the singlet or triplet n→πsup(*) states in a process which is concerted with cleavage of the O-NO 2 bond, or from fragmentation of the alkoxyl radical produced upon photolysis of the nitrate ester, or from a combination of both processes. Support for the intermediacy of the alkoxyl radical is afforded by the observation that O-nitro-hydrobenzoin and some of its derivatives all afforded benzaldehyde under similar conditions

  16. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine and Bromine

    DEFF Research Database (Denmark)

    Kläning, Ulrik; Sehested, Knud; Wolff, Thomas

    1984-01-01

    The kinetics of ozone formation in the photolysis of oxygen-containing solutions of HClO, ClO–, ClO–2, ClO–3, HBrO, BrO– and BrO–3 has been studied by laser flash photolysis and conventional flash photolysis. The usual assumption, that ozone only forms in the reaction of oxygen atoms in the spin-...

  17. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies...... of aqueous periodate solutions and with kinetic studies using stopped-flow technique. In strongly alkaline solution the photodecomposition of periodate proceeds via formation of O– and IVI. At pH solution O3 P is formed in a small...

  18. Photochemical effects of sunlight.

    Science.gov (United States)

    Daniels, F

    1972-07-01

    The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields.

  19. Visual performance with sport-tinted contact lenses in natural sunlight.

    Science.gov (United States)

    Erickson, Graham B; Horn, Fraser C; Barney, Tyler; Pexton, Brett; Baird, Richard Y

    2009-05-01

    The use of tinted and clear contact lenses (CLs) in all aspects of life is becoming a more popular occurrence, particularly in athletic activities. This study broadens previous research regarding performance-tinted CLs and their effects on measures of visual performance. Thirty-three subjects (14 male, 19 female) were fitted with clear B&L Optima 38, 50% visible light transmission Amber and 36% visible light transmission Gray-Green Nike Maxsight CLs in an individualized randomized sequence. Subjects were dark-adapted with welding goggles before testing and in between subtests involving a Bailey-Lovie chart and the Haynes Distance Rock test. The sequence of testing was repeated for each lens modality. The Amber and Gray-Green lenses enabled subjects to recover vision faster in bright sunlight compared with clear lenses. Also, subjects were able to achieve better visual recognition in bright sunlight when compared with clear lenses. Additionally, the lenses allowed the subjects to alternate fixation between a bright and shaded target at a more rapid rate in bright sunlight as compared with clear lenses. Subjects preferred both the Amber and Gray-Green lenses over clear lenses in the bright and shadowed target conditions. The results of the current study show that Maxsight Amber and Gray-Green lenses provide better contrast discrimination in bright sunlight, better contrast discrimination when alternating between bright and shaded target conditions, better speed of visual recovery in bright sunlight, and better overall visual performance in bright and shaded target conditions compared with clear lenses.

  20. Utilization of solar energy through photosynthesis and artificial water photolysis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The plants build up organic matter with a carbon content of the order of 1011 t/year by means of photochemistry. Energy farming for the production of liquid or gaseous fuel is discussed. Yet the abiotic photolysis of water with production of hydrogen is preferable. By means of synthetic, asymmetric, photochemically active, membranes the primary products of water photolysis could be spatially separated so that their recombination is prevented.(author)

  1. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.

    Science.gov (United States)

    Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton

    2012-09-01

    High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.

  2. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).

    Science.gov (United States)

    Maïga, Ynoussa; Denyigba, Kokou; Wethe, Joseph; Ouattara, Aboubakar Sidiki

    2009-02-09

    Experiments on sunlight inactivation of Escherichia coli were conducted from November 2006 to June 2007 in eight outdoors microcosms with different depths filled with maturation pond wastewater in order to determine pond depth influence on sunlight inactivation of E. coli. The long-term aim was to maximize sunlight inactivation of waterborne pathogens in waste stabilization ponds (WSPs) in sahelian regions where number of sunny days enable longer exposure of wastewater to sunlight. The inactivation was followed during daylight from 8.00 h to 17.00 h and during the night. Sunlight inactivation rates (K(S)), as a function of cumulative global solar radiation (insolation), were 16 and 24 times higher than the corresponding dark inactivation (K(D)) rates, respectively in cold and warm season. In warm season, E. coli was inactivated far more rapidly. Inactivation of E. coli follows the evolution of radiation during the day. In shallow depth microcosms, E. coli was inactivated far more rapidly than in high depth microcosms. The physical chemical parameters [pH, dissolved oxygen (DO)] of microcosms water were higher in shallow depth microcosms than in high depth microcosms suggesting a synergistic effect of sunlight and these parameters to damage E. coli. To increase the efficiency of the elimination of waterborne bacteria, the use of maturation ponds with intermediate depths (0.4m) would be advisable in view of the high temperatures and thus evaporation recorded in sahelian regions.

  3. Early photolysis intermediates of gecko and bovine artificial visual pigments.

    Science.gov (United States)

    Lewis, J W; Liang, J; Ebrey, T G; Sheves, M; Livnah, N; Kuwata, O; Jäger, S; Kliger, D S

    1997-11-25

    Nanosecond laser photolysis measurements were conducted on digitonin extracts of artificial pigments prepared from the cone-type visual pigment, P521, of the Tokay gecko (Gekko gekko) retina. Artificial pigments were prepared by regeneration of bleached gecko photoreceptor membranes with 9-cis-retinal, 9-cis-14-methylretinal, or 9-cis-alpha-retinal. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 microseconds following excitation with a pulse of 477-nm actinic light. Global analysis showed the kinetic data for all three artificial gecko pigments to be best fit by two-exponential processes. These two-exponential decays correspond to similar decays observed after photolysis of P521 itself, with the first process being the decay of the equilibrated P521 BathoP521 BSI mixture to P521 Lumi and the second process being the decay of P521 Lumi to P521 Meta I. In spite of its large blue shift relative to P521, iso-P521 displays a normal chloride depletion induced blue shift. Iso-P521's early intermediates up to Lumi were also blue-shifted, with the P521 BathoP521 BSI equilibrated mixture being 15 nm blue-shifted and P521 Lumi being 8 nm blue-shifted relative to the intermediates formed after P521 photolysis. The blue shift associated with the iso-pigment is reduced or disappears entirely by P521 Meta I. Similar blue shifts were observed for the early intermediates observed after photolysis of bovine isorhodopsin, with the Lumi intermediate blue-shifted 5 nm compared to the Lumi intermediate formed after photolysis of bovine rhodopsin. These shifts indicate that a difference exists between the binding sites of 9- and 11-cis pigments which persists for microseconds at 20 degrees C.

  4. Ultra-accelerated natural sunlight exposure testing

    Science.gov (United States)

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  5. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2

    International Nuclear Information System (INIS)

    Chang Chien, S.W.; Chang, C.H.; Chen, S.H.; Wang, M.C.; Madhava Rao, M.; Satya Veni, S.

    2011-01-01

    The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO 2 in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO 2 was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO 2 ) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO 2 and the photooxidation (without TiO 2 ) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO 2 -enhanced photocatalytic pyrene degradation and in photooxidation (without TiO 2 ) of pyrene. The percentages of photocatalytic pyrene degradation by TiO 2 in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5 h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO 2 -enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO 2 -enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO 2 ) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO 2 -enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated. - Highlights: → Synergistic effect of sunlight irradiation and TiO 2 promoted degradation of pyrene. → Micro-nano size TiO 2 enhanced

  6. Photolysis of low concentration H2S under UV/VUV irradiation emitted from high frequency discharge electrodeless lamps.

    Science.gov (United States)

    Xu, Jianhui; Li, Chaolin; Liu, Peng; He, Di; Wang, Jianfeng; Zhang, Qian

    2014-08-01

    The photolysis of low concentration of H2S malodorous gas was studied under UV irradiation emitted by self-made high frequency discharge electrodeless lamp with atomic mercury lines at 185/253.7nm. Experiments results showed that the removal efficiency (ηH2S) of H2S was decreased with increasing initial H2S concentration and increased slightly with gas residence time. ηH2S was increased dramatically with relative humidity from<5% to 43% while the concentration of oxygen in gas environments affected the removal of H2S. The mechanisms for direct and indirect photolysis (generation of ozone) were illustrated by the experimental results on photolysis of H2S under argon environments and ozonation of H2S under air environments, respectively. The overall ηH2S by photolysis is higher than the combination of ηH2S by direct photolysis and ozonation, suggesting that hydroxyl radical-mediated indirect photolysis played an important role during photolysis processes. The main photolysis product was confirmed to be SO4(2-) with ion chromatograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Life-threatening motor vehicle crashes in bright sunlight

    OpenAIRE

    Redelmeier, Donald A.; Raza, Sheharyar

    2017-01-01

    Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estim...

  8. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D. [Physics Department, University College Cork, Cork (Ireland); Ruth, A. A. [Physics Department, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork, Cork (Ireland)

    2013-08-07

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a

  9. Phototransformation rate constants of PAHs associated with soot particles

    International Nuclear Information System (INIS)

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow

  10. Increased polycyclic aromatic hydrocarbon toxicity following their photomodification in natural sunlight: impacts on the duckweed Lemna gibba L. G-3

    International Nuclear Information System (INIS)

    Huang, X.D.; Dixon, D.G.; Greenberg, B.M.

    1995-01-01

    The authors previously demonstrated that simulated solar radiation (SSR), with a fluence rate of only 40 mumol m -2 sec -1 , increased polycyclic aromatic hydrocarbon (PAH) toxicity to the duckweed Lemna gibba and that PAHs photomodified in SSR (generally oxygenation of the ring system) are more toxic than the parent compounds (Huang et al., Environ. Toxicol. Chem., 1993, 12, 1067-1077). It is not known, however, to what extent toxicity of PAHs can increase due to photomodification. Thus, natural sunlight, which has a high fluence rate (approximately 2000 mumol m -2 sec -1 ), was used to photomodify anthracene, benzo[a]pyrene, fluoranthene, phenanthrene, and pyrene. Toxicity was based on growth inhibition of L. gibba, measured as the rate of production of new leaves over an 8-day period. Initially, the toxicity of the PAHs applied in intact form was probed, with the compounds demonstrating greater toxicity in sunlight than in SSR. Next the PAHs were photomodified in sunlight prior to incubation with the plants. The half-lives of the PAHs in sunlight ranged from 12 min to 30 hr. Although most of the products of PAH photomodification are not yet identified, the degree that PAH toxicity increased following photomodification in sunlight could still be probed. The mixtures of photomodified chemicals that were derived from each PAH in sunlight were applied of L. gibba and growth inhibition under 100 mumol m -2 sec -1 of SSR was determined. The LC50s for the PAH photoproducts generated in sunlight were an order of magnitude lower than the LC50s for the PAHs applied in intact form. (author)

  11. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Photochemical of Polychlorinated biphenyl by the photolysis and ...

    African Journals Online (AJOL)

    Michael Horsfall

    reaction mixture inside the cell was continuously stirred with a .... work on PCB photolysis was carried out in alkanes and alcohols. .... dominant mechanism of PCBs destruction becomes hydroxyl ... (2004). Using solar and ultraviolet light to.

  13. Biodegradation and photooxidation of crude oil under natural sunlight in the northern Gulf of Mexico

    Science.gov (United States)

    Bacosa, H. P.; Erdner, D.; Liu, Z.

    2016-02-01

    An enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) spill. While the oil degradation and bacterial communities in the deep-sea plume have been widely investigated, the effect of sunlight on oil and bacterial assemblages in surface waters have received less attention. In this study, we amended surface water collected near the DWH site with crude oil and/or Corexit dispersant and incubated under natural sunlight in the nGoM for 36 d in summer of 2013. The residual alkanes, polycyclic aromatic hydrocarbons (PAHs), and alkalyted PAHs were analyzed by GC-MS, and bacterial community was determined via pyrosequencing. The results show that n-alkane biodegradation rate constants (first order) were ca. ten-fold higher than the photooxidation rate constants. While biodegradation was characterized by a lag phase, photooxidation rate constants for the 2-3 ring and 4-5 ring PAHs, were 0.08-0.98 day-1 and 0.01-0.07 day-1, respectively. Compared to biodegradation, photooxidation increased the transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. Sunlight significantly reduced bacterial diversity and a driver of shifts in bacterial community structure in oil and Corexit treatments. In amended treatments, sunlight increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Halomonas and Bartonella, while the dark treatments enriched Thalassobius, Winogradskyella, Alcanivorax, Formosa, Eubacterium, Erythrobacter, Natronocella, and Pseudomonas. This suggests that different bacteria are degrading the hydrocarbons in the dark and under light exposure. In a follow up study using DNA-Stable isotope probing (SIP), we identified the alkane and PAH degraders using 13C-labeled hexadecane and phenanthrene, respectively. The results of metagenomic and metatranscriptomic analyses in the light and dark incubations will be presented. For the first

  14. Comparative Evaluation of Different Co-Antioxidants on the Photochemical- and Functional-Stability of Epigallocatechin-3-gallate in Topical Creams Exposed to Simulated Sunlight

    Directory of Open Access Journals (Sweden)

    Santo Scalia

    2013-01-01

    Full Text Available The catechin (−-epigallocatechin-3-gallate (EGCG exhibits high antioxidant activity and it has been reported to provide protection of the skin against damage induced by solar UV radiation. However, EGCG is highly unstable under sunlight. The present study aimed to compare the effectiveness of the co-antioxidant agents vitamin E, butylated hydroxytoluene, vitamin C and a-lipoic acid for their potential to protect the catechin from photochemical degradation. Model creams (oil-in-water emulsions containing EGCG (1%, w/w alone or combined with equimolar concentrations of co-antioxidant were exposed to a solar simulator at an irradiance corresponding to natural sunlight. Photodegradation was evaluated by HPLC-UV and HPLC-ESI-MS/MS. Addition of the co-antioxidants vitamin C and a-lipoic acid to the formulation significantly reduced the light-induced decomposition of EGCG from 76.9 ± 4.6% to 20.4 ± 2.7% and 12.6 ± 1.6%, respectively. Conversely, butylated hydroxytoluene had no effect (EGCG loss, 78.1 ± 4.6% and vitamin E enhanced the EGCG photolysis to 84.5 ± 3.4%. The functional stability of the catechin in the creams exposed to the solar simulator was also evaluated by measuring the in vitro antioxidant activity. Following irradiation, the reduction of the EGCG formulation antioxidant power was lower (21.8% than the extent of degradation (76.9%, suggesting the formation of photoproducts with antioxidant properties. The influence of the examined co-antioxidants on the functional stability of the catechin under simulated sunlight paralleled that measured for the EGCG photodecomposition, a-lipoic acid exerting the greatest stabilising effect (antioxidant activity decrease, 1.4%. These results demonstrated that a-lipoic acid is an effective co-antioxidant agent for the stabilization of EGCG in dermatological products for skin photoprotection.

  15. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    . Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  16. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    . A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... were degraded resulting in acceleration factors in the range of 19-55. This shows that concentrated sunlight can be used as qualitatively to determine the lifetime of polymers under highly accelerated conditions....

  17. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect...

  18. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    Science.gov (United States)

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  19. Traceable calibration of photovoltaic reference cells using natural sunlight

    Science.gov (United States)

    Müllejans, H.; Zaaiman, W.; Pavanello, D.; Dunlop, E. D.

    2018-02-01

    At the European Solar Test Installation (ESTI) photovoltaic (PV) reference cells are calibrated traceably to SI units via the World Radiometric Reference (WRR) using natural sunlight. The Direct Sunlight Method (DSM) is described in detail and the latest measurement results and an updated uncertainty budget are reported. These PV reference cells then provide a practical means for measuring the irradiance of natural or simulated sunlight during the calibration of other PV devices.

  20. Analysis of N-nitrosodiethylamine by ion chromatography coupled with UV photolysis pretreatment

    Directory of Open Access Journals (Sweden)

    Xueli Li

    2016-04-01

    Full Text Available Nitrosamines such as N-nitrosodiethylamine (NDEA are commonly detected by spectrophotometry after photolysis and Griess reaction (PG in food industries for lower cost. Results of this research indicate that NDEA decays rapidly under UV irradiation, and concentrations of the generated NO2− and NO3− ions vary with photolysis conditions. Thus, the measurement of the PG method may be inconsistent because it is based on the amount of photoproduced NO2−. In addition, more errors may be present in the PG method since NO3− cannot be measured colorimetrically using Griess reagent. In this work, the sum of the concentrations of photoproduced NO2− and NO3− was found to be equivalent to the initial NDEA before photolysis, and a photolysis–ion chromatography method was validated, which may serve as a feasible and accurate method to determine nitrosamines.

  1. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  2. Persistence of marine fish environmental DNA and the influence of sunlight.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Andruszkiewicz

    Full Text Available Harnessing information encoded in environmental DNA (eDNA in marine waters has the potential to revolutionize marine biomonitoring. Whether using organism-specific quantitative PCR assays or metabarcoding in conjunction with amplicon sequencing, scientists have illustrated that realistic organism censuses can be inferred from eDNA. The next step is establishing ways to link information obtained from eDNA analyses to actual organism abundance. This is only possible by understanding the processes that control eDNA concentrations. The present study uses mesocosm experiments to study the persistence of eDNA in marine waters and explore the role of sunlight in modulating eDNA persistence. We seeded solute-permeable dialysis bags with water containing indigenous eDNA and suspended them in a large tank containing seawater. Bags were subjected to two treatments: half the bags were suspended near the water surface where they received high doses of sunlight, and half at depth where they received lower doses of sunlight. Bags were destructively sampled over the course of 87 hours. eDNA was extracted from water samples and used as template for a Scomber japonicus qPCR assay and a marine fish-specific 12S rRNA PCR assay. The latter was subsequently sequenced using a metabarcoding approach. S. japonicus eDNA, as measured by qPCR, exhibited first order decay with a rate constant ~0.01 hr -1 with no difference in decay rate constants between the two experimental treatments. eDNA metabarcoding identified 190 organizational taxonomic units (OTUs assigned to varying taxonomic ranks. There was no difference in marine fish communities as measured by eDNA metabarcoding between the two experimental treatments, but there was an effect of time. Given the differences in UVA and UVB fluence received by the two experimental treatments, we conclude that sunlight is not the main driver of fish eDNA decay in the experiments. However, there are clearly temporal effects that

  3. Photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm

    Science.gov (United States)

    Tang, Yongxin; Zhu, Lei

    2005-06-01

    We have studied the photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm by using laser photolysis combined with cavity ring-down spectroscopy. The HCO radical is a photodissociation product at 193 and 248 nm. The corresponding HCO quantum yields are 0.55 ± 0.07 and 0.12 ± 0.01, independent of butenedial pressure and nitrogen buffer gas pressure. Absorption cross-sections of butenedial are (6.88 ± 0.39) × 10 -18 and (3.62 ± 0.69) × 10 -19 cm 2 at 193 and 248 nm. The end-products from the photolysis of butenedial at 193, 248, 308, and 351 nm were measured by FTIR. Acrolein and 3H-furan-2-one were observed and their yields have been estimated.

  4. Pulse photolysis of NADH in the presence of cysteine

    International Nuclear Information System (INIS)

    Scheel, H.E.

    1976-01-01

    In the UV irradiation of NADH under anaerobic conditions, cysteine, which often acts as a radioprotective substance, has a sensitizing effect. With the aid of pulse photolysis, it was studied which reaction mechanisms in the presence or absence of cysteine are responsible for the damage to NADH in aqueous solution. In the absence of cysteine, the characteristic NADH absorption at 340 nm is reduced immediately after UV quanta have been absorbed by the adenine fraction of the molecules; in the presence of cysteine, a secondary reaction causes additional damage. The spectra of the intermediate products of NADH and cysteine have been recorded for different cysteine concentrations, and the reaction constants have been determined. These values suggest that the sensitizing effect is due to a reaction of NADH with radical anions produced by photolysis. (orig.) [de

  5. Phototransformation of 2,4,6-trinitrotoluene: Sensitized by riboflavin under different irradiation spectral range

    International Nuclear Information System (INIS)

    Yang Xin; Zhao Xueheng; Hwang, H.-M.

    2007-01-01

    Riboflavin-sensitized phototransformation of 2,4,6-trinitrotoluene (TNT) under natural sunlight was investigated with reverse-phase high performance liquid chromatography/mass spectrometry (HPLC/MS) and gas chromatography/mass spectrometry (GC/MS). The effect of different spectral region of sunlight on TNT phototransformation in the absence or presence of riboflavin was also investigated by using optical filters with cut-off at 400 or 455 nm. The concentration of riboflavin in the phototransformation of TNT was optimized. Concentration of riboflavin and TNT was 1.0 and 50 μM, respectively. The rates of phototransformation of TNT under natural sunlight in the presence or absence of riboflavin were conformed to initial pseudo-first-order rate equation. The photolysis half life of TNT in the presence of riboflavin was 21.87 min, compared to 39 min in the absence of riboflavin under natural sunlight. Two major phototransformation products of TNT, 3,5-dinitroaniline (3,5-DNA) and 1,3,5-trinitrobenzene (1,3,5-TNB), were detected in the samples in the presence of riboflavin receiving irradiation at full wavelength or wavelength >400 nm. The results indicate that riboflavin mediates TNT sensitized-phototransfomation under natural sunlight or near-UV-vis light

  6. Successful pacing using a batteryless sunlight-powered pacemaker.

    Science.gov (United States)

    Haeberlin, Andreas; Zurbuchen, Adrian; Schaerer, Jakob; Wagner, Joerg; Walpen, Sébastien; Huber, Christoph; Haeberlin, Heinrich; Fuhrer, Juerg; Vogel, Rolf

    2014-10-01

    Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  7. Prompt and delayed excitation and photolysis of cesium dimers

    International Nuclear Information System (INIS)

    Davanloo, F.; Collins, C.B.; Inamdar, A.S.; Mehendale, N.Y.; Nagvi, A.S.

    1984-01-01

    In this work a time-delayed, double resonance technique was used for the study of the state selective photolysis of Cs 2 excited in the yellow range of visible wavelengths. Particular attention being placed on the production of the fine structure components of the 5 2 D and 6 2 P states of Cs and upon the lifetimes of the product populations in the cesium vapor. A quantitative model was constructed to fit the data and rate coefficients were extracted for processes tending to attenuate the product state selectivity. Reported here is what appears to be the first value for the fine-structure mixing cross section for Cs(5 2 D5/2 → 5 2 D 3 /sub 3/2/) of 17 A 2 +-50%, close to the geometric cross section

  8. Mass-dependent and non-mass-dependent isotope effects in ozone photolysis: Resolving theory and experiments

    International Nuclear Information System (INIS)

    Cole, Amanda S.; Boering, Kristie A.

    2006-01-01

    In addition to the anomalous 17 O and 18 O isotope effects in the three-body ozone formation reaction O+O 2 +M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or 'non-mass-dependent'), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory. Specifically, we show that the formation of ozone during the UV photolysis experiments is not negligible, as had been assumed, and that the well-known non-mass-dependent isotope effects in ozone formation can account for the non-mass-dependent enrichment of the heavy isotopologs of ozone observed in the experiment. Thus, no unusual non-mass-dependent fractionation in ozone photolysis must be invoked to explain the experimental results. Furthermore, we show that theoretical predictions of a mass-dependent preferential loss of the heavy isotopologs of ozone during UV photolysis are not inconsistent with the experimental data, particularly if mass-dependent isotope effects in the chemical loss reactions of ozone during the photolysis experiments or experimental artifacts enrich the remaining ozone in 17 O and 18 O. Before the calculated fractionation factors can be quantitatively evaluated, however, further investigation of possible mass-dependent isotope effects in the reactions of ozone with O( 1 D), O( 3 P), O 2 ( 1 Δ), and O 2 ( 1 Σ) is needed through experiments we suggest here

  9. Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks?

    International Nuclear Information System (INIS)

    Wang, Xiao-Huan; Lin, Angela Yu-Chen

    2014-01-01

    Sunlight photodegradation has long been considered a significant process in lowering the concentrations of pharmaceuticals in surface waters and thus decreasing the ecological risk. For the first time, this study identified the significance of investigating the environmental photodegradation of a pharmaceutical residue mixture (rather than a single compound) and the associated toxicity of transformation byproducts in environmental waters, including rivers, hospital wastewaters, and effluents from wastewater treatment plants and pharmaceutical production facilities. Pharmaceuticals undergo phototransformation rather than mineralization (11–23% in 34 h). Pharmaceutical mixtures could possibly act as dissolved organic matter for each individual compound and subsequently affect the photolysis rates. The increased toxicity of irradiated pharmaceutical mixtures challenges the validity of the current understanding of sunlight photolysis. The implications of this work suggest that current knowledge concerning the occurrence, natural attenuation, ecotoxicity, and human health risks of pharmaceuticals is far from complete; photolysis is not necessarily a purification process. -- Highlights: • Pharmaceutical mixtures could possibly act as DOMs for each other. • Pharmaceuticals underwent merely phototransformation rather than mineralization. • Increased toxicity from photo byproducts associated with the pharmaceutical mixture. • Phototransformation does not necessary mitigate the risk to human and the ecosystem. -- Transformation byproducts associated with a pharmaceutical mixture could be more toxic, and phototransformation does not necessary mitigate the risk to humans and the ecosystem

  10. Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Balaji, E-mail: anandharaob@ornl.gov [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wang, Wei [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Cai, Qingsong; Anderson, Todd [Department of Environmental Toxicology, The Institute of Environment and Human Health, Texas Tech University, Lubbock, TX (United States); Gu, Baohua, E-mail: gub1@ornl.gov [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2013-01-15

    The insensitive munitions compound 2,4-dinitroanisole (DNAN) is increasingly being used as a replacement for traditional, sensitive munitions compounds (e.g., trinitrotoluene [TNT]), but the environmental fate and photo-transformation of DNAN in natural water systems are currently unknown. In this study, we investigated the photo-transformation rates of DNAN with both ultraviolet (UV) and sunlight irradiation under different environmentally relevant conditions. Sunlight photo-transformation of DNAN in water was found to follow predominantly pseudo-first-order decay kinetics with an average half-life (t{sub 1/2}) of approximately 0.70 d and activation energy (E{sub a}) of 53 kJ mol{sup −1}. Photo-transformation rates of DNAN were dependent on the wavelength of the light source: irradiation with UV-B light (280–315 nm) resulted in a greater quantum yield of transformation (ϕ{sub UV-B} = 3.7 × 10{sup −4}) than rates obtained with UV-A light (ϕ{sub UV-A} = 2.9 × 10{sup −4} at 316–400 nm) and sunlight (ϕ{sub sun} = 1.1 × 10{sup −4}). Photo-oxidation was the dominant mechanism for DNAN photo-transformation, based on the formation of nitrite (NO{sub 2}{sup −}) and nitrate (NO{sub 3}{sup −}) as major N species and 2,4-dinitrophenol as the minor species. Environmental factors (e.g., temperature, pH, and the presence or absence of naturally dissolved organic matter) displayed modest to little effects on the rate of DNAN photo-transformation. These observations indicate that sunlight-induced photo-transformation of DNAN may represent a significant abiotic degradation pathway in surface water, which may have important implications in evaluating the potential impacts and risks of DNAN in the environment. - Highlights: ► DNAN photo-transformation kinetics was dependent on light source and temperature. ► Photolysis produced harmful by-products that included dinitrophenol and nitrate. ► Photo-oxidation was determined to be the likely pathway of DNAN

  11. Persistence of Bacteroides ovatus under simulated sunlight irradiation

    KAUST Repository

    Dong, Shengkun

    2014-07-04

    Background: Bacteroides ovatus, a member of the genus Bacteroides, is considered for use in molecular-based methods as a general fecal indicator. However, knowledge on its fate and persistence after a fecal contamination event remains limited. In this study, the persistence of B. ovatus was evaluated under simulated sunlight exposure and in conditions similar to freshwater and seawater. By combining propidium monoazide (PMA) treatment and quantitative polymerase chain reaction (qPCR) detection, the decay rates of B. ovatus were determined in the presence and absence of exogenous photosensitizers and in salinity up to 39.5 parts per thousand at 27°C. Results: UVB was found to be important for B. ovatus decay, averaging a 4 log10 of decay over 6 h of exposure without the presence of extracellular photosensitizers. The addition of NaNO2, an exogenous sensitizer producing hydroxyl radicals, did not significantly change the decay rate of B. ovatus in both low and high salinity water, while the exogenous sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion: The results of laboratory experiments suggest that if B. ovatus is released into either freshwater or seawater environment in the evening, 50% of it may be intact by the next morning; if it is released at noon, only 50% may be intact after a mere 5 min of full spectrum irradiation on a clear day. This study provides a mechanistic understanding to some of the important environmental relevant factors that influenced the inactivation kinetics of B. ovatus in the presence of sunlight irradiation, and would facilitate the use of B. ovatus to indicate the occurrence of fecal contamination.

  12. Sunlight stability and rain-fastness of formulations of Baculovirus heliothis

    International Nuclear Information System (INIS)

    Ignoffo, C.M.; Garcia, C.; Saathoff, S.G.

    1997-01-01

    Sunlight-Ultraviolet, with an activity spectrum from 290 to 400 nm, is the most destructive factor affecting the persistence of baculoviruses. Benzopurpurin (a disazo dye) and carbon provided the best protection when polyhedral inclusion bodies (PIB) of Baculovirus heliothis were exposed to an artificial spectrum simulating sunlight-UV (UV). Greater than 75% of the original PIB activity was still present after 48 h of sunlight-UV. When sprayed on soybeans and exposed to natural sunlight, only formulations with carbon provided significant protection of PIB. The half-life of formulations were PIB-only 4.9 +/- 1.4 h (mean +/- SE), PIB + polymer (pyrrolidone-based sticker) 3.3 +/- 0.6 h, PIB + polymer + benzopurpurin 3.4 +/- 0.7 h, and PIB + polymer + carbon 27.7 +/- 5.2 h. PIB of B. heliothis tenaciously adhere to soybean, Glycine max (L.) Merrill, leaflets after spraying and drying. Less than 6% of the PIB activity of nonformulated PIB was lost after a drenching, simulated rainfall. More than 97% of the original PIB activity of carbon formulations was still present on soybean leaflets after 10 h of exposure to sunlight-UV. In contrast, 20% was present for formulations without carbon

  13. Photolysis study of octyl p-methoxycinnamate loaded microemulsion by molecular fluorescence and chemometric approach

    Science.gov (United States)

    Nascimento, Danielle Silva; Insausti, Matías; Band, Beatriz Susana Fernández; Grünhut, Marcos

    2018-02-01

    Octyl p-methoxycinnamate (OMC) is one of the most widely used sunscreen agents. However, the efficiency of OMC as UV filter over time is affected due to the formation of the cis-isomer which presents a markedly lower extinction coefficient (εcis = 12,600 L mol- 1 cm- 1 at 291 nm) than the original trans-isomer (εtrans = 24,000 L mol- 1 cm- 1 at 310 nm). In this work, a novel carrier for OMC based on an oil-in-water microemulsion is proposed in order to improve the photostability of this sunscreen. The formulation was composed of 29.2% (w/w) of a 3:1 mixture of ethanol (co-surfactant) and decaethylene glycol mono-dodecyl ether (surfactant), 1.5% (w/w) of oleic acid (oil phase) and 69.2% (w/w) of water. This microemulsion was prepared in a simple way, under moderate stirring at 25 °C and using acceptable, biocompatible and accessible materials for topical use. OMC was incorporated in the vehicle at a final concentration of 5.0% (w/w), taking into account the maximum permitted levels established by international norms. Then, a photolysis study of the loaded formulation was performed using a continuous flow system. The direct photolysis was monitored over time by molecular fluorescence. The recorded spectra data between 370 y 490 nm were analyzed by multivariate curve resolution-alternating least squares algorithm. The kinetic rate constants corresponding to the photolysis of the trans-OMC were calculated from the concentration profiles, resulting in 0.0049 s- 1 for the trans-OMC loaded microemulsion and 0.0131 s- 1 for the trans-OMC in aqueous media. These results demonstrate a higher photostability of the trans-OMC when loaded in the proposed vehicle with respect to the free trans-OMC in aqueous media.

  14. Degradation of Paracetamol by Photolysis Using C-N-codoped TiO2

    Directory of Open Access Journals (Sweden)

    Vanny Yulia Safitri

    2017-11-01

    Full Text Available Paracetamol is generally used as analgesic and antipyretic drugs. Contamination paracetamol in the environment can occur because of waste material disposal from production site and immediate disposal of household that cause water pollution. Paracetamol is degraded by photolysis method under irradiation 10 watt UV-light (λ=365 nm, visible-light (Philips LED 13 watt 1400 lux and solar-light with and without addition C-N-codoped TiO2catalyst. The solution is analyzed by UV-Vis spectrophotometer at λ 200-400 nm. Optimum weight of C-N-codoped TiO2 catalyst obtained is 20 mg under UV-light photolysis. Paracetamol 4 mg/L is degraded 45.48% after 120 minutes under UV-light irradiation without catalyst, and increases to be 69.31% by using 20 mg catalyst. While degradation percentage of paracetamol is 16.96 % without catalyst, the percentage increases to be 34.29% after using 20 mg catalyst for 120 minutes photolysis under visible-light. Degradation of paracetamol by solar light achieves only 12.27% in absance of catalyst for 120 minutes irradiation, but it increases significantly until 70.39% in presence of 20 mg catalyst.

  15. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A

    2011-01-01

    . The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process......Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine...

  16. UV-photodegradation of desipramine: Impact of concentration, pH and temperature on formation of products including their biodegradability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Nareman D.H.; Mahmoud, Waleed M.M. [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1 C13, DE 21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Olsson, Oliver [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1 C13, DE 21335 Lüneburg (Germany); Kümmerer, Klaus, E-mail: klaus.kuemmerer@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1 C13, DE 21335 Lüneburg (Germany)

    2016-10-01

    Desipramine (DMI) is a widely used tricyclic antidepressant, and it is the major metabolite of imipramine (IMI) and lofepramine (LMI); IMI and LMI are two of the most commonly used tricyclic antidepressants. If DMI enters the aquatic environment, it can be transformed by the environmental bacteria or UV radiation. Therefore, photolysis of DMI in water was performed using a simulated sunlight Xenon-lamp and a UV-lamp. Subsequently, the biodegradability of DMI and its photo-transformation products (PTPs) formed during its UV photolysis was studied. The influence of variable conditions, such as initial DMI concentration, solution pH, and temperature, on DMI UV photolysis behavior was also studied. The degree of mineralization of DMI and its PTPs was monitored. A Shimadzu HPLC-UV apparatus was used to follow the kinetic profile of DMI during UV-irradiation; after that, ion-trap and high-resolution mass spectrometry coupled with chromatography were used to monitor and identify the possible PTPs. The environmentally relevant properties and selected toxicity properties of DMI and the non-biodegradable PTPs were predicted using different QSAR models. DMI underwent UV photolysis with first-order kinetics. Quantum yields were very low. DOC values indicated that DMI formed new PTPs and was not completely mineralized. Analysis by means of high-resolution mass spectrometry revealed that the photolysis of DMI followed three main photolysis pathways: isomerization, hydroxylation, and ring opening. The photolysis rate was inversely proportional to initial DMI concentration. The pH showed a significant impact on the photolysis rate of DMI, and on the PTPs in terms of both formation kinetics and mechanisms. Although temperature was expected to increase the photolysis rate, it showed a non-significant impact in this study. Results from biodegradation tests and QSAR analysis revealed that DMI and its PTPs are not readily biodegradable and that some PTPs may be human and/or eco

  17. Unimolecular H2 elimination during the liquid phase radiolysis and photolysis of alkane - alkane mixtures

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Foeldiak, G.

    1980-01-01

    Unimolecular H 2 elimination from alkanes was investigated in cyclopentane-cyclohexane, n-hexane-cyclohexane and cyclohexane-cyclooctane mixtures during fluradiolysis and 7.6 eV photolysis. During the radiolysis of all systems, and when the fluorescence shift law allowed it, during the photolysis as well, inhibited H 2 detachment was observed from the first component and sensitized hydrogen molecule elimination from the second. It has been concluded that the same excited state (the lowest singlet, S 1 ) is responsible for the H 2 elimination during radiolysis and photolysis and this is that one that gives rise to fluorescence in the experiments of other authors. The H 2 and H elimination from alkanes generally have different excited precursors. The direct population of S 1 by γ-irradiation is of limited importance and this intermediate is mainly produced in ''charge neutralization'' processes. (author)

  18. Room temperature FePt nanoparticles formation kinetics by laser solution photolysis

    CSIR Research Space (South Africa)

    Nkosi, S

    2012-04-01

    Full Text Available An experiment has been designed to measure the radiation emission during photolysis, as well as the production of either positive or negative metallic ions in liquid from of FePt nanoparticles....

  19. Time-kill kinetic analysis of antimicrobial chemotherapy based on hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    Science.gov (United States)

    Shirato, Midori; Nakamura, Keisuke; Kanno, Taro; Lingström, Peter; Niwano, Yoshimi; Örtengren, Ulf

    2017-08-01

    A recently developed antimicrobial technique utilizing hydroxyl radicals generated by hydrogen peroxide (H 2 O 2 ) photolysis represents a promising new therapy for preventing and treating dental caries. The present study compared the antimicrobial time-kill kinetics of H 2 O 2 photolysis, conventional antiseptics, and antimicrobial photodynamic therapy (aPDT) against biofilm-forming Streptococcus mutans (cariogenic bacteria) grown on hydroxyapatite disks. H 2 O 2 photolysis was performed by irradiating the biofilm immersed in 3% H 2 O 2 with 365-nm light-emitting diode (LED) light at an irradiance of 1000mW/cm 2 for up to 1.5min. Antiseptic treatments consisted of 0.2% chlorhexidine gluconate, 0.5% povidone-iodine, and 3% H 2 O 2 . The biofilm was immersed in each antiseptic for up to 4min. aPDT was performed by irradiating the biofilm immersed in 100μM methylene blue or toluidine blue O with 655-nm laser light at 1000mW/cm 2 for up to 4min. Based on the time-kill assay, the decimal reduction value (D-value) of each treatment was determined. With a D-value of 0.06min, H 2 O 2 photolysis exhibited the highest bactericidal effect against biofilm-forming S. mutans. In contrast, antiseptics and aPDT exerted a slower bactericidal effect, with D-values of 0.9-2.7min. In conclusion, the antimicrobial technique based on H 2 O 2 photolysis using 365-nm LED represents a strong adjunctive chemotherapy for dental caries treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nature sunlight bleaching of Ti center ESR signal in quartz

    International Nuclear Information System (INIS)

    Yin Gongming; Liu Chunru; Li Jianping; Fang Jiahu; Gao Lu; Lin Min

    2009-01-01

    Quartz grains were extracted from granite. Bleaching was carried out in four different area chosen for their different altitudes (Beijing, Yinchuan, Germu, Lhasa), in order to observe their behavior under different intensities of the UV (Ultra violet) component of sunlight. The result of our experiments indicate that the Ti center signal is totally bleachable by the natural sunlight and show that the Ti center signal was reduced to zero after about 128 h in Beijing and after 56 h for Lhasa. We can speculate that different intensity of the UV component of sunlight lead to different minimal time necessary to obtain the total bleaching of the quartz sample. (authors)

  1. The effects of sunlight exposure on the neutron response of CN-85 track detector

    International Nuclear Information System (INIS)

    Ahmad, N.; Mirza, N.M.; Mirza, S.K.; Tufail, M.

    1996-01-01

    The effect of sunlight exposure on the neutron response of CN-85 track detectors has been studied. It has been observed that the response during the first 28 days of sunlight exposure is slightly enhanced (10%) and then deceases continuously with increase in the sunlight exposure. After 84 days of sunlight exposure the response of the exposed detector relative to an unexposed detector is only 22%. It is also observed that the response can not be maintained by wrapping the CN-85 etch track detectors in typewriter black carbon papers if they are exposed to sunlight. (author)

  2. Photolysis of 5-bromouracil and some related compounds in solution. Pt. 6

    International Nuclear Information System (INIS)

    Campbell, J.M.; Sonntag, C. von; Schulte-Frohlinde, D.

    1974-01-01

    The steady state photolysis of 5-bromouracil (BU) in aqueous solution has been studied as a function of wavelength, pH, temperature, and hydrogen-donor concentration. Under all conditions studied, the primary reaction is shown to be C-Br bond cleavage followed by abstraction from the hydrogen-donor to give uracil and HBr. At pH > 12 further products are formed. In deoxygenated aqueous solution at pH 6, 20 0 C, and 254 nm, the quantum yield of BU consumption, PHI (-BU), is 1.8 x 10 -3 independent of hydrogen-donor type or concentration (e.g. 3 x 10 -2 to 2 m MeOH). With increasing pH, PHI (-BU) increases stepwise to 0.012 at pH 10 and to 0.28 at pH 14. pK-values calculated from these data are the same as ground state pK values. The results have been explained in terms of a homolytic dissociation of the C-Br bond of the excited BU followed by recombination or H atom abstraction by the radicals. At high hydrogen-donor concentration H atom abstraction can compete with cage recombination. A comparison has been made between BU photolysis in organic, hydrogen-donor solvents and BU photolysis within the DNA of bacteria or phages. (orig./HK) [de

  3. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  4. Investigation of sunlight-induced deterioration of aroma of pummelo (Citrus maxima) essential oil.

    Science.gov (United States)

    Sun, Hao; Ni, Hui; Yang, Yuanfan; Wu, Ling; Cai, Hui-nong; Xiao, An-feng; Chen, Feng

    2014-12-10

    Deterioration of aromas of pummelo essential oil (EO) induced by sunlight was compared to those induced by heat and oxygen exposure using the techniques of sensory evaluation and GC-MS analysis. The sunlight-exposed EO was found to possess an oily off-flavor odor, which was significantly different from its counterparts induced by oxygen and heat. The strong oily note of the sunlight-exposed EO was attributed to the existence of linalool oxides and limonene oxides, as well as the lack of neral and geranial, for which UV sunlight was revealed to be the critical contributor causing the chemical reactions for the aroma changes. The results demonstrated that UV sunlight could significantly affect the aroma of the pummelo EO, providing valuable information that will benefit the production and storage of EO-based aromatic products.

  5. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    International Nuclear Information System (INIS)

    Vione, D.; Calza, P.; Galli, F.; Fabbri, D.; Santoro, V.; Medana, C.

    2015-01-01

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with "3CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO_2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO_2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic transformation

  6. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  7. Laser Flash Photolysis and Pulse Radiolysis of Iodate and Periodate in Aqueous Solution

    DEFF Research Database (Denmark)

    Kläning, U K; Sehested, Knud; Wolff, Thomas

    1981-01-01

    photolysis study of IeVI and I0VI suggests that the predominant IeVI and I0VI species formed are IO42– and IO3 at 3 12. Redox reactions of the iodine(VI) species are fast compared with interconversion among the various iodine(VI) species......Species containing iodine in oxidation state six are formed by photolysis and radiolysis of aqueous iodate and periodate solutions in the following reactions: IO3–+ O–→ IO42–; IO3–+ OH → IO3; IVII+ eaq–→ IeVI and IVII [graphic omitted] I0VI+ O–(or OH). The present pulse radiolysis and laser flash...

  8. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    International Nuclear Information System (INIS)

    Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio

    2013-01-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ BP3 = (3.1 ± 0.3) · 10 −5 and the following second-order reaction rate constants: with • OH, k BP3, • OH = (2.0 ± 0.4) · 10 10 M −1 s −1 ; with the triplet states of chromophoric dissolved organic matter ( 3 CDOM*), k BP3, 3 CDOM* = (1.1 ± 0.1) · 10 9 M −1 s −1 ; with 1 O 2 , k BP3, 1 O 2 = (2.0 ± 0.1) · 10 5 M −1 s −1 , and with CO 3 −• , k BP3,CO 3 −• 7 M −1 s −1 . These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with • OH and 3 CDOM* would be the main processes of BP3 phototransformation. Reaction with • OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L −1 ), and reaction with 3 CDOM* at high DOC. If the reaction rate constant with CO 3 −• is near the upper limit of experimental measures (5 · 10 7 M −1 s −1 ), the CO 3 −• degradation process could be somewhat important for DOC −1 . The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with • OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, • OH and 3 CDOM*. • Two methylated isomers, benzaldehyde and benzoic acid detected as intermediates. • Phototransformation would be faster in shallow and DOM-poor water. • Half-life times of benzophenone-3 are in the range of weeks to a couple of months.

  9. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    International Nuclear Information System (INIS)

    Mandal, T.K.; Chatterjee, S.N.

    1980-01-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A 233 /A 215 , and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X

  10. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    Science.gov (United States)

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  11. Elucidating Direct Photolysis Mechanisms of Different Dissociation Species of Norfloxacin in Water and Mg2+ Effects by Quantum Chemical Calculations.

    Science.gov (United States)

    Wang, Se; Wang, Zhuang

    2017-11-11

    The study of pollution due to combined antibiotics and metals is urgently needed. Photochemical processes are an important transformation pathway for antibiotics in the environment. The mechanisms underlying the effects of metal-ion complexation on the aquatic photochemical transformation of antibiotics in different dissociation forms are crucial problems in science, and beg solutions. Herein, we investigated the mechanisms of direct photolysis of norfloxacin (NOR) in different dissociation forms in water and metal ion Mg 2+ effects using quantum chemical calculations. Results show that different dissociation forms of NOR had different maximum electronic absorbance wavelengths (NOR 2+ direct photolysis pathways were de-ethylation (N7-C8 bond cleavage) and decarboxylation (C2-C5 bond cleavage). Furthermore, the presence of Mg 2+ changed the order of the wavelength at maximum electronic absorbance (NOR⁺-Mg 2+ direct photolysis of NOR⁰, NOR⁺, and NOR 2+ . The calculated TS results indicated that the presence of Mg 2+ increased E a for most direct photolysis pathways of NOR, while it decreased E a for some direct photolysis pathways such as the loss of the piperazine ring and the damage of the piperazine ring of NOR⁰ and the defluorination of NOR⁺.

  12. Accelerated stability testing of organic photovoltaics using concentrated sunlight

    DEFF Research Database (Denmark)

    Katz, Eugene A.; Manor, Assaf; Mescheloff, Asaf

    2012-01-01

    We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported.......We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported....

  13. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy

    Science.gov (United States)

    Glazachev, Yu I.; Orlova, D. Y.; Řezníčková, P.; Bártová, E.

    2018-05-01

    We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.

  14. Sunlight exposure is important for preventing hip fractures in patients with Alzheimer's disease, Parkinson's disease, or stroke.

    Science.gov (United States)

    Iwamoto, J; Takeda, T; Matsumoto, H

    2012-04-01

    Hypovitaminosis D as a result of malnutrition or sunlight deprivation, increased bone resorption, low bone mineral density (BMD), or an increased risk of falls may contribute to an increased risk of hip fractures in patients with neurological diseases, including Alzheimer's disease, Parkinson's disease, and stroke. The purpose of this study was to clarify the efficacy of sunlight exposure for reducing the risk of hip fractures in patients with such neurological diseases. The English literature was searched using PubMed, and randomized controlled trials evaluating the efficacy of sunlight exposure for reducing the risk of hip fractures in patients with Alzheimer's disease, Parkinson's disease, and stroke were identified. The relative risk and the 95% confidence interval were calculated for individual randomized controlled trials, and a pooled data analysis (meta-analysis) was performed. Three randomized controlled trials were identified. Sunlight exposure improved hypovitaminosis D and increased the BMD. The relative risk (95% confidence interval) of hip fractures was 0.22 (0.05, 1.01) for Alzheimer's disease, 0.27 (0.08, 0.96) for Parkinson's disease, and 0.17 (0.02, 1.36) for stroke. The relative risk (95% confidence interval) calculated for the pooled data analysis was 0.23 (0.10, 0.56) (P = 0.0012), suggesting a significant risk reduction rate of 77%. The present meta-analysis added additional evidence indicating the efficacy of sunlight exposure for reducing the risk of hip fractures in patients with Alzheimer's disease, Parkinson's disease, and stroke. © 2011 John Wiley & Sons A/S.

  15. Surfactant and natural sunlight enhanced Photogalvanic effect of Sudan I dye

    Directory of Open Access Journals (Sweden)

    Pooran Koli

    2017-12-01

    Full Text Available Photogalvanic cells (PG have been extensively studied for solar power and storage at low intensity artificial sunlight. But, PG can be practically significant and applicable in daily life only when they are validated at natural sunlight intensity. Therefore, the present study of photogalvanics of Sudan I-Fructose with efficiency enhancer chemical such as Sodium Lauryl Sulfate (SLS surfactant in alkaline medium has been used to observe their workable feasibility in natural sunlight with investigation for optimal fabrication parameters. The cell has been found workable in natural sunlight with greatly enhanced optimum cell performance compared to that for reported similar cells. The observed optimum cell performance in terms of maximum power, short-circuit current, open-circuit potential, conversion efficiency and storage capacity (as half change time is of the order of 1081.1 μW, 4200 μA, 1048 mV, 13.5%, and 31 min, respectively.

  16. Flash and Continuous Photolysis Studies of the Thionitrosyl Complex Cr(CH3CN)5(NS)2+ and the Nitric Oxide Analogs. Reactions of Nitrogen Monosulfide in Solution

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Wied; Hedegård, Erik; Rimmer, R. Dale

    2009-01-01

    Photolysis of the thionitrosyl complex Cr(CH3CN)5(NS)2+ (1) in acetonitrile solution leads to the dissociation of nitrogen monosulfide (NS).  In deaerated solution, this reaction is reversible, and flash photolysis studies demonstrate that NS reacts with Cr(CH3CN)62+ according to the rate law d[1...... dependent quantum yields of 0.3-1.0 mol/Einstein. Mass spectroscopic studies of the product solutions demonstrate formation of S8, presumably from the decomposition of NS. The quantitative photochemical behaviors of 1 and the nitrosyl analog 2 are compared. Udgivelsesdato: Jan....

  17. Psoriasis, Psoralen and Sunlight

    Directory of Open Access Journals (Sweden)

    R.P.C Naik

    1979-01-01

    Full Text Available Topical or oral administration of photoactive furocumarins followed by exposure to ultra violet light from artificial sources has been shown previously to clear psoriatic lesions. Sunlight has been chosen as the source of UVL m two separate paired comparison studies using topical and, oral 4,5, 8 trimethylpsoralen. Two out of 21 on topical therapy and none out of 6 patients on oral paired-comparison study showed faster clearance of the drug treated lesions compared to control sites.

  18. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  19. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  20. Intensity correlation imaging with sunlight-like source

    Science.gov (United States)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  1. DNA damage by ethylbenzenehydroperoxide formed from carcinogenic ethylbenzene by sunlight irradiation

    International Nuclear Information System (INIS)

    Toda, Chitose; Uchida, Takafumi; Midorikawa, Kaoru; Murata, Mariko; Hiraku, Yusuke; Okamoto, Yoshinori; Ueda, Koji; Kojima, Nakao; Kawanishi, Shosuke

    2003-01-01

    Ethylbenzene, widely used in human life, is a non-mutagenic carcinogen. Sunlight-irradiated ethylbenzene caused DNA damage in the presence of Cu 2+ , but unirradiated ethylbenzene did not. A Cu + -specific chelator bathocuproine inhibited DNA damage and catalase showed a little inhibitory effect. The scopoletin assay revealed that peroxides and H 2 O 2 were formed in ethylbenzene exposed to sunlight. These results suggest that Cu + and alkoxyl radical mainly participate in DNA damage, and H 2 O 2 partially does. When catalase was added, DNA damage at thymine and cytosine was inhibited. Ethylbenzenehydroperoxide, identified by GC/MS analysis, induced the formation of 8-oxo-7,8-dihydro-2 ' -deoxyguanosine and caused DNA damage at consecutive guanines, as observed with cumenehydroperoxide. Equimolar concentrations of H 2 O 2 and acetophenone were produced by the sunlight-irradiation of 1-phenylethanol, a further degraded product of ethylbenzene. These results indicate a novel pathway that oxidative DNA damage induced by the peroxide and H 2 O 2 derived from sunlight-irradiated ethylbenzene may lead to expression of the carcinogenicity

  2. Influence of thermoluminescence signal for debris flow surface materials by sunlight bleaching

    International Nuclear Information System (INIS)

    Song Bo; Wei Mingjian; He Youbing; Zhou Rui; Zhao Qiuyue; Zhang Bin

    2013-01-01

    Thermoluminescence was utilized for measuring the thermoluminescence signals of the standard debris flow samples which were bleached by simulated sunlight and debris flow samples after real sunlight bleaching. The experiment results demonstrate that light bleaching phenomenon of the debris flow occurs when it experiences a period of exposure. The thermoluminescence signal of the samples weakens gradually with the increase of depth. The optical bleaching phenomenon is obvious. Within a certain depth, light bleaching phenomenon is enhanced with the increase of light intensity. The annealing depth of simulated sunlight bleaching experiment is about 1 mm, and the actual annealing depth of sunlight bleaching is about 6 mm. According to the equivalent dose variation with depth, the mud of natural debris flow can be divided into two stages. It has fundamental significance in the application of thermoluminescence dating techniques to divide the stages of debris flow sediments. (authors)

  3. A generic approach for sunlight and shadow impact computation on large city models

    OpenAIRE

    Jaillot , Vincent; Pedrinis , Frédéric; Servigne , Sylvie; Gesquière , Gilles

    2017-01-01

    International audience; Study of sunlight and shadow effects on the city has become more accessible with the development of 3D citymodels. It allows measuring when and how an object is exposed to the sunlight, which enables conducting manyrelated studies such as energy analyses or urban planning. While many works have been done for this purpose, itmay be interesting to know which objects (terrain, buildings, trees, etc.) prevent other objects from beingexposed to the sunlight. In this paper w...

  4. Sunlight exposure and sun sensitivity associated with disability progression in multiple sclerosis

    NARCIS (Netherlands)

    D'hooghe, M. B.; Haentjens, P.; Nagels, G.; Garmyn, M.; De Keyser, J.

    Background: Sunlight and vitamin D have been inversely associated with the risk of multiple sclerosis (MS). Objective: We investigated sunlight exposure and sun sensitivity in relation to disability progression in MS. Methods: We conducted a survey among persons with MS, registered by the Flemish MS

  5. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-II. Tyrosine and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Y; Kuwabara, M; Riesz, P [National Cancer Inst., Bethesda, MD (USA)

    1982-01-01

    The UV-photolysis of peptides containing tyrosine (Tyr) was investigated in aqueous solutions at room temperature at 220 and 265 nm. The short-lived free radicals formed during photolysis were spin-trapped by t-nitrosobutane and identified by electron spin resonance. For N-acetyl-and N-formyl-L-Tyr and for peptides containing L-Tyr as the middle residue, photolysis at 265 nm under neutral conditions produced mainly spin-adducts due to the scission between the alpha carbon and the methylene group attached to the aromatic ring, while at 220 nm decarboxylation radicals were spin-trapped. Photolysis of di- and tripeptides at 275 nm in alkaline solutions predominantly generated deamination radicals. The radicals produced in the photolysis of the oxidized A chain of insulin were tentatively characterized by comparison with the results for di- and tripeptides.

  7. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis.

    Science.gov (United States)

    Wong, Tak-Wah; Cheng, Chien-Wei; Hsieh, Zong-Jhe; Liang, Ji-Yuan

    2017-08-01

    The light sensitive compound riboflavin-5'-phosphate (or flavin mononucleotide, FMN) generates reactive oxygen species (ROS) upon photo-irradiation. FMN is required by all flavoproteins because it is a cofactor of biological blue-light receptors. The photochemical effects of FMN after irradiation by blue or violet light on the inactivation of Staphylococcus aureus strains, including a methicillin-resistant strain (MRSA), were investigated in this study. Upon blue- or violet-light photo-treatment, FMN was shown to inactivate S. aureus due to the generated ROS. Effective bacterial inactivation can be achieved by FMN photolysis without an exogenous electron provider. Inactivation rates of 94.9 and 95.2% in S. aureus and MRSA, respectively, can be reached by blue light irradiation (2.0mW/cm 2 ) with 120μM FMN for 120min. A lower FMN concentration and a shorter time are required to reach similar effects by violet light irradiation. Inactivation rates of 96.3 and 97.0% in S. aureus and MRSA, respectively, can be reached by violet light irradiation (1.0mW/cm 2 ) with 30μM FMN for 30min. The sensitivity of the inherent photosensitizers is lower under blue-light irradiation. A long exposure photolytic treatment of FMN by blue light is required to inactivate S. aureus. Violet light was found to be more efficient in S. aureus inactivation at the same radiant intensity. FMN photolysis with blue or violet light irradiation enhanced the inactivation rates of S. aureus and MRSA. FMN photochemical treatment could be a supplemental technique in hygienic decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse.

    Science.gov (United States)

    Li, Wei; Patton, Samuel; Gleason, Jamie M; Mezyk, Stephen P; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    A sequential combination of membrane treatment and UV-based advanced oxidation processes (UV/AOP) has become the industry standard for potable water reuse. Chloramines are used as membrane antifouling agents and therefore carried over into the UV/AOP. In addition, persulfate (S 2 O 8 2- ) is an emerging oxidant that can be added into a UV/AOP, thus creating radicals generated from both chloramines and persulfate for water treatment. This study investigated the simultaneous photolysis of S 2 O 8 2- and monochloramine (NH 2 Cl) on the removal of 1,4-dioxane (1,4-D) for potable-water reuse. The dual oxidant effects of NH 2 Cl and S 2 O 8 2- on 1,4-D degradation were examined at various levels of oxidant dosage, chloride, and solution pH. Results showed that a NH 2 Cl-to-S 2 O 8 2- molar ratio of 0.1 was optimal, beyond which the scavenging by NH 2 Cl of HO • , SO 4 •- , and Cl 2 •- radicals decreased the 1,4-D degradation rate. At the optimal ratio, the degradation rate of 1,4-D increased linearly with the total oxidant dose up to 6 mM. The combined photolysis of NH 2 Cl and S 2 O 8 2- was sensitive to the solution pH due to a disproportionation of NH 2 Cl at pH lower than 6 into less-photoreactive dichloramine (NHCl 2 ) and radical scavenging by NH 4 + . The presence of chloride transformed HO • and SO 4 •- to Cl 2 •- that is less-reactive with 1,4-D, while the presence of dissolved O 2 promoted gaseous nitrogen production. Results from this study suggest that the presence of chloramines can be beneficial to persulfate photolysis in the removal of 1,4-D; however, the treatment efficiency depends on a careful control of an optimal NH 2 Cl dosage and a minimal chloride residue.

  9. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure

    Energy Technology Data Exchange (ETDEWEB)

    Silva, B.F. [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Andreani, T. [Centro de Investigação em Química da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CITAB − Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real (Portugal); Gavina, A., E-mail: anacsgavina@gmail.com [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Vieira, M.N. [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Pereira, C.M. [Centro de Investigação em Química da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Rocha-Santos, T. [Department of Chemistry and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); and others

    2016-07-15

    Highlights: • Under sunlight exposure, all QDs form particle aggregates in the different media. • CdSeS/ZnS QDs showed lower toxic effects to V. fischeri before sunlight exposure. • Sunlight exposure decreased the toxicity of CdS 480 in all organisms. • Sunlight exposure increased the toxicity of CdS 380 QDs for D. magna. • Shell of QDs seemed to make them less harmful to aquatic organisms. - Abstract: Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same

  10. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    Science.gov (United States)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  11. Reversible degradation of inverted organic solar cells by concentrated sunlight

    International Nuclear Information System (INIS)

    Tromholt, Thomas; Krebs, Frederik C; Manor, Assaf; Katz, Eugene A

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the high intensity exposure, while after rest the performance had recovered to 60% of the initial value. The timescale of the recovery effect was studied by monitoring the cell performance at 1 sun after high intensity exposure. This showed that cell performance was almost completely restored after 180 min. The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O 2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process, and care has to be taken to allow for a sound accelerated lifetime assessment based on concentrated sunlight.

  12. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    role in the observed pressure dependent photolytic fractionation of deuterium. The model shows that part of the fractionation is a result of competition between the isotopologue dependent rates of unimolecular dissociation and collisional relaxation. We suggest that the remaining fractionation is due......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our...

  13. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale.

    Science.gov (United States)

    Cédat, Bruno; de Brauer, Christine; Métivier, Hélène; Dumont, Nathalie; Tutundjan, Renaud

    2016-09-01

    In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    Directory of Open Access Journals (Sweden)

    Farhan R. Bou-Hamdan

    2011-08-01

    Full Text Available Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  15. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    Science.gov (United States)

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  16. Cathodic protection of carbon steel in natural seawater: Effect of sunlight radiation

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, Alessandro [Istituto per l' Energetica e le Interfasi, IENI - CNR, Milano, via Roberto Cozzi 53 20125 Milano (Italy)], E-mail: alessandro.benedetti@cnr.it; Magagnin, Luca [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, via Mancinelli 7, 20131 Milano (Italy); Passaretti, Francesca [Istituto per l' Energetica e le Interfasi IENI - CNR, Lecco, c.so Promessi Sposi 29, 23900 Lecco (Italy); Chelossi, Elisabetta; Faimali, Marco [Istituto di Scienze Marine, ISMAR- CNR - Via De Marini 6, 16149, Genova (Italy); Montesperelli, Giampiero [Universita di Roma - Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche, Via della Ricerca Scientifica 00133, Roma (Italy)

    2009-11-01

    Cathodic protection of metals in seawater is known to be influenced by chemical-physical parameters affecting cathodic processes (oxygen discharge, hydrogen evolution and calcareous deposit precipitation). In shallow seawater, these parameters are influenced by sunlight photoperiod and photosynthetic activity. The results presented here represent the first step in studies dedicated to cathodic protection in shallow photic seawater. This paper reports on carbon steel protected at -850 mV vs. Ag/AgCl (oxygen limiting current regime) in the presence of sunlight radiation but in the absence of biological and photosynthetic activity, the role of which deserves future research. Comparison of results obtained by exposing electrochemical cells to daylight cycles in both biologically inactivated natural seawater and in NaCl 3.5 wt.% solutions showed that sunlight affects current densities and that calcareous deposit interfere with light-currents effects. Sunlight radiation and induced heating of the solution have been separated, highlighting results not otherwise obvious: (1) observed current waves concomitant with sunlight radiation depend fundamentally on solar radiation, (2) solar radiation can determine current enhancements from early to late phases of aragonite crystal growth, (3) a three-day-old CaCO{sub 3} layer reduces but does not eliminate the amplitude of the current waves. Theoretical calculations for oxygen limiting currents and additional field tests showed that sunlight, rather than bulk solution heating, is the main cause of daily current enhancements. This was confirmed by polarizations performed at -850 and -1000 mV vs. Ag/AgCl (constant bulk temperature), during which the electrode was irradiated with artificial lighting. This test also confirmed O{sub 2} discharge to be the cathodic process involved. A mechanism of radiation conversion to heat in the oxygen diffusion layer region is proposed.

  17. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives.

    Science.gov (United States)

    Hobday, R A; Dancer, S J

    2013-08-01

    Infections caught in buildings are a major global cause of sickness and mortality. Understanding how infections spread is pivotal to public health yet current knowledge of indoor transmission remains poor. To review the roles of natural ventilation and sunlight for controlling infection within healthcare environments. Comprehensive literature search was performed, using electronic and library databases to retrieve English language papers combining infection; risk; pathogen; and mention of ventilation; fresh air; and sunlight. Foreign language articles with English translation were included, with no limit imposed on publication date. In the past, hospitals were designed with south-facing glazing, cross-ventilation and high ceilings because fresh air and sunlight were thought to reduce infection risk. Historical and recent studies suggest that natural ventilation offers protection from transmission of airborne pathogens. Particle size, dispersal characteristics and transmission risk require more work to justify infection control practices concerning airborne pathogens. Sunlight boosts resistance to infection, with older studies suggesting potential roles for surface decontamination. Current knowledge of indoor transmission of pathogens is inadequate, partly due to lack of agreed definitions for particle types and mechanisms of spread. There is recent evidence to support historical data on the effects of natural ventilation but virtually none for sunlight. Modern practice of designing healthcare buildings for comfort favours pathogen persistence. As the number of effective antimicrobial agents declines, further work is required to clarify absolute risks from airborne pathogens along with any potential benefits from additional fresh air and sunlight. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

    Directory of Open Access Journals (Sweden)

    Hernando P Bacosa

    2015-12-01

    Full Text Available Following the Deepwater Horizon (DWH spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  19. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  20. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters.

    Science.gov (United States)

    Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio

    2013-10-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield ΦBP3=(3.1±0.3)·10(-5) and the following second-order reaction rate constants: with (•)OH, k(BP3,(•)OH)=(2.0±0.4)·10(10) M(-1) s(-1); with the triplet states of chromophoric dissolved organic matter ((3)CDOM*), K(BP3,(3)CDOM*)=(1.1±0.1)·10(9) M(-1) s(-1); with (1)O2, k(BP3,(1)O2)=(2.0±0.1)·10(5) M(-1) s(-1), and with CO3(-•), k(BP3,CO3(-•))CDOM* would be the main processes of BP3 phototransformation. Reaction with (•)OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L(-1)), and reaction with (3)CDOM* at high DOC. If the reaction rate constant with CO3(-•) is near the upper limit of experimental measures (5·10(7) M(-1) s(-1)), the CO3(-•) degradation process could be somewhat important for DOCDOC. BP3 transformation intermediates were detected upon reaction with (•)OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ~10% of initial BP3) and benzaldehyde (1%). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri

    International Nuclear Information System (INIS)

    Gmurek, M.; Horn, H.; Majewsky, M.

    2015-01-01

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M + H] + was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24 h) and that there is no change over the treatment time on EC 50 . In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. - Highlights: • During SMX photolysis experiments, nine TPs were identified by reference standards. • Six further TPs of SMX phototransformation were found. • A TP with a m/z 271 was tentatively confirmed as 4-,x-dihydroxylated SMX. • The mixture exhibitsluminescence inhibition without changes over the irradiation time. • Growth inhibition was found to slightly decrease over the irradiation time.

  2. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Gmurek, M., E-mail: marta.gmurek@p.lodz.pl [Lodz University of Technology, Faculty of Process & Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 90-924 Lodz (Poland); Horn, H.; Majewsky, M. [Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2015-12-15

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M + H]{sup +} was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24 h) and that there is no change over the treatment time on EC{sub 50}. In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. - Highlights: • During SMX photolysis experiments, nine TPs were identified by reference standards. • Six further TPs of SMX phototransformation were found. • A TP with a m/z 271 was tentatively confirmed as 4-,x-dihydroxylated SMX. • The mixture exhibitsluminescence inhibition without changes over the irradiation time. • Growth inhibition was found to slightly decrease over the irradiation time.

  3. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    Science.gov (United States)

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Vitamin D, Sunlight and Prostate Cancer Risk

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2011-01-01

    Full Text Available Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR, and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.

  5. Flash photolysis-shock tube studies

    Energy Technology Data Exchange (ETDEWEB)

    Michael, J.V. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  6. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, Davide, E-mail: davide.vione@unito.it [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (Italy); Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy)

    2013-10-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ{sub BP3} = (3.1 ± 0.3) · 10{sup −5} and the following second-order reaction rate constants: with {sup •} OH, k{sub BP3,{sup •}} {sub OH} = (2.0 ± 0.4) · 10{sup 10} M{sup −1} s{sup −1}; with the triplet states of chromophoric dissolved organic matter ({sup 3}CDOM*), k{sub BP3,{sup 3}CDOM*} = (1.1 ± 0.1) · 10{sup 9} M{sup −1} s{sup −1}; with {sup 1}O{sub 2}, k{sub BP3,{sup 1}O{sub 2}} = (2.0 ± 0.1) · 10{sup 5} M{sup −1} s{sup −1}, and with CO{sub 3}{sup −•} , k{sub BP3,CO{sub 3{sup −}{sup •}}} < 5 · 10{sup 7} M{sup −1} s{sup −1}. These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with {sup •} OH and {sup 3}CDOM* would be the main processes of BP3 phototransformation. Reaction with {sup •} OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L{sup −1}), and reaction with {sup 3}CDOM* at high DOC. If the reaction rate constant with CO{sub 3}{sup −•} is near the upper limit of experimental measures (5 · 10{sup 7} M{sup −1} s{sup −1}), the CO{sub 3}{sup −•} degradation process could be somewhat important for DOC < 1 mg C L{sup −1}. The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with {sup •} OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, {sup •} OH and {sup 3}CDOM*.

  7. Inhibition of Neutral Red Photolysis with Different Antioxidants

    Directory of Open Access Journals (Sweden)

    Zlatan Rimpapa

    2007-02-01

    Full Text Available Neutral red is a dye the azine structure which has been used as an acido-base indicator and a dye in histochemistry. In 1960 Goldhaber introduced Neutral red into the medium of resorbing bone cultures to localize the osteoclast in the living cultures. Using time-lapse microcinematography in order to follow the osteoclasts, he reported excellent contrast could be obtained with Neutral red due to the avidity of osteoclasts for this dye. Unfortunately, however, the photodynamic effect resulting from subsequent exposure of these cultures to light precluded this approach, and again in 1963. it was observed that the death of the osteoclasts was probably due to a photodynamic effect related to the dye in the cell, the presence of oxygen and the frequent exposure of light by our time-lapse photography. VIS and UV irradiation induced photolysis of Neutral red, and from Neutral red cation produced with photons a Neutral red radical. This Neutral red radical can be inhibited with action of an antioxidant, such as melatonin, glutathione, ascorbic acid, E vitamin, etc. We developed an assay with Neutral redphotolysis which utilizes a VIS and UV irradiation technique for quantification the inhibition of photolysis with action of an antioxidant. In this method Neutral red acts double, as a free radical generator and as a photosensitizer.

  8. Adaptive fluid lens and sunlight redirection system : exploring a novel way of redirecting and altering sunlight in large span roofs

    NARCIS (Netherlands)

    Heinzelmann, F.; Bristogianni, T.; Teuffel, P.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    The paper describes a novel system to alter and redirect sunlight under large span roofs with the help of a fluid lens system. Focus lies on the computational design, testing, measurement and evaluation of the performance of a physical prototype.

  9. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    International Nuclear Information System (INIS)

    Morison, W.L.; Kelley, S.P.

    1985-01-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans

  10. Sunlight exposure during leisure activities and risk of prostate cancer in Montréal, Canada, 2005-2009.

    Science.gov (United States)

    Yu, Jennifer; Lavoué, Jérôme; Parent, Marie-Élise

    2014-07-28

    Prostate cancer (PCa) is the leading cause of cancer in men in many developed countries, but no modifiable risk factors have been identified. A handful of analytical studies have suggested a possible etiological role for sunlight exposure. We report here on the association between leisure-time sunlight exposure during adulthood and PCa risk in the context of a population-based case-control study. In all, 1,904 PCa cases were ascertained across Montreal French hospitals between 2005 and 2009. Concurrently, 1,962 population controls, frequency matched to cases by age (±5 years), were selected from the electoral list for French-speakers in Greater Montreal. Interviews elicited the frequency of engagement in any leisure activity during adulthood. This was used to derive cumulative sunlight exposure indices: a cumulative number of leisure activities events entailing sunlight exposure and a cumulative duration of sunlight exposure during leisure activities. Unconditional logistic regression was conducted to yield odds ratios (OR) and 95% confidence intervals (CI) for estimating the association between sunlight exposure indices and PCa risk, adjusting for age, ancestry, family history of PCa, PCa screening, education, solar protection, body mass index and physical activity. Compared with men in the upper quartile category for the number of sunlight exposure events, men never exposed during leisure time had an OR of 1.32 (95% CI: 0.82-2.14). ORs were 1.11, 0.91 and 1.00 for the first to the third quartiles of exposure, respectively. Similar results were observed for cumulative duration of exposure to sunlight, and by PCa aggressiveness. These findings provide little evidence of an association between sunlight exposure during leisure-time and PCa risk. Men with no sunlight exposure appeared at somewhat higher risks but none of the estimates achieved statistical significance.

  11. Natural sunlight bleaching of the aluminum center in quartz

    International Nuclear Information System (INIS)

    Lin Min; Yin Gongming; Han Kongyan; Bao Jifei; Liu Jingwei; Jia Li

    2007-01-01

    The effect of sunlight bleaching on ESR signals from the aluminum center in quartz is reported for two samples of sand-sized quartz, one from a granite and one from a beach sand. The grains were exposed to direct sunlight for periods of time up to 500 h, with bleaching carried out in four different cities in China that are from 50 to 3600 m above sea level. Each sample bleached to the same residual level, ∼55% for the granite and 80% for the beach sand of the initial value after a 200 Gy dose had been given. After 200 h, the bleaching level reached was independent of the height above sea level

  12. Hypovitaminosis D in patients undergoing kidney transplant: the importance of sunlight exposure

    Directory of Open Access Journals (Sweden)

    Cristiane F. Vilarta

    Full Text Available OBJECTIVES: Recent studies have shown a high prevalence of hypovitaminosis D, defined as a serum 25-hydroxyvitamin D level less than 30 ng/ml, in both healthy populations and patients with chronic kidney disease. Patients undergoing kidney transplant are at an increased risk of skin cancer and are advised to avoid sunlight exposure. Therefore, these patients might share two major risk factors for hypovitaminosis D: chronic kidney disease and low sunlight exposure. This paper describes the prevalence and clinical characteristics of hypovitaminosis D among patients undergoing kidney transplant. METHODS: We evaluated 25-hydroxyvitamin D serum levels in a representative sample of patients undergoing kidney transplant. We sought to determine the prevalence of hypovitaminosis D, compare these patients with a control group, and identify factors associated with hypovitaminosis D (e.g., sunlight exposure and dietary habits. RESULTS: Hypovitaminosis D was found in 79% of patients undergoing kidney transplant, and the major associated factor was low sunlight exposure. These patients had higher creatinine and intact parathyroid hormone serum levels, with 25-hydroxyvitamin D being inversely correlated with intact parathyroid hormone serum levels. Compared with the control group, patients undergoing kidney transplant presented a higher prevalence of 25-hydroxyvitamin D deficiency and lower serum calcium, phosphate and albumin but higher creatinine and intact parathyroid hormone levels. CONCLUSIONS: Our results confirmed the high prevalence of hypovitaminosis D in patients undergoing kidney transplant. Therapeutic strategies such as moderate sunlight exposure and vitamin D supplementation should be seriously considered for this population.

  13. Laser photolysis study of anthraquinone in binary mixtures ofionic liquid [bmim][PF6] and organic solvent

    Directory of Open Access Journals (Sweden)

    Side Yao

    2006-12-01

    Full Text Available Photochemical properties of the ionic liquid (RTIL 1-butyl-3-methylimidazoliumhexafluorophosphate [bmim][PF6] and its binary mixed solutions with organic solvent(DMF and MeCN were investigated by laser photolysis at an excitation wavelength of 355nm, using anthraquinone (AQ as a probe molecule. It was indicated that the triplet excitedstate of AQ (3AQ* can abstract hydrogen from [bmim][PF6]. Moreover, along with thechange of the ratio of RTIL and organic solvent, the reaction rate constant changes regularly.Critical points were observed at volume fraction VRTIL = 0.2 for RTIL/MeCN and VRTIL =0.05 for RTIL/DMF. For both systems, before the critical point, the rate constant increasesrapidly with increasing VRTIL; however, it decreases obviously with VRTIL after the criticalpoint. We conclude that the concentration dependence is dominant at lower VRTIL, while theviscosity and phase transformation are dominant at higher VRTIL for the effect of ionic liquidon the decay of rate constant.

  14. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    Science.gov (United States)

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  15. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  16. Isotopomer fractionation during photolysis of nitrous oxide by ultraviolet of 206 to 210 nm

    International Nuclear Information System (INIS)

    Toyoda, S.; Yoshida, N.; Suzuki, T.; Tsuji, K.; Shibuya, K.

    2002-01-01

    Nitrous oxide (N 2 O) is an important trace gas in the stratospheric chemistry as well as in the tropospheric radiative balance. Although there have been observations on the distribution of N 2 O in the atmosphere and its flux from individual sources, the global N 2 O budget is not fully understood. The isotopic information of N 2 O has been useful for constraining the N 2 O cycle since each source and sink has its own isotopic signature and isotope fractionation that is unique to the process. We have recently developed a method to determine isotopomers of N 2 O and showed that intramolecular distribution of 15 N is a parameter that has more fundamental and sensitive information than bulk 15 N abundance for constraining the atmospheric N 2 O budget. Here, we report the fractionation of isotopomers during ultraviolet photolysis of N 2 O in a 206 to 210 nm region. The fractionation factors are different among isotopomers and the site preference between two nitrogen isotopomers becomes larger along with the photolysis. The isotopomer fractionation factors of this representative wavelength are close to the apparent fractionation factors observed in the stratosphere indicating ultraviolet photolysis in the stratosphere is the dominant sink of N 2 O. Sources of atmospheric N 2 O including terrestrial and oceanic biological processes, agricultural activities, industrial formation and fossil fuel combustion are expected to be characterized to better constrain the global budget of N 2 O. (author)

  17. Inactivation and mutation induction in Saccharomyces cerevisiae exposed to simulated sunlight: evaluation of action spectra.

    Science.gov (United States)

    Schenk-Meuser, K; Pawlowsky, K; Kiefer, J

    1992-07-15

    The effectiveness of polychromatic light irradiation was investigated for haploid yeast cells. Inactivation and mutation induction were measured in both a RAD-wildtype strain and an excision-repair defective strain. The behaviour of vegetative "wet" cells was compared to that of dehydrated cells. The aim of the study was to assess the interaction of UVC with other wavelengths in cells of different states of humidity. The irradiation procedure was therefore carried out using a solar simulator either with full spectrum or with a UVC-blocking filter (modified sunlight) added. The results were analysed on the basis of separately determined action spectra. The summation of the efficiency of individual wavelengths was compared to the values obtained from polychromatic irradiation. It is shown that the effects caused by the whole-spectrum irradiation in wet cells can be predicted sufficiently from the calculation, while dried wildtype cells exhibit higher mutation rates. Thus it can be assumed that drying-specific damage leads to lethal and mutagenic lesions which are processed in different ways, causing a synergistic behaviour in mutation induction. Irradiation of vegetative cells with modified sunlight (UVC-) results in less inactivation and lower mutation rates than were calculated. From these results it can be concluded that this antagonistic behaviour is caused by the interaction of near-UV photoproducts.

  18. Phototransformation of the herbicide sulcotrione on maize cuticular wax.

    Science.gov (United States)

    Ter Halle, Alexandra; Drncova, Daniela; Richard, Claire

    2006-05-01

    Vegetation plays a key role in environmental cycling and the fate of many organic pollutants. This is especially the case for pesticides because plant leaves are their first reaction environment after application. It is commonly accepted that photochemical reactions of pollutants on plants predominantly take place in the cuticular wax coating of the leaves. Thus, we used films made of either cuticular wax extracted from maize or carnauba gray wax as a model support. Under simulated sunlight irradiation, sulcotrione (a new class of triketone herbicides) sorbed on cuticular wax films was photolyzed and mainly underwent an intramolecular cyclization. The photoproduct is a chromone derivative which was isolated and fully characterized. It is reported for the first time as a sulcotrione degradation product. The photoreactivity of formulated sulcotrione at the surface of cuticular waxes was investigated too. It photodegraded more rapidly than nonformulated sulcotrione. This study also shows that the rate of sulcotrione photolysis was much faster than the rate of penetration into the wax; photolysis should be, thus, a relevant process in real conditions.

  19. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    Science.gov (United States)

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  20. Formation of tryptophan radicals in irradiated aqueous solutions of hexachloroplatinate(IV): a flash photolysis study.

    Science.gov (United States)

    Zang, L; Rodgers, M A

    1999-10-01

    The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.

  1. Charles Burchfield: "October Wind and Sunlight in the Woods."

    Science.gov (United States)

    Fitzgerald, Gaynell

    1986-01-01

    Based on Charles Burchfield's watercolor, "October Wind and Sunlight in the Woods," the goal of this lesson is to introduce students in grades seven through nine to Burchfield's use of symbolism. (JDH)

  2. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Karimi Zarchi, A.A.; Faridi Majidi, R. [Tehran University of Medical Sciences, Department of Nanomedicine, School of Advanced Medical Technologies, Tehran (Iran, Islamic Republic of); Mokhtari, N.; Shahverdi, A.R. [Tehran University of Medical Sciences, Department of Pharmaceutical Biotechnology and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of); Arfan, M.; Rehman, T.; Ali, M. [University of Peshawar, Institute of Chemical Sciences, Peshawar, Khyber Pakhtoonkhwa (Pakistan); Amini, M. [Tehran University of Medical Sciences, Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of)

    2011-05-15

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours. (orig.)

  3. In vitro and in vivo anti-Staphylococcus aureus activities of a new disinfection system utilizing photolysis of hydrogen peroxide.

    Science.gov (United States)

    Hayashi, Eisei; Mokudai, Takayuki; Yamada, Yasutomo; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-08-01

    The present study aimed to evaluate in vitro and in vivo antibacterial activity of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of oral infection diseases such as periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by the photolysis of H(2)O(2) in which 1 mol l(-1) H(2)O(2) was irradiated with a dual wavelength-light emitting diode (LED) at wavelengths of 400 and 465 nm was confirmed by applying an electron spin resonance-spin trapping technique. Secondly, the bactericidal effect of the system was examined under a similar condition in which Staphylococcus aureus suspended in 1 mol l(-1) H(2)O(2) was irradiated with LED light, resulting in substantial reduction of the colony forming unit (CFU) of the bacteria within a short time as 2 min. Finally, in vivo antibacterial effect of the photolysis of H(2)O(2) on a rat model of S. aureus infection was evaluated by a culture study. Since a significant reduction of recovered CFU of S. aureus was obtained, it is expected that in vitro antibacterial effect attributable to hydroxyl radicals generated by photolysis of H(2)O(2) could be well reflected in in vivo superficial bacterial infection. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Bleaching of the thermoluminescence of feldspars by sunlight

    International Nuclear Information System (INIS)

    Robertson, G.B.; Prescott, J.R.; Hutton, J.T.

    1991-01-01

    Feldspars are an important component of materials used for thermoluminescence (TL) and photoluminescence (PL) dating of sediments; and successful dating implies a knowledge of the degree of re-setting by exposure to sunlight of the stored luminescence energy. We have studied the bleaching by full sunlight of the TL of six alkali feldspars of representative composition and of one oligoclase. The high potassium and high sodium feldspars are the brightest, and are also the least easily bleached, whereas those of intermediate (K-Na) composition bleach quickly. On a time scale of upwards of 16 h, all samples would have bleached enough for them to be useful for TL dating. A search was made for individual glow curve peaks that bleach particularly quickly (and are thus similar to the well-known 325 o C peak used in the TL dating of quartz). In the samples studied, there was only one glow curve peak that was selectively susceptible to bleaching: the 280 o C peak in oligoclase. (author)

  5. Can Skin Exposure to Sunlight Prevent Liver Inflammation?

    Directory of Open Access Journals (Sweden)

    Shelley Gorman

    2015-05-01

    Full Text Available Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD. Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR, the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.

  6. Antimicrobial activity of hydroxyl radicals generated by hydrogen peroxide photolysis against Streptococcus mutans biofilm.

    Science.gov (United States)

    Nakamura, Keisuke; Shirato, Midori; Kanno, Taro; Örtengren, Ulf; Lingström, Peter; Niwano, Yoshimi

    2016-10-01

    Prevention of dental caries with maximum conservation of intact tooth substance remains a challenge in dentistry. The present study aimed to evaluate the antimicrobial effect of H2O2 photolysis on Streptococcus mutans biofilm, which may be a novel antimicrobial chemotherapy for treating caries. S. mutans biofilm was grown on disk-shaped hydroxyapatite specimens. After 1-24 h of incubation, growth was assessed by confocal laser scanning microscopy and viable bacterial counting. Resistance to antibiotics (amoxicillin and erythromycin) was evaluated by comparing bactericidal effects on the biofilm with those on planktonic bacteria. To evaluate the effect of the antimicrobial technique, the biofilm was immersed in 3% H2O2 and was irradiated with an LED at 365 nm for 1 min. Viable bacterial counts in the biofilm were determined by colony counting. The thickness and surface coverage of S. mutans biofilm increased with time, whereas viable bacterial counts plateaued after 6 h. When 12- and 24-h-old biofilms were treated with the minimum concentration of antibiotics that killed viable planktonic bacteria with 3 log reduction, their viable counts were not significantly decreased, suggesting the biofilm acquired antibiotic resistance by increasing its thickness. By contrast, hydroxyl radicals generated by photolysis of 3% H2O2 effectively killed S. mutans in 24-h-old biofilm, with greater than 5 log reduction. The technique based on H2O2 photolysis is a potentially powerful adjunctive antimicrobial chemotherapy for caries treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Sunlight technologies for photochemical deactivation of organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Acher, A.; Fischer, E.; Tornheim, R. [The Volcani Center, Inst. of Soils and Water, Bet Dagan (Israel); Manor, Y. [Sheba Medical Center, Central Virology Lab., Ramat Gan (Israel)

    1997-12-31

    Sensitized-photochemical oxidation methods aimed at use in water treatment technologies for deactivation of biotic (microorganisms) and/or of xenobiotic (pesticides) pollutants in water were developed using global solar radiation or concentrated sunlight (up to 250 suns). The solar global radiation was used either for detoxification of industrial waste water from a pesticide factory to allow their discharge into the urban sewer, or for disinfection of domestric effluents to be used in crop irrigation. The disinfection process was eventually carried out in an experimental pilot-scale plant, capable of disinfection up to 50 m{sup 3}/h of effluent supplied by an activated sludge sewage treatment plant located in Tel-Aviv area. The treated effluents did not show any regrowth of the microorganisms during 7 days. The solar concentrated radiation experiments performed using facilities of the Sun Tower of The Weizman Institute of Science, Rehovot. The concentrated sunlight was provided by different combination of several computer controlled heliostates, up to 8, that track the sun and focus the received sunlight onto the target situated on the roof of the sun-tower. The sunlight intensities measured on the target reached up to 200 kW/m{sup 2}. The experiments were performed either batch- or continuous-wise. The water-samples exposed to disinfection were the above effluent, filtered and supplemented with vaccine strain poliovirus or with different concentrations of an industrial potential pollutant (bromacil), MB 2 mg/L and two concentrations of dissolved oxygen (8.0 or 40.0 mg O{sub 2}/L). An exposure time of 2-3 seconds at 150 kW/m{sup 2} was decreased the microorganisms alive (counts) by five orders of magnitude. A comparison between the two above water treatment technologies is presented. (orig./SR)

  8. Modeling the photochemical attenuation of down-the-drain chemicals during river transport by stochastic methods and field measurements of pharmaceuticals and personal care products.

    Science.gov (United States)

    Hanamoto, Seiya; Nakada, Norihide; Yamashita, Naoyuki; Tanaka, Hiroaki

    2013-01-01

    Existing stochastic models for predicting concentrations of down-the-drain chemicals in aquatic environments do not account for the diurnal variation of direct photolysis by sunlight, despite its being an important factor in natural attenuation. To overcome this limitation, we developed a stochastic model incorporating temporal variations in direct photolysis. To verify the model, we measured 57 pharmaceuticals and personal care products (PPCPs) in a 7.6-km stretch of an urban river, and determined their physical and biological properties in laboratory experiments. During transport along the river, 8 PPCPs, including ketoprofen and azithromycin, were attenuated by >20%, mainly owing to direct photolysis and adsorption to sediments. The photolabile PPCPs attenuated significantly in the daytime but persisted in the nighttime. The observations were similar to the values predicted by the photolysis model for the photolabile PPCPs (i.e., ketoprofen, diclofenac and furosemide) but not by the existing model. The stochastic model developed in this study was suggested to be a novel and useful stochastic model for evaluating direct photolysis of down-the-drain chemicals, which occurs during the river transport.

  9. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    Science.gov (United States)

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Use of remote sensing and molecular markers to detect toxic cyanobacterial hyperscum crust: A case study on Lake Hartbeespoort, South Africa

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2010-12-01

    Full Text Available of photons m-2s-1) anaerobic conditions (0.4 mg/l, 3% saturation) prevailed with high levels of microcystin (12,300 μg/l) in the absence of sunlight irradiation and photolysis by UV light. Real time polymerase chain reaction (PCR) analysis indicated low...

  11. Transients observed in the low temperature photolysis of alkyl radicals and divalent sulfur substrates

    International Nuclear Information System (INIS)

    Adam, F.C.

    1976-01-01

    The 253.7 nm photolysis of the isometric butyl radicals is described. These radicals are produced by electron capture during the γ-radiolysis of the corresponding butyl chlorides diluted in a rigid glass of 3-methylpentane-d14 at 77K. Thus t-butyl gives an equilibrium mixture of i-butyl and methyl radicals. Solvent radicals, M, are also produced and these obscure the former species in 3-MP-h14. Likewise sec-butyl radicals give rise to the ethyl, n-butyl, methyl and small amounts of the i-butyl radicals. Solvent radicals also rearrange and degrade in the photolytic beam, and the mechanism by which these processes occur is discussed. The procedure has also been used to study the formation and photolability of the alkyl thinyl and perthyl radicals occuring in the photolysis of RSH, RSR and RSSR. The thinyl radical is found to be unstable and gives the alkyl radical and atomic sulfur while the perthiyl radical is stable to radiation > 240 nm. (author)

  12. Sunlight persistence and rainfastness of spray-dried formulations of baculovirus isolated from Anagrapha falcifera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Tamez-Guerra, P; McGuire, M R; Behle, R W; Hamm, J J; Sumner, H R; Shasha, B S

    2000-04-01

    Nuclear polyhedrosis viruses such as the one isolated from the celery looper, Anagrapha falcifera (Kirby) (AfMNPV), have the potential to be successful bioinsecticides if improved formulations can prevent rapid loss of insecticidal activity from environmental conditions such as sunlight and rainfall. We tested 16 spray-dried formulations of AfMNPV to determine the effect of different ingredients (e.g., lignin, corn flour, and so on) on insecticidal activity after simulated rain and simulated sunlight (at Peoria, IL) and natural sunlight exposures (at Tifton, GA). The most effective formulation contained pregelatinized corn flour and potassium lignate, which retained more than half of its original activity after 5 cm of simulated rain, and almost full activity after 8 h of simulated sunlight. In Georgia, formulations made with and without lignin were compared for persistence of insecticidal activity when exposed to natural sunlight. In addition, the effect of fluorescent brighteners as formulation components and spray tank additives was tested. Results showed that the formulations with lignin had more insecticidal activity remaining after sunlight exposure than formulations without lignin. The inclusion of brighteners in the formulation did not improve initial activity or virus persistence. However, a 1% tank mix significantly enhanced activity and improved persistence. Scanning electron micrographs revealed discreet particles, and transmission electron micrographs showed virus embedded within microgranules. Results demonstrated that formulations made with natural ingredients could improve persistence of virus-based biopesticides.

  13. Turning Sunlight into Electricity-Inorganic Solar Cells and Beyond

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Turning Sunlight into Electricity - Inorganic Solar Cells and Beyond. A K Shukla. Volume 16 Issue 12 December 2011 pp 1294-1302. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Sunlight-enhanced catalytic degradation over Ag–CuO ...

    Indian Academy of Sciences (India)

    Herein, we report sunlight-activated photo-catalysis response of direct current radio frequency (DC/RF)-sputtered Ag–CuO nanoparticles thin films.We have adopted this approach for facile removal and easy recovery of thin filmsafter use. Ag was incorporated at 2.5 and 5.4 wt% with reference to pure CuO. Structural ...

  15. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  16. Aerosol formation on the flash photolysis of SO2/gas mixtures

    International Nuclear Information System (INIS)

    Fogel, L.D.; Sutherland, J.W.

    1979-01-01

    A long-lived transient absorption observed on the flash photolysis of SO 2 /gas mixtures at lambda> or =190 nm has been identified as resulting from light scattering by H 2 SO 4 aerosols. No detectable signals were monitored on photolysis at lambda> or =270 nm, indicating that the aerosol precursors originated from the promotion of SO 2 into its second singlet level and into its dissociation continuum. The SO 3 that was formed was hydrated immediately to yield H 2 SO 4 vapor in a highly supersaturated state and heteromolecular homogeneous nucleation to produce H 2 SO 4 aerosols ensued. This nucleation was quenched rapidly as the acid vapor was consumed by further nucleation, by condensation, and by vapor diffusion to the cell walls. A model was formulated in which the condensations of the H 2 SO 4 and the H 2 O vapors on the growing droplets were considered kinetically negligible and the particles grew by coagulation; simultaneously, they were lost by tranquil gravitational settling and by diffusion to the cell walls. Computer simulations demonstrated that the observed time dependence of the absorbance data (measured at a fixed wavelength) could be accounted for by this scheme. The effects of temperature, pressure, and wavelength (of the analyzing light) were also described satisfactorily by this model

  17. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population

    Science.gov (United States)

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to as...

  18. Aromatic/heterocyclic amino acids and the simulated sunlight-ultraviolet inactivation of the Heliothis/Helicoverpa baculovirus

    International Nuclear Information System (INIS)

    Ignoffo, C.M.; Garcia, C.

    1995-01-01

    Tryptophan, of five aromatic/heterocyclic amino acids (tyrosine, phenylalanine, proline, histidine) provided significant protection of the Heliothis baculovirus (HzSNPV) from inactivation by simulated ultraviolet (SUV). Fifty percent of SUV protection of HzSNPV with tryptophan or tyrosine was obtained at 0.03 mg/ml and 0.5 mg/ml, respectively. Rates as high as 100.0 mg/ml of phenylalanine, histidine, or proline provided <50% protection. The extent of tryptophan protection was correlated with its absorption in the sunlight UV-B spectra. 16 refs., 2 tabs

  19. Investigating Photosensitized Properties of Natural Organic Matter and Effluent Organic Matter

    KAUST Repository

    Niu, Xi-Zhi

    2013-05-01

    The photosensitized processes significantly enhance photolysis of various chemicals in the aqueous system with dissolved organic matter (DOM) as sensitizer. The excitation of chromophores on the DOM molecule further generates reactive species as triplet states DOM, singlet oxygen, hydroxyl radical, carbonate radical etc. We investigated the photosensitization properties of Beaufort Fulvic Acid, Suwannee River Fulvic Acid, South Platte River Fulvic Acid, and Jeddah wastewater treatment plant effluent organic matter with a sunlight simulator. DOM photochemical properties were characterized by observing their performances in 3DOM*, singlet oxygen, hydroxyl radical production with indirect probing protocols. Sensitized degradation of 0.1 μM and 0.02 μM 2, 4, 6- Trimethylphenol exhibited higher pseudo-first-order rate constant than that of 10 μM. Pre-irradiated DOMs were found to be depressed in photochemical properties. Photolysis of 5 different contaminants: ibuprofen, bisphenol A, acetaminophen, cimetidine, and caffeine were found to be enhanced in the presence of sensitizers. The possible reaction pathways were revealed. Long time irradiance induced change in contaminants degradation kinetics in some DOM solutions, which was proposed to be due to the irradiation initiated indirect transformation of DOMs. Key Words: Photolysis Dissolved Organic Matter, Triplet State DOM, Singlet Oxygen, Hydroxyl Radical, Contaminants Degradation.

  20. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  1. Effects of Sunlight Exposure on the Quality Parameters of Bottled ...

    African Journals Online (AJOL)

    PROF HORSFALL

    microbial population (total coliform) of the bottled water with increasing exposure to sunlight was observed. ... safe drinking water which has led to the tremendous ... degradation under high temperature (Bach et al., ..... Solar and photocatalytic.

  2. Analytic Models for Sunlight Charging of a Rapidly Spinning Satellite

    National Research Council Canada - National Science Library

    Tautz, Maurice

    2003-01-01

    ... photoelectrons can be blocked by local potential barriers. In this report, we discuss two analytic models for sunlight charging of a rapidly spinning spherical satellite, both of which are based on blocked photoelectron currents...

  3. Oxidation of Cu(II) aminopolycarboxylates by carbonate radical. A flash photolysis study

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.

    1999-01-01

    Reactions of carbonate radical (CO 3 -. ) generated by photolysis or by radiolysis of a carbonate solution, with Cu(II) complexes of aminopolycarboxylic acids viz., Cu(II)ethylenediamine tetraacetate [Cu II EDTA] 2- and Cu(II)-iminodiacetate [Cu II IDA] were studied at pH 10.5 and ionic strength 0.2 mol x dm -3 . Time-resolved spectroscopy and kinetics for the transients were studied using flash photolysis and stable products arising from the ligand degradation of the complex were ascertained by steady-state radiolysis experiments. From the kinetic data it is observed that CO 3 -. radical reacts initially with Cu II -complex to form a transient intermediate having maximum absorption at 335 nm and 430 nm. From the subsequent reactions of this intermediate it was assigned to be Cu III .species. This Cu(III) species undergoes intermolecular electron transfer with the Cu II -complex to give a radical intermediate which again slowly reacts with Cu II -complex to give a long lived species containing Cu-C bond. This long lived species, however, slowly decomposed to give glyoxalic reaction between Cu III -complex and a suitable donor, the one electron reduction potential for [Cu III EDTA] 1- /[Cu II EDTA] 2- and [Cu III IDA] +1 /Cu II IDA was determined. (author)

  4. Investigations of UV photolysis of PVP-capped silver nanoparticles in the presence and absence of dissolved organic carbon

    International Nuclear Information System (INIS)

    Poda, Aimee R.; Kennedy, Alan J.; Cuddy, Michael F.; Bednar, Anthony J.

    2013-01-01

    This study investigated the effect of UV irradiation on the characteristics and toxicity of 50 nm (nominal diameter) polyvinylpyrrolidone-capped silver nanoparticles (AgNPs) in the presence and absence of dissolved organic carbon (DOC). The photolysis resulted in a decrease in average particle size as measured by field flow fractionation interfaced with inductively coupled plasma mass spectrometry. The decrease in size was attributed to the photo-induced oxidation of the PVP and dissolution of metallic silver. Moreover, photolysis of the AgNPs in solutions containing DOC appeared to give rise to small nanoparticles (∼5 nm) formed via reduction of dissolved silver ions. These results were consistent with photolysis of AgNO 3 solutions initially devoid of nanoparticles. Thus, the carbon-containing constituents of DOC serve as reducing agents for Ag + , primarily under conditions of UV irradiation. The standard zooplankton model, Daphnia magna, indicated that the toxicity of nanosilver was significantly reduced when the AgNPs have been exposed to UV light. Observed toxicity was further reduced when AgNPs in DOC-containing solutions were exposed to UV. These results suggest that environmentally relevant conditions such as DOC and UV light are important mitigating factors that mediate the aquatic toxicity of AgNPs.

  5. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  6. Snow nitrate photolysis in polar regions and the mid-latitudes: Impact on boundary layer chemistry and implications for ice core records

    Science.gov (United States)

    Zatko, Maria C.

    The formation and recycling of nitrogen oxides (NOx=NO+NO 2) associated with snow nitrate photolysis has important implications for air quality and the preservation of nitrate in ice core records. This dissertation examines snow nitrate photolysis in polar and mid-latitude regions using field and laboratory based observations combined with snow chemistry column models and a global chemical transport model to explore the impacts of snow nitrate photolysis on boundary layer chemistry and the preservation of nitrate in polar ice cores. Chapter 1 describes how a global chemical transport model is used to calculate the photolysis-driven flux and redistribution of nitrogen across Antarctica, and Chapter 2 presents similar work for Greenland. Snow-sourced NOx is most dependent on the quantum yield for nitrate photolysis as well as the concentration of photolabile nitrate and light-absorbing impurities (e.g., black carbon, dust, organics) in snow. Model-calculated fluxes of snow-sourced NOx are similar in magnitude in Antarctica (0.5--7.8x108 molec cm-2 s -1) and Greenland (0.1--6.4x108 molec cm-2 s-1) because both nitrate and light-absorbing impurity concentrations in snow are higher (by factors of 2 and 10, respectively) in Greenland. Snow nitrate photolysis influences boundary layer chemistry and ice-core nitrate preservation less in Greenland compared to Antarctica largely due to Greenland's proximity to NOx-source regions. Chapter 3 describes how a snow chemistry column model combined with chemistry and optical measurements from the Uintah Basin Winter Ozone Study (UBWOS) 2014 is used to calculate snow-sourced NOx in eastern Utah. Daily-averaged fluxes of snow-sourced NOx (2.9x10 7--1.3x108 molec cm-2 s-1) are similar in magnitude to polar snow-sourced NO x fluxes, but are only minor components of the Uintah Basin boundary layer NOx budget and can be neglected when developing ozone reduction strategies for the region. Chapter 4 presents chemical and optical

  7. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis.

    Science.gov (United States)

    Kang, Young-Min; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2018-08-01

    In this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/H 2 O 2 reaction were examined. The presence of NO 3 - (0.04-0.4 mM) and CO 3 2- /HCO 3 - (0.4-4 mM) ions increased BPA degradation during UV photolysis. Humic acid less than 3 mg/L promoted BPA degradation, but greater than 3 mg/L of humic acid inhibited BPA degradation. During the UV/H 2 O 2 reaction, all water matrix components acted as radical scavengers in the order of humic acid > CO 3 2- /HCO 3 -  > NO 3 - . All of the degradation reactions agreed with the pseudo-first-order kinetics. While eight byproducts (m/z = 122, 136, 139, 164, 181, 244, 273, 289) were identified in UV-C/NO 3 - photolysis reaction, four (m/z = 122, 136, 164, 244) and three byproducts (m/z = 122, 136, 164) were observed during UV-C/NO 3 - /CO 3 2- /HCO 3 - and UV-C/CO 3 2- /HCO 3 - reactions. Nitrogenated and hydrogenated byproducts were first observed during the UV-C/NO 3 - photolysis, but only hydrogenated byproducts as adducts were detected during the UV-C/NO 3 - /CO 3 2- /HCO 3 - photolysis. Nitrogenated and hydrogenated byproducts were formed in the early stage of degradation by OH or NO 2 radicals, and these byproducts were subsequently degraded into smaller compounds with further reaction during UV-C/NO 3 - and UV-C/NO 3 - /CO 3 2- /HCO 3 - reactions. In contrast, BPA was directly degraded into smaller compounds by β-scission of the isopropyl group by CO 3 - /HCO 3 radicals during UV-C/CO 3 2- /HCO 3 - reaction. Our results imply that the water components can change the degradation mechanism of BPA during UV photolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    Science.gov (United States)

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  9. The in vitro photolysis of whole rat lenses using focused 290nm laser radiation

    International Nuclear Information System (INIS)

    Hibbard, L.B.; Kirk, N.J.; Borkman, R.F.

    1985-01-01

    Whole rat lenses have been irradiated with a UV laser at 290 or 298 nm focused to a 0.08 mm diameter spot. The irradiated spot was analyzed using fluorescence spectroscopy and it was observed that the intensity of fluorescence fell as the irradiation proceeded. These observations were interpreted in terms of a model which postulates photolysis of tryptophan, primarily present as residues in lens proteins, and formation of photoproducts which absorb the UV laser radiation to an ever-increasing extent as the irradiation proceeds. Evidence is also presented which indicates that an observed fast component of the tryptophan fluorescence decay results from local heating of the lens tissues due to energy dissipation by the laser. Tryptophan residues can be photolyzed by UV light in the whole lens, in vitro, in a fashion entirely analogous to that reported previously only for lens protein solutions. The photochemical behavior of lens protein solutions is relevant to whole lens photolysis and no special protective mechanism appears to be operative in the intact organ. (author)

  10. Internal reflection flash photolysis study of the photochemistry of eosin at TiO sub 2 semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.A.; Fitzgerald, E.C.; Spitler, M.T. (Polaroid Corp., Cambridge, MA (USA))

    1989-08-10

    It is shown that the photoelectrochemical data on eosin Y sensitized TiO{sub 2} single-crystal electrodes cannot be interpreted unambiguously without concomitant data from flash photolysis measurements on this system. By use of a combination of internal reflection spectroscopy and laser flash photolysis, electron exchange with TiO{sub 2} was observed for the excited singlet state, the triplet state, and the cation radical of the dye. With a temporal resolution of 100 ns, the kinetics of the charge transfer are compared with those of the dye in solution and used to interpret the photoelectrochemistry of the dye at the electrode. Spectroscopic evidence revealed photocurrent production by the triplet state and a reduction of the eosin cation radical by electrons from the TiO{sub 2} conduction band and by hydroquinone.

  11. Flash photolysis and pulse radiolysis of the Co(sep)3+-X- (sep = sepulchrate; X = I, Br) systems in aqueous solution

    International Nuclear Information System (INIS)

    Pina, F.; Maestri, M.; Ballardini, R.; Mulazzani, Q.G.; D'Angelantonio, M.; Balzani, V.

    1986-01-01

    The Co(sep) 3+ complex (sep = sepulchrate = 1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane) in aqueous solution forms ion pairs with the I - and Br - anions, which exhibit a relatively intense charge-transfer absorption. In deoxygenated aqueous solution no net reaction is obtained upon continuous light excitation in the ion-pair charge-transfer bands, but formation of transient species is observed in flash photolysis experiments. For the Co(sep) 3+ -I - system, I 2 - ions are formed that decay in the 50-μs time scale to give I 3 - . The latter species disappears in a time scale of seconds, leading the system back to the preexcitation conditions. For the Co(sep) 3+ -Br - system, only formation of the Br 2 - transient is observed, followed by regeneration of the preexcitation conditions in the 20-μs time scale. In order to elucidate the kinetic aspects of the transient formation and disappearance, pulse radiolysis experiments on the Co(sep) 3+ -I - and Co(sep) 3+ -Br - systems have been carried out. The rate constants of the reactions of Co(sep) 2+ with I 2 - , I 3 - , and Br 2 - have been measured, and a complete picture of the redox processes that follow flash photolysis and pulse radiolysis excitations has been obtained. 5 figures

  12. Dietary calcium intake and sunlight exposure among children aged ...

    African Journals Online (AJOL)

    Nutritional rickets can be caused by either or both calcium and vitamin D deficiencies, and can frequently occur in Africa. In Ethiopia, limited evidence exists regarding the calcium intake of children and their sunlight exposure practices. The purpose of this study was to assess information regarding dietary calcium intake and ...

  13. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    -lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively

  14. Comparison of germicidal activity of sunlight with the response of a sunburning meter

    Energy Technology Data Exchange (ETDEWEB)

    Billen, D; Green, A E.S.

    1975-01-01

    In the present work, we compare germicidal activity of sunlight on strain AB 2480 with the irradiance of sunlight as measured with a Sunburning Ultraviolet Meter (manufactured by the Skin and Cancer Hospital, Temple University Health Sciences Center, Philadelphia, Pennsylvania). This instrument, an adaptation by Berger of one developed by Robertson (1972), uses a magnesium tungstate phosphor with a response approximating that of the erythema action spectrum. The light emitted by the phosphor is detected by a phototube which produces a proportional electric current, the signal used in these experiments. (auth)

  15. Study of the selective abstration reaction of the hydrogen atom in the radiolysis and photolysis of alkane mixture at 77 K

    International Nuclear Information System (INIS)

    Guedes, S.M.L.

    1979-01-01

    The occurence of the selective abstraction reaction of the solute hydrogen atom by hydrogen atom produced during radiolysis or photolysis of the systems such as neopentane/cyclo-hexane/HI, neopentane/2,3 dimethylbutane, n-pentane/HI/cyclo-hexane and cyclo-hexane/HI/n-pentane, at 77 K is studied. Experiments have been undertaken on the kinetics nature of the active species, the H atom, during radiolysis and photolysis of the neopentane/cyclo-hexane/HI system at 77 K, presenting competitive reactions. Studies have also been made on the occurrence of the selective abstraction reaction in inverted systems, in which the concentrations of the components of a system are so much altered that the solute becomes the solvent and vice-versa, in the other system. By means of photolysis at 77 K, it has been observed that for the two systems constitued by the cyclo-hexane and n-pentane the selective abstraction reaction occurs. However, for radiolysis of that same two systems it has been observed that only the hydrogen atom abstraction reaction corresponding to the solvent occurs. (Author) [pt

  16. Effect of sunlight, transport and storage vessels on drinking water ...

    African Journals Online (AJOL)

    Effect of sunlight, transport and storage vessels on drinking water quality in rural Ghana. ... on drinking water quality in rural Ghana. K Obiri-Danso, E Amevor, LA Andoh, K Jones ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  17. Holick's rule and vitamin D from sunlight.

    Science.gov (United States)

    Dowdy, John C; Sayre, Robert M; Holick, Michael F

    2010-07-01

    Holick's rule says that sun exposure 1/4 of a minimal erythemal dose (MED) over 1/4 of a body is equivalent to 1000 International Units (IU) oral vitamin D3. Webb and Engelsen recently commented that the ultraviolet (UV) spectrum used to establish Holick's rule is unknown. They consequently used a spring midday Boston solar spectrum to estimate ample sunlight exposures for previtamin D3 (preD3) at various locations. Literature review found the source upon which this rule is based was a fluorescent sunlamp (FS lamp). The FS spectrum is known and its relative weighting against the action spectra for erythema and the preD3 is significantly different from the solar spectrum used to derive the standard vitamin D effective dose (SDD). The preD3 effectiveness of the solar spectrum per unit erythemal hazard is greater than the FS lamp by a factor of 1.32. Consequently, UV exposure estimates based on Boston reference sunlight, instead of the UV lamp employed in the originating experiments, over estimate UV exposure equivalent to approximately 1000 IU orally by approximately 1/3. This redefinition of SDD impacts risk/benefit assessments of optimal/feasible sun exposure for vitamin D maintenance and the application of Holick's rule to rational public health messages. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Degradation of Paracetamol by Photolysis Using C-N-codoped TiO2

    OpenAIRE

    Vanny Yulia Safitri; Adlis Santoni; Diana Vanda Wellia; Khoiriah Khoiriah; Safni Safni

    2017-01-01

    Paracetamol is generally used as analgesic and antipyretic drugs. Contamination paracetamol in the environment can occur because of waste material disposal from production site and immediate disposal of household that cause water pollution. Paracetamol is degraded by photolysis method under irradiation 10 watt UV-light (λ=365 nm), visible-light (Philips LED 13 watt 1400 lux) and solar-light with and without addition C-N-codoped TiO2catalyst. The solution is analyzed by UV-Vis spectrophotomete...

  19. Construction of a flash-photolysis apparatus having a short discharge time

    International Nuclear Information System (INIS)

    Devillers, C.

    1964-01-01

    Flash photolysis aims at reaching directly the primary mechanisms resulting from the action of light on an absorbent matter. This makes it necessary to produce a flash as short and as bright as possible. Our main effort was directed towards reducing the duration of the flash by decreasing the self-inductance of the discharge circuit. A description of this circuit and study of the characteristics of the apparatus are followed by a short description of the two analytical methods: flash spectrography and absorption spectrophotometry at a given wave-length. (author) [fr

  20. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    Science.gov (United States)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  1. Carcinogenic effect of sequential artificial sunlight and UV-A irradiation in hairless mice. Consequences for solarium 'therapy'

    International Nuclear Information System (INIS)

    Staberg, B.; Wulf, H.C.; Poulsen, T.; Klemp, P.; Brodthagen, H.

    1983-01-01

    The carcinogenic effect of artificial UV sunlight followed by UV-A irradiation in human solaria doses has been studied with the use of the hairless mouse as an animal model. Artificial sunlight exposure alone induced only a moderate skin tumor incidence (animals with at least one tumor) of 0.15 after one year, and UV-A irradiation alone induced no tumor formation. However, the combination of artificial sunlight exposure and subsequent UV-A irradiation significantly increased the tumor incidence to 0.72. We conclude that, in humans, tanning with UV-A for cosmetic purposes may not be an innocuous procedure

  2. Modified optical fiber daylighting system with sunlight transportation in free space.

    Science.gov (United States)

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  3. Sunlight exposure or vitamin D supplementation for vitamin D-deficient non-western immigrants: a randomized clinical trial

    NARCIS (Netherlands)

    Wicherts, I.S.; Boeke, A.J.P.; van der Meer, I.M.; van Schoor, N.M.; Knol, D.L.; Lips, P.T.A.M.

    2011-01-01

    Summary: Vitamin D deficiency is very common in non-western immigrants. In this randomized clinical trial, vitamin D 800 IU/day or 100,000 IU/3 months were compared with advised sunlight exposure. Vitamin D supplementation was more effective than advised sunlight exposure in improving vitamin D

  4. Use of remote sensing and molecular markers to detect toxic ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... exposure of the cells to high radiation, inflicting irreversible damage to the genetic constitution of the upper layer of ... (12,300 µg/l) in the absence of sunlight irradiation and photolysis by UV light. ... and eye irritation, with the latter symptoms, possibly as a ... the crust layer and their effect on the synthesis of.

  5. Primary processes in photolysis of octopus rhodopsin.

    Science.gov (United States)

    Ohtani, H; Kobayashi, T; Tsuda, M; Ebrey, T G

    1988-01-01

    The photolysis of octopus rhodopsin was studied by picosecond time-resolved spectroscopy at physiological temperature (8 degrees C) and by steady-state spectroscopy at very low temperature (10 K). Both hypsorhodopsin and bathorhodopsin were formed from a bathorhodopsin-like red-shifted intermediate "primerhodopsin," which was the primary photoproduct with our time resolution (36 ps). Though it was proposed that hypsorhodopsin is formed solely by a multiphoton process, the present results obtained by using blue light pulses (461 nm) of low intensity showed that hypsorhodopsin is formed by a single photon mechanism via thermal decay from primerhodopsin. When the excitation intensity is increased, a channel for the photochemical formation of hypsorhodopsin from primerhodopsin is opened. There are two thermal pathways leading from primerhodopsin. One process is the formation of hypsorhodopsin, which is later thermally converted to bathorhodopsin, and the other is the direct formation of bathorhodopsin from primerhodopsin. The formation efficiencies at room temperature of hypsorhodopsin and bathorhodopsin at very low excitation intensity were estimated to be larger than 0.6 and smaller than 0.4, respectively. The formation of hypsorhodopsin was also found in the early stages of the irradiation of octopus rhodopsin with weak continuous light at 10 K. However bathorhodopsin is formed three times more efficiently than hypsorhodopsin at 10 K.At physiological temperatures the formation of hypsorhodopsin in D(2)O takes place more slowly than in H(2)O. This indicates that the lifetime of primerhodopsin is decreased by H(2)O/D(2)O exchange. The rate constant for the primerhodopsin --> bathorhodopsin conversion is more sensitive than that for the primerhodopsin --> hypsorhodopsin conversion. The transformation of hypsorhodopsin to bathorhodopsin shows no deuterium effect at low temperature.

  6. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    Science.gov (United States)

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  7. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight

    NARCIS (Netherlands)

    Galagan, Y.O.; Mescheloff, A.; Veenstra, S.C.; Andriessen, H.A.J.M.; Katz, E.A.

    2015-01-01

    Stabilities of ITO-containing and ITO-free organic solar cells were investigated under simulated AM 1.5G illumination and under concentrated natural sunlight. In both cases ITO-free devices exhibit high stability, while devices containing ITO show degradation of their photovoltaic performance. The

  8. Technical-economic feasibility of orbiting sunlight reflectors

    Science.gov (United States)

    Alferov, Z.; Minin, V.

    1986-02-01

    The use of deflectors in orbit as a means of providing artificial illumination is examined. Considerations of technical and economic feasibility are addressed. Three main areas of application are distinguished: reflecting sunlight onto the surface of the Earth; concentration of the flow of solar energy on an orbiting receiver; and retransmission of optical radiation. The advantages of the artificial Earth illumination application of the orbiting reflector scheme in terms of energy savings in lighting cities, and additional daylight time for critical periods of farming operations are discussed.

  9. Investigation of local optical inhomogeneities in flashlamp photolysis lasers

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, B V; Borovkov, V V; Lazhintsev, B V; Nor-Arenian, V A; Sukhanov, L V; Ustinenko, V A

    1979-09-01

    Local changes in the refractive index which occur in the active medium under flashlamp-excited photolysis laser action are examined experimentally. Under conditions of the inverse population storage and suppression of the laser action by a strong quencher, local inhomogeneities have been absent. It is shown that the stimulated emission is inhomogeneous over the active medium and features regular character with the radiation density modulation within 20-30 percent and with typical size of inhomogeneities of not greater than 0.5 mm. On the basis of experimental results and estimation, a conclusion is drawn that the local optical inhomogeneities are caused by gasdynamic displacements of the gas due to different heat evolutions in the regions of the radiation density maximum and minimum.

  10. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  11. Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited

    DEFF Research Database (Denmark)

    Glerup, H; Mikkelsen, K; Poulsen, L

    2000-01-01

    OBJECTIVES: Sunlight exposure of the skin is known to be the most important source of vitamin D. The aims of this study were: (i) to estimate vitamin D status amongst sunlight-deprived individuals (veiled Arab women, veiled ethnic Danish Moslem women and Danish controls); and (ii) through food...... intake analysis to estimate the oral intake of vitamin D necessary to keep a normal vitamin D status in sunlight-deprived individuals. DESIGN: Cross-sectional study amongst randomly selected Moslem women of Arab origin living in Denmark. Age-matched Danish women were included as controls. To control...... for racial differences, a group of veiled ethnic Danish Moslem women (all Caucasians) was included. SETTING: Primary Health Care Centre, City Vest and Department of Endocrinology and Metabolism C, University Hospital of Aarhus, Aarhus Amtssygehus, Aarhus, Denmark. SUBJECTS: Sixty-nine Arab women (60 veiled...

  12. Effect of sunlight on the survival of pathogenic E. coli in freshwater and sea water

    DEFF Research Database (Denmark)

    Surendraraj, Alagarsamy; Farvin, Sabeena; Thampuran, N.

    2011-01-01

    An enteropathogenic group of E. coli are the emerging category of pathogen of public health significance. Several recent pathogenic E. coli outbreaks are associated with drinking water. Aquaculture, the fast emerging food production sector also poses a pathogenic EHEC outbreak risk, as it regularly...... uses cow dung, a reservoir of this organism. Hence, a experiment was set up to study the duration of survival of pathogenic E. coli under sunlight and darkness. Eight pathogenic E. coli isolates from clinical (EPEC, ETEC, EHEC, EAEC), veterinary (CTE3, CTE4) and environmental sources (ASHE3, Rao II......) were studied for their survival under sunlight and darkness in fresh water and seawater. Effect of direct sunlight on the viable but nonculturable (VBNC) state of cultures was also studied. The results of the study indicated a distinct pattern between freshwater system and seawater system. Pathogenic E...

  13. Instantaneous global nitrous oxide photochemical rates

    International Nuclear Information System (INIS)

    Johnston, H.S.; Serang, O.; Podolske, J.

    1979-01-01

    In recent years, vertical profiles of nitrous oxide have been measured by balloon up to midstratosphere at several latitudes between 63 0 N and 73 0 S, including one profile in the tropical zone at 9 0 N. Two rocket flights measured nitrous oxide mixing ratios at 44 and 49 km. From these experimental data plus a large amount of interpolation and extrapolation, we have estimated a global distribution of nitrous oxide up to the altitude of 50 km. With standard global distributions of oxygen and ozone we carried out instantaneous, three-dimensional, global photochemical calculations, using recently measured temperature-dependent cross sections for nitrous oxide. The altitude of maximum photolysis rate of N 2 O is about 30 km at all latitudes, and the rate of photolysis is a maximum in tropical latitudes. The altitude of maximum rate of formation of nitric oxide is latitude dependent, about 26 km at the equator, about 23 km over temperate zones, and 20 km at the summer pole. The global rate of N 2 O destruction is 6.2 x 10 27 molecules s -1 , and the global rate of formation of NO from N 2 O is 1.4 x 10 27 molecules s -1 . The global N 2 O inventory divided by the stratospheric loss rate gives a residence time of about 175 years with respect to this loss process. From the global average N 2 O profile a vertical eddy diffusion profile was derived, and this profile agrees very closely with that of Stewart and Hoffert

  14. Effect of sunlight shielding on leaf structure and amino acids ...

    African Journals Online (AJOL)

    Light sensitive albino tea cultivar 'Jinguang' (Camellia sinensis) which grows albinism leaf in yellow colour, results to high level of amino acids but low levels of photosynthetic pigments including chlorophylls, neoxanthin, violaxanthin, phytoxanthin and β-carotene when it is exposed to high sunlight illumination in the ...

  15. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  16. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments.

    Science.gov (United States)

    Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi

    2017-10-01

    Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators

    Science.gov (United States)

    Curtis, H. B.

    1976-01-01

    Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.

  18. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  19. The Photocatalytic Activity of TiO2-Zeolite Composite for Degradation of Dye Using Synthetic UV and Jeddah Sunlight

    Directory of Open Access Journals (Sweden)

    Laila M. Al-Harbi

    2015-01-01

    Full Text Available In this research different composites of impregnated TiO2 with LTA or FAU zeolites were used as different weight% ratio for photodegradation of organic dye. Normal laboratory UV-lamps were used as a source of UV irradiation. In addition a setup of system of mirrors was used to collect real Jeddah sunlight. A comparison of UV and real sunlight photodegradation activity showed that the real sunlight enhances new centers of active sites exhibiting higher catalytic activity than that of UV irradiated samples.

  20. Preparation of K-doped TiO{sub 2} nanostructures by wet corrosion and their sunlight-driven photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin [Department of Chemistry, Chung-Ang University, Seoul 06974 (Korea, Republic of); Jun, Byung-Hyuk [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Kwang-Won, E-mail: bryan.kwangwon.park@gmail.com [Department of Chemistry, Chung-Ang University, Seoul 06974 (Korea, Republic of); Hong, Jongin, E-mail: hongj@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 06974 (Korea, Republic of)

    2016-08-30

    Highlights: • Potassium-doped TiO{sub 2} nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline solution. • They were applied to sunlight-driven photocatalytic degradation of differently charged dye molecules. • The adsorption of the dye molecules on the photocatalyst surface is crucial for their sunlight-driven photodegradation. - Abstract: K-doped TiO{sub 2} nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.

  1. Comparison Study On Sunlight Or Gamma Radiation Aging Resistance Of Poly (Vinyl Pyrrolidone) Aqueous Solution With PVP Nanogel

    International Nuclear Information System (INIS)

    Doan Binh; Pham Thu Hong; Nguyen Nguyet Dieu; Nguyen Thanh Duoc

    2011-01-01

    Comparison study on sunlight or gamma-radiation aging resistance of poly (vinyl pyrrolidone) (PVP) aqueous solution with PVP nanogel at 0.5% was carried out. Sunlight or gamma- radiation aging resistance of PVP aqueous solution and nanogel was evaluated on the basis of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight (M w ). The PVP aqueous solution and nanogel exposed to sunlight in the storage duration of 3 months and to gamma radiation at absorbed doses of 0, 15, 30, 50 kGy were used for this study. Furthermore, the stability of PVP nanogel and of PVP aqueous solution was also studied on the change of their intrinsic viscosity, UV-VIS absorbance, weight averaged molecular weight, particle size distribution and coil size. The experimental results were shown that the aging resistance of PVP nanogel was higher than that of PVP aqueous solution when exposed to gamma radiation or sunlight. (author)

  2. Vacuum ultraviolet photolysis of diclofenac and the effects of its treated aqueous solutions on the proliferation and migratory responses of Tetrahymena pyriformis

    International Nuclear Information System (INIS)

    Arany, Eszter; Láng, Júlia; Somogyvári, Dávid; Láng, Orsolya; Alapi, Tünde; Ilisz, István

    2014-01-01

    The effects of dissolved O 2 , phosphate buffer and the initial concentration of diclofenac on the vacuum ultraviolet photolysis of this contaminant molecule were studied. Besides kinetic measurements, the irradiated, multicomponent samples were characterized via the proliferation and migratory responses (in sublethal concentrations) of the bioindicator eukaryotic ciliate Tetrahymena pyriformis. The results suggest that hydroxyl radicals, hydrogen atoms and hydroperoxyl radicals may all contribute to the degradation of diclofenac. The aromatic by-products of diclofenac were presumed to include a hydroxylated derivative, 1-(8-chlorocarbazolyl)acetic acid and 1-(8-hydroxycarbazolyl)acetic acid. The biological activity of photoexposed samples reflected the chemical transformation of diclofenac and was also dependent on the level of dissolved O 2 . The increase in toxicity of samples taken after different irradiation times did not exceed a factor of two. Our results suggest that the combination of vacuum ultraviolet photolysis with toxicity and chemotactic measurements can be a valuable method for the investigation of the elimination of micropollutants. - Highlights: • The radical-scavenging effect of phosphates seems to be negligible. • Only higher concentrations of HO 2 · contribute to the degradation of diclofenac. • Toxicity of VUV-treated samples decreases with increasing rate of mineralization. • Dissolved O 2 enhances the mineralization of diclofenac by affecting the radical set. • Treated samples retain the chemorepellent character of the parent compound

  3. Vacuum ultraviolet photolysis of diclofenac and the effects of its treated aqueous solutions on the proliferation and migratory responses of Tetrahymena pyriformis

    Energy Technology Data Exchange (ETDEWEB)

    Arany, Eszter [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1 (Hungary); Láng, Júlia [Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4 (Hungary); Somogyvári, Dávid [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1 (Hungary); Láng, Orsolya [Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4 (Hungary); Alapi, Tünde [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 7 (Hungary); Ilisz, István [Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 7 (Hungary); and others

    2014-01-01

    The effects of dissolved O{sub 2}, phosphate buffer and the initial concentration of diclofenac on the vacuum ultraviolet photolysis of this contaminant molecule were studied. Besides kinetic measurements, the irradiated, multicomponent samples were characterized via the proliferation and migratory responses (in sublethal concentrations) of the bioindicator eukaryotic ciliate Tetrahymena pyriformis. The results suggest that hydroxyl radicals, hydrogen atoms and hydroperoxyl radicals may all contribute to the degradation of diclofenac. The aromatic by-products of diclofenac were presumed to include a hydroxylated derivative, 1-(8-chlorocarbazolyl)acetic acid and 1-(8-hydroxycarbazolyl)acetic acid. The biological activity of photoexposed samples reflected the chemical transformation of diclofenac and was also dependent on the level of dissolved O{sub 2}. The increase in toxicity of samples taken after different irradiation times did not exceed a factor of two. Our results suggest that the combination of vacuum ultraviolet photolysis with toxicity and chemotactic measurements can be a valuable method for the investigation of the elimination of micropollutants. - Highlights: • The radical-scavenging effect of phosphates seems to be negligible. • Only higher concentrations of HO{sub 2}{sup ·} contribute to the degradation of diclofenac. • Toxicity of VUV-treated samples decreases with increasing rate of mineralization. • Dissolved O{sub 2} enhances the mineralization of diclofenac by affecting the radical set. • Treated samples retain the chemorepellent character of the parent compound.

  4. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Eashwar, M.; SathishKumar, P.; Ravishankar, R.; Subramanian, G.

    In replicate series of experiments in natural seawater, one in full darkness and the other in a 1:1 diurnal cycle with as little as 5 percent of natural solar illumination, sunlight promoted calcareous deposition on cathodic stainless steel surfaces...

  5. Colour Counts: Sunlight and Skin Type as Drivers of Vitamin D Deficiency at UK Latitudes.

    Science.gov (United States)

    Webb, Ann R; Kazantzidis, Andreas; Kift, Richard C; Farrar, Mark D; Wilkinson, Jack; Rhodes, Lesley E

    2018-04-07

    Sunlight exposure, with resulting cutaneous synthesis, is a major source of vitamin D for many, while dietary intake is low in modern diets. The constitutive pigment in skin determines skin type, observed as white, brown, or black skin. The melanin pigment absorbs ultraviolet radiation (UVR) and protects underlying skin from damage caused by UVR. It also reduces the UVR available for vitamin D synthesis in the skin. It has been shown that the white-skinned population of the UK are able to meet their vitamin D needs with short, daily lunchtime exposures to sunlight. We have followed the same methodology, based on a 10-year UK all-weather UVR climatology, observation (sun exposure, diet, vitamin D status), and UVR intervention studies with Fitzpatrick skin type V (brown) adults, to determine whether sunlight at UK latitudes could provide an adequate source of vitamin D for this section of the population. Results show that to meet vitamin D requirements, skin type V individuals in the UK need ~25 min daily sunlight at lunchtime, from March to September. This makes several assumptions, including that forearms and lower legs are exposed June-August; only exposing hands and face at this time is inadequate. For practical and cultural reasons, enhanced oral intake of vitamin D should be considered for this population.

  6. Colour Counts: Sunlight and Skin Type as Drivers of Vitamin D Deficiency at UK Latitudes

    Directory of Open Access Journals (Sweden)

    Ann R. Webb

    2018-04-01

    Full Text Available Sunlight exposure, with resulting cutaneous synthesis, is a major source of vitamin D for many, while dietary intake is low in modern diets. The constitutive pigment in skin determines skin type, observed as white, brown, or black skin. The melanin pigment absorbs ultraviolet radiation (UVR and protects underlying skin from damage caused by UVR. It also reduces the UVR available for vitamin D synthesis in the skin. It has been shown that the white-skinned population of the UK are able to meet their vitamin D needs with short, daily lunchtime exposures to sunlight. We have followed the same methodology, based on a 10-year UK all-weather UVR climatology, observation (sun exposure, diet, vitamin D status, and UVR intervention studies with Fitzpatrick skin type V (brown adults, to determine whether sunlight at UK latitudes could provide an adequate source of vitamin D for this section of the population. Results show that to meet vitamin D requirements, skin type V individuals in the UK need ~25 min daily sunlight at lunchtime, from March to September. This makes several assumptions, including that forearms and lower legs are exposed June–August; only exposing hands and face at this time is inadequate. For practical and cultural reasons, enhanced oral intake of vitamin D should be considered for this population.

  7. Why We Need More Nature at Work: Effects of Natural Elements and Sunlight on Employee Mental Health and Work Attitudes.

    Science.gov (United States)

    An, Mihyang; Colarelli, Stephen M; O'Brien, Kimberly; Boyajian, Melanie E

    2016-01-01

    This study investigated the effects of natural elements and direct and indirect sunlight exposure on employee mental health and work attitudes. We recruited participants via an online panel from the United States and India, and analyzed data from 444 employees. Natural elements and sunlight exposure related positively to job satisfaction and organizational commitment, and negatively to depressed mood and anxiety. Direct sunlight was a dominant predictor of anxiety; indirect sunlight was a dominant predictor of depressed mood, job satisfaction, and organizational commitment. Natural elements buffered the relationship between role stressors and job satisfaction, depressed mood, and anxiety. We also found that depressed mood partially mediated the relationship between natural elements and job satisfaction. We discuss scientific and policy implications of these findings.

  8. Why We Need More Nature at Work: Effects of Natural Elements and Sunlight on Employee Mental Health and Work Attitudes

    Science.gov (United States)

    An, Mihyang; Colarelli, Stephen M.; O'Brien, Kimberly; Boyajian, Melanie E.

    2016-01-01

    This study investigated the effects of natural elements and direct and indirect sunlight exposure on employee mental health and work attitudes. We recruited participants via an online panel from the United States and India, and analyzed data from 444 employees. Natural elements and sunlight exposure related positively to job satisfaction and organizational commitment, and negatively to depressed mood and anxiety. Direct sunlight was a dominant predictor of anxiety; indirect sunlight was a dominant predictor of depressed mood, job satisfaction, and organizational commitment. Natural elements buffered the relationship between role stressors and job satisfaction, depressed mood, and anxiety. We also found that depressed mood partially mediated the relationship between natural elements and job satisfaction. We discuss scientific and policy implications of these findings. PMID:27214041

  9. Degradation of organic compounds by the combined action of light and microorganisms

    International Nuclear Information System (INIS)

    Amador, J.A.

    1990-01-01

    The degradation of organic compounds bound to soil humic acid and of pyridinedicarboxylic acids by the combined action of light and microorganisms was studied. The rate and extent of microbial mineralization of [2 14 C]glycine/humic acid complexes in the dark increased inversely with molecular weight of the molecules. Sunlight irradiation of [ 14 C] glycine/humic acid complexes resulted in loss of UV-light absorbance and an increase in the yield of 14 C-labeled low-molecular weight products. The rate and extent of microbial mineralization were also enhanced by the initial photolysis of the complexes. Greater than half of the radioactivity in the low-molecular-weight photoproducts appeared to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with integrated solar flux and with the loss of absorbance at 330 nm. Mineralization increased with the percentage of the original complex that was converted to low-molecular weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular-weight distribution of the products formed from the glycine/humic acid complexes and on the subsequent microbial mineralization. Irradiation of [U 14 C]aniline/humic acid and of [U- 14 C]phenol/humic acid complexes in sunlight resulted in a loss of UV-light absorbance and an increase in the yield of C-labeled low molecular-weight products. Sunlight irradiation of the [ 14 C]aniline/humic acid complexes had no effect on their subsequent mineralization, but sunlight irradiation enhanced the rate and extent of mineralization of the [ 14 C]phenol/humic acid complexes. The mineralization of phenol/humic acid complexes increased with integrated solar flux and was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts

  10. Gas phase radiolysis and vacuum ultraviolet photolysis of heterocyclic organic compounds. Progress report, February 1, 1974--February 1, 1975

    International Nuclear Information System (INIS)

    Scala, A.A.; Salomon, D.; Colon, I.; D'Angona, J.

    1975-01-01

    In the γ radiolysis of tetrahydrofuran there are pronounced density effects in the pressure range from 0 to 50 Torr with the most important ion-pair yields decreasing as the pressure increases. The relative product yields of the radiolysis is compared with that of xenon photolysis. Possible mechanisms to explain the results obtained are discussed. The ion-pair yields from the γ radiolysis of the heterocyclic amines, ethylenimine, azetidine, pyrrolidine, and piperidine, are determined, and the pressure effects are evaluated. Reactions mechanisms are discussed. The vacuum ultraviolet photolysis products of thietane and tetrahydrothiophene are studied and compared with the γ radiolysis products. Reaction mechanisms are discussed. The status of the construction of a photoionization mass spectrometer and the measurement of the ionization efficiencies and extinction coefficients of organic compounds is reported. (U.S.)

  11. Interaction of quinones with three pyrimidine bases: A laser flash photolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Adity [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.i [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-11-15

    The interaction between three different pyrimidine bases, uracil (U), cytosine (C) and thymine (T) and two quinones, 2-methyl-1,4-naphthoquinone or menadione (MQ) and 9,10-anthraquinone (AQ) have been studied using laser flash photolysis technique in organic homogeneous medium. The three pyrimidines have revealed a difference in their extent of reactivity towards the quinones, which has been attributed to their structural difference. Our works have revealed that the difference in structural dimension of the quinones is also responsible for affecting the reactivity of these pyrimidines in homogeneous medium.

  12. Interaction of quinones with three pyrimidine bases: A laser flash photolysis study

    International Nuclear Information System (INIS)

    Bose, Adity; Basu, Samita

    2009-01-01

    The interaction between three different pyrimidine bases, uracil (U), cytosine (C) and thymine (T) and two quinones, 2-methyl-1,4-naphthoquinone or menadione (MQ) and 9,10-anthraquinone (AQ) have been studied using laser flash photolysis technique in organic homogeneous medium. The three pyrimidines have revealed a difference in their extent of reactivity towards the quinones, which has been attributed to their structural difference. Our works have revealed that the difference in structural dimension of the quinones is also responsible for affecting the reactivity of these pyrimidines in homogeneous medium.

  13. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    OpenAIRE

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH ...

  14. Degradation of tributyltin in San Diego Bay, California, waters

    International Nuclear Information System (INIS)

    Seligman, P.F.; Valkirs, A.O.; Lee, R.F.

    1986-01-01

    Several experiments were carried out to determine the degradation rate of tributyltin (TBT) in microcosms containing harbor water. Unlabeled or 14 C-labeled tributyltin was added to water samples collected from two stations in San Diego Bay, CA. Degradation rates were determined by calculating the rate of loss of the added parent TBT compound. Calculated half-lives in water collected from a yacht harbor (ambient concentration was 0.5 μg of TBT/L) were 6 and 7 days for light and dark treatments, respectively. Half-lives from a clean-water site ( 14 CO 2 , proceeded slowly with a half-life of 50-75 days. Tributyltin at high concentrations (744 μg/L) was not degraded in sunlight, indicating that photolysis was not taking place and that biological degradation was the primary degradative process for TBT at low ambient concentrations

  15. Decontamination of poultry feed from ochratoxin A by UV and sunlight radiations.

    Science.gov (United States)

    Ameer Sumbal, Gul; Hussain Shar, Zahid; Hussain Sherazi, Syed Tufail; Sirajuddin; Nizamani, Shafi Muhammad; Mahesar, Safaraz Ahmed

    2016-06-01

    Mycotoxin-contaminated feed is very dangerous for the growth and even life of poultry. The objective of the current study was to investigate the efficacy of ultra-violet irradiation for decontamination of ochratoxin A (OTA) in spiked and naturally contaminated poultry feed samples. Spiked and naturally contaminated feed samples were irradiated with ultra-violet light (UV) at distance of 25 cm over the feed samples. In vitro, the effect of UV intensity (0.1 mW cm(-2) at 254 nm UV-C) on different types of poultry feeds contaminated with OTA was evaluated. The same samples were also irradiated with sunlight and analysed for OTA by an indirect enzyme linked immunosorbent assay method. Poultry feed samples containing 500 µg kg(-1) were 100% decontaminated in 180 min with UV radiation while OTA was decreased to 70-95 µg kg(-1) using the same poultry feed samples after 8 h sunlight irradiation. Therefore, UV light was found to be more effective. Only 1 h of UV irradiation was found to be sufficient to bring the OTA level to the maximum regulatory limit suggested for poultry feeds (100 µg kg(-1) ), while 8 h were needed to obtain this level using sunlight radiations. The proposed approach is a viable option to reduce the level of OTA in contaminated poultry feeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Tropospheric nitrogen dioxide inversions based on spectral measurements of scattered sunlight

    NARCIS (Netherlands)

    Vlemmix, T.

    2011-01-01

    This thesis describes the development of inversion methods for tropospheric nitrogen dioxide (NO2), based on ground based observations of scattered sunlight with themulti-axis differential optical absorption spectroscopy (MAX-DOAS) technique. NO2 is an atmospheric trace gas which, when present near

  17. Degradation of cyclophosphamide and 5-fluorouracil by UV and simulated sunlight treatments: Assessment of the enhancement of the biodegradability and toxicity

    International Nuclear Information System (INIS)

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro

    2016-01-01

    The presence of pharmaceuticals in the environment has triggered concern among the general population and received considerable attention from the scientific community in recent years. However, only a few publications have focused on anticancer drugs, a class of pharmaceuticals that can exhibit cytotoxic, genotoxic, mutagenic, carcinogenic and teratogenic effects. The present study investigated the photodegradation, biodegradation, bacterial toxicity, mutagenicity and genotoxicity of cyclophosphamide (CP) and 5-fluorouracil (5-FU). The photodegradation experiments were performed at a neutral to slight pH range (7–7.8) using two different lamps (medium-pressure mercury lamp and a xenon lamp). The primary elimination of the parent compounds was monitored by means of liquid chromatography tandem mass spectrometry (LC-IT-MS/MS). NPOC (non-purgeable organic carbon) analyses were carried out in order to assess mineralization rates. The Closed Bottle Test (CBT) was used to assess ready biodegradability. A new method using Vibrio fischeri was adopted to evaluate toxicity. CP was not degraded by any lamp, whereas 5-FU was completely eliminated by irradiation with the mercury lamp but only partially by the Xe lamp. No mineralization was observed for the experiments performed with the Xe lamp, and a NPOC removal of only 18% was registered for 5-FU after 256 min using the UV lamp. Not one of the parent compounds was readily biodegradable in the CBT. Photo transformation products (PTPs) resulting from photolysis were neither better biodegradable nor less toxic than the parent compound 5-FU. In contrast, the results of the tests carried out with the UV lamp indicated that more biodegradable and non-toxic PTPs of 5-FU were generated. Three PTPs were formed during the photodegradation experiments and were identified. The results of the in silico QSAR predictions showed positive mutagenic and genotoxic alerts for 5-FU, whereas only one of the formed PTPs presented positive

  18. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  19. Efficiencies and Physical Principles of Various Solar Energy Conversion Processes Leading to the Photolysis of Water

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, T

    1996-12-31

    In the application of solar energy, hydrogen is likely to be used as an energy carrier and a storage medium. Production of molecular hydrogen and oxygen from water requires energy input, which may come from solar energy in various ways. This thesis begins with a literature survey of the different conversion processes and the efficiencies, which is an introduction to a series of enclosed papers. These papers are: (1) Trapping of Minority Charge Carriers at Irradiated Semiconductor/Electrolyte Heterojunctions, (2) Model Calculations on Flat-Plate Solar Heat Collector With Integrated Solar Cells, and (3) Efficiencies and Physical Principles of Photolysis of Water By Microalgae. In the papers, The qualitative features of the ``illumination-current``-characteristic curve are deduced. The hypothesis is that trapping originates in some specific cases because of confinement, which leads to charge injections into energy states above that corresponding to the band edge. The quantitative features of certain hybrid photovoltaic/thermal configuration are deduced. An analysis of the theoretical and realizable efficiencies of the photolysis of water by micro algae is given. 151 refs., 18 figs., 1 table

  20. IS THERE A LINK BETWEEN SUNLIGHT EXPOSURE AND 25-HYDROXYVITAMIN D DEFICIENCY IN CHRONIC KIDNEY DISEASE PATIENTS?

    Directory of Open Access Journals (Sweden)

    Angela Yee-Moon Wang

    2012-06-01

    In conclusion, our study confirmed an extremely high prevalence of vitamin D deficiency and an important association between outdoor sunlight exposure and 25(OHD deficiency in Chinese stage 3-5 CKD patients. Further study is needed to determine whether increasing daily outdoor sunlight exposure may represent a cost-free treatment for correcting nutritional 25(OHD deficiency in the CKD population.

  1. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    Science.gov (United States)

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  2. Flash photolysis of carbon dioxide in the far ultra-violet; Photolyse-eclair de l'anhydride carbonique dans l'ultra-violet lointain

    Energy Technology Data Exchange (ETDEWEB)

    Barat, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1970-07-01

    The flash photolysis of CO{sub 2} (3 torr) in the far ultra-violet, down to the transparency limit of lithium fluoride, produces vibrationally excited CO in its {chi}{sup 1}{sigma} electronic ground state and an electronically excited oxygen atom O({sup 1}D). After photolysis, the changes in the concentration of vibrationally de-excited CO in the 0 to 200 {mu}sec, time range are followed using absorption spectroscopy. These changes can be explained on the basis of three main competing reactions: CO({chi}{sup 1}{sigma}, {nu}'' = 0) + O({sup 1}D) {yields} CO{sub 2}({sup 1}{sigma}{sub g}{sup +}), O({sup 1}D) + CO{sub 2} {yields} O({sup 3}P) + CO{sub 2} and CO{sub 3}, CO(X{sup 1}{sigma}, {nu}'' = 1,2) + CO{sub 2} {yields} CO({chi}{sup 1}{sigma}, {nu}'' = 0) + CO{sub 2}. The values of the rate constants for these three reactions are determined by analog calculations. The effect of O({sup 1}D) scavenging or quenching gases on the oxidation reaction of CO by O({sup 1}D) is examined. A study of the flash photolysis of O{sub 2} in the presence of CO in the far ultra-violet makes it possible to eliminate the hypothesis that CO{sub 3} is involved in the reaction leading to the disappearance of CO after photolysis. (author) [French] La photolyse eclair de CO{sub 2} (3 torrs) dans l'ultraviolet lointain, jusqu'a la limite de transparence du fluorure de lithium, produit CO vibrationnellement excite dans son etat electronique fondamental X et un atome d'oxygene electroniquement excite O({sup 1}D). Apres photolyse, on suit par spectroscopie d'absorption l'evolution de la concentration de CO vibrationnellement desexcite dans la gamme de temps s'etendant de 0 a 200 {mu}s. Cette evolution s'explique en admettant trois reactions concurrentes principales: CO({chi}{sup 1}{sigma}, {nu}'' = 0) + O({sup 1}D) {yields} CO{sub 2}({sup 1}{sigma}{sub g}{sup +}), O({sup 1}D) + CO{sub 2} {yields} O({sup 3}P) + CO{sub 2} et CO{sub 3}, CO(X{sup 1}{sigma}, {nu}'' = 1,2) + CO{sub 2} {yields} CO

  3. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  4. Ocean color remote sensing using polarization properties of reflected sunlight

    Science.gov (United States)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  5. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation.

    Science.gov (United States)

    de Melo da Silva, Lucas; Pereira Cavalcante, Rodrigo; Fabbro Cunha, Rebeca; Gozzi, Fábio; Falcao Dantas, Renato; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2016-12-15

    This study employed direct UV-ABC photolysis and the UV-ABC/H 2 O 2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 2 3 factorial design with added center point was used to evaluate the effect of three independent variables-namely, H 2 O 2 concentration ([H 2 O 2 ]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H 2 O 2 photolysis during UV-ABC/H 2 O 2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 10 4 J s -1 ) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and R adj = 0.9921 for TA degradation and R = 0.9828 and R adj = 0.9570 for H 2 O 2 photolysis. The most efficient combination of variables was [H 2 O 2 ] = 255 mg L -1 and [TA] = 25 mg L -1 , resulting in 100% TA degradation and 98.87% H 2 O 2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO ● was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 10 10 M -1 s -1 in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H 2 O 2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H 2 O 2 processes were proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The role of spin-orbit coupling in the photolysis of methylcobalamin

    Energy Technology Data Exchange (ETDEWEB)

    Andruniów, Tadeusz [Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Lodowski, Piotr; Jaworska, Maria [Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice (Poland); Garabato, Brady D. [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Kozlowski, Pawel M., E-mail: pawel@louisville.edu [Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292 (United States); Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk (Poland)

    2016-03-28

    The photolysis of the methylcobalamin cofactor (MeCbl) in its base-off form was investigated by considering the extent of spin-orbit coupling (SOC). Triplet Co–C photodissociation pathways previously invoked at the density functional theory level using Landau-Zener theory were further validated with ab initio calculations that combine SOC based on multi-state second order perturbation theory. It was determined that SOC is feasible between singlet and triplet states at elongated Co–C distances, leading to photodissociation from the state having dominant σ(d{sub z}{sup 2}) character, by either direct coupling with the lowest singlet states or by crossing with SOC mixed triplets.

  7. A new mathematical approximation of sunlight attenuation in rocks for surface luminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Laskaris, Nikolaos, E-mail: nick.laskaris@gmail.com [University of the Aegean, Department of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Avenue, Rhodes 85100 (Greece); Liritzis, Ioannis, E-mail: liritzis@rhodes.aegean.gr [University of the Aegean, Department of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Avenue, Rhodes 85100 (Greece)

    2011-09-15

    The attenuation of sunlight through different rock surfaces and the thermoluminescence (TL) or Optical stimulated luminescence (OSL) residuals clock resetting derived from sunlight induced eviction of electrons from electron traps, is a prerequisite criterion for potential dating. The modeling of change of residual luminescence as a function of two variables, the solar radiation path length (or depth) and exposure time offers further insight into the dating concept. The double exponential function modeling based on the Lambert-Beer law, valid under certain assumptions, constructed by a quasi-manual equation fails to offer a general and statistically sound expression of the best fit for most rock types. A cumulative log-normal distribution fitting provides a most satisfactory mathematical approximation for marbles, marble schists and granites, where absorption coefficient and residual luminescence parameters are defined per each type of rock or marble quarry. The new model is applied on available data and age determination tests. - Highlights: > Study of aattenuation of sunlight through different rock surfaces. > Study of the thermoluminescence (TL) or Optical stimulated luminescence (OSL) residuals as a function of depth. > A Cumulative Log-Normal Distribution fitting provides the most satisfactory modeling for marbles, marble schists and granites. > The new model (Cummulative Log-Norm Fitting) is applied on available data and age determination tests.

  8. A new mathematical approximation of sunlight attenuation in rocks for surface luminescence dating

    International Nuclear Information System (INIS)

    Laskaris, Nikolaos; Liritzis, Ioannis

    2011-01-01

    The attenuation of sunlight through different rock surfaces and the thermoluminescence (TL) or Optical stimulated luminescence (OSL) residuals clock resetting derived from sunlight induced eviction of electrons from electron traps, is a prerequisite criterion for potential dating. The modeling of change of residual luminescence as a function of two variables, the solar radiation path length (or depth) and exposure time offers further insight into the dating concept. The double exponential function modeling based on the Lambert-Beer law, valid under certain assumptions, constructed by a quasi-manual equation fails to offer a general and statistically sound expression of the best fit for most rock types. A cumulative log-normal distribution fitting provides a most satisfactory mathematical approximation for marbles, marble schists and granites, where absorption coefficient and residual luminescence parameters are defined per each type of rock or marble quarry. The new model is applied on available data and age determination tests. - Highlights: → Study of aattenuation of sunlight through different rock surfaces. → Study of the thermoluminescence (TL) or Optical stimulated luminescence (OSL) residuals as a function of depth. → A Cumulative Log-Normal Distribution fitting provides the most satisfactory modeling for marbles, marble schists and granites. → The new model (Cummulative Log-Norm Fitting) is applied on available data and age determination tests.

  9. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.

  10. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  11. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  12. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  13. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  14. IR Laser-Induced Thermolysis and UV Laser-Induced Photolysis of 1,3-Diethyldisiloxane: Chemical Vapour Deposition of Nanotextured Hydridoalkylsilicones

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2001-01-01

    Roč. 11, č. 6 (2001), s. 1557-1562 ISSN 0959-9428 R&D Projects: GA AV ČR IAA4072806 Keywords : thermolysis * UV laser photolysis * composition Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.736, year: 2001

  15. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Directory of Open Access Journals (Sweden)

    Laura Zoratti

    Full Text Available In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L. and the cultivated highbush blueberry (V. corymbosum L..The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness.The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period.Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  16. Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure

    International Nuclear Information System (INIS)

    Huang, Zongyu; Han, Weijia; Chander, D Sathish; Qi, Xiang; Zhang, Han; Tang, Hongli; Ren, Long

    2015-01-01

    We have fabricated a novel sunlight photo-detector based on a MoS 2 /graphene heterostructure. The MoS 2 /graphene heterostructure was prepared by a facile hydrothermal method along with a subsequent annealing process followed by a substrate-induced high selective nucleation and growth mechanism. The microstructures and morphologies of the two-dimensional MoS 2 /graphene heterostructure can be experimentally confirmed by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a UV–vis absorption spectrometer. Photoresponse investigations performed by a photoelectrochemical (PEC) measurement system indicate that the synthesized MoS 2 /graphene heterostructure shows superior photoresponse activities under the illumination of sunlight in contrast with bare MoS 2 and graphene. The improved photoresponsivity can be attributed to the enhanced light absorption, strong light–matter interaction and the extremely efficient charge separation of the heterostructure. The structure and performances of the MoS 2 /graphene heterostructure suggest promising applications in the field of photonics and optoelectronics. (paper)

  17. Selective hydrogen atom abstraction by hydrogen atoms in photolysis and radiolysis of alkane mixtures at 770 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Kinugawa, K.; Eguchi, M.; Guedes, S.M.L.

    1977-01-01

    Selective hydrogen atom abstraction reaction by H atoms, has been found in Isobutane, 2,2,3,3-tetramethylbutane(TMB), cyclopropane matrices besides neopentane matrix. The selective hydrogen atom abstraction reaction in neopentane-isobutane mixture is affected by the difference of kinetic energies of H atoms. The reaction occurs more favorably with decreasing the kinetic energy of H atoms. Competitive reaction between c-C 6 H 12 and Hi for H atoms has been studied in the radiolysis and photolysis of neo-C 5 H 12 HI mixture at 77 K. The rate constants of these reactions in neopentane matrix are quite different from these of thermal H atom reaction, but similar to those of hot H atom reaction. Importance of the selective hydrogen atom abstraction reaction by H atoms is pointed out in the radical formation in the radiolysis of pure TMB at 77 K [pt

  18. Exogenous indirect photoinactivation of bacterial pathogens and indicators in water with natural and synthetic photosensitizers in simulated sunlight with reduced UVB.

    Science.gov (United States)

    Maraccini, P A; Wenk, J; Boehm, A B

    2016-08-01

    To investigate the UVB-independent and exogenous indirect photoinactivation of eight human health-relevant bacterial species in the presence of photosensitizers. Eight bacterial species were exposed to simulated sunlight with greatly reduced UVB light intensity in the presence of three synthetic photosensitizers and two natural photosensitizers. Inactivation curves were fit with shoulder log-linear or first-order kinetic models, from which the presence of a shoulder and magnitude of inactivation rate constants were compared. Eighty-four percent reduction in the UVB light intensity roughly matched a 72-95% reduction in the overall bacterial photoinactivation rate constants in sensitizer-free water. With the UVB light mostly reduced, the exogenous indirect mechanism contribution was evident for most bacteria and photosensitizers tested, although most prominently with the Gram-positive bacteria. Results confirm the importance of UVB light in bacterial photoinactivation and, with the reduction of the UVB light intensity, that the Gram-positive bacteria are more vulnerable to the exogenous indirect mechanism than Gram-negative bacteria. UVB is the most important range of the sunlight spectrum for bacterial photoinactivation. In aquatic environments where photosensitizers are present and there is high UVB light attenuation, UVA and visible wavelengths can contribute to exogenous indirect photoinactivation. © 2016 The Society for Applied Microbiology.

  19. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine.

    Science.gov (United States)

    Song, Jianqiang; Smart, Richard; Wang, Hua; Dambergs, Bob; Sparrow, Angela; Qian, Michael C

    2015-04-15

    The effect of canopy leaf removal and ultraviolet (UV) on Pinot noir grape and wine composition was investigated in this study. Limited basal leaf removal in the fruit zone was conducted, compared to shaded bunches. The UV exposure was controlled using polycarbonate screens to block UV radiation, and acrylic screens to pass the UV. The results showed that bunch sunlight and UV exposure significantly increased the Brix and pH in the grape juice, and increased substantially wine colour density, anthocyanins, total pigment, total phenolics and tannin content. Bunch sunlight and UV exposure affected terpene alcohols, C13-norisprenoids and other volatile composition of the wine differently. Sunlight exposure and UV resulted in increase of nerol, geraniol and citronellol but not linalool. Sunlight exposure slightly increased the concentration of β-ionone, but the increase was not statistically significant for UV treatment. Neither sunlight nor UV treatment showed any impact on the concentration of β-damascenone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An integrated effect of protein intake at breakfast and morning exposure to sunlight on the circadian typology in Japanese infants aged 2-6 years.

    Science.gov (United States)

    Nakade, Miyo; Takeuchi, Hitomi; Taniwaki, Nozomi; Noji, Teruki; Harada, Tetsuo

    2009-09-01

    Tryptophan (Trp) intake at breakfast promotes morning-typed circadian typology and higher sleep quality in Japanese children aged 0-6 yrs (Harada et al., 2007). This effect may be accelerated by morning exposure to sunlight, which has not yet been tested. This study aimed to investigate such an effect in Japanese children. In May, 2006, an integrated questionnaire was administered to 0-6-year-old children attending one of 12 kindergartens. 906 parents answered the questionnaire for their children and themselves (response rate: 67.4%). The integrated questionnaire included the revised version for children of the Morningness-Eveningness (M-E) Questionnaire and questions on sleep, nutritional balance, mental health, and sunlight exposure. Analysis was made on data from 744 children aged 2-6 (385 girls, 359 boys) whose average M-E score was 20.6+/-3.46. Children who had breakfast at regular times tended to be more morning-typed and were less frequently angry (p=0.001) and depressed (p=0.007). Children who had nutritionally well-balanced breakfasts tended to be more morning-typed (pbreakfast might be a strong zeitgeber for circadian oscillators of children, and the morning-type driving effect of protein intake could be accelerated by morning exposure to sunlight.

  1. Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: A study of ex vivo human skin.

    Science.gov (United States)

    Haywood, Rachel

    2006-01-01

    With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.

  2. Photochemistry of CS2/Cl complexes-combined pulse radiolysis-laser flash photolysis studies

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Nakayama, Masayoshi; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Complexes of chlorine atoms and carbon disulfide (CS 2 ) were produced by pulse radiolysis of CS 2 in halocarbons and photochemical reactions were studied by laser flash photolysis. Excitation of CS 2 /Cl complexes resulted in rapid and permanent photobleaching. The photobleaching of CS 2 /Cl complexes is due to intermolecular chlorine atom abstraction in CCl 4 with a quantum yield of 0.04, while that ascribed to hydrogen atom abstraction in 1,2-dichloroethane has a quantum yield of 0.21. The effects of additives are discussed based on the bond dissociation energy

  3. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    Science.gov (United States)

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  4. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Science.gov (United States)

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  5. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    Science.gov (United States)

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  6. Photolysis of Mono- and Dichloramines in UV/Hydrogen Peroxide: Effects on 1,4-Dioxane Removal and Relevance in Water Reuse.

    Science.gov (United States)

    Patton, Samuel; Romano, Mariano; Naddeo, Vincenzo; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    Growing demands and increasing scarcity of fresh water resources necessitate potable water reuse, which has been implemented with the aid of UV-based advanced oxidation processes (UV/AOPs) that remove potentially hazardous trace organic contaminants from reclaimed water. During the potable reuse treatment process, chloramines are added to prevent membrane fouling that are carried over to the UV/AOP, where hydrogen peroxide (H 2 O 2 ) is commonly added. However, the impact of chloramines on the photolysis of H 2 O 2 and the overall performance of the UV/AOP remains unknown. This study investigated the impacts of the photochemistry of monochloramine (NH 2 Cl) and dichloramine (NHCl 2 ) associated with the photolysis of H 2 O 2 on the degradation of 1,4-dioxane (1,4-D), a trace organic contaminant ubiquitous in recycled water. Results indicated that NH 2 Cl and NHCl 2 alone functioned as oxidants upon UV photolysis, which produced HO • and Cl 2 •- as the two primary oxidative radicals. The speciation of chloramines did not have a significant impact on the degradation kinetics. The inclusion of monochloramine in UV/H 2 O 2 greatly decreased 1,4-D removal efficiency. HO • was the major radical in the mixed H 2 O 2 /chloramine system. Results from this study suggest that recognizing the existence of chloramines in UV/H 2 O 2 systems is important for predicting UV/AOP performance in the treatment train of potable reuse.

  7. Magnetic and micellar effects on photoreactions. 1. 13C isotopic enrichment of dibenzyl ketone via photolysis in aqueous detergent solution

    International Nuclear Information System (INIS)

    Turro, N.J.; Chow, M.F.; Chung, C.J.; Kraeutler, B.

    1981-01-01

    The photolysis of dibenzyl ketone (DBK) in homogeneous organic solutions and in micelle-containing detergent solutions has been investigated from the standpoint of determining the extent and location of 13 C enrichment that occurs. In a series of experiments it is established that for incomplete conversions the residual, recovered DBK is enriched in 13 C relative to the initial unphotolyzed DBK. The efficiency of the 13 C/ 12 C separation is shown to be characterized by an isotope enrichment parameter, α, which is independent of the extent of conversion. A combination of mass spectrometry and nuclear magnetic resonance spectroscopy provides support for the primary location of the 13 C enrichment at C-1 (the carbonyl carbon) with a lesser but significant enrichment at C-2 (the methylene carbon). A very small but experimentally distinct enrichment of the aromatic rings is indicated by 13 C NMR analysis. An isomer of DBK, 1-phenyl-4'-methylacetophenone (PMAP) is formed as a minor product of photolysis in micellar solutions. PMAP, like the recovered, residual DBK, is found to be substantially enriched in 13 C relative to the starting DBK. The magnitude of α is found to be significantly influenced by the application of laboratory magnetic fields to the photolysis sample. The latter result, along with the unusually large magnitude of α, suggests that the mechanism involved in isotopic enrichment is not dominated by kinetic mass isotope effects but rather by nuclear magnetic moment and/or magnetic spin isotope effects

  8. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.

    Science.gov (United States)

    Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S

    2015-10-01

    The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.

  9. A comprehensive investigation of tetragonal Gd-doped BiVO{sub 4} with enhanced photocatalytic performance under sun-light

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yangyang; Tan, Guoqiang, E-mail: tan3114@163.com; Dong, Guohua; Ren, Huijun; Xia, Ao

    2016-02-28

    Graphical abstract: - Highlights: • Tetragonal Gd-BiVO{sub 4} with enhanced photocatalytic activity was synthesized. • Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. • GdVO{sub 4} seeds as crystal nucleus dominate the formation of tetragonal Gd-BiVO{sub 4}. • Tetragonal Gd-BiVO{sub 4} exhibits the excellent separation of electrons and holes. • The contribution of high photocatalytic activity under sun-light is from UV-light. - Abstract: Tetragonal Gd-doped BiVO{sub 4} having enhanced photocatalytic activity have been synthesized by a facile microwave hydrothermal method. The structural analysis indicates that Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. The reaction results in precursor solutions imply that tetragonal GdVO{sub 4} seeds as crystal nucleus are the original and determined incentives to force the formation of tetragonal Gd-BiVO{sub 4}. The influences of the surface defect, band structure, and BET surface area on the improved photocatalytic activities of tetragonal Gd-doped BiVO{sub 4} are investigated systematically. The results demonstrate that the more surface oxygen deficiencies as active sites and the excellent mobility and separation of photogenerated electrons and holes are beneficial to the enhancement of the photocatalytic performance of tetragonal Gd-BiVO{sub 4}. The RhB photodegradation experiments indicate that the contribution of high photocatalytic activities under simulated sun-light is mainly from UV-light region due to the tetragonal structure feature. The best photocatalytic performance is obtained for tetragonal 10 at% Gd-BiVO{sub 4}, of which the RhB degradation rate can reach to 96% after 120 min simulated sun-light irradiation. The stable tetragonal Gd-BiVO{sub 4} with efficient mineralization will be a promising photocatalytic material applied in water purification.

  10. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  11. Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation

    Science.gov (United States)

    Rosu, Marcela-Corina; Coros, Maria; Pogacean, Florina; Magerusan, Lidia; Socaci, Crina; Turza, Alexandru; Pruneanu, Stela

    2017-08-01

    The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV-Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.

  12. Genome-Wide Transcriptional Profiles of the Berry Skin of Two Red Grape Cultivars (Vitis vinifera) in Which Anthocyanin Synthesis Is Sunlight-Dependent or -Independent

    Science.gov (United States)

    Guan, Le; Xin, Hai-Ping; Li, Ji-Hu; Li, Shao-Hua

    2014-01-01

    Global gene expression was analyzed in the berry skin of two red grape cultivars, which can (‘Jingyan’) or cannot (‘Jingxiu’) synthesize anthocyanins after sunlight exclusion from fruit set until maturity. Gene transcripts responding to sunlight exclusion in ‘Jingyan’ were less complex than in ‘Jingxiu’; 528 genes were induced and 383 repressed in the former, whereas 2655 genes were induced and 205 suppressed in ‘Jingxiu’. They were regulated either in the same or opposing manner in the two cultivars, or in only one cultivar. In addition to VvUFGT and VvMYBA1, some candidate genes (e.g. AOMT, GST, and ANP) were identified which are probably involved in the differential responses of ‘Jingxiu’ and ‘Jingyan’ to sunlight exclusion. In addition, 26 MYB, 14 bHLH and 23 WD40 genes responded differently to sunlight exclusion in the two cultivars. Interestingly, all of the 189 genes classified as being relevant to ubiquitin-dependent protein degradation were down-regulated by sunlight exclusion in ‘Jingxiu’, but the majority (162) remained unchanged in ‘Jingyan’ berry skin. It would be of interest to determine the precise role of the ubiquitin pathway following sunlight exclusion, particularly the role of COP9 signalosome, cullins, RING-Box 1, and COP1-interacting proteins. Only a few genes in the light signal system were found to be regulated by sunlight exclusion in either or both cultivars. This study provides a valuable overview of the transcriptome changes and gives insight into the genetic background that may be responsible for sunlight-dependent versus -independent anthocyanin biosynthesis in berry skin. PMID:25158067

  13. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun

    2018-05-18

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  14. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun; Shi, Yusuf; Chang, Jian; Li, Renyuan; Ong, Chi Siang; Wang, Peng

    2018-01-01

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  15. DNA fork displacement rates in human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1981-01-01

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 μm/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions. (Auth.)

  16. DNA fork displacement rates in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco (USA). Lab. of Radiobiology)

    1981-11-27

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 ..mu..m/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions.

  17. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    Directory of Open Access Journals (Sweden)

    Hong Sheng

    Full Text Available The bactericidal effect of hydroxyl radical (·OH generated by combination of photolysis of hydrogen peroxide (H2O2 and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2 and ultrasound (power: 30 w, frequency: 1.65 MHz at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  18. Degradation study of pesticides by direct photolysis - Structural characterization and potential toxicity of photo products

    International Nuclear Information System (INIS)

    Rifai, A.

    2013-01-01

    molecules was clarified by the identification of mass-to-charge (m /z) of the pseudo molecular ions obtained using different modes of ionization in mass spectrometry: electronic ionization (EI) and chemical ionization (CI) in GC-MS and electrospray ionization (ESI) in LC-MS. The strategy used for the structural elucidation of degradation products has been very effective; most of the chemical structures of the products formed have been elucidated. A kinetic study was performed to visualize the appearance and disappearance of degradation products during the photolysis and gave us an idea of the rate of disappearance of the parent compound for each pesticide. The results showed that the photolysis méthalochlore, procymidone and boscalid were degraded under UV light after a while releasing degradation products with structures close or different from the parent molecules. While, pyrimethanil presented a high stability during 8 hours of irradiation (remaining amount after irradiation is 60%) and gave degradation products with moderate amounts. Regarding the estimation of the toxicity, most identified degradation products are equivalent or greater than those of the original molecules toxicities. The chemical analysis methods used and the estimated toxicities of the identified degradation products are proven complementary and indispensable for highlighting the presence of other toxic pollutants that emerge in the real environment without control. (author)

  19. Chloride effect on the early photolysis intermediates of a gecko cone-type visual pigment.

    Science.gov (United States)

    Lewis, J W; Liang, J; Ebrey, T G; Sheves, M; Kliger, D S

    1995-05-02

    Nanosecond laser photolysis measurements were conducted on the cone-type visual pigment P521 in digitonin extracts of Tokay gecko (Gekko gekko) retina containing physiological chloride ion levels and also on samples which had been chloride depleted or which contained high levels (4 M) of chloride. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 microseconds following excitation with a pulse of either 532- or 477-nm actinic light. Global analysis showed the kinetic decay data for gecko pigment P521 to be best fit by two exponential processes under all chloride conditions. The initial photoproduct detected had a broad spectrum characteristic of an equilibrated mixture of a Batho P521 intermediate with its blue-shifted intermediate (BSI P521) decay product. The first exponential process was assigned to the decay of this mixture to the Lumi P521 intermediate. The second exponential process was identified as the decay of Lumi P521 to Meta I P521. The initial photoproduct's spectrum exhibited a strong dependence on chloride concentration, indicating that chloride affects the composition of the equilibrated mixture of Batho P521 and BSI P521. These results suggest that the affinity for chloride is reduced approximately 5-fold in the Batho P521 intermediate and approximately 50-fold in the BSI P521 intermediate. Chloride concentration also affects the apparent decay rate of the equilibrated mixture. When the apparent decay rate is corrected for the composition of the equilibrated mixture, a relatively invariant microscopic rate constant is obtained for BSI decay (k = 1/55 ns-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling.

    Science.gov (United States)

    De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2018-04-03

    Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.

  1. Interactions between 9,10-anthraquinone and aromatic amines in homogeneous and micellar media: A laser flash photolysis and magnetic field effect study

    International Nuclear Information System (INIS)

    Chowdhury, Adity; Basu, Samita

    2006-01-01

    The interactions between 9,10-anthraquinone (AQ) and different aromatic amines, N,N-dimethylaniline and 4,4'-bis (dimethylamino) diphenylmethane (DMDPM), have been studied using absorption, steady-state fluorescence, and laser flash photolysis techniques in organic homogeneous and heterogeneous micellar media. In polar organic homogeneous medium, electron transfer (ET) occurs from amines to excited AQ. In micellar medium, similar intermolecular ET is observed. However, in latter medium, ET predominates over hydrogen abstraction from micelles by excited AQ itself. The occurrence of ET has been further supported by the application of an external magnetic field during laser flash photolysis experiments, which modulates the yield of radical ion pairs formed through ET. Another novel feature, which has also been discussed here, is the abnormal behavior of DMDPM in micellar medium pertaining to energy transfer

  2. Patterns and timing of sunlight exposure and risk of basal cell and squamous cell carcinomas of the skin – a case–control study

    International Nuclear Information System (INIS)

    Iannacone, Michelle R; Fenske, Neil A; Rollison, Dana E; Wang, Wei; Stockwell, Heather G; O’Rourke, Kathleen; Giuliano, Anna R; Sondak, Vernon K; Messina, Jane L; Roetzheim, Richard G; Cherpelis, Basil S

    2012-01-01

    Non-melanoma skin cancer (NMSC), comprised of basal (BCC) and squamous (SCC) cell carcinomas, is the most common cancer in Caucasians. Ultraviolet radiation (UVR) exposure is the most important environmental risk factor for NMSC. However, the precise relationship between UVR and the risk of NMSC is complex, and the relationship may differ by skin cancer type. A case–control study was conducted among Florida residents to investigate measures of patterns (intermittent vs. continuous) and timing (childhood vs. adulthood) of sunlight exposure in BCC and SCC. Participants included 218 BCC and 169 SCC cases recruited from a university dermatology clinic and 316 controls with no history of skin or other cancers. A history of blistering sunburn (a measure of intermittent sunlight exposure) was associated with both BCC (OR = 1.96, 95% CI = 1.27-3.03) and SCC (OR = 2.02, 95% CI = 1.22-3.33). Additionally, having a job in the sun for ≥3 months for 10 years or longer (a measure of continuous sunlight exposure) was also associated with both BCC and SCC in our study population. With the exception of younger age at first blistering sunburn, measures of younger age at sunlight exposure tended to be associated with SCC, but not BCC risk. Results from the current study suggest that sunlight exposure is associated with both BCC and SCC risk regardless of the pattern in which the exposure was received (i.e. intermittent vs. continuous). The data also suggest that sunlight exposure at a younger age may be more important for SCC but not BCC, however additional studies are needed to further characterize sunlight exposure-response relationships in different types of NMSC

  3. Synthesis, structure, and sunlight photolysis of benzyl- and tert-butyl-substituted octamethyltitanocene dihydrosulfides

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal; Císařová, I.; Gyepes, R.; Kubišta, Jiří; Pinkas, Jiří; Lamač, Martin; Mach, Karel

    2014-01-01

    Roč. 755, APR 2014 (2014), s. 141-150 ISSN 0022-328X R&D Projects: GA ČR(CZ) GAP207/12/2368; GA ČR GP203/09/P276 Institutional support: RVO:61388955 Keywords : titanium * titanocene * hydrosulphide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  4. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  5. Photochemical reactions of brominated diphenylethers in organic solvents and adsorbed on silicon dioxide in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Palm, W.U.; Kopetzky, R.; Sossinka, W.; Ruck, W. [Univ. of Lueneburg, Environmental Chemistry, Lueneburg (Germany); Zetzsch, C. [Univ. of Bayreuth, Atmos. Chem. Research, Bayreuth, and Fraunhofer-Inst. of Toxicology and Experimental Medicine, Hannover (Germany)

    2004-09-15

    Polybrominated diphenylethers (BDEs) are in use as flame retardants worldwide and are found as xenobiotics in environmental samples. Photolysis by sunlight, one of the potential abiotic degradation pathways, is found to be rapid in laboratory experiments, especially for deca-BDE, the most prominent BDE as compared to commercial penta- and octa-BDEs. Due to the extremely low water solubility of BDEs, these experiments were mostly performed in organic solvents so far, and a few in environmental matrices (sand and soil) and on dry and hydrated quartz glass. However, detailed UV absorption spectra of deca-BDE and debrominated BDEs in the relevant wavelength range above 300 nm have become available only recently, besides the UV maxima of a number of synthesized congeners at shorter wavelengths and an exploratory study from our laboratory. Other important parameters to assess the abiotic degradation in the environment, such as OH-rate constants and photolytic quantum yields of BDEs are not available. Furthermore, analysis of BDEs was mostly performed by GC-MS, and the capability of HPLC with a diode array detector (DAD) has not yet been exploited. This study presents kinetic results on the photolysis of BDEs in tetrahydrofuran (THF) with detailed photolytic pathways for a tetra-BDE (2,2'4,4'-BDE), a hexa-BDE (2,2'4,4',5,5'-BDE) and deca-BDE. Employing HPLC with a diode array detector (DAD) as analytical tool, quantum yields of BDEs with N{sub Br} = 1-10 are determined. Furthermore, the formation of brominated dibenzofurans (BDFs) was investigated. Since the environmental relevance of photolysis experiments in organic solvents is questionable, first results on photolysis of deca-BDE adsorbed on silicon dioxide particles, suspended in water, are presented.

  6. Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)

    Science.gov (United States)

    Clymer, B. D.

    1990-01-01

    A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.

  7. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    Directory of Open Access Journals (Sweden)

    D. H. González Maglio

    2016-01-01

    Full Text Available Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system.

  8. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    Science.gov (United States)

    Paz, M. L.; Leoni, J.

    2016-01-01

    Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system. PMID:28070504

  9. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    Science.gov (United States)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  10. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    Science.gov (United States)

    Zhong, M.; Jang, M.

    2013-08-01

    Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.

  11. Critical Review of rate constants for reacitons of hydrated electrons

    International Nuclear Information System (INIS)

    Buxton, G.V.; Greenstock, C.L.; Phillips Helman, W.; Ross, A.B.

    1988-01-01

    Kinetic data for the radicals Hx and xOH in aqueous solution,and the corresponding radical anions, xO - and e/sub =/, have been critically reviewed. Reactions of the radicals in aqueous solution have been studied by pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes

  12. Knowledge of vitamin D and perceptions and attitudes toward sunlight among Chinese middle-aged and elderly women: a population survey in Hong Kong

    Directory of Open Access Journals (Sweden)

    Lee Ka-Kui

    2006-09-01

    Full Text Available Abstract Background Physical and biological risk factors for vitamin D inadequacy are known; however, cultural- and population-specific behaviours and attitudes that influence these risk factors, particularly among Asian people, are less well documented. To understand more about prevailing attitudes and behaviour toward sunlight and knowledge of vitamin D among a population at greater risk of impaired vitamin D status, poor bone health and osteoporosis, we conducted a telephone interview survey of 547 middle-aged and elderly Chinese women living in Hong Kong. Methods All telephone interviews were conducted using the Computer Assisted Telephone Technique and target respondents were selected by random sampling. Interviews were conducted in Cantonese and eighteen main questions were asked pertaining to personal characteristics, perceptions, attitudes and behaviour toward sunlight, and knowledge about vitamin D. Results The survey results showed that 62.3% (n = 341 did not like going in the sun and 66.7% of respondents spent an average of 6–10 hours indoors, between 6:30 am and 7:00 pm, during weekdays. However, 58% of people thought that they had enough exposure to sunlight. The majority had heard of vitamin D, but knowledge about the role and sources of vitamin D was low. Among those who knew that sunlight was a source of vitamin D, the majority spent less than 1 h in the sun in the past week (76.4% vs 23.6%, 1 h in the sun in the past week, chi-square p Conclusion The survey revealed considerable ignorance and confusion about the role of sunlight in vitamin D production, and the function and sources of vitamin D. Attitudes and behaviour toward sunlight were largely negative and many took measures to avoid sunlight, particularly among younger (middle-aged women who had good awareness of vitamin D.

  13. Patterns and timing of sunlight exposure and risk of basal cell and squamous cell carcinomas of the skin – a case–control study

    Directory of Open Access Journals (Sweden)

    Iannacone Michelle R

    2012-09-01

    Full Text Available Abstract Background Non-melanoma skin cancer (NMSC, comprised of basal (BCC and squamous (SCC cell carcinomas, is the most common cancer in Caucasians. Ultraviolet radiation (UVR exposure is the most important environmental risk factor for NMSC. However, the precise relationship between UVR and the risk of NMSC is complex, and the relationship may differ by skin cancer type. Methods A case–control study was conducted among Florida residents to investigate measures of patterns (intermittent vs. continuous and timing (childhood vs. adulthood of sunlight exposure in BCC and SCC. Participants included 218 BCC and 169 SCC cases recruited from a university dermatology clinic and 316 controls with no history of skin or other cancers. Results A history of blistering sunburn (a measure of intermittent sunlight exposure was associated with both BCC (OR = 1.96, 95% CI = 1.27-3.03 and SCC (OR = 2.02, 95% CI = 1.22-3.33. Additionally, having a job in the sun for ≥3 months for 10 years or longer (a measure of continuous sunlight exposure was also associated with both BCC and SCC in our study population. With the exception of younger age at first blistering sunburn, measures of younger age at sunlight exposure tended to be associated with SCC, but not BCC risk. Conclusions Results from the current study suggest that sunlight exposure is associated with both BCC and SCC risk regardless of the pattern in which the exposure was received (i.e. intermittent vs. continuous. The data also suggest that sunlight exposure at a younger age may be more important for SCC but not BCC, however additional studies are needed to further characterize sunlight exposure-response relationships in different types of NMSC.

  14. Flash photolysis of rhodopsin in the cat retina

    International Nuclear Information System (INIS)

    Ripps, H.; Mehaffey, L.; Siegel, I.M.; Ernst, W.; Kemp, C.M.

    1981-01-01

    The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%

  15. Estudo da degradação do fármaco Nabumetona por fotólise direta Study of Nabumetone degradation through direct photolysis

    Directory of Open Access Journals (Sweden)

    Florangela Maionchi

    2002-03-01

    Full Text Available O presente trabalho teve por objetivo estudar a degradação do fármaco Nabumetona por fotólise direta. Soluções etanólicas de amostras (20 mg/mL foram preparadas e divididas em cubetas de quartzo com tampas de teflon. Estas foram colocadas em uma câmara de fotólise à temperatura de 35ºC. As quantificações das fotodegradações foram analisadas por Cromatografia Líquida de Alta Eficiência (CLAE; após 47 dias de fotólise, a degradação da amostra foi de 67%, após 73 dias 88,5% e após 111 dias 89,5%. Determinações espectrofotométricas (240 a 360 nm foram realizadas após 28, 47 e 73 dias de fotólise. Os fotoprodutos foram separados por CLAE e analisados por Cromatografia Gasosa Acoplada ao Espectro de Massa de Baixa Resolução (CG-EM. A análise em CG-EM da Nabumetona fotolisada durante 111 dias permitiu a sugestão de duas substâncias.The present work aims to study the degradation of Nabumetone through direct photolysis. Solutions of Nabumetone in ethanol (20 mg/mL were prepared and divided in quartz cuvettes with teflon lids. These were placed in the photolysis cabinet at 35ºC. The photodegradation quantifications were analyzed in High Performance Liquid Cromatography (HPLC; after 47 days of photolysis the sample degradation was 67%, after 73 days 88.5% and after 111 days 89.5%. Spectrophotometers determinations (240 to 360 nm were accomplished after 28, 47 and 73 days of photolysis. The photoproducts were separate for HPLC and analyzed by Gas Cromatograph coupled to Mass Spectrometer (GC-MS. The analysis in GC-MS of the Nabumetona photolyseded for 111 days allowed the suggestion of two substances.

  16. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability.

    Science.gov (United States)

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300-1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice.

  17. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  18. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng

    2018-05-01

    Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.

  19. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  20. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira [Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Takano, Yoshinori, E-mail: oba@lowtem.hokudai.ac.jp [Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 (Japan)

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  1. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    International Nuclear Information System (INIS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Takano, Yoshinori

    2016-01-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH 2 DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  2. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    Science.gov (United States)

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prevention of hip fractures by exposure to sunlight and pharmacotherapy in patients with Alzheimer's disease.

    Science.gov (United States)

    Iwamoto, Jun; Sato, Yoshihiro; Tanaka, Kiyoshi; Takeda, Tsuyoshi; Matsumoto, Hideo

    2009-01-01

    Hypovitaminosis D and K due to malnutrition or sunlight deprivation, compensatory hyperparathyroidism, increased bone resorption, low bone mineral density (BMD), and an increased risk of falls may contribute to an increased risk of hip fractures in patients with Alzheimer's disease. The purpose of the present study was to clarify the efficacy of interventions against hip fractures in patients with Alzheimer's disease. With respect to randomized controlled trials (RCTs) regarding Alzheimer's disease and hip fractures, the literature was searched with PubMed. Three RCTs were identified, and the relative risk (RR) and 95% confidence interval (CI) were calculated for individual RCTs. Exposure to sunlight with calcium supplementation, menatetrenone (vitamin K2) plus calcium and vitamin D supplementation, and risedronate plus calcium and vitamin D supplementation improved hypovitaminosis D and hyperparathyroidism, contributing to a reduction in bone resorption. Risedronate itself strongly decreased bone resorption. Menatetrenone also decreased the serum level of undercarboxylated osteocalcin. The three interventions increased metacarpal BMD and reduced the incidence of hip fractures. The respective RRs (95% CI) were 0.22 (0.049-0.999), 0.13 (0.031-0.554), and 0.26 (0.100- 0.690). The present study clarified the efficacy of three interventions, including exposure to sunlight, menatetrenone, and risedronate with calcium and/or vitamin D supplementation against hip fractures in patients with Alzheimer's disease.

  4. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration

    International Nuclear Information System (INIS)

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Zheng, Jisi; Liu, Bo

    2014-01-01

    Highlights: • The removal of naphthalene follows first order kinetics in seawater. • Irradiance and temperature are the most influential factors. • An increase in irradiance can linearly promote photodegradation. • High salinity suppresses the photodegradation of naphthalene. - Abstract: A large amount of oil pollution at sea is produced by the operational discharge of oily wastewater. The removal of polycyclic aromatic hydrocarbons (PAHs) from such sources using UV irradiation has become attractive, yet the photolysis mechanism in seawater has remained unclear. This study examines the photodegradation kinetics of naphthalene in natural seawater through a full factorial design of experiments (DOE). The effects of fluence rate, salinity, temperature and initial concentration are investigated. Results show that fluence rate, temperature and the interaction between temperature and initial concentration are the most influential factors. An increase in fluence rate can linearly promote the photodegradation process. Salinity increasingly impedes the removal of naphthalene because of the existence of free-radical scavengers and photon competitors. The results will help understand the photolysis mechanism of PAHs and develop more effective methods for treating oily seawater generated from offshore industries

  5. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology

    International Nuclear Information System (INIS)

    El-Ghenymy, Abdellatif; Garcia-Segura, Sergi; Rodríguez, Rosa María; Brillas, Enric; El Begrani, Mohamed Soussi; Abdelouahid, Ben Ali

    2012-01-01

    Highlights: ► Quicker degradation of sulfanilic acid by solar photoelectro-Fenton than electro-Fenton. ► The same optimized current density, Fe 2+ content and pH for both processes by CCRD. ► Description of TOC, energy cost and current efficiency by response surface methodology. ► Fe(III)–carboxylate complexes as main by-products after electro-Fenton. ► Photolysis of these complexes by UV irradiation of sunlight in solar photoelectro-Fenton. - Abstract: A central composite rotatable design and response surface methodology were used to optimize the experimental variables of the electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) degradations of 2.5 L of sulfanilic acid solutions in 0.05 M Na 2 SO 4 . Electrolyses were performed with a pre-pilot flow plant containing a Pt/air diffusion reactor generating H 2 O 2 . In SPEF, it was coupled with a solar photoreactor under an UV irradiation intensity of ca. 31 W m −2 . Optimum variables of 100 mA cm −2 , 0.5 mM Fe 2+ and pH 4.0 were determined after 240 min of EF and 120 min of SPEF. Under these conditions, EF gave 47% of mineralization, whereas SPEF was much more powerful yielding 76% mineralization with 275 kWh kg −1 total organic carbon (TOC) energy consumption and 52% current efficiency. Sulfanilic acid decayed at similar rate in both treatments following a pseudo-first-order kinetics. The final solution treated by EF contained a stable mixture of tartaric, acetic, oxalic and oxamic acids, which form Fe(III) complexes that are not attacked by hydroxyl radicals formed from H 2 O 2 and added Fe 2+ . The quick photolysis of these complexes by UV light of sunlight explains the higher oxidation power of SPEF. NH 4 + was the main inorganic nitrogen ion released in both processes.

  6. HISTORY OF SUNLIGHT EXPOSURE IS A RISK FACTOR FOR AGE-RELATED MACULAR DEGENERATION

    NARCIS (Netherlands)

    Schick, T.; Ersoy, L.; Lechanteur, Y.T.; Saksens, N.T.; Hoyng, C.B.; Hollander, A.I. den; Kirchhof, B.; Fauser, S.

    2016-01-01

    PURPOSE: To evaluate effects of current and past sunlight exposure and iris color on early and late age-related macular degeneration (AMD). METHODS: Of 3,701 individuals from the EUGENDA database, 752 (20.3%) showed early AMD, 1,179 (31.9%) late AMD, and 1,770 (47.8%) were controls. Information

  7. Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight

    International Nuclear Information System (INIS)

    Wu, Guodong; Zhai, Wei; Sun, Fengqiang; Chen, Wei; Pan, Zizhao; Li, Weishan

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► PEG was used to electro-deposit Cu 2 O microcrystalline particle films. ► Morphologies of Cu 2 O microcrystals could be controlled by the amount of PEG. ► The films showed regularly varied photocatalytic activities under sunlight. ► The films could be recycled and showed stable activities. -- Abstract: Morphology-controlled Cu 2 O microcrystalline particle films had been successfully electrodeposited on tin-doped indium oxide glass substrates in CuSO 4 solutions containing different amounts of polyethylene glycol (PEG) additives. With an increase of PEG, microcrystals gradually changed from irregular shapes to cubes, octahedrons, and spherical shapes. Sizes increasingly became smaller with an increase of PEG under the same deposition time. These films had been first used as recyclable photocatalysts and showed excellent and photocatalytic activities in photodegradation of methylene blue (MB) under sunlight. Activities were regularly varied relative to the morphologies of films controlled by the amount of PEG and could be further enhanced by adding a little amount of hydrogen peroxide in the MB solution. The method for controllable preparation of Cu 2 O microcrystals with photocatalytic activities was simple and inexpensive. The as-prepared particle films could also be used in photodegradation of many other pollutants under sunlight.

  8. Sunlight Modulates Fruit Metabolic Profile and Shapes the Spatial Pattern of Compound Accumulation within the Grape Cluster.

    Science.gov (United States)

    Reshef, Noam; Walbaum, Natasha; Agam, Nurit; Fait, Aaron

    2017-01-01

    Vineyards are characterized by their large spatial variability of solar irradiance (SI) and temperature, known to effectively modulate grape metabolism. To explore the role of sunlight in shaping fruit composition and cluster uniformity, we studied the spatial pattern of incoming irradiance, fruit temperature and metabolic profile within individual grape clusters under three levels of sunlight exposure. The experiment was conducted in a vineyard of Cabernet Sauvignon cv. located in the Negev Highlands, Israel, where excess SI and midday temperatures are known to degrade grape quality. Filtering SI lowered the surface temperature of exposed fruits and increased the uniformity of irradiance and temperature in the cluster zone. SI affected the overall levels and patterns of accumulation of sugars, organic acids, amino acids and phenylpropanoids, across the grape cluster. Increased exposure to sunlight was associated with lower accumulation levels of malate, aspartate, and maleate but with higher levels of valine, leucine, and serine, in addition to the stress-related proline and GABA. Flavan-3-ols metabolites showed a negative response to SI, whereas flavonols were highly induced. The overall levels of anthocyanins decreased with increased sunlight exposure; however, a hierarchical cluster analysis revealed that the members of this family were grouped into three distinct accumulation patterns, with malvidin anthocyanins and cyanidin-glucoside showing contrasting trends. The flavonol-glucosides, quercetin and kaempferol, exhibited a logarithmic response to SI, leading to improved cluster uniformity under high-light conditions. Comparing the within-cluster variability of metabolite accumulation highlighted the stability of sugars, flavan-3-ols, and cinnamic acid metabolites to SI, in contrast to the plasticity of flavonols. A correlation-based network analysis revealed that extended exposure to SI modified metabolic coordination, increasing the number of negative

  9. Coupled optic-thermodynamic analysis of a novel wireless power transfer system using concentrated sunlight for space applications

    International Nuclear Information System (INIS)

    Zhong, Ming-Liang; Li, Yun-Ze; Mao, Yu-Feng; Liang, Yi-Hao; Liu, Jia

    2017-01-01

    Highlights: • A novel space wireless power transfer system is proposed. • Concentrated sunlight is used as the medium to avoid multiple conversions. • Fresnel lens and optical fiber bundle make the system compact and space-qualified. • Coupled optic-thermodynamic model is developed to analyze link efficiencies. • End-to-end efficiency achieved is as twice as that of microwave or laser system. - Abstract: The energy generation and supply for in-orbit spacecraft have become an urgent problem concerning efficient and economical utilization of spacecraft formation flying. To fill the gap between the requirement of inter-spacecraft energy transfer and the development of wireless power transfer, this paper presents a novel wireless power transfer system whose transmission medium is concentrated sunlight. The system concentrates sunlight using a Fresnel lens, and changes the direction of concentrated sunlight beam with optical fibers. The light energy is converted to thermal form by a heat collector, and then it is utilized to generate electricity by a Stirling engine integrated with linear alternator. Equipments employed on fractionated spacecraft shall be supported by this electric energy. A coupled optic-thermodynamic model was developed to analyze system link efficiencies. This system offers characteristics such as high flexibility, relatively low cost for launch and maintenance, and most importantly, high end-to-end efficiency. Simulation results show that the geometric concentration ratio and the temperature ratio of expansion and compression spaces are two key parameters of this system. Output power of 234.3 W was achieved on the distance of 100 m, and the end-to-end efficiency of the system was above 20%.

  10. A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton

    OpenAIRE

    Brillas, Enric

    2014-01-01

    This paper presents a review on emerging electrochemical advanced oxidation processes (EAOPs) such as UV photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) in which the irradiation of the effluent with UV light and sunlight, respectively, causes a synergistic effect on the degradation process of organic pollutants by the formation of more •OH and/or the photolysis of complexes of Fe(III) with generated carboxylic acids. Fundamentals of these EAOPs are explained to clarify their pe...

  11. Assignment and analysis of the A3Πi-X3Σ- transition of the CCO molecule. Formation and disappearance of the CCO's X3Σ- state during flash photolysis of the carbon suboxide

    International Nuclear Information System (INIS)

    Devillers, Claude

    1971-01-01

    As the C 2 O radical appeared to be the necessary intermediate compound which could lead from atomic carbon to carbon suboxide by a chain of elementary reactions for the study of the effect of radiations on CO, this research thesis, after a recall on the nature of primary compounds of carbon suboxide photolysis, presents experimental techniques aimed at the investigation of C 2 O: flash photolysis to observe it with low resolution, experimental set-up to record its spectrum with a high resolution, experimental set-up to observe it by pulse radiolysis of carbon oxide. The author reports the identification and analysis of the C 2 O spectrum, and discusses the formation and disappearance of the CCO's X 3 Σ - state with or without the presence of sensors during flash photolysis of the carbon suboxide [fr

  12. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  13. Effects of UV, sunlight and X-ray radiation on quiescent human cells in culture

    International Nuclear Information System (INIS)

    Kantor, G.J.

    1986-01-01

    Nondividing human diploid fibroblasts (HDF) in culture have been used to study the effect on cell lethality of ultraviolet light, natural sunlight and X-rays. A lethal effect is defined as cellular degeneration, loss from the culture and inability to exclude vital strains. Far- and mid-UV have a readily observable lethal effect (cell loss), with DNA and DNA damage as the critical target and critical damage respectively. In part, natural sunlight kills cells by a similar mechanism but has an additional lethal effect at longer exposure times. This additional effect is expressed by the retention of the dead cells in culture, in contrast to the UV-induced promotion of cell degeneration and loss. Relatively large doses of X-rays that destroy proliferative capacity, have no detectable lethal effect on the maintenance of non-dividing cells. The biological response of nondividing HDF to radiations from different parts of the electromagnetic spectrum is dissimilar. (author)

  14. Investigation of molecular mechanisms in photodynamic action and radiobiology with nanosecond flash photolysis and pulse radiolysis. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Grossweiner, L.I.

    1975-01-01

    Initial mechanisms in the UV photooxidation of aromatic amino acids are being investigated with laser flash photolysis at 265 nm in connection with enzyme inactivation. Aqueous tryptophan (Trp) is photoionized by an efficient monophotonic process, followed by a hitherto unreported pseudo-first order recombination competing with bimolecular e - /sub aq/ decay and electron scavengers. Measurements of the photoionization quantum efficiency, the aromatic radical extinction coefficients, and the electron decay kinetics are reported. The flash photolysis of N-formylkynurenine (FK) has been studied in connection with its role in ''internal'' photodynamic action in bovine carbonic anhydrase (BCA). The triplet state of FK oxidizes Trp to the radical formed also by UV photolysis, leading to the FK semiquinone which reacts with oxygen to produce O 2 - . The same FK semiquinone species is formed by radiolytic reduction by e - /sub aq/ and CO 2 - . A parallel radiolysis study on BCA using radical anions as probes of specific residues has shown that the zinc atom protects against the inactivating attack of e - /sub aq/ and CO 2 - . Evidence for sensitive aromatic residues in BCA has been found with this technique. Photodynamic damage to biological membranes is being studied with spin label ESR methods. New work is reported on damage to unsaturated lipids sensitized by Eosin based on changes in the temperature-dependence of the spin label rotational correlation time. Preliminary results with diploid yeast membranes (Saccharomyces cerevisiae) show a loosening of the structure accompanying photodynamic inactivation. (U.S.)

  15. Investigations on the photoelectrochemical decomposition of water using solar radiation (photolysis). Final report. Untersuchung zur photoelektrochemischen Wasserzersetzung mit Hilfe von Sonnenenergie (Photolyse). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R N

    1985-01-01

    Laboratory experiments were carried out on illuminated TiO/sub 2/-electrodes to examine the possibility of conversion and storage of solar radiation in a chemical system especially as hydrogen from the photolysis of water. Methods of preparation of new photosensitive semiconducting electrodes were studied. For the preparation of the electrodes various technique of vapour deposition and surface treatment including ion implantation were employed. The thin-layered electrodes were characterized by absorption spectroscopy and by electrochemical methods. The results of the investigations are published in 29 original contributions quoted as references and in 3 PhD thesis of co-workers. Using solar radiation only small yields of hydrogen were obtained in the photolysis of water on TiO/sub 2/ electrodes. Nevertheless it is concluded that photoelectrochemistry possesses a high potential in photocatalysis and in investigations of photooxidation processes occurring in the atmosphere. (orig.) With 36 refs., 2 tabs., 56 figs.

  16. Dose-Response Effect of Sunlight on Vitamin D2 Production in Agaricus bisporus Mushrooms

    DEFF Research Database (Denmark)

    Urbain, Paul; Jakobsen, Jette

    2015-01-01

    The dose response effect of UV-B irradiation from sunlight on vitamin D2 content of sliced Agaricus bisporus (white button mushroom) during the process of sun-drying was investigated.Real-time UV-B and UV-A data were obtained using a high-performance spectroradiometer. During the first hour...

  17. Selective hydrogen atom abstraction by hydrogen atoms in photolysis of cyclohexane-normal pentane mixtures at 77 K

    International Nuclear Information System (INIS)

    Miyazaky, T.; Guedes, S.M.L.; Andrade e Silva, L.G. de; Fernandes, L.

    1977-01-01

    The reaction of H atoms, produced by the photolysis of HI, has been studied in c-C 6 H 12 -n-C 5 H 12 mixtures at 77K. H atoms in c-C 6 H 12 matrix react more effectively with solute n-C 5 H 12 than solvent c-C 6 H 12 , while H atoms in n-C 5 H 12 matrix react more effectively with solute c-C 6 H 12 than solvent n-C 5 H 12 [pt

  18. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.

    Science.gov (United States)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-05-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.

  19. Characterization of reactive intermediates in laser photolysis of nucleoside using of sodium salt anthraquinone-2-sulfonic acid as photosensitizer

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizhen; Wang Wenfeng; Han Zhenhui; Yao Side; Lin Nianyun

    1999-01-01

    The interaction of triplet state of sodium salt of anthraquinone-2-sulfonic acid (AQS) with nucleosides has been investigated in CH 3 CN using KrF(248 nm) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet AQS and nucleoside demonstrated that the primary ionic radical pair, radical cation of nucleosides and radical anion of AQS has been detected simultaneously for the first time

  20. Sunlight exposure and sun sensitivity associated with disability progression in multiple sclerosis.

    Science.gov (United States)

    D'hooghe, M B; Haentjens, P; Nagels, G; Garmyn, M; De Keyser, J

    2012-04-01

    Sunlight and vitamin D have been inversely associated with the risk of multiple sclerosis (MS). We investigated sunlight exposure and sun sensitivity in relation to disability progression in MS. We conducted a survey among persons with MS, registered by the Flemish MS society, Belgium, and stratified data according to relapsing-onset and progressive-onset MS. We used Kaplan-Meier survival and Cox proportional hazard regression analyses with time to Expanded Disability Status Scale (EDSS) 6 as outcome measure. Hazard ratios for the time from onset and from birth were calculated for the potentially predictive variables, adjusting for age at onset, gender and immunomodulatory treatment. 704 (51.3%) of the 1372 respondents had reached EDSS 6. In relapsing-onset MS, respondents reporting equal or higher levels of sun exposure than persons of the same age in the last 10 years had a decreased risk of reaching EDSS 6. In progressive-onset MS, increased sun sensitivity was associated with an increased hazard of reaching EDSS 6. The association of higher sun exposure with a better outcome in relapsing-onset MS may be explained by either a protective effect or reverse causality. Mechanisms underlying sun sensitivity might influence progression in progressive-onset MS.

  1. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    Science.gov (United States)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  2. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  3. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  4. Effect of solution temperature, light intensity and light in combination with sunlight using mirror duct on growth of leaf lettuce (Lactuca savtiva L. cv. 'Greenwave')

    International Nuclear Information System (INIS)

    Shimizu, H.; Kushida, M.; Fujinuma, W.; Sekine, M.; Kaiho, K.; Arai, H.; Shibusawa, S.

    2004-01-01

    Leaf lettuce crops (Lactuca sativa L. cv. 'Greenwave') were grown in a plant production system using a Mirror Duct which intensified sunlight and transferred it to the inside of buildings. This system was expected to reduce the operational energy and lighting cost. The experiments were conducted under four photosynthetic photon flux densities (PPF) of 140,160, 180, and 200 micro mol mE-2 sE-1, in two light conditions, fluorescent light only and fluorescent light plus sunlight transferred with the Mirror Duct, and were repeated five times in total from August 2002 to July 2003. Five different solution temperatures were finally obtained through all the experiments due to temperature changes inside the experiment facility. Variance was analyzed to estimate the effect of these environmental factors on the growth of leaf lettuce. It was found that the fresh weight of leaf lettuce increased as PPF increased and the rate of increase of weight was 0.6 to 1.0 g per unit PPF in both 17.4 deg C and 23.5 deg C solution temperatures; the solution temperature had a significant effect upon the fresh weight; and a difference in fresh weight at harvest of between 40 and 60 g was observed between 17.4 deg C and 23.5 deg C solution temperatures. The light containing 10% sunlight was not effective for increasing fresh weight at harvest compared to the fluorescent lamp

  5. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  6. Seasonal and Water Column Trends of the Relative Role of Nitrate and Nitrite as ·OH Sources in Surface Waters

    International Nuclear Information System (INIS)

    Vione, D.; Minero, C.; Maurino, V.; Pelizzetti, E.

    2007-01-01

    Based on literature data of sunlight spectrum, photolysis quantum yields, and absorption spectra, the relative role of nitrite and nitrate as ·OH sources in surface waters was assessed, and its dependence on the season and the depth of the water column studied. In the majority of surface water samples (river, lake and seawater) nitrite is expected to play a more important role as ·OH source compared to nitrate, in spite of the usually lower [NO 2 - ] values. Interestingly, under the hypothesis of a constant ratio of the concentrations of nitrate and nitrite (to be corrected later on for the actual concentration ratio in a given sample), the relative role of nitrite compared to nitrate would be minimum in summer, at noon, in the surface layer of natural waters. Any decrease in the sunlight intensity that can be experienced in the natural environment (different season than summer, water column absorption, time of the day other than the solar noon), with its associated influence on the sunlight spectrum, would increase the relative role of nitrite compared to nitrate

  7. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2016-05-01

    The degradation of 4-chloro 2-aminophenol (4C2AP), an acute toxic organic compound, has been studied using different approaches based on the hydrodynamic cavitation (HC) with orifice plate as cavitating device, photolysis (UV) and ozonation (O3). The dependency of extent of degradation on operating parameters like operating pressure (2-5 bar), initial pH (3-8) and temperature (30-38 °C) have been established initially to maximize the efficacy of hydrodynamic cavitation. Subsequently the degradation has been studied using combined treatment strategies as HC+UV, HC+O3, UV+O3 and HC+UV+O3 at the established optimum parameters of operating temperature as 30 °C, initial pH of 6 and inlet pressure of 4 bar. The maximum extent of degradation as 96.85% and 73.6% reduction in TOC has been obtained using hydrodynamic cavitation in combination with UV photolysis and ozonation under the optimized operating conditions. The degradation products of 4C2AP have been identified using GC-MS. The present work has clearly established the efficacy of combined treatment approach (HC+UV+O3) for the removal of organic pollutant for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Plant Leaf Imaging using Time of Flight Camera under Sunlight, Shadow and Room Conditions

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Foix, Sergi; Alenya, Guillem

    2012-01-01

    In this article, we analyze the effects of ambient light on Time of Flight (ToF) depth imaging for a plant's leaf in sunlight, shadow and room conditions. ToF imaging is sensitive to ambient light and we try to find the best possible integration times (IT) for each condition. This is important in...

  9. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Oh, Seung Jin; Ng, Kim Choon

    2018-01-01

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  10. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system

    KAUST Repository

    Burhan, Muhammad

    2018-03-22

    Solar energy being intermittent in nature, can provide a sustainable, steady and high density energy source when converted into electrolytic hydrogen. However, in current photovoltaic market trend with 99% conventional single junction PV panels, this cannot be achieved efficiently and economically. The advent of the multi-junction solar cells (MJCs), with cell-efficiency exceeding 46%, has yet to receive wide spread acceptance in the current PV market in form of concentrated photovoltaic (CPV) system, because of its system design complexity, limiting its application scope and customers. The objective of this paper is to develop a low cost compact CPV system that will not only eliminate its application and installation related restrictions but it is also introducing a highly efficient and sustainable photovoltaic system for common consumer, to convert intermittent sunlight into green hydrogen. The developed CPV system negates the common conviction by showing two times more power output than the flat plate PV, in tropical region. In addition, sunlight to hydrogen conversion efficiency of 18% is recorded for CPV, which is two times higher than alone electricity production efficiency of flat plate PV.

  11. Converting sunlight into red light in fluorosilicate glass for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Chengguo, E-mail: mingchengguo1978@163.com [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Song, Feng [Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); Ren, Xiaobin [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Yuan, Fengying; Qin, Yueting [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); An, Liqun; Cai, Yuanxue [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China)

    2017-03-15

    Fluorosilicate glass was prepared by high-temperature melting method to explore highly efficient luminescence materials for amorphous silicon solar cells. Absorption, excitation and emission spectra of the glass were measured. The optical characters of the glass were discussed in details. The glass can efficiently convert sunlight into red light. Our glass can be applied to amorphous silicon solar cells as a converter of solar spectrum.

  12. The energy dependence of selective hydrogen atom abstraction by H(D) atoms in the photolysis of neopentane - ethane mixtures at 77 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Fueki, K.

    1980-01-01

    Selective hydrogen - atom - abstraction reaction by H or D atom has been studied in a neo C 5 H 12 - C 2 H 6 (less than 1 mol %) mixture at 77 K by ESR spectroscopy. The H (or D) atom produced by the photolysis of HI (or DI) reacts with neo - C 2 H 12 and C 2 H 6 to form neo - C 5 H 11 and C 2 H 5 radicals. In order to obtain H atoms with different kinetic energies, the photolysis was performed with different lights of 313, 254 and 229 nm. The selective formation of the C 2 H 5 radical by the reaction of the H (or D) atom with C 2 H 6 becomes more effective with the decrease in the energy of the H (or D) atom. The formation of the neo - C 5 H 11 radical by the reaction of the H (or D) atom with neo - C 2 H 12 becomes more effective with the increase in the energy of the H (or D) atom. (A.R.H.) [pt

  13. Fabrication of Heterostructured g-C{sub 3}N{sub 4}/Ag-TiO{sub 2} Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO{sub 2} Under Simulated Sunlight Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hailong [School of Energy Science and Engineering, Central South University, Changsha, 410083 (China); Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Gao, Yan; Wu, Xianying [School of Energy Science and Engineering, Central South University, Changsha, 410083 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2017-04-30

    Highlights: • Combination of g-C{sub 3}N{sub 4} and Ag-TiO{sub 2} resulted in significant synergy for CO{sub 2} reduction. • The optimal electron consumption rate for CN/AgTi was 12.7 times higher than that for TiO{sub 2}. • CN/AgTi was superior than g-C{sub 3}N{sub 4} and Ag-TiO{sub 2} in use of sunlight for CO{sub 2} conversion. - Abstract: Heterostructured g-C{sub 3}N{sub 4}/Ag-TiO{sub 2} (CN/AgTi) hybrid catalysts were fabricated through a facile solvent evaporation followed by a calcination process, using graphitic carbon nitride (g-C{sub 3}N{sub 4}) and Ag-TiO{sub 2} (AgTi) as precursors. The phase compositions, optical properties, and morphologies of the catalysts were systematically characterized. The heterostructured combination of g-C{sub 3}N{sub 4}, titania (TiO{sub 2}) and silver nanoparticles (Ag NPs) resulted in significant synergy for catalytic conversion of CO{sub 2} in the presence of water vapor under simulated sunlight irradiation. The optimal CN/AgTi composite with a g-C{sub 3}N{sub 4} to AgTi mass ratio of 8% exhibited the maximum CO{sub 2} photoreduction activity, achieving a CO{sub 2} conversion of 47 μmol, CH{sub 4} yield of 28 μmol, and CO yield of 19 μmol per gram of catalyst during a 3 h simulated sunlight irradiation. Under the experimental conditions, the rate of electron consumption was calculated to be 87.3 μmol/g·h, which was 12.7 times, 7.9 times, and 2.0 times higher than those for TiO{sub 2}, g-C{sub 3}N{sub 4} and AgTi, respectively. The combination of g-C{sub 3}N{sub 4} and AgTi resulted in more sunlight harvesting for electron and hole generations. Photoinduced electrons transferred through the heterjunction between g-C{sub 3}N{sub 4} and TiO{sub 2}, and further from TiO{sub 2} to Ag NPs with lower Fermi level greatly suppressed the recombination of electron-hole pairs, and hence resulted in electron accumulation on Ag NPs deposited on the TiO{sub 2} surface in the CN/AgTi. Abundant electrons accumulated on the Ag

  14. Photolysis frequency measurement techniques: results of a comparison within the ACCENT project

    Directory of Open Access Journals (Sweden)

    K. C. Clemitshaw

    2008-09-01

    Full Text Available An intercomparison of different radiometric techniques measuring atmospheric photolysis frequencies j(NO2, j(HCHO and j(O1D was carried out in a two-week field campaign in June 2005 at Jülich, Germany. Three double-monochromator based spectroradiometers (DM-SR, three single-monochromator based spectroradiometers with diode-array detectors (SM-SR and seventeen filter radiometers (FR (ten j(NO2-FR, seven j(O1D-FR took part in this comparison. For j(NO2, all spectroradiometer results agreed within ±3%. For j(HCHO, agreement was slightly poorer between −8% and +4% of the DM-SR reference result. For the SM-SR deviations were explained by poorer spectral resolutions and lower accuracies caused by decreased sensitivities of the photodiode arrays in a wavelength range below 350 nm. For j(O1D, the results were more complex within +8% and −4% with increasing deviations towards larger solar zenith angles for the SM-SR. The direction and the magnitude of the deviations were dependent on the technique of background determination. All j(NO2-FR showed good linearity with single calibration factors being sufficient to convert from output voltages to j(NO2. Measurements were feasible until sunset and comparison with previous calibrations showed good long-term stability. For the j(O1D-FR, conversion from output voltages to j(O1D needed calibration factors and correction functions considering the influences of total ozone column and elevation of the sun. All instruments showed good linearity at photolysis frequencies exceeding about 10% of maximum values. At larger solar zenith angles, the agreement was non-uniform with deviations explainable by insufficient correction functions. Comparison with previous calibrations for some j(O1D-FR indicated

  15. Relationship between the NO2 photolysis frequency and the solar global irradiance

    Directory of Open Access Journals (Sweden)

    S. Fan

    2009-11-01

    Full Text Available Representative values of the atmospheric NO2 photolysis frequency j(NO2 are required for the adequate calculation and interpretation of NO and NO2 concentrations and exchange fluxes near the surface. Direct measurements of j(NO2 at ground level are often not available in field studies. In most cases, modeling approaches involving complex radiative transfer calculations are used to estimate j(NO2 and other photolysis frequencies for air chemistry studies. However, important input parameters for accurate modeling are often missing, most importantly with regard to the radiative effects of clouds. On the other hand, solar global irradiance ("global radiation", G is nowadays measured as a standard parameter in most field experiments and in many meteorological observation networks around the world. Previous studies mainly reported linear relationships between j(NO2 and G. We have measured j(NO2 using spectro- or filter radiometers and G using pyranometers side-by-side at several field sites. Our results cover a solar zenith angle range of 0–90°, and are based on nine field campaigns in temperate, subtropical and tropical environments during the period 1994–2008. We show that a second-order polynomial function (intercept = 0: j(NO2=(1+α× (B1×G+B2×G2, with α defined as the site-dependent UV-A surface albedo and the polynomial coefficients: B1=(1.47± 0.03×10-5 W−1 m2 s−1 and B2=(-4.84±0.31×10-9 W−2 m4 s−1 can be used to estimate ground-level j(NO2 directly from G, independent of solar zenith angle under all atmospheric conditions. The absolute j(NO2 residual of the empirical function is ±6×10-4 s−1(2σ. The relationship is valid for sites below 800 m a.s.l. and with low surface albedo (α<0.2. It is not valid in high mountains, above snow or ice and sandy or dry soil surfaces.

  16. Concentration of sunlight to solar-surface levels using non-imaging optics

    Science.gov (United States)

    Gleckman, Philip; O'Gallagher, Joseph; Winston, Roland

    1989-05-01

    An account is given of the design and operational principles of a solar concentrator that employs nonimaging optics to achieve a solar flux equal to 56,000 times that of ambient sunlight, yielding temperatures comparable to, and with further development of the device, exceeding those of the solar surface. In this scheme, a parabolic mirror primary concentrator is followed by a secondary concentrator, designed according to the edge-ray method, which is filled with a transparent oil. The device may be used in materials-processing, waste-disposal, and solar-pumped laser applications.

  17. Session 6: photo-catalytic degradation of Toluene using sunlight-type excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerte, A.; Hernandez-Alonso, M.D.; Martinez-Arias, A.; Conesa, J.C.; Soria, J.; Fernandez-Garcia, M. [Instituto de Catalisis y Petroleoquimica, CSIC, -Madrid (Spain)

    2004-07-01

    In this report we investigate the doping of anatase-TiO{sub 2} with nine different cations. It is shown that W can be one of the best options for toluene photo-degradation using sunlight-type excitation. Thermal and hydrothermal treatments were applied to amorphous Ti-W mixed oxide precursors with varying W:Ti atomic ratio for obtaining nano-structured particles having different properties. All Ti-W precursors were prepared by a microemulsion method and the mixed oxides characterized by using XRD, XPS, as well as XAFS, Raman and UV-Vis Spectroscopies. (authors)

  18. Sunlight and Vitamin D

    Science.gov (United States)

    Wacker, Matthias; Holick, Michael F.

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences. PMID:24494042

  19. 248-NM Laser Photolysis of CHBr3/O-Atom Mixtures: Kinetic Evidence for UV CO(A)-Chemiluminescence in the Reaction of Methylidyne Radicals With Atomic Oxygen

    National Research Council Canada - National Science Library

    Vaghjiani, Ghanshyam L

    2005-01-01

    4TH Positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr3 vapor in an excess of O-atoms...

  20. Long-term decline of the canopy-forming algae Gelidium corneum, associated to extreme wave events and reduced sunlight hours, in the southeastern Bay of Biscay

    Science.gov (United States)

    Borja, Angel; Chust, Guillem; Fontán, Almudena; Garmendia, Joxe Mikel; Uyarra, María C.

    2018-05-01

    Canopy-forming macroalgae are experiencing large biogeographical shifts due to climate change. One of them (Gelidium corneum) has shown a dramatic decline in biomass in northern Spain, in the past 20 years. We investigate here two most plausible hypotheses to explain its decline: (i) a combination of increasing wave energy and decrease of irradiance in the growth season; and (ii) a combination of increasing light in summer and decreasing nutrient concentration. Using a dataset of biomass and environmental variables (1993-2016), in three sectors and three water depths, we have determined that the variables explaining more biomass variability were: suspended solids, nitrate, sunlight hours, significant wave height threshold exceedances (Hs5m), temperature, silicate, and nitrite. When undertaking multiple regression analyses for the whole depth range, only the model including sunlight hours with Hs5m was selected, being highly significant (p algae from the substratum during the growth season. The decline rate in biomass with time, at each sector and depth, was highly correlated (p < 0.001) to the wave energy flux received at each depth, which was higher at 5 m in all sectors, decreasing with depth. In turn, nutrients, instead of decreasing, have increased, and only nitrate presented a significant negative correlation with G. corneum biomass, which was not significant after detrending. The significant (p = 0.001) increase in rainfall over the studied period can explain the increase of those nutrients. Hence, we question whether the effect of nutrients is such, as already described. The most likely factor explaining the decline of this macroalga was the combination of sunlight hours decrease and Hs5m increase.

  1. The influence of different irradiation sources on the treatment of nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Miguel [Universidad de Los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Timokhin, Vitaliy [Department of Physical Chemistry, Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 3a Naukova Street, 79053 Lviv (Ukraine); Michl, Florian; Contreras, Sandra; Gimenez, Jaime; Esplugas, Santiago [Department d' Enginyeria Quimica i Metallurgia, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2002-11-15

    This work describes the influence of light on the treatment of nitrobenzene (NB) in aqueous solutions. Three different experimental devices were used to perform a detailed study: a photoreactor with four low-pressure mercury lamps ({lambda}=253.7nm), a tubular photoreactor with a polychromatic Xe lamp (290<{lambda}<1200nm), and finally a solar reactor (sunlight). TOC analyses were performed in order to monitor and compare the extent of these processes, each of them being performed with one of the three different sources of light. The influence of Fe(II), Fe(III), H{sub 2}O{sub 2}, and light on the mineralization of NB in aqueous solutions was also studied. The successful use of sunlight as a source of energy and its effectiveness regarding Fenton processes as well as direct photolysis in the treatment of NB are presented.

  2. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    Science.gov (United States)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  3. Meteorological Reference Years of Daily Mean Temperature during the Sunlight Time; Anos Tipos de Temperaturas Medias Diarias durante las Horas de Sol

    Energy Technology Data Exchange (ETDEWEB)

    Marchante Jimenez, M.; Ramirez Santigosa, L.N.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.

    2002-07-01

    In this work the characterization of the daily mean temperature during the sunlight time has been analyzed. An algorithm for the hourly series generation from extreme daily values has been applied to evaluate the daily mean temperature during the sunlight time. A generic algorithm has been enounced as a function of the sunrise time. This algorithm allows taking into account the fractions related to the sunrise and sunset hours. This methodology has been applied in data from 45 Spanish stations, uniformly distributed in the Iberian Peninsula. Data for a period of 14 years has been used in most of locations, and once the interest variable has been calculated, the meteorological reference year of the daily mean temperature during the sunlight time has been evaluated in each stations. The next step is the evaluation of the daily mean temperature during the sunlight time in any point into the zone of evaluation, not only in the measured stations. >From the result data in each measured station, an geographic information system has been used in order to calculate the interpolation, obtaining maps with a data each 5 km for each of the 365 days of the year. Then, this results can be superposed with the solar radiation evaluation obtaining the input data for the sizing of the photovoltaic grid connected system in any point of the Spanish geography. (Author) 8 refs.

  4. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  5. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  6. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    Science.gov (United States)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  7. Effects of P25 TiO2 Nanoparticles on the Free Radical-Scavenging Ability of Antioxidants upon Their Exposure to Simulated Sunlight.

    Science.gov (United States)

    Li, Meng; Chong, Yu; Fu, Peter P; Xia, Qingsu; Croley, Timothy R; Lo, Y Martin; Yin, Jun-Jie

    2017-11-15

    Although nanosized ingredients, including TiO 2 nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO 2 and/or simulated sunlight. Specifically, we determined the ability of these antioxidants to scavenge 1-diphenyl-2-picryl-hydrazyl radical, superoxide radical, and hydroxyl radical. Exposure to simulated sunlight alone did not lead to noticeable changes in radical-scavenging abilities; however, in combination with P25 TiO 2 NPs, the scavenging abilities of most antioxidants were weakened. We found glutathione to be the most resistant to treatment with sunlight and NPs among these six antioxidants.

  8. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  9. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    International Nuclear Information System (INIS)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan; Li, Guo-Hua; Chen, Xiao-Ping; Zheng, Jian-Hui

    2013-01-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe

  10. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    International Nuclear Information System (INIS)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-01-01

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ

  11. Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of the electrical performance of photovoltaic concentrator modules and systems under natural sunlight using a normal incidence pyrheliometer. 1.2 The test method is limited to module assemblies and systems where the geometric concentration ratio specified by the manufacturer is greater than 5. 1.3 This test method applies to concentrators that use passive cooling where the cell temperature is related to the air temperature. 1.4 Measurements under a variety of conditions are allowed; results are reported under a select set of concentrator reporting conditions to facilitate comparison of results. 1.5 This test method applies only to concentrator terrestrial modules and systems. 1.6 This test method assumes that the module or system electrical performance characteristics do not change during the period of test. 1.7 The performance rating determined by this test method applies only at the period of the test, and implies no past or future performance level. 1.8...

  12. A Kolmogorov-type competition model with multiple coexistence states and its applications to plant competition for sunlight

    Science.gov (United States)

    Just, Winfried; Nevai, Andrew L.

    2008-12-01

    It is demonstrated that a Kolmogorov-type competition model featuring species allocation and gain functions can possess multiple coexistence statesE Two examples are constructed: one in which the two competing species possess rectangular allocation functions but distinct gain functions, and the other in which one species has a rectangular allocation function, the second species has a bi-rectangular allocation function, and the two species share a common gain function. In both examples, it is shown that the species nullclines may intersect multiple times within the interior of the first quadrant, thus creating both locally stable and unstable equilibrium points. These results have important applications in the study of plant competition for sunlight, in which the allocation functions describe the vertical placement of leaves for two competing species, and the gain functions represent rates of photosynthesis performed by leaves at different heights when shaded by overlying leaves belonging to either species.

  13. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval

    Directory of Open Access Journals (Sweden)

    V. A. Yankovsky

    2006-11-01

    Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.

  14. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenylnitrene.

    Science.gov (United States)

    Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S

    2001-03-07

    Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition

  15. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system.

    Science.gov (United States)

    Mac Mahon, Joanne; Pillai, Suresh C; Kelly, John M; Gill, Laurence W

    2017-05-01

    The performance of photocatalytic treatment processes were assessed using different photocatalysts against E. coli and bacteriophages MS2, ΦX174 and PR772, in a recirculating continuous flow compound parabolic collector system under real sunlight conditions. Suspended TiO 2 and ZnO nanoparticle powders and Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate in solution were tested separately, as well as in combination, using E. coli. For a 3-log reduction of E. coli in distilled water, inactivation rates in terms of cumulative dose were in the order Ru(bpy) 3 Cl 2 >(TiO 2 & Ru(bpy) 3 Cl 2 )>(ZnO & Ru(bpy) 3 Cl 2 )>ZnO>TiO 2 >photolysis. Reactivation of E. coli was observed following all trials despite the detection limit being reached, although the reactivated colonies were observed to be under stress and much slower growing when compared to original colonies. Treatment with Ru(bpy) 3 Cl 2 was also compared against standard photolysis of bacteriophages MS2, ΦX174 and PR772 with the order of photolytic inactivation for a 3-log reduction in terms of cumulative UV-A dose being ΦX174>PR772>MS2. However, MS2 was found to be the most susceptible bacteriophage to treatment with Ru(bpy) 3 Cl 2 , with complete removal of the phage observed within the first 15min of exposure. Ru(bpy) 3 Cl 2 also significantly improved inactivation rates for PR772 and ΦX174. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V{sub 2}O{sub 5} for the degradation of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, M. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ismail, Iqbal M.I. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Salah, Numan [Centre of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chandrasekaran, S. [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qamar, M.Tariq [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Hameed, A., E-mail: afmuhammad@kau.edu.sa [Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589 (Saudi Arabia); National Centre for Physics, Quaid-e-Azam University, Islamabad 44000 (Pakistan)

    2015-04-09

    Highlights: • The interaction of UV photons of sunlight induces defects in V{sub 2}O{sub 5}. • The photon induced defects promotes the trapping and transfer of excited electrons. • The nature of the substituent at 2-position affects the degradation process. • The formation of the intermediates is influenced by the nature of substituents. • The released ions are subjected further transformation. - Abstract: Despite knowing the fact that vanadium pentoxide is slightly soluble in aqueous medium, its photocatalytic activity was evaluated for the degradation of phenol and its derivatives (2-hydroxyphenol, 2-chlorophenol, 2-aminophenol and 2-nitrophenol) in natural sunlight exposure. The prime objective of the study was to differentiate between the homogeneous and heterogeneous photocatalysis incurred by dissolved and undissolved V{sub 2}O{sub 5} in natural sunlight exposure. V{sub 2}O{sub 5} was synthesized by chemical precipitation procedure using Triton X-100 as morphology mediator and characterized by DRS, PLS, Raman, FESEM and XRD. A lower solubility of ∼5% per 100 ml of water at 23 °C was observed after calcination at 600 °C. The study revealed no contribution of the dissolved V{sub 2}O{sub 5} in the photocatalytic process. In sunlight exposure, V{sub 2}O{sub 5} powder exhibited substantial activity for the degradation, however, a low mineralization of phenolic substrates was observed. The initial low activity of V{sub 2}O{sub 5} followed by a sharp increase both in degradation and mineralization in complete spectrum sunlight exposure, was further investigated that revealed the decrease in the bandgap and the reduction in the particle size with the interaction of UV photons (<420 nm) as this effect was not observable in the exposure of visible region of sunlight. The role of the chemically different substituents attached to an aromatic ring at 2-positions and the secondary interaction of released ions during the degradation process with the reactive

  17. Use of sunlight to partially detoxify groundnut (peanut) cake flour and casein contaminated with aflatoxin B1.

    Science.gov (United States)

    Shantha, T; Murthy, V S

    1981-03-01

    Sunlight destroyed 83 and 50% of the toxin added to casein and groundnut cake flour, respectively. Equilibrium dialysis revealed that both casein and groundnut protein bind aflatoxin but the toxin bound to casein appeared more photo-labile than that bound to groundnut protein.

  18. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  19. Sunlight simulators-the key to understanding the physiological effects of the sun

    CSIR Research Space (South Africa)

    Singh, A

    2006-07-01

    Full Text Available simulator Slide 4 © CSIR 2006 www.csir.co.za ۞ Benefits of natural sunlight ۞ Restrictions of lifestyles ۞ Common misconceptions ۞ Experimental setups Slide 5 © CSIR 2006 www.csir.co.za Cancer Males...,043 181,439 Lung 965,241 848,132 386,891 330,786 Melanoma of skin 79,043 21,952 81,134 18,829 Breast 1,151,298 410,712 Leukemia 171,037 125,142 129,485 97,364 All sites but skin 5,801,839 3,795,991 5,060,657 2...

  20. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  1. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Dutta, Joydeep

    2015-01-01

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO 2 :I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO 2 :I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO 2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO 2 nanoparticles under similar illumination conditions

  2. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  3. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Science.gov (United States)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  4. Factors influencing adherence with therapeutic sunlight exposure in older people in intermediate care facilities.

    Science.gov (United States)

    Durvasula, Seeta; Sambrook, Philip N; Cameron, Ian D

    2012-01-01

    The purpose of this study was to investigate the factors influencing low adherence with therapeutic sunlight exposure in a randomized controlled trial conducted with older people living in intermediate care facilities. The study involved participants in the FREEDOM (Falls Risk Epidemiology: Effect of vitamin D on skeletal Outcomes and other Measures) study, a randomized controlled trial of therapeutic sun exposure to reduce falls in older people in intermediate care facilities. Semi-structured interviews were conducted with thirty participants in the FREEDOM trial, and with ten sunlight officers who were employed to facilitate the sun exposure. Two focus groups involving 10 participants in the FREEDOM trial were also held at the end of the intervention period. Common themes were derived from the interview and focus group transcripts. The study showed that the perceived health benefits did not influence adherence with the sun exposure. Factors such as socializing with others and being outdoors were more important in encouraging attendance. The main barriers to adherence included the perceived inflexibility and regimentation of daily attendance, clash with other activities, unsuitable timing and heat discomfort. This study showed that providing greater flexibility and autonomy to older people in how and when they receive sun exposure is likely to improve adherence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. FORMATION OF N{sub 3}, CH{sub 3}, HCN, AND HNC FROM THE FAR-UV PHOTOLYSIS OF CH{sub 4} IN NITROGEN ICE

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Jen-Iu; Chou, Sheng-Lung; Peng, Yu-Chain; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming, E-mail: bmcheng@nsrrc.org.tw [National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2015-11-15

    The irradiation of pure solid N{sub 2} at 3 K with far-ultraviolet light from a synchrotron produced infrared absorption lines at 1657.7, 1655.6, and 1652.4 cm{sup −1} and an ultraviolet absorption line at 272.0 nm, which are characteristic of the product N{sub 3}. The threshold wavelength at which N{sub 3} was generated was 145.6 ± 2.9 nm, corresponding to an energy of 8.52 ± 0.17 eV. The photolysis of isotopically labeled {sup 15}N{sub 2} at 3 K consistently led to the formation of {sup 15}N{sub 3} with the same threshold wavelength of 145.6 ± 2.9 nm for its formation. The photolysis of CH{sub 4} in nitrogen ice in low concentrations also led to the formation of N{sub 3}, together with CH{sub 3}, HCN, and HNC, with the same threshold wavelength of 145.6 ± 2.9 nm. These results indicate that N{sub 3} radicals may play an important role in the photochemistry of nitrogen ices in astronomical environments.

  6. Ultraviolet and chemical induced DNA repair in human cells assayed by bromodeoxyuridine photolysis or cytosine arabinoside arrest

    International Nuclear Information System (INIS)

    Regan, J.D.; Dunn, W.C.

    1979-01-01

    The bromodeoxyuridine photolysis assay of DNA damage in human cells permits an estimate of both the number of repaired regions in the DNA and the size of the average repaired region - the patch size. The antineoplastic agent arabinofuranosyl cytosine (ara-C) can also be employed to assay the magnitude of repair since this agent appears to block rejoining of single-strand incisions made in the DNA during the initial step of repair. Thus, the number of incisions can be accumulated. The ara-C effect is dependent on the presence of hydroxyurea. Both assays can be employed for the study of physical or chemical DNA damages. Results comparing these assays are presented

  7. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Fas(lpr) mice.

    Science.gov (United States)

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T; Lucas, Julie A; Rabacal, Whitney A; Croker, Byron P; Zong, Xiao-Hua; Stanley, E Richard; Kelley, Vicki R

    2008-11-15

    Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.

  8. Asteroid thermal modeling in the presence of reflected sunlight

    Science.gov (United States)

    Myhrvold, Nathan

    2018-03-01

    A new derivation of simple asteroid thermal models is presented, investigating the need to account correctly for Kirchhoff's law of thermal radiation when IR observations contain substantial reflected sunlight. The framework applies to both the NEATM and related thermal models. A new parameterization of these models eliminates the dependence of thermal modeling on visible absolute magnitude H, which is not always available. Monte Carlo simulations are used to assess the potential impact of violating Kirchhoff's law on estimates of physical parameters such as diameter and IR albedo, with an emphasis on NEOWISE results. The NEOWISE papers use ten different models, applied to 12 different combinations of WISE data bands, in 47 different combinations. The most prevalent combinations are simulated and the accuracy of diameter estimates is found to be depend critically on the model and data band combination. In the best case of full thermal modeling of all four band the errors in an idealized model the 1σ (68.27%) confidence interval is -5% to +6%, but this combination is just 1.9% of NEOWISE results. Other combinations representing 42% of the NEOWISE results have about twice the CI at -10% to +12%, before accounting for errors due to irregular shape or other real world effects that are not simulated. The model and data band combinations found for the majority of NEOWISE results have much larger systematic and random errors. Kirchhoff's law violation by NEOWISE models leads to errors in estimation accuracy that are strongest for asteroids with W1, W2 band emissivity ɛ12 in both the lowest (0.605 ≤ɛ12 ≤ 0 . 780), and highest decile (0.969 ≤ɛ12 ≤ 0 . 988), corresponding to the highest and lowest deciles of near-IR albedo pIR. Systematic accuracy error between deciles ranges from a low of 5% to as much as 45%, and there are also differences in the random errors. Kirchhoff's law effects also produce large errors in NEOWISE estimates of pIR, particularly for high

  9. Evaluation of Solar Photosensitised River Water Treatment in the Caribbean

    Directory of Open Access Journals (Sweden)

    K. Tota-Maharaj

    2013-01-01

    Full Text Available An economical supply of hygienic potable water is one of the most pressing public health issues facing developing countries in the Caribbean region today. This project investigates the performance of a novel solar photochemical reactor for disinfecting river water. The prototype photochemical reactor was designed, constructed, and tested for the microbiological degradation of faecal coliform present in River Water. The experiments evaluated the efficacy of two photosensitive dyes (malachite green and methylene blue as agents for detoxification with concentrations ranging from 0.5 to 3.0 mg/L. The photochemical reactor operated in a single-pass mode and compared the disinfection rates with direct photolysis. The photosensitizers showed a high efficacy rate using natural sunlight with microbial reduction ranging from 97 to 99% for concentrations as low as 0.5 mg/L of dye. The sensitizers were found to be photobleaching and were very effective at lower concentrations (0.01. Post-solar disinfection included the use of a coconut fiber filter which polished the water removing residual dye concentrations and bacterial contaminants.

  10. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis.

    Science.gov (United States)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2009-09-01

    The photolysis of S(2)O(8)(2-) was studied for the removal of acetic acid in aqueous solution and compared with the H(2)O(2)/UV system. The SO(4)(-) radicals generated from the UV irradiation of S(2)O(8)(2-) ions yield a greater mineralization of acetic acid than the ()OH radicals. Acetic acid is oxidized by SO(4)(-) radicals without significant formation of intermediate by-products. Increasing system pH results in the formation of ()OH radicals from SO(4)(-) radicals. Maximum acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive reactions with the carbon mineralized inhibit the reaction of the solute with SO(4)(-) and also ()OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to HCO(3)(-) ions, the presence of Cl(-) ions enhances the efficiency of the S(2)O(8)(2-)/UV process towards the acetate removal. It is attributed to the formation of the Cl() radical and its great reactivity towards acetate.

  11. Sunlight-Driven Forging of Amide/Ester Bonds from Three Independent Components: An Approach to Carbamates.

    Science.gov (United States)

    Zhao, Yating; Huang, Binbin; Yang, Chao; Chen, Qingqing; Xia, Wujiong

    2016-11-04

    A photoredox catalytic route to carbamates enabled by visible irradiation (or simply sunlight) has been developed. This process leads to a novel approach to the construction of heterocyclic rings wherein the amide or ester motifs of carbamates were assembled from three isolated components. Large-scale experiments were realized by employing continuous flow techniques, and reuse of photocatalyst demonstrated the green and sustainable aspects of this method.

  12. A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps.

    Science.gov (United States)

    Challis, Jonathan K; Hanson, Mark L; Friesen, Ken J; Wong, Charles S

    2014-04-01

    This work presents a critical assessment of the state and quality of knowledge around the aquatic photochemistry of human- and veterinary-use pharmaceuticals from laboratory experiments and field observations. A standardized scoring rubric was used to assess relevant studies within four categories: experimental design, laboratory-based direct and indirect photolysis, and field/solar photolysis. Specific metrics for each category are defined to evaluate various aspects of experimental design (e.g., higher scores are given for more appropriate characterization of light source wavelength distribution). This weight of evidence-style approach allowed for identification of knowledge strengths and gaps covering three areas: first, the general extent of photochemical data for specific pharmaceuticals and classes; second, the overall quality of existing data (i.e., strong versus weak); and finally, trends in the photochemistry research around these specific compounds, e.g. the observation of specific and consistent oversights in experimental design. In general, those drugs that were most studied also had relatively good quality data. The four pharmaceuticals studied experimentally at least ten times in the literature had average total scores (lab and field combined) of ≥29, considered decent quality; carbamazepine (13 studies; average score of 31), diclofenac (12 studies; average score of 31), sulfamethoxazole (11 studies; average score of 34), and propranolol (11 studies; average score of 29). Major oversights and errors in data reporting and/or experimental design included: lack of measurement and reporting of incident light source intensity, lack of appropriate controls, use of organic co-solvents in irradiation solutions, and failure to consider solution pH. Consequently, a number of these experimental parameters were likely a cause of inconsistent measurements of direct photolysis rate constants and quantum yields, two photochemical properties that were highly

  13. Bacterial growth in humic waters exposed to UV-radiation and simulated sunlight

    DEFF Research Database (Denmark)

    Corin, N.; Backlund, P.; Wiklund, T.

    1998-01-01

    Sterile filtered (0.45 mu m) humic lake water was exposed to simulated sunlight (300-800 nm) or W-radiation (254 run)for various periods of times and the dissolved organic carbon content, absorbance at 254 and 460 nm and PH were recorded. The irradiated water was inoculated with a natural bacterial...... assemblage and the number of viable bacteria war estimated 3 and 5 days after the inoculation using the plate count technique. The number of viable bacteria increased with the irradiation time indicating that the chemical changes of the humus macromolecules observed during irradiation resulted...

  14. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    Science.gov (United States)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  15. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan

    2018-04-02

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl2), copper sulfate (CuSO4) and magnesium sulfate (MgSO4) distinguish themselves and are further made into bi-layer water collection devices, with the top layer being photothermal layer while the bottom layer being salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15 %) and releasing water under regular and even weakened sunlight (i.e. 0.7 kW/m2). The work shines light on the potential use of anhydrous salt towards producing drinking water in water scarce regions.

  16. Fate of kelthane residues on apple pomace exposed to drying in the dark, sunlight, and ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Archer, T.E.; Toscano, R.A.

    1972-01-01

    The present investigations were undertaken to determine the fate of Kelthane residues intentionally applied to apples under controlled laboratory conditions and the reduction of these residues in the pomace by exposure to drying in the dark, in sunlight, and ultraviolet light irradiation

  17. Synthesis and Evaluation of Porous Semiconductor Hexaniobate Nanotubes for Photolysis of Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    Maryam Zarei-Chaleshtori

    2014-10-01

    Full Text Available We present the chemical synthesis of hexaniobate nanotubes using two routes, (1 starting material K4Nb6O17 and (2 parent material of H4Nb6O17 via ion exchange. The as-synthesized materials were exfoliated by adjusting the pH to 9–10 using tetra-n-butylammonioum hydroxide (TBA+OH−, leading to a formation of hexaniobate nanotubes. In order to understand morphology a full characterization was conducted using SEM, HRTEM, BET and powder-XRD. The photocatalytic activity was evaluated using photolysis method using Bromocresol Green (BG and Methyl Orange (MO as model contaminants. Results indicate a nanotube porous oxide with large porous and surface area; the photocatalytic activity is about 95% efficient when comparing with commercial TiO2.

  18. Type II GaSb quantum ring solar cells under concentrated sunlight.

    Science.gov (United States)

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  19. Pressure dependence for the CO quantum yield in the photolysis of acetone at 248 nm: a combined experimental and theoretical study.

    Science.gov (United States)

    Somnitz, H; Fida, M; Ufer, T; Zellner, R

    2005-09-21

    The quantum yield of CO in the laser pulse photolysis of acetone at 248 nm and at 298 K in the pressure range 20-900 mbar (N2) has been measured directly using quantitative infrared diode laser absorption of CO. It is found that the quantum yield of CO shows a significant dependence on total pressure with Phi(CO) decreasing with pressure from around 0.45 at 20 mbar to approximately 0.25 at 900 mbar. From a combination of ab initio quantum chemical calculations on the molecular properties of the acetyl (CH3CO) radical and its unimolecular fragmentation as well as the application of statistical (RRKM) and dynamical calculations we show that CO production results from prompt secondary fragmentation (via(2a)) of the internally excited primary CH3CO* photolysis product with an excess energy of approximately 62.8 kJ mol(-1). Hence, our findings are consistent with a consecutive photochemically induced decomposition model, viz. step (1): CH3COCH3+hv--> CH3CO*+ CH3, step (2a): CH3CO*--> CH3+ CO or step (2b) CH3CO*-(+M)--> CH3CO. Formation of CO via a direct and/or concerted channel CH3COCH3+hv--> 2CH(3)+ CO (1') is considered to be unimportant.

  20. Efficacy of a dose range of simulated sunlight exposures in raising vitamin D status in South Asian adults: implications for targeted guidance on sun exposure.

    Science.gov (United States)

    Farrar, Mark D; Webb, Ann R; Kift, Richard; Durkin, Marie T; Allan, Donald; Herbert, Annie; Berry, Jacqueline L; Rhodes, Lesley E

    2013-06-01

    Vitamin D is essential for bone health, and cutaneous synthesis is an important source. South Asians cannot attain adequate amounts of vitamin D by following general recommendations on summer sunlight exposure at northerly latitudes, and increased exposure may be appropriate for improving their vitamin D status. We examined the efficacy of a dose range of simulated summer sunlight exposures in raising vitamin D status in UK adults of South Asian ethnicity. In a dose-response study, healthy adults of South Asian ethnicity (n = 60; 20-60 y old) received 1 of 6 ultraviolet exposures ranging from 0.65 to 3.9 standard erythema doses (SEDs), which were equivalent to 15-90 min unshaded noontime summer sunlight at 53.5°N (Manchester, United Kingdom), 3 times/wk for 6 wk, while wearing casual clothes that revealed a 35% skin area. Serum 25-hydroxyvitamin D [25(OH)D] was measured weekly, and dietary vitamin D was estimated. At baseline, all completing participants (n = 51) were vitamin D insufficient [25(OH)D concentrations 10 ng/mL. Targeted guidance on sunlight exposure could usefully enhance vitamin D status to avoid deficiency [25(OH)D concentration >10 ng/mL] in South Asians living at latitudes distant from the equator. This trial was registered at the ISRCTN Register (www.isrctn.org) as 07565297.

  1. Degradation of 4-chloro 2-aminophenol using combined strategies based on ultrasound, photolysis and ozone.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2016-01-01

    The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2°C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US+UV+O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators.

    Science.gov (United States)

    Leeladhar; Raturi, Parul; Singh, J P

    2018-02-27

    Photomechanical actuation is the conversion of light energy into mechanical energy through some smart materials. Infrared-responsive smart materials have become an emerging field of research due to easy availability and eco-friendly nature of their stimulus in the form of sunlight, which contains about 50% of near-infrared(nIR) making these materials useful at macro-scale photoactuator applications. Here, we demonstrate fabrication of highly versatile nIR triggered photoactuators based on graphene oxide/polycarbonate bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation and wavelength-selective response. The photoactuators are realized by vacuum filtration of graphene oxide/water dispersion through polycarbonate membrane resulting graphene oxide/polymer bilayer structure. The photoactuation response was measured in the form of deflection from equilibrium position as a result of infrared-irradiation. The deflection is caused by the generated thermal stress at the interface of bilayers due to mismatch of thermal expansion coefficient as a results of nIR absorption by graphene oxide and subsequent temperature rise. A maximum deflection of 12 mm (circular-shaped structure with diameter 28 mm) with corresponding bending curvature of 0.33 cm -1 was shown by this photoactuator for illumination intensity of 106 mW/cm 2 . Few applications of these photoactuators such as sunlight-driven smart curtain, infrared actuated curtain and self-folding box are also demonstrated.

  3. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  4. Theory of direct sunlight transmission through orthogonal screen cells

    International Nuclear Information System (INIS)

    Aljofi, E.K.

    2006-01-01

    The Purpose of this paper is to investigate the feasibility of using the Rawshan screens to control high light intensity and to avoid excessive solar radiation penetrating inside the building interior. The exploration of the environmental characteristics of this device indicates an ideal solution to utilize available daylight in the arid atmosphere, reduces energy consumption due to the us of artificial light and ensures the continuity of the traditional architecture and the country heritage. A systematic analysis of direct sunlight transmission has been explored using a mathematical approach. The study intends to construct a predictive tool for the architects through which different specifications of the Rawshan screens were identified as far as direct beam of light concerned. The predictive tool was set-up to investigate various parameters of the screen such as the screen configurations, the aperture configurations, the change in orientation and the effect of the sky condition. The analysis of light transmission through the screen were set-up for orthogonal shapes

  5. Interacting effects of sunlight, agriculturally derived dissolved organic matter and reactive oxygen species on fecal indicator bacteria growth dynamics

    Science.gov (United States)

    Bacterial survival in agriculturally impacted surface waters is dependent on resource availability and also on potential resource transformations, mediated by biotic and abiotic processes. In this study, we focused on the effect of sunlight irradiated cattle fecal extract (CFE) a...

  6. ADEQUATE UV EXPOSURES FOR HEALTHY LIFE: IN SITU MONITORING AND MODEL CALCULATION OF THE VITAMIN-D-SYNTHETIC CAPACITY OF SUNLIGHT

    Directory of Open Access Journals (Sweden)

    Irina Terenetskaya

    2012-06-01

    Full Text Available Vitamin D which is formed upon UV solar radiation in human skin is essential in many physiological functions. To estimate beneficial vitamin-D-synthetic capacity of sunlight a bio-equivalent UV dosimeter that is based on the same molecular photochemistry from which vitamin D is photosynthesized in human skin has been developed. The examples of an in situ monitoring of the vitamin-D-synthetic capacity of sunlight using an in vitro model of vitamin D synthesis are presented, and various operational principles of the UV biodosimeter are discussed. In addition, reliable algorithm is presented for direct calculation of previtamin D3 accumulation using the photoreaction mathematical model with solar UV spectra as input data. Critical dependence of previtamin D3 accumulation on cloudiness and aerosols is demonstrated.

  7. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  8. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    Science.gov (United States)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  9. 76 FR 50493 - Notice of Availability of the Record of Decision for the Desert Sunlight Holdings, LLC, Desert...

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [CACA-48649, LLCAD06000 L51010000 ER0000... right-of-way (ROW) application CACA-48649 for the Desert Sunlight Solar Farm Project (DSSF). The DSSF is... (CACA-052682) where the project would interconnect with the SCE regional transmission system. The DSSF...

  10. On the apparent velocity of integrated sunlight. I - 1983-1985

    Science.gov (United States)

    Deming, Drake; Espenak, Fred; Jennings, Donald E.; Brault, James W.; Wagner, Jeremy

    1987-01-01

    Frequency measurements for the Delta V = 2 transitions of CO in the integrated light spectrum of the sun are presented. The nature and magnitude of systematic errors which typically arise in absolute velocity measurements of integrated sunlight are explored in some detail, and measurements believed accurate at the level of about 5 m/s or less are presented. It is found that the integrated light velocity varies by about 3 m/s or less over a one-day period. Over the long term, the data indicate an increasing blue-shift in these weak infrared lines amounting to 30 m/s from 1983 to 1985. The sense of the drift is consistent with a lessening in the magnetic inhibition of granular convection at solar minimum. Such an effect has implications for the spectroscopic detectability of planetary-mass companions to solar-type stars.

  11. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests

    International Nuclear Information System (INIS)

    Bi, Jian; Knyazikhin, Yuri; Choi, Sungho; Park, Taejin; Barichivich, Jonathan; Ciais, Philippe; Fu, Rong; Ganguly, Sangram; Hall, Forrest; Hilker, Thomas; Huete, Alfredo; Jones, Matthew; Kimball, John; Lyapustin, Alexei I; Mõttus, Matti; Nemani, Ramakrishna R; Piao, Shilong; Poulter, Benjamin; Saleska, Scott R

    2015-01-01

    Resolving the debate surrounding the nature and controls of seasonal variation in the structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the Sunlight-rich dry season. Satellite data also indicated higher greenness level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the previous results were satellite measurement artefacts. Therefore, here we re-examine several years of data from three sensors on two satellites under a range of sun positions and satellite measurement geometries and document robust evidence for a seasonal cycle in structure and greenness of wet equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e. the dry season only, and to prognostications based on a biased radiative transfer model. Consequently, evidence of dry season greening in geometry corrected satellite data was ignored and the absence of evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as evidence of the absence of changes during the dry season. Our results, grounded in the physics of radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall, photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests. (letter)

  12. Rate and duration of seed filling and yield of soybean affected by water and radiation deficits

    Directory of Open Access Journals (Sweden)

    Kazem GHASSEMI-GOLEZANI

    2015-11-01

    Full Text Available Seed filling and yield of soybean under water and radiation deficits were investigated during 2011 and 2012. Treatments were irrigations (I1, I2, I3 and I4 for irrigation after 60, 90, 120 and 150 mm evaporation from class A pan, respectively in main plots and light interceptions (L1: 100 %, L2: 65 % and L3: 25 % sunlight in sub-plots. Seeds per plant under I1 and I2 decreased, but under I3 and I4 increasedas a result of radiation deficit. Maximum seed weight and seed filling duration of plants under 25 % light interception (L3 were higher than those under full sunlight (L1 and 65 % light interception (L2. In contrast, plants under full sunlight had the highest seed filling rate, particularly under water stress. Seed filling duration under severe light deficit (L3 was about 9 days longer than that under full sunlight (L1, leading to 15.8 % enhancement in maximum seed weight. Decreasing seed yield of soybean under well watering and mild water stress and improving it under moderate and severe water deficit due to low solar radiation are directly related with changes in seed filling duration and consequently in seed weight and number of seeds per plant under these conditions.

  13. Measurement from sun-synchronous orbit of a reaction rate controlling the diurnal NOx cycle in the stratosphere

    Directory of Open Access Journals (Sweden)

    A. Dudhia

    2011-05-01

    Full Text Available A reaction rate associated with the nighttime formation of an important diurnally varying species, N2O5, is determined from MIPAS-ENVISAT. During the day, photolysis of N2O5 in the stratosphere contributes to nitrogen-catalysed ozone destruction. However, at night concentrations of N2O5 increase, temporarily sequestering reactive NOx NO and NO2 in a natural cycle which regulates the majority of stratospheric ozone. In this paper, the reaction rate controlling the formation of N2O5 is determined from this instrument for the first time. The observed reaction rate is compared to the currently accepted rate determined from laboratory measurements. Good agreement is obtained between the observed and accepted experimental reaction rates within the error bars.

  14. On the radiative impact of aerosols on photolysis rates: comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign

    Directory of Open Access Journals (Sweden)

    S. Mailler

    2016-02-01

    Full Text Available The Mediterranean basin is characterized by large concentrations of aerosols from both natural and anthropogenic sources. These aerosols affect tropospheric photochemistry by modulating the photolytic rates. Three simulations of the atmospheric composition at basin scale have been performed with the CHIMERE chemistry-transport model for the period from 6 June to 15 July 2013 covered by the ADRIMED campaign, a campaign of intense measurements in the western Mediterranean basin. One simulation takes into account the radiative effect of the aerosols on photochemistry, the second one does not, and the third one is designed to quantify the model sensitivity to a bias in the ozone column. These simulations are compared to satellite and ground-based measurements, with a particular focus on the area of Lampedusa. Values of the aerosol optical depth (AOD are obtained from the MODIS instrument on the AQUA and TERRA satellites as well as from stations in the AERONET network and from the MFRSR sun photometer deployed at Lampedusa. Additional measurements from instruments deployed at Lampedusa either permanently or exceptionally are used for other variables: MFRSR sun photometer for AOD, diode array spectrometer for actinic fluxes, LIDAR for the aerosol backscatter, sequential sampler for speciation of aerosol and Brewer spectrophotometer for the total ozone column. It is shown that CHIMERE has a significant ability to reproduce observed peaks in the AOD, which in Lampedusa are mainly due to dust outbreaks during the ADRIMED period, and that taking into account the radiative effect of the aerosols in CHIMERE considerably improves the ability of the model to reproduce the observed day-to-day variations of the photolysis rate of ozone to O2 and O(1D, J(O1D, and that of NO2 to NO and O(3P, J(NO2. While in the case of J(O1D other variation factors such as the stratospheric ozone column are very important in representing correctly the day-to-day variations

  15. Chemistry of bifunctional photoprobes. 3 -- Correlation between the efficiency of CH insertion by photolabile chelating agents and lifetimes of singlet nitrenes by flash photolysis: First example of photochemical attachment of 99mTc-complex with human serum albumin

    International Nuclear Information System (INIS)

    Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Volkert, W.A.; Rogowski, J.; Platz, M.S.

    1998-01-01

    Systematic functionalization of perfluoroaryl azides with chelating agents capable of complexing transition metals produces a new class of bifunctional photolabile chelating agents (BFPCAs). The strategy is shield the azide functionality from the electronic and steric influence of the electron-rich metal Pd through ester and amide bridges raised CH insertion efficiency to unprecedented levels (>92%) in a model solvent (cyclohexane). In contrast, perfluoroaryl azides attached to chelating agents via hydrazones show no significant CH insertion in cyclohexane upon photolysis. Measurements of the lifetimes of the singlet nitrenes derived from these agents by flash photolysis techniques correlate well with the efficiency of CH insertion by demonstrating longer lifetimes (10--50 times) for singlet nitrenes derived from azidotetrafluorinated esters and amides compared with the related hydrazones, which failed to yield significant CH insertion. A representative BFPCA 12 is chelated to diagnostic radionuclide 99m Tc and covalently attached to human serum albumin via photochemical activation extending the favorable bimolecular insertion characteristics of BFPCA to tracer level concentrations in buffer conditions. Flash photolysis experiments correlate singlet nitrene lifetimes with the efficiency of intermolecular insertion reactions. This work provides new photo-cross-linking technology, useful in radiodiagnostics and radiotherapy in nuclear medicine

  16. Photolysis of CH₃CHO at 248 nm: evidence of triple fragmentation from primary quantum yield of CH₃ and HCO radicals and H atoms.

    Science.gov (United States)

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν(248nm) → CH3CHO*, CH3CHO* → CH3 + HCO ϕ(1a) = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ(1e) = 0.205 ± 0.04, CH3CHO*[Formula: see text]CH3CO + HO2 ϕ(1f) = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as ϕ(CH₃) = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ(1b) = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ(1c) = 0.

  17. 76 FR 62052 - Issuance of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight Solar Farm Project

    Science.gov (United States)

    2011-10-06

    ... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight Solar Farm Project AGENCY: U.S. Department of Energy. ACTION: Record of decision. SUMMARY: The U.S... The proposed DSSFP is a photovoltaic solar electrical generating facility using commercial, thin-film...

  18. Degradation of 4-Chlorophenol Under Sunlight Using ZnO Nanoparticles as Catalysts

    Science.gov (United States)

    Rajar, Kausar; Sirajuddin; Balouch, Aamna; Bhanger, M. I.; Sherazi, Tufail H.; Kumar, Raj

    2018-03-01

    Herein we demonstrate a simplistic microwave assisted chemical precipitation approach regarding the synthesis of zinc oxide nanoparticles. As-prepared ZnO nanoparticles (NPs) were characterized by UV-visible spectroscopy, Fourier transform infra-red spectroscopy, atomic force microscopy and x-ray diffractometry and scrutinized as photo-catalysts for degradation of 4-chlorophenol (4-CP) under sunlight. The study substantiated that 98.5% of 4-CP was degraded within 20 min in the absence of initiator like H2O2 which reflects an outstanding prospective use for ZnO NPs as photo-catalysts. The nanocatalysts were recycled four times and still showed catalytic efficiency up to 95.5% for degradation of 4-CP in the specified 20 min.

  19. Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm

    KAUST Repository

    Burhan, Muhammad

    2016-02-14

    Owing to the intermittent solar irradiance from cloud cover in the diurnal period and unavailability at night time, the practical design of a solar system requires energy backup storage for an uninterrupted supply or for off-grid operation. However, for highly efficient CPV (concentrated photovoltaic) system, the literature is lacking for energy management and optimization algorithm and tool for standalone operation. In this paper, a system with CPV and electrolyser is presented where beam irradiance of sunlight is harnessed to convert the instantaneously generated electricity into useful Hydrogen/Oxygen gas, where they can be stored and re-used for downstream applications such as the fuel cells, etc. The multi-variable design and multi-objective optimization strategies are proposed and presented for a standalone operation of the CPV-Hydrogen system as well as their system performances, particularly electrical rating of CPV based upon the real weather data of Singapore. © 2016 Elsevier Ltd.

  20. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    International Nuclear Information System (INIS)

    Lee, Eunkyung; Shon, Ho Kyong; Cho, Jaeweon

    2014-01-01

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with 3 DOM * for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ( 3 DOM * ) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants by the

  1. Tick resistance and heat tolerance characteristics in cattle. III. Sweating rate

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo

    2012-12-01

    Full Text Available Cattle in a sustainable tropical livestock should be heat tolerant and resistant to ticks. The relationship between Rhipicephalus (Boophilus microplus infestation and sweating rate, an important heat tolerance characteristic, was studied in six Nellore and four Holstein steers of seven-month-old. They were artificial infested (a.i. with 10,000 (Holstein and 20,000 (Nellore larvae in 16/Apr/2011. In days 20, 23 and 24 after the infestation, the 10 bigger females ticks found in whole animal were weighed and put in a chamber (27 oC and 80% RH, weighing the egg mass of each female tick fourteen days after. The sweating rate (SRskin, measured by Scheleger and Turner, 1963, method, in a shaved area of shoulder skin was evaluated in 14/Apr (2 days before the a.i. and in 05/May (19 days after a.i.. In 14/Apr the Scheleger and Turner, 1963, method was done on the coat not shaved (SRcoat. The sweating rate was measured in the afternoon (from 2 P.M., after 30 minutes of direct sunlight, on April. On May, the animals remained 60 minutes in direct sunlight because this day was colder. The experimental design was a non-probability sample restricted to the 10 available animals. Data from the steers’ sweating rate were analyzed using the General linear models of the SPSS® statistical package (version 12.0 using SRskin as dependent variable and breed and sampling date as independent variables. For SRcoat breed was the independent variable. Nellore, a tropical cattle breed, had higher SRskin (1,000.82 ± 64.59 g m-2 h-1, P< 0.001 than Holstein (620.45 ± 79.10 g m-2 h-1. SRskin was higher on May (1,187.33 ± 71.49 g m-2 h-1, P< 0.001 than on April (433.93 ± 71.49 g m-2 h-1. The correlation between the two different measurements of SR was positive and significant (r= 0,545, P<0,01, Pearson correlation. But in SRcoat the breed effect disappeared because the Holstein SRcoat increased (Holstein: 884.95 ± 472.12 g m-2 h-1 and Nellore: 1,060.72 ± 318.21 g m-2 h-1

  2. Evaluation of the effects of repeated hand washing, sunlight, smoke and dirt on the persistence of deltamethrin on insecticide-treated nets.

    Science.gov (United States)

    Kayedi, M H; Lines, J D; Haghdoost, A A; Vatandoost, M H; Rassi, Y; Khamisabady, K

    2008-08-01

    Field studies were carried out in Iran to evaluate the effect of various factors (washing, sun, smoke, dust and dirt) on the residual insecticidal activity of PermaNet (a brand of long-lasting insecticidal net), and on nets conventionally treated with deltamethrin (K-O Tab), using bioassay tests. Thirty-two nets were washed five or 15 times, and eight nets were not washed at all. Nets were washed vigorously in cold tap water (17 degrees C, pH 8.9) with a detergent. Hand rubbing continued for 3min. After washing, some nets were exposed to dense smoke from a dung-hay fire for 3min and were also left exposed to the dusty wind between washes. One group of nets was exposed to the sunlight for the full 3-d interval between washes; another was exposed to sunlight for just 3h after each wash; two other groups were kept in the shade. There was a significantly greater loss of activity in nets exposed to the sun throughout the 3-d interval between washes: that is, for a total of 15 to 45 d. However, short sunlight exposure (maximum 3h between washes) during drying did not have any effect. We did not find any significant effect of exposure to dirt, dust and smoke after washing. It is concluded that the effect of sun is much smaller than that of washing, and that drying nets for a few hours in the sun is not harmful.

  3. Unit for the nanosecond, laser, pulse photolysis in the ultraviolet region for a combination of photochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Pikel' ni, V F; Kolosov, V A; Kiryukhin, Yu I; Kondrat' ev, V A; Borovkova, V A; Tarasov, E N

    1976-06-01

    A description is given of a nanosecond laser unit for pulse photolysis in the ultraviolet region, by means of which it is possible to investigate the kinetics of the death of interstitial particles, their optical absorption and luminescence spectra, and also the photoconductivity induced by the laser radiation, at a time resolution of about 15 ns. As a source of powerful, stable uv-radiation, use is made of the fourth harmonic (266 nm) of radiation from an aluminum-yttrium garnet containing neodymium. The radiation power of the fourth harmonic attained 2 MW. The time of bringing the unit into the operating mode is considerably shortened because of the possibility of operating in a frequency mode. Absorption spectra of carbazole in hexane were obtained at 20/sup 0/C. (SJR)

  4. ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation

    Science.gov (United States)

    Kumar, Suneel; Dhiman, Ankita; Sudhagar, Pitchaimuthu; Krishnan, Venkata

    2018-07-01

    In this work, we report the formation of heterojunctions comprising of graphene quantum dots (GQD) decorated ZnO nanorods (NR) and its use as efficient photocatalysts for environmental remediation. The heterojunctions has been designed to be active both in the UV and visible light regions and anticipated utilize the maximum part of the solar light spectrum. In this view, we examined the photocatalytic performance of our heterojunctions towards the degradation of colored pollutant (methylene blue (MB) dye) and a colorless pollutant (carbendazim (CZ) fungicide) under sunlight irradiation. Compared to bare photocatalyst ZnO and GQD, the heterojunction with 2 wt% of GQD (ZGQD2) showed the best photocatalytic activity by effectively degrading (about 95%) of organic pollutants (MB and CZ) from water within a short span of 70 min. The superior photocatalytic activity of these ZnO-GQD heterojunctions could be attributed to efficient charge carrier separation lead suppressed recombination rate at photocatalyst interfaces. In addition to the enhanced light absorption from UV to visible region, the high specific surface area of ZGQD2 heterojunction (353.447 m2 g-1) also imparts strong adsorption capacity for pollutants over catalyst surface, resulting in high photoactivity. Based on the obtained results, band gap alignment at ZnO-GQD heterojunction and active species trapping experiments, a plausible mechanism is proposed for photocatalytic reaction. The excellent photostability and recyclability of the ZnO-GQD heterojunctions fostering as promising photocatalyst candidate for environmental remediation applications.

  5. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)

    Science.gov (United States)

    Demore, W. B.

    1993-01-01

    Measurements of rate constants for HFC-134 (CF2HCF2H) relative to CH3CCl3, HFC-125, and HFC-134a are reported. The measurements were made in a slow-flow, temperature controlled photochemical reactor, and were based on relative rates of disappearance of the parent compounds as measured by FTIR spectroscopy. Hydroxyl radicals were generated by 254-nm photolysis of O3 in the presence of water vapor. NASA/JPL rate constants for the reference compounds are used to derive temperature-dependent rate constants of both compounds. Rate constants obtained from the different reference compounds are in excellent agreement. The presently recommended rate constant for HFC-134a is about 25 percent too high.

  6. Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Carlos Antonio Pineda [Posgrado en Ingenieria y Ciencias Aplicadas, FCQI-CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); Martinez, Susana Silva [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 (Mexico)

    2010-02-15

    Results of voltammetry and spectrophotometry analyses revealed that upon sunlight exposure, the conversion of ferricyanide to ferrocyanide, and the reverse reaction, in the absence and in the presence of TiO{sub 2} catalyst depends strongly on pH. Thus, the pH of the solution dictates whether the redox reactions will proceed under illumination. In addition, the extent of the heterogeneous photocatalytic degradation of ferricyanide was influenced by pH. The initial concentration of ferricyanide did not affect its degradation. (author)

  7. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhujian [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); Gong, Beini; Yang, Shanshan; Li, Hailing [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhu, Ziao; Cui, Lihua [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2016-05-01

    Graphical abstract: - Highlights: • G–Fe chelate molecules were well preserved into montmorillonite. • The product shows an excellent catalytic activity under sunlight at neutral pH value. • G–Fe–Mt is a promising catalyst for advanced oxidation processes. - Abstract: To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G–Fe–Mt) was developed. The physiochemical properties of G–Fe–Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G–Fe–Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G–Fe–Mt under neutral pH. G–Fe–Mt is a promising catalyst for advanced oxidation processes.

  8. Solvent effects on the photochemistry of dimethyl sulfoxide-Cl complexes studied by combined pulse radiolysis and laser flash photolysis

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Minegishi, Hideki; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Photolysis of complexes of dimethyl sulfoxide (DMSO) with chlorine atoms results in rapid and permanent photobleaching which may be due to intramolecular hydrogen abstraction. The effects of solvent polarity were examined in a wide variety of DMSO-carbon tetrachloride mixed solvents. The quantum yields of photobleaching decreased from 0.27 to 0.08 as the solvent polarity increased, while significant changes were observed in the low DMSO concentration range ( -3 ). This cannot be accounted for by simple solvent polarity effects. The effects of polar and nonpolar additives were also examined and it is concluded that the specific solvation effect of DMSO was the main cause of the significant change in quantum yields in the low concentration range of DMSO

  9. Isotope fractionation associated with the direct photolysis of 4-chloroaniline.

    Science.gov (United States)

    Ratti, Marco; Canonica, Silvio; McNeill, Kristopher; Erickson, Paul R; Bolotin, Jakov; Hofstetter, Thomas B

    2015-04-07

    Compound-specific isotope analysis is a useful approach to track transformations of many organic soil and water pollutants. Applications of CSIA to characterize photochemical processes, however, have hardly been explored. In this work, we systematically studied C and N isotope fractionation associated with the direct photolysis of 4-Cl-aniline used as a model compound for organic micropollutants that are known to degrade via photochemical processes. Laboratory experiments were carried out at an irradiation wavelength of 254 nm over the pH range 2.0 to 9.0 as well as in the presence of Cs(+) as a quencher of excited singlet 4-Cl-aniline at pH 7.0 and 9.0. We observed considerable variation of C and N isotope enrichment factors, ϵC and ϵN, between -1.2 ± 0.2‰ to -2.7 ± 0.2‰ for C and -0.6 ± 0.2‰ to -9.1 ± 1.6‰ for N, respectively, which could not be explained by the speciation of 4-Cl-aniline alone. In the presence of 1 M Cs(+), we found a marked increase of apparent (13)C-kinetic isotope effects ((13)C-AKIE) and decrease of 4-Cl-aniline fluorescence lifetimes. Our data suggest that variations of C and N isotope fractionation originate from heterolytic dechlorination of excited triplet and singlet states of 4-Cl-aniline. Linear correlations of (13)C-AKIE vs (15)N-AKIE were distinctly different for these two reaction pathways and may be explored further for the identification of photolytic aromatic dechlorination reactions.

  10. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunkyung [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shon, Ho Kyong [School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), PO Box 123, Broadway, Sydney 2007, NSW (Australia); Cho, Jaeweon, E-mail: chojw@yonsei.ac.kr [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-07-15

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with {sup 3}DOM{sup *}for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ({sup 3}DOM{sup *}) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants

  11. Thermal assessment of sunlight impinging on OSIRIS-REx OCAMS PolyCam, OTES, and IMU-sunshade MLI blankets in flight

    Science.gov (United States)

    Choi, Michael K.

    2017-09-01

    The NASA Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft was successfully launched into orbit on September 8, 2016. It is traveling to a near-Earth asteroid (101955) Bennu, study it in detail, and bring back a pristine sample to Earth for scientific analyses. At the Outbound Cruise nominal spacecraft attitude, with Sun on +X, sunlight impinges on the OSIRIS-REx camera suite (OCAMS) PolyCam sunshade multilayer insulation (MLI) with microporous black polytetrafluoroethylene (PTFE), a portion of the PolyCam optics support tube (MLI with germanium black Kapton (GBK)), a portion of the OSIRIS-REx Thermal Emission Spectrometer (OTES) sunshade (MLI with GBK), the Inertia Measurement Unit (IMU) sunshade (MLI with GBK), and the OSIRIS-REx Laser Altimeter (OLA) sunshade (MLI with GBK). Sunlight is reflected or scattered by the above MLIs to the other components on the forward (+Z) deck. It illuminates the forward deck. A detailed thermal assessment on the solar impingement has been performed for the Proximity Ops at the asteroid, Touch-and-Go sample acquisition, and Return Cruise mission phases.

  12. Evidence for three types of x-ray damage repair in yeast and sensitivity of totally repair deficient strains to sunlight

    International Nuclear Information System (INIS)

    Game, J.C.; Schild, D.; Mortimer, R.K.

    1987-01-01

    Mutants of yeast that confer sensitivity to x-rays are known to fall into two epistasis groups, called here the RAD51 and RAD18 groups, which are each thought to control a different type of x-ray repair. They examine here the role of genes in a third repair pathways in x-ray repair. RAD1 and RAD3 are known to be important in the repair of pyrimidine dimers after uv-irradiation. They find that these genes can also play an important role in x-ray repair, but that this role is only exposed when both the other pathways of x-ray repair are blocked. Double mutants blocked in the RAD51 and RAD18 pathways are significantly less x-ray sensitive than triple mutants blocked in these pathways but also mutant in either the RAD1 or RAD3 genes. In a related experiment, they tested the importance of DNA repair in nature by determining the sensitivity to natural unfiltered sunlight of a strain lacking all known DNA repair pathways. They constructed a quadruple mutant strain containing RAD1-1, RAD18-2, RAD51-1 and PHR1-1. The latter mutation blocks the cell's ability to photoreactivate uv damage. They found that this strain was so sensitive to sunlight that less than three seconds' exposure would cause an average of one lethal hit per cell, and survival was less than 2% after ten seconds' exposure. Wild type yeast at sea level showed no killing after thirty minutes. the quadruple mutant is approximately one thousand times more sensitive to sunlight than the related wild type

  13. Terrestrial photovoltaic power systems with sunlight concentration. Annual progress report, January 1, 1975--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Backus, C.E.

    1976-01-31

    This annual report is for the second year of a program to investigate the characteristics of the components and the total system using sunlight concentrated onto solar cells. The second year was primarily to experimentally investigate the conclusions of the first year of analytical studies. Cells have been fabricated that are designed for different intensities. Typically the efficiency of a cell will increase from its 11 percent at AM1 peak to efficiency at the designed concentration level and return to its initial efficiency at about 3 times its designed concentration level. The developed cells have been tested under high intensity simulators and in concentrated sunlight and have shown to have the predicted response. The experimental testing of passive cooling limitations for cooling cells with just finned arrangements in the back of the cell has been completed in the controlled environment of a wind tunnel. These experiments have confirmed the heat transfer coefficients that had been used in the analytical studies. Testing was done to collect heat transfer coefficients for actual wind conditions and these data show good agreement with the controlled wind tunnel data. Four photovoltaic/concentrator system experiments have been started with CR of about 3, 10, 25, and 100. System analysis has indicated that photovoltaic concentration systems may be attractive in low solar irradiation areas such as Cleveland.

  14. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie

    2011-05-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  15. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie; Mazellier, Patrick; Croue, Jean-Philippe

    2011-01-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  16. Sunlight Triggers Cutaneous Lupus through a Colony Stimulating Factor-1 (CSF-1) Dependent Mechanism in MRL-Faslpr mice

    Science.gov (United States)

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T.; Lucas, Julie A.; Rabacal, Whitney A.; Croker, Byron P.; Zong, Xiao-Hua; Stanley, E. Richard; Kelley, Vicki R.

    2008-01-01

    Sunlight (UVB) triggers cutaneous (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø) -mediated mechanism in MRL-Faslpr mice. By constructing mutant MRL-Faslpr strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex-vivo gene transfer to deliver CSF-1 intra-dermally, we determined that CSF-1 induces CLE in lupus-susceptible, MRL-Faslpr mice, but not in lupus-resistant, BALB/c mice. Notably, UVB incites an increase in Mø, apoptosis in the skin and CLE in MRL-Faslpr, but not in CSF-1-deficient MRL-Faslpr mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Mø that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Faslpr, but not lupus-resistant BALB/c mice. Taken together, we envision CSF-1 as the “match” and lupus-susceptibility as the “tinder” leading to CLE. PMID:18981160

  17. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters.

    Science.gov (United States)

    Bodrato, Marco; Vione, Davide

    2014-04-01

    The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.

  18. Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms

    Science.gov (United States)

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-01

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν248nm → CH3CHO*, CH3CHO* → CH3 + HCO ϕ1a = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ1e = 0.205 ± 0.04, CH3CHO*{to 2pc{rArrfill}}limits^{o2}CH3CO + HO2 ϕ1f = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as φ_{CH3} = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ1b = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ1c = 0.

  19. Pengaruh Suhu Terhadap Tegangan Permukaan Sabun Cuci Piring Cair Buatan Sendiri, Sunlight, Dan S.O.S

    OpenAIRE

    Siahaan, Okio Patar

    2011-01-01

    The effect of temperature on the surface tension of homemade liquid dish soap, Sunlight, and SOS was carried out. The temperatures was variated 280C(without heating), 300C, 400C and 500C. The homemade liquid dish soap was prepared by using an active ingredients. The active ingredient of the liquid dishwashing soap were sodium lauryl ether sulphate, sodium alkyl benzene sulfonate, and sodium lauril ether sulfate, respectively. The determination of surface tension was based the increasing of t...

  20. Recovery of hexavalent chromium from water using photoactive TiO2-montmorillonite under sunlight

    Directory of Open Access Journals (Sweden)

    Ridha Djellabi

    2016-04-01

    Full Text Available Hexavalent chromium was removed from water under sunlight using a synthesized TiO2-montmorillonite (TiO2-M employing tartaric acid as a hole scavenger. Cr(VI species was then reduced to Cr(III species by electrons arising from TiO2 particles. After that, the produced Cr(III species  was transferred to montmorillonite  due to electrostatic attractions leading to  set free TiO2 particles for a further Cr(VI species reduction. Furthermore, produced Cr(III, after Cr(VI reduction, does not  penetrate into the solution. The results indicate that no dark adsorption of Cr(VI species on TiO2-M is present, however, the reduction of Cr(VI species under sunlight increased strongly as a function of tartaric acid concentration up to 60 ppm, for which the extent of reduction is maximum within 3 h. On the other hand, the reduction extent of Cr(VI species is maximum with an initial concentration of Cr(VI species lower than 30 ppm by the use of 0.2 g/L of TiO2-M. Nevertheless, the increase of the Cr(VI initial concentration led to increase the amount of Cr(VI species reduced (capacity of reduction until a Cr(VI concentration of 75 and 100 ppm, for which  it remained constant at around 221 mg/g. For comparison, the increase of Cr(VI species concentration in the case of the commercial TiO2 P25 under the same conditions exhibited its deactivation when the reduced amount decreased from 198.1 to 157.6 mg/g as the concentration increased from 75 to 100 ppm.

  1. On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms

    Science.gov (United States)

    Deming, Drake; Plymate, Claude

    1994-01-01

    We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.

  2. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Daghrir, Rimeh, E-mail: rimeh.daghrir@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Drogui, Patrick, E-mail: patrick.drogui@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Delegan, Nazar, E-mail: delegan@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada)

    2014-01-01

    The degradation of chlortetracycline in synthetic solution and in municipal effluent was investigated using a photoelectrocatalytic oxidation process under visible irradiation. The N-doped TiO{sub 2} used as photoanode with 3.4 at.% of nitrogen content was prepared by means of a radiofrequency magnetron sputtering (RF-MS) process. Under visible irradiation, higher photoelectrocatalytic removal efficiency of CTC was recorded using N-doped TiO{sub 2} compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The photoelectrocatalytic process operated at 0.6 A of current intensity during 180 min of treatment time promotes the degradation of 99.1 ± 0.1% of CTC. Under these conditions, removal rates of 85.4 ± 3.6%, 87.4 ± 3.1% and 55.7 ± 2.9% of TOC, TN and NH{sub 4}{sup +} have been recorded. During the treatment, CTC was mainly transformed into CO{sub 2} and H{sub 2}O. The process was also found to be effective in removing indicator of pathogens such as fecal coliform (log-inactivation was higher than 1.2 units). - Highlights: •PECO process is a feasible technology for the treatment of MWW contaminated by CTC. •99.1% ± 0.1% of CTC was degraded by PECO using N-doped TiO{sub 2}. •85.4% ± 3.6% of TOC removal and 97.5% ± 1.2% of COD removal were achieved. •87.4% ± 3.1% of TN removal and 55.7% ± 2.9% of NH{sub 4}{sup +} removal were recorded. •More than 94% of fecal coliform was removed (abatement > 1.2-log units)

  3. Genotoxic action of sunlight upon Bacillus subtilis spores

    International Nuclear Information System (INIS)

    Munakata, Nobuo

    1989-01-01

    Samples of Bacillus subtilis spores dried on membrane filter were exposed to natural sunlight from solar-noon time at Tokyo. The survival and mutation induction of wild-type (UVR) and repair-deficient (UVS) spores were determined on 66 occasions since 1979. Two of the values were considered to be useful in monitoring solar UV intensity; the inverse of the time (in minutes) of exposure to kill 63% of the UVS spores ('sporocidal index') and the induced mutation frequency at 60 minutes of exposure of the UVR spores ('mutagenic index'). Both values were varied greatly due to time of a year, weather and other conditions. Estimates of year-round changes under clear skies were obtained by connecting the maximum values attained in these years. In these curves, there are more than 7-fold differences in the genotoxicity between winter and summer months, with major increases observed in early spring and decreases through autumn. Using a series of UV cut-off filters, the wavelengths most effective for the sporocidal actions were estimated to be in the range of 308 - 325 nm, shorter wavelengths being effective when the genotoxicity was higher. Sunburn meter of Robertson-Berger type seems to respond to slightly longer wavelength components of the solar spectrum. However, a reasonable correlation was obtained between the reading of the meter and the sporocidal index. (author)

  4. The economic feasibility of producing hydrogen from sunlight and wind

    International Nuclear Information System (INIS)

    Mann, M. K.; Spath, P. L.; Watt, A. S.

    1999-01-01

    The feasibility of utilizing photoelectrochemical and electrolytical technologies to convert energy from the sun and wind into hydrogen was studied. In exploring opportunities to reduce the cost of hydrogen production through interaction with the electric utility grid, it was found that direct photoelectrochemical (PEC) conversion of sunlight has the economic potential to compete with direct photovoltaic/electrolysis, notwithstanding the significant stability and efficiency issues that are still awaiting solution. Interaction with the grid, while maximizing electrolizer use, makes a significant impact on the economics of producing hydrogen by photovoltaic/electrolysis, making wind-based systems also more economical. Electrolysis was found to be the optimal solution only with electricity from renewable sources or with less expensive non-peak electricity. On the other hand, the delivered cost of hydrogen was found to the lowest when electricity production was decoupled from the hydrogen production operation. Decoupled hydrogen production also has an additional benefit, i.e. it produces the hydrogen where it is needed, therefore it mitigates the need for various storage and distribution costs. 6 refs., 4 tabs., 2 figs

  5. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jeremy T. [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States); Fitzgerald, Neil [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States)], E-mail: neil.fitzgerald@marist.edu

    2009-09-15

    Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 {mu}g L{sup - 1} (compared to 2.1 {mu}g L{sup - 1} for a previously reported system in the absence of trapping) with a precision of 11% for a 10 {mu}g L{sup - 1} mercury standard (RSD, N = 5)

  6. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions.

    Directory of Open Access Journals (Sweden)

    Dongxue Yin

    Full Text Available This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs, total ammonium nitrogen (TAN, total alkalinity (TA and pH during pig manure (PM digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP. PM1 obtained higher CBP (15020.0 mL with a more stable pH and a lower TAN concentration (1414.5 mg/L compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively. The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed.

  7. Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions.

    Science.gov (United States)

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui

    2015-01-01

    This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed.

  8. Synthesis of Ag-decorated porous TiO{sub 2} nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yun-Chang; Dai, Xin-Rong [Anhui & Huaihe river institute of hydraulic research, Hefei, Anhui 230088 (China); Hu, Xiao-Ye, E-mail: hxy821982@issp.ac.cn [Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Huang, Su-Zhen [Institute of plasma physics, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: ftbjin@hotmail.com [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-30

    Highlights: • The Ag-decorated porous TiO{sub 2} nanowires were succefully synthesized. • A sunlight induced ethanol reduction method for Ag decoration has been reported. • The Ag-decorated porous TiO{sub 2} nanowires exhibit excellent photocatalytic activity. • The photodegradation ratio of the as-prepared product is much higher than that of P25. - Abstract: In this work, Ag-decorated porous TiO{sub 2} nanowires were successfully synthesized via a facile and low-cost sunlight induced reduction method. The cooperation of sunlight irradiation and ethanol reduction results the formation and decoration of the Ag nanoparticles on the porous TiO{sub 2} nanowires. The structure of the Ag-decorated porous TiO{sub 2} nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) measurements. It can be seen that the Ag nanoparticles are well dispersed within the porous TiO{sub 2} nanowires. The as-prepared Ag-decorated porous TiO{sub 2} nanowires exhibits excellent photocatalytic properties. The photocatalytic tests show that 10 ppm methylene blue can be photodegraded within 60 min. And the photodegradation ratio of the Ag-decorated porous TiO{sub 2} nanowires much higher than that of P25 and porous TiO{sub 2} nanowires. Moreover, the Ag-decorated porous TiO{sub 2} nanowires also reveal good photocatalytic activity towards to other organic pollutions, such as phenol and R6G. Therefore, it is believed that the Ag-decorated porous TiO{sub 2} nanowires can be used as a potential high performance photocatalyst in wastewater treatment.

  9. Sunlight and Vitamin D: The Bone and Cancer Connections (invited paper)

    International Nuclear Information System (INIS)

    Holick, M.F.

    2000-01-01

    Vitamin D plays an essential role for calcium metabolism and bone health. It has been estimated that 90 to 95% of our vitamin D requirement comes from casual exposure to sunlight. There is a wide variety of factors that strongly influence the cutaneous production of vitamin D. These include melanin pigmentation, latitude, time of day, sunscreen use, and aging. There is an association with increased risk and mortality to breast, colon, and prostrate cancer. There is evidence that 25-hydroxyvitamin D, the major circulating form of vitamin D, is directly metabolised in prostate, breast, colon, and skin cells to its active form 1,25-dihydroxyvitamin D. 1,25-Dihydroxyvitamin D 3 has the capacity to regulate cell proliferation and differentiation. Therefore, it may be that an increase in the cutaneous synthesis of vitamin D results in the increase in the production of 1,25(OH) 2 D in tissues not related to calcium metabolism that results in a decrease in malignancy. (author)

  10. Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight.

    Science.gov (United States)

    Kozmin, Stanislav G; Pavlov, Youri I; Kunkel, Thomas A; Sage, Evelyne

    2003-08-01

    Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase eta (Poleta) and polymerase zeta (Polzeta), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310-1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Delta, rev3Delta and rev3Delta rad30Delta strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6-4) photoproducts derived from studies with UVC. They further suggest that Poleta participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polzeta is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polzeta, Poleta contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine.

  11. Sunscreen-Based Photocages for Topical Drugs: A Photophysical and Photochemical Study of A Diclofenac-Avobenzone Dyad

    Directory of Open Access Journals (Sweden)

    Isabel Aparici-Espert

    2018-03-01

    Full Text Available Photosensitization by drugs is a problem of increasing importance in modern life. This phenomenon occurs when a chemical substance in the skin is exposed to sunlight. Photosensitizing drugs are reported to cause severe skin dermatitis, and indeed, it is generally advised to avoid sunbathing and to apply sunscreen. In this context, the nonsteroidal anti-inflammatory drug (NSAID diclofenac is a photosensitive drug, especially when administered in topical form. In this work, efforts have been made to design and study an innovative pro-drug/pro-filter system containing diclofenac and the UVA filter avobenzone in order to develop a safer use of this topical drug. The design is based on the presence of a well-established photoremovable phenacyl group in the avobenzone structure. Steady-state photolysis of the dyad in hydrogen-donor solvents, monitored by UV-Vis spectrophotometry and HPLC, confirms the simultaneous photorelease of diclofenac and avobenzone. Laser flash photolysis and phosphorescence emission experiments allow us to gain insight into the photoactive triplet excited-state properties of the dyad. Finally, it is shown that avobenzone provides partial photoprotection to diclofenac from photocyclization to carbazole derivatives.

  12. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  13. Matrix isolation and computational study of isodifluorodibromomethane (F2CBr-Br): a route to Br2 formation in CF2Br2 photolysis.

    Science.gov (United States)

    George, Lisa; Kalume, Aimable; El-Khoury, Patrick Z; Tarnovsky, Alexander; Reid, Scott A

    2010-02-28

    The photolysis products of dibromodifluoromethane (CF(2)Br(2)) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF(2)Br(2):Ar samples (approximately 1:5000) held at approximately 5 K yielded iso-CF(2)Br(2) (F(2)CBrBr), a weakly bound isomer of CF(2)Br(2), which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF(2)Br(2) are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF(2)Br(2) potential energy surface, lying some 55 kcal/mol above the CF(2)Br(2) ground state. The energies of various stationary points on the CF(2)Br(2) potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF(2)Br(2) is an intermediate in the Br+CF(2)Br-->CF(2)+Br(2) reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF(2)Br(2). Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF(2)Br(2), particularly with respect to the existence of a roaming atom pathway leading to molecular products.

  14. Matrix isolation and computational study of isodifluorodibromomethane (F2CBr-Br): A route to Br2 formation in CF2Br2 photolysis

    International Nuclear Information System (INIS)

    George, Lisa; Kalume, Aimable; Reid, Scott A.; El-Khoury, Patrick Z.; Tarnovsky, Alexander

    2010-01-01

    The photolysis products of dibromodifluoromethane (CF 2 Br 2 ) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF 2 Br 2 :Ar samples (∼1:5000) held at ∼5 K yielded iso-CF 2 Br 2 (F 2 CBrBr), a weakly bound isomer of CF 2 Br 2 , which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF 2 Br 2 are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF 2 Br 2 potential energy surface, lying some 55 kcal/mol above the CF 2 Br 2 ground state. The energies of various stationary points on the CF 2 Br 2 potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF 2 Br 2 is an intermediate in the Br+CF 2 Br→CF 2 +Br 2 reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF 2 Br 2 . Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF 2 Br 2 , particularly with respect to the existence of a roaming atom pathway leading to molecular products.

  15. Effect of artificial sunlight on the retention of external calcein marks on lake trout

    Science.gov (United States)

    Honeyfield, D.C.; Kehler, T.; Fletcher, J.W.; Mohler, J.W.

    2008-01-01

    When choosing a fish marking technique to address fishery related questions, it is important to consider factors that affect mark retention. Calcein, a chemical marking agent, is under investigation for potential use on fish. Two laboratory trials were conducted with calcein-marked lake trout Salvelinus namaycush to determine the effect of artificial sunlight on calcein mark intensity. In trial 1, fish exposed to 18,000 lx for 7 d lost 90% or more of the calcein mark intensity (relative to the colorimetric key, mg/L) on the head, body, ventral region, and pectoral fins relative to mark intensity in fish that were maintained in darkness. In trial 2, light intensity was reduced 2.5-3.0-fold. After 7 d of light exposure, calcein mark intensity on the head was reduced by 40-45% relative to mark intensity in fish that were held in darkness; by day 14, calcein mark intensity on the head was reduced by 55-60% relative to that of dark-treated fish. No further decline was observed in light-exposed fish, and head mark intensity values did not differ among days 14, 21, and 28 for this treatment group. Of the four areas evaluated, the head and pectoral fin were more easily read using a colorimetric key than the lateral or ventral regions of the fish. The concentration of calcein spotted on filter paper to devise the colorimetric key ranged from 1 to 100 mg/L. A difference of approximately 7 mg/L in apparent calcein mark intensity means for the head region could be detected using the colorimetric key. These trials showed that calcein mark intensity on lake trout declined when fish were exposed to artificial sunlight, and the use of a colorimetric key improved the objectivity of calcein mark intensity assessment.

  16. Ozonolysis and Subsequent Photolysis of unsaturated organic molecules: Model Systems for Photochemical Aging of Organic Aerosol Particles

    Science.gov (United States)

    Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A.

    2005-12-01

    Chemical and photochemical aging of organic species adsorbed on aerosol particle surfaces is believed to have a significant effect on cloud condensation properties of atmospheric aerosols. Ozone initiated oxidation reactions of thin films of undecylenic acid and alkene-terminated self assembled monolayers (SAMs) on SiO2 surface were investigated using a combination of spectroscopic and mass spectrometric techniques. Photolysis of the oxidized film in the tropospheric actinic region (λ>290 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the enhanced photochemical activity. The presence of peroxides in the oxidized sample was confirmed by mass-spectrometric analysis and by an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is also observed. The reaction mechanism and its implications for photochemical aging of atmospheric aerosol particles will be discussed.

  17. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    International Nuclear Information System (INIS)

    Nguyen, Phuc H; Matzner, Richard A

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  18. Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by LC-UV–MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Nareman D.H., E-mail: drndahshan@yahoo.com [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Mahmoud, Waleed M.M. [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Hadad, Ghada M.; Abdel-Salam, Randa A. [Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany)

    2013-01-15

    Highlights: ► Sulfonamides are one of the most extensively used antibiotics in human and veterinary medicine. ► Sulfamethoxypyridazine (SMP) underwent photodegradation in three different media. ► SMP was not readily biodegradable. ► SMP and some of its degradation products were identified by LC-UV–MS/MS. -- Abstract: Sulfonamides are one of the most frequently used antibiotics worldwide. Therefore, mitigation processes such as abiotic or biotic degradation are of interest. Photodegradation and biodegradation are the potentially significant removal mechanisms for pharmaceuticals in aquatic environments. The photolysis of sulfamethoxypyridazine (SMP) using a medium pressure Hg-lamp was evaluated in three different media: Millipore water pH 6.1 (MW), effluent from sewage treatment plant pH 7.6 (STP), and buffered demineralized water pH 7.4 (BDW). Identification of transformation products (TPs) was performed by LC-UV–MS/MS. The biodegradation of SMP using two tests from the OECD series was studied: Closed Bottle test (OECD 301 D), and Manometric Respirometry test (OECD 301 F). In biodegradation tests, it was found that SMP was not readily biodegradable so it may pose a risk to the environment. The results showed that SMP was removed completely within 128 min of irradiation in the three media, and the degradation rate was different for each investigated type of water. However, dissolved organic carbon (DOC) was not removed in BDW and only little DOC removal was observed in MW and STP, thus indicating the formation of TPs. Analysis by LC-UV–MS/MS revealed new TPs formed. The hydroxylation of SMP represents the main photodegradation pathway.

  19. Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by LC-UV–MS/MS

    International Nuclear Information System (INIS)

    Khaleel, Nareman D.H.; Mahmoud, Waleed M.M.; Hadad, Ghada M.; Abdel-Salam, Randa A.; Kümmerer, Klaus

    2013-01-01

    Highlights: ► Sulfonamides are one of the most extensively used antibiotics in human and veterinary medicine. ► Sulfamethoxypyridazine (SMP) underwent photodegradation in three different media. ► SMP was not readily biodegradable. ► SMP and some of its degradation products were identified by LC-UV–MS/MS. -- Abstract: Sulfonamides are one of the most frequently used antibiotics worldwide. Therefore, mitigation processes such as abiotic or biotic degradation are of interest. Photodegradation and biodegradation are the potentially significant removal mechanisms for pharmaceuticals in aquatic environments. The photolysis of sulfamethoxypyridazine (SMP) using a medium pressure Hg-lamp was evaluated in three different media: Millipore water pH 6.1 (MW), effluent from sewage treatment plant pH 7.6 (STP), and buffered demineralized water pH 7.4 (BDW). Identification of transformation products (TPs) was performed by LC-UV–MS/MS. The biodegradation of SMP using two tests from the OECD series was studied: Closed Bottle test (OECD 301 D), and Manometric Respirometry test (OECD 301 F). In biodegradation tests, it was found that SMP was not readily biodegradable so it may pose a risk to the environment. The results showed that SMP was removed completely within 128 min of irradiation in the three media, and the degradation rate was different for each investigated type of water. However, dissolved organic carbon (DOC) was not removed in BDW and only little DOC removal was observed in MW and STP, thus indicating the formation of TPs. Analysis by LC-UV–MS/MS revealed new TPs formed. The hydroxylation of SMP represents the main photodegradation pathway

  20. Direct Determination of the Rate Coefficient for the Reaction of OH Radicals with Monoethanol Amine (MEA) from 296 to 510 K.

    Science.gov (United States)

    Onel, L; Blitz, M A; Seakins, P W

    2012-04-05

    Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.

  1. Quantification of ultraviolet radiation-induced DNA damage in the urine of Swedish adults and children following exposure to sunlight

    OpenAIRE

    Liljendahl, Tove Sandberg; Kotova, Natalia; Segerbäck, Dan

    2012-01-01

    DNA damage following exposure to ultraviolet radiation (UVR) is important in skin cancer development. The predominant photoproduct, cyclobutane thymine dimer (T=T), is repaired and excreted in the urine, where it provides a biomarker of exposure. To quantify urinary T=T levels after recreational sunlight exposure in adults and children. Average UVR doses were measured with personal dosimeters. Urinary T=T was analysed with (32)P-postlabelling. ResuLTS: Background levels of T=T increased...

  2. 265 nm laser flash photolysis of some ortho-substituted anilides and related N-formylkynurenine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Pileni, M P; Santus, R [Museum National d' Histoire Naturelle, 75 - Paris (France); Land, E J

    1978-06-01

    The physical and chemical properties of the triplet state of eight ortho-substituted anilides including N-formylkynurenine(FK), the major trp UV-photooxidation product and a remarkable photodynamic agent, have been investigated using both pulse radiolysis and 265 nm laser flash photolysis techniques. The molar extinction coefficient, the inter-system-crossing quantum yield and the oscillator strength of the T/sub 1/..-->..Tsub(n) absorption band (lambdasub(max)approximately equal 450nm) have been determined. It is shown that anilides having n..pi..* triplets readily react with most solvents whereas those having ..pi..,..pi..* triplets slowly react with alcohols. In both cases, the semi-reduced species are formed. In water, the formation of the semi-reduced species most probably involves the first excited singlet state. The triplet state properties of the FK derivatives (i.e. ortho-substituted anilides having a side chain bearing charged groups such as carboxylic or amino groups) are strongly modified by the ionization state of the charged side chain. In the case of the FK derivatives possessing an uncharged amino group, quenching of the triplet state occurs via a fast reversible electron transfer reaction from the NH/sub 2/ to the triplet anilide.

  3. Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent

    Science.gov (United States)

    Susilowati, E.; Maryani; Ashadi

    2018-04-01

    The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.

  4. Laser induced transient absorptions of the excited triplet state of 9,10-anthraquinone-2-sulfonate. A further study by 248 nm laser photolysis

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizheng; Wang Wenfen; Yao Side; Lin Nianyun

    1999-01-01

    Transient absorption spectrum of triplet state of 9,10-anthraquinone-2-sulfonate (AQS) in aqueous solution has been investigated using 248 nm (KrF) laser photolysis. A whole transient absorption spectrum with absorption maxim at 380 nm and 580 nm has been assigned to triple AQS from detailed kinetic analysis of decay of 380 nm and 580 nm signals, which is the neat characteristic absorption of triplet AQS reported for the first time. In addition, the difference in feature of the spectrum of triplet AQS in H 2 O and that in CH 3 CN was eliminated by further study using 248 nm laser pulses

  5. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study

    Science.gov (United States)

    Kent, Shia T.; Kabagambe, Edmond K.; Wadley, Virginia G.; Howard, Virginia J.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Judd, Suzanne E.; Peace, Fredrick; McClure, Leslie A.

    2014-04-01

    Sunlight may be related to cognitive function through vitamin D metabolism or circadian rhythm regulation. The analysis presented here sought to test whether ground and satellite measures of solar radiation are associated with cognitive decline. The study used a 15-year residential history merged with satellite and ground monitor data to determine sunlight (solar radiation) and air temperature exposure for a cohort of 19,896 cognitively intact black and white participants aged 45+ from the 48 contiguous United States. Exposures of 15, 10, 5, 2, and 1-year were used to predict cognitive status at the most recent assessment in logistic regression models; 1-year insolation and maximum temperatures were chosen as exposure measures. Solar radiation interacted with temperature, age, and gender in its relationships with incident cognitive impairment. After adjustment for covariates, the odds ratio (OR) of cognitive decline for solar radiation exposure below the median vs above the median in the 3rd tertile of maximum temperatures was 1.88 (95 % CI: 1.24, 2.85), that in the 2nd tertile was 1.33 (95 % CI: 1.09, 1.62), and that in the 1st tertile was 1.22 (95 % CI: 0.92, 1.60). We also found that participants under 60 years old had an OR = 1.63 (95 % CI: 1.20, 2.22), those 60-80 years old had an OR = 1.18 (95 % CI: 1.02, 1.36), and those over 80 years old had an OR = 1.05 (0.80, 1.37). Lastly, we found that males had an OR = 1.43 (95 % CI: 1.22, 1.69), and females had an OR = 1.02 (0.87, 1.20). We found that lower levels of solar radiation were associated with increased odds of incident cognitive impairment.

  6. Synthesis and Characterization of Mn–C–Codoped TiO2 Nanoparticles and Photocatalytic Degradation of Methyl Orange Dye under Sunlight Irradiation

    Directory of Open Access Journals (Sweden)

    Wei Xin

    2012-01-01

    Full Text Available Novel visible-light-active Mn–C–TiO2 nanoparticles were synthesized by modified sol-gel method based on the self-assembly technique using polyoxyethylenes orbitan monooleate (Tween 80 as template and carbon precursor and manganese acetate as manganese precursor. The samples were characterized by XRD, FTIR, UV-vis diffuse reflectance, XPS, and laser particle size analysis. The XRD results showed that Mn–C–TiO2 sample exhibited anatase phase and no other crystal phase was identified. High specific surface area, small crystallite size, and small particle size distribution could be obtained by manganese and carbon codoped and Mn–C–TiO2 exhibited greater red shift in absorption edge of samples in visible region than that of C–TiO2 and pure TiO2. The photocatalytic activity of synthesized catalyst was evaluated by photocatalytic oxidation of methyl orange (MO solution under the sunlight irradiation. The results showed that Mn–C–TiO2 nanoparticles have higher activity than other samples under sunlight, which could be attributed to the high specific surface area, smaller particle size, and lower band gap energy.

  7. Bibliographies on radiation chemistry: Pt. 12; Rate constants for reactions of nonmetallic inorganic radicals in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Helman, W P; Ross, A B [Notre Dame Univ., IN (USA). Radiation Chemistry Data Center

    1990-01-01

    Rate constants have been determined by pulse radiolysis, flash photolysis, and other methods, for a wide variety of reactions involving transient radicals in aqueous solution. Reliable rate constants have been established for reactions of radicals from water (e{sub aq}{sup -}, {center dot}H, {center dot}OH/{center dot}O{sup -}) and the data have been tabulated (Buxton, 1988) through 1986. Kinetic data for HO{sub 2}{center dot}/O{sub 2}{center dot}{sup -} were tabulated. (Bielski, 1985) from papers published through 1983. A compilation of rate constants, from the literature through Mid-1987, for other nonmetallic inorganic radicals has also appeared recently (Neta, 1988). Together, these compilations contain rate constants for more than 6,000 different reactions, reported in about 2,000 references. The present bibliography provides a list of relevant references which have been collected since the publication of the above-mentioned compilations. The list contains references received through the end of December, 1989. (author).

  8. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    Science.gov (United States)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  9. UV radiation-induced photochemical damage of tryptophan in peptides, proteins and ocular lenses

    International Nuclear Information System (INIS)

    Hibbard, L.B.

    1985-01-01

    These studies were undertaken to investigate the possible involvement of the amino acid tryptophan in the near-ultraviolet radiation-induced photochemical alteration of peptides and proteins and the role tryptophan photolysis plays in ocular lens damage. Sample irradiations were performed to determine if tryptophan photolysis occurs with radiation in the UV-A region in comparison to photolysis induced by wavelengths in the normal absorption band of the amino acid (UV-B). Photolysis studies were carried out on free tryptophan and two dipeptides, tryptophyglycine and glycyltryptophan, in aqueous solutions at different pH values in the range 4.5-10.0 under aerated or anaerobic conditions. Rates of photolysis of these 290 nm-irradiated compounds, detected by observing tryptophan fluorescence intensity loss during irradiation, were compared and significant differences were observed for each compound which varied with pH and oxygen environment. Another series of experiments examined the photolysis of tryptophan residues in lens proteins in whole rat lenses induced by 290 nm and 298 nm dye laser radiation. Tryptophan residue photolysis was, once again, monitored by loss in tryptophan fluorescence intensity. A relationship was derived between tryptophan loss and photoproduct buildup during irradiation

  10. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    Science.gov (United States)

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating.

  11. Roles of Saccharomyces cerevisiae DNA polymerases Polη and Polζ in response to irradiation by simulated sunlight

    Science.gov (United States)

    Kozmin, Stanislav G.; Pavlov, Youri I.; Kunkel, Thomas A.; Sage, Evelyne

    2003-01-01

    Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase η (Polη) and polymerase ζ (Polζ), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310–1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Δ, rev3Δ and rev3Δ rad30Δ strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6–4) photoproducts derived from studies with UVC. They further suggest that Polη participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polζ is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polζ, Polη contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine. PMID:12888515

  12. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  13. Apoptosis induced by pyrimidine dimer produced by ultraviolet irradiation in cultured cyprinodont cells. Analysis utilizing the evasion from photolysis

    International Nuclear Information System (INIS)

    Nishigaki, Reiko

    2000-01-01

    This is the review of author's investigations on the mechanism of apoptosis induced by UV irradiation in cultured cyprinodont cells highly expressing photolyases of cyclobutane pyrimidine dimer (CPD). Authors found out the evasion from photolysis by UV-induced apoptosis of which cascade had been thought irreversible: the cascade was reversible until the process of DNA fragmentation. In controlling the process, a mechanism to recognize CPD was found concerned. In those cells, morphological changes by UVC were reversible ones in apoptosis from which they evaded if CPD was repaired. Investigations on caspase, which playing important roles in apoptosis, revealed that the DEVD-cleaving enzyme activities were regulated by CPD quantity. However, differing from mammalian cells, elevation of caspase (-7, -3A and -3B) activities did not always induce the morphologic changes and DNA fragmentation. Further studies were thought necessary to elucidate the mechanism of apoptosis in those fish cells. (K.H.)

  14. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  15. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    Science.gov (United States)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  16. Accounting for dissociation and photolysis: a review of the algal toxicity of triclosan.

    Science.gov (United States)

    Roberts, Jayne; Price, Oliver R; Bettles, Nicola; Rendal, Cecilie; van Egmond, Roger

    2014-11-01

    Triclosan, an antimicrobial agent commonly used in down-the-drain consumer products, is toxic to freshwater microalgae. However, the rapid photolysis and pH-dependent dissociation of this compound may give rise to uncertainty in growth inhibition tests with freshwater microalgae, if these are not well characterized. Methods are presented to minimize these uncertainties by stabilizing pH with an organic buffering agent (Bis-Tris) and by the application of ultraviolet (UV) covers to remove UV wavelengths. Toxicity tests with these methods were in compliance with the validity criteria of the Organisation for Economic Co-operation and Development test 201, and no negative effects were seen in controls relative to the unmodified method. The methods were used for toxicity tests with triclosan at pH levels of 7.0, 8.0, and 8.5, yielding effective concentration, 10% values of 0.5 µg/L, 0.6 µg/L, and 12.1 µg/L, respectively. The observed change in toxicity with pH was proportional to the change in bioconcentration factor (BCF) as calculated using the cell model (a dynamic flux model based on the Fick-Nernst-Planck equations, in this case parameterized for an algal cell). Effect concentrations produced with the methods presented in the present study offer robust data on which to base risk assessment, and it is suggested that similar approaches be used to minimize uncertainty when other compounds that dissociate and photolyse are tested. © 2014 SETAC.

  17. Direct and indirect photolysis of triclocarban in the presence of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Tamara D. Trouts

    2015-05-01

    Full Text Available Abstract Photolysis is an important attenuation pathway for the removal of wastewater effluent organic micropollutants from surface waters. In this work, direct and indirect processes leading to the degradation of the disinfectant, triclocarban were studied. Photo-irradiation experiments were conducted in water collected from Old Woman Creek (OWC a tributary of Lake Erie near Huron, OH, USA and in solutions of fulvic acids isolated from the Suwannee River, Georgia, USA (SRFA, Old Woman Creek (OWCFA and Pony Lake, Antarctica (PLFA. Photodegradation of triclocarban proceeded faster in the presence of all three fulvic acids relative to deionized water. PLFA, an autochthonous dissolved organic matter (DOM was found to be more reactive than the other fulvic acids, while the mostly allochthonous SRFA exhibited the lowest reactivity toward triclocarban. The later observation can be in part explained by anti-oxidant moieties present in SRFA. Photosensitized triclocarban degradation in whole water DOM from OWC was entirely attributable to the fulvic acid fraction and suggests that this component is the most photo-reactive fraction of the DOM. Anoxic and methanol-quenched experiments revealed unexpected results whereby the former suggests oxidation through reaction with triplet DOM, while the later is indicative of reaction with photo-generated hydroxyl radicals. It is possible that methanol can quench excited DOM species, which would shut down the triplet oxidation pathway. Finally, we observed no enhancement of triclocarban-photosensitized degradation through the addition of iron.

  18. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    International Nuclear Information System (INIS)

    Rastogi, Lori; Arunachalam, J.

    2011-01-01

    Highlights: → We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. → Synthesis has been achieved by exposing the solution mixture of [Ag(NH 3 ) 2 ] + and aqueous garlic extract under sunlight. → Role of light in the synthesis process has been investigated and is discussed in detail. → The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. → Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH 3 ) 2 ] + and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 ± 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for a very long period (more than a year) and retained

  19. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity.

    Science.gov (United States)

    Cheng, Chien-Wei; Chen, Liang-Yü; Chou, Chan-Wei; Liang, Ji-Yuan

    2015-07-01

    Determination of the superoxide dismutase activity is an important issue in the fields of biochemistry and the medical sciences. In the riboflavin/nitro blue tetrazolium (B2/NBT) method, the light sources used for generating superoxide anion radicals from light-excited riboflavin are normally fluorescent lamps. However, the conditions of B2/NBT experiments vary. This study investigated the effect of the light source on the light-excitation of riboflavin. The effectiveness of the photolysis was controlled by the wavelength of the light source. The spectra of fluorescent lamps are composed of multiple colour lights, and the emission spectra of fluorescent lamps made by different manufacturers may vary. Blue light was determined to be the most efficient for the photochemical reaction of riboflavin in visible region. The quality of the blue light in fluorescent lamps is critical to the photo-decomposition of riboflavin. A blue light is better than a fluorescent lamp for the photo-decomposition of riboflavin. The performance of the B2/NBT method is thereby optimized. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Lagrangian measurements of sulfur dioxide to sulfate conversion rates

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B D

    1981-12-01

    On the basis of Project MISTT data and proposed homogenous gas phase oxidation mechanisms for sulfur dioxide, it has been suggested that the degree of mixing with background air, the chemical composition of the background air, and the intensity of the sunlight available are key factors determining the rate of sulfur dioxide to sulfate conversion. These hypotheses are examined in light of Lagrangian measrements of conversion rates in power plant plumes made during the Tennessee Plume Study and Project Da Vinci. It is found that the Lagrangian conversion rate measurements are consistent with these hypotheses. It has also been suggested that the concentration of ozone may serve as a workable surrogate for the concentrations of the free radicals involved in the homogeneous gas phase mechanism. The night-time Lagrangian data remind one that the gross difference in mean lifetime of ozone and free radicals can lead to situations in which the ozone concentration is not a good surrogate for the free radical concentrations.

  1. Release and Degradation of Microencapsulated Spinosad and Emamectin Benzoate.

    Science.gov (United States)

    Huang, Bin Bin; Zhang, Shao Fei; Chen, Peng Hao; Wu, Gang

    2017-09-07

    The dynamics of release and degradation of the microencapsulation formulation containing spinosad (SP) and emamectin benzoate (EM) were evaluated in the present study. SP and EM were microencapsulated using biodegradable poly-lactic acid (PLA) as the wall material. Their release from and degradation within the prepared SP and EM microspheres (SP-EM-microspheres) were studied. It was found that the encapsulation significantly prolonged the insecticide release. The release could be further extended if the external aqueous phase was pre-saturated with the insecticides and the microspheres were additionally coated with gelatin. On the other hand, increasing the water content of the emulsion or the hydrophilic polycaprolactone (PCL) content in the PLA/PCL mixture accelerated the release. Due to the photolysis and hydrolysis of SP and EM by sunlight, the toxicity of the non-encapsulated insecticides in water declined continuously from 0 through the 9 th day (d), and dissipated in 13 d. In contrast, an aqueous suspension containing 5% SP-EM-microspheres maintained a mostly constant toxicity to Plutella xylostella for 17 d. The biodegradable SP-EM-microspheres showed significantly higher long-term toxicity to P. xylostella due to lower release, reduced photolysis and hydrolysis of the encapsulated insecticides, which were affected by the varied preparation conditions.

  2. Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight

    International Nuclear Information System (INIS)

    Jacobson, Mark Z.; Howarth, Robert W.; Delucchi, Mark A.; Scobie, Stan R.; Barth, Jannette M.; Dvorak, Michael J.; Klevze, Megan; Katkhuda, Hind; Miranda, Brian; Chowdhury, Navid A.; Jones, Rick; Plano, Larsen; Ingraffea, Anthony R.

    2013-01-01

    Jacobson et al. (2013, hereinafter J13), presented the technical and economic feasibility of converting New York States' all-purpose energy infrastructure (electricity, transportation, heating/cooling, industry) to one powered by wind, water, and sunlight (WWS) producing electricity and electrolytic hydrogen. Gilbraith et al. (2013) question several aspects of our approach. Unfortunately, Gilbraith et al. inaccurately portray what we stated and referenced and ignore many recent supporting studies. They also refer to previous misplaced critiques of our earlier global WWS study but fail to reference the responses to those critiques, Delucchi and Jacobson (2011b) and Jacobson and Delucchi (2013). We fully stand by the conclusions of both the previous and present studies. - Highlights: • New York State's all-purpose energy can be derived from wind, water, and sunlight. • The main limitations are social and political, not technical or economic. • This response to commentary reaffirms these conclusions

  3. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system

    International Nuclear Information System (INIS)

    Nakatani, Nobutake; Hashimoto, Norichika; Shindo, Hirotaka; Yamamoto, Masatoshi; Kikkawa, Megumi; Sakugawa, Hiroshi

    2007-01-01

    Photoformation rates and scavenging rate constants of hydroxyl radicals (·OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between ·OH and the benzene added to the water sample was determined to quantify the ·OH formation rate. The rate constants of ·OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected ·OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of ·OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the ·OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 x 10 -13 M s -1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of ·OH in commercial drinking water and the major source and sink of ·OH were identified as nitrate and bicarbonate ions, respectively

  4. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis.

    Science.gov (United States)

    Jornet, Dolors; Bosca, Francisco; Andreu, Jose M; Domingo, Luis R; Tormos, Rosa; Miranda, Miguel A

    2016-02-01

    Mebendazole (MBZ) and related anticancer benzimidazoles act binding the β-subunit of Tubulin (TU) before dimerization with α-TU with subsequent blocking microtubule formation. Laser flash photolysis (LFP) is a new tool to investigate drug-albumin interactions and to determine binding parameters such as affinity constant or population of binding sites. The aim of this study was to evaluate the interactions between the nonfluorescent mebendazole (MBZ) and its target biomolecule TU using this technique. Before analyzing the MBZ@TU complex it was needed to determine the photophysical properties of MBZ triplet excited state ((3)MBZ(⁎)) in different media. Hence, (3)MBZ(⁎) showed a transient absorption spectrum with maxima at 520 and 375 nm and a lifetime much longer in acetonitrile (12.5 μs) than in water (260 ns). The binding of MBZ to TU produces a greater increase of the lifetime of (3)MBZ(⁎) (25 μs). This fact and the strong electron acceptor capability observed for (3)MBZ* evidence that MBZ must not be located close to any electron donor amino acid of TU such as its tryptophan or cysteine residues. Adding increasing amounts of MBZ to aqueous TU was determined the MBZ-TU binding constant (2.0 ± 0.5 × 10(5)M(-1) at 298K) which decreased with increasing temperature. The LFP technique has proven to be a powerful tool to analyze the binding of drug-TU systems when the drug has a detectable triplet excited state. Results indicate that LFP could be the technique of choice to study the interactions of non-fluorescent drugs with their target biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dimethylmercury: A Source of Monomethylmercury in Fog Mechelle Johnson, BS in progress, Math and Science, Kirkwood Community College, Cedar Rapids, IA and Kenneth Coale, PhD, Chemical Oceanography, Moss Landing Marine Laboratories, Moss Landing, CA

    Science.gov (United States)

    Johnson, M.

    2016-02-01

    Dimethylmercury (DMHg) and monomethylmercury (MMHg) are two naturally occurring neurotoxins found in marine systems. MMHg bioaccumulates in tissues causing increased concentrations in the food web. Recent studies show that maritime advective fog transports MMHg from the oceans to land where terrestrial biota also accumulate this neurotoxin. Gaseous evasion of DMHg has recently been proposed as a potential source of MMHg to fog, but the mechanism of its conversion remains unknown. In this study we show that photodemethylation is a factor in the conversion of DMHg to MMHg, thus a potential source of MMHg in fog. Seawater samples were collected from a CTD rosette in two upwelling zones in the northeastern Pacific Ocean. Samples were incubated both in the sunlight and in darkness and DMHg was subsequently analyzed. The difference between light and dark-incubated samples inform the lability of MMHg to photolysis. Results show whereas photodemethylation doesn't occur in natural seawater, it does occur at significant rates under acidic conditions. Since fog water is acidic, these findings suggest photodemethylation may occur atmospherically, once absorbed in fog. These experiments inform the source and cycling of mercury from oceans to terrestrial ecosystems.

  6. Efficient Electron Transfer across a ZnO-MoS2 -Reduced Graphene Oxide Heterojunction for Enhanced Sunlight-Driven Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Kumar, Suneel; Reddy, Nagappagari Lakshmana; Kushwaha, Himmat Singh; Kumar, Ashish; Shankar, Muthukonda Venkatakrishnan; Bhattacharyya, Kaustava; Halder, Aditi; Krishnan, Venkata

    2017-09-22

    The development of noble metal-free catalysts for hydrogen evolution is required for energy applications. In this regard, ternary heterojunction nanocomposites consisting of ZnO nanoparticles anchored on MoS 2 -RGO (RGO=reduced graphene oxide) nanosheets as heterogeneous catalysts show highly efficient photocatalytic H 2 evolution. In the photocatalytic process, the catalyst dispersed in an electrolytic solution (S 2- and SO 3 2- ions) exhibits an enhanced rate of H 2 evolution, and optimization experiments reveal that ZnO with 4.0 wt % of MoS 2 -RGO nanosheets gives the highest photocatalytic H 2 production of 28.616 mmol h -1  g cat -1 under sunlight irradiation; approximately 56 times higher than that on bare ZnO and several times higher than those of other ternary photocatalysts. The superior catalytic activity can be attributed to the in situ generation of ZnS, which leads to improved interfacial charge transfer to the MoS 2 cocatalyst and RGO, which has plenty of active sites available for photocatalytic reactions. Recycling experiments also proved the stability of the optimized photocatalyst. In addition, the ternary nanocomposite displayed multifunctional properties for hydrogen evolution activity under electrocatalytic and photoelectrocatalytic conditions owing to the high electrode-electrolyte contact area. Thus, the present work provides very useful insights for the development of inexpensive, multifunctional catalysts without noble metal loading to achieve a high rate of H 2 generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    Science.gov (United States)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  8. Facile synthesis of BiOF/Bi{sub 2}O{sub 3}/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Feng, Jinglan; Pi, Yunqing; Liu, Menglin [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Sun, Jingyu, E-mail: sunjy-cnc@pku.edu.cn [Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2015-06-05

    Highlights: • A dual Bi-based ball-shaped material BiOF/Bi{sub 2}O{sub 3} were facilely synthesized. • The composition effect of BiOF/Bi{sub 2}O{sub 3}/RGO hybrid were probed for the first time. • The photocatalytic performances were evaluated upon natural sunlight irradiation. • The composites showed a twofold augmentation in the degradation efficiency. • The hybrid photocatalyst can be easily recycled for three times. - Abstract: A facile and efficient route for the controllable synthesis of BiOF/Bi{sub 2}O{sub 3} nanostructures by hydrolysis method was reported, where the as-prepared BiOF/Bi{sub 2}O{sub 3} was subsequently incorporated with reduced graphene oxide (RGO) sheets to form BiOF/Bi{sub 2}O{sub 3}/RGO composites. The obtained BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical and optical properties. Photocatalytic capacities of the pure BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites have been investigated by the degradation of Rhodamine B (RhB)-contained wastewater under natural sunlight irradiation. A twofold augmentation of degradation efficiency was in turn observed for BiOF/Bi{sub 2}O{sub 3}/RGO composites compared with that of pure BiOF/Bi{sub 2}O{sub 3} under the natural sunlight irradiation. The optimum conditions, the effects of the active species and stabilities in photocatalytic performances of the BiOF/Bi{sub 2}O{sub 3}/RGO composites have also been probed.

  9. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    DEFF Research Database (Denmark)

    Laundal, Karl M.; Finlay, Chris; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth’s magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely...... analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal...... and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth’s main field. We present global currents from both hemispheres during different sunlight conditions. The results...

  10. Radiation Chemistry of Xenon Trioxide, Xenate and Perxenate and Photochemistry of Perxenate - A Pulse Radiolysis and Laser Flash-Photolysis Study

    DEFF Research Database (Denmark)

    Kläning, U. K.; Sehested, Knud; Wolff, T.

    1982-01-01

    O2–6 are assumed. HXeO3 and H3XeO2–6 are formed in reactions of the hydrated electron with XeO3 and HXeO3–6, respectively. HXeO4 and H3XeO2–7 are formed in reactions of the hydroxyl radical with XeO3 and HXeO3–6 in which the hydroxyl radical adds to a ligand oxygen atom to form peroxy compounds. HXe......O2–5 is formed in a reaction with the hydroxyl radical anion in which the hydroxyl radical anion adds to the xenon atom and by photolysis of HXeO3–6: HXeO3–6 [graphic omitted] HXeO2–5+ O–. XeV, XeVII and XeIX and corresponding iodine species in the oxidation states four, six and eight have similar...

  11. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater

    DEFF Research Database (Denmark)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-01-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were...... arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used...

  12. A mechanistic study on the phototoxicity of atorvastatin: singlet oxygen generation by a phenanthrene-like photoproduct.

    Science.gov (United States)

    Montanaro, Sara; Lhiaubet-Vallet, Virginie; Iesce, MariaRosaria Iesce; Previtera, Lucio; Miranda, Miguel Angel

    2009-01-01

    Atorvastatin calcium (ATV) is one of the most frequently prescribed drugs worldwide. Among the adverse effects observed for this lipid-lowering agent, clinical cases of cutaneous adverse reactions have been reported and associated with photosensitivity disorders. Previous work dealing with ATV photochemistry has shown that exposure to natural sunlight in aqueous solution leads to photoproducts resulting from oxidation of the pyrrole ring and from cyclization to a phenanthrene derivative. Laser flash photolysis of ATV, at both 266 and 308 nm, led to a transient spectrum with two maxima at lambda= 360 and lambda= 580 nm (tau= 41 micro), which was assigned to the primary intermediate of the stilbene-like photocyclization. On the basis of the absence of a triplet-triplet absorption, the role of the parent drug as singlet oxygen photosensitizer can be discarded. By contrast, a stable phenanthrene-like photoproduct would be a good candidate to play this role. Laser flash photolysis of this compound showed a triplet-triplet transient absorption at lambdamax = 460 nm with a lifetime of 26 micro, which was efficiently quenched by oxygen (kq = 3 (+/-0.2) x 10(9) M(-1) s(-1)). Its potential to photosensitize formation of singlet oxygen was confirmed by spin trapping experiments, through conversion of TEMP to the stable free radical TEMPO. The photoreactivity of the phenanthrene-like photoproduct was investigated using Trp as a marker. The disappearance of the amino acid fluorescence (lambdamax = 340 nm) after increasing irradiation times at 355 nm was taken as a measurement of photodynamic oxidation. To confirm the involvement of a type II mechanism, the same experiment was also performed in D2O; this resulted in a significant enhancement of the reaction rate. On the basis of the obtained photophysical and photochemical results, the phototoxicity of atorvastatin can be attributed to singlet oxygen formation with the phenanthrene-like photoproduct as a photosensitizer.

  13. Evidence for Alteration in Chemical and Physical Properties of Water and Modulation of its Biological Functions by Sunlight Transmitted through Color Ranges of the Visible Spectrum-A Novel Study

    Directory of Open Access Journals (Sweden)

    M. Rajeswara Rao

    2005-08-01

    Full Text Available We investigated the changes in the properties of water when exposed to sunlight for 40 days. We hypothesize and prove that solar irradiation to water entraps electromagnetic radiation as potential energy, which becomes kinetic energy in various systems. It is postulated that photochemically-induced energy transfers, associated with individual spectral emission of visible spectrum of solar light, exert diverse influences on biological systems. Bottles of distilled water, individually wrapped in spectral-colored cellophane were exposed to sunlight and compared to an unwrapped bottle to determine chemical and physical changes as well as modifications of biological properties. Each bottle of water was named according to the color of cellophane paper with letter E (stands for exposed as a prefix with (E-violet, E-indigo, E-blue, E-green, E-yellow, E-orange, and Ered. E-control (without wrap was exposed to polychromatic sunlight. This study addresses two main issues viz., the chemical and physical changes in E-water and its effect on biological activities. Chemical and physical composition analysis using inductively coupled plasma atomic emission spectrometry; physical conductance by a Wheatstone Bridge type conductivity meter; osmolarity by a vapor pressure osmometer; and, salt solubility profile of 10% sodium bicarbonate were determined. Furthermore, testing the effect of E-waters on human lymphocyte proliferation, mosquito larvae hatching and seed germination determined the functional role of solar radiation through specific spectrum/s of visible light on various biological processes. We found that water exposed to visible spectral emissions of sunlight had an altered elemental composition, electrical conductance, osmolarity and salt-solubility, as well as differences in bio-modulatory effects. A gradual increase in leaching of Boron from Eviolet to E-red was noted. E-indigo showed maximal increase in electrical conductance and maximal salt

  14. Synthesis and Characterisation of Tris(1-carboxyl-2-phenyl-1,2-ethyl eno dithiol enic-S,S') Tungsten Complex as Photo catalyst for Photolysis of H2O Molecules

    International Nuclear Information System (INIS)

    Fadhli Hadana Rahman; Rusli Daik; Mohammad Kassim; Khuzaimah; Wan Ramli Wan Daud

    2008-01-01

    Tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex is one of the most promising photo catalyst to be used in photolysis of water to produce hydrogen. The first step of the synthesis involves a metathesis reaction of tetrapropylammonium bromide [((C 3 H 7 ) 4 N)Br] and ammonium tetrathiotungstate [(NH 4 ) 2 WS 4 ] to form a tetrapropylammonium tetrathiotungstate [((C 3 H 7 ) 4 N) 2 WS 4 ] (precursor). Then, the precursor was reacted with phenyl acetylenecarboxylic acid (C 9 H 6 O 2 ) to form tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex (C 27 H 18 O 2 S 6 W). The infra-red, ultra violet/ visible (UV/ Vis) spectrum, nuclear magnetic resonance (NMR) and elemental micro-analysis of C, H, N and S agreed with the characteristic of the tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex. The (W-S), (C-S) and (C=O) stretching frequencies were detected at 511, (1470 and 1035) and 1655 cm -1 , respectively. The 1 H NMR spectrum showed six protons in the complex. The 13 C NMR showed only 7 signals for carbon atom in the benzene ring, ethylene groups and carboxylic acid pendant group due to the symmetry of the molecules. The reaction yield was about 50 percent. Photolysis of acetone spiked H 2 O showed that the catalyst was able to produced 1.8 μmol/ h hydrogen. (author)

  15. Aloe sterol supplementation improves skin elasticity in Japanese men with sunlight-exposed skin: a 12-week double-blind, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Tanaka M

    2016-11-01

    Full Text Available Miyuki Tanaka,1 Yuki Yamamoto,2 Eriko Misawa,1 Kazumi Nabeshima,1 Marie Saito,1 Koji Yamauchi,1 Fumiaki Abe,1 Fukumi Furukawa2 1Functional Food Ingredients Department, Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 2Department of Dermatology, Wakayama Medical University, Kimiidera, Wakayama, Japan Background/objective: Recently, it was confirmed that the daily oral intake of plant sterols of Aloe vera gel (Aloe sterol significantly increases the skin barrier function, moisture, and elasticity in photoprotected skin. This study aimed to investigate whether Aloe sterol intake affected skin conditions following sunlight exposure in Japanese men. Methods: We performed a 12-week, randomized, double-blind, placebo-controlled study to evaluate the effects of oral Aloe sterol supplementation on skin conditions in 48 apparently healthy men (age range: 30–59 years; average: 45 years. The subjects were instructed to expose the measurement position of the arms to the sunlight outdoors every day for 12 weeks. The skin parameters were measured at 0 (baseline, 4, 8, and 12 weeks. Results: Depending on the time for the revelation of the sunlight, the b* value and melanin index increased and the skin moisture decreased. After taking an Aloe sterol tablet daily for 12 weeks, the skin elasticity index (R2, R5, and R7 levels were significantly higher than the baseline value. There were no differences between the groups in these skin elasticity values. In the subgroup analysis of subjects aged <46 years, the change in the R5 and R7 was significantly higher in the Aloe group than in the placebo group at 8 weeks (P=0.0412 and P=0.0410, respectively. There was a difference in the quantity of sun exposure between each subject, and an additional clinical study that standardizes the amount of ultraviolet rays is warranted. No Aloe sterol intake-dependent harmful phenomenon was observed during the intake period

  16. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  17. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  18. Influence of Humic Acid on 1-Aminopyrene Ecotoxicity During Solar Photolysis Process

    Directory of Open Access Journals (Sweden)

    Huey-Min Hwang

    2002-11-01

    Full Text Available Abstract: 1-Aminopyrene (1-AP, a polycyclic aromatic hydrocarbons (PAH compound, is a major metabolite during biotransformation of 1-nitropyrene by microflora in natural environment and in the guts of animals and humans. Under UV-A irradiation, 1-AP has been shown to cause light-induced DNA single strand cleavage. Humic acids (HA in aquatic ecosystems can influence the bioavailability, toxicity, and fate of organic xenobiotics. Therefore, photochemical fate and effect of PAH in natural aquatic environment may differ significantly across sites. The objectives of this study are to assess the time course (TC; 18 and 90 minutes influence of HA (0, 20, and 60 ppm on microbial ecotoxicity of 1-AP (0 and 10 μM during solar photolysis process (PP. Microbial ecotoxicity of 1-AP during different time courses in the presence and absence of HA was measured with spread plate counting and microbial mineralization of 14C-D-glucose. The experimental results were analyzed as factorial arrangements of treatment in a complete randomized design using General Linear Model by SAS. LSMEANS was used to separate means or combination of means. Significant effect on glucose mineralization was found by the following treatment interactions 1-AP*TC, 1-AP*PP, TC*PP, HA*1-AP*TC, HA*1-AP*PP, and HA*1-AP*TC*PP. The treatment interaction HA*1-AP was the only one affecting spread plate counting. In the groups exposed to 1-AP (10 μM, microbial heterotrophic mineralization of 14C-D-glucose was significantly inhibited in the presence of HA in light and in darkness. Exposure to HA in light and darkness, however, did not necessarily inhibit bacterial viability at the HA concentration range assayed. Therefore, inhibition on microbial activity could have been caused by multiple factors, instead of toxicity of HA alone.

  19. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Lori [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India); Arunachalam, J., E-mail: aruncccm@rediffmail.com [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India)

    2011-09-15

    Highlights: {yields} We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. {yields} Synthesis has been achieved by exposing the solution mixture of [Ag(NH{sub 3}){sub 2}]{sup +} and aqueous garlic extract under sunlight. {yields} Role of light in the synthesis process has been investigated and is discussed in detail. {yields} The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. {yields} Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH{sub 3}){sub 2}]{sup +} and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 {+-} 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for

  20. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chiu, C.-Y. [Department of Cosmetic Science and Application, Lan-Yang Institute of Technology, I-Lan 261, Taiwan (China); Chang, C.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)], E-mail: cychang3@ntu.edu.tw; Chang, C.-F. [Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan (China); Chen, Y.-H. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Science, Kaohsiung City 807, Taiwan (China); Ji, D.-R.; Yu, Y.-H.; Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2009-01-15

    In this study, a high-gravity rotating packed bed (HGRPB) was used as a catalytic ozonation reactor to decompose dimethyl phthalate (DMP), an endocrine disrupting chemical commonly encountered. The HGRPB is an effective gas-liquid mixing equipment which can enhance the ozone mass transfer coefficient. Platinum-containing catalyst (Pt/-Al{sub 2}O{sub 3}) of Dash 220N and ultra violet (UV) lamp were combined in the high-gravity ozonation (HG-OZ) system to enhance the self-decomposition of molecular ozone in liquid to form highly reactive radical species. Different combinations of HG-OZ with Dash 220N and UV for the degradation of DMP were tested. These include HG-OZ, HG catalytic OZ (HG-Pt-OZ), HG photolysis OZ (HG-UV-OZ) and HG-UV-Pt-OZ. The result indicated that all the above four ozonation processes result in significant decomposition of DMP and mineralization of total organic carbon (TOC) at the applied ozone dosage per volume of liquid sample of 1.2 g L{sup -1}. The UV and Pt/{gamma}-Al{sub 2}O{sub 3} combined in HG-OZ can enhance the TOC mineralization efficiency ({eta}{sub TOC}) to 56% (via HG-UV-OZ) and 57% (via HG-Pt-OZ), respectively, while only 45% with ozone only. The process of HG-UV-Pt-OZ offers the highest {eta}{sub TOC} of about 68%.