WorldWideScience

Sample records for sunlight photolysis rates

  1. 40 CFR 795.70 - Indirect photolysis screening test: Sunlight photolysis in waters containing dissolved humic...

    Science.gov (United States)

    2010-07-01

    ... mobile phase is 2 percent acetic acid, 50 percent acetonitrile and 48 percent water (2 mL/min flow rate... of sunlight actinometers.” Environmental Science and Technology, 6:815. (1982). (6) Haag H.R., Hoigne... Science and Technology, 11:359. (1977). (20) Zepp, R.G., Wolfe N.L., Baughman G.L., Hollis R.C....

  2. Photolysis of Antibiotics under Simulated Sunlight Irradiation: Identification of Photoproducts by High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Baena-Nogueras, Rosa María; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2017-02-28

    There is growing concern regarding the widespread use of antibiotics and their presence in the aqueous environment. Their removal in the water column is mediated by different types of degradation processes for which the mechanisms are still unclear. This research is focused on characterizing the photodegradation kinetics and pathways of two largely employed antibiotics families: sulfonamides (9 SDs) and fluoroquinolones (6 FQs). Degradation percentages and rates were measured in pure water exposed to simulated natural sunlight at a constant irradiance value (500 W m(-2)) during all the experiments, and the main photoproducts formed were characterized through accurate mass measurement using ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-QToF-MS). Over 200 different phototransformation products were identified for SDs and FQs, 66% of them, to the best of our knowledge, have not been described before. Their sequential formation and disappearance over the course of the experiments reveals the existence of several pathways for the degradation of target antibiotics. Occurrence of new photoproducts derived from desulfonation and/or denitrification, as well as hydroxylation of photo-oxidized heterocyclic rings, have been identified during photodegradation of SDs, whereas a new pathway yielding oxidation of the benzene ring after the cleavage of the piperazine ring (e.g., CIP product with m/z 280) is described for FQs.

  3. Photolysis of brominated flame retardants in textiles exposed to natural sunlight.

    Science.gov (United States)

    Kajiwara, Natsuko; Desborough, Jennifer; Harrad, Stuart; Takigami, Hidetaka

    2013-03-01

    Photolytic transformation profiles of technical hexabromocyclododecane (HBCD) and technical decabromodiphenyl ether (DecaBDE) in flame-retarded textiles exposed to natural sunlight were compared. Textiles that contained approximately 4% HBCDs by weight showed no substantial loss of any of the HBCD diastereomers during the entire exposure period (371 days), indicating that they were resistant to sunlight, that is, that debromination and isomerization of HBCD diastereomers did not occur under the experimental conditions. Exposure of a textile treated with technical DecaBDE resulted in the formation of polybrominated dibenzofurans (PBDFs) as products of photodecomposition of polybrominated diphenyl ethers present in the technical DecaBDE. After 329 days of exposure, the total PBDF concentration reached a maximum of 27 000 ng g(-1), which was approximately 10 times the initial concentration. During the experiment, di- to hexa-BDF congener concentrations increased continuously. Although the concentrations of PBDFs in the textiles were 4–5 orders of magnitude lower than the concentrations of polybrominated diphenyl ethers, it is important to note that PBDFs were formed as a result of sunlight exposure during normal use of products treated with technical DecaBDE.

  4. Photolysis of pharmaceuticals and personal care products in the marine environment under simulated sunlight conditions: irradiation and identification.

    Science.gov (United States)

    Ali, Aasim Musa Mohamed; Kallenborn, Roland; Sydnes, Leiv Kristen; Rønning, Helene Thorsen; Alarif, Walied Mohamed; Al-Lihaibi, Sultan

    2017-06-01

    The photochemical fate of 16 pharmaceuticals and personal care products (PPCPs) found in the environment has been studied under controlled laboratory conditions applying a sunlight simulator. Aqueous samples containing PPCPs at environmentally relevant concentrations were extracted by solid-phase extraction (SPE) after irradiation. The exposed extracts were subsequently analysed by liquid chromatography combined with triple quadrupole mass spectrometry (HPLC-MS/MS) for studying the kinetics of photolytic transformations. Almost all exposed PPCPs appeared to react with a half-life time (τ 1/2) of less than 30 min. For ranitidine, sulfamethoxazole, diclofenac, warfarin, sulfamethoxazole and ciprofloxacin, τ1/2 was found to be even less than 5 min. The structures of major photolysis products were determined using quadrupole-time-of-flight mass spectrometry (QToF) and spectroscopic data reported in the literature. For diclofenac, the transformation products carbazol-1-yl-acidic acid and 8-chloro-9H-carbazol-1-yl-acetic acid were identified based on the mass/charge ratio of protonated ions and their fragmentation pattern in negative electrospray ionization (ESI(-)-QTOF). Irradiation of carbamazepine resulted in three known products: acridine, carbamazepine-10,11-epoxide, and 10,11-dihydro-10,11-dihydroxy-carbamazepine, whereas acetaminophen was photolytically transformed to 1-(2-amino-5 hydroxyphenyl) ethenone. These photochemical products were subsequently identified in seawater or fish samples collected at sites exposed to wastewater effluents on the Saudi Arabian coast of the Red Sea.

  5. Relative tropospheric photolysis rates of acetaldehyde and formaldehyde measured at the European Photoreactor Facility

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Bache-Andreassen, Lihn; Johnson, Matthew Stanley;

    2009-01-01

    The photolysis rates of HCHO, DCDO, CH3CHO, and CH3CDO are studied by long-path FTIR spectroscopy in natural tropospheric conditions at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. Average relative photolysis rates jHCHO/jDCDO ) 3.15 ( 0.08 and jCH3CHO/jCH3CDO ) 1.26 ( 0...

  6. Modeling of photolysis rates over Europe: impact on chemical gaseous species and aerosols

    Directory of Open Access Journals (Sweden)

    E. Real

    2010-07-01

    Full Text Available This paper evaluates the impact of photolysis rate calculation on European air composition and air quality monitoring. In particular, the impact of cloud parametrisation and the impact of aerosols on photolysis rates are analysed. Photolysis rates are simulated using the Fast-JX photolysis scheme and gas and aerosol concentrations over Europe are simulated with the regional model Polair3D of the Polyphemus platform. The photolysis scheme is first use to update the clear sky tabulation used in the previous Polair3D version. Important differences in photolysis rates are simulated, mainly due to updated cross-sections in the Fast-JX scheme. In the previous Polair3D version, clouds were taken into account by multiplying the clear-sky photolysis rates using a correction factor. In a second stage, the impact of clouds is taken into account more accurately by simulating them directly in the photolysis scheme. Differences in photolysis rates inside clouds are as high as differences between simulations with and without clouds. Outside clouds, the differences are small. The largest difference in gas concentrations is simulated for OH with a mean increase of its tropospheric burden of 4 to 5%.

    To take into account the impact of aerosols on photolysis rates, Polair3D and Fast-JX are coupled. Photolysis rates are updated every hour. Large impact on photolysis rates is observed at the ground, decreasing with altitude. The aerosol species that impact the most photolysis rates is dust especially in South Europe. Strong impact is also observed over anthropogenic emission regions (Paris, The Po and the Ruhr Valley where mainly nitrate and sulphate reduced the incoming radiation. Differences in photolysis rates lead to changes in gas concentrations, with the largest impact simulated for OH and NO concentrations. At the ground, monthly mean concentrations of both species are reduced over Europe by around 10 to 14% and their tropospheric burden by around 10

  7. Evaluation of simulated photolysis rates and their response to solar irradiance variability

    Science.gov (United States)

    Sukhodolov, Timofei; Rozanov, Eugene; Ball, William T.; Bais, Alkiviadis; Tourpali, Kleareti; Shapiro, Alexander I.; Telford, Paul; Smyshlyaev, Sergey; Fomin, Boris; Sander, Rolf; Bossay, Sébastien; Bekki, Slimane; Marchand, Marion; Chipperfield, Martyn P.; Dhomse, Sandip; Haigh, Joanna D.; Peter, Thomas; Schmutz, Werner

    2016-05-01

    The state of the stratospheric ozone layer and the temperature structure of the atmosphere are largely controlled by the solar spectral irradiance (SSI) through its influence on heating and photolysis rates. This study focuses on the uncertainties in the photolysis rate response to solar irradiance variability related to the choice of SSI data set and to the performance of the photolysis codes used in global chemistry-climate models. To estimate the impact of SSI uncertainties, we compared several photolysis rates calculated with the radiative transfer model libRadtran, using SSI calculated with two models and observed during the Solar Radiation and Climate Experiment (SORCE) satellite mission. The importance of the calculated differences in the photolysis rate response for ozone and temperature changes has been estimated using 1-D a radiative-convective-photochemical model. We demonstrate that the main photolysis reactions, responsible for the solar signal in the stratosphere, are highly sensitive to the spectral distribution of SSI variations. Accordingly, the ozone changes and related ozone-temperature feedback are shown to depend substantially on the SSI data set being used, which highlights the necessity of obtaining accurate SSI variations. To evaluate the performance of photolysis codes, we compared the results of eight, widely used, photolysis codes against two reference schemes. We show that, in most cases, absolute values of the photolysis rates and their response to applied SSI changes agree within 30%. However, larger errors may appear in specific atmospheric regions because of differences, for instance, in the treatment of Rayleigh scattering, quantum yields, or absorption cross sections.

  8. The Influence of Photolysis Rate Constants in Ozone Production for the Paso del Norte Region

    Science.gov (United States)

    Becerra, Fernando; Fitzgerald, Rosa

    2012-03-01

    In this research work we are focusing on understanding the relationship between photolysis rates and the photochemical ozone changes observed in the Paso del Norte region. The city of El Paso, Texas together with Ciudad Juarez, Mexico, forms the largest contiguous bi-national metropolitan area. This region suffers year-round ozone pollution events, and a better understanding is needed to mitigate them. Previous studies have found that ambient ozone concentrations tend to be higher on weekends rather than on weekdays, this phenomenon being referred to, as the ``weekend effect.'' If the ozone standard is exceeded more frequently on weekends, then this phenomenon must be considered in the design of ozone control strategies. In this work we investigate some of the most representative weekend ozone episodes at El Paso, TX, during the years 2009, 2010 and 2011 using the ozone photolysis rates. In this research the TUV radiative-transfer model is used to calculate the local photolysis rates and a UV MFRSR instrument is used to obtain experimental parameters. Seasonal variations and the weekday-weekend effect is studied. The results of this research will help to understand the underlying behavior of the photolysis rate constants when different atmospheric conditions are present.

  9. An Evaluation of the FAST-J Photolysis algorithm for predicting nitrogen dioxide photolysis rates under clear and cloudy sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, James C.; Chapman, Elaine G.; Fast, Jerome D.; Schmelzer, John R.; Schlusser, James R.; Shetter, Richard E.

    2004-07-04

    The FAST-J model was developed to quickly calculate photolysis rates under both clear and cloudy sky conditions. In this paper, photolysis rates of nitrogen dioxide (NO2) were calculated using FAST-J and compared with measurements taken at two sites in the United States: Phoenix, Arizona, and Houston, Texas. The measurements were derived from either an actinic flux filter radiometer (Phoenix) or a spectroradiometer (Houston). A sun photometer, sited nearby these radiometers, provided irradiances measurements from which aerosol and cloud optical thicknesses were obtained. Aerosol single scattering albedo was not known, but was taken to be either 0.79 or 0.94, representative of either soot-like aerosols or sulfate-like aerosols, respectively. These optical properties served as input to the FAST-J model, which in turn was used to calculate photolysis rates. For both clear and cloudy sky cases, the modeled and measured photolysis rates agree within the uncertainties of the measurements for a single scattering albedo of 0.94. For a single scattering albedo of 0.79, the agreement is again within the uncertainty limits except for the cloudy sky case in Houston.

  10. CHBr3 (bromoform): Revised UV Absorption Spectrum and Atmospheric Photolysis Rates

    Science.gov (United States)

    Burkholder, J. B.; Papanastasiou, D.; McKeen, S. A.

    2013-12-01

    CHBr3 (bromoform) is a short-lived atmospheric trace compound primarily of natural origin that is a source of reactive bromine in both the troposphere and stratosphere. Estimating the impact of CHBr3 on the environment and its transport to the stratosphere requires a thorough understanding of its atmospheric loss processes, which are primarily UV photolysis and reaction with the OH radical. In this presentation, new measurements of the UV absorption spectrum of CHBr3 will be presented. Spectra were measured at wavelengths between 300 and 345 nm at temperatures between 260 and 330 K using cavity ring-down spectroscopy. The present results will be compared with currently recommended values for use in atmospheric modeling taken from Moortgat et al. [The tropospheric chemistry of ozone in the polar regions, edited by H. Niki and K. H. Becker, Springer-Verlag Berlin Heidelberg, 1993]. The discrepancies and impact on CHBr3 photolysis lifetime will be discussed. A parameterization of the CHBr3 UV spectrum for use in atmospheric models will be presented and local photolysis rate calculations used to highlight the impact of the revised cross section data on local lifetimes and the relative importance of photolysis loss versus reaction with the OH radical. The results from the present study will contribute to a better understanding (and accuracy) of estimates of stratospheric ozone loss due to very short-lived brominated substances.

  11. Dependence of Upper Atmosphere Photochemistry on the Shape of the Diurnal Cycle of the Photolysis Rates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A photochemical model of the atmosphere constitutes a non-linear, non-autonomous dynamical system, enforced by the Earth's rotation. Some studies have shown that the region of the mesopause tends towards non-linear responses such as period-doubling cascades and chaos. In these studies, simple approximations for the diurnal variations of the photolysis rates are assumed. The goal of this article is to investigate what happens if the more realistic, calculated photolysis rates are introduced. It is found that,if the usual approximations-sinusoidal and step fiunctions-are assumed, the responses of the system are similar: it converges to a 2-day periodic solution. If the more realistic, calculated diurnal cycle is introduced, a new 4-day subharmonic appear.

  12. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-05-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295 K, 760 Torr was therefore measured between 182 and 750 nm using a Fourier Transform spectrometer at a resolution of 4 cm−1 (0.1 nm at λ=500 nm. The maximum absorption cross-section in the visible region was observed at λ=533.0 nm to be σ=(4.84±0.60×10−18cm2 molecule−1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03 s−1 for the lower troposphere. This agrees well with the value of 0.15±0.03 s−1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  13. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Directory of Open Access Journals (Sweden)

    W. Tang

    2014-09-01

    Full Text Available Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3 regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 State Implementation Plan (SIP modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB and normalized mean error (NME by up to 0.1. A sector-based discrete Kalman filter (DKF inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx-Decoupled Direct Method (DDM model to adjust Texas NOx emissions using a high resolution Ozone Monitoring Instrument (OMI NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCD is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The sector-based DKF inversion tends to scale down area and non-road NOx emissions by 50%, leading to a 2–5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using inverted NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05 and increases the model correlation with ground measurement in O3 simulations and makes O3 more sensitive to NOx emissions in the O3 non-attainment areas.

  14. Direct measurements of NO{sub 2} photolysis rates for Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T.; Ruiz-Suarez, L. G.; Gay, C. [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Helguera, M. [Centro Nacional de Investigacion y Desarrollo Tecnologico, SEP, Cuernavaca, Mor. (Mexico); Ruiz-Suarez, J. C. [Departamento de Fisica Aplicada, CINVESTAV del IPN, Unidad Merida, Merida, Yucatan, (Mexico)

    1995-07-01

    Direct measurements of the rate of NO{sub 2} photolysis to NO and O({sup 3}P) are reported as photolysis frequencies J (NO{sub 2}) for Mexico City. These frequencies were measured using a flow reactor, where a known concentration of NO{sub 2} was photolysed for different experimental exposure times. Ultraviolet (UV) radiation was measured with an Eppley UV radiometer. Comparisons with calculated values using a radiation transfer model, and Madronich's formula are shown. [Spanish] Se reportan medidas de las constantes de fotolisis del NO{sub 2} a NO y O({sup 3}P) como frecuencias de fotolisis J(NO{sub 2}) para la Ciudad de Mexico. Estas frecuencias se midieron usando un reactor, en donde una concentracion conocida de NO{sub 2} se fotodisocia para diferentes tiempos de exposicion. La radiacion ultravioleta (UV) se midio con un radiometro Eppley. Se muestra una comparacion con valores calculados usando un modelo de transferencia y la formula de Madronich.

  15. Variations in radiation and photolysis rates in the southern midlatitudes due to ozone depletion over the Antarctica

    Science.gov (United States)

    López Comí, Laura; Morgenstern, Olaf; Zeng, Guang; Masters, Sarah L.

    2013-04-01

    Lauder (45° S, 170° E), a research station located on the South Island of New Zealand, is a clean-air atmospheric observatory representative of southern mid-latitudes. Long-term records of various atmospheric chemical compounds have been measured here for up to three decades. We assess observations of selected atmospheric chemical species, including ozone, and their variability throughout the recording period. By utilizing these observational data and a photolysis scheme (FAST-JX) we will address how changes in the total ozone column and in aerosols at Lauder affect radiation and photolysis rates of different species. The results serve as a stepping stone towards constructing a single-column photolysis model for Lauder constrained with profiles of stable species (e.g. ozone, methane, CO, HCHO, halogen compounds, etc) measured at Lauder to derive variations and trends of shorter-lived species. One of our targets will be changes in the tropospheric oxidizing capacity in the Southern Hemisphere.

  16. Effect of mineral dust aerosols on the photolysis rates in the clean and polluted marine environments

    Science.gov (United States)

    Jeong, Gill-Ran; Sokolik, Irina N.

    2007-11-01

    This study examines the importance of spectral optical properties of mineral dust in calculations of photolysis rates in clean and polluted marine environments. A set of optical characteristics was computed with Mie theory using data on the size distribution and composition of mineral dust from recent experimental and modeling studies. These models were incorporated into the National Center for Atmospheric Research tropospheric ultraviolet-visible radiation transfer code. The 13 analyzed photolysis reactions were classified into three groups according to their photolytic wavelengths and the vertical profile of J values in the aerosol-free atmosphere. The photolysis reactions of O3(O1D), NO2, and NO3(NO) were selected as representative of groups I, II, and III, respectively. We find that depending on its properties, dust causes either a decrease or an increase in the spectral actinic fluxes relative to the aerosol-free condition. The wavelength range in which the changes in actinic fluxes are negative becomes broader as the amount of dust load increases, a dust size distribution is shifted to coarse size mode, and the iron oxide content in dust aggregates increases. Changes in actinic fluxes also depend on the sun position (time of the day) and an altitude considered. As a result, dust exerts the differing impact on J values of the three photolytic groups. The diurnal cycle of dust-affected J values of a given group is similar among the differing size distribution and dust compositions, but changes in J values vary by a factor of 1.5-2. For a given content of iron oxide, the largest changes are caused by the size distributions that are shifted to the fine size mode. A change in J values of groups I and II caused by the varying amount of iron oxide in dust aggregates (from 1% to 10%) is negative in and below the dust layer. In contrast, J values of group III increase in the presence of low absorbing dust (with 1% of iron oxide), but they decrease with increasing dust

  17. Photolysis of ketene at 193 nm and the rate constant for H + HCCO at 297 K.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, G. P.; Kumaran, S. S.; Michael, J. V.; Chemistry

    2000-01-01

    The 193 nm photolysis of ketene was studied by measuring the amount of atomic hydrogen produced when very dilute ketene/Ar and ketene/H{sub 2} mixtures were irradiated by a single pulse from an ArF excimer laser. Absolute concentrations of atomic hydrogen were monitored over a time interval of 0-2.5 ms by using Lyman-{alpha} atomic resonance absorption spectroscopy (ARAS). Four different photodissociation channels of ketene were identified: H{sub 2}CCO + hv gives (a) CH{sub 2}({sup 3}B1) + CO; (b) CH{sub 2}({sup 1}A{sub 1}) + CO; (c) HCCO + H; and (d) C{sub 2}O(b{sup -1}{Sigma}{sup +}) + H{sub 2}. The quantum yields for each channel were measured as {phi}{sub a} = 0.628, {phi}{sub b} = 0.193, {phi}{sub 3}= 0.107, and {phi}{sub d} = 0.072, respectively. To explore the secondary chemistry that occurred when using higher pressure H{sub 2}CCO/Ar mixtures, a mechanism was constructed that used well-documented reactions and, for most processes, rate constants that had already been accurately determined. Modeling studies using this mechanism showed the [H] profile to be determined largely by the rate of the reaction H + HCCO {yields} CH{sub 2} + CO. An excellent fit to all of the experimental data was obtained when k{sub 2} = (1.7 {+-} 0.3) x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}.

  18. A comparison of hip fracture incidence rates among elderly in Sweden by latitude and sunlight exposure.

    Science.gov (United States)

    Nilson, Finn; Moniruzzaman, Syed; Andersson, Ragnar

    2014-03-01

    Research has shown that hip fracture risk increases with latitude; hypothetically due to reduced sunlight exposure and its effect on bone quality. Sweden, with large differences in latitude and UV radiation, is ideal to study in order to analyse the association between latitude and UV radiation on age- and sex-specific hip fracture rates among elderly. Aggregated (2006-2008) age- and sex-specific hip fracture data was obtained for each Swedish municipality as well as the municipality's latitudinal coordinates and aggregated (2006-2008) UV radiation levels. Pearson correlations were calculated between hip fracture incidence rates, latitude and UV radiation. Independent t tests were calculated on tertile-categorized latitudinal data in order to investigate the difference in hip fracture risk between these categories. Statistically significant correlations were seen in all groups between hip fracture incidence rates and latitude as well as UV radiation. The independent t tests showed that this correlation was mainly due to high incidence rates in high latitude municipalities. Statistically significant correlations are seen between hip fracture incidence rates and latitude as well as UV radiation in Sweden and the northern parts of Sweden have an increased risk of hip fractures compared to the middle and southern parts. To our knowledge this is the first study using a national discharge register that shows this relationship and provides a starting point for further research to investigate why populations in northern Sweden have a higher risk of hip fractures compared to other Swedish regions.

  19. Observations of trace gases, photolysis rate coefficients and model simulations over semi-arid region, India

    Science.gov (United States)

    Lingaswamy, A. P.; Arafath, S. Md; Balakrishnaiah, G.; Rama Gopal, K.; Siva Kumar Reddy, N.; Raja Obul Reddy, K.; Reddy, R. R.; Chakradhar Rao, T.

    2017-06-01

    Continuous ground-based measurements of CO, SO2 and NO2 were carried out in a semi-arid rural area, Anantapur [14.62 0N, 77.65 0E], Southern India, for the period January 2012-December 2012. The maximum CO concentration was observed in winter (310 ± 17 ppbv) followed by summer (180 ± 21 ppbv) and post monsoon (174 ± 20 ppbv), while the minimum in monsoon (72 ± 9 ppbv). Seasonal mean NO2/NOx ratios for monsoon, post monsoon, winter and summer were about 0.88, 0.91, 0.76 and 0.80 respectively, indicating a higher conversion of NO to NO2 over the measurement site. Monthly mean low SO2 mixing ratio was found (0.46 ± 0.02 ppbv) in monsoon and high (2.42 ± 0.21 ppbv) in winter. Keeping the emissions aside, the levels of CO, SO2 and NO2 were influenced by meteorology, urban effects and trans-boundary transport in the lower troposphere. Atmospheric boundary layer (ABL) had the good correlation coefficient (R = 0.76) with solar radiation during daytime, while it was mainly correlated with wind speed during night time (R = 0.42). Diurnal trend of atmospheric visibility was found to be maximum during noon times at around (14:00-16:00 h) about 76 k.m. and minimum during morning periods (06:00-08:00 h) about 45 k.m. A strong positive correlation was observed between BC and CO (R = 0.71) with an average slope, suggesting common or proximate sources likely to be traffic emissions contribution for the production of BC and CO. The SO2/NOx and CO/NOx study were strongly suggested that mobile sources were larger contributors over the site and the evidence of transport of emissions from other surrounding regions. Tropospheric Ultraviolet Visible (TUV) radiative transfer model was used to calculate the Photolysis rate coefficients (J(O3), J(NO2)). Chemical box model (NCAR-MM) was used to simulate diurnal variation of CO and the results were reported.

  20. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Directory of Open Access Journals (Sweden)

    J. Hsu

    2017-07-01

    Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  1. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Science.gov (United States)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and

  2. Measurements of pulse rate using long-range imaging photoplethysmography and sunlight illumination outdoors

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.

    2017-02-01

    Imaging photoplethysmography, a method using imagers to record absorption variations caused by microvascular blood volume pulsations, shows promise as a non-contact cardiovascular sensing technology. The first long-range imaging photoplethysmography measurements at distances of 25, 50, and 100 meters from the participant was recently demonstrated. Degraded signal quality was observed with increasing imager-to-subject distances. The degradation in signal quality was hypothesized to be largely attributable to inadequate light return to the image sensor with increasing lens focal length. To test this hypothesis, a follow-up evaluation with 27 participants was conducted outdoors with natural sunlight illumination resulting in 5-33 times the illumination intensity. Video was recorded from cameras equipped with ultra-telephoto lenses and positioned at distances of 25, 50, 100, and 150 meters. The brighter illumination allowed high-definition video recordings at increased frame rates of 60fps, shorter exposure times, and lower ISO settings, leading to higher quality image formation than the previous indoor evaluation. Results were compared to simultaneous reference measurements from electrocardiography. Compared to the previous indoor study, we observed lower overall error in pulse rate measurement with the same pattern of degradation in signal quality with respect to increasing distance. This effect was corroborated by the signal-to-noise ratio of the blood volume pulse signal which also showed decreasing quality with respect to increasing distance. Finally, a popular chrominance-based method was compared to a blind source separation approach; while comparable in measurement of signal-to-noise ratio, we observed higher overall error in pulse rate measurement using the chrominance method in this data.

  3. Sunlight inactivation of viruses in open-water unit process treatment wetlands: modeling endogenous and exogenous inactivation rates.

    Science.gov (United States)

    Silverman, Andrea I; Nguyen, Mi T; Schilling, Iris E; Wenk, Jannis; Nelson, Kara L

    2015-03-03

    Sunlight inactivation is an important mode of disinfection for viruses in surface waters. In constructed wetlands, for example, open-water cells can be used to promote sunlight disinfection and remove pathogenic viruses from wastewater. To aid in the design of these systems, we developed predictive models of virus attenuation that account for endogenous and exogenous sunlight-mediated inactivation mechanisms. Inactivation rate models were developed for two viruses, MS2 and poliovirus type 3; laboratory- and field-scale experiments were conducted to evaluate the models' ability to estimate inactivation rates in a pilot-scale, open-water, unit-process wetland cell. Endogenous inactivation rates were modeled using either photoaction spectra or total, incident UVB irradiance. Exogenous inactivation rates were modeled on the basis of virus susceptibilities to singlet oxygen. Results from both laboratory- and field-scale experiments showed good agreement between measured and modeled inactivation rates. The modeling approach presented here can be applied to any sunlit surface water and utilizes easily measured inputs such as depth, solar irradiance, water matrix absorbance, singlet oxygen concentration, and the virus-specific apparent second-order rate constant with singlet oxygen (k2). Interestingly, the MS2 k2 in the open-water wetland was found to be significantly larger than k2 observed in other waters in previous studies. Examples of how the model can be used to design and optimize natural treatment systems for virus inactivation are provided.

  4. Natural solar photolysis of total organic chlorine, bromine and iodine in water.

    Science.gov (United States)

    Abusallout, Ibrahim; Hua, Guanghui

    2016-04-01

    Municipal wastewater has been increasingly used to augment drinking water supplies due to the growing water scarcity. Wastewater-derived disinfection byproducts (DBPs) may negatively affect the aquatic ecosystems and human health of downstream communities during water reuse. The objective of this research was to determine the degradation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) in water by natural sunlight irradiation. Outdoor solar photolysis experiments were performed to investigate photolytic degradation of the total organic halogen (TOX) formed by fulvic acid and real water and wastewater samples. The results showed that TOX degradation by sunlight irradiation followed the first-order kinetics with half-lives in the range of 2.6-10.7 h for different TOX compounds produced by fulvic acid. The TOX degradation rates were generally in the order of TOI > TOBr ≅ TOCl(NH2Cl) > TOCl(Cl2). High molecular weight TOX was more susceptible to solar photolysis than corresponding low molecular weight halogenated compounds. The nitrate and sulfite induced indirect TOX photolysis rates were less than 50% of the direct photolysis rates under the conditions of this study. Fulvic acid and turbidity in water reduced TOX photodegradation. These results contribute to a better understanding of the fate of chlorinated, brominated and iodinated DBPs in surface waters.

  5. Photolysis of three antiviral drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater.

    Science.gov (United States)

    Zhou, Chengzhi; Chen, Jingwen; Xie, Qing; Wei, Xiaoxuan; Zhang, Ya-nan; Fu, Zhiqiang

    2015-11-01

    Photodegradation is an important elimination process for many pharmaceuticals in surface waters. In this study, photodegradation of three antiviral drugs, acyclovir, zidovudine, and lamivudine, was investigated in pure water, freshwater, and seawater under the irradiation of simulated sunlight. Results showed that zidovudine was easily transformed via direct photolysis, while acyclovir and lamivudine were mainly transformed via indirect photolysis. We found that in freshwater, nitrate enhanced the photodegradation of the three antiviral drugs, bicarbonate promoted the photodegradation of acyclovir, and dissolved organic matter (DOM) accelerated the photolysis of acyclovir and lamivudine. In seawater, the photolysis of acyclovir was not susceptible to Cl(-), Br(-) and ionic strength; however, the photolysis of zidovudine was inhibited by Cl(-) and Br(-), and the photolysis of lamivudine was enhanced by Cl(-), Br(-) and ionic strength. Second-order reaction rate constants for the three antiviral drugs with (1)O2 (k1O2) and OH (kOH) were also measured. These results are important for fate and ecological risk assessment of the antiviral drugs in natural waters.

  6. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation

    Institute of Scientific and Technical Information of China (English)

    Ruttapol Lertsirisopon; Satoshi Soda; Kazunari Sei; Michihiko Ike

    2009-01-01

    Abiotic degradability of four phthalic acid esters (PAEs) in the aquatic phase was evaluated over the wide pH range (5-9). The PAE solutions in glass test tubes were placed in the dark and under natural sunlight irradiation for evaluating the degradation rate via hydrolysis and photolysis plus hydrolysis, respectively, at ambient temperature for 140 d from autumn to winter in Osaka, Japan. The efficiency of abiotic degradation of the PAEs with relatively short alkyl chain, butylbenzyl phthalate (BBP) and di-n-butyl phthalate (DBP) at neutral pH was significant less than that in the acidic or alkaline condition. Photolysis was considered to mainly contribute to total abiotic degradation at any pH. Neither hydrolysis nor photolysis of di-ethylhexyl phthalate (DEHP) proceeded significantly at any pH, especially hydrolysis at neutral pH was negligible. On the other hand, the degradation rate of di-isononyl phthalate (DINP) mainly catalyzed by photolysis was much higher compared with that of the other PAEs, and almost complete removal was observed during the experimental period at pH 5.0 and 9.0. As a whole, according to the half-life (t1/2) obtained in the experiments, the abiotic degradability of the PAEs was in the sequence, DINP (32-140 d) > DBP (50-360 d), BBP (58-480 d) > DEHP (390-1600 d) under sunlight irradiation (via photolysis plus hydrolysis). Although the abiotic degradation rate for BBP, DBP, and DEHP are much lower than their biodegradation rate reported, the photolysis rate for DINP is comparable to its biodegradation rate in the acidic or alkaline condition.

  7. Photolysis of RDX and nitroglycerin in the context of military training ranges.

    Science.gov (United States)

    Bordeleau, Geneviève; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia

    2013-09-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroglycerin (NG) are two energetic materials commonly found in the environment on military training ranges. They are deposited on the ground in the form of solid particles, which can then dissolve in infiltration water or in surface water bodies. The objective of this study was to evaluate whether photolysis by sunlight can significantly contribute to the natural attenuation of RDX and NG (as solid particles or dissolved in surface water) at mid-northern latitudes, where training ranges of Canada and many European countries are located. Experiments conducted at 46.9°N show that both compounds are degraded by sunlight when dissolved in water, with half-lives between 1 and 120d, depending on the compound and time of year. Numerical models may be useful in predicting such photolysis rates, but the models should take into account current ozone levels, as older radiation datasets, collected before the ozone depletion observed since the late 1970s, underestimate the RDX/NG photolysis rate. For solid RDX or NG-bearing particles, photolysis is slower (half-lives of 2-4months), but the degradation rate is still rapid enough to make this process significant in a natural attenuation context. However, photolysis of NG embedded within solid propellant particles cannot proceed to completion, due to the stable nitrocellulose matrix of the propellant. Nonetheless, photolysis clearly constitutes an important attenuation mechanism that should be considered in conceptual models and included in numerical modeling efforts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Direct determination of rate constants for coupling between aromatic radical anions and alkyl and benzyl radicals by laser-flash photolysis

    DEFF Research Database (Denmark)

    Lund, T.; Christensen, P.; Wilbrandt, Robert Walter

    2003-01-01

    Coupling rates between the radicals methyl, n-, sec-, tert-butyl and benzyl (R-.) and the aromatic radical anions of 1,4-dicyanonaphthalene, 9,10-dicyanoanthracene and fluorenone (A(-.)) have been obtained using a new laser-flash photolysis method. The radicals R-. and the radical anions A(-.) were...... generated by a photoinduced electron transfer reaction between the aromatic compound A and the alkyl or benzyl triphenylborate anion RB(Ph)(3)(-). For the first time the rate constants of the coupling reaction between methyl and benzyl radicals with aromatic radical anions have been obtained. For all...... of the radicals and the structure and standard potentials of the aromatic radical anions....

  9. Aqueous photolysis of niclosamide

    Science.gov (United States)

    Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.

    2004-01-01

    The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.

  10. Spin-orbit relaxation rates of Bi(6p(3)) 2D(3/2) following photolysis of Bi(CH3)3 at lambda = 193 nm

    Science.gov (United States)

    Holloway, J. S.; Koffend, J. B.; Heidner, R. F., III

    1989-07-01

    Rate coefficients for the collisional relaxation of the first excited spin-orbit state of Bismuth (6p3, 2D3/2) have been measured at 295 K for argon, carbon dioxide, sulfur hexaflouride, hydrogen, deuterium, hydrogen flouride. The excited Bi atoms were prepared by excimer laser photolysis of trimethyl bismuth (TMB) at 193 nm and monitored directly in emission. The rate coefficient for quenching by the precursor TMB and a lower limit for removal by CH3 photofragments have also been established. Where applicable, our results are compared with the earlier work of Bevan and Husain and of Trainor. The suitability of long-range interaction models is discussed for those cases where isotopic substitution leads to markedly different quenching rates.

  11. Photolysis and OH-Initiated oxidation of glycolaldehyde under atmospheric conditions.

    Science.gov (United States)

    Magneron, I; Mellouki, A; Le Bras, G; Moortgat, G K; Horowitz, A; Wirtz, K

    2005-05-26

    The photolysis and OH-initiated oxidation of glycolaldehyde (HOCH(2)CHO), which are relevant atmospheric processes, have been investigated under different conditions using complementary methods in three different laboratories. The UV absorption cross sections of glycolaldehyde determined in two of the laboratories are in excellent agreement. The photolysis of glycolaldehyde in air has been investigated in a quartz cell with sunlamps and in the EUPHORE chamber irradiated by sunlight. The mean photolysis rate measured under solar radiation was (1.1 +/- 0.3) x 10(-5) s(-1) corresponding to a mean effective photolysis quantum yield of (1.3 +/- 0.3). The major products detected were HCHO and CO, whereas CH(3)OH was also observed with an initial yield around 10%. Evidence for OH production was found in both experiments using either OH scavenger or OH tracer species. Photolysis of glycolaldehyde was used as the OH source to measure the reaction rate constants of OH with a series of dienes by the relative method and to identify and quantify the oxidation products of the OH-initiated oxidation of 2-propanol. The different experiments suggest that OH is produced by the primary channel: HOCH(2)CHO + hnu --> OH + CH(2)CHO (1). The rate constant of the OH reaction with glycolaldehyde has been measured at 298 K using the relative method: k(glyc) = (1.2 +/- 0.3) x 10(-11) cm(3) molecule(-1) s(-1). The product study of the OH-initiated oxidation of glycolaldehyde in air has been performed using both a FEP bag and the EUPHORE chamber. HCHO was observed to be the major product with a primary yield of around 65%. Glyoxal (CHOCHO) was also observed in EUPHORE with a primary yield of (22 +/- 6)%. This yield corresponds to the branching ratio ( approximately 20%) of the H-atom abstraction channel from the CH(2) group in the OH + HOCH(2)CHO reaction, the major channel ( approximately 80%) being the H-atom abstraction from the carbonyl group. The data obtained in this work, especially the

  12. Hydrolysis and Photolysis of Herbicide Clomazone in Aqueous Solutions and Natural Water Under Abiotic Conditions

    Institute of Scientific and Technical Information of China (English)

    CAO Jia; DIAO Xiao-ping; HU Ji-ye

    2013-01-01

    The hydrolysis and photolysis of clomazone in aqueous solutions and natural water were assessed under natural and controlled conditions. Kinetics of hydrolysis and photolysis of clomazone were determined by HPLC-DAD. Photoproducts were identiifed by HPLC-MS. No noticeable hydrolysis occurred in aqueous buffer solutions ((25±2)°C, pH (4.5±0.1), pH (7.4±0.1), pH (9.0±0.1);(50±2)°C, pH (4.5±0.1), pH (7.4±0.1)) or in natural water up to 90 d. At pH (9.0±0.1) and (50±2)°C the half-life of clomazone was 50.2 d. Clomazone photodecomposition rate in aqueous solutions under UV radiation and natural sunlight followed ifrst-order kinetics. Degradation rates were faster under UV light (half-life of 51-59 min) compared to sunlight (half-life of 87-136 d). Under UV light, four major photoproducts were detected and tentatively identiifed according to HPLC-MS spectral information such as 2-chlorobenzamide, N-hydroxy-(2-benzyl)-2-methylpropan-amide, 2-[2-phenol]-4,4-dimethyl-3-isoxazolidinone and 2-[(4,6-dihydroxyl-2-chlorine phenol)]-4,4-dimethyl-3-isoxazolidinone. These results suggested that clomazone photodegradation proceeds via several reaction pathways:1) dehalogenation;2) substitution of chlorine group by hydroxyl;3) cleavage of the side chain. Photosensitizers, such as H2O2 and ribolfavin, could enhance photolysis of clomazone in natural sunlight. In summary, we found that photoreaction is an important dissipation pathway of clomazone in natural water systems.

  13. Photodegradation of 2,4-Dichlorophenol in Aqueous Systems under Simulated and Natural Sunlight

    Directory of Open Access Journals (Sweden)

    Dorota Gryglik

    2016-01-01

    Full Text Available The work presents results of studies on 2,4-dichlorophenol (2,4-DCP degradation in aqueous solutions using photochemically initiated processes by simulated and natural sunlight. A number of possible substrate photodegradation routes were investigated, by both direct photolysis and photosensitized oxidation process. The major role of singlet oxygen in 2,4-DCP photodegradation was proved. Rose Bengal and derivatives of porphine and phthalocyanine were used as sensitizers. The influences of various process parameters on the reaction rate were investigated. On the basis of experimental data reaction rate constants of 2,4-DCP photosensitized oxidation were determined. The possibility of using natural sunlight to degrade 2,4-DCP in water in the middle latitudes was stated. The acute toxicity bioassay was conducted with the marine bacterium Vibrio fischeri as a bioluminescent indicator. The obtained results encourage further research on this process.

  14. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Prosen, Helena [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia)]. E-mail: helena.prosen@uni-lj.si; Zupancic-Kralj, Lucija [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2005-02-01

    Relative importance of hydrolysis and photolysis of atrazine and its degradation products in aqueous solutions with dissolved humic acids (HA) has been assessed under exposure to sunlight and under UV irradiation. Quantum yield for direct photolysis of atrazine at 254 nm was 0.037 mol photon{sup -1}, the reaction order was 0.8. Atrazine, desethylatrazine and desisopropylatrazine converted to their 2-hydroxy analogs with rate constants 0.02-0.08 min{sup -1} in clear solutions, while addition of HA (300 mg L{sup -1}) caused a 10-fold increase in rate constants. Hydroxyatrazine was not degraded. No evidence of photo-Fenton reaction was found. Under exposure to solar light, atrazine, desethylatrazine and desisopropylatrazine were converted to 2-hydroxy analogs only at pH 2 because of acid hydrolysis and possible contribution of photolysis. At lower HA concentration, only their light-shielding effect was noticed, while at higher concentrations, HA-catalysed hydrolysis prevailed. Hydroxyatrazine concentration diminished at all pH values in solutions without HA exposed to sunlight. - Different humic acid-influenced degradation processes influence atrazine and its degradation products.

  15. Decomposition of S-Nitrosothiols Induced by UV and Sunlight

    Directory of Open Access Journals (Sweden)

    Manoj M. Veleeparampil

    2009-01-01

    Full Text Available Photochemical release of nitric oxide (NO from the S-nitroso derivatives of glutathione, L-cysteine, N-acetyl-L-cysteine, L-cysteinemethylester, D,L-penicillamine, N-acetyl-D,L-penicillamine, and N-acetylcysteamine has been investigated at neutral and acidic pH. The release of NO from RSNO is one of the key reactions that could be utilized in photodynamic therapy. The UV-VIS and HPLC analyses have shown that under argon saturated conditions, disulfide (RSSR is the major product of UV as well as sunlight induced decomposition. While in aerated conditions, nitirite—the end product of the oxidation of NO—was also observed along with disulfide. The formation of thiyl radical as the intermediate was reconfirmed by laser flash photolysis. The initial rate of formation of NO was on the order of 10−10dm3mol−1s−1. The quantum yields of these reactions were in the range of 0.2–0.8. The high quantum yields observed in the photo induced release of NO from RSNO using both UV and sunlight demonstrate the potential application of these reactions in photodynamic therapy.

  16. Degradation of the pesticide carbofuran on clay and soil surfaces upon sunlight exposure.

    Science.gov (United States)

    Mountacer, H; Atifi, A; Wong-Wah-Chung, P; Sarakha, M

    2014-03-01

    In the present study, the photolysis of carbofuran has been undertaken under sunlight conditions and at the surface of model supports such as clay films and different soils collected from two different sites in Morocco (Tirs and Dahs). In all conditions, an efficient degradation occurred owing to direct light absorption and also to photoinduced processes involving either clays or natural organic matter moities. On kaolin films, the photodegradation kinetics appears to follow a first-order process that clearly depends on the film thickness. The diffusion of carbofuran from the lower part to the illuminated surface was found to be negligible when compared to the photolysis process within the range of 20-70 μm. Thus, the photolysis rate constant at the surface of the solid support, k (0), was evaluated to be 7.0 × 10(-3) min(-1). Under these experimental conditions, the quantum yield was found equal to 2.1 × 10(-4). On soil surfaces, the disappearance rate constant was mainly attributed to photoinduced processes arising from natural organic matter. From the analytical point of view, the products were formed through (1) hydroxylation on the aromatic ring, (2) homolytic scission of the carbamate C-O bond leading to radical species formation, and (3) photohydrolysis of the carbamate C-O bond.

  17. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water

    Energy Technology Data Exchange (ETDEWEB)

    Leech, Dina M. [Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557 (United States)], E-mail: dmleech@email.unc.edu; Snyder, Matthew T.; Wetzel, Robert G. [Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2009-03-01

    Nanomolar concentrations of steroid hormones such as 17{beta}-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17{beta}-estradiol demonstrated modest photodegradation ({approx} 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased ({approx} 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone.

  18. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph;

    2014-01-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [" Laboratory study of nitrate photolysis...... in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters...

  19. Laser Flash Photolysis Studies on Gallic Acid

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-Ping; ZHAO Hong-Wei; ZHANG Zhao-Xia; WANG Wen-Feng; YAO Si-De

    2006-01-01

    The transient species of gallic acid (GA) have been studied by 266 nm nanosecond laser flash photolysis in aqueous solution and acetonitrile. The intermediate with absorption at 320 nm was identified as excited triplet state (3GA*), the decay rates of which were obtained in aqueous solution and acetonitrile respectively. Energy transfer from 3GA* to β-carotene was observed and the energy transfer rate constant kent was determined to be 2.2 × 109 mol-1·L·s-1. GA underwent photoionization during photolysis and the quantum yield of photoionization was determined to be 0.12 at room temperature with KI as a reference.

  20. Pesticide photolysis in prairie potholes: probing photosensitized processes.

    Science.gov (United States)

    Zeng, Teng; Arnold, William A

    2013-07-02

    Prairie pothole lakes (PPLs) are glacially derived, ecologically important water bodies found in central North America and represent a unique setting in which extensive agriculture occurs within wetland ecosystems. In the Prairie Pothole Region (PPR), elevated pesticide use and increasing hydrologic connectivity have raised concerns about the impact of nonpoint source agricultural pollution on the water quality of PPLs and downstream aquatic systems. Despite containing high dissolved organic matter (DOM) levels, the photoreactivity of the PPL water and the photochemical fate of pesticides entering PPLs are largely unknown. In this study, the photodegradation of sixteen pesticides was investigated in PPL waters sampled from North Dakota, under simulated and natural sunlight. Enhanced pesticide removal rates in the irradiated PPL water relative to the control buffer pointed to the importance of indirect photolysis pathways involving photochemically produced reactive intermediates (PPRIs). The steady-state concentrations of carbonate radical, hydroxyl radical, singlet oxygen, and triplet-excited state DOM were measured and second-order rate constants for reactions of pesticides with these PPRIs were calculated. Results from this study underscore the role of DOM as photosensitizer in limiting the persistence of pesticides in prairie wetlands through photochemical reactions.

  1. Photolysis rate coefficients in the upper atmosphere: Effect of line by line calculations of the O{sub 2} absorption cross section in the Schumann-Runge bands

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rafael P. [INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000, Cordoba (Argentina); Palancar, Gustavo G. [INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000, Cordoba (Argentina)]. E-mail: palancar@fcq.unc.edu.ar; Madronich, Sasha [Atmospheric Chemistry Division, National Center for Atmospheric Research, 1850 Table mesa Drive, Boulder, CO, 80303 (United States); Toselli, Beatriz M. [INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000, Cordoba (Argentina)]. E-mail: tosellib@fcq.unc.edu.ar

    2007-03-15

    A line by line (LBL) method to calculate highly resolved O{sub 2} absorption cross sections in the Schumann-Runge (SR) bands region was developed and integrated in the widely used Tropospheric Ultraviolet Visible (TUV) model to calculate accurate photolysis rate coefficients (J values) in the upper atmosphere at both small and large solar zenith angles (SZA). In order to obtain the O{sub 2} cross section between 49,000 and 57,000cm{sup -1}, an algorithm which considers the position, strength, and half width of each spectral line was used. Every transition was calculated by using the HIgh-resolution TRANsmission molecular absorption database (HITRAN) and a Voigt profile. The temperature dependence of both the strength and the half widths was considered within the range of temperatures characteristic of the US standard atmosphere, although the results show a very good agreement also at 79K. The cross section calculation was carried out on a 0.5cm{sup -1} grid and the contributions from all the lines lying at +/-500cm{sup -1} were considered for every wavelength. Both the SR and the Herzberg continuums were included. By coupling the LBL method to the TUV model, full radiative transfer calculations that compute J values including Rayleigh scattering at high altitudes and large SZA can now be done. Thus, the J values calculations were performed for altitudes from 0 to 120km and for SZA up to 89{sup o}. The results show, in the J{sub O{sub 2}} case, differences of more than +/-10% (e.g. at 96km and 30{sup o}) when compared against the last version of the TUV model (4.4), which uses the Koppers and Murtagh parameterization for the O{sub 2} cross section. Consequently, the J values of species with cross sections overlapping the SR band region show variable differences at lower altitudes. Although many species have been analyzed, the results for only four of them (O{sub 2}, N{sub 2}O, HNO{sub 3}, CFC12) are presented. Due to the fact that the HNO{sub 3} absorption cross

  2. Photolysis of aromatic pollutants in clean and dirty ice

    Science.gov (United States)

    Kahan, T.; Malley, P.; Stathis, A.

    2015-12-01

    Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.

  3. Clay and Soil Photolysis of the Pesticides Mesotrione and Metsulfuron Methyl

    Directory of Open Access Journals (Sweden)

    Marie Siampiringue

    2014-01-01

    Full Text Available Photolysis may represent an important degradation process of pollutants at the surface of soil. In the present work, we report a detailed study on the degradation of two pesticides: mesotrione and metsulfuron methyl using a sunlight simulator. In a first step, we studied the photochemical behaviour at the surface of clays from the kinetic as well as from the analytical point of view. In both cases, the quantum yields were found to be higher when compared to those obtained in aqueous solutions. The effect of iron(III, water, and humic substances contents was studied. In the former cases, an increase of the degradation rate was observed while an inhibition was observed with the latter owing to a filter effect phenomenon. In a second step, we studied the photodegradation at the surface of natural soil and identified the generated byproducts. They appear to mainly arise from photohydrolysis process.

  4. UV photolysis for accelerating pyridine biodegradation.

    Science.gov (United States)

    Zhang, Yongming; Chang, Ling; Yan, Ning; Tang, Yingxia; Liu, Rui; Rittmann, Bruce E

    2014-01-01

    Pyridine, a nitrogen-containing heterocyclic compound, is slowly biodegradable, and coupling biodegradation with UV photolysis is a potential means to accelerate its biotransformation and mineralization. The initial steps of pyridine biodegradation involve mono-oxygenation reactions that have molecular oxygen and an intracellular electron carrier as cosubstrates. We employed an internal circulation baffled biofilm reactor for pyridine biodegradation following three protocols: direct biodegradation (B), biodegradation after photolysis (P+B), and biodegradation with succinic acid added (B+S). Succinic acid was the main UV-photolysis product from pyridine, and its catabolic oxidation generates internal electron carriers that may accelerate the initial steps of pyridine biodegradation. Compared with direct biodegradation of pyridine (B), the removal rate for the same concentration of photolyzed pyridine (P+B) was higher by 15 to 43%, depending on the initial pyridine concentrations (increasing through the range of 130 to 310 mg/L). Adding succinic acid alone (B+S) gave results similar to P+B, which supports that succinic acid was the main agent for accelerating the pyridine biodegradation rate. In addition, protocols P+B and B+S were similar in terms of increasing pyridine mineralization over 10 h: 84% and 87%, respectively, which were higher than with protocol B (72%). The positive impact of succinic acid-whether added directly or produced via UV photolysis-confirms that its catabolism, which produced intracellular electron carriers, accelerated the initial steps of pyridine biotransformation.

  5. OH formation by HONO photolysis during the BERLIOZ experiment

    Science.gov (United States)

    Alicke, B.; Geyer, A.; Hofzumahaus, A.; Holland, F.; Konrad, S.; PäTz, H. W.; SchäFer, J.; Stutz, J.; Volz-Thomas, A.; Platt, U.

    2003-02-01

    The photolysis of nitrous acid (HONO) in the early morning hours is an important source of OH radicals, the most important daytime oxidizing species. Although the importance of this mechanism has been recognized for many years, no accurate quantification of this OH source is available, and the role of HONO photolysis is often underestimated. We present measurements of HONO and its precursor NO2 by Differential Optical Absorption Spectroscopy (DOAS) during the Berliner Ozonexperiment (BERLIOZ) field campaign in July/August 1998 at Pabstthum near Berlin, Germany. HONO concentrations, formation rates, and simultaneously measured HONO photolysis frequencies are used to calculate the total amount of OH formed by HONO photolysis during a full diurnal cycle. A comparison with the OH formation by photolysis of O3 and HCHO and by the reaction of alkenes with ozone shows that HONO photolysis contributed up to 20% of the total OH formed in a 24 hour period during this campaign. In the morning hours, HONO photolysis was by far the most important OH source during BERLIOZ.

  6. Photolysis of rac-leucine with circularly polarized synchrotron radiation.

    Science.gov (United States)

    Meierhenrich, Uwe J; Filippi, Jean-Jacques; Meinert, Cornelia; Hoffmann, Søren V; Bredehöft, Jan Hendrik; Nahon, Laurent

    2010-06-01

    Amino acids that pass the RNA machinery in living organisms occur in L-configuration. The question on the evolutionary origin of this biomolecular asymmetry remains unanswered to this day. Amino acids were detected in artificially produced interstellar ices, and L-enantiomer-enriched amino acids were identified in CM-type meteorites. This hints at a possible interstellar/circumstellar origin of the amino acids themselves as well as their stereochemical asymmetry. Based upon the current knowledge about the occurrence of circularly-polarized electromagnetic radiation in interstellar environments, we subjected rac-leucine to far-UV circularly-polarized synchrotron radiation. Asymmetric photolysis was followed by an analysis in an enantioselective GC/MS system. Here, we report on an advanced photolysis rate of more than 99% for leucine. The results indicate that high photolysis rates can occur under the chosen conditions, favoring enantioselective photolysis. In 2014, the obtained results will be reexamined by cometary mission Rosetta.

  7. Taxicab tipping and sunlight

    Science.gov (United States)

    2017-01-01

    Does the level of sunlight affect the tipping percentage in taxicab rides in New York City? We examined this question using data on 13.82 million cab rides from January to October in 2009 in New York City combined with data on hourly levels of solar radiation. We found a small but statistically significant positive relationship between sunlight and tipping, with an estimated tipping increase of 0.5 to 0.7 percentage points when transitioning from a dark sky to full sunshine. The findings are robust to two-way clustering of standard errors based on hour-of-the-day and day-of-the-year and controlling for day-of-the-year, month-of-the-year, cab driver fixed effects, weather conditions, and ride characteristics. The NYC cab ride context is suitable for testing the association between sunlight and tipping due to the largely random assignment of riders to drivers, direct exposure to sunlight, and low confounding from variation in service experiences. PMID:28594917

  8. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen

    2011-01-01

    A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...... spectroscopy and infra-red spectroscopy. This showed that the degradation rate is significantly increased by increasing illumination intensity. Acceleration factors exceeding 100 compared to standard 1 sun illumination were observed for solar concentration of 200 suns in the case of P3HT. A comparison between...

  9. Effects of Chromophoric Dissolved Organic Matter on Anthracene Photolysis Kinetics in Aqueous Solution and Ice.

    Science.gov (United States)

    Malley, Philip P A; Grossman, Jarod N; Kahan, Tara F

    2017-09-27

    We measured photolysis kinetics of the PAH anthracene in aqueous solution, in bulk ice, and at ice surfaces in the presence and absence of chromophoric dissolved organic matter (CDOM). Self-association, which occurs readily at ice surfaces, may be responsible for the faster anthracene photolysis observed there. Photolysis rate constants in liquid water increased under conditions where anthracene self-association was observed. Concomitantly, kinetics changed from first-order to second-order, indicating that the photolysis mechanism at ice surfaces might be different than that in aqueous solution. Other factors that could lead to faster photolysis at ice surfaces were also investigated. Increased photon fluxes due to scattering in the ice samples can account for at most 20% of the observed rate increase, and other factors including singlet oxygen ((1)O2*) production and changes in pH and polarity were determined not to be responsible for the faster photolysis. CDOM (in the form of fulvic acid (FA)) did not affect anthracene photolysis kinetics in aqueous solution but suppressed photolysis in ice cubes and ice granules (by 30% and 56%, respectively). This was primarily due to competitive photon absorption (the inner filter effect). Freeze-concentration (or "salting out") appears to slightly increase the suppressing effects of FA on anthracene photolysis. This may be due to increased competitive photon absorption or to physical interactions between anthracene and FA.

  10. Effect of clouds on photolysis and oxidants in the troposphere

    Science.gov (United States)

    Tie, Xuexi; Madronich, Sasha; Walters, Stacy; Zhang, Renyi; Rasch, Phil; Collins, William

    2003-10-01

    Cloud layers in the troposphere influence photolysis rates (J values) and hence concentrations of chemical species. In order to study the impact of clouds on photolysis rates and oxidants, we have developed a simplified version of the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet-Visible (TUV) model and have coupled the simplified TUV (otherwise known as the fast TUV (FTUV)) into the NCAR/Atmospheric Chemistry Division global transport chemical model (Model for Ozone and Related Chemical Tracers (MOZART-2)). The FTUV model has the same physical processes as the TUV model, except that the wavelength bins between 121 and 750 nm are reduced from 140 to 17. As a result, FTUV is about 8 times faster than the original TUV. Differences in the calculated photolysis rates between TUV and FTUV are generally less than 5% in the troposphere. Subgrid vertical distributions of clouds are also considered in the calculation of photolysis rates in MOZART-2. The method used in this study is a mixed maximum and random overlap scheme. The subgrid method increases the computation time for photolysis rates by a factor of 3 compared to a simple method in which clouds are uniformly distributed over the MOZART-2 grids. Our calculation shows that the uniform cloud distribution method tends to significantly overestimate back scattering on the top of clouds and overestimates the impact on photochemistry in the troposphere. The results suggest that clouds have important impacts on tropospheric chemistry. Global mean OH concentration increases by about 20% due to the impact of clouds. As a result, the calculated CH4 lifetime changes to 11 years for clear sky and 9 years for cloudy sky. The latter value is closer to the methane lifetime estimated from previous studies. Calculated CO surface concentrations are compared with observed values, showing an improvement when the impact of clouds on the photolysis rates is taken into account. Clouds also have important impacts

  11. Comparison of Vanillin and Isovanillin Photolysis in Aqueous Solutions

    Science.gov (United States)

    Vusovich, O. V.; Lapin, I. N.; Svetlichnyi, V. A.; Sul'timova, N. B.; Tchaikovskaya, O. N.

    2014-03-01

    General kinetic regularities of reactions of stationary and laser photolysis of 3-methoxy-4-hydroxybenzaldehyde (vanillin) and 3-hydroxy-4-methoxybenzaldehyde (isovanillin) are investigated by the method of nanosecond laser flash-photolysis. The 4th harmonic of a Nd:YAG laser (λexc = 266 nm) with pulse duration of 7 ns, output power of 100 MW/cm2, and delay time of 30 ns was used as an excitation source. As a result of photolysis, the same photoproducts are formed in the region of absorption at 715 nm. The rate constants of vanillin and isovanillin decomposition obey the first order law and are 2.3ṡ106 and 2.5ṡ106 s-1, respectively.

  12. Laser photolysis of ionic liquid [bmim][PF6

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Photoinduced chemical reactions of 1-butyl-3-methylimidazolium hexafiuorophosphate ([bmim][PF6])were studied by laser photolysis at a wavelength of 266 nm. Excited triplet state 3[bmim]+* was observed, radical cation [bmim] 2+* and neutral [bmim]* radical via photoionization were also formed. Energy transfer from 3[bmim]+* to β-carotene was confirmed. Oxidation via one electron transfer from TMPD to 3[bmim]+* was also observed and the rate constant was determined to be 1.2 × 105 L. mol-1-s-1. The reaction of [bmim][PF6] with hydrated electron (eaq)was confirmed by laser photolysis in aqueous solution.

  13. Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets

    Science.gov (United States)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-09-01

    Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α,β-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.

  14. Direct photolysis of carbonyl compounds dissolved in cloud and fog droplets

    Science.gov (United States)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-04-01

    Gas phase photolysis is an important tropospheric sink for many carbonyl compounds, however the significance of direct photolysis of carbonyl compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived Henry's law parameters, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will not have competitive aqueous photolysis rates. We also present molecular dynamics simulations of atmospherically relevant carbonyl compounds designed to estimate gas and aqueous phase extinction coefficients. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only three out of the 92 carbonyl compounds investigated, pyruvic acid, 3-oxobutanoic acid, and 3-oxopropanoic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α, β conjugation, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected.

  15. Sunlight and Vitamin D

    Science.gov (United States)

    Wacker, Matthias; Holick, Michael F.

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences. PMID:24494042

  16. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    Science.gov (United States)

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... studies of polymers for organic solar cells. Degradation was monitored by the evolution of the UV-vis absorption over time. Varying the solar intensity from 1 to 200 suns, the degradation rates were increased by more than a factor of 100 relative to degradation at 1 simulated sun. 5 different polymers...

  18. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators...... studies of polymers for organic solar cells. Degradation was monitored by the evolution of the UV-vis absorption over time. Varying the solar intensity from 1 to 200 suns, the degradation rates were increased by more than a factor of 100 relative to degradation at 1 simulated sun. 5 different polymers....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...

  19. Photolysis of tembotrione and its main by-products under extreme artificial conditions:

    Energy Technology Data Exchange (ETDEWEB)

    Calvayrac, Christophe; Bontemps, Nataly [Laboratoire de Chimie des Biomolécules et de l' Environnement (LCBE, EA 4215), Université de Perpignan Via Domitia (UPVD), 52 avenue Paul Alduy, 66860 Perpignan (France); Nouga-Bissoue, Achille [Ecole Nationale Supérieure de l' Enseignement Technique (ENSET), Université de Douala, BP 2701 Douala (Cameroon); Romdhane, Sana; Coste, Camille-Michel [Laboratoire de Chimie des Biomolécules et de l' Environnement (LCBE, EA 4215), Université de Perpignan Via Domitia (UPVD), 52 avenue Paul Alduy, 66860 Perpignan (France); Cooper, Jean-Francois, E-mail: cooper@univ-perp.fr [Laboratoire de Chimie des Biomolécules et de l' Environnement (LCBE, EA 4215), Université de Perpignan Via Domitia (UPVD), 52 avenue Paul Alduy, 66860 Perpignan (France)

    2013-05-01

    The photolytic behaviour of tembotrione, a new chemical herbicide intended for foliar application in corn, was investigated under unnatural and extreme photochemical exposure in aqueous solutions in the laboratory. It appeared that degradation was dependent on pH and occurred more rapidly under acidic and neutral conditions, leading predominantly to the formation of a xanthenedione type compound by intramolecular cyclisation with loss of HCl. Trace amounts of benzoic acid by-products appeared also during UV-C irradiation (λ = 254 nm) of the parent compound. Results were comparable to those obtained with sulcotrione, another β-triketone herbicide. These extreme irradiation conditions clearly accelerated the phototransformation of sulcotrione vs. simulated sunlight irradiation. Furthermore, the photolysis of the degradation by-products, resulting from either photolysis, hydrolysis or biotic pathways of the two active ingredients, was also carried out. The benzoic acid by-products appeared more stable to photolysis than their parent molecules. Xanthenedione derivatives were degraded more rapidly with several differences depending on the pH value. - Highlights: • Tembotrione and sulcotrione water photolysis appeared enhanced under unnatural and extreme conditions. • Triketones were easily photodegraded under acidic and neutral conditions. • Xanthenedione derivatives were the predominant by-products. • Phototransformation of xanthenedione derivatives was pH-dependent. • Benzoic acid derivatives can be relatively stable.

  20. Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions.

    Science.gov (United States)

    Cao, Guiping; Lu, Jilai; Wang, Gongying

    2012-01-01

    The photodegradation of bisphenol S (BPS) in aqueous solutions was studied under different conditions. Photolysis and kinetics were investigated, as were the photolysis mechanism and the influences of initial pH value, light source, and environmental substances in water. The results showed that the photolysis of BPS occurred under UV light, and the rate increased with light source intensity. The photolysis of 5.0-50.0 mg/L BPS in water followed first-order kinetics: the rate was gamma = 0.0161C(BPS) under a 40-W UV-lamp, and the degradation half-life was 43.1 min. Due to its absorption of light, direct photolysis of BPS was a predominant pathway for BPS but was not obviously affected by reactive oxygen species. The results confirmed that the photolysis rates of BPS in alkaline water solution were faster than those in acidic and neutral water solution because of the ionization of BPS. The photodegradation rate of BPS increased in the presence of chloride and ferric ions, while the rate was inhibited by nitrate and phosphate in aqueous solution.

  1. Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    Guiping Cao; Jilai Lu; Gongying Wang

    2012-01-01

    The photodegradation of bisphenol S (BPS) in aqueous solutions was studied under different conditions.Photolysis and kinetics were investigated,as were the photolysis mechanism and the influences of initial pH value,light source,and environmental substances in water.The results showed that the photolysis of BPS occurred under UV light,and the rate increased with light source intensity.The photolysis of 5.0-50.0 mg/L BPS in water followed first-order kinetics:the rate was Υ =0.0161Caps under a 40-W UV-lamp,and the degradation half-life was 43.1 min.Due to its absorption of light,direct photolysis of BPS was a predominant pathway for BPS but was not obviously affected by reactive oxygen species.The results confirmed that the photolysis rates of BPS in alkaline water solution were faster than those in acidic and neutral water solution because of the ionization of BPS.The photodegradation rate of BPS increased in the presence of chloride and ferric ions,while the rate was inhibited by nitrate and phosphate in aqueous solution.

  2. Literature survey of the aqueous chemistry of technetium related to photolysis. [115 references

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, H.A.

    1981-07-01

    A literature survey was made to accumulate information about the chemistry of technetium as it relates to photolysis. The electrochemical potentials and the reactions of the various technetium compounds and complexes are discussed, along with the various absorption spectra of the different species. The TcCl/sub 6//sup 2 -/ ion has been shown to be photochemically active in HCl solutions. Hexachlorotechnetate(IV) is oxidized when exposed to sunlight in concentrated HCl. A ligand change occurs when it is exposed to either 254- or 34-nm radiation in more dilute HCl. No other photolysis reactions were found in the literature. It is possible that, under appropriate conditions, other valence states of technetium would be photochemically active, resulting in either redox or ligand exchange reactions. Proposals for investigating the photochemical reduction of the pertechnetate in HNO/sub 3/ and other media are discussed.

  3. Solar Photolysis and Photocatalytic Decolorization of Thymol Blue

    Directory of Open Access Journals (Sweden)

    Falah H. Hussein

    2008-01-01

    Full Text Available The photolysis and photocatalytic decolorization of an aqueous propane-2-ol solution of thymol blue(TB (Phenol, 4,4'-(3H-2,1-benzoxathiol-3-ylidenebis(5-methyl-2-(1-methylethyl-,S,S-dioxide; Thymolsulfonpthalein (C27H30O5S,were carried out under natural weathering conditions. Direct photolysis of TB solution of concentration 4.3X10−3 M degraded 37.1% of the colored solution after two hours of solar irradiation, however, the solar photocatalytic decolorization percentage reached 79.04% and 86.21% after the addition of zinc oxide and titanium dioxide, respectively, for the same period. The degradation percentages were investigated by monitoring the dye decolorization spectrophotometrically. The decolorization rates of TB are markedly related with amount of hydroxyl radical formed. A suitable mechanism for the mineralization of TB has been proposed.

  4. Deuterium fractionation in formaldehyde photolysis: chamber experiments and RRKM theory

    Directory of Open Access Journals (Sweden)

    E. J. K. Nilsson

    2013-04-01

    Full Text Available While isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions with the δD of atmospheric in situ hydrogen production, the mechanism and the extent of their pressure dependencies is not adequately described. The pressure dependence of the photolysis rates of the mono- and di-deuterated formaldehyde isotopologues HDCO and D2CO relative to the parent isotopologue H2CO was investigated using RRKM theory and experiment. D2CO and H2CO were photolysed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our earlier work with HDCO vs. H2CO. The UV lamps used for photolysis emit light at wavelengths that mainly dissociate formaldehyde into molecular products, CO and H2 or D2. A model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface to describe the observed pressure dependent photolytic fractionation of deuterium. The effect of deuteration on the RRKM lifetime of the S0 state is not the main cause of the experimentally observed isotope effect. We propose that there is an additional previously unrecognised isotopic fractionation in the rate of transfer of population from the initially excited S1 state onto the S0 surface.

  5. Solvent Effect on the Photolysis of Riboflavin.

    Science.gov (United States)

    Ahmad, Iqbal; Anwar, Zubair; Ahmed, Sofia; Sheraz, Muhammad Ali; Bano, Raheela; Hafeez, Ambreen

    2015-10-01

    The kinetics of photolysis of riboflavin (RF) in water (pH 7.0) and in organic solvents (acetonitrile, methanol, ethanol, 1-propanol, 1-butanol, ethyl acetate) has been studied using a multicomponent spectrometric method for the assay of RF and its major photoproducts, formylmethylflavin and lumichrome. The apparent first-order rate constants (k obs) for the reaction range from 3.19 (ethyl acetate) to 4.61 × 10(-3) min(-1) (water). The values of k obs have been found to be a linear function of solvent dielectric constant implying the participation of a dipolar intermediate along the reaction pathway. The degradation of this intermediate is promoted by the polarity of the medium. This indicates a greater stabilization of the excited-triplet states of RF with an increase in solvent polarity to facilitate its reduction. The rate constants for the reaction show a linear relation with the solvent acceptor number indicating the degree of solute-solvent interaction in different solvents. It would depend on the electron-donating capacity of RF molecule in organic solvents. The values of k obs are inversely proportional to the viscosity of the medium as a result of diffusion-controlled processes.

  6. Sunlight Responsive Thermochromic Window System

    Energy Technology Data Exchange (ETDEWEB)

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

  7. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  8. Photocatalytic oxidation of ciprofloxacin under simulated sunlight.

    Science.gov (United States)

    Gad-Allah, Tarek A; Ali, Mohamed E M; Badawy, Mohamed I

    2011-02-15

    Ciprofloxacin (CIP) is a famous synthetic chemotherapeutic antibiotic. It is widely found either in water or wastewater. In this study ciprofloxacin was photocatalytically degraded using commercial anatase titanium dioxide (TiO(2)) under simulated sunlight. The rate of reaction was found to be affected by pH, TiO(2) concentration and antibiotic concentration. The best reaction rate was obtained in natural ciprofloxacin pH (5.8) and 1000 mg/L TiO(2). More titania concentration was found to reduce the reaction rate because of the limitation in light transmittance. From kinetic studies, the reaction was proved to proceed through adsorption step then photooxidation and obeys pseudo-first order kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments.

    Science.gov (United States)

    Yamamoto, Hiroshi; Nakamura, Yudai; Moriguchi, Shigemi; Nakamura, Yuki; Honda, Yuta; Tamura, Ikumi; Hirata, Yoshiko; Hayashi, Akihide; Sekizawa, Jun

    2009-02-01

    We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption-namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol-and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals-propranolol, indomethacin, and ifenprodil-were relatively easily photodegraded (i.e., half-life24h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (K(d) values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the K(d) values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (logK(oc)) showed a poor linear correlation with the octanol-water distribution coefficient (logD(ow)) at neutral pH. These results suggest other sorption mechanisms-such as electrochemical affinity, in addition to hydrophobic interaction-play an important role in sorption to sediment/soil at neutral pH.

  10. Sunlight exposure: Do health benefits outweigh harm?

    Science.gov (United States)

    Razzaque, Mohammed S

    2016-09-16

    Vitamin D is a fat-soluble vitamin whose levels within the body are elevated following sunlight exposure. Numerous studies have shown that sunlight exposure can provide protection to a wide variety of diseases, ranging from different types of tumors to hypertension to type 1 diabetes to multiple sclerosis. Moreover, studies have shown that avoiding sunlight may influence the initiation and progression of some of these diseases. Avoidance of sunlight, coupled with the inclination towards consuming supplements, is becoming the primary choice to obtain vitamin D. The purpose of this article is to present evidences from published literature, to show that the expected benefits of vitamin D supplements are minimized by the potential risk of cardiovascular events and beyond. Since hypovitaminosis D status usually reflects reduced sunlight exposure, the obvious primary replacement should be safe sunlight exposure, and not exogenous supplements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate

    Energy Technology Data Exchange (ETDEWEB)

    Gros, Meritxell [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia); Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala (Sweden); Williams, Mike, E-mail: Mike.Williams@csiro.au [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia); Llorca, Marta; Rodriguez-Mozaz, Sara [Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101 Girona (Spain); Barceló, Damià [Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101 Girona (Spain); Water and Soil Quality Research Group, Department of Environmental IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona (Spain); Kookana, Rai S. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Waite Campus, Urrbrae, 5064 Adelaide, SA (Australia)

    2015-10-15

    Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t{sub 1/2} approximately 3 h in pure water and 4 h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t{sub 1/2} of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds. - Highlights: • Photolysis of both compounds resulted in several transformation products, some of which were previously unknown. • Short irradiation times may be adequate to degrade amisulpride whereas a longer exposure is required for desipramine. • Transformation of desipramine was enhanced by about three times due to indirect photolysis in wastewaters. • For desipramine, mixture acute toxicity increased after solar irradiation. • Photolysis is unlikely to be the main removal pathway for the two antidepressants during wastewater treatment.

  12. Wavelength dependence of isotope fractionation in N2O photolysis

    Directory of Open Access Journals (Sweden)

    P. J. Crutzen

    2002-10-01

    wavelengths other than 185 nm were made using broadband light sources, namely D2, Hg/Xe and Sb lamps. The latter lamp was used in conjunction with various interference filters to shift the peak photolysis rate to longer wavelengths. From these experiments and existing data in the literature, a comprehensive picture of the wavelength dependence of N2O photolysis is created.

  13. Combined Application of UV Photolysis and Ozonation with Biological Aerating Filter in Tertiary Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zhaoqian Jing

    2012-01-01

    Full Text Available To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF. The results indicated that UV photolysis could not remove much COD (chemical oxygen demand, and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3, COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD and biodegradability greatly. Proportion of organic compounds with molecular weight (MW <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3 oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3 oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.

  14. Nanosecond Laser Photolysis of Opaque Heterogeneous Photosensitizers.

    Science.gov (United States)

    1987-10-01

    Willsher spent two weeks in Spain during the Summer working on this project and presented a poster at the XIIth Recunion Bienal de Quimica Organica de la...Real Sociedad Espaiola de Quimica , Cordoba, Spain,23-25 September, entitled "Fase Solida : Contribuci6n de la "Laser Flash Photolysis" a la Elucidacion

  15. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    Directory of Open Access Journals (Sweden)

    K. M. Badali

    2015-02-01

    Full Text Available This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid, and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH, the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.

  16. Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases

    Science.gov (United States)

    Grossman, Jarod N.; Stern, Adam P.; Kirich, Makena L.; Kahan, Tara F.

    2016-03-01

    Condensed phases in the atmosphere, such as cloud droplets and aerosols, often contain both water and organic matter (OM). Reactivity can differ significantly between aqueous and organic phases. We have measured photolysis kinetics of the polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in several organic solvents and in water, as well as in miscible and phase-separated aqueous-organic mixtures at atmospherically-relevant wavelengths. Photolysis rate constants generally increased with increasing solvent polarity; photolysis of both PAHs was more than ten times faster in water than in octanol. Local polarity had a much greater effect on PAH photolysis kinetics than changes in PAH absorptivity or singlet oxygen concentrations. Photolysis kinetics in homogeneous aqueous-organic mixtures varied monotonically with2 OM volume fraction. Kinetics in immiscible (phase-separated) solutions were more complex, with different dependences on OM content observed in stagnant and turbulent solutions. Our results suggest that OM could greatly affect the photochemical lifetimes of PAHs in atmospheric condensed phases such as aerosols, even if the OM does not itself absorb photons.

  17. Does sunlight exposure improve survival in patients with non-small cell lung cancer?

    Science.gov (United States)

    Mutlu, Hasan; Buyukcelik, Abdullah; Aksahin, Arzu; Kibar, Mustafa; Cihan, Yasemin Benderli; Kaya, Eser; Seyrek, Ertugrul; Yavuz, Sinan; Erden, Abdulsamet; Calikusu, Zuleyha; Aslan, Tuncay; Akca, Zeki

    2013-01-01

    Some epidemiological studies reported that sunlight exposure and highvitamin D levels may decrease the morbidity and mortality related to cancer. We aimed to evaluate whether sunlight exposure has an impact on survival in patients with non small cell lung cancer. A total of 546 patients with NSCLC from two different regions (Kayseri and Adana) differing according to sunlight exposure were analysed retrospectively. The median overall survival (OS) rates were 11. 6 (CI: 9.50-13.6) and 15.6 months (CI: 12.4-18.8) for Kayseri and Adana, respectively, in all patients (p=0.880). There were no differences between groups in terms of OS. While there is strong evidence regarding inverse relationship between cancer incidence and sunlight exposure, it is still controversial whether sunlight exposure is a good prognostic factor for survival in patients with lung cancer.

  18. Photocatalytic degradation of synthetic dye under sunlight

    Directory of Open Access Journals (Sweden)

    Mijin Dušan

    2007-01-01

    Full Text Available Synthetic dyes are widely used in the textile industry. Dye pollutants from the textile industry are an important source of environmental contamination. The majority of these dyes are toxic, mostly non-biodegradable and also resistant to decomposition by physico-chemical methods. Among new oxidation methods or "advanced oxidation processes", heterogeneous photocatalysis appears as an emerging destructive technology leading to the total mineralization of many organic pollutants. CI Basic Yellow 28 (BY28, commonly used as a textile dye, could be photocatalytically degraded using TiU2 as catalyst under sunlight. The effect of some parameters such as the initial catalyst concentration, initial dye concentration, initial NaCl and Na2CO3 concentrations, pH, H2O2 and type of catalyst on the degradation rate of BY28 was examined in details. The presence of NaCl and Na2CO3 led to inhibition of the photodegradation process. The highest photodegradation rate was observed at high pH, while the rate was the lowest at low pH. Increase of the initial H2O2 concentration increased the initial BY28 photodegradation efficiency. ZnO was a better catalyst than TiO2 at low dye concentrations.

  19. Technique to separate lidar signal and sunlight.

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  20. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  1. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry.

    Science.gov (United States)

    Meusinger, Carl; Berhanu, Tesfaye A; Erbland, Joseph; Savarino, Joel; Johnson, Matthew S

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude - apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix - constituting the largest uncertainty in models of snowpack NOx emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  2. Effects of concentrated sunlight on organic photovoltaics

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Katz, Eugene A.; Hirsch, Baruch

    2010-01-01

    gradually from 0.2 to 27 suns. Power conversion efficiency exhibited slow increase with C that was followed by saturation around 2% at C = 0.5–2.5 suns and subsequent strong reduction. Possible OPV applications in stationary solar concentrators (C ≤ 2 suns) are discussed. Finally, experiments at C = 55......We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied...

  3. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    Science.gov (United States)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  4. An experimental study on bioremediation and photolysis of enrofloxacin.

    Science.gov (United States)

    Zamanpour, Ghasem; Mehrabani-Zeinabad, Arjomand

    2014-01-01

    Recent studies have identified the occurrence of a vast number of pharmaceuticals into the municipal wastewater through excreted urine and feces. Some of these pharmaceutical compounds are degraded in the environment. However, there have been reports on the presence of pharmaceutical active compounds in drinking water. Concerns have been raised over the potential adverse effects of these pharmaceuticals on public health and the aquatic environment. In order to investigate the removal process of pharmaceutical enrofloxacin, a unit consisting of a structured packing rotating biological contactor (spRBC) was designed and constructed as a biological treatment unit. The removal rate reached a maximum of 70% in this biological unit. In the meantime, the effect of photolysis process on the effluent of the biological unit was also studied. In the direct photolysis, the removal performance reached 51% and by adding H2O2 the removal efficiency was increased to 87%. The removal efficiency for the entire system including spRBC and an ultraviolet radiation unit was 94%.

  5. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment.

    Science.gov (United States)

    Cooper, William J; Jones, Adam C; Whitehead, Robert F; Zika, Rod G

    2007-05-15

    The transport and discharge of ship ballast water has been recognized as a major vector for the introduction of invasive species. Chemical oxidants, long used in drinking water and wastewater treatment, are alternative treatment methods for the control of invasive species currently being tested for use on ships. One concern when a ballasted vessel arrives in port is the adverse effects of residual oxidant in the treated water. The most common oxidants include chlorine (HOCl/OCl-), bromine (HOBr/OBr-), ozone (03), hydrogen peroxide (H2O2), chlorine dioxide (ClO2), and monochloramine (NH2Cl). The present study was undertaken to evaluate the sunlight-mediated photochemical decomposition of these oxidants. Sunlight photodecomposition was measured at various pH using either distilled water or oligotrophic Gulf Stream water for specific oxidants. For selected oxidants, quantum yields at specific wavelengths were obtained. An environmental photochemical model, GCSOLAR, also provided predictions of the fate (sunlight photolysis half-lives) of HOCI/OCl-, HOBr/OBr-, ClO2, and NH2Cl for two different seasons at latitude 40 degrees and in water with two different concentrations of chromophoric dissolved organic matter. These data are useful in assessing the environmental fate of ballast water treatment oxidants if they were to be discharged in port.

  6. Can Natural Sunlight Induce Coherent Exciton Dynamics?

    CERN Document Server

    Olšina, Jan; Wang, Chen; Cao, Jianshu

    2014-01-01

    Excitation of a model photosynthetic molecular aggregate by incoherent sunlight is systematically examined. For a closed system, the excited state coherence induced by the sunlight oscillates with an average amplitude that is inversely proportional to the excitonic gap, and reaches a stationary amplitude that depends on the temperature and coherence time of the radiation field. For an open system, the light-induced dynamical coherence relaxes to a static coherence determined by the non-canonical thermal distribution resulting from the entanglement with the phonon bath. The decay of the excited state population to the common ground state establishes a non-equilibrium steady-state flux driven by the sunlight, and it defines a time window to observe the transition from dynamical to static coherence. For the parameters relevant to photosynthetic systems, the exciton dynamics initiated by the sunlight exhibits a non-negligible amount of dynamical coherence (quantum beats) on the sub-picosecond timescale; however, ...

  7. Supplementing vitamin D through sunlight: associating health literacy with sunlight exposure behavior.

    Science.gov (United States)

    Leung, Angela Yee Man; Cheung, Mike Kwun Ting; Chi, Iris

    2015-01-01

    To test whether health literacy is associated with sunlight exposure behavior, we interviewed 648 Chinese adults aged 65 years or older. Using the information-motivation-behavioral skills model and structural equation modeling, we tested whether health literacy was associated with the complex relationships among knowledge about vitamin D, attitudes toward sunlight exposure, doctor recommendations regarding sunlight exposure, and sunlight exposure behavior. Health literacy was directly associated with sunlight exposure (β=.20, psunlight exposure through health literacy (β=.46, psunlight exposure through health literacy (β=-.12, psunlight exposure. Providing relevant knowledge or making doctor recommendations might not be effective. Training should focus on individuals with low health literacy who may be less likely to receive sunlight exposure. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. The examination of berberine excited state by laser flash photolysis

    Science.gov (United States)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  9. Model-aided radiometric determination of photolysis frequencies in a sunlit atmosphere simulation chamber

    Directory of Open Access Journals (Sweden)

    B. Bohn

    2004-10-01

    Full Text Available In this work diurnal and seasonal variations of mean photolysis frequencies for the atmosphere simulation chamber SAPHIR at Forschungszentrum Jülich are calculated. SAPHIR has a complex construction with UV permeable teflon walls allowing natural sunlight to enter the reactor volume. The calculations are based on external measurements of solar spectral actinic flux and a model considering the time-dependent impact of shadows from construction elements as well as the influence of the teflon walls. Overcast and clear-sky conditions are treated in a consistent way and different assumptions concerning diffuse sky radiance distributions are tested. Radiometric measurements inside the chamber are used for an inspection of model predictions. Under overcast conditions we obtain 74% and 67% of external values for photolysis frequencies j(NO2 (NO2+hν→NO+O(3P and j(O1D (O3+hν→O2+O(1D, respectively. On a clear sky summer day these values are time-dependent within ranges 0.65–0.86 and 0.60–0.73, for j(NO2 and j(O1D, respectively. A succeeding paper (Bohn et al., 2004 is dealing with an on-road test of the model approach by comparison with photolysis frequencies from chemical actinometry experiments within SAPHIR.

  10. Faster photodegradation rate and higher dioxin yield of triclosan induced by cationic surfactant CTAB.

    Science.gov (United States)

    Qiao, Xianliang; Zheng, Xiaodong; Xie, Qing; Yang, Xianhai; Xiao, Jie; Xue, Weifeng; Chen, Jingwen

    2014-06-30

    Triclosan has received extensive attention as it has been frequently detected in the aquatic environment. Photolysis was found to be a major pathway governing the fate of triclosan in the aquatic environment. However, the effects of surfactants that usually coexist with triclosan, on the photodegradation of triclosan, are largely unknown. In this study, the effects of selected surfactants on the photodegradation of triclosan were investigated experimentally. The results show that anionic sodium dodecyl benzene sulfonate, sodium dodecyl sulfate and neutral polyoxyethylene (20) sorbitan monooleate inhibit the photolysis of triclosan, whereas cationic cetyltrimethylammonium bromide (CTAB) significantly accelerates the photodegradation rate of triclosan. The interactions between the hydrophilic group of CTAB and anionic triclosan lead to the apparent decrease of pKa of triclosan from 8.4 to 6.1, which increase the fraction of anionic triclosan from 4% to 89% in neutral solution. A red shift in the UV-VIS absorption spectrum is exhibited, thus leading to the increased photodegradation rate of triclosan. The accelerations caused by CTAB were observed under xenon lamp and Hg lamp irradiances, as well as under natural sunlight. Effect of CTAB demonstrated pH dependence with significantly enhancement under pH 5∼9 and inhibition at pH=3. The presence of CTAB also increased the yield of 2,8-dichlorodibenzo-p-dioxin from the photolysis of triclosan about 7 times at pH=7.

  11. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis

    KAUST Repository

    Galí, Martí

    2016-11-14

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  12. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate.

    Science.gov (United States)

    Gros, Meritxell; Williams, Mike; Llorca, Marta; Rodriguez-Mozaz, Sara; Barceló, Damià; Kookana, Rai S

    2015-10-15

    Attenuation of pharmaceuticals due to natural sunlight is expected to be an important removal pathway in wastewater treatment plants using treatment lagoon systems. In this work, the photolysis of two antidepressants, amisulpride and desipramine, has been investigated in both ultrapure water and wastewater under simulated solar irradiation. Results showed that for amisulpride short irradiation times (t1/2 approximately 3h in pure water and 4h in wastewater) were adequate to degrade the parent compound while a longer exposure period was required for desipramine (t1/2 of approximately 36 h in pure water), although its degradation is enhanced almost three times by indirect photolysis in wastewaters. A significant number of transformation products (TPs) were identified for both pharmaceuticals by high-resolution mass spectrometry. In general, TPs formed are not persistent although acute toxicity tests for desipramine and its TPs showed an increase of the mixture toxicity after solar irradiation, suggesting that some TPs may be more toxic than the parent compound. In wastewaters collected from treatment lagoons, only amisulpride and one of its major TPs, TP 357, were detected. This indicates that long solar exposure times may be necessary for an effective elimination of these substances in lagoon systems or that photolysis may not be the main removal pathway for these particular compounds.

  13. Carbamazepine degradation by photolysis and titanium dioxide photocatalysis.

    Science.gov (United States)

    Im, Jong-Kwon; Son, Hyun-Seok; Kang, Young-Min; Zoh, Kyung-Duk

    2012-07-01

    We investigated the degradation of carbamazepine by photolysis/ultraviolet (UV)-C only and titanium dioxide photocatalysis. The degradation of carbamazepine by UV-only and titanium-dioxide-only (adsorption) reactions were inefficient, however, complete degradation of carbamazepine was observed by titanium dioxide photocatalysis within 30 min. The rate of degradation increased as initial carbamazepine concentration decreased, and the removal kinetics fit well with the Langmuir-Hinshelwood model. The addition of methanol, a radical scavenger, decreased carbamazepine removal, suggesting that the hydroxide radical played an important role during carbamazepine degradation. The addition of oxygen during titanium dioxide photocatalysis accelerated hydroxide radical production, thus improving mineralization activity. The photocatalytic degradation was more efficient at a higher pH, whereas the removal of carbamazepine and acridine (a major intermediate) were more efficient under aerobic conditions. The mineralization of carbamazepine during photocatalysis produced various ionic by-products such as ammonium and nitrate by way of nitrogen dioxide.

  14. Ultra-accelerated natural sunlight exposure testing

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.J.; Bingham, C.; Goggin, R.; Lewandowski, A.A.; Netter, J.C.

    2000-06-13

    Process and apparatus are disclosed for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: (a) concentrating solar flux uniformly; (b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  15. Ultra-accelerated natural sunlight exposure testing

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Gary J. (Pine, CO); Bingham, Carl (Lakewood, CO); Goggin, Rita (Englewood, CO); Lewandowski, Allan A. (Evergreen, CO); Netter, Judy C. (Westminster, CO)

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  16. Sunlight-Induced Coloration of Silk

    Science.gov (United States)

    Yao, Ya; Tang, Bin; Chen, Wu; Sun, Lu; Wang, Xungai

    2016-06-01

    Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

  17. Hydrogen isotope fractionation in the photolysis of formaldehyde

    NARCIS (Netherlands)

    Rhee, T.S.; Brenninkmeijer, C.A.M.; Röckmann, T.

    2007-01-01

    Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D) depletion in H2 produced is 500(±20)‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O u

  18. Sunlight Diffusing Tent for Lunar Worksite

    Science.gov (United States)

    Burleson, Blair; Clark, Todd; Deese, Todd; Gentry, Ernest; Samad, Abdul

    1990-01-01

    The purpose is to provide a solution to problems astronauts encounter with sunlight on the lunar surface. Due to the absence of an atmosphere the Moon is subjected to intense sunlight creating problems with color and contrast. This problem can be overcome by providing a way to reduce intensity and diffuse the light in a working environment. The solution to the problem utilizes an umbrella, tent-like structure covered with a diffusing material. The design takes into account structural materials, stresses, fabrics, and deployment.

  19. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.

    Science.gov (United States)

    Berhanu, Tesfaye A; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S K; Johnson, Matthew S; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ((15)N, (17)O, and (18)O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ(15)N, δ(18)O, and Δ(17)O). From these measurements an average photolytic isotopic fractionation of (15)ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of (15)ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of (14)NO3 (-) and (15)NO3 (-) in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the

  20. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    Science.gov (United States)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S. K.; Johnson, Matthew S.; Savarino, Joël

    2014-06-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ15N, δ18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO3- and 15NO3- in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well

  1. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    Energy Technology Data Exchange (ETDEWEB)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël [Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, F-38041 Grenoble (France); Univ. Grenoble Alpes, LGGE, F-38041 Grenoble (France); Meusinger, Carl; Johnson, Matthew S. [Copenhagen Center for Atmospheric Research (CCAR), Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Jost, Rémy [Laboratoire de Interdisciplinaire de Physique (LIPHY) Univ. de Grenoble, Grenoble (France); Bhattacharya, S. K. [Research Center for Environmental Changes, Academia Sinica, Nangang, Taipei 115, Taiwan (China)

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  2. Water balance of goats in Jeneponto - South Sulawesi under sunlight exposure and water restriction

    Directory of Open Access Journals (Sweden)

    Djoni Prawira Rahardja

    2007-10-01

    Full Text Available Water balance of 5 does of Kacang goat of Jeneponto was studied under the condition of sunlight exposure and water restriction. The study was conducted in dry season with 4 consecutive treatments of 10 d with 4-5 d of adjustment period between two consecutive treatments: (1 indoor and unrestricted water; (2 indoor and restricted water; (3 10 h outdoor–and unrestricted water; (4 10 h outdoor – restricted water. The maximum air temperature of outdoor was 39.3OC, and it was 30OC in the indoor environment. In all treatments, the animals were placed in the individual crates. The plasma volume of the goats was higher under sunlight exposure, but it decreased by water restriction, while hematocrite value indicated a reverse responses. Sunlight exposure did not significantly decrease the intake and digestion of organic matter, but water restriction affected significantly and this effect was higher under sunlight exposre. The proportions of water loss through every avenue were maintained relatively constant either under water restriction or sunlight exposure in which the respration rate increased significantly. The findings suggest that sunlight exposure with unrestricted water resulted in a positive water balance without a significant change in organic matter intake and utilization. Water restriction resulted in a negative water balance, reducing organic matter intake and utilization. As the adaptive mechanisms, the goat appeared to be able to withstand in the harsh environment of Jeneponto by expanding plasma volume, increasing body temperature and respiration rate.

  3. Photochemical Transformation of Graphene Oxide in Sunlight

    Science.gov (United States)

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  4. Flash photolysis-shock tube studies

    Energy Technology Data Exchange (ETDEWEB)

    Michael, J.V. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  5. Hydroxyl radical consumption following photolysis of vapor-phase hydrogen peroxide at 266 nm: Implications for photofragmentation laser-induced fluorescence measurements of hydrogen peroxide

    Science.gov (United States)

    Johansson, O.; Bood, J.; Aldén, M.; Lindblad, U.

    2009-10-01

    The decay of OH concentration following photolysis of room-temperature vapor-phase hydrogen peroxide is studied as a function of photolysis fluence at 266 nm in an open air environment. The rate of decay is found to increase with increasing photolysis fluence, i.e., with increasing number of photodissociated H2O2(g) molecules. Single-exponential functions approximate the OH concentration decay rather well, even for higher photolysis levels, and the decay time is shown to be inversely proportional to the H2O2(g) concentration. For fluences of about 450 mJ/cm2 the difference between a single-exponential decay and measured data is becoming evident after approximately 150 μs. Calculations based on a chemical kinetics model agree well with experimental data also for times >150 μs. By combining the model with measurements, the actual photolysis levels used in experiments are estimated. The best fit between measured data and the model suggests that about 1.1% of the H2O2(g) molecules are dissociated with a photolysis fluence of ˜450 mJ/cm2, in reasonable agreement with a Beer-Lambert based estimation. Excitation scans did not unfold any differences between OH spectra recorded at different photolysis fluences.

  6. Role of UV photolysis in accelerating the biodegradation of 2,4,6-TCP.

    Science.gov (United States)

    Wang, Wenbing; Kirumba, George; Zhang, Yongming; Wu, Yanqing; Rittmann, Bruce E

    2015-09-18

    2,4,6-TCP, a kind of chlorinated aromatic and aliphatic compound, is difficult to be biodegraded by ordinary microorganisms. UV photolysis and biodegradation of 2,4,6-TCP by Bacillus amyloliquefaciens intimate coupling is a potential means to accelerate its biotransformation. The initial steps of 2,4,6-TCP biodegradation involve mono-oxygenation reactions that have molecular oxygen and an intracellular electron carrier as cosubstrates. It was demonstrated that B. amyloliquefaciens has the 2,4,6-TCP monooxygenase gene tcpA which could encode 2,4,6-TCP monooxygenase (TCP-MO). TCP-MO would catalytically decompose 2,4,6-TCP into 2,6-DCHQ. We employed an internal loop photolytic biofilm reactor for 2,4,6-TCP degradation. Sequentially coupled photolysis and biodegradation experimental results suggested that 2,4,6-TCP removal rate in P + B (TCP(UV) + phenol) protocol was higher by 77 and 103 % when compared to B (TCP + phenol) and B (TCP-only) protocols respectively. The corresponding loss rate coefficient (k) values were 0.069, 0.039, 0.034 mg/L·min(-1) respectively. This is because UV photolysis converted 2,4,6-TCP into its intermediates: 2,4-dichlorophenol (2,4-DCP), 4-monochlorophenol (4-MCP), phenol, 2,6-dichloro-p-hydroquinone (2,6-DCHQ), with all displaying less inhibition to bacterial action. In addition, phenol was the crucial UV-photolysis product from 2,4,6-TCP, its catabolic oxidation generating internal electron carriers that may accelerate the initial steps of 2,4,6-TCP biodegradation. Intimately coupled photolysis and biodegradation experimental results suggested that 2,4,6-TCP removal rate in P&B (TCP + phenol) protocol was higher by 166 and 681 % when compared to P&B (TCP-only) and P + B protocols respectively. The corresponding loss rate coefficient (k) values were 0.539, 0.203, 0.069 mg/L·min(-1) respectively. It provided sufficient evidence to demonstrate that intimately coupled photolysis and biodegradation accelerated 2,4,6-TCP

  7. Flash and Continuous Photolysis Studies of the Thionitrosyl Complex Cr(CH3CN)5(NS)2+ and the Nitric Oxide Analogs. Reactions of Nitrogen Monosulfide in Solution

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Wied; Hedegård, Erik; Rimmer, R. Dale

    2009-01-01

    Photolysis of the thionitrosyl complex Cr(CH3CN)5(NS)2+ (1) in acetonitrile solution leads to the dissociation of nitrogen monosulfide (NS).  In deaerated solution, this reaction is reversible, and flash photolysis studies demonstrate that NS reacts with Cr(CH3CN)62+ according to the rate law d[1...

  8. Degradação do pesticida Padron® por processos fotoquímicos utilizando luz artificial e solar Degradation of Padron® by photochemical processes using artificial and sunlight radiation

    Directory of Open Access Journals (Sweden)

    Silvio César Godinho Teixeira

    2007-01-01

    Full Text Available Destruction of Padron® (dye and picloram was evaluated using a photoreactor and a solar reactor. Photolysis was observed using only a germicide lamp (GL. Black light (BL and H2O2 (172 mmol L-1 promoted a conversion of 49% and 6% of dye and picloram, respectively. Photocatalytic processes were more efficient using TiO2/GL (96%-dye; 60%-picloram than TiO2/BL (44%-dye; 40%-picloram. Photolysis using sunlight was not observed during PadronÒ recirculation in the reactor constructed with four borosilicate tubes. Meanwhile, adding H2O2 resulted in 12% conversion of dissolved organic compounds. Finally, the most efficient mineralization (60% was obtained using the Fenton reaction ( H2O2-176 mmol L-1; FeSO4x6H2O-90 mmol L-1 and sunlight.

  9. 九种农药对丁草胺在水溶液中光猝灭降解作用%Photoquenching effect of nine pesticides on the photolysis of butachlor in water

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The photoquenching effects of bensulfuron-methyl,acetochlor, trifluralin,MCPA,glyphosate,methsulfuron-methyl,methomyl,parathion-methyl,carbendazim on the butachlor photolysis in water under xenon lamp, high pressure mercury lamp and sunlight irradiation were studied.The results showed: The photolysis rate of butachlor was slow down by these tested pesticides;the photoquenching efficiencies of glyphosate,parathion-methyl and acetochlor were higher than the others.The photoquenching efficiency was positively related to the dosage of parathion-methyl,trifluralin,glyphosate and bensulfuron-methyl.%以氙灯、高压汞灯和太阳光为光源,研究了苄嘧黄隆、乙草胺、氟乐灵、二甲四氯、草甘膦、甲黄隆、灭多威、甲基对硫磷、多菌灵等9种常用除草剂、杀虫剂、杀菌剂对除草剂丁草胺在水中的光解作用影响.结果表明:苄嘧黄隆等9种农药使丁草胺光解速度减缓,表现出显著的光猝灭降解效应,其中草甘膦、甲基对硫磷及乙草胺光猝灭效率较高;其光猝灭作用强度与甲基对硫磷和氟乐灵、草甘膦、苄嘧黄隆的剂量成正相关.

  10. Pressure dependent deuterium fractionation in the formation of molecular hydrogen in formaldehyde photolysis

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Andersen, Vibeke Friis; Skov, Henrik;

    2009-01-01

    the channels has been estimated using available values for the absorption 10 cross section and quantum yield. As a result of the change in pressure with altitude the isotope effect for production of molecular hydrogen is found to change from a value of kH/kD=1.8±0.2 at the surface to unity at 50 km....... The relative importance of the two product channels changes with altitude as a result of changes in both pressure and actinic flux. The study concludes that the D of photochemical hydrogen produced in 15 situ will increase substantially with altitude.......The pressure dependence of the relative photolysis rates of HCHO and HCDO has been investigated using a new photochemical reactor at the University of Copenhagen. The relative photolysis rate of HCHO vs. HCDO under UVA lamp irradiation was mea- 5 sured at total pressures of 50, 200, 400, 600...

  11. The Reaction Kinetics of Neutral Free Radicals and Radical Ions Studied by Laser Flash Photolysis

    OpenAIRE

    Friedline, Robert Alan

    2004-01-01

    t-Butoxyl radical has been used as a chemical model for hydrogen abstractions in many enzymatic and biological systems. However, the question has arisen as to how well this reactive intermediate mimics these systems. In addressing this concern, absolute rate constants and Arrhenius parameters for hydrogen abstraction by t-butoxyl radical were measured for a broad class of substrates including amines, hydrocarbons, and alcohols using laser flash photolysis. Initially, no obvious reactivity ...

  12. Oxygen isotope fractionation during spin-forbidden photolysis of CO2: Relevance to the atmosphere of Mars

    Science.gov (United States)

    Lyons, J. R.; Stark, G.; Pack, A.; de Oliveira, N.; Nahon, L.

    2015-12-01

    The oxygen isotope composition of the Martian atmosphere is of interest for comparison with recent MSL SAM results, and to understand the origin of oxygen isotope anomalies (i.e., mass-independent fractionation or MIF) in secondary minerals in SNC meteorites. Our focus here is on spin-forbidden photolysis of CO2, CO2 + hv (>167 nm) → CO(X1S) + O(3P). The spin-forbidden photolysis of CO2 is unusual in the Martian atmosphere because of its high reaction rate from the upper atmosphere (80 km) all the way to the ground. This range of altitudes spans 4 orders of magnitude in atmospheric pressure, and occurs because of the gradual decrease in the CO2 cross sections from 167 to ~200 nm. Previous laboratory photolysis experiments on CO2 in the spin-allowed and spin-forbidden regions have yielded a remarkably large MIF signature (17O excess ~ 100 permil) in O2 product for photolysis at 185 nm. Recent theoretical cross sections for CO2 isotopologues argue for a much smaller MIF signature from spin-forbidden photolysis. Here, we report the results of photolysis experiments on CO2 at the Soleil synchrotron DESIRS beamline. High purity, natural isotope abundance CO2 was placed in a 20 cm photocell with MgF2 windows. Experiments were performed at 3 wavelengths (7% FWHM): 160 nm (spin-allowed), and at 175 nm and 185 nm (spin-forbidden). After VUV exposure, aliquots of the photolyzed CO2 were sent to the Department of Isotope Geology at the University of Goettingen for O isotope analysis. The isotope results show that the spin-allowed photolysis yields normal, mass-dependent fractionation in agreement with earlier work. Photolysis at 175 nm, which is mostly spin-forbidden, yields a small positive (or zero) MIF signature. Photolysis at 185 nm, which is entirely spin-forbidden, yields O2 with a negative MIF signature (D17O ~ -8 to -10 permil). The results at 185 nm disagree in magnitude and sign with the very large positive MIF signature previously reported, and provides support

  13. Nanosecond photolysis of rhodopsin: evidence for a new, blue-shifted intermediate.

    Science.gov (United States)

    Hug, S J; Lewis, J W; Einterz, C M; Thorgeirsson, T E; Kliger, D S

    1990-02-13

    Early photolysis intermediates of native bovine rhodopsin (RHO) are investigated by nanosecond laser photolysis near physiological temperature. Absorption difference spectra are collected after excitation with 477-, 532-, and 560-nm laser pulses of various energies and with 477-nm laser excitation at 5, 12, 17, 21, and 32 degrees C. The data are analyzed by using singular-value decomposition (SVD) and a global exponential fitting routine. Two rate constants associated with distinct spectral changes are observed during the time normally associated with the decay of bathorhodopsin to lumirhodopsin. Various models consistent with this observation are considered. A sequential model in which there is a reversible step between a bathorhodopsin intermediate and a new intermediate (BSI), which is blue-shifted relative to lumirhodopsin, is shown to best fit the data. The temperature dependence of the observed and calculated rate constants leads to linear Arrhenius plots. Extrapolation of the temperature dependence suggests that BSI should not be observable after rhodopsin photolysis at temperatures below -100 degrees C. The results are discussed with regard to the artificial visual pigments cis-5,6-dihydroisorhodopsin and 13-demethylrhodopsin. It is proposed that the rate of the BATHO to BSI transition is limited by the relaxation of the strained all-trans-retinal chromophore within a tight protein environment. The transition to LUMI involves chromophore relaxation concurrent with protein relaxation. While the first process is strongly affected by changes in the chromophore, the second transition seems to be determined more by protein relaxation.

  14. Sunlight induced photo reactivity of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Dallera, R.; Dondi, D.; Ricci, A.; Fasani, E.; Albini, A.

    2003-07-01

    The reactivity under natural light of some UVA-UVB photol able drugs belonging to the classes of fluoroquinolones, glucocortocosteroids, sunscreens and nitrophenyldihydropyridines has been investigated. The data suggest that exposition to sunlight for times ranging from some minutes to few hours at PSA is sufficient for promoting a high degradation in the drugs investigated. the chemical reactions are the same as observed under artificial UV light. (Author) 28 refs.

  15. Photochemical of Polychlorinated biphenyl by the photolysis and ...

    African Journals Online (AJOL)

    Michael Horsfall

    organic pollutants (POPs) that are of international concern because of global .... analysis. For quality control, the experiments were conducted in three replicates. ... Table 2: Effect of UV intensity on PCBs degradation efficiency (%) of photolysis.

  16. Formation of hydroxyl radical from the photolysis of salicylic acid.

    Science.gov (United States)

    Zhou, Can-Hua; Cheng, Shi-Bo; Yin, Hong-Ming; He, Guo-Zhong

    2011-05-26

    Photodissociation dynamics of salicylic acid (SA) in the gas phase at different photolysis wavelengths (266, 315-317 nm) is investigated by probing the nascent OH photoproduct employing the single-photon laser-induced fluorescence (LIF) technique. At all the photolysis wavelengths it is found that the nascent OH radicals are produced mostly in a vibrationally ground state (υ'' = 0) and have similar rotational state distributions. The two spin-orbit and Λ-doublet states of the OH fragment formed in the dissociation are measured to have a nonstatistical distribution at each photolysis wavelength. The LIF signal of the OH could be observed upon photolysis at 317 nm but not at 317.5 nm. The threshold of OH formation from SA photodissociation is estimated to be 98.2 ± 0.9 kcal/mol. The effect of the phenolic OH group on the dissociation of SA is discussed.

  17. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies...... of aqueous periodate solutions and with kinetic studies using stopped-flow technique. In strongly alkaline solution the photodecomposition of periodate proceeds via formation of O– and IVI. At pH

  18. Temperature-dependent Kinetics on Laser Induced Photolysis of Aqueous CS2-HONO Solutions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A laser photolysis/transient absorption technique has been employed to investigate the photolysis kinetics of aqueous CS2-HONO solutions at 355 nm. Spectral analysis shows that CS2OH will react with HONO to form CS2OH-HONO. Temperature dependent rate coefficients for the reaction are reported for the first time. The following Arrhenius expressions adequately summarize the kinetic data obtained over the temperature range 273-313 K (units are L.mol-1.s-1):ln k = (31.6 ± 0.6)-{(4.1 ± 0.2) ×103/T}, and the activation energy in unit of kJ.mol-1 is 32.47with the temperature accuracy 0.2 K.

  19. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, S. [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Leitao, C. [Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J. [Empresa Portuguesa das Aguas Livres, S.A., Avenida de Berlim, 15, 1800-031 Lisboa (Portugal); Crespo, M.T. Barreto [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal); Pereira, V.J., E-mail: vanessap@itqb.unl.pt [Instituto de Biologia Experimental e Tecnologica (IBET), Av. Republica, Qta. do Marques (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Quimica e Biologica (ITQB) - Universidade Nova de Lisboa (UNL), Av. da Republica, Estacao Agronomica Nacional, 2780-157 Oeiras (Portugal)

    2011-09-15

    Highlights: {yields} Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. {yields} Real water matrices with different compositions were tested. {yields} Photolysis kinetic parameters and by-product formation are described. {yields} The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm{sup 2}, anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  20. Sunlight exposure assessment: can we accurately assess vitamin D exposure from sunlight questionnaires?

    Science.gov (United States)

    McCarty, Catherine A

    2008-04-01

    The purpose of this review is to summarize the peer-reviewed literature in relation to sunlight exposure assessment and the validity of using sunlight exposure questionnaires to quantify vitamin D status. There is greater variability in personal ultraviolet (UV) light exposure as the result of personal behavior than as the result of ambient UV light exposure. Although statistically significant, the correlation coefficients for the relation between personal report of sun exposure and ambient UV light measured by dosimetry (assessment of radiation dose) are relatively low. Moreover, the few studies to assess the relation between sunlight measures and serum 25-hydroxyvitamin D show low correlations. These low correlations may not be surprising given that personal factors like melanin content in skin and age also influence cutaneous synthesis of vitamin D. In summary, sunlight exposure questionnaires currently provide imprecise estimates of vitamin D status. Research should be directed to develop more objective, nonintrusive, and economical measures of sunlight exposure to quantify personal vitamin D status.

  1. Kinetics of the photolysis and OH reaction of 4-hydroxy-4-methyl-2-pentanone: Atmospheric implications

    Science.gov (United States)

    Aslan, L.; Laversin, H.; Coddeville, P.; Fittschen, C.; Roth, E.; Tomas, A.; Chakir, A.

    2017-02-01

    This study provides the first kinetic and mechanistic study of the photolysis of 4-hydroxy-4-methyl-2-pentanone (4H4M2P) and the determination of the temperature dependence of the relative rate coefficient for the reaction of OH radicals with 4H4M2P. The UV absorption spectrum of 4H4M2P was determined in the spectral range 200-360 nm. The photolysis frequency of this compound in the atmosphere was evaluated relative to actinometers and found to be J4 H 4M 2 P atm = 4.2 ×10-3h-1 , corresponding to a lifetime of about 10 days. Using 4H4M2P cross section measurements, an atmospheric effective quantum yield of 0.15 was calculated. The main primary photolysis products were acetone (121 ± 4) % and formaldehyde (20 ± 1) %. A low methanol yield of (3.0 ± 0.3) % was also determined. These results enabled us to propose a mechanistic scheme for the photolysis. Rate coefficients for the reaction of 4H4M2P with OH radicals were determined over the temperature range 298-354 K and the following Arrhenius expression was obtained: kOH+4M4H2P = (1.12 ± 0.40) × 10-12exp(461.5 ± 60/T) cm3 molecule-1 s-1. The lifetimes of 4H4M2P due to reaction with OH radicals has been estimated to ∼2.5 days and indicates that the gas-phase reaction with the OH could be the main loss process for this compound.

  2. Photolysis of Low-Brominated Diphenyl Ethers and Their Reactive Oxygen Species-Related Reaction Mechanisms in an Aqueous System.

    Science.gov (United States)

    Wang, Mei; Wang, Huili; Zhang, Rongbo; Ma, Meiping; Mei, Kun; Fang, Fang; Wang, Xuedong

    2015-01-01

    To date, no report was concerned with participation of reactive oxygen species in waters during photolysis of low-brominated diphenyl ethers (LBDEs). Herein, we found that electron spin resonance (ESR) signals rapidly increased with increasing irradiation time in the solution of LBDEs and 4-oxo-TMP solutions. But this phenomenon did not occur in the presence of NaN3 (1O2 quencher) demonstrating generation of 1O2 in process of LBDEs photolysis. The indirect photolytic contribution rate for BDE-47 and BDE-28 was 18.8% and 17.3% via 1O2, and 4.9% and 6.6% via ·OH, respectively. Both D2O and NaN3 experiments proved that the indirect photolysis of LBDEs was primarily attributable to 1O2. The bimolecular reaction rate constants of 1O2 with BDE-47 and BDE-28 were 3.12 and 3.64 × 106 M-1 s-1, respectively. The rate constants for BDE-47 and BDE-28 (9.01 and 17.52 × 10-3 min-1), added to isopropyl alcohol, were very close to those (9.65 and 18.42 × 10-3 min-1) in water, proving the less indirect photolytic contribution of ·OH in water. This is the first comprehensive investigation examining the indirect photolysis of LBDEs in aqueous solution.

  3. Use of sunlight to degrade oxytetracycline in marine aquaculture's waters.

    Science.gov (United States)

    Leal, J F; Esteves, V I; Santos, E B H

    2016-06-01

    Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV-Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC.

  4. Photolysis of the organic UV filter, avobenzone, combined with octyl methoxycinnamate by nano-TiO2 composites.

    Science.gov (United States)

    Kim, E J; Kim, M J; Im, N R; Park, S N

    2015-08-01

    A protection of the skin from harmful UV rays is important in preventing the skin damage and skin aging when exposed to sunlight. Titanium dioxide composites are used as a UV filter in sunscreen products combined with organic compounds such as butyl methoxydibenzoyl methane (avobenzone) and octyl methoxycinnamate (OMC) to improve the function of the sunscreen. In this study, the photolysis of avobenzone and OMC caused by the photocatalytic TiO2 nano composites (NCs) is investigated. Three different types of oil/water (O/W) sunscreen formulations containing avobenzone and OMC were prepared. Each formulation contained one of three different types of surface modified TiO2 NCs, which were WP-S (small sized hydrophilic TiO2NCs, ~10nm), OP-S (small sized hydrophobic TiO2NCs, ~15nm), and OP-L (large sized hydrophobic TiO2NCs, ~200nm). The physicochemical properties of the NCs were analyzed using biophysical tools. Addition of a different size of TiO2NCs into O/W sunscreen formulations significantly increased the photolysis of OMC. Effect of quercetin on degradation of avobenzone and OMC by the NCs was also studied for all three formulations. Although the OP-S NCs showed the lowest photocatalytic ability and the highest UV blocking capability, the NCs promoted the photolysis of OMC to the greatest extent. These results can be utilized to design more effective sunscreens, which could potentially ensure optimal photo-protection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Stainless steel in coastal seawater: sunlight counteracts biologically enhanced cathodic kinetics.

    Science.gov (United States)

    Eashwar, M; Lakshman Kumar, A; Sreedhar, G; Kennedy, J; Suresh Bapu, R H

    2014-09-01

    The influence of sunlight of varying intensity on the performance of UNS S30400 stainless steel (SS) was explored under conditions of natural biofilm development in coastal seawater. In a series of tests performed outdoors under an opaque roof, a range of shades were fashioned to impart varied amounts of diurnal light. These were an ambient level where the underwater illumination was ~ 5% of full sunlight, two intermediate ranges of lighting with ~ 2.5% and ~ 1% of the daylight, and a condition of full darkness. In comparison with the dark, increments of sunlight rendered the SS progressively less aggressive as cathodes in galvanic couples with UNS C70600 alloy. Likewise, welded SS with pre-initiated localized corrosion sites exhibited substantially lower rates of propagation with light. Thus, biofilms and sunlight affected cathodic kinetics in opposite ways. Surface analytical tests showed that the accumulation of manganese (Mn) within the biofilms was small relative to reports from waters of lower salinity. These results not only reveal that extremely low amounts of sunlight are adequate to offset the microbial effect, but also highlight the lack of convincing evidence for Mn cycling as a potent mechanism for enhanced cathodic kinetics in full-strength seawater.

  6. Persistence of benthiocarb in soil: influence of ultraviolet and sunlight

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2008-12-01

    Full Text Available Persistence of benthiocarb in soil as affected by UV and sunlight exposure was studied. Treated soil was placed in petri plate, brought to field capacity moisture and then exposed to UV and sunlight. Residues of benthiocarb in soil dissipated with half lives of 2.10, 11.85 and 43.63 days under UV, sunlight and dark condition, respectively. Soil samples kept under dark showed the slowest dissipation. Further, benthiocarb residues dissipated quickly under UV light as compared to sunlight. Exposure of thin film of benthiocarb confirmed that it is photo labile and dissipated very fast with half life of 1.16 and 1.77 days following exposure to UV and sunlight, respectively. The study revealed that UV component of sunlight is an important factor for benthiocarb dissipation.

  7. Persistence of Bacteroides ovatus under simulated sunlight irradiation

    KAUST Repository

    Dong, Shengkun

    2014-07-04

    Background: Bacteroides ovatus, a member of the genus Bacteroides, is considered for use in molecular-based methods as a general fecal indicator. However, knowledge on its fate and persistence after a fecal contamination event remains limited. In this study, the persistence of B. ovatus was evaluated under simulated sunlight exposure and in conditions similar to freshwater and seawater. By combining propidium monoazide (PMA) treatment and quantitative polymerase chain reaction (qPCR) detection, the decay rates of B. ovatus were determined in the presence and absence of exogenous photosensitizers and in salinity up to 39.5 parts per thousand at 27°C. Results: UVB was found to be important for B. ovatus decay, averaging a 4 log10 of decay over 6 h of exposure without the presence of extracellular photosensitizers. The addition of NaNO2, an exogenous sensitizer producing hydroxyl radicals, did not significantly change the decay rate of B. ovatus in both low and high salinity water, while the exogenous sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion: The results of laboratory experiments suggest that if B. ovatus is released into either freshwater or seawater environment in the evening, 50% of it may be intact by the next morning; if it is released at noon, only 50% may be intact after a mere 5 min of full spectrum irradiation on a clear day. This study provides a mechanistic understanding to some of the important environmental relevant factors that influenced the inactivation kinetics of B. ovatus in the presence of sunlight irradiation, and would facilitate the use of B. ovatus to indicate the occurrence of fecal contamination.

  8. Hydrogen Generation by Solar Photolysis of Water

    Science.gov (United States)

    Graetzel, Michael

    2004-03-01

    Prospects of near term fuel cell applications for transportation and communication have stimulated recently great interest in systems that can generate hydrogen through water cleavage by sunlight. A device that appears very promising to accomplish this goal is a tandem cell based on two superimposed photoactive layers [1]. The top layer consists of nanocrystalline oxide film absorbing the blue part of the solar spectrum and producing oxygen from water under light excitation. This is placed directly on top of a dye-sensitized nanocrystalline TiO2 film (DSC) capturing the green and red part of the solar spectrum. The voltage generated by this second photosystem enables hydrogen production to proceed without application of an external electric bias. The overall reaction corresponds to the splitting of water into hydrogen and oxygen by visible light. The maximum conversion efficiency achieved so far with these systems is about 6-7 electrode a nanocrystalline WO3 film. The use of nanoparticles for the top layer has several great advantages. They are translucent avoiding losses by light scattering and their small size is within the minority carrier diffusion length, allowing the valence band hole reaction with water at the particle surface to proceed with high efficiency. Recent work has focused on replacing the WO3 by semiconductor oxide absorbing a larger fraction of visible light than tungsten trioxide, e.g. Fe2O3.The principles and current state of this research will be briefly reviewed. Literature 1. M. Graetzel, "Photoelectrochemical Cells" Nature, 414, 332-344 (2001)

  9. South African university student knowledge of eye protection against sunlight

    OpenAIRE

    O. A. Oduntan; A. Carelson; P. Clarke-Farr; R. Hansraj

    2009-01-01

    Exposure to sunlight has been associated with several ocular conditions such as cataract, age-related macular degeneration, and conjunctival neoplasm. Knowledge of protective modalities and good behavioural practice involving eye protection is essential to prevent adverse effects of sunlight. The purpose of this study was to establish knowledge amongst randomly selected university students in South Africa, of prevention modalities against the adverse effects of sunlight. A questionnaire relat...

  10. Direct photolysis of nitroaromatic compounds in aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; YANG Chun; GOH Ngoh Khang

    2005-01-01

    The direct photolysis of nitrobenzene and nitrophenols in aqueous solutions irradiated by polychromatic light were investigated.Several aromatic intermediates were identified as three nitrophenol isomers, nitrohydroquinone, nitrosobenzene, nitrocatechol, catechol and phenol. Nitrite and nitrate ions were also detected in the irradiated solution indicating direct photolysis of nitrobenzene or nitrophenols.The degradation of nitrobenzene and nitrophenols and the formation of three nitrophenol isomers were observed to follow zero-order kinetics. The quantum yields for nitrobenzene and nitrophenols removal are about 10-3 and 10-3-10-4 respectively. The mechanism for nitrobenzene degradation was suggested to follow mainly nitro-nitrite intramolecular arrangement.

  11. Sunlight-induced carbon dioxide emissions from inland waters

    Science.gov (United States)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  12. A Laser Flash Photolysis Study of Azo-Compound Formation from Aryl Nitrenes at Room Temperature.

    Science.gov (United States)

    Ribblett, Alec Q; Poole, James S

    2016-06-30

    The species 4-nitrenopyridine 1-oxide is known to exhibit triplet nitrene dominated chemistry to yield azo-dimer products exclusively, even at room temperature. As such, this species, and its analogue 4-nitrenoquinoline 1-oxide, are useful models to probe the mechanism of formation of azo-dimers, which is postulated to proceed by self-reaction of the nitrene or reaction of nitrene with the parent azide. A laser flash photolysis study is described where the kinetics of formation of azo-dimer were found to be most adequately modeled by competition between both mechanisms, and rate coefficients for the competing reactions were determined.

  13. Hydrogen peroxide evolution during V-UV photolysis of water.

    Science.gov (United States)

    Azrague, Kamal; Bonnefille, Eric; Pradines, Vincent; Pimienta, Véronique; Oliveros, Esther; Maurette, Marie-Thérèse; Benoit-Marquié, Florence

    2005-05-01

    Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.

  14. Postantibiotic effect of disinfection treatment by photolysis of hydrogen peroxide.

    Science.gov (United States)

    Odashima, Yu; Nakamura, Keisuke; Ikai, Hiroyo; Kanno, Taro; Meirelles, Luiz; Sasaki, Keiichi; Niwano, Yoshimi

    2014-04-01

    The purpose of the present study was to evaluate the postantibiotic effect (PAE) of the disinfection treatment by photolysis of H2O2. Postantibiotic effect was induced in Staphylococcus aureus and Streptococcus salivarius by exposing the bacteria to H2O2 at concentrations of 250-1000 mmol/l, laser irradiation at a wavelength of 405 nm, and the combination of both (photolysis of H2O2) for 10-30 seconds. The photolysis of H2O2 induced significantly longer PAE than other treatments. The PAE was augmented dependently on not only the concentration of H2O2 but the laser irradiation time. Electron spin resonance analysis showed that the hydroxyl radical was also generated dependently on both the concentration of H2O2 and the laser irradiation time, suggesting that the hydroxyl radicals contribute to the PAE. These results suggest that the disinfection treatment by photolysis of H2O2 induces PAE in S. aureus and S. salivarius even though they were treated for only 10-30 seconds.

  15. Photolysis and Fluorescence in the /delta and /epsilon Bands of Thermospheric NO

    Science.gov (United States)

    Yonker, J. D.; Bailey, S. M.; Paxton, L. J.

    2008-12-01

    Recent measurements of the oscillator strengths (Yoshino et al, 2006) and predissociation rates (Luque and Crosley, 2000) for the δ and ɛ band systems of nitric oxide (NO) suggest a reevaluation of the NO photolysis rate. It is well-known that the dominant contribution throughout the atmosphere is due to dissociation in the δ(0,0) and δ (1,0) bands. However, above 90 km, attenuation of the solar VUV irradiance due to the O2 Schumann-Runge system is diminished and the contribution of the δ(2,0), ɛ(1,0), and ɛ(2,0) bands to the photolysis rate becomes increasingly significant. In this talk it is shown that the contribution from these bands rises from 16% at 100km to 26% above 120 km. As the ratio of the radiative to predissociation rates for the δ(0,0), ɛ(0,0), ɛ(1,0), and ɛ(2,0) bands is sensitive to the rotational level, expected fluorescence from these bands is also presented using data from the Student Nitric Oxide Explorer (SNOE).

  16. Multiple-barrier disinfection by chlorination and UV irradiation for desalinated drinking waters: chlorine photolysis and accelerated lamp-sleeve fouling effects.

    Science.gov (United States)

    Wait, Isaac W

    2008-11-01

    Experiments were conducted to quantify interaction effects between UV irradiation and chlorination for desalinated drinking water. The rate of chlorine photolysis in desalinated water was characterized using a low-pressure UV lamp and chlorine doses typical of drinking water treatment and was found to be lower than reported photolysis rates for treated surface water. Results indicate that, for most desalinated water applications, reduction in free chlorine is likely to be limited, but, depending on the UV dose used, not necessarily negligible. Investigation of the potential for reactor lamp-sleeve fouling included mineral speciation and solubility modeling and showed that chlorination of desalinated water before UV disinfection may increase lamp-sleeve fouling, particularly for point-of-use reactors. UV irradiation before chlorination may minimize fouling. Overall results point to the variable nature of UV lamp-sleeve fouling and chlorine photolysis and an intrinsic dependence on local water chemistry conditions.

  17. Chlorine-catalyzed ozone destruction: Cl atom production from ClOOCl photolysis.

    Science.gov (United States)

    Wilmouth, David M; Hanisco, Thomas F; Stimpfle, Richard M; Anderson, James G

    2009-12-24

    Recent laboratory measurements of the absorption cross sections of the ClO dimer, ClOOCl, have called into question the validity of the mechanism that describes the catalytic removal of ozone by chlorine. Here we describe direct measurements of the rate-determining step of that mechanism, the production of Cl atoms from the photolysis of ClOOCl, under laboratory conditions similar to those in the stratosphere. ClOOCl is formed in a cold-temperature flowing system, with production initiated by a microwave discharge of Cl(2) or photolysis of CF(2)Cl(2). Excimer lasers operating at 248, 308, and 352 nm photodissociate ClOOCl, and the Cl atoms produced are detected with time-resolved atomic resonance fluorescence. Cl(2), the primary contaminant, is measured directly for the first time in a ClOOCl cross section experiment. We find the product of the quantum yield of the Cl atom production channel of ClOOCl photolysis and the ClOOCl absorption cross section, (phisigma)(ClOOCl) = 660 +/- 100 at 248 nm, 39.3 +/- 4.9 at 308 nm, and 8.6 +/- 1.2 at 352 nm (units of 10(-20) cm(2) molecule(-1)). The data set includes 468 total cross section measurements over a wide range of experimental conditions, significantly reducing the possibility of a systematic error impacting the results. These new measurements demonstrate that long-wavelength photons (lambda = 352 nm) are absorbed by ClOOCl directly, producing Cl atoms with a probability commensurate with the observed rate of ozone destruction in the atmosphere.

  18. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation.

    Science.gov (United States)

    Zhai, Pingping; Chen, Xuan; Dong, Wenbo; Li, Hongjing; Chovelon, Jean-Marc

    2017-01-01

    This study aimed to investigate the degradation of triclosan (TCS) in the presence of p-aminobenzoic acid (PABA) under simulated sunlight irradiation (λ ≥ 290 nm). The effect of PABA concentration, pH, dissolved organic matter (DOM), and DOM-hydrolytic Fe(III) species complexes on the photodegradation of TCS in the presence of PABA (TCS-PABA) was also studied. The photolysis of TCS-PABA obeyed pseudo-first-order kinetics well, and the degradation of TCS-PABA enhanced with increasing solution pH (from 3.0 to 11.0). The presence of PABA inhibited the degradation of TCS-PABA, and the weakest inhibitory effect was observed while the concentration of PABA was 5 mg L(-1). The addition of DOM (Suwannee River fulvic acid standard I [SRFA], Suwannee River HA standard II [SRHA], and Suwannee River natural organic matter [SRNOM]) showed different inhibition effects on TCS-PABA degradation. However, higher Fe(III) concentration at the DOM concentration of 5 mg L(-1) could favor the formation of DOM-hydrolytic Fe(III) species complexes, further accelerating the degradation of TCS-PABA. In comparison with deionized water (DI water), TCS-PABA could be better photodegraded in river water nearby the effluent of a wastewater treatment plant. This study provides useful information for understanding the natural behavior of TCS in the presence of other organic contaminants.

  19. Photodegradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products.

    Science.gov (United States)

    Pérez-Estrada, L A; Agüera, A; Hernando, M D; Malato, S; Fernández-Alba, A R

    2008-02-01

    This article describes the photolytic degradation of malachite green (MG), a cationic triphenylmethane dye used worldwide as a fungicide and antiseptic in the aquaculture industry. Photolysis experiments were performed by direct exposure of a solution of MG in water to natural sunlight. The main transformation products (TPs) generated during the process were identified by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and gas chromatography mass spectrometry (GC-MS). The 28 TPs identified with this strategy indicate that MG undergoes three main reactions, N-demethylation, hydroxylation and cleavage of the conjugated structure forming benzophenone derivatives. These processes involve hydroxyl radical attack on the phenyl ring, the N,N-dimethylamine group and the central carbon atom. The Vibrio fischeri acute toxicity test showed that the solution remains toxic after MG has completely disappeared. This toxicity could be assigned, at least in part, to the formation of 4-(dimethylamine)benzophenone, which has an EC(50,30 min) of 0.061 mg l(-1), and is considered "very toxic to aquatic organisms" by current EU legislation.

  20. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices.

    Science.gov (United States)

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2016-09-01

    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

  1. Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2.

    Science.gov (United States)

    Chang Chien, S W; Chang, C H; Chen, S H; Wang, M C; Madhava Rao, M; Satya Veni, S

    2011-09-01

    The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO(2) in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO(2) was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO(2)) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO(2) and the photooxidation (without TiO(2)) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO(2)-enhanced photocatalytic pyrene degradation and in photooxidation (without TiO(2)) of pyrene. The percentages of photocatalytic pyrene degradation by TiO(2) in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO(2)-enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand>red soil>alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO(2)-enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO(2)) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO(2)-enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated.

  2. Potential energy surface of the photolysis of isocyanic acid HNCO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dissociation curves of the photolysis of the isocyanic acidHNCOHN+CO corresponding to the ground state (S0), the first triplet excited state (T1) and the first singlet excited state (S1) have been studied respectively at the UHF/6-311G** and CIS/6-311G** levels using ab initio method. The energy surface crossing points, S1/T1, T1/S0 and S1/S0, have been found and the characteristics of the energy minimum crossing point were given, based on which, the changes of the crossing points' geometries along the lower electronic energy surface and its end-result have been located according to the steepest descent principle. The computational result indicates that the photolysis of the isocyanic acid HNCOHN+CO has three competitive reaction channels ((A)-(C)), and from the kinetic piont of view, channel (A) is the most advantageous.

  3. Sunlight, ultraviolet radiation, vitamin D and skin cancer: how much sunlight do we need?

    Science.gov (United States)

    Holick, Michael F

    2014-01-01

    Vitamin D is the sunshine vitamin for good reason. During exposure to sunlight, the UV B photons enter the skin and photolyze 7-dehydrocholesterol to previtamin D3 which in turn is isomerized by the body's temperature to vitamin D3. Most humans have depended on sun for their vitamin D requirement. Skin pigment, sunscreen use, aging, time of day, season and latitude dramatically affect previtamin 13 synthesis. Vitamin D deficiency was thought to have been conquered, but it is now recognized that more than 50% of the world's population is at risk for vitamin D deficiency. This deficiency is in part due to the inadequate fortification of foods with vitamin D and the misconception that a healthy diet contains an adequate amount of vitamin D. Vitamin D deficiency causes growth retardation and rickets in children and will precipitate and exacerbate osteopenia, osteoporosis and increase risk of fracture in adults. The vitamin D deficiency has been associated pandemic with other serious consequences including increased risk of common cancers, autoimmune diseases, infectious diseases and cardiovascular disease. There needs to be a renewed appreciation of the beneficial effect of moderate sunlight for providing all humans with their vitamin D requirement for health.

  4. Kinetics and product studies of the reaction ClO + BrO using flash photolysis-ultraviolet absorption

    Science.gov (United States)

    Sander, Stanley P.; Friedl, Randall R.

    1989-01-01

    The reaction between BrO and ClO was studied over the pressure range 50-700 torr and temperature range 220-400 K, using the flash photolysis-ultraviolet absorption method described by Watson et al. (1979). In order to investigate the mechanism of the BrO + ClO reaction, the product branch reactions Br + Cl2O yielding ClO + BrCl and Cl2O + h(nu) yielding products were examined. The rate constant for the overall reaction and the Arrhenius expression for the Br + Cl2O reaction are given, as well as the quantum yield for the production of atomic oxygen from the Cl2O photolysis.

  5. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect...

  6. Direct and Indirect Phototransformation of Graphene Oxide in Sunlight

    Science.gov (United States)

    Direct and indirect (with added H202 that serves as OH precursor) photoreactions of grapheme oxide (GO) were examined under sunlight exposure. The results indicate that GO photoreacts under both conditions, leading to significant alterations in GO's physicochemical properties. In...

  7. Direct photolysis and photocatalytic degradation of 2-amino-5-chloropyridine

    Directory of Open Access Journals (Sweden)

    BILJANA F. ABRAMOVIC

    2003-12-01

    Full Text Available The direct photolysis and photocatalytic degradation of a pyridine pesticide analogue, 2-amino-5-chloropyridine, were investigated employing different analytical techniques – potentiometry, for monitoring the pH and chloride generation, spectrophotometry, for studying the degradation of the pyridine moiety, ion chromatography, for monitoring nitrate formation, and total organic carbon analysis for investigating the efficiency of the process. The photocatalytic degradation was studied in aqueous suspensions of titanium dioxide under illumination by UV light. It was found that chloride evolution was a zero-order reaction which takes place by direct photolysis, in that way differing from the degradation of the pyridine moiety, which takes place in the presence of titanium dioxide. Changes in pH during degradation indicate the formation of acidic intermediates and nitrate in addition to chloride. The effect of the initial substrate concentration was also investigated by monitoring the reaction of chloride generation as well as the degradation reaction of the pyridine moiety. It was found that degradation of the parent compound (2.5 mmol/dm3 by direct photolysis is completed in about 20 minutes, and of the pyridine moety by photocatalytic degradation in about nine hours. Based on the obtained data a possible reaction mechanism is proposed.

  8. Photolysis of Carbonyl Diisocyanate: Generation of Isocyanatocarbonyl Nitrene and Diazomethanone.

    Science.gov (United States)

    Liu, Qifan; Li, Hongmin; Wu, Zhuang; Li, Dingqing; Beckers, Helmut; Rauhut, Guntram; Zeng, Xiaoqing

    2016-10-20

    The stepwise decomposition of carbonyl diisocyanate, OC(NCO)2 , has been studied by using IR spectroscopy in solid argon matrices at 16 K. Upon irradiation with an ArF laser (λ=193 nm), carbonyl diisocyanate split off CO and furnished a new carbonyl nitrene, OCNC(O)N, in its triplet ground state. Two conformers of the nitrene, syn and anti, that were derived from the two conformers of OC(NCO)2 (62 % syn-syn and 38 % syn-anti) were identified and characterized by combining IR spectroscopy and quantum chemical calculations. Subsequent irradiation with visible light (λ>395 nm) caused the Curtius rearrangement of the nitrene into OCNNCO. In addition to the expected decomposition products, N2 and CO, further photolysis of OCNNCO with the ArF laser yielded NOCN, through a diazomethanone (NNCO) intermediate. To further validate our proposed reaction mechanism, ArF-laser photolysis of the closely related NNNNCO and cyclo-N2 CO in solid argon matrices were also studied. The observations of NOCN and in situ CO-trapped product OCNNCO provided indirect evidence to support the initial generation of NNCO as a common intermediate during the laser photolysis of OCNNCO, NNNNCO, and cyclo-N2 CO. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inhibition of Neutral red photolysis with different antioxidants.

    Science.gov (United States)

    Rimpapa, Zlatan; Sofić, Emin; Sapcanin, Aida; Toromanović, Jasmin; Tahirović, Ismet

    2007-02-01

    Neutral red is a dye the azine structure which has been used as an acido-base indicator and a dye in histochemistry. In 1960 Goldhaber introduced Neutral red into the medium of resorbing bone cultures to localize the osteoclast in the living cultures. Using time-lapse microcinematography in order to follow the osteoclasts, he reported excellent contrast could be obtained with Neutral red due to the avidity of osteoclasts for this dye. Unfortunately, however, the photodynamic effect resulting from subsequent exposure of these cultures to light precluded this approach, and again in 1963. it was observed that the death of the osteoclasts was probably due to a photodynamic effect related to the dye in the cell, the presence of oxygen and the frequent exposure of light by our time-lapse photography. VIS and UV irradiation induced photolysis of Neutral red, and from Neutral red cation produced with photons a Neutral red radical. This Neutral red radical can be inhibited with action of an antioxidant, such as melatonin, glutathione, ascorbic acid, E vitamin, etc. We developed an assay with Neutral red photolysis which utilizes a VIS and UV irradiation technique for quantification the inhibition of photolysis with action of an antioxidant. In this method Neutral red acts double, as a free radical generator and as a photosensitizer.

  10. EMERGING TECHNOLOGY REPORT: BENCH-SCALE TESTING OF PHOTOLYSIS, CHEMICAL OXIDATION AND BIODEGRADATION OF PCB CONTAMINATED SOILS AND PHOTOLYSIS OF TCDD CONTAMINATED SOILS

    Science.gov (United States)

    This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...

  11. Sunlight exposure-mediated DNA damage in young adults.

    Science.gov (United States)

    Kato, Masashi; Iida, Machiko; Goto, Yuji; Kondo, Takaaki; Yajima, Ichiro

    2011-08-01

    Previous experimental studies showed that single ultraviolet B (UVB) light irradiation increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a well-established biomarker of carcinogenesis and oxidative DNA damage, in epithelial cells in animals and humans. We conducted for the first time an epidemiologic study to investigate the correlations among levels of oxidative DNA damage, skin pigmentation, and sunlight exposure in human daily life. Digitalized skin pigmentation levels and creatinine-adjusted urinary 8-OHdG levels were examined in 127 healthy young adults aged 20 to 24 years and in hairless mice with normal pigmented skin (HL-mice; n = 20) and hyperpigmented skin (HL-HPS-mice; n = 20). Data obtained by a questionnaire were also analyzed for the 127 subjects. Binary logistic regression analysis showed that increased sunlight intensity, but not sunlight-exposed time or sunlight-exposed skin area, was correlated with elevation in creatinine-adjusted urinary 8-OHdG levels. In contrast, increased skin pigmentation level, but not the use of sunscreen, was correlated with reduction in urinary 8-OHdG level in humans. UVB irradiation corresponding to several minutes of sunlight exposure significantly increased urinary 8-OHdG levels in HL-mice but not in HL-HPS-mice. We showed that increase in intensity of sunlight in human daily life increased levels of DNA damage. We also showed a protective effect of skin pigmentation on sunlight exposure-mediated DNA damage. We have provided more reliable evidence of routine sunlight exposure-mediated DNA damage in humans through the combination of epidemiologic and experimental studies. ©2011 AACR.

  12. Accelerated stability testing of organic photovoltaics using concentrated sunlight

    DEFF Research Database (Denmark)

    Katz, Eugene A.; Manor, Assaf; Mescheloff, Asaf;

    2012-01-01

    We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported.......We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported....

  13. Sunlight exposure and multiple sclerosis in a tropical country.

    Science.gov (United States)

    Espinosa-Ramírez, Guillermo; Ordoñez, Graciela; Flores-Rivera, Jose; Sotelo, Julio

    2014-07-01

    We analysed past and current sun exposure in multiple sclerosis (MS) patients as compared with matched controls in Mexico, a country with tropical climate. In a case-controlled study that include 83 MS patients and 166 matched controls, we inquired about sunlight exposure in two different periods: during adolescence and during the immediate past 5 years. Indicators were: exposure on quotidian and weekend outdoor activities with direct sunlight contact as expressed on frequency by mean number of days, daytime (morning, noon, afternoon), number of hours, visits to sunny places, and use of sunblocking agents. Additional elements were socioeconomic status, skin colour, and antecedent of varicella infection during childhood. MS patients showed a larger proportion of white skin. MS patients had more sunlight exposure during adolescence (80% versus 60%, P = 0·002); this tendency prevailed on current indicators (46% versus 30%, P = 0·02). However, current exposure on weekends (10% versus 22%, P = 0·02) and visits to the beach (64% versus 98%, P = 0·002) were lower in MS than in controls. Mexico gets more sunlight through the year than areas with high incidence of MS; nevertheless, its prevalence has greatly increased over the last decades, making it a relevant emerging disease. Our results indicate that in a tropical country, there is no association between sunlight exposure and the risk to develop MS, given the immunological effects of sunlight exposure either through UV radiation or vitamin D metabolism.

  14. Ozone photolysis of paracetamol in aqueous solution.

    Science.gov (United States)

    Neamţu, Mariana; Bobu, Maria; Kettrup, Antonius; Siminiceanu, Ilie

    2013-01-01

    The degradation of a paracetamol (N-acetil-para-aminofenol) aqueous solution (C (0) P = 5 mmol L(-1)) is studied in a bench-scale setup by means of simple ozonation (O3) and ozonation catalyzed with UV light (O3/UV) in order to quantify the influence of UV light on the degradation process. The results have shown that under the adopted experimental conditions (25°C, applied ozone dose = 9.8 mg L(-1) and gas flow rate of 20 L h(-1)) both oxidative systems are capable of removing the substrate with mineralization degrees up to 51% for ozonation and 53% for O3/UV. HPICE chromatography allowed the detection of nitrate ions and maleic and oxalic acids as ultimate carboxylic acids. The experimental data have been interpreted through 5 indicators: the conversion of paracetamol (XP ), the conversion degree of TOC (XTOC ), the apparent rate constant (kap ), the Hatta number (Ha) and the enhancement factor (E). The main advantage of photo-ozonation compared to simple ozonation was a more advanced conversion (79% vs. 92% after 90 min). The paracetamol decay follows a pseudo-first-order reaction with a superior rate constant (higher by 54%) for the UV catalyzed system in comparison with direct ozonation. Mineralization is slightly accelerated (+4%) in the O3/UV system, due to the additional production of hydroxyl radicals induced by the UV light and a higher Hatta number (+24%). Nevertheless, the process was still in the slow reaction kinetic regime (Ha < 0.3), and the enhancement factor was not significantly increased. The results are useful for the design and scale-up of the gas-liquid processes.

  15. Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light

    Directory of Open Access Journals (Sweden)

    E. J. K. Nilsson

    2010-04-01

    Full Text Available The pressure dependence of the relative photolysis rate of HCHO vs. HCDO has been investigated for the first time, using a photochemical reactor at the University of Copenhagen. The dissociation of HCHO vs. HCDO using a UVA lamp was measured at total bath gas pressures of 50, 200, 400, 600 and 1030 mbar. The products of formaldehyde photodissociation are either H2 + CO (molecular channel or HCO + H (radical channel, and a photolysis lamp was chosen to emit light at wavelengths that greatly favor the molecular channel. The isotope effect in the dissociation, kHCHO/kHCDO, was found to depend strongly on pressure, varying from 1.1 + 0.15/−0.1 at 50 mbar to 1.75±0.10 at 1030 mbar. The results can be corrected for radical channel contribution to yield the kinetic isotope effect for the molecular channel; i.e. the KIE in the production of molecular hydrogen. This is done and the results at 1030 mbar are discussed in relation to previous studies at ambient pressure. In the atmosphere the relative importance of the two product channels changes with altitude as a result of changes in pressure and actinic flux. The study demonstrates that the δD of photochemical hydrogen produced from formaldehyde will increase substantially as pressure decreases.

  16. Nitrate ion photolysis in thin water films in the presence of bromide ions.

    Science.gov (United States)

    Richards, Nicole K; Wingen, Lisa M; Callahan, Karen M; Nishino, Noriko; Kleinman, Michael T; Tobias, Douglas J; Finlayson-Pitts, Barbara J

    2011-06-16

    Nitrate ions commonly coexist with halide ions in aged sea salt particles, as well as in the Arctic snowpack, where NO(3)(-) photochemistry is believed to be an important source of NO(y) (NO + NO(2) + HONO + ...). The effects of bromide ions on nitrate ion photochemistry were investigated at 298 ± 2 K in air using 311 nm photolysis lamps. Reactions were carried out using NaBr/NaNO(3) and KBr/KNO(3) deposited on the walls of a Teflon chamber. Gas phase halogen products and NO(2) were measured as a function of photolysis time using long path FTIR, NO(y) chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). Irradiated NaBr/NaNO(3) mixtures show an enhancement in the rates of production of NO(2) and Br(2) as the bromide mole fraction (χ(NaBr)) increased. However, this was not the case for KBr/KNO(3) mixtures where the rates of production of NO(2) and Br(2) remained constant over all values of χ(KBr). Molecular dynamics (MD) simulations show that the presence of bromide in the NaBr solutions pulls sodium toward the solution surface, which in turn attracts nitrate to the interfacial region, allowing for more efficient escape of NO(2) than in the absence of halides. However, in the case of KBr/KNO(3), bromide ions do not appreciably affect the distribution of nitrate ions at the interface. Clustering of Br(-) with NO(3)(-) and H(2)O predicted by MD simulations for sodium salts may facilitate a direct intermolecular reaction, which could also contribute to higher rates of NO(2) production. Enhanced photochemistry in the presence of halide ions may be important for oxides of nitrogen production in field studies such as in polar snowpacks where the use of quantum yields from laboratory studies in the absence of halide ions would lead to a significant underestimate of the photolysis rates of nitrate ions.

  17. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Chengbin Xu; Dianbo Dong; Xuelian Meng; Xin Su; Xu Zheng; Yaoyao Li

    2013-01-01

    Photolysis of some polycyclic aromatic hydrocarbons (PAHs) on soil surfaces may play an important role in the fate of PAHs in the environment.Photolysis of PAHs on soil surfaces under UV irradiation was investigated.The effects of oxygen,irradiation intensity and soil moisture on the degradation of the three PAHs were observed.The results showed that oxygen,soil moisture and irradiation intensity enhanced the photolysis of the three PAHs on soil surfaces.The degradation of the three PAHs on soil surfaces is related to their absorption spectra and the oxidation-half-wave potential.The photolysis of PAHs on soil surfaces in the presence of oxygen followed pseudo first-order kinetics.The photolysis half-lives ranged from 37.87 days for benzo[a]pyrene to 58.73 days for phenanthrene.The results indicate that photolysis is a successful way to remediate PAHs-contaminated soils.

  18. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde.

  19. Ozone Formation in Laser Flash Photolysis of Oxoacids and Oxoanions of Chlorine and Bromine

    DEFF Research Database (Denmark)

    Kläning, Ulrik; Sehested, Knud; Wolff, Thomas

    1984-01-01

    The kinetics of ozone formation in the photolysis of oxygen-containing solutions of HClO, ClO–, ClO–2, ClO–3, HBrO, BrO– and BrO–3 has been studied by laser flash photolysis and conventional flash photolysis. The usual assumption, that ozone only forms in the reaction of oxygen atoms in the spin-...

  20. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, M.S., E-mail: mesd@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Salgado, R., E-mail: r.salgado@campus.fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal (Portugal); Pereira, V.J., E-mail: vanessap@itqb.unl.pt [Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Instituto de Tecnologia Química e Biológica (ITQB)—Universidade Nova de Lisboa (UNL), Estação Agronómica Nacional, Av. da República, 2780-157 Oeiras (Portugal); Carvalho, G., E-mail: gs.carvalho@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras (Portugal); Oehmen, A., E-mail: a.oehmen@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Reis, M.A.M., E-mail: amr@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Noronha, J.P., E-mail: jpnoronha@fct.unl.pt [REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2015-02-01

    The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations < LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s). - Highlights: • Toxicity evaluated for 3 common pharmaceuticals (atenolol, ketoprofen and diclofenac). • Toxicity assessed for the pharmaceuticals and UV photolysis by-products in zebrafish. • Diclofenac photolysis by-products are more toxic than the parent compound. • Ketoprofen and atenolol show stronger oxidative stress response than by-products. • UV photolysis should ensure full removal of diclofenac metabolites to avoid toxicity.

  1. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio).

    Science.gov (United States)

    Diniz, M S; Salgado, R; Pereira, V J; Carvalho, G; Oehmen, A; Reis, M A M; Noronha, J P

    2015-02-01

    The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrationsketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s).

  2. Life-threatening motor vehicle crashes in bright sunlight.

    Science.gov (United States)

    Redelmeier, Donald A; Raza, Sheharyar

    2017-01-01

    Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight.This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estimated by evaluating the prevailing weather at the time and place of the crash compared with the weather at the same hour and location on control days a week earlier and a week later.The majority of patients (n = 6962) were injured during daylight hours and bright sunlight was the most common weather condition at the time and place of the crash. The risk of a life-threatening crash was 16% higher during bright sunlight than normal weather (95% confidence interval: 9-24, P vehicle crash. An awareness of this risk might inform driver education, trauma staffing, and safety warnings to prevent a life-threatening motor vehicle crash.

  3. Hair cortisol and cortisone are decreased by natural sunlight.

    Science.gov (United States)

    Wester, Vincent L; van der Wulp, Nils R P; Koper, Jan W; de Rijke, Yolanda B; van Rossum, Elisabeth F C

    2016-10-01

    Hair glucocorticoids (cortisol and cortisone) are increasingly used as measures of long-term integrated exposure to glucocorticoid hormones. Glucocorticoids gradually disappear from the hair shaft, which may result from exposure to ultraviolet (UV) radiation in natural sunlight. We aimed to study the influence of sun exposure on hair glucocorticoids. Scalp hair samples were obtained from nine volunteers (median age 33 [range 21-81], 7 females), and part of each hair sample was exposed to three experimental conditions: repeated exposure to natural sunlight for 40h (natural UV), exposure to a high amount of artificial UV radiation, and storage in the dark (control). Hair cortisol (HairF) and cortisone (HairE) were quantified by liquid chromatography-tandem mass spectrometry. When compared to control, HairF was decreased in 9 out of 9 hair samples after natural sunlight exposure (median decrease -3.1pg/mg or -54%, PUV radiation (-4.7pg/mg or -75%, P=0.003). HairE decreased in 8 out of 9 samples, both after natural sunlight (-7.6pg/mg or -32%, P=0.012) and artificial UV (-10.7pg/mg or -52%, P=0.026). Exposure to natural sunlight decreases the glucocorticoid content of scalp hair, apparently through UV radiation, and is therefore an important confounder that should be considered in studies involving the measurement of hair glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Stability of Bacillus thuringiensis and NPV Microencapsulated Formulation under Sunlight

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Naghavi

    2016-06-01

    Full Text Available Microencapsulation technology is used for the formulation of bio pesticides and is effective against the ultra-violet radiation of sunlight. The present research studied the stability of Bt and NPV formulations microencapsulated with gelatin and sodium alginate, individually or in combination. The formulations were evaluated in outdoor space and under sunlight on potted growing cabbage. The stability of each active ingredient tested in each formulation was studied at 0, 3, 7 and 10 days after spraying on cabbage infested with diamondback moth Plutella xylostella second instars larvae. Results showed that non-formulated and microencapsulated formulations not exposed to sunlight (time zero had similar mortality. However, after being exposed to sunlight for three days, the non-formulated Bt and NPV resulted in a significantly lower mortality (less than 40%; compared with the microencapsulated bio pesticides (more than 70% mortality. Fifty percent (50% mortality was reached in microencapsulated formulations after seven and ten days of exposure to sunlight, whereas there was no mortality in larvae exposed to unformulated treated plants after ten days. ANOVA analysis showed the highest larval mortality was achieved by the Bt+NPV gelatin microencapsulated formulation followed by gelatin coated Bt, sodium alginate coated NPV, sodium alginate coated Bt+NPV, gelatin coated NPV and sodium alginate coated Bt. The formulations showed no significant LT50 differences between microencapsulated versus unformulated Bt and NPV.

  5. Atmospheric chemistry of 2,3-pentanedione: photolysis and reaction with OH radicals.

    Science.gov (United States)

    Szabó, Emese; Djehiche, Mokhtar; Riva, Matthieu; Fittschen, Christa; Coddeville, Patrice; Sarzyński, Dariusz; Tomas, Alexandre; Dóbé, Sándor

    2011-08-25

    The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.

  6. Childhood cancer incidence in relation to sunlight exposure.

    Science.gov (United States)

    Musselman, J R B; Spector, L G

    2011-01-04

    There is increasing interest in the possible association between cancer incidence and vitamin D through its role as a regulator of cell growth and differentiation. Epidemiological studies in adults and one paediatric study suggest an inverse association between sunlight exposure and cancer incidence. We carried out an ecological study using childhood cancer registry data and two population-level surrogates of sunlight exposure, (1) latitude of the registry city or population centroid of the registry nation and (2) annual solar radiation. All models were adjusted for nation-level socioeconomic status using socioeconomic indicators. Latitude and radiation were significantly associated with cancer incidence, and the direction of association was consistent between the surrogates. Findings were not consistent across tumour types. Our ecological study offers some evidence to support an association between sunlight exposure and risk of childhood cancer.

  7. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine....... The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process...... cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after...

  8. Carbon nanohorns-based nanofluids as direct sunlight absorbers.

    Science.gov (United States)

    Sani, E; Barison, S; Pagura, C; Mercatelli, L; Sansoni, P; Fontani, D; Jafrancesco, D; Francini, F

    2010-03-01

    The optimization of the poor heat transfer characteristics of fluids conventionally employed in solar devices are at present one of the main topics for system efficiency and compactness. In the present work we investigated the optical and thermal properties of nanofluids consisting in aqueous suspensions of single wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption. We found that the thermal conductivity of the nanofluids was higher than pure water. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device.

  9. In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water

    Energy Technology Data Exchange (ETDEWEB)

    Kusari, Souvik; Prabhakaran, Deivasigamani; Lamshoeft, Marc [Institut fuer Umweltforschung (INFU), Technische Universitaet Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund (Germany); Spiteller, Michael, E-mail: m.spiteller@infu.uni-dortmund.d [Institut fuer Umweltforschung (INFU), Technische Universitaet Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund (Germany)

    2009-10-15

    Fluoroquinolones like difloxacin (DIF) and sarafloxacin (SARA) are adsorbed in soil and enter the aquatic environment wherein they are subjected to photolytic degradation. To evaluate the fate of DIF and SARA, their photolysis was performed in water under stimulated natural sunlight conditions. DIF primarily degrades to SARA. On prolonged photodegradation, seven photoproducts were elucidated by HR-LC-MS/MS, three of which were entirely novel. The residual anti-bacterial activities of DIF, SARA and their photoproducts were studied against a group of pathogenic strains. DIF and SARA revealed potency against both Gram-positive and -negative bacteria. The photoproducts also exhibited varying degrees of efficacies against the tested bacteria. Even without isolating the individual photoproducts, their impact on the aquatic environment could be assessed. Therefore, the present results call for prudence in estimating the fate of these compounds in water and in avoiding emergence of resistance in bacteria caused by the photoproducts of DIF and SARA. - Assessment of the residual anti-bacterial efficacies of difloxacin, sarafloxacin and their photoproducts in water, and estimating their impact on the aquatic environment in inducing resistance to microorganisms.

  10. Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against methylene blue dye

    Science.gov (United States)

    Kumar, Sumeet; Kumar, Ashok

    2016-12-01

    In the present work, graphene oxide (GO) nanosheets (NSs) have been synthesized with precise control over their thickness and molecular structure. The existence of oxygen containing functional groups on GO NSs through chemical treatment confers remarkable optical properties on GO. XRD, TEM, Raman and FTIR techniques were used to confirm the phase and degree of oxidation, morphology, structural information and chemical structure of the synthesized GO NSs. UV-Vis. spectroscopy was employed to study the optical absorption properties of the synthesized GO NSs. The excitation wavelength dependent PL measurements of the synthesized GO NSs were carried out which could be useful for the design and development of GO based next generation optoelectronic devices. The most fascinating luminescent property of synthesized GO NSs is that its luminescence peak position can be easily tuned by only varying the excitation wavelength without significant changes in its size and chemical composition. In order to study the photocatalytic degradation of methylene blue (MB) dye using GO NSs as a photocatalyst, a sunlight driven photocatalytic activity has been performed. The degradation rate of MB dye becomes fast when GO NSs are added to the dye solution. The photodegradation efficiency of GO NSs is calculated to be 60%. The present results indicate that synthesized GO NSs can be used as sunlight active photocatalyst. The optimistic response to sunlight irradiation validates the potential of GO NSs in solar energy conversion.

  11. Life-threatening motor vehicle crashes in bright sunlight

    Science.gov (United States)

    Redelmeier, Donald A.; Raza, Sheharyar

    2017-01-01

    Abstract Bright sunlight may create visual illusions that lead to driver error, including fallible distance judgment from aerial perspective. We tested whether the risk of a life-threatening motor vehicle crash was increased when driving in bright sunlight. This longitudinal, case-only, paired-comparison analysis evaluated patients hospitalized because of a motor vehicle crash between January 1, 1995 and December 31, 2014. The relative risk of a crash associated with bright sunlight was estimated by evaluating the prevailing weather at the time and place of the crash compared with the weather at the same hour and location on control days a week earlier and a week later. The majority of patients (n = 6962) were injured during daylight hours and bright sunlight was the most common weather condition at the time and place of the crash. The risk of a life-threatening crash was 16% higher during bright sunlight than normal weather (95% confidence interval: 9–24, P < 0.001). The increased risk was accentuated in the early afternoon, disappeared at night, extended to patients with different characteristics, involved crashes with diverse features, not apparent with cloudy weather, and contributed to about 5000 additional patient-days in hospital. The increased risk extended to patients with high crash severity as indicated by ambulance involvement, surgical procedures, length of hospital stay, intensive care unit admission, and patient mortality. The increased risk was not easily attributed to differences in alcohol consumption, driving distances, or anomalies of adverse weather. Bright sunlight is associated with an increased risk of a life-threatening motor vehicle crash. An awareness of this risk might inform driver education, trauma staffing, and safety warnings to prevent a life-threatening motor vehicle crash. Level of evidence: Epidemiologic Study, level III. PMID:28072708

  12. Successful pacing using a batteryless sunlight-powered pacemaker.

    Science.gov (United States)

    Haeberlin, Andreas; Zurbuchen, Adrian; Schaerer, Jakob; Wagner, Joerg; Walpen, Sébastien; Huber, Christoph; Haeberlin, Heinrich; Fuhrer, Juerg; Vogel, Rolf

    2014-10-01

    Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  13. Characterization of the transient species generated by the photoionization of Berberine: A laser flash photolysis study

    Science.gov (United States)

    Cheng, Ling-Li; Wang, Mei; Zhu, Hui; Li, Kun; Zhu, Rong-Rong; Sun, Xiao-Yu; Yao, Si-De; Wu, Qing-Sheng; Wang, Shi-Long

    2009-09-01

    Using 266 nm laser flash photolysis it has been demonstrated that Berberine (BBR) in aqueous solution is ionized via a mono-photonic process giving a hydrated electron, anion radical that formed by hydrated electron react with steady state of BBR, and neutral radical that formed from rapid deprotonation of the radical cation of BBR. The quantum yield of photoionization is determined to be 0.03 at room temperature with KI solution used as a reference. Furthermore utilizing pH changing method and the SO 4rad - radical oxidation method, the assignment of radical cation of BBR was further confirmed, the p Ka value of it was calculated, and the related set up rate constant was also determined.

  14. Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone.

    Science.gov (United States)

    Vicente, José Salas; Gejo, Juan López; Rothenbacher, Sonja; Sarojiniamma, Sumalekshmy; Gogritchiani, Eliso; Wörner, Michael; Kasper, Gerhard; Braun, André M

    2009-07-01

    Aerosols of submicron polystyrene particles were oxidized by either vacuum-ultraviolet (VUV) irradiation in the presence of molecular oxygen (O(2)) and/or by ozone (O(3)). Different degrees of oxidation and oxidative degradation were reached by VUV-photolysis depending on radiant energy, O(2) and H(2)O concentrations in the bulk gas mixture as well as on particle diameter. The same functionalization was obtained by exposing the aerosol to O(3), however, oxidation, in particular oxidative degradation, was less efficient. The evolution of hydroxyl and carbonyl functions introduced was quantified by ATR-FTIR spectroscopy of filtered particles, and oxidative degradation of the polymer particles was confirmed by determining size and number of aerosol particles before and after oxidation. Efficiency analyses are based on the results of an O(3) actinometry and on an evaluation of the rate of absorbed photons by the aerosol particles in function of their size.

  15. Reversible degradation of inverted organic solar cells by concentrated sunlight

    OpenAIRE

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A.; Frederik C. Krebs

    2011-01-01

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5–15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of...

  16. Carbon nanofibers, precious commodities from sunlight & CO2 to ameliorate global warming

    CERN Document Server

    Licht, Stuart

    2015-01-01

    This study introduces the high yield, electrolytic synthesis of carbon nanofibers, CNFs, directly from carbon dioxide. Production of a precious commodity such as CNFs from atmospheric carbon dioxide provides impetus to limit this greenhouse gas and mitigate the rate of climate change. CNFs are formed at high rate using inexpensive nickel and steel electrodes in molten electrolytes. The process is demonstrated as a scaled-up stand-alone electrolytic cell, and is also shown compatible with the STEP, solar thermal electrochemical process, using concentrated sunlight at high solar to electric efficiency to provide the heat and electrical energy to drive the CNF production.

  17. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Calza, P., E-mail: paola.calza@unito.it [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Galli, F.; Fabbri, D. [Department of Chemistry, University of Torino, via P. Giuria 5, 10125 Torino (Italy); Santoro, V.; Medana, C. [Department of Molecular Biotechnology and Health Sciences, University of Torino, via P. Giuria 5, 10125 Torino (Italy)

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with ·OH radicals would be negligible and that with {sup 3}CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO{sub 2}, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO{sub 2} yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. - Highlights: • Study of the photolytic and photocatalytic

  18. Identification of the reactive intermediates produced upon photolysis of p-azidoacetophenone and its tetrafluoro analogue in aqueous and organic solvents: implications for photoaffinity labeling.

    Science.gov (United States)

    Cline, Meredith R; Mandel, Sarah M; Platz, Matthew S

    2007-02-20

    Photolysis of p-azidoacetophenone (1a) or 2,3,5,6-tetrafluoro-p-azidoacetophenone (1b) releases the corresponding singlet nitrenes 2a and 2b. In aqueous solutions singlet nitrenes relax (1.1 ps and 43 ns, respectively) to the lower energy triplet nitrenes 3a and 3b, intermediates which do not react to form cross-links or adducts with typical amino acids and nucleic acids. In a hydrophobic environment singlet nitrene 2a partitions between forming triplet nitrene 3a and an acyl-substituted didehydroazepine 4a, which can be detected by LFP and time-resolved IR spectroscopy. The absolute rate constant of reaction of didehydroazepine 4a with water, in acetonitrile, was determined (3.5 x 10(4) M-1 s-1) by laser flash photolysis (LFP) techniques with IR detection at ambient temperature. Photolysis of tetrafluoro azide 1b releases singlet nitrene 2b, which has a lifetime of 172 ns in benzene and can readily be intercepted by pyridine to form ylide 10b (lambdamax = 415 nm). Singlet nitrene 2b reacts with the unactivated CH bonds of cyclohexane to form adduct 8b in 46% yield. Absolute rate constants of reaction of 1b with N-methylimidazole, phenol, dibutyl sulfide, indole, methanol, and dimethyl sulfoxide were determined using the pyridine ylide probe method. It is concluded that photolysis of p-azidoacetophenone (1a) will not lead to cross-link formation but that tetrafluorinated azide 1b can form useful singlet nitrene derived adducts upon photolysis.

  19. Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution.

    Science.gov (United States)

    Carlson, Jules C; Stefan, Mihaela I; Parnis, J Mark; Metcalfe, Chris D

    2015-11-01

    Pharmaceuticals and personal care products (PPCPs), and endocrine disrupting compounds (EDCs) are micropollutants of emerging concern that have been detected in the aquatic environment and in some cases, in drinking water at nanogram per liter levels. The goal of this study was to evaluate the removal of 15 model PPCPs and EDCs from water by direct UV photolysis, using either low (LP)-or medium (MP) -pressure mercury vapor arc lamps. Some of the model compounds are either weak bases or weak acids, and therefore, the pKa values were determined or confirmed for those compounds using spectrophotometric titrations. The molar absorption coefficients of ionized and non-ionized forms were also determined. The quantum yields at 253.7 nm in phosphate buffer solutions of pH 7.2 were determined to be 0.033 ± 0.004 for sulfamethoxazole, 0.0035 ± 0.0008 for sulfachloropyridazine, 0.006 ± 0.002 for acetaminophen, 0.34 ± 0.07 for triclosan, 0.35 ± 0.14 for estrone, 0.08 ± 0.05 for 17α-ethinylestradiol, 0.086 ± 0.012 for ibuprofen. The quantum yield for 4-n-nonylphenol photolysis at 253.7 nm varied with the initial concentration from 0.32 ± 0.08 at 23 μg/L to 0.092 ± 0.006 at 230 μg/L. The pseudo-first order rate constants determined for direct photolysis at 253.7 nm of the studied micropollutants followed the order: triclosan ≈ sulfamethoxazole > 4-n-nonylphenol ≈ sulfachloropyridazine ≈ estrone > acetaminophen ≈ 17α-ethinylestradiol ≈ ibuprofen. In contrast to the results observed for the monochromatic radiation (LP lamp), all 15 model compounds photolyzed under exposure to the broadband radiation emitted by the MP lamp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Millimeter/submillimeter Spectroscopy to Measure the Branching Ratios for Methanol Photolysis

    Science.gov (United States)

    McCabe, Morgan N.; Powers, Carson Reed; Zinga, Samuel; Widicus Weaver, Susanna L.

    2016-06-01

    Methanol is one of the most abundant and important molecules in the interstellar medium, playing a key role in driving more complex organic chemistry both on grain surfaces and through gas-phase ion-molecule reactions. Methanol photolysis produces many radicals such as hydroxyl, methoxy, hydroxymethyl, and methyl that may serve as the building blocks for more complex organic chemistry in star-forming regions. The branching ratios for methanol photolysis may govern the relative abundances of many of the more complex species already detected in these environments. However, no direct, comprehensive, quantitative measurement of methanol photolysis branching ratios is available. Using a 193 nm excimer laser, the gas phase photolysis of methanol was studied in the (sub)millimeter range, where the rotational spectroscopic signatures of the photolysis products were probed. Here we present preliminary results from this experiment.

  1. Lack of sunlight exposure influence on primary glioblastoma survival.

    Science.gov (United States)

    Mutlu, Hasan; Akca, Zeki; Erden, Abdulsamet; Aslan, Tuncay; Ucar, Kadir; Kaplan, Bunyamin; Buyukcelik, Abdullah

    2014-01-01

    The prognosis of primary glioblastoma (GBM) is poor. Approximately 2/3 of primary brain tumor diagnoses are GBM, of which 95% are primary lesions. In this study, we aimed to evaluate whether more sunlight exposure has an effect on survival of patients with primary GBM. A total of 111 patients with primary GBM were enrolled from Kayseri in inner Anatolia which has a cold climate (n: 40) and Mersin in Mediterranean region with a warm climate and more sunlight exposure (n: 71). The patients with primary GBM were divided into two groups as Kayseri and Mersin and compared for progression free survival (PFS) and overall survival (OS). The PFS values were 7.0 and 4.7 months for Kayseri and Mersin groups, respectively (p=0.10) and the respective OS values were 13.3 and 9.4 months (p=0.13). We did not found any significant difference regarding age, sex, comorbidity, smoking, surgery, resurgery, adjuvant chemoradiotherapy and palliative chemotherapy between the groups. We found that more sunlight exposure had no impact on prognosis of patients with primary GBM, adding inconsistency to the literature about the relationship between sunlight and GBM.

  2. Sunlight exposure, antioxidants, and age-related macular degeneration.

    Science.gov (United States)

    Fletcher, Astrid E; Bentham, Graham C; Agnew, Maureen; Young, Ian S; Augood, Cristina; Chakravarthy, Usha; de Jong, Paulus T V M; Rahu, Mati; Seland, Johan; Soubrane, Gisele; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus

    2008-10-01

    To examine the association of sunlight exposure and antioxidant level with age-related macular degeneration (AMD). Four thousand seven hundred fifty-three participants aged 65 years or older in the European Eye Study underwent fundus photography, were interviewed for adult lifetime sunlight exposure, and gave blood for antioxidant analysis. Blue light exposure was estimated by combining meteorologic and questionnaire data. Data on sunlight exposure and antioxidants were available in 101 individuals with neovascular AMD, 2182 with early AMD, and 2117 controls. No association was found between blue light exposure and neovascular or early AMD. Significant associations were found between blue light exposure and neovascular AMD in individuals in the quartile of lowest antioxidant level-vitamin C, zeaxanthin, vitamin E, and dietary zinc-with an odds ratio of about 1.4 for 1 standard deviation unit increase in blue light exposure. Higher odds ratios for blue light were observed with combined low antioxidant levels, especially vitamin C, zeaxanthin, and vitamin E (odds ratio, 3.7; 95% confidence interval, 1.6-8.9), which were also associated with early stages of AMD. Although it is not possible to establish causality between sunlight exposure and neovascular AMD, our results suggest that people in the general population should use ocular protection and follow dietary recommendations for the key antioxidant nutrients.

  3. [Most common skin disorders caused by excessive exposure to sunlight].

    Science.gov (United States)

    Zitás, Éva; Mészáros, Judit

    2016-01-17

    The healing properties of sunlight has been known for millennia, however the gradual deterioration of the ozone layer and the increased use of sun tanning beds in recent decades are causing an increase in skin damaging ultraviolet exposure. In this article the most common photodermatoses and the principles of their treatments are reviewed.

  4. Reversible degradation of inverted organic solar cells by concentrated sunlight.

    Science.gov (United States)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A; Krebs, Frederik C

    2011-06-03

    Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the high intensity exposure, while after rest the performance had recovered to 60% of the initial value. The timescale of the recovery effect was studied by monitoring the cell performance at 1 sun after high intensity exposure. This showed that cell performance was almost completely restored after 180 min. The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O(2) desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process, and care has to be taken to allow for a sound accelerated lifetime assessment based on concentrated sunlight.

  5. Photochemical transformation of graphene oxide in sunlight (journal)

    Science.gov (United States)

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  6. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    Science.gov (United States)

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  7. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Rodriguez, Elena

    2013-02-01

    The photolysis of five frequent emerging contaminants (Benzotriazole, Chlorophene, N,N-diethyl-m-toluamide or DEET, Methylindole, and Nortriptyline HCl) was investigated in ultrapure water under monochromatic ultraviolet radiation at 254 nm and by a combination of UV and hydrogen peroxide. The results revealed that the photolysis rates followed first-order kinetics, with rate constant values depending on the nature of the specific compound, the pH, and the presence or absence of the scavenger tert-butanol. Quantum yields were also determined and values in the range of 53.8 × 10⁻³ - 9.4 × 10⁻³ mol E⁻¹ for Benzotriazole, 525 × 10⁻³ - 469 × 10⁻³ mol E⁻¹ for Chlorophene, 2.8 × 10⁻³ - 0.9 × 10⁻³ mol E⁻¹ for DEET, 108 × 10⁻³ - 165 × 10⁻³ mol E⁻¹ for Methylindole, and 13.8 × 10⁻³ - 15.0 × 10⁻³ mol E⁻¹ for Nortriptyline were obtained. The study also found that the UV/H₂O₂ process enhanced the oxidation rate in comparison to direct photolysis. High-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) technique was applied to the concentrations evaluation and further identification of the parent compounds and their by-products, which allowed the proposal of the degradation pathways for each compound. Finally, in order to assess the aquatic toxicity in the photodegradation of these compounds, the Vibrio fischeri acute toxicity test was used, and the results indicated an initial increase of this parameter in all cases, followed by a decrease in the specific case of Benzotriazole, DEET, Methylindole, and Chlorophene.

  8. Pulse radiolysis, flash photolysis, and shock wave study of the recombination H + benzyl yields toluene at 300 and 1,300-1,650 K

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, L.; Hippler, H.; Pagsberg, P.; Reihs, C.; Troe, J. (Institut fuer Physikalische Chemie der Universitaet Goettingen (West Germany) Riso National Laboratory (Denmark))

    1990-06-28

    Pulse radiolysis, discharge flash photolysis, and laser flash photolysis have been employed to study the recombination reaction H + benzyl {yields} toluene at room temperature. Both H atoms and benzyl radicals were monitored. The same reaction was studied directly in shock waves between 1,300 and 1.650 K. The value of the high-pressure recombination rate constant of (2.5 {plus minus} 0.8) {times} 10{sup 14} cm{sup 3} mol{sup {minus}1} s{sup {minus}1} was found to be independent of the temperature between 300 and 1,650 K. It is argued that high-pressure rate constants for other recombination reactions should also have very small temperature coefficients over wide temperature ranges. Room temperature rate constants for addition of H atoms to toluene, cycloheptatriene, p-xylene, benzene, phenyl, and p-methylbenzyl are also reported.

  9. Quantum Yields of OH From the Photolysis of HOOH in Ice

    Science.gov (United States)

    Chu, L.; Anastasio, C.

    2003-12-01

    Hydrogen peroxide (HOOH) is a common constituent of snow and cirrus ice clouds. Based on its behavior in aqueous solution, photolysis of HOOH on snow/ice should form hydroxyl radical (OH), a process that might be significant as a loss of HOOH as well as a source of OH. In turn, the formation of OH should lead to the oxidation of organic carbon and halides and subsequent release of these oxidation products (e.g., carbonyls, carboxylic acids, and reactive molecular halogens). Determining the importance and rate of OH generation from HOOH photolysis on snow and ice requires knowing the quantum yields for this process as a function of temperature and other environmental variables (e.g., pH and ionic strength). Since these values have not been previously measured, our goal in this work was to determine these quantum yields (i.e., Φ HOOH->OH). Our first step was to measure the molar absorptivities of HOOH between 274 K to 298 K so that we could extrapolate to ice temperatures. There was no temperature dependence of the HOOH molar absorptivity in our measurements, suggesting that the HOOH molar absorptivity is similar in the quasi-liquid layer of ice at low temperatures. Our initial experiments measuring Φ HOOH->OH as a function of temperature (243 - 268 K) show that the values roughly follow the same temperature dependence previously reported for aqueous solution (Zellner et al., 1990). In addition to these results we will also report how Φ HOOH->OH varies as a function of ionic strength and pH. The implications of our measurements for ice particle and snowpack chemistry will also be discussed. Zellner, R.; Exner, M.; Herrmann, H. J. Atmos. Chem. 1990, 10, 411.

  10. Solvent effects on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. A laser flash photolysis study.

    Science.gov (United States)

    Bietti, Massimo; Salamone, Michela

    2005-12-09

    [reaction: see text] A laser flash photolysis study has been carried out to assess solvent effects on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. The rearrangement rate constant k decreases by increasing solvent polarity and an excellent correlation with negative slope is obtained between log k and the solvent polarity parameter E(T)N. These evidences are in full agreement with the previous indication that the extent of internal charge separation decreases on going from the starting 1,1-diarylalkoxyl radical to the transition state.

  11. Hydrogen isotope fractionation in the photolysis of formaldehyde

    Directory of Open Access Journals (Sweden)

    T. S. Rhee

    2007-08-01

    Full Text Available Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D depletion in H2 produced is 500(±20‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O under atmospheric conditions produces H2 that has virtually the same isotopic ratio as that of the parent CH2O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH2O + → CHO + H as compared to the molecular channel (CH2O + → H2 + CO of the photolysis of CH2O in order to balance the relatively small isotopic fractionation in the competing reaction of CH2O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be 0.22(±0.08, which is equivalent to a 780(±80‰ enrichment in D of the remaining CH2O. When CH2O is in photochemical steady state, the isotopic ratio of the H2 produced is determined not only by the isotopic fractionation occurring during the photolytical production of H2m but also by overall fractionation for the removal processes of CH2O (αf, and is represented by the ratio of αmf. Applying the isotopic fractionation factors relevant to CH2O photolysis obtained in the present study to the troposphere, the ratio of αmf varies from ~0.8 to ~1.2 depending on the fraction of CH2O that reacts with OH and that produces H2. This range of αmf can render the H2 produced from the photochemical oxidation of CH4 to be enriched in D (with respect to the original CH

  12. Hydrogen isotope fractionation in the photolysis of formaldehyde

    Directory of Open Access Journals (Sweden)

    T. S. Rhee

    2008-03-01

    Full Text Available Experiments investigating the isotopic fractionation in the formation of H2 by the photolysis of CH2O under tropospheric conditions are reported and discussed. The deuterium (D depletion in the H2 produced is 500(±20‰ with respect to the parent CH2O. We also observed that complete photolysis of CH2O under atmospheric conditions produces H2 that has virtually the same isotope ratio as that of the parent CH2O. These findings imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH2O+hν → CHO+H as compared to the molecular channel (CH2O+hν → H2+CO of the photolysis of CH2O in order to balance the relatively small isotopic fractionation in the competing reaction of CH2O with OH. Using a 1-box photochemistry model we calculated the isotopic fractionation factor for the radical channel to be 0.22(±0.08, which is equivalent to a 780(±80‰ enrichment in D of the remaining CH2O. When CH2O is in photochemical steady state, the isotope ratio of the H2 produced is determined not only by the isotopic fractionation occurring during the photolytical production of H2m but also by overall fractionation for the removal processes of CH2O (αf, and is represented by the ratio of αmf. Applying the isotopic fractionation factors relevant to CH2O photolysis obtained in the present study to the troposphere, the ratio of αmf varies from ~0.8 to ~1.2 depending on the fraction of CH2O that reacts with OH and that produces H2. This range of αmf can render the H2 produced from the photochemical oxidation of CH4 to

  13. Vitamin D and Sunlight Exposure in Newly-Diagnosed Parkinson's Disease

    National Research Council Canada - National Science Library

    Wang, Juan; Yang, Deyu; Yu, Yu; Shao, Gaohai; Wang, Qunbo

    2016-01-01

    ...), while the effects of sunlight exposure have not yet been fully investigated. Therefore, we evaluated the associations between serum vitamin D, vitamin D intake, sunlight exposure, and newly-diagnosed PD patients in a Chinese population...

  14. Sunlight Exposure and Vitamin D Status in Breastfed Infants.

    Science.gov (United States)

    Meena, Pinky; Dabas, Aashima; Shah, Dheeraj; Malhotra, Rajeev Kumar; Madhu, S V; Gupta, Piyush

    2017-02-15

    To correlate the sunlight exposure in first 6 months to vitamin D status at 6 months of age in predominantly breastfed infants; and to quantify the sunlight exposure required to achieve serum 25(OH)D level >20 ng/mL, by 6 months of age. Design: Prospective cohort. Tertiary-care hospital predominantly catering to urban poor population in Delhi. 132 healthy infants, delivered at term, and predominantly breastfed were enrolled at 6-8 weeks of age. Of these, 100 infants were available for final evaluation at 6 months of age (mean (SD) follow-up: 126 (17) days). Baseline maternal vitamin D (serum 25(OH)D) levels were obtained at enrolment. The mothers were asked to maintain a daily record of duration of sunlight exposure, timing of exposure, and body surface area exposed, for the infant, on a pre-designed proforma, till the child was 6 months of age. Infant's serum 25(OH)D was measured at 6 months of age. Cumulative Sun Index was calculated as a composite measure of overall duration/time/body surface area exposed to sunlight; and correlated with the infant serum 25(OH)D after adjusting for baseline maternal serum 25(OH)D levels, season of exposure, and skin color of the infant. Sun index for exposure in morning (before 10 am) and afternoon (10 am-3 pm) were also correlated to vitamin D status. Of 100 mother-infant pairs completing the study, 90 mothers had vitamin D deficiency (serum 25(OH)D exposure of infants to sunlight was 17 min per week, on 6% of body surface area. Vitamin D levels of 67 (67%) infants at 6 months were less than 12 ng/mL and another 23% had insufficient levels (12-20 ng/mL). Cumulative sun index correlated positively to infant's serum 25(OH)D level at 6 months of age (r= 0.461, Psunlight exposure, between 10 am and 3 pm, over 40% body area (infant clothed in diapers, in prone position) for at least 16 weeks, was estimated requirement to achieve sufficient vitamin D levels (>20 ng/mL) by 6 months of age. There is a significant positive correlation

  15. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    Science.gov (United States)

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  16. Comparative Evaluation of Different Co-Antioxidants on the Photochemical- and Functional-Stability of Epigallocatechin-3-gallate in Topical Creams Exposed to Simulated Sunlight

    Directory of Open Access Journals (Sweden)

    Santo Scalia

    2013-01-01

    Full Text Available The catechin (−-epigallocatechin-3-gallate (EGCG exhibits high antioxidant activity and it has been reported to provide protection of the skin against damage induced by solar UV radiation. However, EGCG is highly unstable under sunlight. The present study aimed to compare the effectiveness of the co-antioxidant agents vitamin E, butylated hydroxytoluene, vitamin C and a-lipoic acid for their potential to protect the catechin from photochemical degradation. Model creams (oil-in-water emulsions containing EGCG (1%, w/w alone or combined with equimolar concentrations of co-antioxidant were exposed to a solar simulator at an irradiance corresponding to natural sunlight. Photodegradation was evaluated by HPLC-UV and HPLC-ESI-MS/MS. Addition of the co-antioxidants vitamin C and a-lipoic acid to the formulation significantly reduced the light-induced decomposition of EGCG from 76.9 ± 4.6% to 20.4 ± 2.7% and 12.6 ± 1.6%, respectively. Conversely, butylated hydroxytoluene had no effect (EGCG loss, 78.1 ± 4.6% and vitamin E enhanced the EGCG photolysis to 84.5 ± 3.4%. The functional stability of the catechin in the creams exposed to the solar simulator was also evaluated by measuring the in vitro antioxidant activity. Following irradiation, the reduction of the EGCG formulation antioxidant power was lower (21.8% than the extent of degradation (76.9%, suggesting the formation of photoproducts with antioxidant properties. The influence of the examined co-antioxidants on the functional stability of the catechin under simulated sunlight paralleled that measured for the EGCG photodecomposition, a-lipoic acid exerting the greatest stabilising effect (antioxidant activity decrease, 1.4%. These results demonstrated that a-lipoic acid is an effective co-antioxidant agent for the stabilization of EGCG in dermatological products for skin photoprotection.

  17. Exposure time to sunlight for ultra violet light therapy

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1991-01-01

    Full Text Available Exposure time to sunlight for photo or photochemotherapy is arbitrarily determined. This could lead to inadequate or over exposure. As a sequence to our initial pilot study on exposure time for PUVASOL, we have now developed a bar chart which could be used as a guide to achieve a more logical and uniform exposure time during different months. We plan to extend the study to different zones in India.

  18. Sunlight Exposure and Breast Density: A Population-Based Study

    Science.gov (United States)

    Wu, Sheng-Hui; So, Edwin; Lam, Tsz-ping; Woo, Jean; Yuen, PY; Qin, Ling; Ku, Susanna

    2013-01-01

    Purpose This study aims to assess the association of sunlight exposure with breast cancer risk, measured by the breast density assessed from Tabár's mammographic pattern in Chinese women. Methods A total of 676 premenopausal women were recruited to participate in this study, in which 650 completed a validated sunlight exposure questionnaire via telephone. The mammograms were classified according to Tabár's classification for parenchyma, and patterns IV & V and I, II & III indicated respectively high and low risk mammographic patterns for breast cancer. The odds ratios (OR) and 95% confidence intervals (CIs) for sun exposure-related variables were estimated using unconditional logistic regression with adjustment for potential confounders. Results Among 646 participants, women with high breast cancer risk (Tabár's patterns IV &V) had less hours spent in the sun than those with low risk (I, II & III) at any age stage. A higher level of sunlight exposure was associated with a significantly lower risk having high risk Tabár's pattern. Women aged 40 to 44 years who were in the highest tertile of lifetime total hours spent in the sun had a multi-adjusted OR of 0.41 (95% CI, 0.18-0.92; p for trend=0.03) compared with those in the lowest tertile (>2.19 hr/day vs. sunlight exposure is related to a lower risk of having high risk breast density pattern in premenopausal women. Our results also suggest the most relevant period of exposure is during earlier life. PMID:23843849

  19. Sunlight technologies for photochemical deactivation of organic pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Acher, A.; Fischer, E.; Tornheim, R. [The Volcani Center, Inst. of Soils and Water, Bet Dagan (Israel); Manor, Y. [Sheba Medical Center, Central Virology Lab., Ramat Gan (Israel)

    1997-12-31

    Sensitized-photochemical oxidation methods aimed at use in water treatment technologies for deactivation of biotic (microorganisms) and/or of xenobiotic (pesticides) pollutants in water were developed using global solar radiation or concentrated sunlight (up to 250 suns). The solar global radiation was used either for detoxification of industrial waste water from a pesticide factory to allow their discharge into the urban sewer, or for disinfection of domestric effluents to be used in crop irrigation. The disinfection process was eventually carried out in an experimental pilot-scale plant, capable of disinfection up to 50 m{sup 3}/h of effluent supplied by an activated sludge sewage treatment plant located in Tel-Aviv area. The treated effluents did not show any regrowth of the microorganisms during 7 days. The solar concentrated radiation experiments performed using facilities of the Sun Tower of The Weizman Institute of Science, Rehovot. The concentrated sunlight was provided by different combination of several computer controlled heliostates, up to 8, that track the sun and focus the received sunlight onto the target situated on the roof of the sun-tower. The sunlight intensities measured on the target reached up to 200 kW/m{sup 2}. The experiments were performed either batch- or continuous-wise. The water-samples exposed to disinfection were the above effluent, filtered and supplemented with vaccine strain poliovirus or with different concentrations of an industrial potential pollutant (bromacil), MB 2 mg/L and two concentrations of dissolved oxygen (8.0 or 40.0 mg O{sub 2}/L). An exposure time of 2-3 seconds at 150 kW/m{sup 2} was decreased the microorganisms alive (counts) by five orders of magnitude. A comparison between the two above water treatment technologies is presented. (orig./SR)

  20. Novel materials and devices for sunlight concentrating systems

    Science.gov (United States)

    Hovel, H. J.

    1980-09-01

    An economic analysis of photovoltaic conversion under concentrated sunlight has been performed which demonstrates that solar cell efficiency, concentrator efficiency, and concentrator cost are the most important parameters in a concentrating photovoltaic system; solar cell cost is only of secondary importance. Six novel structures are described, including modified conventional Si cells Ga(1-x)Al(x)As/GaAs, interdigitated cells, vertical and horizontal multijunction cells and 'multicolor' devices.

  1. Effect of sunlight exposure on serum 25-hydroxyvitamin d concentration in women with vitamin d deficiency: using ambulatory lux meter and sunlight exposure questionnaire.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Soo-Jung; Kim, Kwang-Min; Lee, Duck-Joo; Kim, Woo-Jae; Park, Rae-Woong; Joo, Nam-Seok

    2012-11-01

    Vitamin D is an important factor in human health. Yet, vitamin D deficiency is very common. We aimed to confirm serum 25-hydroxyvitamin D (25OHD) concentration change after sunlight exposure and to elucidate the relationship between the amount of sunlight exposure and serum 25OHD level change by ambulatory lux meter and sunlight exposure questionnaire. Twenty healthy young women were enrolled. They were educated to obtain 20 minutes of sunlight exposure during weekdays from October to November, 2010, during which they were to wear an ambulatory lux meter on an arm. All subjects completed a one-week recall sunlight exposure questionnaire at the end of the study. Before and after sunlight exposure, serum 25OHD level was measured. Mean pre-exposure serum 25OHD concentration was 11.01 ng/mL. The mean change of pre- and post-exposure 25OHD level was -0.62 ng/mL, but it was not statistically significant. The mean personal sunlight exposure recorded by ambulatory lux meter, 292.6 lux/s, showed no significant relationship with average change of 25OHD and average weekly sunlight exposure score, 11.9, calculated by the sunlight exposure questionnaire. However, the mean change of serum 25OHD level and weekly sunlight exposure score showed significant negative correlation (r = -0.469, P = 0.037). Change of serum 25OHD concentration after four weeks of sunlight exposure was not statistically significant in women with vitamin D deficiency. However, serum 25OHD concentration change was significantly negatively correlated with the sunlight exposure score by the questionnaire.

  2. Effects of sunlight exposure on grapevine powdery mildew development.

    Science.gov (United States)

    Austin, Craig N; Wilcox, Wayne F

    2012-09-01

    Natural and artificially induced shade increased grapevine powdery mildew (Erysiphe necator) severity in the vineyard, with foliar disease severity 49 to 75% higher relative to leaves in full sun, depending on the level of natural shading experienced and the individual experiment. Cluster disease severities increased by 20 to 40% relative to those on check vines when ultraviolet (UV) radiation was filtered from sunlight reaching vines in artificial shading experiments. Surface temperatures of leaves in full sunlight averaged 5 to 8°C higher than those in natural shade, and in one experiment, filtering 80% of all wavelengths of solar radiation, including longer wavelengths responsible for heating irradiated tissues, increased disease more than filtering UV alone. In controlled environment experiments, UV-B radiation reduced germination of E. necator conidia and inhibited both colony establishment (hyphal formation and elongation) and maturity (latent period). Inhibitory effects of UV-B radiation were significantly greater at 30°C than at 20 or 25°C. Thus, sunlight appears to inhibit powdery mildew development through at least two mechanisms, i.e., (i) UV radiation's damaging effects on exposed conidia and thalli of the pathogen; and (ii) elevating temperatures of irradiated tissues to a level supraoptimal or inhibitory for pathogen development. Furthermore, these effects are synergistic at temperatures near the upper threshold for disease development.

  3. 戊唑醇与氟环唑在水相中的光解特征%Photolysis Properties of Epoxiconazole and Tebuconazole in the Water

    Institute of Scientific and Technical Information of China (English)

    赵亚洲; 段亚玲; 席陪宇; 李景壮; 徐睿; 谭红

    2014-01-01

    In order to study on photolysis characteristics of tebuconazole and epoxiconazole,so as to provide the basis for the environmental risk assessment,the indoor simulation method was employed to compare the photolysis differences of epoxiconazole and tebuconazole in the water treated with 0 Lux(dark control),4000 Lux and 8 000 Lux.Results:Photolysis rate of tebuconazole and epoxiconazole processed by 0 Lux in water were less than 3.1%.To 4000 Lux photolysis rate was 0.013/h-1 and 0.029/h-1 respectively,and to 8 000 Lux was 0.031/h-1 and 0.045/h-1 separately.The photolysis half-life of tebuconazole and epoxiconazole under 4000 Lux was 53.3 h and 23.9 h,but under 8000 Lux was 22.4 h and 1 5 .4 h.Light intensity had important influence on photolysis of tebuconazole and epoxiconazole in the water and tebuconazole was harder to be photolyzed.%研究戊唑醇与氟环唑的光解特征,为其环境风险评估提供依据,采用室内模拟方法,比较了0 Lux(黑暗对照)、4000 Lux和8000 Lux光照处理的戊唑醇与氟环唑在水相中的光解差异。结果表明:戊唑醇与氟环唑在水相中的光解变化率0 Lux处理均小于3.1%,4000 Lux的光解速率为0.013/h和0.029/h,8000 Lux的光解速率为0.031/h和0.045/h。光解动态特征符合一级动力学方程;戊唑醇与氟环唑在水相中的光解半衰期4000 Lux处理为53.3 h和23.9 h,而8000 Lux处理为22.4 h和15.4 h。说明,光照强度对戊唑醇与氟环唑在水相中的光解有重要影响,且戊唑醇光解难于氟环唑。

  4. Weathering patterns of polycyclic aromatic hydrocarbons contained in submerged Deepwater Horizon oil spill residues when re-exposed to sunlight.

    Science.gov (United States)

    John, Gerald F; Han, Yuling; Clement, T Prabhakar

    2016-12-15

    The Deepwater Horizon (DWH) oil spill event released a large amount of sweet crude oil into the Gulf of Mexico (GOM). An unknown portion of this oil that arrived along the Alabama shoreline interacted with nearshore sediments and sank forming submerged oil mats (SOMs). A considerable amount of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), were trapped within these buried SOMs. Recent studies completed using the oil spill residues collected along the Alabama shoreline have shown that several PAHs, especially higher molecular weight PAHs (four or more aromatic rings), are slowly weathering compared to the weathering levels experienced by the oil when it was floating over the GOM. In this study we have hypothesized that the weathering rates of PAHs in SOMs have slowed down because the buried oil was isolated from direct exposure to sunlight, thus hindering the photodegradation pathway. We further hypothesized that re-exposing SOMs to sunlight can reactivate various weathering reactions. Also, SOMs contain 75-95% sand (by weight) and the entrapped sand could either block direct sunlight or form large oil agglomerates with very little exposed surface area; these processes could possibly interfere with weathering reactions. To test these hypotheses, we completed controlled experiments to study the weathering patterns of PAHs in a field recovered SOM sample after re-exposing it to sunlight. Our experimental results show that the weathering levels of several higher molecular weight PAHs have slowed down primarily due to the absence of sunlight-induced photodegradation reactions. The data also show that sand particles in SOM material could potentially interfere with photodegradation reactions.

  5. Sunlight exposure is important for preventing hip fractures in patients with Alzheimer's disease, Parkinson's disease, or stroke.

    Science.gov (United States)

    Iwamoto, J; Takeda, T; Matsumoto, H

    2012-04-01

    Hypovitaminosis D as a result of malnutrition or sunlight deprivation, increased bone resorption, low bone mineral density (BMD), or an increased risk of falls may contribute to an increased risk of hip fractures in patients with neurological diseases, including Alzheimer's disease, Parkinson's disease, and stroke. The purpose of this study was to clarify the efficacy of sunlight exposure for reducing the risk of hip fractures in patients with such neurological diseases. The English literature was searched using PubMed, and randomized controlled trials evaluating the efficacy of sunlight exposure for reducing the risk of hip fractures in patients with Alzheimer's disease, Parkinson's disease, and stroke were identified. The relative risk and the 95% confidence interval were calculated for individual randomized controlled trials, and a pooled data analysis (meta-analysis) was performed. Three randomized controlled trials were identified. Sunlight exposure improved hypovitaminosis D and increased the BMD. The relative risk (95% confidence interval) of hip fractures was 0.22 (0.05, 1.01) for Alzheimer's disease, 0.27 (0.08, 0.96) for Parkinson's disease, and 0.17 (0.02, 1.36) for stroke. The relative risk (95% confidence interval) calculated for the pooled data analysis was 0.23 (0.10, 0.56) (P = 0.0012), suggesting a significant risk reduction rate of 77%. The present meta-analysis added additional evidence indicating the efficacy of sunlight exposure for reducing the risk of hip fractures in patients with Alzheimer's disease, Parkinson's disease, and stroke. © 2011 John Wiley & Sons A/S.

  6. South African university student knowledge of eye protection against sunlight

    Directory of Open Access Journals (Sweden)

    O. A. Oduntan

    2009-12-01

    Full Text Available Exposure to sunlight has been associated with several ocular conditions such as cataract, age-related macular degeneration, and conjunctival neoplasm. Knowledge of protective modalities and good behavioural practice involving eye protection is essential to prevent adverse effects of sunlight. The purpose of this study was to establish knowledge amongst randomly selected university students in South Africa, of prevention modalities against the adverse effects of sunlight. A questionnaire relating to the knowledge of preventive modalities was completed by randomly selected students from four universities selected by convenience sampling.  Questionnaires completed by one thousand, eighthundred and thirty two (N =1832 subjects were analysed with descriptive statistics using Stata version 10.  The participants’ ages ranged from 17 to 55 years (mean = 21.03 ± 3.4 years.  They included 43.7% males and 56.3% females.  They were 68.3% Blacks, 20.0% Whites, 3.4% Indians and 7.4% Coloureds. Many (82.3% of them knew that excessive exposure to sunlight can adversely affect the eyes. Only 28.5% reported that they often wore sunglasses outdoors. Only 38.5% of the participants knew that not all spectacles or contact lenses could protect eyes from ultraviolet radiation. However, many, 87.7% and 69.5% respectively knew that sunglasses and spectacles could be specifically designed to block UVR from entering the eye. Just over half (52.7% knew that contact lenses can be specifically designed to block the UVR. Many, (68.4% agreed that wearing hats with brims could protect the eyes against harmful radiation from the sun and the majority, 95.8% agreed that there was a need for awareness campaigns about the effects of the sun on the eye and against excessive exposure. Female respondents had more knowledge of preventive modalities than the males.  Knowledge of preventive modalities among the respondents varied significantly with the type of questions and was

  7. Low exposure to sunlight is a risk factor for Crohn's disease.

    Science.gov (United States)

    Nerich, V; Jantchou, P; Boutron-Ruault, M-C; Monnet, E; Weill, A; Vanbockstael, V; Auleley, G-R; Balaire, C; Dubost, P; Rican, S; Allemand, H; Carbonnel, F

    2011-04-01

    Low sunshine exposure might contribute to the pathogenesis of inflammatory bowel disease (IBD). To assess the geographic distribution of IBD incidence in relation to sunshine exposure in France to test the hypothesis that higher sun exposure is associated with lower IBD risk. Using the national health insurance database, incidence rates of Crohn's disease (CD) and ulcerative colitis (UC) were estimated for each of the 94 French administrative areas ('départements'), between 2000 and 2002. The surface UV radiation intensity was obtained by combining modelling and satellite data from Meteosat, the European meteorological satellite. Relationships between incidence rates and sun exposure were tested for significance by using a Poisson regression. We mapped smoothed relative risks (sRR) for CD and UC, using a Bayesian approach and adjusting for sun exposure, to search for geographical variations. Areas with a smoothed RR of CD incidence significantly above 1 corresponded to areas with low sunshine exposure, whereas those with high or medium sunlight exposure had smoothed RRs either lower than 1 or not significantly different from 1. There was no association between sun exposure and UC incidence. This geographic study suggests that low sunlight exposure is associated with an increased incidence of Crohn's disease. Further studies are needed to determine if this association is causal. © 2011 Blackwell Publishing Ltd.

  8. 乙氧氟草醚光解动力学研究%Study on Photolysis Kinetics of Oxyfluorfen

    Institute of Scientific and Technical Information of China (English)

    李丽春; 侯志广; 万丽; 逯忠斌

    2011-01-01

    Established the method of oxyfluorfen in different solutions by gas chromatography. Under the 500 W high pressure mercury lamp, photolysis of oxyfluorfen in buffer solution of different pH value, the results showed that the photolysis rate were quicker in pH 9 than that in other buffers and which were in the order of pH 9>pH 7>pH 5, indicating the photolytic degradation of oxyfluorfen in alkaline solution, maybe result in poor stability. The experiments on influence of initial concentration on photolysis of oxyfluorfen under the 500 W high pressure mercury lamp showed that initial concentrations affected the photodegradation, and they mack photolysis haf-life of oxyfluorfen decreased. The half-lives of oxyfluorfen in different buffers of pH 5, pH 7, pH 9 were 63, 20.69, 13.67 min. These could correctly appraise oxyfluorfen in the environment for the photodissociation behavior, as well as provide scientific basis for guiding oxyfluorfen science reasonable use and the correct evaluation in the residue of water environment polyether dynamic and safety effects provide the effective reference data.%为了正确评价乙氧氟草醚在环境中的光解行为,建立了乙氧氟草醚在水溶液中的气相色谱分析方法,以高压汞灯为光源,研究了乙氧氟草醚在水溶液中的光降解情况.结果表明,在不同pH缓冲溶液中,乙氧氟草醚的光解速率为:pH 9>pH 7>pH 5,说明乙氧氟草醚在偏碱性环境中稳定性较差.乙氧氟草醚起始浓度对其光解有一定影响,光解速率随浓度增加而减小.其在pH 5、pH 7、pH9的缓冲溶液中光解半衰期分别为63、20.69、13.67 min.为指导乙氧氟草醚的科学合理使用和正确评价乙氧氟草醚在水环境中的残留动态和安全效应提供科学依据.

  9. The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight.

    Science.gov (United States)

    Schuch, André Passaglia; Menck, Carlos Frederico Martins

    2010-06-01

    Solar radiation sustains and affects all life forms on Earth. The increase in solar UV-radiation at environmental levels, due to depletion of the stratospheric ozone layer, highlights serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions where radiation-intensity is still higher. Thus, there is the need to evaluate the harmful effects of solar UV-radiation on the DNA molecule as a basis for assessing the risks involved for human health, biological productivity and ecosystems. In order to evaluate the profile of DNA damage induced by this form of radiation and its genotoxic effects, plasmid DNA samples were exposed to artificial-UV lamps and directly to sunlight. The induction of cyclobutane pyrimidine dimer photoproducts (CPDs) and oxidative DNA damage in these molecules were evaluated by means of specific DNA repair enzymes. On the other hand, the biological effects of such lesions were determined through the analysis of the DNA inactivation rate and mutation frequency, after replication of the damaged pCMUT vector in an Escherichia coliMBL50 strain. The results indicated the induction of a significant number of CPDs after exposure to increasing doses of UVC, UVB, UVA radiation and sunlight. Interestingly, these photoproducts are those lesions that better correlate with plasmid inactivation as well as mutagenesis, and the oxidative DNA damages induced present very low correlation with these effects. The results indicated that DNA photoproducts play the main role in the induction of genotoxic effects by artificial UV-radiation sources and sunlight.

  10. Influence of photolysis on multispectral photoacoustic measurement of nitrogen dioxide concentration.

    Science.gov (United States)

    Tian, Guoxun; Moosmüller, Hans; Arnott, W Patrick

    2013-09-01

    Multispectral photoacoustic instruments are commonly used to measure aerosol and nitrogen dioxide (NO2) light absorption coefficients to determine the radiation budget of the atmosphere. Here a new photoacoustic system is developed to explore the effect of photolysis on the measured signal in a multispectral photoacoustic spectrometer In this system, a 405-nm laser is used primarily as light source for photolysis. Additionally, a well-overlapped 532-nm laser, modulated at the resonant frequency of the photoacoustic instrument, is used to probe the NO2 concentration. As a result, the photolysis effect at 405 nm can be observed by the photoacoustic instrument through the 532-nm laser. This work determines an 11% reduction of the photoacoustic signal caused by the photolysis effect for typical conditions, which needs to be taken into account when calibrating multispectral photoacoustic spectrometers with NO2.

  11. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-06-01

    Full Text Available , and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron...

  12. The role of electron donors generated from UV photolysis for accelerating pyridine biodegradation.

    Science.gov (United States)

    Tang, Yingxia; Zhang, Yongming; Yan, Ning; Liu, Rui; Rittmann, Bruce E

    2015-09-01

    Employing an internal circulation baffled biofilm reactor (ICBBR), we evaluated the mechanisms by which photolysis accelerated the biodegradation and mineralization of pyridine (C5 H5 N), a nitrogen-containing heterocyclic compound. We tested the hypothesis that pyridine oxidation is accelerated because a key photolysis intermediate, succinate, is as electron donor that promotes the initial mono-oxygenation of pyridine. Experimentally, longer photolysis time generated more electron-donor products (succinate), which stimulated faster pyridine biodegradation. This pattern was confirmed by directly adding succinate, and the stimulation effect occurred similarly with addition of the same equivalents of acetate and formate. Succinate, whether generated by UV photolysis or added directly, also accelerated mono-oxygenation of the first biodegradation intermediate, 2-hydroxyl pyridine (2HP). 2HP and pyridine were mutually inhibitory in that their mono-oxygenations competed for internal electron donor; thus, the addition of any readily biodegradable donor accelerated both mono-oxygenation steps, as well as mineralization.

  13. Towards a quantitative study of the VUV photolysis of methane: preliminary experiment on trichloromethane

    Science.gov (United States)

    Gans, B.; Boyé-Péronne, S.; Douin, S.; Gauyacq, D.

    2010-01-01

    Photolysis of methane in Titan's stratosphere is the starting point of gas phase carbon chemistry. Quantitative studies of methane photolytic products are of utmost importance for Titan atmosphere models. With this aim, two experimental strategies are presented in this article. Preliminary results demonstrate the possibility of using CRDS absorption coupled with pulsed photolysis on the example of a halogenated derivative of methane: Trichloromethane (CHCl_3).

  14. Photolysis of oxygen saturated ethers in the presence of Sn (Ⅱ) or Cu (Ⅱ) salts

    Institute of Scientific and Technical Information of China (English)

    施敏

    2000-01-01

    Photolysis of diethyl ether-oxygen charge transfer complex the presence of Sn(Ⅱ) or Cu(Ⅱ) salts gave higher yields of the oxiation products, ethyl acetate, acetaldehyde, ethanol,ethyl formate and methanol compared with those without the salts. In addition, the photolysis of an oxygen saturated tetrahydrofuran (THF) or dibutyl lether solution gave γ-butyro-Their yields were also affected by the addition of Cu(Ⅱ) or Sn(Ⅱ) salts.

  15. Kinetics of Hydrolysis and Products of Hydrolysis and Photolysis of Tetryl.

    Science.gov (United States)

    1984-10-22

    NSWC TR 84-88 Lfl KINETICS OF HYDROLYSIS AND PRODUCTS OF HYDROLYSIS AND PHOTOLYSIS OF TETRYL BY ELEONORE G. KAYSER NICHOLAS E. BURLINSON DAVID H...PHOTOLYSIS OF TETRYL Feb 1980 to Dec 1981 S.PERFORMING ORG. REPORT NUMBER 7. AU THOR(s) SCONTRACT OR GRANT NUMUER11110 Eleonore G. Kayser, NLchcolas E...Library 1 Monitoring Techniques Division Dr. Ron Spanggord I Attn: RD680 (Robert B. Medz) 1 333 Rcvenswood Avenue Washington, DC 20460 Menlo Park

  16. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  17. Study of carboxyhemoglobin photodissociation with laser flash-photolysis

    Science.gov (United States)

    Kuzmin, Vasiliy V.; Salmin, Vladimir V.; Salmina, A. B.; Provorov, Alexander S.

    2004-08-01

    Assessment of the carboxyhemoglobin photodissociation has been performed under the native conditions. This investigation has a great importance for the development and creation of completely new approach for the treatment of carbon monoxide poisoning based on the photoinduced dissociation of carboxyhemoglobin. Photodissociation was registered on the experimental setup with crossing laser beams were pulsed Nd:YAG laser at the second harmonics wavelength (λ=532 nm) was used as a source of photolyzing radiation. Buffered solutions of whole human peripheral blood (PBS, pH=7.4) and diluted hemolized human peripheral blood were used. We found optimal parameters for the registration of the photodissociation such as using of buffered solutions of the whole human peripheral blood with the concentration of carboxyhemoglobin around 50% detection of dissociation of carboxyhemoglobin at the maximum of absorption within the Soret's band (435 nm). Dependence of photodissociation efficiency on the concentration of the complex in the tested solutions, as well as on the photolysis radiation intensity in both types of solutions was proved.

  18. Four-dimensional multi-site photolysis of caged neurotransmitters

    Directory of Open Access Journals (Sweden)

    Mary Ann eGo

    2013-12-01

    Full Text Available Neurons receive thousands of synaptic inputs that are distributed in space and time. The systematic study of how neurons process these inputs requires a technique to stimulate multiple yet highly targeted points of interest along the neuron's dendritic tree. Three-dimensional multi-focal patterns produced via holographic projection combined with two-photon photolysis of caged compounds can provide for highly localized release of neurotransmitters within each diffraction-limited focus, and in this way emulate simultaneous synaptic inputs to the neuron. However, this technique so far cannot achieve time-dependent stimulation patterns due to fundamental limitations of the hologram-encoding device and other factors that affect the consistency of controlled synaptic stimulation. Here, we report an advanced technique that enables the design and application of arbitrary spatio-temporal photostimulation patterns that resemble physiological synaptic inputs. By combining holographic projection with a programmable high-speed light-switching array, we have overcome temporal limitations with holographic projection, allowing us to mimic distributed activation of synaptic inputs leading to action potential generation. Our experiments uniquely demonstrate multi-site two-photon glutamate uncaging in three dimensions with submillisecond temporal resolution. Implementing this approach opens up new prospects for studying neuronal synaptic integration in four dimensions.

  19. Photolysis of metal oxides as a source of atoms in planetary exospheres

    Science.gov (United States)

    Valiev, R. R.; Berezhnoy, A. A.; Sidorenko, A. D.; Merzlikin, B. S.; Cherepanov, V. N.

    2017-10-01

    The cross sections of photolysis of LiO, NaO, KO, MgO, and CaO molecules have been calculated by the use of quantum chemistry methods. The maximal values for photolysis cross sections of alkali metal monoxides have the order of 10-17 cm2, and for alkaline earth metal monoxides these values are less on 1-2 orders of the magnitude. The lifetimes of photolysis at 1 astronomical unit are estimated as 5, 3, 60, 70, and 3,000 s for LiO, NaO, KO, MgO, and CaO, respectively. Typical kinetic energies of main peaks of photolysis-generated metal atoms are determined. Impact-produced LiO, NaO, KO, and MgO molecules are destroyed in the lunar and Hermean exospheres almost completely during the first ballistic flight while CaO molecule is more stable against destruction by photolysis. Photolysis-generated metal atoms in planetary exospheres can be detected by performing high-resolution spectral observations of velocity distribution of exospheric metal atoms.

  20. Infrared diode laser studies of the products from the reaction CH2($\\tilde{X}$3B1) + O2 and from the near-UV photolysis of CH3NCS

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Ramon Arturo [Univ. of California, Berkeley, CA (United States)

    1993-12-01

    Absolute yields of CO, CO2, and H2CO formed in reaction of triplet methylene ($\\tilde{X}$3B1 ≡CH2) with O2 were determined using a flash kinetic spectrometer. CH2 radicals were generated by excimer laser photolysis of ketene and product formation was monitored by time-resolved infrared diode laser absorption. Reaction was carried out in a static gas cell at room temperature at 1--25 torr. Measured product yields were CO, 0.34 ± 0.06; CO2, 0.40 ± 0.08 H2CO, 0.16 ± 0.04. Rate constants for production of CO and CO2 were equivalent to the published rate constant for removal of CH2. Indirect evidence indicated that yield of OH is 0.30 ± 0.05. Ultraviolet spectrum of methyl isothiocyanate (CH3NCS ≡ MITC) and quantum yield for dissociation into methyl isocyanide (CH3NC) and atomic sulfur at 308 nm, Φ 0.98 ± 0.24, were measured. MITC is widely used as a fumigant and readily enters the atmosphere during and after application. Results indicate that photodissociation by sunlight is an effective pathway for removal of MITC from atmosphere. A mechanism is proposed to account for the observed formation of methyl isocyanate (CH3NCO) as a secondary product in controlled laboratory studies.

  1. The Lifetimes of Nitriles (-C*N) and Acids (-COOH) during Ultraviolet Photolysis and Their Survival in Space

    Science.gov (United States)

    Bernstein, Max P.; Ashbourn, Samantha; Sandford, Scott A.; Allamandola, Louis J.

    2003-01-01

    Nitriles are one of the most common classes of molecules observed in the gas phase in space, with over a dozen having been positively identified in interstellar and circumstellar environments through the detection of their rotational transitions. Acids, in contrast, are much less common. In this paper we present laboratory data comparing the stability of two structurally related acid-nitrile pairs to ultraviolet (UV) photolytic destruction: acetic acid vs. acetonitrile (CH3-COOH vs. CH3-CN) and glycine vs. aminoacetonitrile (H2N-CH2-COOH vs. H2N-CH2-CN). We find that the nitriles are destroyed ten and five times more slowly (respectively) by UV photolysis than are the corresponding acids. This suggests that whatever their relative formation rates, acids may be less abundant than nitriles in interstellar environments in part because they are more rapidly destroyed by photolysis. The results of this infrared (IR) spectral matrix isolation study indicate that during the lifetime of a typical interstellar cloud, even in its darkest regions, a population of acids in the gas phase will likely be diminished by at least half. Since aminoacetonitrile is a precursor to the amino acid glycine, and far more stable, presolar aminoacetonitrile may be a contributor to the deuterium enriched glycine detected in meteorites. It would clearly be informative to search for aminoacetonitrile (the nitrile corresponding to glycine) in the regions where the amino acid glycine has been reported.

  2. Photophysical and photochemical effects of UV and VUV photo-oxidation and photolysis on PET and PEN

    Science.gov (United States)

    Morgan, Andrew

    Polyethylene Terephthalate (PET) is a widely used polymer in the bottling, packaging, and clothing industry. In recent years an increasing global demand for PET has taken place due to the Solar Disinfection (SODIS) process. SODIS is a method of sterilizing fresh water into drinkable water. The PET bottles are used in the process to contain the water during solar irradiation due to its highly transparent optical property. Alongside PET, polyethylene 2,6-napthalate (PEN) is used in bottling and flexible electronic applications. The surface of PEN would need to be modified to control the hydrophilicity and the interaction it exudes as a substrate. The UV light absorption properties of PET and PEN are of great importance for many applications, and thus needs to be studied along with its photochemical resistance. The optical and chemical nature of PET was studied as it was treated by UV photo-oxidation, photo-ozonation, and photolysis under atmospheric pressure. Another investigation was also used to study PEN and PET as they are treated by vacuum UV (VUV) photo-oxidation, VUV photolysis, and remote oxygen reactions. The extent of the photoreactions' effect into the depth of the polymers is examined as treatment conditions are changed. The different experimental methods established the rate of several competing photoreactions on PET and PEN during irradiance, and their effect on the optical quality of the polymers.

  3. Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent.

    Science.gov (United States)

    Keen, Olya S; Linden, Karl G

    2013-11-19

    Trace levels of antibiotics in treated wastewater effluents may present a human health risk due to the rise of antibacterial activity in the downstream environments. Advanced oxidation has a potential to become an effective treatment technology for transforming trace antibiotics in wastewater effluents, but residual or newly generated antibacterial properties of transformation products are a concern. This study demonstrates the effect of UV photolysis and UV/H2O2 advanced oxidation on transformation of 6 antibiotics, each a representative of a different structural class, in pure water and in two different effluents and reports new or confirmatory photolysis quantum yields and hydroxyl radical rate constants. The decay of the parent compound was monitored with HPLC/ITMS, and the corresponding changes in antibacterial activity were measured using bacterial inhibition assays. No antibacterially active products were observed following treatment for four of the six antibiotics (clindamycin, ciprofloxacin, penicillin-G, and trimethoprim). The remaining two antibiotics (erythromycin and doxycycline) showed some intermediates with antibacterial activity at low treatment doses. The antibacterially active products lost activity as the UV dose increased past 500 mJ/cm(2). Active products were observed only in wastewater effluents and not in pure water, suggesting that complex secondary reactions controlled by the composition of the matrix were responsible for their formation. This outcome emphasizes the importance of bench-scale experiments in realistic water matrices. Most importantly, the results indicate that photosensitized processes during high dose wastewater disinfection may be creating antibacterially active transformation products from some common antibiotics.

  4. The Seasonality of Tuberculosis, Sunlight, Vitamin D, and Household Crowding

    Science.gov (United States)

    Wingfield, Tom; Schumacher, Samuel G.; Sandhu, Gurjinder; Tovar, Marco A.; Zevallos, Karine; Baldwin, Matthew R.; Montoya, Rosario; Ramos, Eric S.; Jongkaewwattana, Chulanee; Lewis, James J.; Gilman, Robert H.; Friedland, Jon S.; Evans, Carlton A.

    2014-01-01

    Background. Unlike other respiratory infections, tuberculosis diagnoses increase in summer. We performed an ecological analysis of this paradoxical seasonality in a Peruvian shantytown over 4 years. Methods. Tuberculosis symptom-onset and diagnosis dates were recorded for 852 patients. Their tuberculosis-exposed cohabitants were tested for tuberculosis infection with the tuberculin skin test (n = 1389) and QuantiFERON assay (n = 576) and vitamin D concentrations (n = 195) quantified from randomly selected cohabitants. Crowding was calculated for all tuberculosis-affected households and daily sunlight records obtained. Results. Fifty-seven percent of vitamin D measurements revealed deficiency (<50 nmol/L). Risk of deficiency was increased 2.0-fold by female sex (P < .001) and 1.4-fold by winter (P < .05). During the weeks following peak crowding and trough sunlight, there was a midwinter peak in vitamin D deficiency (P < .02). Peak vitamin D deficiency was followed 6 weeks later by a late-winter peak in tuberculin skin test positivity and 12 weeks after that by an early-summer peak in QuantiFERON positivity (both P < .04). Twelve weeks after peak QuantiFERON positivity, there was a midsummer peak in tuberculosis symptom onset (P < .05) followed after 3 weeks by a late-summer peak in tuberculosis diagnoses (P < .001). Conclusions. The intervals from midwinter peak crowding and trough sunlight to sequential peaks in vitamin D deficiency, tuberculosis infection, symptom onset, and diagnosis may explain the enigmatic late-summer peak in tuberculosis. PMID:24596279

  5. Sunlight and Skin Cancer: Lessons from the Immune System

    OpenAIRE

    Ullrich, Stephen E

    2007-01-01

    The ultraviolet (UV) radiation in sunlight induces skin cancer development. Skin cancer is the most common form of human neoplasia. Estimates suggest that in excess of 1.5 million new cases of skin cancer (www.cancer.org/statistics) will be diagnosed in the United States this year Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from sk...

  6. Sunlight and Skin Cancer: Lessons from the Immune System

    OpenAIRE

    Ullrich, Stephen E

    2007-01-01

    The ultraviolet (UV) radiation in sunlight induces skin cancer development. Skin cancer is the most common form of human neoplasia. Estimates suggest that in excess of 1.5 million new cases of skin cancer (www.cancer.org/statistics) will be diagnosed in the United States this year Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from sk...

  7. Effect of Sunlight Exposure on Bone Mineral Density in Children with Severe Disability.

    Science.gov (United States)

    Kanemura, Hideaki; Hatakeyama, Kazuo; Sano, Fumikazu; Yagasaki, Hideaki; Sugita, Kanji; Aihara, Masao

    2016-08-01

    The aim of this study was to determine the efficacy of sunlight exposure for increasing bone mineral density (BMD) in children with severe disability. The subjects were five children with severe disability, aged 6 to 8 years. BMD was measured at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. All caregivers of patients were instructed to create opportunities to stay outdoors. Daily sunlight exposure time was defined as hours of staying outdoors. Mean hours of sunbathing per day were calculated at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. Sunlight exposure tended to be longer after starting than before starting in all patients, but the difference was not significant (p = 0.052). Along with the increase in sunlight exposure, BMD increased significantly after the start of sunlight exposure in all patients (p sunlight exposure. No patients had bone fractures after the start of sunlight exposure. These results suggest that sunlight exposure increased BMD, and that this may reduce the risk of bone fracture in children with disability. Georg Thieme Verlag KG Stuttgart · New York.

  8. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production.

    Science.gov (United States)

    Zhang, Yuewei; Liu, Jinghai; Wu, Guan; Chen, Wei

    2012-09-07

    Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C₃N₄). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C₃N₄. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.

  9. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin

    Institute of Scientific and Technical Information of China (English)

    Chen Liang; Huimin Zhao; Minjie Deng; Xie Quan; Shuo Chen; Hua Wang

    2015-01-01

    Norfloxacin (NOR),an ionizable antibiotic frequently used in the aquaculture industry,has aroused public concern due to its persistence,bacterial resistance,and environmental ubiquity.Therefore,we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water-dissolved organic matter (DOM),which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore,scavenging experiments combined with electron paramagnetic resonance (EPR) were performed to evaluate the transformation of NOR in water.The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical (·OH) and singlet oxygen (1O2) based on the scavenging experiments.In addition,DOM was found to influence the photolysis of different NOR species,and its impact was related to the concentration of DOM and type of NOR species.Photolysis of cationic NOR was photosensitized by DOM at low concentration,while zwitterionic and anionic NOR were photoinhibited by DOM,where quenching of ·OH predominated according to EPR experiments,accompanied by possible participation of excited triplet-state NOR and 1O2.Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination,cleavage of the piperazine side chain and photooxidation,and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates.The results implied that for accurate ecological risk assessment of emerging ionizable pollutants,the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored.

  10. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin.

    Science.gov (United States)

    Liang, Chen; Zhao, Huimin; Deng, Minjie; Quan, Xie; Chen, Shuo; Wang, Hua

    2015-01-01

    Norfloxacin (NOR), an ionizable antibiotic frequently used in the aquaculture industry, has aroused public concern due to its persistence, bacterial resistance, and environmental ubiquity. Therefore, we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water - dissolved organic matter (DOM), which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore, scavenging experiments combined with electron paramagnetic resonance (EPR) were performed to evaluate the transformation of NOR in water. The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical (OH) and singlet oxygen ((1)O2) based on the scavenging experiments. In addition, DOM was found to influence the photolysis of different NOR species, and its impact was related to the concentration of DOM and type of NOR species. Photolysis of cationic NOR was photosensitized by DOM at low concentration, while zwitterionic and anionic NOR were photoinhibited by DOM, where quenching of OH predominated according to EPR experiments, accompanied by possible participation of excited triplet-state NOR and (1)O2. Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination, cleavage of the piperazine side chain and photooxidation, and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates. The results implied that for accurate ecological risk assessment of emerging ionizable pollutants, the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored. Copyright © 2014. Published by Elsevier B.V.

  11. Degradation of 4-chloro 2-aminophenol using combined strategies based on ultrasound, photolysis and ozone.

    Science.gov (United States)

    Barik, Arati J; Gogate, Parag R

    2016-01-01

    The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2°C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US+UV+O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP).

  12. Photolysis and thermolysis of pyridyl carbonyl azide monolayers on single-crystal platinum.

    Science.gov (United States)

    Adkinson, Dana K; Magri, David C; Pitters, Jason L; Griffiths, Keith; Norton, Peter R; Workentin, Mark S

    2013-01-01

    The photochemical and thermal reactivity of a number of acyl azide-substituted pyridine compounds, namely nicotinyl azide, isonicotinyl azide, picolinyl azide and dinicotinyl azide with investigated as saturated monolayers on a single-crystal Pt(111) surface in an ultrahigh vacuum chamber. Multilayers of the substrates exhibited a maximum rate of desorption at 270 K, above which, stable saturated monolayers formed as characterized by reflection-absorption infrared spectroscopy by observation of C=O and N3 bands at 1700 cm(-1), and 2100 and 1300 cm(-1) respectively. The monolayers were stable up to 400 K. Photolysis of the monolayer (or heating above 400 K) results in the formation of the respective isocyanate intermediate after loss of nitrogen as evidenced by the appearance of a new infrared band at 2260 cm(-1) with concomitant loss of the azide bands. The resulting isocyanate saturated monolayer is stable in absence of nucleophiles, but can be quenched with appropriate nucleophiles. © 2013 The American Society of Photobiology.

  13. [Effect of ionic liquid [bmim][PF6] on the transient photolysis behavior of xanthone].

    Science.gov (United States)

    Fu, Hai-Ying; Cao, Xi-Yan; Xing, Zhao-Guo; Wu, Guo-Zhong

    2013-07-01

    The transient photochemical behavior of xanthone (XAN) in 1-butyl-3-methyl imidazolium hexafluoride phosphate ionic liquid ([bmim][PF6]) or binary mixed solution with acetonitrile (MeCN) was investigated by nano-second laser photolysis techniques. The spectral blue shift of 3XAN* was observed in the neat [bmim][PF6] or IL/MeCN mixture solution compared to MeCN solution. And the yield was also increased. Moreover, the energy transfer rate constant of XAN and naphthalene (NAP) was affected by the concentrations of ionic liquid. The values decreased rapidly with increasing VIL. For example, the values were 1.2 x 10(10) mol x L(-1) x s(-1) in MeCN, and 1.1 x 10(8) mol x L(-1) x s(-1) in [bmim][PF6], respectively. The photo-induced electron transfer between XAN and N,N-dimethylaniline was also investigated by changing the concentrations of [bmim][PF6] in binary solution.

  14. Can Skin Exposure to Sunlight Prevent Liver Inflammation?

    Directory of Open Access Journals (Sweden)

    Shelley Gorman

    2015-05-01

    Full Text Available Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD. Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR, the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.

  15. Can skin exposure to sunlight prevent liver inflammation?

    Science.gov (United States)

    Gorman, Shelley; Black, Lucinda J; Feelisch, Martin; Hart, Prue H; Weller, Richard

    2015-05-05

    Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD). Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR), the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.

  16. The impact of sunlight on high-latitude equivalent currents

    CERN Document Server

    Laundal, K M; Østgaard, N; Reistad, J P; Haaland, S; Snekvik, K; Tenfjord, P; Ohtani, S; Milan, S E

    2016-01-01

    Ground magnetic field measurements can be mathematically related to an overhead ionospheric equivalent current. In this study we look in detail at how the global equivalent current, calculated using more than 30 years of SuperMAG magnetometer data, changes with sunlight conditions. The calculations are done using spherical harmonic analysis in quasi-dipole coordinates, a technique which leads to improved accuracy compared to previous studies. Sorting the data according to the location of the sunlight terminator and orientation of the interplanetary magnetic field (IMF), we find that the equivalent current resembles ionospheric convection patterns on the sunlit side of the terminator but not on the dark side. On the dark side, with southward IMF, the current is strongly dominated by a dawn cell and the current across the polar cap has a strong dawnward component. The contrast between the sunlit and dark side increases with increasing values of the $\\mathit{F}_{10.7}$ index, showing that increasing solar EUV fl...

  17. Identification of Nitration Products during Heterogeneous Reaction of NO2 on Soot in the Dark and under Simulated Sunlight.

    Science.gov (United States)

    Guan, Chun; Li, Xinling; Zhang, Wugao; Huang, Zhen

    2017-01-19

    Author: The present work, involving the formation of NO and nitrous acid (HONO) and the nitration of polycyclic aromatic hydrocarbon (PAHs) to nitro-PAHs as well as the uptake coefficients of NO2, has been performed on a normal-pressure flow reactor to identify the nitration products during the heterogeneous reaction of soot toward NO2 in the dark and under simulated sunlight. Two types of soot particles, namely the commercial black carbon (BC) and the diesel engine soot (ES), were selected as the studied soot to compare the impacts of soot properties on heterogeneous nitration. During the whole reaction on either of the two studied soots in the dark, a fast reversible physical adsorption is observed at the very beginning, followed by a slow irreversible chemical conversion from NO2 to HONO and NO, in good agreement with the "reduction-oxidation" mechanism. HONO is the most abundant product during the nitration reaction on the two studied soots, contributing to 70-90% of consumed NO2 after 50 min exposure. Reaction orders of NO2 for HONO are determined as 1.20 ± 0.07 and 1.31 ± 0.04 for BC and ES, respectively, which are both close to first-order. Moreover, four sorts of PAHs compounds and their five nitro-derivatives have been identified and quantified during the reaction. About 40% and 20% of the total four measured PAHs are consumed on BC and ES, respectively, resulting in an increase in the total five measured nitro-PAHs by 21-fold on BC and 2.8-fold on ES. Finally, the impacts of light on gaseous and organics products have been investigated and the results confirm that simulated sunlight can enhance the reactivity of PAHs toward NO2 and cause the photolysis of newly formed nitro-compounds with more HONO formation, strongly suggesting that photochemistry of soot in the presence of NO2 is of great importance to be a photochemical source of HONO and would also influence the fates of PAHs and nitro-PAHs on soot.

  18. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters.

    Science.gov (United States)

    Yan, Caixia; Nie, Minghua; Yang, Yi; Zhou, Junliang; Liu, Min; Baalousha, Mohammed; Lead, Jamie R

    2015-12-15

    The effect of colloids on the occurrence, phase distribution and photolysis of twenty-seven emerging organic contaminants (EOCs) was studied in domestic and livestock wastewaters (DW and LW), respectively. Filtered water (colloids was 13.5% and 14.4% in DW and LW. Most of the EOCs exhibited pseudo-first-order degradation kinetics in all water samples. Control experiments using glass and quartz reactors showed that UV light was more effective on the photolysis of most EOCs. The EOCs photolysis in the three fractions of DW and LW could be accelerated or inhibited compared to ultrapure water with the enhancement factor ranging from -0.94 to 7.33. The impact of colloids on the photolysis of EOCs depended on the compound and the source of water. The photolysis of most EOCs in permeates and filtrates was generally accelerated, while inhibited in the retentates, which could be attributed to the relatively high dissolved organic carbon contents in retentates. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Product study of the photolysis of ketene and ethyl ethynyl ether at 193.3 nm.

    Science.gov (United States)

    Fockenberg, Christopher

    2005-08-18

    The product distributions of the excimer laser photolysis of ketene (CH2CO) and ethyl ethynyl ether (C2H5OCCH) at lambda = 193.3 nm (ArF) were studied using a time-of-flight mass spectrometer (TOFMS) as an analytical tool. Ketene was photolyzed in bath gases consisting of mixtures of He and H2/D2 at various mixing ratios at constant total pressures of 4 Torr and temperature of about 300 K. Singlet methylene (1CH2) produced in the photolysis of ketene was almost instantaneously converted either to triplet methylene (3CH2) or to methyl radicals in collisions with He and H2 or D2. By extrapolating the methyl and methylene signals to zero time after photolysis, initial concentrations of these radicals were obtained. Analyzing the initial 3CH2 and CH3 concentrations as functions of hydrogen-to-helium ratios as well as simulating the observed traces of reactant and product species resulted in 1CH2 + CO (66 +/- 8)%, as the main product channel of the ketene photolysis with smaller contributions from HCCO + H (17 +/- 7)% and 3CH2 + CO (6 +/- 9)%. Hydrogen atoms, acetylene, ethylene, ethyl, and ketenyl radicals, and small amounts of ketene were observed as primary products of the ethyl ethynyl ether photolysis. Quantification of C2H2, C2H4, C2H5, and CH2CO product leads to a HCCO yield of (91 +/- 14)%.

  20. Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Stone, Daniel; Whalley, Lisa K.; Ingham, Trevor; Edwards, Peter M.; Cryer, Danny R.; Brumby, Charlotte A.; Seakins, Paul W.; Heard, Dwayne E.

    2016-07-01

    OH reactivity (k'OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH reactivity measurements enable determination of the comprehensiveness of measurements used in models to predict air quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our understanding of OH production rates. In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in London, UK, and York, UK. The instrumental limit of detection for k'OH was determined to be 1.0 s-1 for the campaign in London and 0.4 s-1 for the campaign in York. The precision, determined by laboratory experiment, is typically < 1 s-1 for most ambient measurements of OH reactivity. Total uncertainty in ambient measurements of OH reactivity is ˜ 6 %. We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements to OH reactivity LFP-LIF instruments.

  1. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; SHEN Hui; DENG Youjun

    2006-01-01

    A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally (3D-cell) is proposed in this paper. We studied its performance both in solar simulator and in nature sunlight. Spiral photo-electrode of 3D-cell can receive sunlight from all directions and therefore can track the sun passively. And it is much insensitive to solar azimuth angle and shade. In addition, it increases the area to obtain scattered sunlight and reflected light. Compared with the dye-sensitized solar cells using sandwich structure, it would be more advantageous in the sealing technique.

  2. Photolysis studies on HCOOH and HCOO-in presence of TiO2 photocatalyst as suspension in aqueous medium

    Institute of Scientific and Technical Information of China (English)

    G.R.Dey; K.N.R.Nair; K.K.Pushpa

    2009-01-01

    Photolysis studies on formic acid (HCOOH) and formate ion (HCOO-) in presence of TiO2,a photocatalyst,as suspension in water were carried out separately using 350 nm ultraviolet light.The products,such as H2,CO,CO2 and CH4,generated during the experiments were monitored with varying the ambient,light exposure time,and the concentration of HCOOH/HCOO-.The yields of CO in all these systems increased with light exposure time.In aerated systems,CO yields were higher in contrast to the deoxygenated (Ar-purged) systems under identical conditions.It is proposed apparently that the formation of CO is taking place during the chemical reduction of in-situ generated CO2,a photo-mineralized product of HCOOH/HCOO-,but not through the direct photodecomposition or photodehydration (CO+H2O) of solute molecules.The rates of CO formation during 1.3 M HCOOH photolysis in presence of TiO2 photocatalyst were evaluated to be 0.21 and 0.13 μlo/min in aerated and Ar-purged systems,respectively.As compared with HCOOH systems,the CO yields are lower when 0.2 M HCOONa was exposed to light under identical conditions.The CO growth rates were evaluated to be 0.07 and 0.046 μl-min-1 for aerated and deoxygenated HCOONa systems,respectively;moreover,the trend is quite similar to that of the HCOOH system.Under these conditions,the emission of H2 was also observed,and its yield was significantly higher in Ar-purged system as compared with the CO yields.However,in aerated system,the yields of these products were just opposite.The formation of low yield of methane was observed during photolysis of HCOOH/HCOO- ions.In CO2 ambient,the yields of CO and H2 varied drastically with time.

  3. The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

    Science.gov (United States)

    Zatko, Maria; Geng, Lei; Alexander, Becky; Sofen, Eric; Klein, Katarina

    2016-03-01

    , and O3 in Greenland compared to Antarctica because of Greenland's proximity to pollution sources. The degree of nitrogen recycling in the snow is dependent on the relative magnitudes of snow-sourced NOx fluxes versus primary NO3- deposition. Recycling of snow NO3- in Greenland is much less than in Antarctica Photolysis-driven loss of snow NO3- is largely dependent on the time that NO3- remains in the snow photic zone (up to 6.5 years in Antarctica and 7 months in Greenland), and wind patterns that redistribute snow-sourced reactive nitrogen across Antarctica and Greenland. The loss of snow NO3- is higher in Antarctica (up to 99 %) than in Greenland (up to 83 %) due to deeper snow photic zones and lower snow accumulation rates in Antarctica. Modeled enrichments in ice-core δ15N(NO3-) due to photolysis-driven loss of snow NO3- ranges from 0 to 363 ‰ in Antarctica and 0 to 90 ‰ in Greenland, with the highest fraction of NO3- loss and largest enrichments in ice-core δ15N(NO3-) at high elevations where snow accumulation rates are lowest. There is a strong relationship between the degree of photolysis-driven loss of snow NO3- and the degree of nitrogen recycling between the air and snow throughout all of Greenland and in Antarctica where snow accumulation rates are greater than 130 kg m-2 a-1 in the present day.

  4. Steady-state and laser flash photolysis studies of 1-aziridinyl-1,2-dibenzoylalkenes

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.; Kumar, C.V.; Das, P.K.; George, M.V.

    1985-11-01

    Results of a photochemical study based on product analysis and 337.1-nm laser flash photolysis are reported for several cis- and trans-1,2-dibenzoylethylenes bearing aziridinyl groups at the 1-position. Products isolated from steady-state photolysis suggest facile ring expansions yielding pyrrolines as well as extrusion of alkenes from the aziridine moieties forming nitrene fragments, which subsequently undergo ring closure to give isoxazoles. Laser flash photolysis studies show transient absorption changes, explainable in terms of cis-trans photoisomerization and formation of azomethine ylides. The latter are also observed upon steady-state irradiation of these aziridinyl-1,2-dibenzoylethylenes in an EPA glass at 77 K. 46 references, 4 figures.

  5. Characterization of transient species in laser photolysis of aromatic amino acids using acetone as photosensitizer

    Institute of Scientific and Technical Information of China (English)

    宋钦华; 徐业平; 俞书勤; 陈从香; 马兴孝; 王文锋; 姚思德; 林念芸

    1999-01-01

    The photochemical processes of aromatic amino acids were investigated in aqueous solution using acetone as photosensitizer by KrF (248 nm) laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments. The intermediates recorded were assigned to the excited triplet state of tryptophan, the radicals of tryptophan and tyrosine. The excited triplet state of tryptophan produced via a triplet-triplet excitation transfer and the radicals arising from electron transfer reaction has been identified. Neither electron transfer nor energy transfer between triplet acetone and phenylalanine can occur in photolysis of phenylalanine aqueous solution which contains acetone. Furthermore, triplet acetone-induced radical transformation: Trp/N-Tyr→Trp-Tyr/O was observed directly in photolysis of dipeptide (Trp-Tyr) aqueous solution containing acetone, and the transformation resulting from intramolecular electron transfer was suggested.

  6. Analysis of N-nitrosodiethylamine by ion chromatography coupled with UV photolysis pretreatment

    Directory of Open Access Journals (Sweden)

    Xueli Li

    2016-04-01

    Full Text Available Nitrosamines such as N-nitrosodiethylamine (NDEA are commonly detected by spectrophotometry after photolysis and Griess reaction (PG in food industries for lower cost. Results of this research indicate that NDEA decays rapidly under UV irradiation, and concentrations of the generated NO2− and NO3− ions vary with photolysis conditions. Thus, the measurement of the PG method may be inconsistent because it is based on the amount of photoproduced NO2−. In addition, more errors may be present in the PG method since NO3− cannot be measured colorimetrically using Griess reagent. In this work, the sum of the concentrations of photoproduced NO2− and NO3− was found to be equivalent to the initial NDEA before photolysis, and a photolysis–ion chromatography method was validated, which may serve as a feasible and accurate method to determine nitrosamines.

  7. Asteroid thermal modeling in the presence of reflected sunlight

    Science.gov (United States)

    Myhrvold, Nathan

    2016-10-01

    This study addresses thermal modeling of asteroids with a new derivation of the Near Earth Asteroid Thermal (NEATM) model which correctly accounts for the presence of reflected sunlight in short wave IR bands. Kirchhoff's law of thermal radiation applies to this case and has important implications. New insight is provided into the ???? parameter in the NEATM model and it is extended to thermal models besides NEATM. The role of surface material properties on ???? is examined using laboratory spectra of meteorites and other asteroid compositional proxies; the common assumption that emissivity ????=0.9 in asteroid thermal models may not be justified and can lead to misestimating physical parameters. In addition, indeterminacy in thermal modeling can limit its ability to uniquely determine temperature and other physical properties. A new curve-fitting approach allows thermal modeling to be done independently of visible-band observational parameters, such as the absolute magnitude ????.

  8. Spectral analysis of red scattered sunlight at sunrise

    CERN Document Server

    Zagury, F; Zagury, Frederic; Fujii, Mitsugu

    2003-01-01

    We analyze and fit visible spectra of a red horizon at sunrise. The shape of the spectra consist of a blue continuum followed by a red bump. The reddest spectra are well fitted by the product of a spectrum of extinguished sunlight (Rayleigh extinction + ozone absorption) and 1/lambda^4. The former is essentially the radiation field in the outer atmosphere, at the scattering volume location; the latter corresponds to Rayleigh scattering by the gas. Moving to higher altitudes, a second component, corresponding to the spectrum of a blue sky, must be added. The spectra we have obtained are similar to spectra of red nebulae, suggesting there may be other explanations than an emission process to the red color of some nebulae.

  9. Sustainable sunlight to biogas is via marginal organics.

    Science.gov (United States)

    Shilton, Andy; Guieysse, Benoit

    2010-06-01

    Although biogas production from algae offers higher sunlight to biomass energy conversion efficiencies its production costs simply cannot compete with terrestrial plants. Unfortunately terrestrial plant cropping for biogas production is, in its own right, neither particularly sustainable nor profitable and its ongoing application is only driven by energy security concerns resulting in taxpayer subsidies. By comparison, scavenging the organic energy residual/wastes from food production offers a far more profitable and sustainable proposition and has an energy potential that dwarfs anything biogas production from dedicated energy crops can realistically offer. Thus researchers wanting to assist the development of sustainable biogas systems with viable process economics should forget about terrestrial and algal energy cropping and focus on the realm of scavengers.

  10. Circadian clocks optimally adapt to sunlight for reliable synchronization

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian oscillation provides selection advantages through synchronization to the daylight cycle. However, a reliable clock must be designed through two conflicting properties: entrainability to properly respond to external stimuli such as sunlight, and regularity to oscillate with a precise period. These two aspects do not easily coexist because better entrainability favors higher sensitivity, which may sacrifice the regularity. To investigate conditions for satisfying the two properties, we analytically calculated the optimal phase-response curve with a variational method. Our result indicates an existence of a dead zone, i.e., a time during which external stimuli neither advance nor delay the clock. This result is independent of model details and a dead zone appears only when the input stimuli obey the time course of actual insolation. Our calculation demonstrates that every circadian clock with a dead zone is optimally adapted to the daylight cycle. Our result also explains the lack of a dead zone in osc...

  11. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  12. Sunlight Exposure, Pigmentation, and Incident Age-Related Macular Degeneration

    Science.gov (United States)

    Klein, Barbara E. K.; Howard, Kerri P.; Iyengar, Sudha K.; Sivakumaran, Theru A.; Meyers, Kristin J.; Cruickshanks, Karen J.; Klein, Ronald

    2014-01-01

    Purpose. Examine potential effects of sunlight exposure, hair color, eye color, and selected gene single-nucleotide polymorphisms (SNPs) on incidence of AMD. Methods. Subjects participated in up to five examinations over a 20-year period. Eye color, self-reported hair color as a teenager, and sunlight exposure were ascertained at the baseline examination. Presence and severity of AMD and its lesions were determined via fundus photographs. Genetic data were available on a subset of participants. The SNPs CFH Y402H rs1061170 and ARMS2 A69S rs10490924 were used to analyze genetic risk of AMD; OCA2 rs4778241 and HERC2 rs12913832 represented genetic determinants of eye color. Results. Incidence of early AMD was higher in blond/red-haired persons compared with brown/black-haired persons (hazard ratio [HR] 1.25, P = 0.02) and in persons with high sun exposure in their thirties (HR 1.41, P = 0.02). However, neither was significant after adjustment for multiple comparisons. Eye (HR 1.36, P = 0.006) and hair color (HR 1.42, P = 0.003) were associated with incidence of any retinal pigmentary abnormalities (RPAs). Both remained significant after adjustment for multiple comparisons. Neither presence of alleles for light-colored eyes nor those associated with high risk of late AMD altered the association of eye or hair color with early AMD. None of the characteristics studied were significantly associated with late AMD. Conclusions. Modest associations of eye color, hair color, and HERC2 genotype with any RPAs were found. Genes for AMD did not affect these associations. Eye color phenotype was more strongly associated with outcomes than HERC2 or OCA2 genotype. PMID:25125603

  13. Sunlight exposure, pigmentation, and incident age-related macular degeneration.

    Science.gov (United States)

    Klein, Barbara E K; Howard, Kerri P; Iyengar, Sudha K; Sivakumaran, Theru A; Meyers, Kristin J; Cruickshanks, Karen J; Klein, Ronald

    2014-08-14

    Examine potential effects of sunlight exposure, hair color, eye color, and selected gene single-nucleotide polymorphisms (SNPs) on incidence of AMD. Subjects participated in up to five examinations over a 20-year period. Eye color, self-reported hair color as a teenager, and sunlight exposure were ascertained at the baseline examination. Presence and severity of AMD and its lesions were determined via fundus photographs. Genetic data were available on a subset of participants. The SNPs CFH Y402H rs1061170 and ARMS2 A69S rs10490924 were used to analyze genetic risk of AMD; OCA2 rs4778241 and HERC2 rs12913832 represented genetic determinants of eye color. Incidence of early AMD was higher in blond/red-haired persons compared with brown/black-haired persons (hazard ratio [HR] 1.25, P = 0.02) and in persons with high sun exposure in their thirties (HR 1.41, P = 0.02). However, neither was significant after adjustment for multiple comparisons. Eye (HR 1.36, P = 0.006) and hair color (HR 1.42, P = 0.003) were associated with incidence of any retinal pigmentary abnormalities (RPAs). Both remained significant after adjustment for multiple comparisons. Neither presence of alleles for light-colored eyes nor those associated with high risk of late AMD altered the association of eye or hair color with early AMD. None of the characteristics studied were significantly associated with late AMD. Modest associations of eye color, hair color, and HERC2 genotype with any RPAs were found. Genes for AMD did not affect these associations. Eye color phenotype was more strongly associated with outcomes than HERC2 or OCA2 genotype. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. HCO Cross Sections and Radical Yields From the Photolysis of Saturated Aldehydes

    Science.gov (United States)

    Flad, J. E.; Brown, S. S.; Burkholder, J. B.; Ravishankara, A. R.

    2005-12-01

    Aldehydes are a major component of oxygenated volatile organic compounds (OVOC) in the atmosphere. They are removed from the atmosphere primarily by reaction with OH or by photodissociation from ultraviolet (radicals. Determination of the radical yields from aldehyde photolysis as a function of temperature, pressure and wavelength has important implications for the HOx budget, particularly in the upper troposphere. Photolysis of formaldehyde and acetaldehyde has been studied extensively in the laboratory, although current parameterizations for radical yields are based in part on studies that have used indirect methods. A sensitive and direct method of measuring these radical yields is therefore of substantial interest. A new instrument has been developed to measure formyl (HCO) radical yields from the photodissociation of aldehydes. A pulsed, tunable ultraviolet laser is used to photolyze the aldehyde between 290 and 350 nm, and a second tunable laser is used to detect the HCO radicals using cavity ring-down spectroscopy on the A-X system (613 - 617 nm). The photolysis and probe lasers copropagate along the axis of the ring-down cell to maximize the overlap of the two laser beams for sensitive HCO detection. The absorption cross section of HCO has been determined by measuring the HCO product from the reaction of atomic chlorine with formaldehyde relative to the NO 3 product from the reaction of atomic chlorine with chlorine nitrate. Atomic chlorine was generated by photolysis of Cl 2 at 335 nm. The HCO quantum yield from the photolysis of acetaldehyde and formaldehyde and its dependence on photolysis wavelength, temperature, and pressure is being studied.

  15. Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan.

    Science.gov (United States)

    Son, Hyun-Seok; Ko, Gwangpyo; Zoh, Kyung-Duk

    2009-07-30

    The degradations of triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol), a potent broad-spectrum antimicrobial agent, were compared in TiO2-only in the dark condition, photolysis, and TiO2 photocatalysis with a UV-A lamp. TiO2 photocatalysis more effectively degraded and mineralized triclosan compared to TiO2-only and photolysis conditions. While triclosan removed only 30% by TiO2-only condition within 20 min, the triclosan degradation in photolysis and photocatalysis at the same time was 75 and 82%, respectively, and TOC removal was significantly higher in photocatalysis than in photolysis. The data of kinetics showed that triclosan adsorption onto TiO2 was fitted to Langmuir isotherm, and TiO2 photocatalysis was fitted to Langmuir-Hinshelwood model (b=27.99 mM(-1), K(triclosan)=9.49 mM(-1)). The neutral range of pH was favorable to photocatalysis due to the charge effect between TiO2 and triclosan. The addition of 2-propanol, a radical scavenger, significantly reduced the degradation of triclosan both in photolysis and photocatalysis. Dioxin-type intermediates such as dibenzo-dichloro-p-dioxin (DCDD), dibenzo-p-dioxin were produced in photolysis with and without 2-propanol, and also in photocatalysis with 2-propanol, but these intermediates were not detected in photocatalysis without 2-propanol. This result indicates that the photocatalytic degradation of triclosan is mainly achieved by radicals, and these radicals can further degrade dioxin-type intermediates once they are produced in photocatalysis.

  16. Molecular dynamics study on the solvent dependent heme cooling following ligand photolysis in carbonmonoxy myoglobin.

    Science.gov (United States)

    Zhang, Yong; Fujisaki, Hiroshi; Straub, John E

    2007-03-29

    The time scale and mechanism of vibrational energy relaxation of the heme moiety in myoglobin was studied using molecular dynamics simulation. Five different solvent models, including normal water, heavy water, normal glycerol, deuterated glycerol and a nonpolar solvent, and two forms of the heme, one native and one lacking acidic side chains, were studied. Structural alteration of the protein was observed in native myoglobin glycerol solution and native myoglobin water solution. The single-exponential decay of the excess kinetic energy of the heme following ligand photolysis was observed in all systems studied. The relaxation rate depends on the solvent used. However, this dependence cannot be explained using bulk transport properties of the solvent including macroscopic thermal diffusion. The rate and mechanism of heme cooling depends upon the detailed microscopic interaction between the heme and solvent. Three intermolecular energy transfer mechanisms were considered: (i) energy transfer mediated by hydrogen bonds, (ii) direct vibration-vibration energy transfer via resonant interaction, and (iii) energy transfer via vibration-translation or vibration-rotation interaction, or in other words, thermal collision. The hydrogen bond interaction and vibration-vibration interaction between the heme and solvent molecules dominates the energy transfer in native myoglobin aqueous solution and native myoglobin glycerol solutions. For modified myoglobin, the vibration-vibration interaction is also effective in glycerol solution, different from aqueous solution. Thermal collisions form the dominant energy transfer pathway for modified myoglobin in water solution, and for both native myoglobin and modified myoglobin in a nonpolar environment. For native myoglobin in a nonpolar solvent solution, hydrogen bonds between heme isopropionate side chains and nearby protein residues, absent in the modified myoglobin nonpolar solvent solution, are key interactions influencing the

  17. Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation.

    Science.gov (United States)

    Chen, Pei-Jen; Linden, Karl G; Hinton, David E; Kashiwada, Shosaku; Rosenfeldt, Erik J; Kullman, Seth W

    2006-11-01

    Endocrine disrupting compounds (EDCs) are exogenous environmental chemicals that can interfere with normal hormone function and present a potential threat to both environmental and human health. The fate, distribution and degradation of EDCs is a subject of considerable investigation. To date, several studies have demonstrated that conventional water treatment processes are ineffective for removal of most EDCs and in some instances produce multiple unknown transformation products. In this study we have investigated the use of direct photolysis with low-pressure (LP) Hg UV lamps and UV+hydrogen peroxide (H(2)O(2)) advanced oxidation process (AOP) for the degradation of a prototypic endocrine disrupter, bisphenol A (BPA), in laboratory water. Removal rates of BPA and formation of degradation products were determined by high performance liquid chromatography (HPLC) analysis. Changes in estrogenic activity were evaluated using both in vitro yeast estrogen screen (YES) and in vivo vitellogenin (VTG) assays with Japanese medaka fish (Oryzias latipes). Our results demonstrate that UV alone did not effectively degrade BPA. However, UV in combination with H(2)O(2) significantly removed BPA parent compound and aqueous estrogenic activity in vitro and in vivo. Removal rates of in vivo estrogenic activity were significantly lower than those observed in vitro, demonstrating differential sensitivities of these bioassays and that certain UV/AOP metabolites may retain estrogenic activity. Furthermore, the UV/H(2)O(2) AOP was effective for reducing larval lethality in treated BPA solutions, suggesting BPA degradation occurred and that the degradation process did not result in the production of acutely toxic intermediates.

  18. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale.

    Science.gov (United States)

    Cédat, Bruno; de Brauer, Christine; Métivier, Hélène; Dumont, Nathalie; Tutundjan, Renaud

    2016-09-01

    In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs.

  19. Kinetic studies on the temperature dependence of the BrO + BrO reaction using laser flash photolysis.

    Science.gov (United States)

    Ferracci, Valerio; Hino, Kaori; Rowley, David M

    2011-05-07

    The BrO self-reaction, BrO + BrO → products (1), has been studied using laser flash photolysis coupled with UV absorption spectroscopy over the temperature range T = 266.5-321.6 K, under atmospheric pressure. BrO radicals were generated via laser photolysis of Br(2) in the presence of excess ozone. Both BrO and O(3) were monitored via UV absorption spectroscopy using charge-coupled device (CCD) detection. Simultaneous fitting to both temporal concentration traces allowed determination of the rate constant of the two channels of , BrO + BrO → 2Br + O(2) (1a); BrO + BrO → Br(2) + O(2) (1b), hence the calculation of the overall rate of and the branching ratio, α: k(1a)/cm(3) molecule(-1) s(-1) = (1.92 ± 1.54) × 10(-12) exp[(126 ± 214)/T], k(1b)/cm(3) molecule(-1) s(-1) = (3.4 ± 0.8) × 10(-13) exp[(181 ± 70)/T], k(1)/cm(3) molecule(-1) s(-1) = (2.3 ± 1.5) × 10(-12) exp(134 ± 185 /T) and α = k(1a)/k(1) = (0.84 ± 0.09) exp[(-7 ± 32)/T]. Errors are 1σ, statistical only. Results from this work show a weaker temperature dependence of the branching ratio for channel (1a) than that found in previous work, leading to values of α at temperatures typical of the Polar Boundary Layer higher than those reported by previous studies. This implies a shift of the partitioning between the two channels of the BrO self-reaction towards the bromine atom and hence directly ozone-depleting channel (1a). This journal is © the Owner Societies 2011

  20. Room temperature FePt nanoparticles formation kinetics by laser solution photolysis

    CSIR Research Space (South Africa)

    Nkosi, S

    2012-04-01

    Full Text Available Formation Kinetics by Laser solution photolysis S. Nkosi1, B.W. Mwakikunga2, E. Sideras-Haddad1 1University of the Witwatersrand 2 DST/NCNSM, Pretoria The 4th International Conference on Nanoscience and Nanotechnology 1 – 4 April 2012, University... emission during photolysis, � the produced either positive or negative metallic ions (liquid form). Theoretical consideration transabsreflLASER IIII ++= Energy conservation (Kirchoff’s law) lossestransferheat dt dNVH dt dTV V NCII ptransabs __+∆∆+∆== Slide...

  1. Sunlight exposure and sun sensitivity associated with disability progression in multiple sclerosis

    NARCIS (Netherlands)

    D'hooghe, M. B.; Haentjens, P.; Nagels, G.; Garmyn, M.; De Keyser, J.

    2012-01-01

    Background: Sunlight and vitamin D have been inversely associated with the risk of multiple sclerosis (MS). Objective: We investigated sunlight exposure and sun sensitivity in relation to disability progression in MS. Methods: We conducted a survey among persons with MS, registered by the Flemish MS

  2. Amelioration of osteoporosis and hypovitaminosis D by sunlight exposure in Parkinson's disease.

    Science.gov (United States)

    Sato, Yoshihiro; Iwamoto, Jun; Honda, Yoshiaki

    2011-01-01

    A high incidence of fractures, particularly of the hip, represents an important problem in patients with Parkinson's disease (PD), who are prone to falls and have osteoporosis. We previously showed that 25-hydroxyvitamin D (25-OHD) deficiency due to sunlight deprivation with compensatory hyperparathyroidism causes reduced bone mineral density (BMD) in elderly patients with PD. The present study was undertaken to address the possibility that sunlight exposure may maintain BMD and reduce the incidence of hip fracture in elderly patients with PD. In a prospective study, PD patients were assigned to regular sunlight exposure (n=162) or usual lifestyle (n=162), and followed for 2 years. BMD of the second metacarpal bone was measured using a computed X-ray densitometer. Incidence of hip fracture in the two patient groups during the 2 year follow-up period was assessed. At baseline, patients of both groups showed vitamin D deficiency due to sunlight deprivation with compensatory hyperparathyroidism. The exposed group patients were exposed to sunlight (3231 min/year). BMD increased by 3.8% in the sunlight-exposed group and decreased by 2.6% in the usual lifestyle group (psunlight-exposed group. Eleven patients sustained hip fracture in the normal lifestyle group, and 3 fractures occurred among the sunlight-exposed group (p=.03; odds ratio=2.4). Sunlight exposure can increase the BMD of vitamin D deficient bone by increasing 25-OHD concentration and leads to the prevention of hip fracture. © 2010 Elsevier Ltd. All rights reserved.

  3. Effect of season and sunlight on viral kinetics during hepatitis C virus therapy

    Science.gov (United States)

    Hernández-Alvarez, Noemi; Pascasio Acevedo, Juan Manuel; Quintero, Enrique; Fernández Vázquez, Inmaculada; García-Eliz, María; de la Revilla Negro, Juan; Crespo García, Javier; Hernández-Guerra, Manuel

    2017-01-01

    Background and aims Rapid viral response (RVR) during antiviral treatment for hepatitis C virus (HCV) predicts sustained viral response (SVR). Recently, vitamin D levels have been associated with SVR. As sunlight is the most important source of vitamin D and shows seasonal variation, we evaluated the effect of season on viral kinetics during peginterferon/ribavirin-based therapy for HCV. Methods Consecutive HCV patients treated with peginterferon/ribavirin and boceprevir/ telaprevir (June 2011–July 2014) were included. Patients were grouped according to season when therapy was initiated (Season A: May–October and Season B: November–April) depending on hours of daily sunlight. Multiple logistic regression analysis included factors known to influence SVR to treatment. The dependent variables were undetectable viral load (VL) or VL ≤15 UI/mL (VL ≤15) at weeks 4, 8 and 12, end of treatment and SVR. Results The study included 930 patients (66.8% men; median 54 years) treated with telaprevir (n=537) or boceprevir, without (n=481) or with lead-in therapy of peginterferon/ribavirin. Baseline characteristics of patients in Season A (45.3%, n=421) and Season B groups were similar. Overall, a higher rate of RVR (23.5% vs 16.1%, p=0.005) and VL ≤15 (51.0% vs 38.6%, p≤0.001) was observed in patients starting treatment during Season A versus Season B. By logistic regression analysis, initiating treatment in Season A proved to be an independent predictor of RVR and VL ≤15. Conclusions In our setting, seasonality affects viral kinetics in HCV genotype 1 patients treated with peginterferon/ribavirin-based therapy. Our findings support the hypothesis that vitamin D influences viral response to peginterferon/ribavirin-based therapy.

  4. Serum 25-hydroxyvitamin-D responses to multiple UV exposures from solaria: inferences for exposure to sunlight.

    Science.gov (United States)

    McKenzie, Richard; Scragg, Robert; Liley, Ben; Johnston, Paul; Wishart, John; Stewart, Alistair; Prematunga, Roshani

    2012-07-01

    We investigate the relationship between blood serum 25-hydroxyvitamin D (25(OH)D) and UV exposure from two artificial sources. We then use the results to test the validity of the action spectrum for vitamin D production, and to infer the production from summer and winter sunlight. The results are based on a two-arm randomised clinical trial of biweekly UV exposure for 12 weeks using two different types of dermatological booths: one emitting primarily UV-A radiation, and the other emitting primarily UV-B radiation (booth A and booth B respectively). In terms of the vitamin D production per unit erythema, one of the booths mimics summer noon sunlight, while the other mimics winter noon sunlight. Blood samples were taken before and after the exposures. For all participants, the phototherapy booth treatments arrested the usual wintertime decline in 25(OH)D, and for most the treatments from either booth resulted in significant increases. The increases were highly non-linear and there was a high degree of variability in 25(OH)D and its response to UV from person to person. By the end of the 12 week period, the mean increase was >30 nmol l(-1) from a cumulative exposure of 17 SED from the UV-A booth, and twice that for the UV-B booth for which the cumulative exposure was 268 SED. Assuming a logarithmic relationship between UV and vitamin D, the results for the two booths show no obvious inconsistency in the action spectrum for pre-vitamin D production. However, further measurements with similar exposures from each booth are required to confirm its validity. A model was developed to describe the increases in serum 25(OH)D resulting from the UV exposures, which differed markedly between the two booths. The deduced initial rate of increase of 25(OH)D was approximately 5 nmol l(-1) per SED. From the large increases in 25(OH)D from each booth, along with knowledge of the spectral distribution of sunlight and assuming the currently-accepted action spectrum for photo

  5. ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight

    Directory of Open Access Journals (Sweden)

    O. Sumińska-Ebersoldt

    2011-07-01

    Full Text Available The photolysis frequency of dichlorine peroxide (ClOOCl JClOOCl is a critical parameter in catalytic cycles destroying ozone in the polar stratosphere. In the atmospherically relevant wavelength region, published laboratory measurements of ClOOCl absorption cross sections and spectra are not in good agreement, resulting in significant discrepancies in JClOOCl. Previous investigations of the consistency with atmospheric observations of ClO and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of JClOOCl over the rate constant of the ClO recombination reaction krec. Here, we constrain the atmospherically effective JClOOCl independent of krec using ClO data sampled in the same air masses before and directly after sunrise. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the rise in ClO concentration is significantly faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al. (2007, but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009. In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm, is effectively ruled out by our observations. Additionally, the night-time ClO observations show that the ClO/ClOOCl thermal equilibrium constant can not be significantly higher than the one proposed by Plenge et al. (2005.

  6. Sunlight Exposure, Work Hours, Caffeine Consumption, and Sleep Duration in the Naval Environment.

    Science.gov (United States)

    Shattuck, Nita L; Matsangas, Panagiotis

    2017-06-01

    Sailors in the U.S. Navy are habitual shiftworkers, often experiencing circadian misalignment due to their irregular work/rest schedules. This study assessed the effect of sunlight exposure, work hours, and caffeinated beverage consumption on the daily sleep duration of crewmembers of a U.S. Navy ship during a 2-wk underway period. Working in an artificially lit area with no access to sunlight during work hours, U.S. Navy crew members (N = 91) used daily logs to report their daily activity, caffeinated beverage consumption, and exposure to sunlight while off-duty; sleep was assessed by wrist-worn actigraphy. Hours of sunlight exposure, work duration, and the amount of coffee/tea/soft drinks were statistically significant predictors of sleep duration. On average, crewmembers who reported more than one half-hour of sunlight each day slept on average ∼40 min (10%) less than their peers working the same shifts who received less than one half-hour of sunlight (on average 6.05 ± 0.90 h vs. 6.71 ± 0.91 h, respectively). Exposure to sunlight, work hours, and consumption of caffeinated beverages are important factors when planning watchstanding schedules at sea. Even though further research is needed, our results suggest that even brief exposure to sunlight may contribute to circadian misalignment that negatively affects sleep in the operational environment. Educating crewmembers about sleep hygiene, especially the important roles played by sunlight and caffeine, could potentially improve the sleep and fatigue levels of this population of maritime shiftworkers.Shattuck NL, Matsangas P. Sunlight exposure, work hours, caffeine consumption, and sleep duration in the naval environment. Aerosp Med Hum Perform. 2017; 88(6):579-585.

  7. Photophysical Properties and Photoinduced Electron Transfer between [60]Fullerene-Containing Cyclic Sulphoxide [ C60-C6H8SO] and Tetrathiafulvalene (TTF) by Laser Flash Photolysis

    Institute of Scientific and Technical Information of China (English)

    ZENG,He-Ping(曾和平)

    2002-01-01

    Photoinduced electron transfer (PET) processes between C60-C6H8SO and Tetrathiafulvalene (TTF) have been studied by nanosecond laser photolysis. Quantum yields (φet) and rate constants of electron transfer (ket) from TTF to excited triplet state of [ 60 ] fullerene-containing cyclic sulphoxide in benzonitrile (BN) have been evaluated by observing the transient absorption bands in the NIR region. With the decay of excited triplet state of [ 60 ] fullerene-containing cyclic sulphoxide, the rise of radical anion of [60]fullerene-containing cyclic sulphoxide is observed.

  8. Photocatalytic oxidation of acetonitrile in aqueous suspension of titanium dioxide irradiated by sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Augugliaro, V.; Bianco Prevot, A.; Caceres Vazquez, J.; Garcia-Lopez, E.; Irico, A.; Loddo, V.; Malato Rodriguez, S.; Marci, G.; Palmisano, L.; Pramauro, E.

    2002-07-01

    The photocatalytic oxidation of acetonitrile (CH{sub 3}CN) was carried out in aqueous suspensions of polycrystalline UiO{sub 2} P25 Degussa irradiated by sunlight. A plus flow photoreactor in a total recycle loop was used for carrying out reactivity experiments in which the concentrations of acetonitrile, of its intermediate oxidation products and of not-purgeable organic carbon (NPOC) were monitored. The influence of the presence of strong oxidant species (H{sub 2}O{sub 2}, S{sub 2}O{sub 8}, CIO) on the process rate was studied. The dependence of acetonitrile photo-oxidation rate on the substrate concentration and on the catalyst amount was also investigated. The photodegradation rate of substrate and NPOC follows a first order kinetics with respect to acetonitrile and NPOC concentrations, respectively. The presence of S{sub {sup O}8}''2- and solar irradiation determines the occurrence of homogeneous degradation of acetonitrile and NPOC. In the presence of irradiated catalyst, a significant synergetic effect is observed for NPOC degradation while for the acetonitrile oxidation this effect is not evident. H{sub 2}O{sub 2} does not effect the process while CIO negatively affects the acetonitrile oxidation rate and it seems to inhibit the NPOC degradation. (Author) 20 refs.

  9. Flash photolysis using a light emitting diode: an efficient, compact, and affordable solution.

    Science.gov (United States)

    Bernardinelli, Yann; Haeberli, Christian; Chatton, Jean-Yves

    2005-06-01

    Flash photolysis has become an essential technique for dynamic investigations of living cells and tissues. This approach offers several advantages for instantly changing the concentration of bioactive compounds outside and inside living cells with high spatial resolution. Light sources for photolysis need to deliver pulses of high intensity light in the near UV range (300-380 nm), to photoactivate a sufficient amount of molecules in a short time. UV lasers are often required as the light source, making flash photolysis a costly approach. Here we describe the use of a high power 365 nm light emitting diode (UV LED) coupled to an optical fiber to precisely deliver the light to the sample. The ability of the UV LED light source to photoactivate several caged compounds (CMNB-fluorescein, MNI-glutamate, NP-EGTA, DMNPE-ATP) as well as to evoke the associated cellular Ca(2+) responses is demonstrated in both neurons and astrocytes. This report shows that UV LEDs are an efficient light source for flash photolysis and represent an alternative to UV lasers for many applications. A compact, powerful, and low-cost system is described in detail.

  10. Derivatization and photolysis of a photoaffinity reagent for probing protein and cell surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, H.; Harris, H.W. Jr.

    1986-05-01

    The synthesis of the novel, heterobifunctional, cleavable, photoactivable crosslinking reagent, N-(4-(p-azido-m-(/sup 125/I) iodophenylazo)benzoyl)-3-aminopropyl-N'-oxysulfosuccinimide has been described by Denny and Blobel. This reagent is desirable because after photolysis and azo bond cleavage the /sup 125/I is transferred from the reagent to the crosslinked molecule. The authors demonstrate that using the reported synthesis 99% of the desired reagent is destroyed during the chloramine-T iodination step. They report a synthesis revision which produces high yields of the uniodinated (U) reagent. The derivatized reagent may be used in its iodinated (I) or U forms. To study the U reagent, a horseradish peroxidase (HRP) molecule is derivatized with nine reagent molecules. The derivatized HRP has 70% of its original enzymatic activity. After photolysis, 14% of this activity is retained and SDS-PAGE electrophoresis shows a crosslinked complex of HRP molecules. After endocytosis by cells, photolysis attaches the soluble derivatized HRP to membranes allowing them to be traced in the electron microscope. To study the I reagent, an amino-dextran (MW 73-400) molecule is derivatized with three U reagent molecules. The U reagent molecules are then iodinated by the chloramine-T method. With photolysis and cleavage, the /sup 125/I labeled reagent on dextran transfers its label to bovine serum albumin or ovalbumin. The authors conclude this reagent is a versatile probe for study of protein or cell surface topography.

  11. Conformer of the peroxynitrite ion formed under photolysis of crystalline alkali nitrates – cis or trans?

    Science.gov (United States)

    Pak, V. Kh; Anan’ev, V. A.; Dyagileva, E. P.; Lyrshchikov, S. Yu; Miklin, M. B.; Rezvova, M. A.

    2017-01-01

    The optical and infrared reflectance spectra of the crystalline powders prepared by co-crystallization of caesium nitrate, nitrite, and peroxynitrite from alkali solution have been studied. We find that the trans conformer forms under photolysis of crystalline pure caesium nitrate. Under its dissolution the trans conformer transforms to the cis conformer.

  12. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions.

    Science.gov (United States)

    Kim, Tae-Kyoung; Moon, Bo-Ram; Kim, Taeyeon; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2016-11-01

    We conducted chlorination, UV photolysis, and UV/chlorin reactions to investigate the intermediate formation and degradation mechanisms of geosmin and 2-methylisoborneol (2-MIB) in water. Chlorination hardly removed geosmin and 2-MIB, while the UV/chlorine reaction at 254 nm completely removed geosmin and 2-MIB within 40 min and 1 h, respectively, with lesser removals of both compounds during UV photolysis. The kinetics during both UV photolysis and UV/chlorine reactions followed a pseudo first-order reaction. Chloroform was found as a chlorinated intermediate during the UV/chlorine reaction of both geosmin and 2-MIB. The pH affected both the degradation and chloroform production during the UV/chlorine reaction. The open ring and dehydration intermediates identified during UV/chlorine reactions were 1,4-dimethyl-adamantane, and 1,3-dimethyl-adamantane from geosmin, 2-methylenebornane, and 2-methyl-2-bornene from 2-MIB, respectively. Additionally, 2-methyl-3-pentanol, 2,4-dimethyl-1-heptene, 4-methyl-2-heptanone, and 1,1-dichloro-2,4-dimethyl-1-heptane were newly identified intermediates from UV/chlorine reactions of both geosmin and 2-MIB. These intermediates were degraded as the reaction progressed. We proposed possible degradation pathways during the UV photolysis and UV/chlorine reactions of both compounds using the identified intermediates.

  13. Laser Flash Photolysis and Pulse Radiolysis of Iodate and Periodate in Aqueous Solution

    DEFF Research Database (Denmark)

    Kläning, U K; Sehested, Knud; Wolff, Thomas

    1981-01-01

    Species containing iodine in oxidation state six are formed by photolysis and radiolysis of aqueous iodate and periodate solutions in the following reactions: IO3–+ O–→ IO42–; IO3–+ OH → IO3; IVII+ eaq–→ IeVI and IVII [graphic omitted] I0VI+ O–(or OH). The present pulse radiolysis and laser flash...

  14. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones.

    Science.gov (United States)

    Bou-Hamdan, Farhan R; Lévesque, François; O'Brien, Alexander G; Seeberger, Peter H

    2011-01-01

    Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP) tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  15. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    Directory of Open Access Journals (Sweden)

    Farhan R. Bou-Hamdan

    2011-08-01

    Full Text Available Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  16. High spacecraft potentials on ISEE-1 in sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Whipple, E.C.; Olsen, R.C.

    1987-01-01

    Data from the two electric-field experiments and from the plasma-composition experiment on ISEE-1 show that the spacecraft charged to close to -70 V in sunlight at about 0700 UT on March 17, 1978. Data from the electron-spectrometer experiment show that there was a potential barrier of some -10 to -20 V about the spacecraft during this event. The potential barrier was effective in turning back emitted photoelectrons to the spacecraft. Potential barriers can be formed by differential charging on the spacecraft or by the presence of space charge. The stringent electrostatic cleanliness specifications imposed on ISEE made by the presence of differential charging seem unlikely, if these precautions were effective. Modeling of this event to determine if the barrier was produced by the presence of space charge, suggested that this could not explain the observed barrier. The angular shape of the distribution could be successfully modeled as a product of differential charging on the solar arrays. This implies that the conductive coating was not completely effective in preventing differential charging, and that differential charging did occur.

  17. Sunlight assisted photodegradation by tin oxide quantum dots

    Science.gov (United States)

    Shajira, P. S.; Prabhu, V. Ganeshchandra; Bushiri, M. Junaid

    2015-12-01

    Rutile phase of SnO2 quantum dots of average size of 2.5 nm were synthesized at a growth temperature of 70 °C and characterized with XRD, TEM, FTIR and Raman analysis. The effective strain within the lattice of SnO2 quantum dots was calculated by Williamson-Hall method. The broad peaks in XRD as well as Raman spectra and the presence of Raman bands at 569 and 432 cm-1 are due to lower crystallinity of nanoparticles. The optical band gap of SnO2 quantum dots was increased to 3.75 eV attributed to the quantum size effect. SnO2 quantum dots were annealed in air atmosphere and the crystallite size of the particles increased with annealing temperature. Sunlight assisted photodegration property of SnO2 quantum dots was investigated with vanillin as a model system and it shows the photodegradation efficiency of 87%. The photoluminescence and photodegradation efficiency of nanocrystallite SnO2 decreases with increase of crystallite size contributed to the reduction in population of defects and surface area.

  18. Occupational Sunlight Exposure and Risk of Renal Cell Carcinoma

    Science.gov (United States)

    Karami, Sara; Boffetta, Paolo; Stewart, Patricia; Rothman, Nathaniel; Hunting, Katherine L.; Dosemeci, Mustafa; Berndt, Sonja I.; Brennan, Paul; Chow, Wong-Ho; Moore, Lee E.; Zaridze, David; Mukeria, Anush; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Holcatova, Ivana; Navritalova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.

    2010-01-01

    Background Recent findings indicate that vitamin D obtained from ultraviolet (UV) exposure may reduce the risk of a number of different cancers. Vitamin D is metabolized to its active form within the kidney, the major organ for vitamin D metabolism and activity. Since both the incidence of renal cell cancer and prevalence of vitamin D deficiency have increased over the past few decades, this study sought to explore whether occupational UV exposure was associated with renal cell carcinoma (RCC) risk. Methods A hospital-based case-control study of 1,097 RCC cases and 1,476 controls was conducted in four Central and Eastern European countries. Demographic and occupational information was collected to examine the association between occupational UV exposure and RCC risk. Results A significant (24%-38%) reduction in RCC risk was observed with increasing occupational UV exposure among male participants. No association between UV exposure and RCC risk was observed among female participants. When analyses were stratified by latitude as another estimate of sunlight intensity, a stronger (71%-73%) reduction in RCC risk was observed between UV exposure and cancer risk among males residing at the highest latitudes. Conclusion The results of this study suggest that among males there is an inverse association between occupational UV exposure and renal cancer risk. Replication studies are warranted to confirm these results. PMID:20213683

  19. Sunlight and skin cancer: lessons from the immune system.

    Science.gov (United States)

    Ullrich, Stephen E

    2007-08-01

    The ultraviolet (UV) radiation in sunlight induces skin cancer development. Skin cancer is the most common form of human neoplasia. Estimates suggest that in excess of 1.5 million new cases of skin cancer (www.cancer.org/statistics) will be diagnosed in the United States this year. Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer, and the cost of treating skin cancer in the United States (both melanoma and non-melanoma skin cancer) is estimated to be in excess of $2.9 billion a year. In addition to causing skin cancer, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. Recent studies in my laboratory have focused on understanding the initial molecular events that induce immune suppression. We made two novel observations: first UV-induced keratinocyte-derived platelet activating factor plays a role in the induction of immune suppression. Second, cis-urocanic acid, a skin-derived immunosuppressive compound mediates immune suppression by binding to serotonin receptors on target cells. Recent findings suggest that blocking the binding of these compounds to their receptors not only inhibits UV-induced immune suppression but it also interferes with skin cancer induction.

  20. Photocatalytic Hydrogen Production by Direct Sunlight: A Laboratory Experiment

    Science.gov (United States)

    Koca, Atif; Sahin, Musa

    2003-11-01

    The demand for hydrogen will increase within the next decades as a result of the necessity to produce clean and environmentally and economically accepted fuels from natural and renewable energy resources. In principle, hydrogen has the potential to play an important role in future energy systems because of the diversity of its applications, the variety of ways in which it can be stored, its general environmental advantages, and especially because of the possibility of producing hydrogen by splitting water using photocatalysts and solar energy. Methods and techniques of photocatalytic reactions are covered in some detail in many undergraduate chemistry programs. However, many times in instructional settings, little attention is given to how it is used for the production of hydrogen. In the present investigation a photocatalytic hydrogen production experiment suitable for use in undergraduate chemistry laboratories is described. The experiment can be used to introduce students to the concept of a renewable and sustainable hydrogen energy system of the future, as well as its production techniques, and to demonstrate the use of a CdS/ZnS photocatalyst system for photocatalytic hydrogen production from direct sunlight.

  1. The Effect of Sunlight in Parenchyma Pith Cells Diameter of Manihot esculenta

    Science.gov (United States)

    Susanti, D.; Aziz, D. N.; Astuti, W.; Nuraeni, E.

    2017-03-01

    Sunlight is one of the factors that effect on the grow of a plant. Manihot esculenta is one of the plants that easily found in Indonesia because its role as staple food. The aim of this research is to know the correlation between sunlight the grow of parenchyma pith cells diameter of Manihot esculenta. Independent variable in this research is sunlight, and dependent variable is the parenchyma pith cells diameter of Manihot esculenta. Data was collected is in qualitative and quantitative form. Qualitative data gotten gained by morphology observation. The parenchyma pith cells of Manihot esculenta that is affected by sunlight in 1310 x 10 Lux, morphologically has hexagon, cell walls thick, solid state, and regular composition. Meanwhile, the parenchyma pith cells that has less sunlight (363 x 10 Lux) has a hexagon shape, thin cell walls thin, soft state, and irregular composition. Qualitative data suported by quantitative data. The size of parenchyma pith cells diameter that is affected by sunlight in 1310 x 10 Lux 96,4 µm. While, the stem parenchyma pith cells diameter empulur that has less sunlight (363 x 10 Lux) is 129,8 µm.

  2. Formation of DNA strand breaks in peripheral lymphocytes of rats after exposure to natural sunlight.

    Science.gov (United States)

    Rodrigues-Junior, Dorival Mendes; Melo, Ana Amélia de Carvalho; da Silva, Benedito Borges; Lopes-Costa, Pedro Vitor

    2012-04-01

    This paper aims to evaluate the genotoxicity in peripheral blood lymphocytes of rats after exposure to sunlight at different time points of day in a tropical region of Brazil (5 degrees S, 42 degrees W). Thirty Wistar-Hannover rats, three months old, were randomly divided into three groups of 10 animals each: Group I [control, without exposure to ultraviolet (UV) radiation], Group II (exposed to sunlight during 08:00 a.m. to 10:00 a.m.), and Group III (exposed to sunlight during 10:00 a.m. to 12:00 a.m.). After a week of exposure, peripheral blood samples were taken from the tail of these animals to prepare smears on two slides per animal. In 24 h after exposure to sunlight in Group III, a new collection was obtained to observe the repair activity. The alkaline comet assay was used in this study to evaluate the genotoxic activity of sunlight (P exposure to sunlight in Group III showed genotoxic action in comparison to the other groups (P sunlight (UVA-B) in lymphocytes of mammals from 10:00 a.m. to 12:00 a.m., due to a higher intensity of UV in this tropical region.

  3. Vitamin D and Sunlight Exposure in Newly-Diagnosed Parkinson's Disease.

    Science.gov (United States)

    Wang, Juan; Yang, Deyu; Yu, Yu; Shao, Gaohai; Wang, Qunbo

    2016-03-04

    Circulating vitamin D has previously been found to be lower in patients with Parkinson's disease (PD), while the effects of sunlight exposure have not yet been fully investigated. Therefore, we evaluated the associations between serum vitamin D, vitamin D intake, sunlight exposure, and newly-diagnosed PD patients in a Chinese population. This case-control study measured serum 25-hydroxyvitamin D (25(OH)D) levels and sunlight exposure in 201 patients with newly-diagnosed PD and 199 controls without neurodegenerative diseases. Data on vitamin D intake and sunlight exposure were obtained using a self-report questionnaire. Multivariable logistic regressions were employed to evaluate the associations between serum 25(OH)D levels, sunlight exposure, and PD. Adjustments were made for sex, age, smoking, alcohol use, education, BMI, and vitamin D intake. There were significantly lower levels of serum 25(OH)D (20.6 ± 6.5 ng/mL), daily vitamin D intake (8.3 ± 3.7 g/day), and sunlight exposure (9.7 ± 4.1 h/week) in patients with PD compared to healthy controls (p sunlight exposure were 1 (reference), 0.809 (0.454, 1.443), 0.623 (0.345, 1.124) and 0.533 (0.294, 0.966), respectively. A significant positive correlation between serum 25(OH)D and sunlight exposure was found, but serum 25(OH)D was not correlated with daily vitamin D intake. This study indicates that lower levels of serum 25(OH)D and sunlight exposure are significantly associated with an increased risk for PD.

  4. Vitamin D and Sunlight Exposure in Newly-Diagnosed Parkinson’s Disease

    Science.gov (United States)

    Wang, Juan; Yang, Deyu; Yu, Yu; Shao, Gaohai; Wang, Qunbo

    2016-01-01

    Circulating vitamin D has previously been found to be lower in patients with Parkinson’s disease (PD), while the effects of sunlight exposure have not yet been fully investigated. Therefore, we evaluated the associations between serum vitamin D, vitamin D intake, sunlight exposure, and newly-diagnosed PD patients in a Chinese population. This case-control study measured serum 25-hydroxyvitamin D (25(OH)D) levels and sunlight exposure in 201 patients with newly-diagnosed PD and 199 controls without neurodegenerative diseases. Data on vitamin D intake and sunlight exposure were obtained using a self-report questionnaire. Multivariable logistic regressions were employed to evaluate the associations between serum 25(OH)D levels, sunlight exposure, and PD. Adjustments were made for sex, age, smoking, alcohol use, education, BMI, and vitamin D intake. There were significantly lower levels of serum 25(OH)D (20.6 ± 6.5 ng/mL), daily vitamin D intake (8.3 ± 3.7 g/day), and sunlight exposure (9.7 ± 4.1 h/week) in patients with PD compared to healthy controls (p sunlight exposure were 1 (reference), 0.809 (0.454, 1.443), 0.623 (0.345, 1.124) and 0.533 (0.294, 0.966), respectively. A significant positive correlation between serum 25(OH)D and sunlight exposure was found, but serum 25(OH)D was not correlated with daily vitamin D intake. This study indicates that lower levels of serum 25(OH)D and sunlight exposure are significantly associated with an increased risk for PD. PMID:26959053

  5. [Progress in research of association between myopia and sunlight exposure in children].

    Science.gov (United States)

    Zhai, L L; Wu, X Y; Xu, S J; Tao, F B

    2016-11-10

    Myopia has become a major health problem on global scale due to its increasing high prevalence in the past few decades and gradual younger onset age. Accumulated epidemiological surveys have shown that decreased time of exposure to sunlight would be an inducement for the development of myopia. Increasing time spent outdoors and exposure to sunlight might be the most cost-effective and effective measure for children to prevent myopia. This paper summarizes the progress in research of the association between sunlight exposure and myopia in children and its mechanisms to provide new clues for the research on myopia prevention and control.

  6. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons.

    Science.gov (United States)

    Chou, L-C; Jang, C-Y; Wu, Y-H; Tsai, W-C; Wang, S-K; Chen, J; Chang, S-C; Liu, C-C; Shai, Y; Wen, C-R

    2008-12-07

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F(+) and F(-) PSD ion yields were measured from CF(3)Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF(3)Cl dose=0.3x10(15) molecules/cm(2), approximately 0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF(3)Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F(+) ion desorption is associated with the bond breaking of the surface CF(3)Cl, CF(2)Cl, CFCl, and SiF species. (c) the F(-) yield is mainly due to DA and DD of the adsorbed CF(3)Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F(+), or F(-) ion produced by scission of C-F bond of CF(3)Cl, CF(2)Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF(3)Cl-covered surface. Based on this model and the variation rates of the F(+)F(-) signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV [near the F(1s) edge], the photolysis cross section was deduced as a function of energy.

  7. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production

    Science.gov (United States)

    Zhang, Yuewei; Liu, Jinghai; Wu, Guan; Chen, Wei

    2012-08-01

    Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in

  8. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, Davide, E-mail: davide.vione@unito.it [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (Italy); Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy)

    2013-10-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ{sub BP3} = (3.1 ± 0.3) · 10{sup −5} and the following second-order reaction rate constants: with {sup •} OH, k{sub BP3,{sup •}} {sub OH} = (2.0 ± 0.4) · 10{sup 10} M{sup −1} s{sup −1}; with the triplet states of chromophoric dissolved organic matter ({sup 3}CDOM*), k{sub BP3,{sup 3}CDOM*} = (1.1 ± 0.1) · 10{sup 9} M{sup −1} s{sup −1}; with {sup 1}O{sub 2}, k{sub BP3,{sup 1}O{sub 2}} = (2.0 ± 0.1) · 10{sup 5} M{sup −1} s{sup −1}, and with CO{sub 3}{sup −•} , k{sub BP3,CO{sub 3{sup −}{sup •}}} < 5 · 10{sup 7} M{sup −1} s{sup −1}. These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with {sup •} OH and {sup 3}CDOM* would be the main processes of BP3 phototransformation. Reaction with {sup •} OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L{sup −1}), and reaction with {sup 3}CDOM* at high DOC. If the reaction rate constant with CO{sub 3}{sup −•} is near the upper limit of experimental measures (5 · 10{sup 7} M{sup −1} s{sup −1}), the CO{sub 3}{sup −•} degradation process could be somewhat important for DOC < 1 mg C L{sup −1}. The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with {sup •} OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, {sup •} OH and {sup 3}CDOM*.

  9. Seasonal effects on pterygium surgery outcome: implications for the role of sunlight exposure.

    Science.gov (United States)

    Sul, Sabahattin; Korkmaz, Şafak; Novruzlu, Şahin

    2014-05-01

    The aim of this study was to compare the results of pterygium surgery in patients when performed in the summer with the results of surgery performed in the winter. This retrospective study enrolled 55 eyes of 53 patients with primary pterygia who underwent a surgery between December 2011 and January 2012 (winter group, 32 eyes) or between June and July 2012 (summer group, 23 eyes). All the patients were followed up for at least 1 year. Pterygium recurrence, ocular discomfort, persistent conjunctival inflammation, and graft complications were evaluated postoperatively. There was no significant difference between the groups in terms of age or gender. All the patients were farmers in rural areas. The overall pterygium recurrence rate was 14.5% (8 of 55 eyes). The recurrence rate in the summer group was significantly higher than in the winter group (26.1% vs. 6.2%, P = 0.048). Persistent conjunctival inflammation was also significantly higher in the summer group than in the winter group (30.4% vs. 6.2%, P = 0.022). Pterygium recurrence was significantly higher in eyes with persistent conjunctival inflammation than in eyes without inflammation (66.6% vs. 4.3%, P exposure to sunlight during the summer.

  10. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  11. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  12. Time courses and time-resolved spectra of firefly bioluminescence initiated by two methods of ATP injection and photolysis of caged ATP.

    Science.gov (United States)

    Yanagisawa, Yuki; Kageyama, Takeshi; Wada, Naohisa; Tanaka, Masatoshi; Ohno, Shin-Ya

    2013-01-01

    The time-dependent characteristics of firefly bioluminescence initiated by manual injection of adenosine triphosphate (ATP) into buffer solution containing luciferin (Ln), luciferase (Luc) and Mg(2+) were measured with a resolution of 10 ms, and compared with those obtained by photolysis of caged ATP. The time course depends on pH; both rise and decay rates decrease when pH is lowered from 7.8 to 6.8. In contrast, the parameter λ in the kinetic formula related to diffusion of ATP is almost independent of pH. The pH dependence of the time course of bioluminescence can be explained by the same pH tendency as the rate of ATP binding at the active site of Luc. The time-resolved spectra can be decomposed into two Gaussian components with maxima at 2.2 and 2.0 eV. At pH 7.8, the band at 2.2 eV is more intense than that at 2.0 eV for all three concentration conditions. At lower pH, the band at 2.2 eV becomes weaker than that at 2.0 eV. The intensity ratio of the 2.0 and 2.2 eV bands is constant for duration time of 600 s for both injection and photolysis experiments, and the above conclusions are unaffected by the concentration ratio [Ln]/[Luc].

  13. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  14. Laser photolysis study of anthraquinone in binary mixtures ofionic liquid [bmim][PF6] and organic solvent

    Directory of Open Access Journals (Sweden)

    Side Yao

    2006-12-01

    Full Text Available Photochemical properties of the ionic liquid (RTIL 1-butyl-3-methylimidazoliumhexafluorophosphate [bmim][PF6] and its binary mixed solutions with organic solvent(DMF and MeCN were investigated by laser photolysis at an excitation wavelength of 355nm, using anthraquinone (AQ as a probe molecule. It was indicated that the triplet excitedstate of AQ (3AQ* can abstract hydrogen from [bmim][PF6]. Moreover, along with thechange of the ratio of RTIL and organic solvent, the reaction rate constant changes regularly.Critical points were observed at volume fraction VRTIL = 0.2 for RTIL/MeCN and VRTIL =0.05 for RTIL/DMF. For both systems, before the critical point, the rate constant increasesrapidly with increasing VRTIL; however, it decreases obviously with VRTIL after the criticalpoint. We conclude that the concentration dependence is dominant at lower VRTIL, while theviscosity and phase transformation are dominant at higher VRTIL for the effect of ionic liquidon the decay of rate constant.

  15. Effect of sunlight on the survival of pathogenic E. coli in freshwater and sea water

    DEFF Research Database (Denmark)

    Surendraraj, Alagarsamy; Farvin, Sabeena; Thampuran, N.

    2011-01-01

    An enteropathogenic group of E. coli are the emerging category of pathogen of public health significance. Several recent pathogenic E. coli outbreaks are associated with drinking water. Aquaculture, the fast emerging food production sector also poses a pathogenic EHEC outbreak risk, as it regularly......) were studied for their survival under sunlight and darkness in fresh water and seawater. Effect of direct sunlight on the viable but nonculturable (VBNC) state of cultures was also studied. The results of the study indicated a distinct pattern between freshwater system and seawater system. Pathogenic E....... coli from different sources showed significantly higher level of destruction under direct sunlight than in complete darkness. A reduction of 1.1 to 5.7 log CFU was seen in fresh water after 90 to 105 min under direct sunlight and only 0.2 to 2 log reduction was observed in complete darkness in 5 to 96...

  16. Application of photoremovable protecting group for controlled release of plant growth regulators by sunlight.

    Science.gov (United States)

    Atta, Sanghamitra; Ikbal, Mohammed; Kumar, Ashutosh; Pradeep Singh, N D

    2012-06-01

    We report a novel technique for controlled release of plant growth regulators (PGRs) by sunlight using photoremovable protecting group (PRPG) as a delivery device. In the present work, carboxyl-containing PGRs of the auxin group [indoleacetic acid (IAA) and naphthoxyacetic acid (NOAA)] were chemically caged using PRPGs of coumarin derivatives. Photophysical studies showed that caged PGRs exhibited good fluorescence properties. Irradiation of caged PGRs by sunlight in both aqueous ethanol and soil media resulted in controlled release of PGRs. The results of the bioactivity experiments indicated that caged PGRs showed better enhancement in the root and shoot length growth of Cicer arietinum compared to PGRs after 10days of sunlight exposure. Our results indicated that use of PRPG as a delivery device for controlled release of PGRs by sunlight in soil holds great interest for field application since it can overcome the rapid loss of PGRs in environmental conditions.

  17. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    Science.gov (United States)

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  18. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure

    Energy Technology Data Exchange (ETDEWEB)

    Silva, B.F. [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Andreani, T. [Centro de Investigação em Química da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CITAB − Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real (Portugal); Gavina, A., E-mail: anacsgavina@gmail.com [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Vieira, M.N. [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Pereira, C.M. [Centro de Investigação em Química da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Rocha-Santos, T. [Department of Chemistry and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); and others

    2016-07-15

    Highlights: • Under sunlight exposure, all QDs form particle aggregates in the different media. • CdSeS/ZnS QDs showed lower toxic effects to V. fischeri before sunlight exposure. • Sunlight exposure decreased the toxicity of CdS 480 in all organisms. • Sunlight exposure increased the toxicity of CdS 380 QDs for D. magna. • Shell of QDs seemed to make them less harmful to aquatic organisms. - Abstract: Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same

  19. OH Oxidation of α-Pinene in the Atmosphere Simulation Chamber SAPHIR: Investigation of the Role of Pinonaldehyde Photolysis as an HO2 Source

    Science.gov (United States)

    Kaminski, M.; Acir, I. H.; Bohn, B.; Dorn, H. P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wegener, R.; Kiendler-Scharr, A.; Wahner, A.

    2015-12-01

    rate of pinonaldehyde was determined from the decay of the measured concentration time series of pinonaldehyde in the presence of an OH scavenger. The photolysis experiments showed that the pinonaldehyde photolysis is about a factor of 5 faster than assumed by MCM 3.2, leading to a significant rise in the modelled HO2 concentration.

  20. Sunlight inactivation of faecal bacteria in waste stabilization ponds in a Sahelian region (Ouagadougou, Burkina Faso)

    Energy Technology Data Exchange (ETDEWEB)

    Maiga, Y.; Denyigba, K.; Wethe, J.; Ouattara, A. S.

    2009-07-01

    Waste stabilization ponds (WSPs) are an appropriate sewage treatment system for developing countries in Sahelian regions. Several studies on wastewater treatment in WSPs have shown that solar radiation is a major factor in the inactivation of faecal indicator, and that sunlight acts on interaction with other factors including dissolved oxygen (DO) and pH. However, the inactivation by sunlight is limited by the reduction of light penetration in ponds. (Author)

  1. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Daghrir, Rimeh, E-mail: rimeh.daghrir@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Drogui, Patrick, E-mail: patrick.drogui@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Delegan, Nazar, E-mail: delegan@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada)

    2014-01-01

    The degradation of chlortetracycline in synthetic solution and in municipal effluent was investigated using a photoelectrocatalytic oxidation process under visible irradiation. The N-doped TiO{sub 2} used as photoanode with 3.4 at.% of nitrogen content was prepared by means of a radiofrequency magnetron sputtering (RF-MS) process. Under visible irradiation, higher photoelectrocatalytic removal efficiency of CTC was recorded using N-doped TiO{sub 2} compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The photoelectrocatalytic process operated at 0.6 A of current intensity during 180 min of treatment time promotes the degradation of 99.1 ± 0.1% of CTC. Under these conditions, removal rates of 85.4 ± 3.6%, 87.4 ± 3.1% and 55.7 ± 2.9% of TOC, TN and NH{sub 4}{sup +} have been recorded. During the treatment, CTC was mainly transformed into CO{sub 2} and H{sub 2}O. The process was also found to be effective in removing indicator of pathogens such as fecal coliform (log-inactivation was higher than 1.2 units). - Highlights: •PECO process is a feasible technology for the treatment of MWW contaminated by CTC. •99.1% ± 0.1% of CTC was degraded by PECO using N-doped TiO{sub 2}. •85.4% ± 3.6% of TOC removal and 97.5% ± 1.2% of COD removal were achieved. •87.4% ± 3.1% of TN removal and 55.7% ± 2.9% of NH{sub 4}{sup +} removal were recorded. •More than 94% of fecal coliform was removed (abatement > 1.2-log units)

  2. Studying the activation of epithelial ion channels using global whole-field photolysis.

    Science.gov (United States)

    Almassy, Janos; Yule, David I

    2013-01-01

    The production of saliva by parotid acinar cells is stimulated by Ca(2+) activation of Cl(-) and K(+) channels located in the apical plasma membrane of these polarized cells. Here we provide a detailed description of a flash photolysis experiment designed to give a global and relatively uniform photorelease of inositol 1,4,5-trisphosphate (InsP(3)) or Ca(2+) from caged precursors (NPE-InsP(3) or NP-EGTA) combined with the simultaneous measurement of whole-cell Ca(2+)-activated currents. The photolysis light source can be either an ultraviolet (UV) flash lamp or alternatively the output from a 375-nm diode laser, which is defocused to illuminate the entire field.

  3. Analyzing Ca(2+) dynamics in intact epithelial cells using spatially limited flash photolysis.

    Science.gov (United States)

    Almassy, Janos; Yule, David I

    2013-01-01

    The production of saliva by parotid acinar cells is stimulated by Ca(2+) activation of Cl(-) and K(+) channels located in the apical plasma membrane of these polarized cells. Here we describe a paradigm for the focal photorelease of either Ca(2+) or an inositol 1,4,5 trisphosphate (InsP(3)) analog. The protocol is designed to be useful for investigating subcellular Ca(2+) dynamics in polarized cells with minimal experimental intervention. Parotid acinar cells are loaded with cell-permeable versions of the caged precursors (NP-EGTA-AM or Ci-InsP(3)/PM). Photolysis is accomplished using a spatially limited, focused diode laser, but the experiment can be readily modified to whole-field photolysis using a xenon flash lamp.

  4. Postcolumn photolysis of pesticides for fluorometric determination by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Miles, C.J.; Moye, H.A.

    1988-02-01

    A high-performance liquid chromatography postcolumn reaction detector that employs UV photolysis with an optional reaction by using o-phthalaldehyde-2-mercaptoethanol (OPA-MERC) followed by fluorescence detection was found to be useful for several classes of pesticides. In the presence of the OPA-MERC reagent, most carbamates, carbamoyl oximes, carbamothioic acids, and substituted ureas gave a sensitive response while the response of dithiocarbamates, phenylamides, and phenylcarbamates varied. The response of most of the pesticides tested was significantly affected by the solvent used. Method detection limits for aldicarb sulfoxide, aldicarb, propoxur, thiram, and neburon in ground water were 2.5, 2.3, 3.3, 3.8, and 2.0 ..mu..g/L, respectively. In the absence of OPA-MERC reagent, several of the substituted aromatic compounds also gave strong fluorescence after photolysis. This detector is applicable to a broad range of nitrogenous pesticides.

  5. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    were susceptible to photobleaching by a non-invasive procedure and whether this would lead to optical rejuvenation of the lens. Methodology/Principal Findings: Nine human donor lenses were treated with an 800 nm infra-red femtosecond pulsed laser in a treatment zone measuring 1 x 1 x 0.52 mm. After...... laser treatment the age-induced yellow discoloration of the lens was markedly reduced and the transmission of light was increased corresponding to an optical rejuvenation of 3 to 7 years. Conclusions/Significance: The results demonstrate that the age-induced yellowing of the human lens can be bleached...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  6. Decolorization of some azo dyes by direct photolysis and H2O2/UV processes

    Directory of Open Access Journals (Sweden)

    Keiko Takashima

    2009-03-01

    Full Text Available The decolorization of acid orange 7 (AO7, direct orange 34 (DO 34, direct red 23 (DR23 and direct yellow 86 (DY86 azo dyes was investigated by direct photolysis and hydrogen peroxide-assisted photodegradation respectively in closed and open reactor to the atmosphere under UV radiation at natural pHs and 30 ºC. Four azo dyes decolorization (1,5x10-4 mol L-1 was not significant in presence of H2O2 in closed reactor during 3 h irradiation, whereas in open reactor, the decolorization was respectively 96, 82, 32, and 45% for AO7, DO34, DR23 and DY86. The decolorization by direct photolysis in open reactor was significantly higher in comparison to closed one.

  7. Direct observation of ClO from chlorine nitrate photolysis. [as mechanism of polar ozone depletion

    Science.gov (United States)

    Minton, Timothy K.; Nelson, Christine M.; Moore, Teresa A.; Okumura, Mitchio

    1992-01-01

    Chlorine nitrate photolysis has been investigated with the use of a molecular beam technique. Excitation at both 248 and 193 nanometers led to photodissociation by two pathways, ClONO2 yields ClO + NO2 and ClONO2 yields Cl + NO3, with comparable yields. This experiment provides a direct measurement of the ClO product channel and consequently raises the possibility of an analogous channel in ClO dimer photolysis. Photodissociation of the ClO dimer is a critical step in the catalytic cycle that is presumed to dominate polar stratospheric ozone destruction. A substantial yield of ClO would reduce the efficiency of this cycle.

  8. Photolysis of alpha-azidoacetophenones: direct detection of triplet alkyl nitrenes in solution.

    Science.gov (United States)

    Singh, Pradeep N D; Mandel, Sarah M; Robinson, Rachel M; Zhu, Zhendong; Franz, Roberto; Ault, Bruce S; Gudmundsdóttir, Anna D

    2003-10-17

    We report the first detection of triplet alkyl nitrenes in fluid solution by laser flash photolysis of alpha-azido acetophenone derivatives, 1. Alphazides 1 contain an intramolecular triplet sensitizer, which ensures formation of the triplet alkyl nitrene by bypassing the singlet nitrene intermediate. At room temperature, azides 1 cleave to form benzoyl and methyl azide radicals in competition with triplet energy transfer to form triplet alkyl nitrene. The major photoproduct 3 arises from interception of the triplet alkyl nitrene with benzoyl radicals. The triplet alkyl nitrene intermediates are also trapped with molecular oxygen to yield the corresponding 2-nitrophenylethanone. Laser flash photolysis of 1 reveals that the triplet alkyl nitrenes have absorption around 300 nm. The triplet alkyl nitrenes were further characterized by obtaining their UV and IR spectra in argon matrices. (13)C and (15)N isotope labeling studies allowed us to characterize the C-N stretch of the nitrene intermediate at 1201 cm(-)(1).

  9. Photolysis of a Benzyne Precursor Studied by Time-Resolved FTIR Spectroscopy.

    Science.gov (United States)

    Torres-Alacan, Joel

    2016-02-01

    The 266 nm laser flash photolysis of phtaloyl peroxide (2) in liquid acetonitrile solution at room temperature has been investigated. Upon 266 nm laser irradiation, 2 is effectively photodecarboxylated leading to the formation of o-benzyne (1) and two equivalents of CO2, yet a small fraction of photolyzed 2 follows a different pathway leading to 6-oxocyclohexa-2,4-dienylideneketene (3) and one equivalent of CO2. Compound 3 is kinetically reactive and reacts in the microsecond time scale following a first-order kinetic law. The presence of 1 in the photolysis experiment is confirmed by trapping experiments with methyl 1-methylpyrrole-2-carboxylate (6). The Diels-Alder reaction between 1 and 6 occurs under the selected experimental conditions on a time scale shorter than 100 ms.

  10. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, A.R.; DeCosta, B.R.; Holick, M.F.

    1989-05-01

    Exposure to sunlight initiates the formation of vitamin D3 in skin as the UV B radiation in the solar spectrum causes the photoconversion of 7-dehydrocholesterol to previtamin D3. A heat-induced isomerization then converts previtamin D3 to vitamin D3 over a period of days. A number of irradiation products of vitamin D3 are known to form upon irradiation with high intensity UV radiation, but the effect of subsequent exposures to sunlight on the vitamin D3 formed in skin is not known. To investigate this phenomenon, human skin containing vitamin D3 was exposed to sunlight in Boston. A model system of (/sup 3/H)vitamin D3 in methanol was also used to study the effects of sunlight on vitamin D3 throughout the year. Vitamin D3 proved to be exquisitely sensitive to sunlight, and once formed in the skin, exposure to sunlight resulted in its rapid photodegradation to a variety of photoproducts, including 5,6-transvitamin D3, suprasterol I, and suprasterol II.

  11. Determination of common anions in oxalate by ion chromatography coupled with UV photolysis pretreatment

    Institute of Scientific and Technical Information of China (English)

    Sheng Lin Cao; Ming Li Ye; Wei De Lv; Guang Wen Pan; Ting Ting Zhang; Zhong Yang Hu; Li Na Liang; Yan Zhu

    2012-01-01

    A new and simple method was developed to determine anions in oxalate of analytical reagent grade.After UV photolysis with optimal 1% H2O2 in 10,000 mg/L oxalate in the fabricated photoreactor,sample was directly injected into IC system.Satisfactory linearity,detections limits,good repeatability and spiked recovery were obtained.The method was successfully applied to determine anions in two commercial oxalate samples.

  12. Identification of Products of Merocyanine 540 Decay by Photolysis and Thermolysis

    Science.gov (United States)

    Bazyl', O. K.; Svetlichnyi, V. A.

    2016-08-01

    Possible products of merocyanine 540 decay are studied using quantum-chemical calculations. The results of calculation are compared with experimental investigations of the spectral-luminescent properties, and the products of photo- and thermodecay of the merocyanine 540 molecule in water are identified. It is shown that different products are formed by thermolysis (decay in the ground electronic state S0) and photolysis (decay in an excited electronic state).

  13. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.

    Science.gov (United States)

    Xing, Rui; Zheng, Zhongyuan; Wen, Donghui

    2015-03-01

    In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%-35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%-47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+-N), 17% more nitrite nitrogen (NO2--N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3--N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent.

  14. Photolysis of pure solid O3 and O2 films at 193 nm

    CERN Document Server

    Raut, U; Famá, M; Baragiola, R A

    2010-01-01

    We studied quantitatively the photochemistry of solid O3 and O2 films at 193 nm and 22 K with infrared spectroscopy and microgravimetry. Photolysis of pure ozone destroyed O3, but a small amount of ozone remained in the film at high fluence. Photolysis of pure O2 produced O3 in an amount that increased with photon fluence to a stationary level. For both O2 and O3 films, the O3:O2 ratio at saturation is 0.03, nearly 10-30 times larger than those obtained in gas phase photolysis. This enhancement is attributed to the increased photodissociation of O2 due to photoabsorption by O2 dimers, a process significant at solid state densities. We obtain initial quantum yield for ozone synthesis from solid oxygen, {\\Phi} (O3) = 0.18 and for destruction of ozone and oxygen in their parent solids, {\\Phi} (- O3) = 1.7 and {\\Phi} (-O2) = 0.28. Combined with known photoabsorption cross sections, we estimate probabilities for germinate recombination of 0.15 for O3 fragments and 0.90 for oxygen atoms from O2 dissociation. Using ...

  15. Vacuum UV photolysis of CO 2. Rare-gas oxide formation in matrices

    Science.gov (United States)

    Fournier, J.; Mohammed, H. H.; Deson, J.; Maillard, D.

    1982-08-01

    In this paper, we report experimental results obtained upon photolysis of CO 2 trapped at low concentrations (0.1%) in neon, argon and krypton matrices. The mixture are photolysed using a xenon resonance lamp emitting photons at 8.4 eV. Only in a neon matrix does the photolysis of CO 2 lead to O( 1D) → O( 3P) emission. Furthermore, oxygen atoms are shown to diffuse at all temperatures in a neon matrix (as detected by molecular oxygen emission), whereas in the other matrices this occurs only when the sample is warmed even though irradiation is performed at high temperature. In argon and krypton matrices, O( 1S) → O( 1D) emission is observed even though there is not enough energy to form an O( 1S) atom in a primary photodecomposition process. This suggests that O( 1D) becomes bound to argon or krypton atoms as a stable rare-gas oxide RGO excimer, which is subsequently excited and photolysed by 8.4 eV photons. These observed features are explained using a model for the interaction between oxygen ( 3P, 1D, 1S) and rare-gas atoms ( 1S) which had previously been proposed to account for the emission spectra of oxygen atoms observed during photolysis of oxygenated compounds.

  16. Photochemistry of insecticide imidacloprid:direct and sensitized photolysis in aqueous medium

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wei; LIU Wei-ping; WEN Yue-zhong; Sang-jin Lee

    2004-01-01

    The direct and sensitized photodegradations of imidacloprid, 1-(6-chloro-3-pyridinylmethyl)-N-nitro-2-imidazolidinimine. were investigated in aqueous solution and with and without various photo-sensitizers. Results of the study revealed that the intensity of lamp-house and irradiation wavelength had significant effects on the photolysis of imidacloprid. Complete degradation of 20 mg/L imidacloprid in aqueous phase was observed in 40 min under ultraviolet(UV) irradiation system, suggesting the ultraviolet ray played significant role in direct photolysis of imidacloprid. The additions of various photo-sensitizers lead to improve the degradation efficiency of imidacloprid under the irradiation of black light fluorescent lamp. TiO2 was the most efficient in the photo-catalytic degradation of imidacloprid among other photo-sensitizers in used this study. However, addition of acetone inhibited the photolysis of imidacloprid under the irradiation of UV, indicating the occurrence of competition between acetone and imidacloprid for photos. Mineralization of the imidacloprid was examined to clarify the final photochemical degradation products of the insecticide which were CO2, Cl- and NO3- . Complete photo-oxidation of nitrogen to NO3- occurred very slowly via the intermediate formation of NH4+ and NO2- .

  17. Comparison of the degradations of diphenamid by homogeneous photolysis and heterogeneous photocatalysis in aqueous solution.

    Science.gov (United States)

    Liang, Hai-chao; Li, Xiang-zhong; Yang, Yin-hua; Sze, Kong-hung

    2010-06-01

    In this work, the homogeneous and heterogeneous degradations of diphenamid (DPA) in aqueous solution were conducted by direct photolysis with UVC (254nm) and by photocatalysis with TiO(2)/UVA (350nm), and the experimental results were compared. It was found that the homogeneous photolysis by UVC irradiation alone was quite efficient to degrade DPA up to 100% after 360min, but was very inefficient to mineralize its intermediates in terms of dissolved organic carbon reduction of only 8%. In contrast, the heterogeneous photocatalysis with TiO(2)/UVA showed relatively a lower degree of DPA degradation (51%), but a higher degree of its mineralization (11%) after 360min. These results reveal that the photocatalysis process has relatively poor selectivity to degrade different compounds including various intermediates from the DPA degradation, which is beneficial to its mineralization. In addition, over 20 intermediates were identified by LC-MS and (1)H NMR analyses. Based on the identified intermediates, the reaction mechanisms and the detailed pathways of the DPA degradation by photolysis and photocatalysis were proposed, and are presented in this paper.

  18. Photolysis of flumequine: identification of the major phototransformation products and toxicity measures.

    Science.gov (United States)

    Sirtori, Carla; Zapata, Ana; Gernjak, Wolfgang; Malato, Sixto; Agüera, Ana

    2012-07-01

    Direct photolysis of flumequine (FLU, 20 mg L(-1)) in different types of water (demineralised water (DW) and synthetic seawater (SW)), was conducted in a Suntest CPS+solar simulator to evaluate its persistence and toxicity, and to identify the major phototransformation products (PTPs) generated during photolysis in DW. It was observed that FLU is susceptible to transformation when subjected to direct solar radiation. The composition of the water affects the FLU degradation kinetics, which is slower in SW. Photolytic transformation products generated during direct photolysis were identified by liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS). Fourteen PTPs generated in DW were identified. The transformation of FLU begins with the opening of the heterocyclic ring by oxidation of the double bond. Loss of the fluorine atom and the hydroxylation of the aromatic ring also appear as the majority, especially in the early stages. Comparative acute toxicity evaluation by Vibrio fischeri and Daphnia magna bioassays was performed for the first and last irradiated solutions in both matrices studied. These bioassays demonstrated that in the SW matrix, the most persistent PTPs are highly toxic to D. magna but less so to V. fischeri.

  19. Photolysis of Iron (III) carboxylate complexes relevant for tropospheric aqueous particles and cloud droplets

    Science.gov (United States)

    Herrmann, H.; Weller, C.; Bräuer, P.; Tilgner, A.

    2012-12-01

    Absorption spectra and Fe(II) quantum yields of iron(III) coordination complexes with oxalate, malonate, succinate, glutarate, tartronate, tartrate, gluconate, glyoxalate and pyruvate were experimentally determined. Measured quantum yields of malonate, glutarate and gluconate complexes are in the range of 0.02 tartrate, pyruvate, glyoxylate and tartronate complexes show values between 0.12 tartrate and, surprisingly, in the case of succinate complexes a higher quantum yield was observed at 351 nm under increased oxygen concentrations in solution. In the case of oxalate, a dependence of the quantum yield on the initial concentration of iron(III) oxalato complexes was observed. A kinetic simulation of the reaction system after the photolysis was performed for oxalate, succinate, glyoxalate and tartrate complexes to characterize the influence of secondary thermal reactions on the quantum yield. A tropospheric chemistry simulation with the multiphase chemistry mechanism CAPRAM involving the photolysis of the studied complexes and subsequent reactions of the resulting species shows that the contribution of the iron complex photochemistry to the formation of oxidants such as the hydroperoxyl radical and its anion, the hydroxyl radical and H2O2 is low in comparison to other sources. However, it is shown that Fe(III) complex photolysis represents a major sink for some ligands in addition to the oxidation via free radicals.

  20. Is Amino-Acid Homochirality Due To Asymmetric Photolysis In Space?

    CERN Document Server

    Cerf, C

    1999-01-01

    Amino acids occurring in proteins are, with rare exceptions, exclusively of the L-configuration. Among the many scenarios put forward to explain the origin of this chiral homogeneity (i.e., homochirality), one involves the asymmetric photolysis of amino acids present in space, triggered by circularly polarized UV radiation. The recent observation of circularly polarized light (CPL) in the Orion OMC-1 star-forming region (Bailey et al. 1998, Science 281, 672) has been presented as providing a strong validation of this scenario. The present paper reviews the situation. It is stressed for example that one important condition for the asymmetric photolysis by CPL to be at the origin of the terrestrial homochirality of natural amino acids is generally overlooked, namely, the asymmetric photolysis should favour the L-enantiomer for ALL the primordial amino acids involved in the genesis of life (i.e., biogenic amino acids). Although this condition is probably satisfied for aliphatic amino acids, some non-aliphatic am...

  1. Surfactant-assisted UV-photolysis of nitroarenes.

    Science.gov (United States)

    Diehl, Claude A; Jafvert, Chad T; Marley, Karen A; Larson, Richard A

    2002-01-01

    Photochemical transformations (lambda-254 nm) of 2,4-dinitrotoluene (2,4-DNT) in aqueous solutions containing the cationic surfactant cetyltrimethylammonium (CTA) and the anionic nucleophile borohydride (BH4-) were investigated. The overall decay rate was enhanced at CTA concentrations above the critical micelle concentration (cmc) when stoichiometric excess BH4- was present in solution. A kinetic model that separates the overall reaction rate into micellar and aqueous pseudo-phase components indicates transformation in micelles is 17 times faster that in the homogeneous water phase under those conditions investigated. Intermediate products were identified by comparing the HPLC retention times and ultraviolet-visible absorption spectra of product peaks to those of analytical standards. 2-Methyl-5-nitroaniline, 4-nitrotoluene, 2-nitrotoluene, 4-methyl-3-nitroaniline, 2,4-diaminotoluene, o-toluidine, 1,3-dinitrobenzene, 3-nitroaniline, p-cresol, and 2,4-diaminophenol were identified as photo-transformation intermediates or products.

  2. ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight

    Directory of Open Access Journals (Sweden)

    O. Sumińska-Ebersoldt

    2012-02-01

    Full Text Available The photolysis rate constant of dichlorine peroxide (ClOOCl, ClO dimer JClOOCl is a critical parameter in catalytic cycles destroying ozone (O3 in the polar stratosphere. In the atmospherically relevant wavelength region (λ > 310 nm, significant discrepancies between laboratory measurements of ClOOCl absorption cross sections and spectra cause a large uncertainty in JClOOCl. Previous investigations of the consistency of published JClOOCl with atmospheric observations of chlorine monoxide (ClO and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of JClOOCl over the ClOOCl formation rate constant krec. Here, we constrain the atmospherically effective JClOOCl independent of krec, using ClO measured in the same air masses before and directly after sunrise during an aircraft flight that was part of the RECONCILE field campaign in the winter 2010 from Kiruna, Sweden. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the increase in ClO concentrations is significantly faster than expected from JClOOCl based on the absorption spectrum proposed by Pope et al. (2007, but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009. In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm is not supported by our observations. The observed night-time ClO would not be consistent with a ClO/ClOOCl thermal equilibrium constant significantly higher than the one proposed by Plenge et al. (2005.

  3. The influence of short-term exposure to tropical sunlight on boar seminal characteristics

    Science.gov (United States)

    Egbunike, G. N.; Dede, T. I.

    1980-06-01

    The seminal characteristics of 4 Large White boars exposed to direct tropical sunlight 45 min daily for three days were compared to those of their mates that were maintained under shade in the barn. During the period of exposure, both respiratory rate and rectal temperature increased significantly by 276.84 and 5.13% respectively in the exposed over the unexposed boars, thus indicating a high degree of hyperthermia. Although libido, as judged from the reaction time, was unaffected, the ejaculation time appeared to be longer for the stressed than unstressed animals. Gel mass, semen volume and pH appeared to be stable inspite of the treatment, unlike sperm motility and concentration which deteriorated. Also, the dehydrogenase activity of the semen was inferior in the stressed animals. Sperm output per ejaculate dropped drastically only in the week following exposure from 58.22 to 28.42 billion sperm as compared to corresponding values of 54.83 and 47.87 by the unexposed boars. Similarly, the frequency of sperm abnormality was higher in the stressed boars in this period after which the animals appeared to have recovered.

  4. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  5. Photocatalytic degradation of five sulfonylurea herbicides in aqueous semiconductor suspensions under natural sunlight.

    Science.gov (United States)

    Fenoll, José; Hellín, Pilar; Flores, Pilar; Martínez, Carmen María; Navarro, Simón

    2012-05-01

    In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO(3)), tin (IV) oxide (SnO(2)) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na(2)S(2)O(8)) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t(½)) ranged from 8 to 27 min (t(30W)=0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na(2)S(2)O(8) system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L(-1)).

  6. Vacuum ultraviolet photolysis of diclofenac and the effects of its treated aqueous solutions on the proliferation and migratory responses of Tetrahymena pyriformis

    Energy Technology Data Exchange (ETDEWEB)

    Arany, Eszter [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1 (Hungary); Láng, Júlia [Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4 (Hungary); Somogyvári, Dávid [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1 (Hungary); Láng, Orsolya [Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4 (Hungary); Alapi, Tünde [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 7 (Hungary); Ilisz, István [Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 7 (Hungary); and others

    2014-01-01

    The effects of dissolved O{sub 2}, phosphate buffer and the initial concentration of diclofenac on the vacuum ultraviolet photolysis of this contaminant molecule were studied. Besides kinetic measurements, the irradiated, multicomponent samples were characterized via the proliferation and migratory responses (in sublethal concentrations) of the bioindicator eukaryotic ciliate Tetrahymena pyriformis. The results suggest that hydroxyl radicals, hydrogen atoms and hydroperoxyl radicals may all contribute to the degradation of diclofenac. The aromatic by-products of diclofenac were presumed to include a hydroxylated derivative, 1-(8-chlorocarbazolyl)acetic acid and 1-(8-hydroxycarbazolyl)acetic acid. The biological activity of photoexposed samples reflected the chemical transformation of diclofenac and was also dependent on the level of dissolved O{sub 2}. The increase in toxicity of samples taken after different irradiation times did not exceed a factor of two. Our results suggest that the combination of vacuum ultraviolet photolysis with toxicity and chemotactic measurements can be a valuable method for the investigation of the elimination of micropollutants. - Highlights: • The radical-scavenging effect of phosphates seems to be negligible. • Only higher concentrations of HO{sub 2}{sup ·} contribute to the degradation of diclofenac. • Toxicity of VUV-treated samples decreases with increasing rate of mineralization. • Dissolved O{sub 2} enhances the mineralization of diclofenac by affecting the radical set. • Treated samples retain the chemorepellent character of the parent compound.

  7. Time-resolved infrared spectral studies of intermediates formed in the laser flash photolysis of Mn(CO){sub 5}CH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Boese, W.T.; Ford, P.C. [Univ. of California, Santa Barbara, CA (United States)

    1994-09-01

    Laser flash photolysis (308 nm) of Mn(CO){sub 5}CH{sub 3} (I) in different solvents leads predominantly to CO photodissociation and the formation of reactive intermediates formulated as the solvento complexes cis-Mn(CO){sub 4}(solv)CH{sub 3}. This conclusion is based upon the solvent sensitivity of the time-resolved infrared spectra and the dynamics of reactions with various ligands. For example, the reaction of cis-Mn(CO){sub 4}(solv)CH{sub 3} with CO displays second-order kinetics with a rate constant k{sub co} nearly 8 orders of magnitude larger for solv = perfluoro-(methylcyclohexane) than for solv = tetrahydrofuran. The k{sub l} values for the second-order reaction of cis-Mn(CO){sub 4}(solv)CH{sub 3} in cyclohexane with various ligands L follow the approximate order 4-phenylpyridine H{sub 2}O THF > P(OMe){sub 3} PPh{sub 3} > CO N{sub 2}. The quantitative behaviors of intermediates seen in the flash photolysis of I are compared with those seen in similar studies of the acetyl complex Mn(Co){sub 5}(COCH){sub 3} (II). 24 refs., 6 figs., 2 tabs.

  8. Polydopamine-Coated Porous Substrates as a Platform for Mineralized β-FeOOH Nanorods with Photocatalysis under Sunlight.

    Science.gov (United States)

    Zhang, Chao; Yang, Hao-Cheng; Wan, Ling-Shu; Liang, Hong-Qing; Li, Hanying; Xu, Zhi-Kang

    2015-06-03

    Immobilization of photo-Fenton catalysts on porous materials is crucial to the efficiency and stability for water purification. Here we report polydopamine (PDA)-coated porous substrates as a platform for in situ mineralizing β-FeOOH nanorods with enhanced photocatalytic performance under sunlight. The PDA coating plays multiple roles as an adhesive interface, a medium inducing mineral generation, and an electron transfer layer. The mineralized β-FeOOH nanorods perfectly wrap various porous substrates and are stable on the substrates that have a PDA coating. The immobilized β-FeOOH nanorods have been shown to be efficient for degrading dyes in water via a photo-Fenton reaction. The degradation efficiency reaches approximately 100% in 60 min when the reaction was carried out with H2O2 under visible light, and it remains higher than 90% after five cycles. We demonstrate that the PDA coating promotes electron transfer to reduce the electron-hole recombination rate. As a result, the β-FeOOH nanorods wrapped on the PDA-coated substrates show enhanced photocatalytic performance under direct sunlight in the presence of H2O2. Moreover, this versatile platform using porous materials as the substrate is useful in fabricating β-FeOOH nanorods-based membrane reactor for wastewater treatment.

  9. Dichromatic laser photolysis of eosin in solid gelatinous matrix

    Science.gov (United States)

    Sizykh, A. G.; Slyusareva, E. A.

    2004-05-01

    The laser irradiation of the thin films of solid solution of eosin in gelatinous matrix in the first and some upper dyes absorption bands leads to decrease of films optical density due to reaction of photoreduction. In the paper the kinetic of photoreduction of the dye eosin K in polymeric matrix in three cases of irradiation was experimentally investigated: a) irradiation by N2 laser (λ=337nm, second band of absorption, π=2 nsec, repetition rate-100 Hz, average power-2,2 mW), b) irradiation by Ar-laser (λ=488 nm, first band of absorption, 6,5-12 mW), c) under a simultaneous action of both Ar and N2-lasers. It was demonstrated that the most effective reaction of photoreduction took place in case of direct populating of upper singlet states with probable following nonradiative transition into equienergetic triplet states (energy ranges 35000-45000 sm-1).

  10. PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population.

    Science.gov (United States)

    Aslibekyan, Stella; Dashti, Hassan S; Tanaka, Toshiko; Sha, Jin; Ferrucci, Luigi; Zhi, Degui; Bandinelli, Stefania; Borecki, Ingrid B; Absher, Devin M; Arnett, Donna K; Ordovas, Jose M

    2014-11-01

    Sunlight exposure has been shown to alter DNA methylation patterns across several human cell-types, including T-lymphocytes. Since epigenetic changes establish gene expression profiles, changes in DNA methylation induced by sunlight exposure warrant investigation. The purpose of this study was to assess the effects of sunlight exposure on CD4+ T-cell methylation patterns on an epigenome-wide scale in a North American population of European origin (n=991). In addition, we investigated the genetic contribution to epigenetic variation (methylQTL). We used linear regression to test the associations between methylation scores at 461,281 cytosine-phosphate-guanine (CpG) sites and sunlight exposure, followed by a genome-wide association analysis (methylQTL) to test for associations between methylation at the top CpG locus and common genetic variants, assuming an additive genetic model. We observed an epigenome-wide significant association between sunlight exposure and methylation status at cg26930596 (p=9.2×10(-8)), a CpG site located in protein kinase C zeta (PRKCZ), a gene previously shown to be entrained by light. MethylQTL analysis resulted in significant associations between cg26930596 and two intergenic single nucleotide polymorphisms on chromosome 3, rs4574216 (p=1.5×10(-10)) and rs4405858 (p=1.9×10(-9)). These common genetic variants reside downstream of WWTR1, a transcriptional co-activator of PRKCZ. Associations observed in the North American population, however, did not replicate in an independent Mediterranean cohort. Our preliminary results support the role of sunlight exposure in epigenetic processes, and lay the groundwork for future studies of the molecular link between sunlight and physiologic processes such as tumorigenesis and metabolism.

  11. HISTORY OF SUNLIGHT EXPOSURE IS A RISK FACTOR FOR AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Schick, Tina; Ersoy, Lebriz; Lechanteur, Yara T E; Saksens, Nicole T M; Hoyng, Carel B; den Hollander, Anneke I; Kirchhof, Bernd; Fauser, Sascha

    2016-04-01

    To evaluate effects of current and past sunlight exposure and iris color on early and late age-related macular degeneration (AMD). Of 3,701 individuals from the EUGENDA database, 752 (20.3%) showed early AMD, 1,179 (31.9%) late AMD, and 1,770 (47.8%) were controls. Information about current and past sunlight exposure, former occupation type, subdivided in indoor working and outdoor working, and iris color were obtained by standardized interviewer-assisted questionnaires. Associations between environmental factors adjusted for age, gender, and smoking and early and late AMD were performed by multivariate regression analysis. Current sunlight exposure showed no association with early AMD or late AMD, but past sunlight exposure (≥8 hours outside daily) was significantly associated with early AMD (odds ratio: 5.54, 95% confidence interval 1.25-24.58, P = 0.02) and late AMD (odds ratio: 2.77, 95% confidence interval 1.25-6.16, P = 0.01). Outside working was found to be associated with late AMD (odds ratio: 2.57, 95% confidence interval 1.89-3.48, P = 1.58 × 10). No association was observed between iris color and early or late AMD. Sunlight exposure during working life is an important risk factor for AMD, whereas sunlight exposure after retirement seems to have less influence on the disease development. Therefore, preventive measures, for example, wearing sunglasses to minimize sunlight exposure, should start early to prevent development of AMD later in life.

  12. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.

    Science.gov (United States)

    Silva, B F; Andreani, T; Gavina, A; Vieira, M N; Pereira, C M; Rocha-Santos, T; Pereira, R

    2016-07-01

    Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same aggregation behaviour after sunlight exposure was observed for bare QDs. These results further emphasize that the shell of QDs seems to make them less harmful to aquatic biota, both under standard environmental conditions and after the exposure to a relevant abiotic factor like sunlight. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight.

    Science.gov (United States)

    Carr, Jennie M; Lima, Steven L

    2014-03-01

    Wintering birds can gain significant thermal benefits by foraging in direct sunlight. However, exposure to bright sunlight might make birds easier to detect by predators and may also cause visual glare that can reduce a bird's ability to monitor the environment. Thus, birds likely experience a trade-off between the thermal benefits and predation-related costs of foraging in direct sunlight. To examine this possible thermoregulation-predation trade-off, we monitored the behavior of mixed-species flocks of wintering emberizid sparrows foraging in alternating strips of sunlight and shade. On average, these sparrows routinely preferred to forage in the shade, despite midday air temperatures as much as 30 °C below their thermoneutral zone. This preference for shade was strongest at relatively high temperatures when the thermal benefits of foraging in sunlight were reduced, suggesting a thermoregulation-predation trade-off. Glare could be reduced if birds faced away from the sun while feeding in direct sunlight, but we found that foraging birds tended to face southward (the direction of the sun). We speculate that other factors, such as the likely direction of predator approach, may explain this southerly orientation, particularly if predators use solar glare to their advantage during an attack. This interpretation is supported by the fact that birds had the weakest southerly orientation on cloudy days. Wintering birds may generally avoid foraging in direct sunlight to minimize their risk of predation. However, given the thermal benefits of sunshine, such birds may benefit from foraging in habitats that provide a mosaic of sunlit and shaded microhabitats.

  14. Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

    Directory of Open Access Journals (Sweden)

    Hernando P Bacosa

    2015-12-01

    Full Text Available Following the Deepwater Horizon (DWH spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  15. Varying relationship between 25-hydroxy-vitamin D, high density lipoprotein cholesterol, and serum 7-dehydrocholesterol reductase with sunlight exposure.

    Science.gov (United States)

    Patwardhan, Vivek G; Khadilkar, Anuradha V; Chiplonkar, Shashi A; Mughal, Zulf M; Khadilkar, Vaman V

    2015-01-01

    Cholesterol and cholecalciferol are synthesized from a common substrate 7-dehydrocholesterol. 7-dehydrocholesterol is converted to cholesterol by 7-dehydrocholesterol reductase enzyme (DHCR7) and to cholecalciferol by ultraviolet B radiation from sunlight. To examine the effect of sunlight exposure and serum DHCR7 levels on cholecalciferol and cholesterol levels and studying any interrelationship. In a cross-sectional observational study, 307 apparently healthy men (aged 40-60 years) were assessed for sunlight exposure, lipid levels, serum DHCR7, 25 hydroxyvitamin D (25(OH)D), body composition, and dietary milk calcium intake. Vitamin D deficiency (25(OH)D sunlight exposure (P sunlight exposure (sunlight exposure (1-2 h/d), there was no significant association. However, with higher sunlight exposure (>2 h/d), serum 25(OH)D concentrations were significantly negatively associated with HDL-C (P sunlight exposure, an inverse significant relationship was observed between 25(OH)D and serum DHCR7 (P sunlight exposure, no significant relationship was seen. 25(OH)D seems to show a varying relationship with HDL-C and serum DHCR7 at different durations of sunlight exposure. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  16. Effect of Dissolved Humic Substances on the Photochemical Degradation Rate of 1-Aminopyrene and Atrazine

    Directory of Open Access Journals (Sweden)

    Hongtao Yuzuri

    2002-10-01

    Full Text Available Abstract: Humic substances (HS are ubiquitous in the environment, and can act as photosensitizers in the redox reactions of some photochemical processes. The influence of HS in these reactions varies with the HS type and concentration. The total organic carbon content (TOC of some commercial HS (such as soil and river humic acid, and fulvic acid was studied. 1-Aminopyrene (1-AP and 1-hydoxypyrene (1-HP are carcinogenic and slightly water-soluble polycyclic aromatic hydrocarbons (PAH. The impact of PAH on natural environment is related to their photolysis rates and photoproducts; therefore, it is of interest to study the photolysis of these compounds. Our previous study showed that the photolysis rate of 1-HP was inhibited by HS. In this study, photolysis of 1-AP was conducted with pure water, natural river water, and pure water containing commercial HS. It was found that the photolysis rate of 1-AP can be inhibited or enhanced by HS, depending on the type and concentration. The first order photolysis rate constant of 1-AP (10 μM in phosphate buffer (pH 7.0, 1 mM containing a humic acid (20-80 ppm was enhanced by up to 5 folds. With a fulvic acid (20-80 ppm, it was enhanced by about 2 folds. With a soil humic acid, it was enhanced by about 2 folds at the concentration of 20 ppm and was inhibited by up to 4 folds at the concentration of 80 ppm. Atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine is a widely used herbicide. It is toxic, often bioaccumulative and persistent. In this study, the effect of HS on the photochemical fate of atrazine was also studied. The results showed that photolysis of atrazine can be enhanced by humic acid, depending on the type and concentration of humic acid. The fulvic acid has no effect on its photolysis within 10 days.

  17. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm.

    Science.gov (United States)

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Burkholder, James B

    2012-10-28

    Oxalyl chloride, (ClCO)(2), has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)(2) and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV∕vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)(2) has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)(2) + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)(2). Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N(2)), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)(2) is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N(2)). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N(2)). The low-pressure limit of the total Cl atom quantum yield, Φ(0)(351 nm), was 2

  18. THE RISKS OF SUNLIGHTING CLASSROOMS. An appraisal method to assess the severity of discomfort due to sunlight penetration in classrooms. Site of study: Primary school classrooms in Constantine (ALGERIA

    Directory of Open Access Journals (Sweden)

    D SAFFIDINE-ROUAG

    2001-12-01

    Full Text Available The westerly orientations for a large number of primary school classrooms in Constantine involved a serious environmental problem provoked by uncontrolled sunlight. Under such circumstances the schoolchildren had no choice than keep sitting under incident sunlight while performing their various school tasks.  Evidence of the severity of discomfort experienced by those pupils was investigated using observational methods. The results allowed to reach substantial conclusions about the risks of sunlighting classrooms.

  19. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  20. Laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of reactions of atmospheric interest

    Science.gov (United States)

    Albaladejo, J.; Cuevas, C. A.; Notario, A.; Martínez, E.

    Atomic chlorine is highly reactive with a variety of organic and inorganic compounds so that relatively small concentrations can compete with the tropospheric oxidants (OH, O3 and NO3) in determining the tropospheric fate of such compounds [1]. Besides, there is a lot of evidence that bromine compounds play significant role in the ozone chemistry both in the troposphere and in the stratosphere [2]. In this work we show the laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of gas phase reactions of halogen atoms with volatile organic compounds (VOCs) of interest in atmospheric chemistry [3]. By means of this technique is possible to measure the rate constants of theses reactions, and subsequently obtain the Arrhenius parameters. Halogens atoms are produced in a excess of the VOC and He, by photolyzing Cl2 at 308 nm to obtain Cl atoms, or CF2Br2 at 248 nm for Br atoms, both cases using a pulsed excimer laser. The radiation (135 nm) from a microwave-driven lamp, through which He containing a low concentrations of Cl2 or Br2 was flowed, was used to excite the resonance fluorescence from the corresponding halogen atom in the jacketed Pyrex reaction cell. Signal were obtained using photon-counting techniques in conjunction with multichannel scaling. The fluorescence signal from the PMT was processed by a preamplifier and sent to an multichannel scaler to collect the time-resolved signal. The multichannel scaler was coupled to a microcomputer for further kinetics analysis.

  1. Decay kinetics of benzophenone triplets and corresponding free radicals in soft and rigid polymers studied by laser flash photolysis.

    Science.gov (United States)

    Levin, Peter P; Efremkin, Alexei F; Sultimova, Natalie B; Kasparov, Valery V; Khudyakov, Igor V

    2014-01-01

    The kinetics of transients formed under photoexcitation of benzophenone (B) dissolved in three different polymers was studied by ns laser flash photolysis. These polymers were the soft rubbers poly (ethylene-co-butylene) (EB), polystyrene block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) and hard polystyrene (PS). We monitored the decay kinetics of triplet state (3)B(*) and of ketyl radicals BH(●). We observed exponential decay of (3)B(*) and two-stage decay kinetics of BH(●) in EB. The first stage is a fast cage recombination of a radical pair (BH(●), radical of polymer R(●)). The second slow stage of BH(●) decay follows the second-order law with a relatively high rate constant, which corresponds to recombination of BH(●) in a homogeneous liquid with a viscosity of only ~0.1 P (about five times of 2-propanol viscosity). Application of a magnetic field (MF) of 0.2 T leads to deceleration of both stages of BH(●) decay in EB by approximately 20%. Decay kinetics of both transients were observed in SEBS. There was no MF effect on BH(●) decay in SEBS. We only observed (3)B(*) in PS. Decay kinetics of (3)B(*) in this case were described as polychromatic dispersive first-order kinetics. We discuss the effects of polymer structure on transient kinetics and the MF effect.

  2. Hypovitaminosis D in patients undergoing kidney transplant: the importance of sunlight exposure.

    Science.gov (United States)

    Vilarta, Cristiane F; Unger, Marianna D; Dos Reis, Luciene M; Dominguez, Wagner V; David-Neto, Elias; Moysés, Rosa M; Titan, Silvia; Custodio, Melani R; Hernandez, Mariel J; Jorgetti, Vanda

    2017-07-01

    Recent studies have shown a high prevalence of hypovitaminosis D, defined as a serum 25-hydroxyvitamin D level less than 30 ng/ml, in both healthy populations and patients with chronic kidney disease. Patients undergoing kidney transplant are at an increased risk of skin cancer and are advised to avoid sunlight exposure. Therefore, these patients might share two major risk factors for hypovitaminosis D: chronic kidney disease and low sunlight exposure. This paper describes the prevalence and clinical characteristics of hypovitaminosis D among patients undergoing kidney transplant. We evaluated 25-hydroxyvitamin D serum levels in a representative sample of patients undergoing kidney transplant. We sought to determine the prevalence of hypovitaminosis D, compare these patients with a control group, and identify factors associated with hypovitaminosis D (e.g., sunlight exposure and dietary habits). Hypovitaminosis D was found in 79% of patients undergoing kidney transplant, and the major associated factor was low sunlight exposure. These patients had higher creatinine and intact parathyroid hormone serum levels, with 25-hydroxyvitamin D being inversely correlated with intact parathyroid hormone serum levels. Compared with the control group, patients undergoing kidney transplant presented a higher prevalence of 25-hydroxyvitamin D deficiency and lower serum calcium, phosphate and albumin but higher creatinine and intact parathyroid hormone levels. Our results confirmed the high prevalence of hypovitaminosis D in patients undergoing kidney transplant. Therapeutic strategies such as moderate sunlight exposure and vitamin D supplementation should be seriously considered for this population.

  3. Analysis of daylight performance of solar light pipes influenced by size and shape of sunlight captures

    Science.gov (United States)

    Wu, Yanpeng; Jin, Rendong; Zhang, Wenming; Liu, Li; Zou, Dachao

    2009-11-01

    Experimental investigations on three different sunlight captures with diameter 150mm, 212mm, 300mm were carried out under different conditions such as sunny conditions, cloudy conditions and overcast conditions and the two different size solar light pipes with diameter 360mm and 160mm under sunny conditions. The illuminance in the middle of the sunlight capture have relationship with its size, but not linear. To improve the efficiency of the solar light pipes, the structure and the performance of the sunlight capture must be enhanced. For example, University of Science and Technology Beijing Gymnasium, Beijing 2008 Olympic events of Judo and Taekwondo, 148 solar light pipes were installed with the diameter 530mm for each light pipe. Two sunlight captures with different shape were installed and tested. From the measuring results of the illuminance on the work plane of the gymnasium, the improvement sunlight captures have better effects with the size of augmenting and the machining of the internal surface at the same time, so that the refraction increased and the efficiency of solar light pipes improved. The better effects of supplementary lighting for the gymnasium have been achieved.

  4. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    DEFF Research Database (Denmark)

    Meusinger, Carl; Berhanu, Tesfaye A.; Erbland, Joseph

    2014-01-01

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes...... undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼ 1%, much lower than reported for aqueous chemistry. A companion paper...... presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study....

  5. Is casual exposure to summer sunlight effective at maintaining adequate vitamin D status?

    Science.gov (United States)

    Diffey, Brian L

    2010-08-01

    The advice that an adequate vitamin D status can be achieved by short, casual exposure to summer sunlight is ubiquitous. This review will examine the value of this advice. The results of experimental studies on changes in serum 25-hydroxyvitamin D [25(OH)D] concentrations following ultraviolet exposure are interpreted in the context of human exposure to sunlight. It is shown that current advice about modest sun exposure during the summer months does little in the way of boosting overall 25(OH)D levels, while sufficient sun exposure that could achieve a worthwhile benefit would compromise skin health. Failure to understand the nature of human exposure to sunlight has led to misguided advice concerning the sun exposure necessary for an adequate vitamin D status.

  6. Effect of sunlight on the survival of pathogenic E. coli in freshwater and sea water

    DEFF Research Database (Denmark)

    Surendraraj, Alagarsamy; Farvin, Sabeena; Thampuran, N.

    2011-01-01

    An enteropathogenic group of E. coli are the emerging category of pathogen of public health significance. Several recent pathogenic E. coli outbreaks are associated with drinking water. Aquaculture, the fast emerging food production sector also poses a pathogenic EHEC outbreak risk, as it regularly...... uses cow dung, a reservoir of this organism. Hence, a experiment was set up to study the duration of survival of pathogenic E. coli under sunlight and darkness. Eight pathogenic E. coli isolates from clinical (EPEC, ETEC, EHEC, EAEC), veterinary (CTE3, CTE4) and environmental sources (ASHE3, Rao II......) were studied for their survival under sunlight and darkness in fresh water and seawater. Effect of direct sunlight on the viable but nonculturable (VBNC) state of cultures was also studied. The results of the study indicated a distinct pattern between freshwater system and seawater system. Pathogenic E...

  7. Optical modeling of sunlight by using partially coherent sources in organic solar cells.

    Science.gov (United States)

    Alaibakhsh, Hamzeh; Darvish, Ghafar

    2016-03-01

    We investigate the effects of coherent and partially coherent sources in optical modeling of organic solar cells. Two different organic solar cells are investigated: one without substrate and the other with a millimeter-sized glass substrate. The coherent light absorption is calculated with rigorous coupled-wave analysis. The result of this method is convolved with a distribution function to calculate the partially coherent light absorption. We propose a new formulation to accurately model sunlight as a set of partially coherent sources. In the structure with glass substrate, the accurate sunlight modeling results in the elimination of coherent effects in the thick substrate, but the coherency in other layers is not affected. Using partially coherent sources instead of coherent sources for simulations with sunlight results in a smoother absorption spectrum, but the change in the absorption efficiency is negligible.

  8. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    Science.gov (United States)

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis.

  9. De Novo Assembly and Comparative Transcriptome Analyses of Red and Green Morphs of Sweet Basil Grown in Full Sunlight

    National Research Council Canada - National Science Library

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Guidi, Lucia; Gori, Antonella; Marzano, Cristina; Landi, Marco; Sebastiani, Federico

    2016-01-01

    .... The development of a reference transcriptome for sweet basil, and the analysis of differentially expressed genes in acyanic and cyanic cultivars exposed to natural sunlight irradiance, has interest...

  10. Sunlight-stimulated phenylalanine ammonia-lyase (PAL activity and anthocyanin accumulation in exocarp of ‘Mahajanaka’ mango

    Directory of Open Access Journals (Sweden)

    Kobkiat Saengnil

    2011-11-01

    Full Text Available The activity of phenylalanine ammonia-lyase (PAL required for anthocyanin synthesis was stimulated by sunlight exposure resulting in the development of red colour in ‘Mahajanaka’ mango exocarp, which occurred only on the sunlight-exposed side of the fruit. The accumulation of anthocyanin was concurrent with the increase in PAL activity in the mature stage of the fruit. The exposed side of the fruit had higher PAL activity, endogenous sugar content, and anthocyanin accumulation than the unexposed side. It is concluded that sunlight increases red colour development of the mango exocarp by inducing PAL activity. Exposure to sunlight also enhances endogenous sugar accumulation in mango fruit.

  11. Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis

    Science.gov (United States)

    Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.

    1999-01-01

    Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000

  12. Railway suicide attempts are associated with amount of sunlight in recent days.

    Science.gov (United States)

    Kadotani, Hiroshi; Nagai, Yumiko; Sozu, Takashi

    2014-01-01

    To assess the relationship between hours of sunlight and railway suicide attempts, 3-7 days before these attempts. All railway suicide attempts causing railway suspensions or delays of 30 min or more between 2002 and 2006. We used a linear probability model to assess this relationship. This study was conducted at Tokyo, Kanagawa, and Osaka prefectures in Japan. Data were collected from the railway delay incident database of the Japanese Railway Technical Research Institute and public weather database of the Japan Meteorological Agency. About 971 railway suicides attempts occurred between 2002 and 2006 in Tokyo, Kanagawa, and Osaka. Less sunlight in the 7 days leading up to the railway suicide attempts was associated with a higher proportion of attempts (p=0.0243). Sunlight over the 3 days before an attempt had a similar trend (p=0.0888). No difference was found in sunlight hours between the days with (median: 5.6 [IQR: 1.1-8.8]) and without (median: 5.7 [IQR: 1.0-8.9]) railway suicide attempts in the evening. Finally, there was no apparent correlation between the railway suicide attempts and the monthly average sunlight hours of the attempted month or those of a month before. Railway suicides were not the main suicidal methods in Japan, We observed an increased proportion of railway suicide attempts after several days without sunlight. Light exposure (blue light or bright white light) in trains may be useful in reducing railway suicides, especially when consecutive days without sunshine are forecasted. © 2013 Elsevier B.V. All rights reserved.

  13. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    Science.gov (United States)

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-01

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  14. Laser photolysis of interaction of poly-guanylic acid (5′) with anthraquinone-2-sulfonate

    Institute of Scientific and Technical Information of China (English)

    马建华; 林维真; 王文峰; 韩镇辉; 姚思德; 林念芸

    2002-01-01

    The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly- guanylic acid (5′) in CH3CN-H2O (97:3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.

  15. Laser photolysis of interaction of poly-guanylic acid (5’) with anthraquinone-2-sulfonate

    Institute of Scientific and Technical Information of China (English)

    马建华; 韩镇辉; 林维真; 姚思德; 王文峰; 林念芸

    2002-01-01

    The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly-guanylic acid (5’) in CH3CN-H2O (97 : 3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.

  16. Degradation of Dissolved Organic Carbon from Discontinuous Permafrost Due to Photolysis and Different Inoculants

    Science.gov (United States)

    Aukes, P.; Schiff, S. L.

    2013-12-01

    Northern areas with permafrost are very susceptible to a warming climate. Temperature increases can alter hydrologic flow paths, increase the depth and biogeochemistry of the active layer, and degrade and reduce the amount of remaining permafrost. Particularly, loss of permafrost will release large stores of previously unavailable frozen carbon to the environment. Dissolved organic carbon (DOC) plays many important roles that affect both ecosystem health and drinking water quality. Comprised of countless different molecules, DOC absorbs harmful ultra-violet (UV) radiation and controls thermal regimes of lakes, is an important energy and nutrient source for heterotrophic microbes, complexes with and transports heavy metals, and reacts during chlorination of drinking water to form carcinogenic disinfection by-products. Since the ultimate fate of DOC depends on its reactivity with the surrounding environment, the implications of DOC released from permafrost for ecosystems and drinking water quality will vary across the landscape. We used 90-day lab incubations to assess the differences in quality of DOC by observing the susceptibility for DOC to degrade among various discontinuous-permafrost sources. Specifically, UV-photolysis and two surface water inoculants (pond and creek water filtered to 2.0μm) were used to represent the dominant degradation pathways encountered within the environment. Samples were taken in July 2013 from three locations (pond, creek, and wetland porewater) in a region of discontinuous permafrost near Yellowknife, NWT, Canada. We observed changes to the composition and quality of DOC resulting from photolysis and degradation by two inoculants over 90 days, where DOC quality was determined by Liquid Chromatography - Organic Carbon Detection, DOC:DON, UV-absorbance, and changes to other constituents (DIC, δ13C-DIC, CO2). We hypothesize that UV-photolysis and microbial degradation will readily degrade easily accessible and reactive components of

  17. Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin.

    OpenAIRE

    Milder, S J; Bjorling, S.C.; Kuntz, I D; Kliger, D S

    1988-01-01

    Time-resolved circular dichroism (TRCD) and absorption spectroscopy are used to follow the photolysis reaction of (carbonmonoxy)myoglobin (MbCO). Following the spectral changes associated with the initial loss of CO, a subtle change is observed in the visible absorption spectrum of the Mb product on a time scale of a few hundred nanoseconds. No changes are seen in the CD spectrum of Mb in the visible and near-UV regions subsequent to the loss of CO. The data suggest the existence of an interm...

  18. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Gmurek, M., E-mail: marta.gmurek@p.lodz.pl [Lodz University of Technology, Faculty of Process & Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 90-924 Lodz (Poland); Horn, H.; Majewsky, M. [Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2015-12-15

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M + H]{sup +} was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24 h) and that there is no change over the treatment time on EC{sub 50}. In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. - Highlights: • During SMX photolysis experiments, nine TPs were identified by reference standards. • Six further TPs of SMX phototransformation were found. • A TP with a m/z 271 was tentatively confirmed as 4-,x-dihydroxylated SMX. • The mixture exhibitsluminescence inhibition without changes over the irradiation time. • Growth inhibition was found to slightly decrease over the irradiation time.

  19. Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm

    KAUST Repository

    Burhan, Muhammad

    2016-02-14

    Owing to the intermittent solar irradiance from cloud cover in the diurnal period and unavailability at night time, the practical design of a solar system requires energy backup storage for an uninterrupted supply or for off-grid operation. However, for highly efficient CPV (concentrated photovoltaic) system, the literature is lacking for energy management and optimization algorithm and tool for standalone operation. In this paper, a system with CPV and electrolyser is presented where beam irradiance of sunlight is harnessed to convert the instantaneously generated electricity into useful Hydrogen/Oxygen gas, where they can be stored and re-used for downstream applications such as the fuel cells, etc. The multi-variable design and multi-objective optimization strategies are proposed and presented for a standalone operation of the CPV-Hydrogen system as well as their system performances, particularly electrical rating of CPV based upon the real weather data of Singapore. © 2016 Elsevier Ltd.

  20. Using metal nanostructures to form hydrocarbons from carbon dioxide, water and sunlight

    Science.gov (United States)

    Wang, Cong; Shen, Mengyan; Huo, Haibin; Ren, Haizhou; Johnson, Michael

    2011-12-01

    Based on experimental results, we propose a mechanism that allows the use of metal nanostructures to synthesize hydrocarbons and carbohydrates from carbon dioxide, water and sunlight. When sunlight impinges on cobalt nanostructures in a glass chamber, its intensity is greatly enhanced around the tips of the nanostructures through surface plasmon excitations focusing effect, and it then photodissociates the water and carbon dioxide molecules through enhanced photon absorptions of ions around the tips of the nanostructures. The photodissociated molecules in excited states remain on the cobalt nanostructure surfaces and various hydrocarbons and carbohydrates then will be formed around the surfaces at temperatures much lower than 100 oC.

  1. Socioeconomic status, sunlight exposure, and risk of malignant melanoma: the Western Canada Melanoma Study.

    Science.gov (United States)

    Gallagher, R P; Elwood, J M; Threlfall, W J; Spinelli, J J; Fincham, S; Hill, G B

    1987-10-01

    In a study of 261 male melanoma patients and age-and sex-matched controls, a strong positive univariate association between socioeconomic status, as determined by usual occupation, and risk of melanoma was detected. This association, however, was substantially explained by host constitutional factors and occupational, recreational, and vacation sunlight exposure. The study demonstrated an increased risk of melanoma in draftsmen and surveyors and a reduced risk of melanoma in construction workers and individuals employed in the finance, insurance, and real estate industry even after control for the effect of host factors and sunlight exposure.

  2. Test technology on CCD anti-sunlight jamming based on complex circumstance

    Science.gov (United States)

    Shi, Sheng-bing; Chen, Zhen-xing; Han, Fu-li

    2016-09-01

    Visible-light reconnaissance device based on CCD is applied to all kinds of weapons, CCD cannot work because of saturation when it faces intense light. Sun is intense light source in nature and assignably influences CCD performance. In this paper, aim is appraising CCD anti-sunlight ability, object reflection characteristic test system is designed, based on typical background reflection characteristic including grant, sand and so on, complex circumstance is formulated and test project is optimized with orthogonal design method, problem that is without test technology on CCD anti-sunlight jamming is solved.

  3. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions.

    Science.gov (United States)

    Sun, Peizhe; Lee, Wan-Ning; Zhang, Ruochun; Huang, Ching-Hua

    2016-12-20

    Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br(-) and Cl(-) may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.

  4. Photolysis pathway of nitroaromatic compounds in aqueous solutions in the UV/H2O2 process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; YANG Chun; GOH Ngoh Khang

    2006-01-01

    Nitroaromatic compounds such as nitrobenzene and nitrophenols are largely synthesised and particularly often occur in water bodies as toxic pollutants. The degradation of these compounds in the environment via direct photolysis and by biological treatment is difficult and usually slow. In our two previous published papers, we have discussed the advanced oxidation of nitrobenzene and nitrophenols in aqueous solutions irradiated by direct photolysis using polychromatic light and by means of UV/H2O2 process. The experimental results suggested the UV/H2O2 process is an effective and efficient technology for complete mineralization of these organic compounds. Based on the results therein, comprehensive reaction mechanism for nitrobenzene photolysis was proposed with detailed discussions.

  5. Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence.

    Science.gov (United States)

    Wang, Dan; Yu, Zhixin; Yan, Jiaqing; Xue, Fenqin; Ren, Guoping; Jiang, Chenxi; Wang, Weimin; Piao, Yueshan; Yang, Xiaofeng

    2017-01-01

    The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. The photolysis of caged-γ-aminobutyric acid (caged-GABA) represents a novel and alternative option for the treatment of intractable epilepsy. Our previous experimental results have demonstrated that the use of blue light produced by light-emitting diode to uncage ruthenium-bipyridine-triphenylphosphine-c-GABA (RuBi-GABA) can rapidly terminate paroxysmal seizure activity both in vitro and in vivo. However, the optimal concentration of RuBi-GABA, and the intensity of illumination to abort seizures, remains unknown. The aim of this study was to explore the optimal anti-seizure effects of RuBi-GABA by using implantable fibers to introduce blue light into the neocortex of a 4-aminopyridine-induced acute seizure model in rats. We then investigated the effects of different combinations of RuBi-GABA concentrations and light intensity upon seizure. Our results show that the anti-seizure effect of RuBi-GABA has obvious concentration and light intensity dependence. This is the first example of using an implantable device for the photolysis of RuBi-GABA in the therapy of neocortical seizure, and an optimal combination of RuBi-GABA concentration and light intensity was explored. These results provide important experimental data for future clinical translational studies.

  6. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  7. Degradation of water polluted with used cooking oil by solar photolysis, Fenton and solar photo Fenton.

    Science.gov (United States)

    Vergara-Sánchez, J; Silva-Martínez, S

    2010-01-01

    The degradation of used cooking safflower oil aqueous solutions by photolysis, Fenton, and photo Fenton under solar light is reported. The processes were carried out in a photochemical reactor with recirculation. Operating variables such as, pH, oil concentration and molar ratio of [H(2)O(2)]:[oil] were investigated to test their effects on the treatment efficiency of Fenton process. Also the iron catalyzed decomposition of hydrogen peroxide in the solar photo Fenton reaction was studied under different experimental conditions. The degree of oil oxidation was monitored by the measurements of chemical oxygen demand (COD) analyses. It was found that at pH 2.6 and a molar ratio of [H(2)O(2)]:[oil] of 489:1 were more efficient for COD abatement. The experimental results showed that the sole effect of the solar irradiation (photolysis) aided to decrease approximately 65% of COD at neutral pH in a reaction time period of 15 h; whereas a decrease of 47% and approximately 90% of COD was obtained by Fenton and photo Fenton treatment, respectively, after a reaction time of 50 min. It was observed a decrease in the decomposition of H(2)O(2) in the solar photo Fenton process, in subsequent additions of H(2)O(2), and H(2)O(2) + Fe(2+).

  8. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects.

    Science.gov (United States)

    Kovacic, Marin; Juretic Perisic, Daria; Biosic, Martina; Kusic, Hrvoje; Babic, Sandra; Loncaric Bozic, Ana

    2016-08-01

    In this study, the photolysis behavior of commonly used anti-inflammatory drug diclofenac (DCF) was investigated using UV-C and UV-A irradiation. In that purpose, DCF conversion kinetics, mineralization of organic content, biodegradability, and toxicity were monitored and compared. The results showed different kinetics of DCF conversion regarding the type of UV source applied. However, in both cases, the mineralization extent reached upon complete DCF conversion is rather low (≤10 %), suggesting that the majority of DCF was transformed into by-products. Formation/degradation of main degradation by-products was monitored using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), whereas different profiles were obtained by UV-C and UV-A photolysis. The results of bioassays revealed that biodegradability of DCF solutions remained low through the applied treatments. The toxicity of irradiated DCF solutions was evaluated using Vibrio fischeri. A significant reduction of toxicity, especially in the case of UV-A radiation, was observed upon complete degradation of DCF. In addition to toxicity reduction, calculated Log K OW values of DCF degradation by-products indicate their low potential for bioaccumulation (Log K OW ≤ 3) in comparison to the parent substance.

  9. Photolysis and cellular toxicities of the organic ultraviolet filter chemical octyl methoxycinnamate and its photoproducts.

    Science.gov (United States)

    Stein, Hannah V; Berg, Courtney J; Maung, Jessica N; O'Connor, Lauren E; Pagano, Alexandra E; MacManus-Spencer, Laura A; Paulick, Margot G

    2017-06-21

    Organic ultraviolet filter chemicals (UVFCs) are the active ingredients used in many sunscreens to protect the skin from UV light; these chemicals have been detected in numerous aquatic environments leading to concerns about how they might affect aquatic organisms and humans. One commonly used organic UVFC is octyl methoxycinnamate (OMC), better known by its commercial name, octinoxate. Upon exposure to UV light, OMC degrades rapidly, forming numerous photoproducts, some of which have been previously identified. In this study, we isolated and completely characterized the major products of OMC photolysis, including the two major stable OMC cyclodimers. One of these cyclodimers is a δ-truxinate, resulting from a head-to-head dimerization of two OMC molecules, and the other cyclodimer is an α-truxillate, resulting from a head-to-tail dimerization of two OMC molecules. Additionally, the cellular toxicities of the individual photoproducts were determined; it was found that the parent UVFC, OMC, 4-methoxybenzaldehyde, and two cyclodimers are significantly toxic to cells. The photoproduct 2-ethylhexanol is not cytotoxic, demonstrating that different components of OMC photolysate contribute differently to its cellular toxicity. This study thus provides an enhanced understanding of OMC photolysis and gives toxicity data that can be used to better evaluate OMC as a sunscreen agent.

  10. The effect of hydrogen peroxide and solvent on photolysis of PCBs to reduce occupational exposure

    Directory of Open Access Journals (Sweden)

    Hasan Asilian

    2010-09-01

    Full Text Available Background: Polychlorinated biphenyls (PCBs are toxic bio-accumulate components and may increase risk of adverse effects on human health and the environment. For different social, technical and economic reasons, significant quantities of PCBs contaminated transformer oil are still in use or storied. The study aimed to determine the effect of hydrogen peroxide and solvent on photolysis of PCBs to reduce occupational exposure. Methods: The photochemical annular geometry (500 ml volume reactor was designed with a cylindrical low-pressure mercury lamp (UV-C Cathodeon TUV 6WE with emission at 254 nm. The radiant power emitted by the lamp was 6w. The whole lamp was immersed in a reactor thermostat controlling of temperature at 32 ± 2 oC. The PCBs was determined using GC/ECD and data was analyzed by SPSS. Results: Degradation of total PCBs in terms of %10 and %20 of volume of H2O2 were 41%, 75% and 94%, respectively. The degradation of total PCBs in terms of ratio to solvent with oil transformer in 1:1, 2:1 and 3:1 was 61%, 75% and 94%, respectively. Conclusion: Our study show that UV-C photolysis of H2O2 leads to a degradation efficiency of PCBs only in the presence of isooctane, therefore indicating that the intermediates formation after ethanol oxidation are able to initiate PCBs degradation.

  11. Synergistic effect of proanthocyanidin on the bactericidal action of the photolysis of H2O2.

    Science.gov (United States)

    Ikai, Hiroyo; Nakamura, Keisuke; Kanno, Taro; Shirato, Midori; Meirelles, Luiz; Sasaki, Keiichi; Niwano, Yoshimi

    2013-01-01

    The in vitro antibacterial activity of the hydroxyl radical generation system by the photolysis of H2O2 in combination with proanthocyanidin, which refers to a group of polyphenolic compounds, was examined. Bactericidal activity of photo-irradiated H2O2 at 405 nm against Streptococcus mutans, a major pathogen of dental caries, was augmented in the presence of proanthocyanidin, whose bactericidal effect by itself was very poor, in a concentration-dependent manner. This combination was also proven effective against Porphyromonas gingivalis, a major pathogen of periodontitis. It is speculated that H2O2, generated from photo-irradiated proanthocyanidin around the bacterial cells, is photolyzed to the hydroxyl radical, which would in turn affect the membrane structure and function of the bacterial cells, resulting in augmented sensitivity of bacterial cells to the disinfection system utilizing the photolysis of H2O2. The present study suggests that the combination of H2O2 and proanthocyanidin works synergistically to kill bacteria when photo-irradiated.

  12. Selective formation of triplet alkyl nitrenes from photolysis of beta-azido-propiophenone and their reactivity.

    Science.gov (United States)

    Singh, Pradeep N D; Mandel, Sarah M; Sankaranarayanan, Jagadis; Muthukrishnan, Sivaramakrishnan; Chang, Mingxin; Robinson, Rachel M; Lahti, Paul M; Ault, Bruce S; Gudmundsdóttir, Anna D

    2007-12-26

    Photolysis of beta-azido propiophenone derivatives, 1, with built-in sensitizer units, leads to selective formation of triplet alkyl nitrenes 2 that were detected directly with laser flash photolysis (lambdamax = 325 nm, tau = 27 ms) and ESR spectroscopy (|D/hc| = 1.64 cm-1, |E/hc| = 0.004 cm-1). Nitrenes 2 were further characterized with argon matrix isolation, isotope labeling, and molecular modeling. The triplet alkyl nitrenes are persistent intermediates that do not abstract H-atoms from the solvent but do decay by dimerizing with another triplet nitrene to form azo products, rather than reacting with an azide precursor. The azo dimer tautomerizes and rearranges to form heterocyclic compound 3. Nitrene 2a, with an n,pi* configuration as the lowest triplet excited state of the its ketone sensitizer moiety, undergoes intramolecular 1,4-H-atom abstraction to form biradical 6, which was identified by argon matrix isolation, isotope labeling, and molecular modeling. beta-Azido-p-methoxy-propiophenone, with a pi,pi* lowest excited state of its triplet sensitizer moiety, does not undergo any secondary photoreactions but selectively yields only triplet alkyl nitrene intermediates that dimerize to form 3b.

  13. Efficiencies and Physical Principles of Various Solar Energy Conversion Processes Leading to the Photolysis of Water

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, T.

    1995-12-31

    In the application of solar energy, hydrogen is likely to be used as an energy carrier and a storage medium. Production of molecular hydrogen and oxygen from water requires energy input, which may come from solar energy in various ways. This thesis begins with a literature survey of the different conversion processes and the efficiencies, which is an introduction to a series of enclosed papers. These papers are: (1) Trapping of Minority Charge Carriers at Irradiated Semiconductor/Electrolyte Heterojunctions, (2) Model Calculations on Flat-Plate Solar Heat Collector With Integrated Solar Cells, and (3) Efficiencies and Physical Principles of Photolysis of Water By Microalgae. In the papers, The qualitative features of the ``illumination-current``-characteristic curve are deduced. The hypothesis is that trapping originates in some specific cases because of confinement, which leads to charge injections into energy states above that corresponding to the band edge. The quantitative features of certain hybrid photovoltaic/thermal configuration are deduced. An analysis of the theoretical and realizable efficiencies of the photolysis of water by micro algae is given. 151 refs., 18 figs., 1 table

  14. Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde

    Science.gov (United States)

    Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry

    2016-09-01

    Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.

  15. Kinetics of calcium uptake by isolated sarcoplasmic reticulum vesicles using flash photolysis of caged adenosine 5'-triphosphate.

    Science.gov (United States)

    Pierce, D H; Scarpa, A; Topp, M R; Blasie, J K

    1983-11-08

    The kinetics of ATP-induced Ca2+ uptake by vesicular dispersions of sarcoplasmic reticulum were determined with a time resolution of about 10 ms, depending on the temperature. Ca2+ uptake was initiated by the addition of ATP through the flash photolysis of P3-1-(2-nitrophenyl)-ethyl adenosine 5'-triphosphate utilizing a frequency-doubled ruby laser and measured with two different detector systems that followed the absorbance changes of the metallochromic indicator arsenazo III sensitive to changes in the extravesicular [Ca2+]. The temperature range investigated was -2 to 26 degrees C. The Ca2+ ionophore A23187 was used to distinguish those features of the Ca2+ uptake kinetics associated with the formation of a transmembrane Ca2+ gradient. The acid-stable phosphorylated enzyme intermediate, E approximately P, was determined independently with a quenched-flow technique. Ca2+ uptake is characterized by at least two phases, a fast initial phase and a slow phase. The fast phase exhibits pseudo-first-order kinetics with a specific rate constant of 64 +/- 10 s-1 at 23-26 degrees C, an activation energy of 16 +/- 1 kcal mol-1, and a delta S* of approximately 5 cal deg-1 mol-1, is insensitive to the presence of a Ca2+ ionophore, and occurs simultaneously with the formation of the phosphorylated enzyme, E approximately P, with a stoichiometry of approximately 2 mol of Ca2+/mol of phosphorylated enzyme intermediate. The slow phase also exhibits pseudo-first-order kinetics with a specific rate constant of 0.60 +/- 0.09 s-1 at 25-26 degrees C, an activation energy of 22 +/- 1 kcal mol-1, and a delta S* of approximately 16 cal deg-1 mol-1, is inhibited by the presence of a Ca2+ ionophore, and has a stoichiometry of approximately 2 mol of Ca2+/mol of ATP hydrolyzed.

  16. Laser Flash Photolysis Studies of Radical-Radical Reaction Kinetics: The O((sup 3)P(sub J)) + BrO Reaction

    Science.gov (United States)

    Thorn, R. P.; Cronkhite, J. M.; Nicovich, J. M.; Wine, P. H.

    1997-01-01

    A novel dual laser flash photolysis-long path absorption-resonance fluorescence technique has been employed to study the kinetics of the important stratospheric reaction 0((sup 3)P(sub j)) + Br yields(k1) BrO((sup 2)P(sub J)) + O2 as a function of temperature (231-328 K) and pressure (25-150 Torr) in N2 buffer gas. The experimental approach preserves the principal advantages of the flash photolysis method, i.e., complete absence of surface reactions and a wide range of accessible pressures, but also employs techniques which are characteristic of the discharge flow method, namely chemical titration as a means for deducing the absolute concentration of a radical reactant and use of multiple detection axes. We find that k1 is independent of pressure, and that the temperature dependence of k1 is adequately described by the Arrhenius expression k1(T) = 1.91 x 10(exp -11)(230/J) cu cm/ molecule.s; the absolute accuracy of measured values for k1 is estimated to vary from +/- 20 percent at at T approximately 230 K to +/- 30 percent at T approximately 330 K. Our results demonstrate that the O((sup 3)P(sub j)) + BrO rate coefficient is significantly faster than previously 'guesstimated,' and suggest that the catalytic cycle with the O((sup 3)P(sub j)) + BrO reaction as its rate-limiting step is the dominant stratospheric BrO(x), odd-oxygen destruction cycle at altitudes above 24 km.

  17. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  18. Laser photolysis and thermolysis of organic selenides and tellurides for chemical gas-phase deposition of nanostructured materials.

    Science.gov (United States)

    Pola, Josef; Ouchi, Akihiko

    2009-03-12

    Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn) element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  19. Quantum yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2

    Science.gov (United States)

    Schiffman, A.; Nelson, D. D., Jr.; Nesbitt, D. J.

    1993-05-01

    Flash kinetic spectroscopy in a flow tube is used to measure at room temperature the absolute yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2. The OH radicals are produced by excimer laser photolysis and probed via direct absorption of high resolution tunable IR laser light. The results indicate quantum yields for both precursors at both wavelengths which are less than the maximum possible values of 1 for H2O2. The present measurements are discussed in light of contrasting results suggested from other work.

  20. HISTORY OF SUNLIGHT EXPOSURE IS A RISK FACTOR FOR AGE-RELATED MACULAR DEGENERATION

    NARCIS (Netherlands)

    Schick, T.; Ersoy, L.; Lechanteur, Y.T.; Saksens, N.T.; Hoyng, C.B.; Hollander, A.I. den; Kirchhof, B.; Fauser, S.

    2016-01-01

    PURPOSE: To evaluate effects of current and past sunlight exposure and iris color on early and late age-related macular degeneration (AMD). METHODS: Of 3,701 individuals from the EUGENDA database, 752 (20.3%) showed early AMD, 1,179 (31.9%) late AMD, and 1,770 (47.8%) were controls. Information abou

  1. Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited

    DEFF Research Database (Denmark)

    Glerup, H; Mikkelsen, K; Poulsen, L

    2000-01-01

    intake analysis to estimate the oral intake of vitamin D necessary to keep a normal vitamin D status in sunlight-deprived individuals. DESIGN: Cross-sectional study amongst randomly selected Moslem women of Arab origin living in Denmark. Age-matched Danish women were included as controls. To control...

  2. [The Impact of Sunlight Exposure on the Health of Older Adults].

    Science.gov (United States)

    Lin, Tzu-Chia; Liao, Yen-Chi

    2016-08-01

    Appropriate exposure to sunlight not only contributes to the production of vitamin D, which has been associated with enhanced bone health, mood, and cognitive functions, but also regulates the secretion of melatonin, which has been associated with the mediation of circadian rhythms, improved sleep quality, and optimized physical and social activity in the elderly. However, damage to the skin, eyes, and immune system has also been widely associated with long-term exposure to sunlight. Several studies have shown that many elderly, especially those that reside in institutions, do not receive sufficient sunlight exposure. Institutionalized elderly tend to participate in indoor activities and spend significant periods of time alone and asleep in front of the television. Furthermore, factors such as poor health, environmental design, indoor/outdoor preference, and activity design may impact the access of institutionalized elderly to sunlight more than their non-institutionalized peers. Therefore, we suggest that in addition to obtaining sufficient levels of vitamin D from their diet and from supplements, the elderly should perform outdoor activities for 20-30 minutes a day for five days each week. Furthermore, we suggest that the environment of the care facility should be made be more accessible and that some activities should be held outdoors.

  3. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.

    Science.gov (United States)

    Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza

    2016-10-01

    The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight

    NARCIS (Netherlands)

    Galagan, Y.O.; Mescheloff, A.; Veenstra, S.C.; Andriessen, H.A.J.M.; Katz, E.A.

    2015-01-01

    Stabilities of ITO-containing and ITO-free organic solar cells were investigated under simulated AM 1.5G illumination and under concentrated natural sunlight. In both cases ITO-free devices exhibit high stability, while devices containing ITO show degradation of their photovoltaic performance. The a

  5. The relationships among birth season, sunlight exposure during infancy, and allergic disease.

    Science.gov (United States)

    Hwang, Jung Min; Oh, Se Hyun; Shin, Mee Yong

    2016-05-01

    The recent increase in the prevalence of allergic diseases is hypothetically attributed to immune dysregulation in turn caused by a reduction in exposure to sunlight. We explored relationships between birth season, sunlight exposure, exercise duration, and an allergic disease. We performed a questionnaire-based survey on allergic diseases among elementary school students. Birth time was categorized according to the season (summer and winter). The prevalence of atopic dermatitis (AD) "symptoms ever" was higher in the children born in winter than in those born in summer (adjusted odds ratio [aOR], 1.24; 95% confidence interval [CI], 1.03-1.49; P=0.024). Birth in winter was associated with an increase in the "symptoms in the past 12 months" prevalence of food allergy (FA) (aOR, 1.56; 95% CI, 1.09-2.24; P=0.015). The lifetime prevalence of allergic diseases except FA was higher in the children whose parents considered their sunlight exposure prior to 24 months of ageas inadequate than those who considered their exposure as adequate ("diagnosis ever" asthma: aOR, 1.4; 95% CI, 1.17-1.67; Psunlight exposure nor exercise duration was associated with the prevalence of an allergic disease. Birth in winter may be associated with development of AD and FA. Inadequate sunlight exposure before the age of 24 months might possibly increase the risks of development of asthma, AR, and AD.

  6. HISTORY OF SUNLIGHT EXPOSURE IS A RISK FACTOR FOR AGE-RELATED MACULAR DEGENERATION

    NARCIS (Netherlands)

    Schick, T.; Ersoy, L.; Lechanteur, Y.T.; Saksens, N.T.; Hoyng, C.B.; Hollander, A.I. den; Kirchhof, B.; Fauser, S.

    2016-01-01

    PURPOSE: To evaluate effects of current and past sunlight exposure and iris color on early and late age-related macular degeneration (AMD). METHODS: Of 3,701 individuals from the EUGENDA database, 752 (20.3%) showed early AMD, 1,179 (31.9%) late AMD, and 1,770 (47.8%) were controls. Information abou

  7. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  8. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    Science.gov (United States)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  9. Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight.

    Science.gov (United States)

    Felis, Ewa; Sochacki, Adam; Magiera, Sylwia

    2016-11-01

    Laboratory-scale experiments were performed using unsaturated subsurface-flow treatment wetlands and artificial sunlight (with and without TiO2) to study the efficiency of benzotriazole and benzothiazole removal and possible integration of these treatment methods. Transformation products in the effluent from the treatment wetlands and the artificial sunlight reactor were identified by high performance liquid chromatography coupled with tandem mass spectrometry. The removal of benzothiazole in the vegetated treatment wetlands was 99.7%, whereas the removal of benzotriazole was 82.8%. The vegetation positively affected only the removal of benzothiazole. The major transformation products in the effluents from the treatment wetlands were methylated and hydroxylated derivatives of benzotriazole, and hydroxylated derivatives of benzothiazole. Hydroxylation was found to be the main process governing the transformation pathway for both compounds in the artificial sunlight experiment (with and without TiO2). Benzotriazole was not found to be susceptible to photodegradation in the absence of TiO2. The integration of the sunlight-induced processes (with TiO2) with subsurface-flow treatment wetlands caused further elimination of the compounds (42% for benzotriazole and 58% for benzothiazole). This was especially significant for the elimination of benzotriazole, because the removal of this compound was 96% in the coupled processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ubomba-Jaswa, E; Boyle, M A R; McGuigan, K G [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland)], E-mail: kmcguigan@rcsi.ie

    2008-02-01

    Solar Disinfection (SODIS) is a low cost water treatment method currently used in communities that do not have year round access to safe water. However, there is still reluctance in widespread adoption of this treatment method due to a number of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time under simulated sunlight conditions and following a natural temperature profile. EPEC was exposed to simulated sunlight (885Wm{sup -2}) for periods up to a cumulative time of 4 hours. Inactivation was determined by a log reduction in growth of the organisms. The temperature (deg. C) of the water was taken at every time point. After 4 hours exposure EPEC was completely inactivated (7 log reduction) by SODIS. Imposing a realistic water temperature profile (min-max) concomitant with irradiation produces a greater kill of EPEC. Maintaining simulated sunlight experiments at a high fixed temperature may result in over-estimation of inactivation. Following a natural water temperature profile will result in more reliable inactivation comparable with those that might be obtained under natural sunlight conditions.

  11. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    Science.gov (United States)

    Ubomba-Jaswa, E.; Boyle, M. A. R.; McGuigan, K. G.

    2008-02-01

    Solar Disinfection (SODIS) is a low cost water treatment method currently used in communities that do not have year round access to safe water. However, there is still reluctance in widespread adoption of this treatment method due to a number of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time under simulated sunlight conditions and following a natural temperature profile. EPEC was exposed to simulated sunlight (885Wm-2) for periods up to a cumulative time of 4 hours. Inactivation was determined by a log reduction in growth of the organisms. The temperature (°C) of the water was taken at every time point. After 4 hours exposure EPEC was completely inactivated (7 log reduction) by SODIS. Imposing a realistic water temperature profile (min-max) concomitant with irradiation produces a greater kill of EPEC. Maintaining simulated sunlight experiments at a high fixed temperature may result in over --estimation of inactivation. Following a natural water temperature profile will result in more reliable inactivation comparable with those that might be obtained under natural sunlight conditions.

  12. Sunlight exposure increases vitamin D sufficiency in growing pigs fed a diet formulated to exceed requirements.

    Science.gov (United States)

    Alexander, B M; Ingold, B C; Young, J L; Fensterseifer, S R; Wechsler, P J; Austin, K J; Larson-Meyer, D E

    2017-04-01

    Traditional confinement practices limit exposure to sunlight and vitamin D synthesis, and vitamin insufficiency occurs even with dietary supplementation. The aim of this study was to determine the effect of limited sun exposure on serum concentration of vitamin D and the expression of vitamin D synthesizing enzymes in the liver and kidney of pigs on a vitamin D sufficient diet. White-pigmented grower pigs (29.7 ± 2.3 kg) fed 15% CP diet ad libitum providing >1,200 IU vitamin D3/kg of feed were exposed to sunlight for 1 h each day at solar noon for 14 d at the spring equinox (March pigs, n = 10) or summer solstice (June pigs, n = 5) and again before slaughter in June (March pigs) and September (June pigs). Blood for the analysis of 25(OH)D was collected before and after sunlight exposure. Traditionally housed pigs served as controls. After initial sun exposure, blood samples were collected from June pigs daily for 5 d and weekly for 8 wk to determine vitamin D3 and 25(OH)D decay, respectively. Kidney and liver samples were collected from the June pigs at slaughter after sun exposure for analysis of messenger RNA expression of vitamin D binding protein and synthesizing/degrading enzymes. Average daily gain (ADG) was not influenced (P > 0.5) by sunlight exposure. June pigs had fewer days on feed, lower (P = 0.003) ADG and were slaughtered at a lighter (P Exposure to sunlight increased (P sunlight exposure increased serum concentration of 25(OH)D in March pigs by 200% and June pigs by 67%. Serum concentration of vitamin D3 was decreased (P exposure. Expression of vitamin D binding protein, vitamin D synthesizing CYP2R1, CYP27A1, CYP2D25, or degrading enzyme CYP24A1 were not influenced (P ≥ 0.19) by sunlight exposure. Expression of CYP27B1 was decreased (P = 0.04) in the kidney but tended to be increased (P = 0.06) in the liver after sun exposure. These results suggest limited sun exposure can efficiently increase serum concentration of vitamin D in growing pigs

  13. STUDY ON THE PHOTOLYSIS MECHANISM OF POLYESTER FROM SUCCINIC ACID AND N-β-HYDROXYETHYL 2,2,6,6-TETRAMETHYL-4-HYDROXY PIPERIDINE (TINUVIN-622)

    Institute of Scientific and Technical Information of China (English)

    PAN Jiangqing; CUI Song

    1988-01-01

    The photolysis mechanism of polyester of succinic acid with N-β-hydroxyethyl 2,2,6,6-tetramethyl-4-hydroxy piperidine (Tinuvin-622) has been studied by instrumental analysis. The results show that Tinuvin-622 can be easily photolysed. Based on the results of IR, NMR, ESR, GPC, GC, MS, the photolysis mechanism of Tinuvin-622 has been proposed.

  14. IS THERE A LINK BETWEEN SUNLIGHT EXPOSURE AND 25-HYDROXYVITAMIN D DEFICIENCY IN CHRONIC KIDNEY DISEASE PATIENTS?

    Directory of Open Access Journals (Sweden)

    Angela Yee-Moon Wang

    2012-06-01

    In conclusion, our study confirmed an extremely high prevalence of vitamin D deficiency and an important association between outdoor sunlight exposure and 25(OHD deficiency in Chinese stage 3-5 CKD patients. Further study is needed to determine whether increasing daily outdoor sunlight exposure may represent a cost-free treatment for correcting nutritional 25(OHD deficiency in the CKD population.

  15. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    Science.gov (United States)

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects. Copyright © 2015. Published by Elsevier B.V.

  16. Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br.

    Directory of Open Access Journals (Sweden)

    Hyun-Jae Jang

    2017-08-01

    Full Text Available This study investigated the chemical composition changes of Salvia plebeia R.Br. cultivated under different light sources, including florescent light and sunlight. The plants were exposed to fluorescent light for four months and sunlight and then examined for the next 5–7 months. Plants were harvested monthly during the seven months, and we examined whether the difference in light source affected the phenolic and flavonoid contents and antioxidant activity. A simple and reliable HPLC method using a PAH C18 column was applied for the quantitative analysis of two triterpenoids from the S. plebeia groups. Oleanolic acid (OA and ursolic acid (UA showed good linearity (R2 > 0.9999 within the test ranges (0.005–0.05 mg/mL, and the average percentage recoveries of the OA and UA were 95.1–104.8% and 97.2–107.1%, respectively. The intra- and inter-day relative standard deviations (RSDs were less than 2.0%. After exposure to sunlight, the phenolic contents, including rosmarinic acid, showed a reduced tendency, whereas the flavonoid contents, including homoplantaginin and luteolin 7-glucoside, were increased. The content of the triterpenoids also showed an increased tendency under sunlight irradiation, but the variance was not larger than those of the phenolic and flavonoid contents. Among experimental groups, the group harvested at six months, having been exposed to sunlight for two months, showed the most potent antioxidant activity. Therefore, these results showed that the chemical composition and antioxidant activities of S. plebeia R.Br. was affected from environmental culture conditions, such as light source. Our studies will be useful for the development of functional materials using S. plebeia R.Br.

  17. Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br.

    Science.gov (United States)

    Jang, Hyun-Jae; Lee, Seung-Jae; Kim, Cha Young; Hwang, Joo Tae; Choi, Jung Ho; Park, Jee Hun; Lee, Seung Woong; Rho, Mun-Chual

    2017-08-01

    This study investigated the chemical composition changes of Salvia plebeia R.Br. cultivated under different light sources, including florescent light and sunlight. The plants were exposed to fluorescent light for four months and sunlight and then examined for the next 5-7 months. Plants were harvested monthly during the seven months, and we examined whether the difference in light source affected the phenolic and flavonoid contents and antioxidant activity. A simple and reliable HPLC method using a PAH C18 column was applied for the quantitative analysis of two triterpenoids from the S. plebeia groups. Oleanolic acid (OA) and ursolic acid (UA) showed good linearity (R² > 0.9999) within the test ranges (0.005-0.05 mg/mL), and the average percentage recoveries of the OA and UA were 95.1-104.8% and 97.2-107.1%, respectively. The intra- and inter-day relative standard deviations (RSDs) were less than 2.0%. After exposure to sunlight, the phenolic contents, including rosmarinic acid, showed a reduced tendency, whereas the flavonoid contents, including homoplantaginin and luteolin 7-glucoside, were increased. The content of the triterpenoids also showed an increased tendency under sunlight irradiation, but the variance was not larger than those of the phenolic and flavonoid contents. Among experimental groups, the group harvested at six months, having been exposed to sunlight for two months, showed the most potent antioxidant activity. Therefore, these results showed that the chemical composition and antioxidant activities of S. plebeia R.Br. was affected from environmental culture conditions, such as light source. Our studies will be useful for the development of functional materials using S. plebeia R.Br.

  18. Direct sunlight facility for testing and research in HCPV

    Science.gov (United States)

    Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

    2014-09-01

    A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  19. Direct sunlight facility for testing and research in HCPV

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  20. Effect of sunlight exposure on cognitive function among depressed and non-depressed participants: a REGARDS cross-sectional study.

    Science.gov (United States)

    Kent, Shia T; McClure, Leslie A; Crosson, William L; Arnett, Donna K; Wadley, Virginia G; Sathiakumar, Nalini

    2009-07-28

    Possible physiological causes for the effect of sunlight on mood are through the suprachiasmatic nuclei and evidenced by serotonin and melatonin regulation and its associations with depression. Cognitive function involved in these same pathways may potentially be affected by sunlight exposure. We evaluated whether the amount of sunlight exposure (i.e. insolation) affects cognitive function and examined the effect of season on this relationship. We obtained insolation data for residential regions of 16,800 participants from a national cohort study of blacks and whites, aged 45+. Cognitive impairment was assessed using a validated six-item screener questionnaire and depression status was assessed using the Center for Epidemiologic Studies Depression Scale. Logistic regression was used to find whether same-day or two-week average sunlight exposure was related to cognitive function and whether this relationship differed by depression status. Among depressed participants, a dose-response relationship was found between sunlight exposure and cognitive function, with lower levels of sunlight associated with impaired cognitive status (odds ratio = 2.58; 95% CI 1.43-6.69). While both season and sunlight were correlated with cognitive function, a significant relation remained between each of them and cognitive impairment after controlling for their joint effects. The study found an association between decreased exposure to sunlight and increased probability of cognitive impairment using a novel data source. We are the first to examine the effects of two-week exposure to sunlight on cognition, as well as the first to look at sunlight's effects on cognition in a large cohort study.

  1. Sunlight exposure during leisure activities and risk of prostate cancer in Montréal, Canada, 2005-2009.

    Science.gov (United States)

    Yu, Jennifer; Lavoué, Jérôme; Parent, Marie-Élise

    2014-07-28

    Prostate cancer (PCa) is the leading cause of cancer in men in many developed countries, but no modifiable risk factors have been identified. A handful of analytical studies have suggested a possible etiological role for sunlight exposure. We report here on the association between leisure-time sunlight exposure during adulthood and PCa risk in the context of a population-based case-control study. In all, 1,904 PCa cases were ascertained across Montreal French hospitals between 2005 and 2009. Concurrently, 1,962 population controls, frequency matched to cases by age (±5 years), were selected from the electoral list for French-speakers in Greater Montreal. Interviews elicited the frequency of engagement in any leisure activity during adulthood. This was used to derive cumulative sunlight exposure indices: a cumulative number of leisure activities events entailing sunlight exposure and a cumulative duration of sunlight exposure during leisure activities. Unconditional logistic regression was conducted to yield odds ratios (OR) and 95% confidence intervals (CI) for estimating the association between sunlight exposure indices and PCa risk, adjusting for age, ancestry, family history of PCa, PCa screening, education, solar protection, body mass index and physical activity. Compared with men in the upper quartile category for the number of sunlight exposure events, men never exposed during leisure time had an OR of 1.32 (95% CI: 0.82-2.14). ORs were 1.11, 0.91 and 1.00 for the first to the third quartiles of exposure, respectively. Similar results were observed for cumulative duration of exposure to sunlight, and by PCa aggressiveness. These findings provide little evidence of an association between sunlight exposure during leisure-time and PCa risk. Men with no sunlight exposure appeared at somewhat higher risks but none of the estimates achieved statistical significance.

  2. Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by LC-UV–MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Nareman D.H., E-mail: drndahshan@yahoo.com [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Mahmoud, Waleed M.M. [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany); Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Hadad, Ghada M.; Abdel-Salam, Randa A. [Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 (Egypt); Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg (Germany)

    2013-01-15

    Highlights: ► Sulfonamides are one of the most extensively used antibiotics in human and veterinary medicine. ► Sulfamethoxypyridazine (SMP) underwent photodegradation in three different media. ► SMP was not readily biodegradable. ► SMP and some of its degradation products were identified by LC-UV–MS/MS. -- Abstract: Sulfonamides are one of the most frequently used antibiotics worldwide. Therefore, mitigation processes such as abiotic or biotic degradation are of interest. Photodegradation and biodegradation are the potentially significant removal mechanisms for pharmaceuticals in aquatic environments. The photolysis of sulfamethoxypyridazine (SMP) using a medium pressure Hg-lamp was evaluated in three different media: Millipore water pH 6.1 (MW), effluent from sewage treatment plant pH 7.6 (STP), and buffered demineralized water pH 7.4 (BDW). Identification of transformation products (TPs) was performed by LC-UV–MS/MS. The biodegradation of SMP using two tests from the OECD series was studied: Closed Bottle test (OECD 301 D), and Manometric Respirometry test (OECD 301 F). In biodegradation tests, it was found that SMP was not readily biodegradable so it may pose a risk to the environment. The results showed that SMP was removed completely within 128 min of irradiation in the three media, and the degradation rate was different for each investigated type of water. However, dissolved organic carbon (DOC) was not removed in BDW and only little DOC removal was observed in MW and STP, thus indicating the formation of TPs. Analysis by LC-UV–MS/MS revealed new TPs formed. The hydroxylation of SMP represents the main photodegradation pathway.

  3. Photophysical Properties and Photoinduced Electron Transfer between[60]Fullerene—containing Cyclic Sulphoxide [C60—C60H8SO]and Tetrathiafulvalene(TTF) by Laser Flash Photolysis

    Institute of Scientific and Technical Information of China (English)

    曾和平

    2002-01-01

    Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.

  4. Photolysis of alpha-xylyl chlorides: an efficient deep-UV photoinitiating system for radical and cationic polymerization.

    Science.gov (United States)

    Ponce, Patricia; Catalani, Luiz Henrique

    2004-07-01

    Photoacid generators (PAG) are chemical systems where light absorption renders strong acid formation, typically with quantum yields greater than one. Many compounds bearing halogen atoms are reported to produce hydrogen halides upon photolysis. Here, alpha-chloroxylene derivatives (ortho, meta and para) were subject of a photolysis study in order to: (i) determine the operative mechanism, (ii) identify the products formed and (iii) quantify the amount of HCl formed. Product structure and quantum yields of HCl formation where determined for the photolysis of alpha-chloro-o-xylene (1), alpha-chloro-m-xylene (2), alpha-chloro-p-xylene (3), alpha, alpha'-dichloro-o-xylene (4), alpha, alpha'-dichloro-m-xylene (5) and alpha, alpha'-dichloro-p-xylene (6) in apolar (benzene, cumene, ethylbenzene, toluene and isooctane) and polar (methanol, n-propanol, isopropyl alcohol) solvents. Some of these compounds were analysed by laser flash photolysis in argon-purged isooctane as solvent to examine the possible reaction intermediates involved. The observed products are derived from typical radical reactions like recombination, dimerization and hydrogen abstraction from the starting compound or from solvents. The formation of HCl is expected as the result of C-Cl homolysis followed by hydrogen abstraction by chlorine atom. The results showed yields ranging from 1.2 to 18, depending on the conditions used. These numbers indicate the potential use of these compounds as PAG systems for the deep UV region.

  5. Staphylococcus aureus Strain Newman Photoinactivation and Cellular Response to Sunlight Exposure.

    Science.gov (United States)

    McClary, Jill S; Sassoubre, Lauren M; Boehm, Alexandria B

    2017-09-01

    Sunlight influences microbial water quality of surface waters. Previous studies have investigated photoinactivation mechanisms and cellular photostress responses of fecal indicator bacteria (FIB), including Escherichia coli and enterococci, but further work is needed to characterize photostress responses of bacterial pathogens. Here we investigate the photoinactivation of Staphylococcus aureus (strain Newman), a pigmented, waterborne pathogen of emerging concern. We measured photodecay using standard culture-based assays and cellular membrane integrity and investigated photostress response by measuring the relative number of mRNA transcripts of select oxidative stress, DNA repair, and metabolism genes. Photoinactivation experiments were performed in both oxic and anoxic systems to further investigate the role of oxygen-mediated and non-oxygen-mediated photoinactivation mechanisms. S. aureus lost culturability much faster in oxic systems than in anoxic systems, indicating an important role for oxygen in photodecay mechanisms. S. aureus cell membranes were damaged by sunlight exposure in anoxic systems but not in oxic systems, as measured by cell membrane permeability to propidium iodide. After sunlight exposure, S. aureus increased expression of a gene coding for methionine sulfoxide reductase after 12 h of sunlight exposure in the oxic system and after 6 h of sunlight exposure in the anoxic system, suggesting that methionine sulfoxide reductase is an important enzyme for defense against both oxygen-dependent and oxygen-independent photostresses. This research highlights the importance of oxygen in bacterial photoinactivation in environmentally relevant systems and the complexity of the bacterial photostress response with respect to cell structure and transcriptional regulation.IMPORTANCEStaphylococcus aureus is a pathogenic bacterium that causes gastrointestinal, respiratory, and skin infections. In severe cases, S. aureus infection can lead to life

  6. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with results from previous studies. Similarly to what was previously shown for k(H2CO)/k(HDCO), the isotope effect decreased as pressure decreased. In addition, a model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface, to investigate its...

  7. Matrix-IR spectroscopic investigations of the thermolysis and photolysis of diazoamides.

    Science.gov (United States)

    Wentrup, Curt; Bibas, Hervé; Kuhn, Arvid; Mitschke, Ullrich; McMills, Mark C

    2013-11-01

    Matrix photolysis of N,N-dialkyldiazoacetamides 1a-d at 7-10 K results in either the formation of C-H insertion products (in case of N,N-dimethyl and N,N-diethyl diazoamides) or almost exclusive Wolff rearrangement to ketenes (in the case of the cyclic diazoamides N-(diazoacetyl)azetidine and N-(diazoacetyl)pyrrolidine). This can be ascribed to higher activation barriers for the approach of the singlet carbene p orbital in 5 (or of the diazo carbon in an excited state of 1) to the stronger and "tied back" nature of the C-H bonds in the cyclic substituents. In contrast, flash vacuum thermolysis (FVT) of diazoamides 1a-d, in which reactions of excited states are excluded, gives rise to clean C-H insertion with only minor Wolff rearrangement to ketenes.

  8. Studies on degradation of glyphosate by several oxidative chemical processes: ozonation, photolysis and heterogeneous photocatalysis.

    Science.gov (United States)

    Assalin, Marcia R; De Moraes, Sandra G; Queiroz, Sonia C N; Ferracini, Vera L; Duran, Nelson

    2010-01-01

    Several different Advanced Oxidation Processes (AOPs) including ozonation at pH 6.5 and 10, photolysis and heterogeneous photocatalysis using TiO(2) as semiconductor and dissolved oxygen as electron acceptor were applied to study the degradation of glyphosate (N-phosphonomethyl glycine) in water. The degree of glyphosate degradation, the reactions kinetic and the formation of the major metabolite, aminomethyl phosphonic acid (AMPA), were evaluated. Ozonation at pH 10 resulted in the maximum mineralization of glyphosate. It was observed that under the experimental conditions used in this study the degradation of glyphosate followed the first-order kinetics. The half-life obtained for glyphosate degradation in the O(3)/pH 10 process was 1.8 minutes.

  9. Synthesis and Evaluation of Porous Semiconductor Hexaniobate Nanotubes for Photolysis of Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    Maryam Zarei-Chaleshtori

    2014-10-01

    Full Text Available We present the chemical synthesis of hexaniobate nanotubes using two routes, (1 starting material K4Nb6O17 and (2 parent material of H4Nb6O17 via ion exchange. The as-synthesized materials were exfoliated by adjusting the pH to 9–10 using tetra-n-butylammonioum hydroxide (TBA+OH−, leading to a formation of hexaniobate nanotubes. In order to understand morphology a full characterization was conducted using SEM, HRTEM, BET and powder-XRD. The photocatalytic activity was evaluated using photolysis method using Bromocresol Green (BG and Methyl Orange (MO as model contaminants. Results indicate a nanotube porous oxide with large porous and surface area; the photocatalytic activity is about 95% efficient when comparing with commercial TiO2.

  10. Nanosecond flash photolysis of unsymmetrical phenol-substituted calix[4]arene in cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wen; Yuan Lihua [Sichuan Univ., Chengdu (China); Yao Side; Wang Wenfeng [Academia Sinica, Shanghai Institute of Nuclear Research, Shanghai (China)

    2000-03-01

    In the present paper the laser flash photolysis study of an unsymmetrical hindered phenol-substituted calix[4]arene(UPCA[4]OH) at 248 nm was carried out in cyclohexane at room temperature. The transient absorption spectra of UPCA[4]OH displayed two main absorption maxima at ca.330 nm and 520 nm with different grow and decay kinetics, and initial peak at 520 nm was assigned to the triplet state of the solute and the other peak at 330 nm was due to unsymmetrical phenol-substituted calix[4]aryloxyl radical. According to the kinetic analysis, the mechanism of the formation of the triplet and the calix[4]aryloxyl radical has been proposed. (author)

  11. Theoretical Study on the Tripletsensitized Photolysis of 2,5-Dimethylfuran

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the present work, the triplet-sensitized photolysis of 2,5-dimethylfuran has been investigated with the complete active space SCF (CASSCF) molecular orbital method. Two different reaction routes through diradical and carbene intermediates respectively have been systematically studied, and the reaction via carbene intermediate is the major part well compatible with experiment. Geometries of minima and transition states on SoT1 surface were fully optimized at the CAS level with a 6-31 G* basis set. A multireference MP2 algorithm that has been implemented in Gaussian was used to correct the energetics for dynamic correlation. Four intersystem crossing points have been located and discussed, and two of them are efficient. Our computation indicates that the reaction must occur on the triplet-excited state.

  12. (Fundamental studies in oxidation-reduction in relation to water photolysis)

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, J.K.

    1991-01-01

    Our research has been directed at understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis. These are: (1) the role of interfaces in charge separation/recombination reactions, (2) pathways for transmembrane charge separation, and (3) mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. Our experimental systems comprise primarily unilamellar vesicles that have been doped with amphiphilic viologens which function as transmembrane charge relays. These systems are experimentally highly tractable and versatile, are conceptually simple, and have been widely used in a variety of organized microphase media and prototypic devices. As such, they are ideal for identifying basic principles governing reactivity.

  13. Sulfur Isotope Fractionation Due to SO2 Photolysis in the Atmosphere

    Science.gov (United States)

    Lyons, J. R.; Blackie, D.; Stark, G.; Pickering, J.

    2012-12-01

    The discovery of unusual (i.e. mass-independent) sulfur isotope fractionation (or MIF) in Archean and Paleoproterozoic sedimentary rocks has promised to yield insights into the rise of O2 and the nature of the sulfur cycle on ancient Earth [1], but interpretation has been hampered by the lack of a clear mechanism for the sulfur isotope signature. Proposed MIF mechanisms include SO2 photolysis [1-4], atmospheric S3 (thiozone) formation, and thermal sulfate reduction in sediments [5]. Studies focusing only on SO2 photolysis, including measurements of isotopic cross sections [6], have yielded results differing greatly from theory [4], and have resulted in improbable interpretations [7]. In addition to ancient rocks, there are sulfur isotope MIF signatures in polar ice core sulfates associated with massive Plinian eruptions over the past ~1000 years (e.g., [8]). The ice core MIF signatures differ significantly from the ancient Earth MIF signatures, suggesting a different source mechanism. SO2 photolysis can generate sulfur isotope MIF signatures in two ways: 1) self-shielding by an optically-thick column of SO2, and 2) isotope-dependent differences in absorption line intensities and widths, which are espcially important for optically-thin conditions. The MIF signatures in ice core sulfates appear to be consistent with self-shielding in an optically-thick plume, but the Archean MIF clearly is not. To address the optically-thin case, we've made high-resolution ultraviolet cross section measurements of the sulfur isotopologues of SO2 made with the UV FTS at Imperial College. We measured cross sections at 1 cm-1 spectral resolution for 32SO2, 33SO2, 34SO2 and for a 36SO2/34SO2 mixture. Incorporating these cross sections into a simple atmospheric photochemical model with a solar UV flux, we find sulfur MIF signatures for SO and S that.are consistent with the Archean pyrites. We also find that additional mass-dependent fractionation during self-shielding by 32SO2 places an

  14. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    Directory of Open Access Journals (Sweden)

    Forbes A

    2012-06-01

    Full Text Available Steven S Nkosi,1,2 Bonex W Mwakikunga,4 Elias Sideras-Haddad,2 Andrew Forbes1,31CSIR National Laser Centre, Pretoria, South Africa; 2DST/NRF Centre for Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Johannesburg, 3School of Physics, University of KwaZulu-Natal, Durban, South Africa; 4DST/CSIR National Centre for Nano-Structured Materials, Pretoria, South AfricaAbstract: Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III acetylacetonate and Pt(II acetylacetonate. Fe(II and Pt(I acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001 diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence.Keywords: nanostructures, iron, platinum, nanoparticles, laser liquid photolysis, composition

  15. Non-invasive bleaching of the human lens by femtosecond laser photolysis.

    Directory of Open Access Journals (Sweden)

    Line Kessel

    Full Text Available BACKGROUND: Globally, cataract is the leading cause of blindness and impaired vision. Cataract surgery is an attractive treatment option but it remains unavailable in sufficient quantity for the vast majority of the world population living in areas without access to specialized health care. Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds were susceptible to photobleaching by a non-invasive procedure and whether this would lead to optical rejuvenation of the lens. METHODOLOGY/PRINCIPAL FINDINGS: Nine human donor lenses were treated with an 800 nm infra-red femtosecond pulsed laser in a treatment zone measuring 1x1x0.52 mm. After laser treatment the age-induced yellow discoloration of the lens was markedly reduced and the transmission of light was increased corresponding to an optical rejuvenation of 3 to 7 years. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that the age-induced yellowing of the human lens can be bleached by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has the potential clinical value of replacing invasive cataract surgery by a non-invasive treatment modality that can be placed in mobile units, thus breaking down many of the barriers impeding access to treatment in remote and poor regions of the world.

  16. Studies on the Photodynamic Mechanism of Tetrapyrrole Compounds by Laser Flash Photolysis

    Institute of Scientific and Technical Information of China (English)

    DENG,Kui; CHEN,Zhi-Long; ZHOU,Xing-Ping; WANG,Wen-Feng; YANG,Xiao-Xia; TIAN,Juan

    2008-01-01

    Photodynamic therapy (PDT) is a promising new treatment technique which can potentially destroy unwanted and malignant tissues, such as those of cancer. The photodynamic mechanisms of three tetrapyrrole compounds:Mg-purpurin-18, tetra(meso-chlorophenyl)porphyrin (m-TCPP) and 2,7,12,18-tetramethyl-3,8-di[(1-isobutoxyl)-ethyl]-13,17-bis[3-di(2-chloroethyl)aminopropyl]porphyrin (TDBP) in acetonitrile were investigated by 355 nm laser flash photolysis. It was found that after laser flash photolysis (LFP), the excited states of TDBP and Mg-purpurin-18 could react with O2 and 1O2 was produced, which proved that TDBP and Mg-purpurin-18 took effects through type Ⅱ mechanism in PDT. This suggested that TDBP and Mg-purpurin-18 should be suitable for target tissues containing enough O2. Mg-purpurin-18 has two extra absorptions at 550 and 700 nm, which means it has broad choices of laser wavelength in PDT. It was also found that m-TCPP could be photoionized when excited with 355 nm laser under N2-saturated condition. It could also react with O2 to produce reactive oxygen species such as superoxide and the peroxide anions, but not 1O2. These were known as the Type Ⅰ mechanism. So m-TCPP could be used even at low oxygen concentration or more polar environments with good behavior in PDT. From the above studies on the three different tetrapyrrole compounds it could be concluded that the structure of porphin ring takes a main role in PDT. And there was important impact on the photodynamic mechanism for the functional group directly connecting with porphin ring, while little influence for the functional group indirectly connecting with porphin ring. These will be of great value in the discovery of new PDT drugs.

  17. Formation of Silicon Carbide Using Volcanic Ash as Starting Material and Concentrated Sunlight as Energy Resource

    Directory of Open Access Journals (Sweden)

    Kensuke Nishioka

    2015-01-01

    Full Text Available SiC was formed using volcanic ash as starting material and concentrated sunlight as energy resource. The solar furnace was composed of two parts: Fresnel lens and reacting furnace. The reacting furnace was composed of a cylindrical vacuum chamber and quartz glass plate functioning to guide the concentrated sunlight into the furnace and was placed at the focal point of the Fresnel lens. The sample was made from the mixture of silica formed from volcanic ash and graphite and placed in the carbon crucible inside the reacting furnace. The temperature in the carbon crucible reached more than 1500°C. After the reaction using concentrated light, β-SiC was formed. The weight % of formed SiC was 90.5%.

  18. Sensitized photoelectrolysis of water with sunlight. Final report, June 1, 1977-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, A.K.; Maruska, H.P.

    1978-12-01

    A study was made of solar driven water photoelectrolysis cells employing semiconductor electrodes. An extensive review of the literature was undertaken, and the three major problem areas for these devices were identified: corrosion, poor sunlight absorption, and external bias requirement. Although many semiconductors had been tested, none had proven free of all three defects. Two approaches were thus followed for the experimental studies: impurity sensitization of wide band gap stable oxides, and heterostructure formation between unstable sunlight absorbers and corrosion resistant oxides. Water decomposition was achieved with visible light excitation of Cr-doped TiO/sub 2/. Transport properties were studies for TiO/sub 2/ and SrTiO/sub 3/ electrodes doped with V, Cr, Mn, Fe, Co, and Ni. The correlation between bias requirement and electron affinity of oxides was identified. Performance of heterostructure electrodes was shown to be limited either by pin hole problems or by potential barriers between the valence bands.

  19. Sunlight-activated AlFeO3/TiO2 photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YUAN; Zhihao; WANG; Yuhong; SUN; Yongchang; WANG; Jing; BIE; Lijian; DUAN; Yueqing

    2006-01-01

    A nanocomposite photocatalyst composed of AlFeO3 and TiO2 is prepared, and characterized through X-ray diffraction. Application of the nanocomposite for the photodegradations of eosin dye and methyl orange gives an improved photoactivity compared with TiO2-only nanomaterials. The optimal concentration of AlFeO3 in the composite is about 1.0 wt% under UV excitation, and 9.0 wt% under sunlight excitation for the improved photoactivity. Furthermore, this nanocomposite is more active for eosin photodegradation if natural sunlight rather than UV is used. This may be due to the reason that adding AlFeO3 nanoparticles into TiO2 matrix can promote the separation of photogenerated charge carriers, and extend the photoresponse of TiO2 toward visible region, which results in an increase in the solar energy utilization efficiency.

  20. Power Output Improvement of PV Module for Agricultural Use by Using Inexpensive Sunlight Concentrator

    Institute of Scientific and Technical Information of China (English)

    NISHIMURA Ryo

    2010-01-01

    PV modules are used as stand alone power sources for agricultural equipments such as lifting pumps in farms,where the power infrastructure is not yet improved.In order to expand the agricultural use of PV module,the cost of PV generation should be reduced.In this paper,the power output performance of a commercial PV module was improved by using a sunlight concentrator that could be assembled inexpensively and a simple sun-tracking method.

  1. Attitude of future healthcare provider towards vitamin D significance in relation to sunlight exposure.

    Science.gov (United States)

    Qureshi, Aysha Zia; Zia, Zubia; Gitay, Mehnaz Nuruddin; Khan, Muhammad Umair; Khan, Muhammad Saad

    2015-10-01

    Nature is the kindest of all to provide man with all the necessary components for a healthy life at easily accessible lengths. The deprivation arises with unawareness and lack of correct measures to extract the benefits. Medical education makes the youth aware of the numerous disorders and diseases, as well as their preventions and treatments. This awareness needs to be realized and implemented in the society, and it is not possible without the advisers acting on the same lines. Since doctors are the most trusted and their advice is adopted without much thought, it is extremely inevitable to analyze the attitude of medical students of various levels to understand the cause of their negligence toward their own deficiencies, the focus for this study being vitamin D (VD). A cross sectional descriptive study was done on undergraduate medical students of health profession from different universities of Pakistan to access the awareness regarding VD deficiency associated with sunlight. Informed consent was duly signed by each participant after which self-constructed questionnaire was provided to them and data are collected. SPSS 17 was used for Statistical analysis. Final students are well aware of VD significance, take food rich in VD but still suffer from fatigue and muscular pain. No treatment was taken for fatigue and muscular pain by majority of these sufferers and those who took treatment were VD supplement. The health sufferers were mostly those who avoided sunlight highlighting the role of VD in maintaining an active lifestyle as well as the significance of sunlight in maintaining VD levels. It can be concluded that in spite of awareness, the role of sunlight exposure and the proper time and duration of exposure cannot be ignored to create a healthy and active society.

  2. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor.

    Science.gov (United States)

    Kwankua, W; Sengsai, S; Kuleung, C; Euawong, N

    2010-07-01

    Utilization of neem plant (Azadirachta indica A. Juss) extract for pest control in agriculture has raised concerns over contamination by the residues to the environment. Such residues, particularly azadirachtin (Aza), may cause deleterious effect to non-target organisms. This investigation was conducted to find out if Aza could be inactivated through exposures to sunlight. Activity of Aza was assessed as its ability to cause cytotoxic and genotoxic effects in the forms of nuclei abnormality and chromosome aberration as measured by mitotic index (MI) and mitotic aberration (MA). Varying concentrations of Aza were tested on Allium cepa and Eucrosia bicolor. It was found that the MI of all root tip meristematic cells of A. cepa and E. bicolor treated with 0.00005%, 0.00010%, 0.00015%, and 0.00020% (w/v) Aza-containing neem extract for 24h, were significantly lower than the controls. Complementary to the lower levels of MI, the Aza-treated groups showed higher MA levels in all cases investigated. Furthermore, the decreasing levels of MI and the increasing levels of MA related well with the increasing concentration of Aza. Microscopic examination of root tip meristematic cells revealed that the anomaly found most often were mitotic disturbances and chromosomal bridges. Exposures of 0.00020% (w/v) Aza to sunlight for 3 days and 7 days decreased Aza ability to induce cytotoxicity and genotoxicity, both in terms of MI and MA, to root tip meristematic cells in A. cepa and E. bicolor. Photodegradation of Aza upon exposure to direct sunlight was confirmed by HPLC. The study implicates that Aza would unlikely cause long term deleterious effects to the environment since it would be inactivated by sunlight. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Calculation of the optimum thickness of thermo-insulation for collectors of sunlight installations

    Directory of Open Access Journals (Sweden)

    Ermuratskii V.V.

    2005-12-01

    Full Text Available In the work the task of calculation of the optimum thickness of thermo-insulation for collectors of sunlight and accumulators of the heat is considered. The simplified model of calculation and the technique based on an estimation of efficiency of investment projects is offered. It is shown, that at calculation on the simplified model which are not taking into account financial streams, the overestimated values of thickness thermo-insulation turn out.

  4. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.

    Science.gov (United States)

    Mansfield, C M; Alloy, M M; Hamilton, J; Verbeck, G F; Newton, K; Klaine, S J; Roberts, A P

    2015-02-01

    Titanium dioxide nanoparticles (TiO2 NP) are one of the most abundantly utilized nanoparticles in the world. Studies have demonstrated the ability of the anatase crystal of TiO2 NP to produce reactive oxygen species (ROS) in the presence of ultraviolet radiation (UVR), a co-exposure likely to occur in aquatic ecosystems. The goal of this study was to examine the photo-induced toxicity of anatase TiO2 NP under natural sunlight to Daphnia magna. D. magna were exposed to a range of UVR intensities and anatase TiO2 concentrations in an outdoor exposure system using the sun as the source of UVR. Different UVR intensities were achieved using UVR opaque and transparent plastics. AnataseTiO2-NP demonstrated the reciprocal relationship seen in other phototoxic compounds such as polycyclic aromatic hydrocarbons (PAHs) at higher UVR treatments. The calculated 8h LC50 of anatase TiO2 NP was 139 ppb under full intensity ambient natural sunlight, 778 ppb under 50% natural sunlight, and >500 ppm under 10% natural sunlight. Mortality was also compared between animals allowed to accumulate a body burden of anatase TiO2 for 1h and organisms whose first exposure to anatase TiO2 aqueous suspensions occurred under UVR. A significantly greater toxic effect was observed in aqueous, low body burden suspensions than that of TiO2 1h body burdens, which is dissimilar from the model presented in PAHs. Anatase TiO2 presents a unique photo-induced toxic model that is different than that of established phototoxic compounds.

  5. Multiple scattering of polarized light in planetary atmospheres. II - Sunlight reflected by terrestrial water clouds.

    Science.gov (United States)

    Hansen, J. E.

    1971-01-01

    The intensity and polarization of sunlight reflected by terrestrial water clouds are computed with the doubling method. The calculations illustrate that this method can be effectively used in problems involving strongly anisotropic phase matrices. The method can, therefore, be used to derive information about planetary clouds, including those of the earth, from polarimetric observations. The results of the computations indicate that the polarization is more sensitive than the intensity to cloud microstructure, such as particle size and shape.

  6. Highly Branched Sn-Doped ZnO Nanostructures for Sunlight Driven Photocatalytic Reactions

    Directory of Open Access Journals (Sweden)

    Yangyang Liu

    2014-01-01

    Full Text Available Ultralong, highly branched Sn-doped zinc oxide (ZnO nanostructures were fabricated using a simple substrate-free chemical vapor deposition (CVD method. The nanostructures exhibited efficient photocatalytic activities in degradation of methylene blue (MB under natural sunlight. 100% of MB with the concentration of 10 mg/L could be completely removed within 36 minutes. Possible reasons for the enhanced photocatalytic effect were analyzed.

  7. Highly Branched Sn-Doped ZnO Nanostructures for Sunlight Driven Photocatalytic Reactions

    OpenAIRE

    2014-01-01

    Ultralong, highly branched Sn-doped zinc oxide (ZnO) nanostructures were fabricated using a simple substrate-free chemical vapor deposition (CVD) method. The nanostructures exhibited efficient photocatalytic activities in degradation of methylene blue (MB) under natural sunlight. 100% of MB with the concentration of 10 mg/L could be completely removed within 36 minutes. Possible reasons for the enhanced photocatalytic effect were analyzed.

  8. The Photocatalytic Activity of TiO2-Zeolite Composite for Degradation of Dye Using Synthetic UV and Jeddah Sunlight

    Directory of Open Access Journals (Sweden)

    Laila M. Al-Harbi

    2015-01-01

    Full Text Available In this research different composites of impregnated TiO2 with LTA or FAU zeolites were used as different weight% ratio for photodegradation of organic dye. Normal laboratory UV-lamps were used as a source of UV irradiation. In addition a setup of system of mirrors was used to collect real Jeddah sunlight. A comparison of UV and real sunlight photodegradation activity showed that the real sunlight enhances new centers of active sites exhibiting higher catalytic activity than that of UV irradiated samples.

  9. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi.

    Science.gov (United States)

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-08-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at -25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges.

  10. Bait Formulations of Chlorophyllin against Infected/Uninfected Lymnaea acuminata in Red and Sunlight

    Directory of Open Access Journals (Sweden)

    Navneet Kumar

    2015-01-01

    Full Text Available Control of snail population is an important tool in fasciolosis control programme. In order to achive this objective the method of bait formulation containing an attractant and a molluscicide is an appropriate approach to ensure the death of host snail. Chlorophyllin bait pellets were prepared by addition of attractants starch (10 mM/serine (20 mM and Chlorophyllin 2% agar solution. These baits were used against host snail Lymnaea acuminata. The behavioral response of snail against attractant (starch/serine and chlorophyllin was examined in red and sunlight. The fraction of snail that was in contact with chlorophyllin bait in zone-3 was used as measure of attraction process. Infected snails were more attracted with red light+starch (57.7%. Uninfected snails were more attracted by red light+serine (58.0%. The molluscicidal activity of chlorophyllin against infected snails in red light (96h LC50-1.88% chlorophyllin in bait and sunlight (96h LC50-2.40% chlorophyllin in bait was more pronounced than uninfected snail in red light (96h LC50-1.76% Chlorophyllin in bait and sunlight (96h LC50-3.62% chlorophyllin in bait.

  11. Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan [Beijing Key Laboratory of Water Resource and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Xiu, Zongming [Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005 (United States); Liu, Fei [Beijing Key Laboratory of Water Resource and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Wu, Gang [Division of Hematology, Department of Internal Medicine, University of Texas-Medical School at Houston, Houston, TX 77030 (United States); Adamson, Dave; Newell, Charles [GSI Environmental Inc., Houston, TX 77098 (United States); Vikesland, Peter [Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Tsai, Ah-Lim [Division of Hematology, Department of Internal Medicine, University of Texas-Medical School at Houston, Houston, TX 77030 (United States); Alvarez, Pedro J., E-mail: alvarez@rice.edu [Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005 (United States)

    2013-11-15

    Highlights: • PFOA was photo-chemically decomposed in the presence of Fe(III) and natural sunlight. • An alternative reaction pathway involves hydroxyl radical as confirmed by EPR. • Common oxidant-persulfate increased PFOA defluorination extent. -- Abstract: Due to the high bond dissociation energy (BDE) of C-F bonds (116 kcal/mol), perfluorooctanoic acid (PFOA) is a highly recalcitrant pollutant. Herein, we demonstrate a novel method to decompose PFOA in the presence of sunlight and ferric iron (Fe(III)). Under such conditions, 97.8 ± 1.7% of 50 μM PFOA decomposed within 28 days into shorter-chain intermediates and fluoride (F{sup −}), with an overall defluorination extent of 12.7 ± 0.5%. No PFOA was removed under visible light, indicating that UV radiation is required for PFOA decomposition. Spectroscopic analysis indicates that the decomposition reaction is likely initiated by electron-transfer from PFOA to Fe(III), forming Fe(II) and an unstable organic carboxyl radical. An alternative mechanism for the formation of this organic radical involves hydroxyl radicals, detected by electron paramagnetic resonance (EPR). The observation that PFOA can be degraded by Fe(III) under solar irradiation provides mechanistic insight into a possibly overlooked natural attenuation process. Because Fe(III) is abundant in natural waters and sunlight is essentially free, this work represents a potentially important step toward the development of simple and inexpensive remediation strategies for PFOA-contaminated water.

  12. Colour Changes Evaluation of Freshly Cut Alder Veneers Under the Influence of Indoor Sunlight

    Directory of Open Access Journals (Sweden)

    Emilia Adela SALCA

    2011-03-01

    Full Text Available The paper presents an experimental study concerning the colour changes occurred on the surfaces ofblack alder veneers (Alnus glutinosa, obtained from a freshly cut (not treated log, after their exposure tosunlight and darkness, for 1 and 3 months, under indoor conditions.A Chroma Meter Konika Minolta CR-410 device was used for colour measurement.The colorimetric coordinates were recorded before and after the exposure, according to ISO 7724-2.The results highlight a significant decrease of colour lightness, right after the first month of sunlight exposure.The a* and b* colour coordinates showed an increasing tendency with increasing exposure time, whichsignifies a colour darkening under sunlight radiation that penetrates the window glass. Colour differenceswere noticed right after the first month of sunlight exposure, while under darkness conditions, a relativecolour constancy was noticed, the colour changes being less pronounced, but yet perceptible by the humaneye.The study results complete the colorimetric database of veneers used in furniture industry, but theyalso contribute to the rehabilitation of black alder as a wood species with a real potential of use in furnitureindustry.

  13. Modified optical fiber daylighting system with sunlight transportation in free space.

    Science.gov (United States)

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  14. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    Science.gov (United States)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  15. An MFC capable of regenerating the cathodic electron acceptor under sunlight

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A renewable MFC (microbial fuel cell) cathode was used in this study because the iodide ion could react with oxygen to generate triiodide under natural sunlight.The feasibility of the regeneration of triiodide ion under natural sunlight and the effect of the regenerated triiodide ion concentration on the MFC performance were studied.The results showed that the power density of the MFC using triiodide ion as cathodic electron acceptor was significantly higher than that of using ferricyanate,and that the iodide ion can be oxidized to triiodide ion by oxygen in air at the expense of natural sunlight.In addition,it was obvious from the experimental results that the MFC performance was improved with the increase of the triiodide concentration,indicating that the concentration of triiodide ion had a critical effect on the MFC performance.The linear sweep voltammetry (LSV) curves for the electro-reduction of triiodide ion on the carbon paper were obtained and the results suggested that the diffusion process of triiodide ions to cathode was the control factor for the MFC performance.

  16. Combined Application of Natural Sunlight and Hydrogen peroxide on the Removal of Harmful Cyanobacteria

    Science.gov (United States)

    Wang, D. H.; Li, L.; Zhu, C. W.; Wang, Z. Y.; Xie, P.

    2017-08-01

    This study provides an efficient and environmentally friendly advanced oxidation technique involving the combined application of natural sunlight and hydrogen peroxide for the removal of harmful cyanobacteria from lakes and reservoirs. In this paper, we collected water samples from Taihu Lake (Wuxi, China) in August 2016 when cyanobacterial blooms had occurred and then performed an outdoor experiment. Hydrogen peroxide at 0.6 mM had no obvious effect on the cyanobacterial inactivation in the dark, even stimulating cyanobacterial growth to some extent. Cyanobacteria were inactivated by higher concentrations of hydrogen peroxide (1.0 mM) in the dark, as well as 0.4 mM hydrogen peroxide under sunlight irradiation, indicating that natural sunlight significantly enhanced the effect of hydrogen peroxide on the removal of cyanobacteria. An experiment involving Pseudanabaena sp. (a harmful species) led to similar conclusions as the study using algae attained from Taihu Lake. This study provides a practical and effective method for controlling harmful cyanobacteria in natural water bodies.

  17. Spectroscopic properties of Er doped and Er, Nd codoped fluoride glasses under simulated sunlight illumination

    Science.gov (United States)

    Mizuno, Shintaro; Ito, Hiroshi; Hasegawa, Kazuo; Kawai, Hiroyuki; Nasu, Hiroyuki; Hughes, Mark A.; Suzuki, Takenobu; Ohishi, Yasutake

    2011-10-01

    We investigated the fluorescence characteristics of Er codoped Nd doped ZBLAN glasses proposed for solar pumped fiber laser (SPFL) under simulated sunlight. Er is used as a sensitizer because it absorbs a part of the ultraviolet and visible light where is no absorption of Nd. Under simulated sunlight illumination, Er singly doped fluoride glass displayed four emission bands with peaks at 550, 848, 977 and 1533 nm attributed to the 4S 3/2- 4I 15/2, 4S 3/2- 4I 13/2, 4I 11/2- 4I 15/2 and 4I 13/2- 4I 15/2 electronic transitions of Er, respectively. The quantum efficiency measurement was carried out using an integrating sphere and under the simulated sunlight excitation showed a maximum of 73% for 0.5 mol.% of ErF 3 in ZBLAN glass. In Nd, Er codoped fluoride glass, the 1.05 μm emission of Nd was observed under 380 nm excitation what supposes the energy transfer from Er to Nd in ZBLAN glasses as Nd has no absorption at the wavelength. Er, Nd codoped fluoride glasses are promising as a sensitized laser media for solar pumped fiber lasers.

  18. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  19. A comprehensive investigation of tetragonal Gd-doped BiVO{sub 4} with enhanced photocatalytic performance under sun-light

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yangyang; Tan, Guoqiang, E-mail: tan3114@163.com; Dong, Guohua; Ren, Huijun; Xia, Ao

    2016-02-28

    Graphical abstract: - Highlights: • Tetragonal Gd-BiVO{sub 4} with enhanced photocatalytic activity was synthesized. • Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. • GdVO{sub 4} seeds as crystal nucleus dominate the formation of tetragonal Gd-BiVO{sub 4}. • Tetragonal Gd-BiVO{sub 4} exhibits the excellent separation of electrons and holes. • The contribution of high photocatalytic activity under sun-light is from UV-light. - Abstract: Tetragonal Gd-doped BiVO{sub 4} having enhanced photocatalytic activity have been synthesized by a facile microwave hydrothermal method. The structural analysis indicates that Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. The reaction results in precursor solutions imply that tetragonal GdVO{sub 4} seeds as crystal nucleus are the original and determined incentives to force the formation of tetragonal Gd-BiVO{sub 4}. The influences of the surface defect, band structure, and BET surface area on the improved photocatalytic activities of tetragonal Gd-doped BiVO{sub 4} are investigated systematically. The results demonstrate that the more surface oxygen deficiencies as active sites and the excellent mobility and separation of photogenerated electrons and holes are beneficial to the enhancement of the photocatalytic performance of tetragonal Gd-BiVO{sub 4}. The RhB photodegradation experiments indicate that the contribution of high photocatalytic activities under simulated sun-light is mainly from UV-light region due to the tetragonal structure feature. The best photocatalytic performance is obtained for tetragonal 10 at% Gd-BiVO{sub 4}, of which the RhB degradation rate can reach to 96% after 120 min simulated sun-light irradiation. The stable tetragonal Gd-BiVO{sub 4} with efficient mineralization will be a promising photocatalytic material applied in water purification.

  20. Facile synthesis of direct sunlight-driven anatase TiO{sub 2} nanoparticles by in situ modification with trifluoroacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiangfu [Capital Normal University, Department of Chemistry (China); Qi Lin [Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences Key Laboratory of Engineering Plastics, Institute of Chemistry (China); Xiao Zhichang; Gong Shuyan; Wei Qingli; Liu Yiqi [Capital Normal University, Department of Chemistry (China); Yang Mingshu; Wang Feng, E-mail: wangfeng0822@iccas.ac.cn [Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences Key Laboratory of Engineering Plastics, Institute of Chemistry (China)

    2012-10-15

    Anatase TiO{sub 2} nanoparticles with direct sunlight-driven photocatalytic activity have been synthesized via hydrolysis of titanium precursor, tetrabutyl titanate in trifluoroacetic acid (TFA) followed by sol-gel conversion to xerogel and further hydrothermal treatment at low temperature. The structure and morphology of the as-prepared anatase TiO{sub 2} were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infrared spectra, transmission electron microscopy, UV-visible diffuse reflectance spectrophotometer, and photoluminescence spectra. The results showed that TFA was chemically bonded on anatase TiO{sub 2} during the sol-gel process and the size of TFA-modified anatase TiO{sub 2} nanoparticle was about 7 nm. In situ modification of anatase TiO{sub 2} with TFA endowed the photocatalyst with direct sunlight-driven photocatalytic activity. The photodegradation of rhodamine B under direct sunlight irradiation showed that the photodegradation rate constant of TFA-modified anatase TiO{sub 2} was about threefold higher than that of Degussa P25. The higher photocatalytic activity might be attributed to the in situ surface modification with TFA. On one hand, surface modification with TFA extended the light absorption of anatase TiO{sub 2} to the visible light regime. On the other hand, the strong electron-withdrawing effect of CF{sub 3} group can reduce the recombination of photo-generated electron and holes and enhanced the transfer and transport of charge carriers, and thus a higher visible light responding photocatalytic activity was achieved.

  1. Why We Need More Nature at Work: Effects of Natural Elements and Sunlight on Employee Mental Health and Work Attitudes.

    Directory of Open Access Journals (Sweden)

    Mihyang An

    Full Text Available This study investigated the effects of natural elements and direct and indirect sunlight exposure on employee mental health and work attitudes. We recruited participants via an online panel from the United States and India, and analyzed data from 444 employees. Natural elements and sunlight exposure related positively to job satisfaction and organizational commitment, and negatively to depressed mood and anxiety. Direct sunlight was a dominant predictor of anxiety; indirect sunlight was a dominant predictor of depressed mood, job satisfaction, and organizational commitment. Natural elements buffered the relationship between role stressors and job satisfaction, depressed mood, and anxiety. We also found that depressed mood partially mediated the relationship between natural elements and job satisfaction. We discuss scientific and policy implications of these findings.

  2. Interacting effects of sunlight, agriculturally derived dissolved organic matter and reactive oxygen species on fecal indicator bacteria growth dynamics

    Science.gov (United States)

    Bacterial survival in agriculturally impacted surface waters is dependent on resource availability and also on potential resource transformations, mediated by biotic and abiotic processes. In this study, we focused on the effect of sunlight irradiated cattle fecal extract (CFE) a...

  3. Formation and decay of ( sup 3 P sub J )O atoms in the laser flash photolysis of chlorine dioxide (OClO) at 308 nm

    Energy Technology Data Exchange (ETDEWEB)

    Colussi, A.J. (California Institute of Technology, Pasadena (USA))

    1990-12-27

    The primary quantum yields of O({sup 3}P{sub J}) and Cl({sup 2}P{sub 3/2}) atoms in the laser flash photolysis of OClO(g) at 308 nm and 298 K and the kinetics of the subsequent oxygen atom decay have been investigated by time-resolved atomic resonance fluorescence measurements. The determined quantum yields are {phi}{sub o} = 1.02 {plus minus} 0.05 and {phi}{sub Cl} < 0.01. Second-order rate constants for the reaction between O atoms and OClO are pressure dependent with a finite intercept. The rate constant for the bimolecular channel O + OClO {yields} O{sub 2} + ClO (1) has a value of k{sub 1} = (1.6 {plus minus} 0.4) {times} 10{sup {minus}13} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Termolecular reaction rates for O + OClO + Ar {yields} ClO{sub 3} + Ar (2) can be fit with k{sub 20} = (1.4 {plus minus} 0.3) {times} 10{sup {minus}31} cm{sup 6} molecule{sup {minus}2}s{sup {minus}1} and k{sub 2{infinity}} = (3.1 {plus minus} 0.8) {times} 10{sup {minus}11} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}.

  4. Sunlight exposure or vitamin D supplementation for vitamin D-deficient non-western immigrants: a randomized clinical trial.

    Science.gov (United States)

    Wicherts, I S; Boeke, A J P; van der Meer, I M; van Schoor, N M; Knol, D L; Lips, P

    2011-03-01

    Vitamin D deficiency is very common in non-western immigrants. In this randomized clinical trial, vitamin D 800 IU/day or 100,000 IU/3 months were compared with advised sunlight exposure. Vitamin D supplementation was more effective than advised sunlight exposure in improving vitamin D status and lowering parathyroid hormone levels. Vitamin D deficiency (25-hydroxyvitamin D [25(OH)D] sunlight exposure. To determine whether the effect of vitamin D(3) supplementation (daily 800 IU or 100,000 IU/3 months) or sunlight exposure advice is similar with regard to serum 25(OH)D and parathyroid hormone (PTH) concentrations. Randomized clinical trial in 11 general practices in The Netherlands. Non-western immigrants, aged 18-65 years (n = 232) and serum 25(OH)D sunlight exposure for 6 months (March-September). Blood samples were collected at baseline, during treatment (3 months, 6 months), and at follow-up (12 months). Statistical analysis was performed with multilevel regression modelling. The intention-to-treat analysis included 211 persons. Baseline serum 25(OH)D was 22.5 ± 11.1 nmol/l. After 6 months, mean serum 25(OH)D increased to 53 nmol/l with 800 IU/day, to 50.5 nmol/l with 100,000 IU/3 months, and to 29.1 nmol/l with advised sunlight exposure (supplementation vs sunshine p sunlight group (p sunlight exposure for treating vitamin D deficiency in non-western immigrants.

  5. Sunlight-stimulated phenylalanine ammonia-lyase (PAL) activity and anthocyanin accumulation in exocarp of ‘Mahajanaka’ mango

    OpenAIRE

    Kobkiat Saengnil

    2011-01-01

    The activity of phenylalanine ammonia-lyase (PAL) required for anthocyanin synthesis was stimulated by sunlight exposure resulting in the development of red colour in ‘Mahajanaka’ mango exocarp, which occurred only on the sunlight-exposed side of the fruit. The accumulation of anthocyanin was concurrent with the increase in PAL activity in the mature stage of the fruit. The exposed side of the fruit had higher PAL activity, endogenous sugar content, and anthocyanin accumulation than the unexp...

  6. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Science.gov (United States)

    Karimi Zarchi, A. A.; Mokhtari, N.; Arfan, M.; Rehman, T.; Ali, M.; Amini, M.; Faridi Majidi, R.; Shahverdi, A. R.

    2011-05-01

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours.

  7. Development and validation of sunlight exposure measurement questionnaire (SEM-Q) for use in adult population residing in Pakistan.

    Science.gov (United States)

    Humayun, Quratulain; Iqbal, Romaina; Azam, Iqbal; Khan, Aysha Habib; Siddiqui, Amna Rehana; Baig-Ansari, Naila

    2012-06-08

    Vitamin D deficiency has been identified as a major public health problem worldwide. Sunlight is the main source of vitamin D and its measurement using dosimeters is expensive and difficult for use in population-based studies. Hence, the aim of this study was to develop and validate questionnaires to assess sunlight exposure in healthy individuals residing in Karachi, Pakistan. Two questionnaires with seven important items for sunlight exposure assessment were developed. Fifty four healthy adults were enrolled based on their reported sunlight exposure (high = 17, moderate = 18, low = 19) from Aga Khan University, Karachi. Over four days, study participants were asked to wear a dosimeter between sunrise and sunset and report time spent and activities undertaken in the sun for questionnaire validation. Algorithm for item weightage was created as an average score based on ultraviolet B percentage received. Blood samples were obtained for serum vitamin D. The mean time (minutes) spent in sun over 4 days (±SD) was 69.5 (±32) for low, 83.5 (±29.7) for moderate and 329 (±115) for high exposure group. The correlation between average time (minutes) spent in sun over 4 days and mean change in absorbance of UV dosimeters for 4 days was 0.60 (p sunlight exposure measurement questionnaires were valid tools for use in large epidemiological studies to quantify sunlight exposure.

  8. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Karimi Zarchi, A.A.; Faridi Majidi, R. [Tehran University of Medical Sciences, Department of Nanomedicine, School of Advanced Medical Technologies, Tehran (Iran, Islamic Republic of); Mokhtari, N.; Shahverdi, A.R. [Tehran University of Medical Sciences, Department of Pharmaceutical Biotechnology and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of); Arfan, M.; Rehman, T.; Ali, M. [University of Peshawar, Institute of Chemical Sciences, Peshawar, Khyber Pakhtoonkhwa (Pakistan); Amini, M. [Tehran University of Medical Sciences, Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of)

    2011-05-15

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours. (orig.)

  9. Photolysis frequency measurement techniques: results of a comparison within the ACCENT project

    Directory of Open Access Journals (Sweden)

    K. C. Clemitshaw

    2008-09-01

    Full Text Available An intercomparison of different radiometric techniques measuring atmospheric photolysis frequencies j(NO2, j(HCHO and j(O1D was carried out in a two-week field campaign in June 2005 at Jülich, Germany. Three double-monochromator based spectroradiometers (DM-SR, three single-monochromator based spectroradiometers with diode-array detectors (SM-SR and seventeen filter radiometers (FR (ten j(NO2-FR, seven j(O1D-FR took part in this comparison. For j(NO2, all spectroradiometer results agreed within ±3%. For j(HCHO, agreement was slightly poorer between −8% and +4% of the DM-SR reference result. For the SM-SR deviations were explained by poorer spectral resolutions and lower accuracies caused by decreased sensitivities of the photodiode arrays in a wavelength range below 350 nm. For j(O1D, the results were more complex within +8% and −4% with increasing deviations towards larger solar zenith angles for the SM-SR. The direction and the magnitude of the deviations were dependent on the technique of background determination. All j(NO2-FR showed good linearity with single calibration factors being sufficient to convert from output voltages to j(NO2. Measurements were feasible until sunset and comparison with previous calibrations showed good long-term stability. For the j(O1D-FR, conversion from output voltages to j(O1D needed calibration factors and correction functions considering the influences of total ozone column and elevation of the sun. All instruments showed good linearity at photolysis frequencies exceeding about 10% of maximum values. At larger solar zenith angles, the agreement was non-uniform with deviations explainable by insufficient correction functions. Comparison with previous calibrations for some j(O1D-FR indicated

  10. Synthesis of 2,2'-Biflavanones from Flavone via Electroreduction and Photolysis

    Institute of Scientific and Technical Information of China (English)

    Chen Arh-Hwang; Cheng Chieh-Yuan; Kuo Wei-Bao; Chen Chia-Wen

    2004-01-01

    Biflavonoids, widely distributed in natural plants, had strong biological activities including spasmolysis, peripheral vasodilatation, antibradykinin activity and antispasmogenic action against prostaglandin PGE1, inhibition of cyclic GMP and cyclic AMP phosphodiesterase and inhibition of hepatoma cells. Recently, some bifiavonoids were demonstrated to enhance suppersion of lymphocyte proliferation, inhibition of phospholipaseCrl, anti-inflammatory activity, anti-HIV activity, anticomplementatory activity, antiviral activity and chemoprevention of hepatotoxicity.Several synthetic methods including Ullmann coupling, Baker-Venkataraman rearrangement and cyclization, cyclization from bichalcone, oxidative coupling, reductive coupling, Pd-cathode reduction and photoinduced electron transfer reaction were used for preparations of some bifiavonoids. In this paper, we report synthesis of 2,2'-biflavanones from flavone via electrolytic reductive coupling and photolysis.In the electrochemical reduction, flavone was reduced to give two hydrodimers of rac-2,2'-biflavanone and meso-2,2'-biflavanone and one reductive product of flavanone. The yields were dependent on the nature of electrodes, the kinds of supporting electrolytes and the reaction temperature. It was found to afford higher yields of rac-2,2'-biflavanone and meso-2,2'-biflavanone( 32.4% and 24.8%, 35.8% and 13.4%, respectively,) in the reaction conditions of Pb(-)/C(+)-H2SO4-7F/mol and C(-)/C(+)-H2SOn-5F/mol.In the photolysis with the electron-donating amines including triethylamine or 2-(N,N-dimethylamino)ethanol in acetonitrile, benzene or methylene dichloride, flavone also afford two hydrodimers of rac-2,2'-biflavanone and meso-2,2'-biflavanone and one reductive product of flavanone. Their yields were dependent on the molar ratios of substrate to amine, the kinds of amines,the solvents used and the irradiation sources. Higher yields were afforded rac-2,2'-biflavanone,meso-2,2'-biflavanone and flavanone(30

  11. Acetone photolysis at 248 nm revisited: pressure dependence of the CO and CO2 quantum yields.

    Science.gov (United States)

    Somnitz, H; Ufer, T; Zellner, R

    2009-10-14

    Pressure dependent CO and CO2 quantum yields in the laser pulse photolysis of acetone at 248 nm and T = 298 K have been measured directly using quantitative infrared diode laser absorption. The experiments cover the pressure range from 50 to 900 mbar. It is found that the quantum yields show a significant dependence on total pressure, with Phi(CO) decreasing from around 0.5 at 20 mbar to approximately 0.3 at 900 mbar. The corresponding CO2 yields as observed when O2 exists in the reaction mixture, exhibit exactly the opposite behaviour. For the sum of both a value of 1.05(-0.05)(+0.02) independent of pressure is obtained, showing that the sum of (Phi(CO) + Phi(CO2)) is a measure for the primary quantum yield in the photolysis of acetone. In addition, CO quantum yields and corresponding pressure dependences were measured in experiments using different bath gases including He, Ar, Kr, SF6, and O2 as third body colliders. The theoretical framework in which we discuss these data is based on our previous findings that the pressure dependence of the CO yield is a consequence of a stepwise fragmentation mechanism during which acetone decomposes initially into methyl and a vibrationally 'hot' acetyl radical, with the latter being able to decompose promptly into methyl plus CO. The pressure dependence of the CO yield then originates from the second step and is modelled quantitatively via statistical dynamical calculations using a combination of RRKM theory with a time-dependent master equation (ME) approach. From a comparison of experiment with theory the amount of excess energy in the vibrationally hot acetyl radicals (E* approximately 65 kJ mol(-1)) as well as the characteristic collision parameters for interaction of acetyl with the different bath gases were derived. Values of 90, 280, 310, 545, 550 and 1800 cm(-1) for the average energy transferred per downward collision for the bath gases He, Ar, Kr, O2, N2, and SF6, respectively, are obtained. The calculations also

  12. Modifiable risk factors including sunlight exposure and fish consumption are associated with risk of hypertension in a large representative population from Macau.

    Science.gov (United States)

    Ke, Liang; Ho, Jacky; Feng, Jianzhang; Mpofu, Elias; Dibley, Michael J; Feng, Xiuhua; Van, Florance; Leong, Sokman; Lau, Winne; Lueng, Petra; Kowk, Carrie; Li, Yan; Mason, Rebecca S; Brock, Kaye E

    2014-10-01

    Chinese populations are known to be at risk for vitamin D deficiency, with some evidence that this is due to lack of exposure to sunlight. Vitamin D deficiency and/or low sun exposure have been associated with higher incidence of hypertension in Caucasians. Thus, we investigated these associations in a Chinese population with a high rate of hypertension. From a random household survey of 1410 residents aged ≥18 years, height, weight and blood pressure were measured and demographic, exercise and dietary data were collected, as well as estimated hours of sunlight exposure on weekdays and weekends (in winter and summer). Modifiable predictors of hypertension in these data were lack of sunlight exposure and low intake of fish as well as smoking, obesity and lack of exercise. When investigated in a linear model, sunlight exposure was negatively associated with hypertension (β=-0.072, pexposure per day compared to none was associated with less hypertension (OR=0.6, 95% CI: 0.4-0.8). Similarly, consuming either oily fish or seafood more than four times per week compared to less was also associated with less hypertension (oily fish (OR=0.4, 95% CI: 0.3-0.5); seafood consumption (OR=0.8, 95% CI: 0.7-0.9)). Having daily moderate physical activity compared to none was also associated with a lower risk of hypertension (OR=0.8, 95% CI: 0.7-0.9). In contrast, being obese compared to normal weight and having more than five pack-years of smoking compared to none were associated with a higher risk of hypertension (OR=4.6, 95% CI: 3.7-5.7; OR=1.4, 95% CI: 1.0-1.8, respectively). The major new findings of this study are that more sun exposure and high weekly fish consumption (especially oily fish) may be potentially modifiable independent factors for protecting against risk of hypertension in this population. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. X-ray structural analysis of the photolysis products of glycinate and. beta. -alaninate cobalt(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Polynova, T.N.; Chuklanova, E.B.; Kramarenko, F.G.; Porai-Koshits, M.A.; Poznyak, A.L.; Pavlovskii, V.I.; Stel-mashok, V.E.

    1987-04-01

    The authors were recently able to isolate in crystalline form the intermediate products in the photolysis of various mixed glycinate Co(III) complexes, and have also lately isolated the intermediate products of the photolysis of analogous complexes containing longer chain anions, such as of amino-3-propionate and amino-4-butyrate. In order to determine the structures of these products it is necessary to analyze them by x-ray crystallography. In this paper they describe the structures of two compounds which contain cationic complexes isolated from UV irradiation (lambda = 254 nm) of aqueous solutions of (Coen/sub 2/(..beta..-ala))/sup 2 +/ and Codipy/sub 2/(gly))/sup 2 +/, respectively (en = ethylenediamine, dipy = 2,2'-dipyridine, gly = glycinate, and ..beta..-ala = alaninate). In both cases, the coordinates of all of the atoms, including hydrogen atoms, were determined.

  14. Investigating ion channel distribution using a combination of spatially limited photolysis, Ca(2+) imaging, and patch clamp recording.

    Science.gov (United States)

    Almassy, Janos; Yule, David I

    2013-01-01

    The production of saliva by parotid acinar cells is stimulated by Ca(2+) activation of Cl(-) and K(+) channels located in the apical plasma membrane of these polarized cells. Here, we utilize a combination of spatially limited flash photolysis, Ca(2+) imaging, and electrophysiological recording to investigate the distinct distribution of Ca(2+)-dependent ion channels in the plasma membrane (PM) of enzymatically isolated murine parotid acinar cells. In these experiments, the aim of photolysis is to selectively target and modify the activity of ion channels, thereby revealing membrane-domain-specific differences in distribution. Specifically, the relative distribution of channels to either apical or basal PM can be investigated. Since there is substantial evidence that Ca(2+)-dependent Cl(-) channels are exclusively localized to the apical membrane of acinar cells, this provides an important electrophysiological verification that a particular membrane has been specifically targeted.

  15. Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C-H activation from putative cobalt nitrido complexes.

    Science.gov (United States)

    Hojilla Atienza, Crisita Carmen; Bowman, Amanda C; Lobkovsky, Emil; Chirik, Paul J

    2010-11-24

    A series of planar aryl-substituted bis(imino)pyridine cobalt azide complexes were prepared and evaluated as synthetic precursors for the corresponding cobalt nitrido compounds. Thermolysis or photolysis of two examples resulted in intramolecular C-H activation of the benzylic positions of the aryl substituents. For the mesityl-substituted compound, C-H activation by the putative nitride resulted in formation of a neutral imine ligand and modification of the chelate by hydrogen transfer to the imine carbon.

  16. Photolysis quantum yield measurements in the near-UV; a critical analysis of 1-(2-nitrophenyl)ethyl photochemistry.

    Science.gov (United States)

    Corrie, John E T; Kaplan, Jack H; Forbush, Biff; Ogden, David C; Trentham, David R

    2016-05-11

    The photolysis quantum yield, Qp, of 1-(2-nitrophenyl)ethyl phosphate (caged Pi) measured in the near-UV (342 nm peak with 60 nm half-bandwidth) is 0.53 and is based on results reported in 1978 (Biochemistry, 17, 1929-1935). This article amplifies methodology for determining that Qp in view of different recent estimates. Some general principles together with other examples relating to measurement of Qp values are discussed together with their relevance to biological research.

  17. Investigations of UV photolysis of PVP-capped silver nanoparticles in the presence and absence of dissolved organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Poda, Aimee R., E-mail: aimee.r.poda@usace.army.mil; Kennedy, Alan J.; Cuddy, Michael F., E-mail: michael.cuddy@usace.army.mil; Bednar, Anthony J. [U.S. Army Engineer Research and Development Center, Environmental Laboratory (United States)

    2013-05-15

    This study investigated the effect of UV irradiation on the characteristics and toxicity of 50 nm (nominal diameter) polyvinylpyrrolidone-capped silver nanoparticles (AgNPs) in the presence and absence of dissolved organic carbon (DOC). The photolysis resulted in a decrease in average particle size as measured by field flow fractionation interfaced with inductively coupled plasma mass spectrometry. The decrease in size was attributed to the photo-induced oxidation of the PVP and dissolution of metallic silver. Moreover, photolysis of the AgNPs in solutions containing DOC appeared to give rise to small nanoparticles ({approx}5 nm) formed via reduction of dissolved silver ions. These results were consistent with photolysis of AgNO{sub 3} solutions initially devoid of nanoparticles. Thus, the carbon-containing constituents of DOC serve as reducing agents for Ag{sup +}, primarily under conditions of UV irradiation. The standard zooplankton model, Daphnia magna, indicated that the toxicity of nanosilver was significantly reduced when the AgNPs have been exposed to UV light. Observed toxicity was further reduced when AgNPs in DOC-containing solutions were exposed to UV. These results suggest that environmentally relevant conditions such as DOC and UV light are important mitigating factors that mediate the aquatic toxicity of AgNPs.

  18. In vitro evaluation of the risk of inducing bacterial resistance to disinfection treatment with photolysis of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Hiroyo Ikai

    Full Text Available The purpose of the present study was to evaluate the risk of inducing bacterial resistance to disinfection treatment with photolysis of H2O2 and comparing this with existing antibacterial agents. We tested seven antibacterial agents, including amoxicillin, cefepime hydrochloride, erythromycin, ofloxacin, clindamycin hydrochloride, ciprofloxacin hydrochloride, and minocycline hydrochloride, as positive controls for validation of the assay protocol. For all of the agents tested, at least one of the four bacterial species (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Streptococcus salivarius was resistant to these agents by repeated exposure to subinhibitory concentrations of the agents up to 10 times. In contrast, antibacterial activity against any of the bacterial species tested (S. aureus, E. faecalis, E. coli, S. salivarius, Pseudomonas aeruginosa, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans was not affected by repeated exposure to the disinfection treatment up to 40 times. This finding suggested that the risk of inducing bacterial resistance by disinfection treatment was low. The active ingredient of this disinfection treatment is hydroxyl radicals generated by photolysis of H2O2. Therefore, hydroxyl radicals interact with several cell structures and different metabolic pathways in microbial cells, probably resulting in a lack of development of bacterial resistance. In conclusion, disinfection treatment with photolysis of H2O2 appears to be a potential alternative for existing antimicrobial agents in terms of a low risk of inducing bacterial resistance.

  19. In vitro evaluation of the risk of inducing bacterial resistance to disinfection treatment with photolysis of hydrogen peroxide.

    Science.gov (United States)

    Ikai, Hiroyo; Odashima, Yu; Kanno, Taro; Nakamura, Keisuke; Shirato, Midori; Sasaki, Keiichi; Niwano, Yoshimi

    2013-01-01

    The purpose of the present study was to evaluate the risk of inducing bacterial resistance to disinfection treatment with photolysis of H2O2 and comparing this with existing antibacterial agents. We tested seven antibacterial agents, including amoxicillin, cefepime hydrochloride, erythromycin, ofloxacin, clindamycin hydrochloride, ciprofloxacin hydrochloride, and minocycline hydrochloride, as positive controls for validation of the assay protocol. For all of the agents tested, at least one of the four bacterial species (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Streptococcus salivarius) was resistant to these agents by repeated exposure to subinhibitory concentrations of the agents up to 10 times. In contrast, antibacterial activity against any of the bacterial species tested (S. aureus, E. faecalis, E. coli, S. salivarius, Pseudomonas aeruginosa, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans) was not affected by repeated exposure to the disinfection treatment up to 40 times. This finding suggested that the risk of inducing bacterial resistance by disinfection treatment was low. The active ingredient of this disinfection treatment is hydroxyl radicals generated by photolysis of H2O2. Therefore, hydroxyl radicals interact with several cell structures and different metabolic pathways in microbial cells, probably resulting in a lack of development of bacterial resistance. In conclusion, disinfection treatment with photolysis of H2O2 appears to be a potential alternative for existing antimicrobial agents in terms of a low risk of inducing bacterial resistance.

  20. On the photochemistry of IONO2: absorption cross section (240-370 nm) and photolysis product yields at 248 nm.

    Science.gov (United States)

    Joseph, D M; Ashworth, S H; Plane, J M C

    2007-11-01

    The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) iodine oxides, but the formation and subsequent photolysis of IONO(2) is very inefficient as an ozone-depleting cycle.

  1. Synthesis of binary iron-carbon nanoparticles by UV laser photolysis of Fe(CO)5 with various hydrocarbons

    Science.gov (United States)

    Eremin, A. V.; Gurentsov, E. V.; Musikhin, S. A.

    2016-10-01

    In this study the laser photolysis of the mixtures containing vapors of various hydrocarbons and iron pentacarbonyl was implemented to nanoparticle formation. The radiation source used for photo-dissociation of precursors was a pulsed Nd:Yag laser operated at a wavelength of 266 nm. Under UV radiation the molecules of Fe(CO)5 decomposed, forming atomic iron vapor and unsaturated carbonyls at well-known and readily controllable parameters. The subsequent condensation of supersaturated metal vapor resulted in small iron clusters and nanoparticles formation. The growth process of the nanoparticles was observed by a method of laser light extinction. Laser induced incandescence technique was applied for particle sizing during the process of their formation. Additionally nanoparticle samples were investigated by a transmission electron microscope. The particle size distribution was measured by statistical treatment of microphotographs. The elemental analysis by energy-dispersive x-ray spectroscopy and electron diffraction pattern gave the composition and structure of nanoparticles. The core-shell iron-carbon nanoparticles were synthesized by joint laser photolysis of iron pentacarbonyl with benzene and acetylene. The photolysis of the mixtures of toluene, butanol and methane with iron pentacarbonyl revealed in a pure iron particles formation which fast oxidized in air when were extracted out of the reactor.

  2. Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone.

    Science.gov (United States)

    Sayre, Robert M; Dowdy, John C; Gerwig, Andre J; Shields, William J; Lloyd, Roger V

    2005-01-01

    A major concern raised about photostability studies of sunscreen products is that the photodegradation of sunscreens does not readily translate into changes in product performance. This study examines the correlation between photochemical degradation of sunscreen agents and changes in protection provided by sunscreen films. Films of a commercial sunscreen product containing avobenzone, oxybenzone and octinoxate were irradiated using a fluorescent UV-A phototherapy lamp with additional UV-B blocking filter. Periodically, during irradiation the transmittances of the films were measured and samples collected for chemical analysis of the sunscreen agents using high-performance liquid chromatography techniques. The results show that UV-induced changes in UV transmittance of sunscreen films correlate with changes in concentration of sunscreen agents. In a parallel experiment, we also irradiated a thin film of the same product in the cavity of an electron spin resonance (ESR) spectrometer. We report the concomitant photolysis of avobenzone and octinoxate that predominates over expected E/Z photoisomerization and that irradiation of a film of this product produced free radicals detected by ESR spectroscopy that persisted even after exposure had ended.

  3. Photo-assisted electrochemical degradation of simulated textile effluent coupled with simultaneous chlorine photolysis.

    Science.gov (United States)

    de Mello Florêncio, Thaíla; de Araújo, Karla Santos; Antonelli, Raissa; de Toledo Fornazari, Ana Luiza; da Cunha, Paula Cordeiro Rodrigues; da Silva Bontempo, Letícia Helena; de Jesus Motheo, Artur; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2016-10-01

    The influence of chloride ion concentration during the photo-assisted electrochemical degradation of simulated textile effluent, using a commercial Ti/Ru0.3Ti0.7O2 anode, was evaluated. Initially, the effect of applied current and supporting electrolyte concentration on the conversion of chloride ions to form reactive chlorine species in 90 min of experiment was analyzed in order to determine the maximum production of reactive chlorine species. The optimum conditions encountered (1.5 A and 0.3 mol dm(-3) NaCl) were subsequently employed for the degradation of simulated textile effluent. The efficiency of the process was determined through the analysis of chemical oxygen demand (COD), total organic carbon (TOC), of the presence of organochlorine products and phytotoxicity. Photo-assisted electrochemical degradation was more efficient for COD and TOC removal than the electrochemical technique alone. With simultaneous UV irradiation, a reduced quantity of reactive chlorine was produced, indicating that photolysis of the chlorine species led to the formation of hydroxyl radicals. This fact turns a simple electrochemical process into an advanced oxidation process.

  4. Economic and simple system to combine single-spot photolysis and whole-field fluorescence imaging

    Science.gov (United States)

    Jaafari, Nadia; Henson, Mark; Graham, Jeremy; Canepari, Marco

    2013-06-01

    In recent years, the use of light emitting diodes (LEDs) has become commonplace in fluorescence microscopy. LEDs are economical and easy to couple to commercial microscopes, and they provide powerful and stable light that can be triggered by transistor-transistor logic pulses in the range of tens of microseconds or shorter. LEDs are usually installed on the epifluorescence port of the microscope to obtain whole-field illumination, which is ideal for fluorescence imaging. In contrast, photolysis or channelrhodopsin stimulation often requires localized illumination, typically achieved using lasers. Here we show that insertion of a long-pass (>411 nm) filter with an appropriately sized pinhole in the epifluorescence pathway, combined with dual UV/visible illumination, can produce efficient whole-field visible illumination and spot UV illumination of 15 to 20 μm. We tested our system by performing calcium imaging experiments combined with L-glutamate or N-methyl-D-aspartic acid (NMDA) photorelease in hippocampal neurons from brain slices or dissociated cultures, demonstrating the ability to obtain local activation of NMDA receptors exclusively in the illuminated spot. The very inexpensive and simple system that we report here will allow many laboratories with limited budgets to run similar experiments in a variety of physiological applications.

  5. Direct and indirect photolysis of triclocarban in the presence of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Tamara D. Trouts

    2015-05-01

    Full Text Available Abstract Photolysis is an important attenuation pathway for the removal of wastewater effluent organic micropollutants from surface waters. In this work, direct and indirect processes leading to the degradation of the disinfectant, triclocarban were studied. Photo-irradiation experiments were conducted in water collected from Old Woman Creek (OWC a tributary of Lake Erie near Huron, OH, USA and in solutions of fulvic acids isolated from the Suwannee River, Georgia, USA (SRFA, Old Woman Creek (OWCFA and Pony Lake, Antarctica (PLFA. Photodegradation of triclocarban proceeded faster in the presence of all three fulvic acids relative to deionized water. PLFA, an autochthonous dissolved organic matter (DOM was found to be more reactive than the other fulvic acids, while the mostly allochthonous SRFA exhibited the lowest reactivity toward triclocarban. The later observation can be in part explained by anti-oxidant moieties present in SRFA. Photosensitized triclocarban degradation in whole water DOM from OWC was entirely attributable to the fulvic acid fraction and suggests that this component is the most photo-reactive fraction of the DOM. Anoxic and methanol-quenched experiments revealed unexpected results whereby the former suggests oxidation through reaction with triplet DOM, while the later is indicative of reaction with photo-generated hydroxyl radicals. It is possible that methanol can quench excited DOM species, which would shut down the triplet oxidation pathway. Finally, we observed no enhancement of triclocarban-photosensitized degradation through the addition of iron.

  6. Laser flash photolysis studies of atmospheric free radical chemistry using optical diagnostic techniques

    Science.gov (United States)

    Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.

    1993-01-01

    Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.

  7. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed.

    Science.gov (United States)

    Chang, Chia-Chi; Chiu, Chun-Yu; Chang, Ching-Yuan; Chang, Chiung-Fen; Chen, Yi-Hung; Ji, Dar-Ren; Yu, Yue-Hwa; Chiang, Pen-Chi

    2009-01-15

    In this study, a high-gravity rotating packed bed (HGRPB) was used as a catalytic ozonation reactor to decompose dimethyl phthalate (DMP), an endocrine disrupting chemical commonly encountered. The HGRPB is an effective gas-liquid mixing equipment which can enhance the ozone mass transfer coefficient. Platinum-containing catalyst (Pt/-Al2O3) of Dash 220N and ultra violet (UV) lamp were combined in the high-gravity ozonation (HG-OZ) system to enhance the self-decomposition of molecular ozone in liquid to form highly reactive radical species. Different combinations of HG-OZ with Dash 220N and UV for the degradation of DMP were tested. These include HG-OZ, HG catalytic OZ (HG-Pt-OZ), HG photolysis OZ (HG-UV-OZ) and HG-UV-Pt-OZ. The result indicated that all the above four ozonation processes result in significant decomposition of DMP and mineralization of total organic carbon (TOC) at the applied ozone dosage per volume of liquid sample of 1.2gL(-1). The UV and Pt/gamma-Al2O3 combined in HG-OZ can enhance the TOC mineralization efficiency (eta(TOC)) to 56% (via HG-UV-OZ) and 57% (via HG-Pt-OZ), respectively, while only 45% with ozone only. The process of HG-UV-Pt-OZ offers the highest eta(TOC) of about 68%.

  8. Photolysis of benzophenone with two-step two-laser excitation

    Institute of Scientific and Technical Information of China (English)

    CAI; Xichen

    2001-01-01

    [1]Carmichael, I., Hug, G. L., Triplet-triplet absorption spectra of organic molecules in condensed phases, J. Phys. Chem. Ref. Data, 1986, 15(1): 1-20.[2]Nikogosyan, D. N., Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry, Int. J. Radiat. Biol., 1990, 57(2): 233-299.[3]Yao, S. D., Sheng, S. G., Cai, J. H. et al., Nanosecond pulse radiolysis studies in China, Radiat. Phys. Chem., 1995, 46:105-109.[4]Baumann, H.. Merckel, C., Timpe, H. -J., The laser versus the lamp: reactivity of the diphenyl ketyl radical in the ground and excited states. Chem. Phys. Lett., 1984, 103(6): 497-502.[5]Barral-Tosh, S., Chattopadhyay, S. K., Das, P. K., A laser flash photolysis study of paraquat reduction by photogenerated aromatic ketyl radicals and carbonyl triplets, J. Phys. Chem., 1984, 88: 1404-1408.[6]Elisei. F., Favaro, G., Ion-forming processes on 248 nm laser excitation of benzophenone in aqueous solution: a time-resolved absorption and conductivity study, J. Photochem. Photobiol. A: Chem., 1991, 59:243-253.

  9. UV photolysis, organic molecules in young disks, and the origin of meteoritic amino acids

    CERN Document Server

    Throop, Henry

    2011-01-01

    The origin of complex organic molecules such as amino acids and their precursors found in meteorites and comets is unknown. Previous studies have accounted for the complex organic inventory of the Solar System by aqueous chemistry on warm meteoritic parent bodies, or by accretion of organics formed in the interstellar medium. This paper proposes a third possibility: that complex organics were created in situ by ultraviolet light from nearby O/B stars irradiating ices already in the Sun's protoplanetary disk. If the Sun was born in a dense cluster near UV-bright stars, the flux hitting the disk from external stars could be many orders of magnitude higher than that from the Sun alone. Such photolysis of ices in the laboratory can rapidly produce amino acid precursors and other complex organic molecules. I present a simple model coupling grain growth and UV exposure in a young circumstellar disk. It is shown that the production may be sufficient to create the Solar System's entire complex organic inventory withi...

  10. Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan

    Science.gov (United States)

    Alicke, B.; Platt, U.; Stutz, J.

    2002-11-01

    The photolysis of nitrous acid (HONO) in the early morning hours is believed to be a significant source of hydroxyl radicals (OH), the most important daytime oxidizing species. Although the importance of this mechanism has been recognized for many years, no accurate experimental quantification is available. Here we present measurements of HONO, NO2, SO2, O3 and HCHO by Differential Optical Absorption Spectroscopy (DOAS) during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono (LOOP/PIPAPO) study in May-June 1998 in Milan, Italy. The concentration of NO and J(NO2)/J(HONO) were simultaneously monitored by in situ monitors. The photolysis frequencies of HCHO and O3 were determined with a radiative transfer model. High nocturnal HONO mixing ratios of up to 4.4 ppb were regularly observed. Elevated daytime HONO levels during cloudy periods show that the formation of HONO proceeds after sunrise and therefore also represents a source of hydroxyl radicals throughout the day. Averaged over 24 hours, HCHO photolysis is the most important source of OH in Milan, followed by either ozone or HONO photolysis. Our observations indicate that on certain days the OH production from HONO can be even more important than that from ozone photolysis. The diurnal variation of the different OH formation mechanisms shows that HONO photolysis is by far the most important source in the early hours of the morning, and can be as large as and even surpass the total OH production at noon.

  11. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan [School of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Li, Guo-Hua, E-mail: nanozjut@zjut.edu.cn [School of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Research Center of Nanoscience and Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Chen, Xiao-Ping, E-mail: chxp@zjut.edu.cn [School of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Zheng, Jian-Hui [School of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014 (China)

    2013-08-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe.

  12. Technoeconomic analysis of different options for the production of hydrogen from sunlight, wind, and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Amos, W.A. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    To determine their technical and economic viability and to provide insight into where each technology is in its development cycle, different options to produce hydrogen from sunlight, wind, and biomass were studied. Additionally, costs for storing and transporting hydrogen were determined for different hydrogen quantities and storage times. The analysis of hydrogen from sunlight examined the selling price of hydrogen from two technologies: direct photoelectrochemical (PEC) conversion of sunlight and photovoltaic (PV)-generated electricity production followed by electrolysis. The wind analysis was based on wind-generated electricity production followed by electrolysis. In addition to the base case analyses, which assume that hydrogen is the sole product, three alternative scenarios explore the economic impact of integrating the PV- and wind-based systems with the electric utility grid. Results show that PEC hydrogen production has the potential to be economically feasible. Additionally, the economics of the PV and wind electrolysis systems are improved by interaction with the grid. The analysis of hydrogen from biomass focused on three gasification technologies. The systems are: low pressure, indirectly-heated gasification followed by steam reforming; high pressure, oxygen-blown gasification followed by steam reforming; and pyrolysis followed by partial oxidation. For each of the systems studied, the downstream process steps include shift conversion followed by hydrogen purification. Only the low pressure system produces hydrogen within the range of the current industry selling prices (typically $0.7--$2/kg, or $5--14/GJ on a HHV basis). A sensitivity analysis showed that, for the other two systems, in order to bring the hydrogen selling price down to $2/kg, negative-priced feedstocks would be required.

  13. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water.

    Science.gov (United States)

    Chen, Chia-Ying; Jafvert, Chad T

    2010-09-01

    Very limited information exists on transformation processes of carbon nanotubes in the natural aquatic environment. Because the conjugated pi-bond structure of these materials is efficient in absorbing sunlight, photochemical transformations are a potential fate process with reactivity predicted to vary with their diameter, chirality, number and type of defects, functionalization, residual metal catalyst and amorphous carbon content, and with the composition of the water, including the type and composition of materials that act to disperse them into the aqueous environment. In this study, the photochemical reactions involving colloidal dispersions of carboxylated single-walled carbon nanotubes (SWNT-COOH) in sunlight were examined. Production of reactive oxygen species (ROS) during irradiation occurs and is evidence for potential further phototransformation and may be significant in assessing their overall environmental impacts. In aerated samples exposed to sunlight or to lamps that emit light only within the solar spectrum, the probe compounds, furfuryl alcohol (FFA), tetrazolium salts (NBT2+ and XTT), and p-chlorobenzoic acid (pCBA), were used to indicate production of 1O2, O2.-, and .OH, respectively. All three ROS were produced in the presence of SWNT-COOH and molecular oxygen (3O2). 1O2 production was confirmed by observing enhanced FFA decay in deuterium oxide, attenuated decay of FFA in the presence of azide ion, and the lack of decay of FFA in deoxygenated solutions. Photogeneration of O2.- and .OH was confirmed by applying superoxide dismutase (SOD) and tert-butanol assays, respectively. In air-equilibrated suspensions, the loss of 0.2 mM FFA in 10 mg/L SWNT-COOH was approximately 85% after 74 h. Production of 1O2 was not dependent on pH from 7 to 11; however photoinduced aggregation was observed at pH 3.

  14. The ability of periorbitally applied antiglare products to improve contrast sensitivity in conditions of sunlight exposure.

    Science.gov (United States)

    DeBroff, Brian M; Pahk, Patricia J

    2003-07-01

    Sun glare decreases athletes' contrast sensitivity and impairs their ability to distinguish objects from background. Many commercial products claim to reduce glare but have not been proven effective in clinical studies. To determine whether glare-reducing products such as eye black grease and antiglare stickers reduce glare and improve contrast sensitivity during sunlight exposure. We tested 46 subjects for contrast sensitivity using a Pelli-Robson contrast chart. Each subject served as an internal control and then was randomized to either application of eye black grease, antiglare stickers, or petroleum jelly at the infraorbital rim. All testing was performed in conditions of unobstructed sunlight. Analysis of variance revealed a significant difference between eye black grease (mean +/- SD, Pelli-Robson value, 1.87 +/- 0.09 logMAR units) and antiglare stickers (1.75 +/- 0.14 logMAR units) in binocular testing (P =.02). No statistical difference was found between the groups in right eyes, left eyes, or in combined data from the right and left eyes. Paired t tests demonstrated a significant difference between control (mean +/- SD, 1.77 +/- 0.14 logMAR units) and eye black grease (1.87 +/- 0.09 logMAR units) in binocular testing (P =.04). There was also a significant difference between control (mean +/- SD, 1.65 +/- 0.05 logMAR units) and eye black grease (1.67 +/- 0.06 logMAR units) in combined data from the right and left eyes (P =.02). Eye black grease reduces glare and improves contrast sensitivity in conditions of sunlight exposure compared with the control and antiglare stickers in binocular testing.

  15. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  16. On the origin of the coherence of sunlight on the earth.

    Science.gov (United States)

    Sundaram, Sriram; Panigrahi, Prasanta K

    2016-09-15

    It is shown that the observed far-field behavior of sunlight on the earth's surface, located in the near-field region, is due to the small angular width it subtends at the center of the sun. The investigation of the angular behavior of the cross-spectral density function explicitly leads to Bessel-like far-zone behavior for a small angle without any restriction on the value of l. Our general analysis for the spherical source can be easily extended to other geometries.

  17. Influence of Sound Wave Stimulation on the Growth of Strawberry in Sunlight Greenhouse

    Science.gov (United States)

    Qi, Lirong; Teng, Guanghui; Hou, Tianzhen; Zhu, Baoying; Liu, Xiaona

    In this paper, we adopt the QGWA-03 plant audio apparatus to investigate the sound effects on strawberry in the leaf area, the photosynthetic characteristics and other physiological indexes. It was found that when there were no significant differences between the circumstances of the two sunlight greenhouses, the strawberry after the sound wave stimulation grew stronger than in the control and its leaf were deeper green, and shifted to an earlier time about one week to blossom and bear fruit. It was also found that the resistance of strawberry against disease and insect pest were enhanced. The experiment results show that sound wave stimulation can certainly promote the growth of plants.

  18. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  19. Bacterial growth in humic waters exposed to UV-radiation and simulated sunlight

    DEFF Research Database (Denmark)

    Corin, N.; Backlund, P.; Wiklund, T.

    1998-01-01

    Sterile filtered (0.45 mu m) humic lake water was exposed to simulated sunlight (300-800 nm) or W-radiation (254 run)for various periods of times and the dissolved organic carbon content, absorbance at 254 and 460 nm and PH were recorded. The irradiated water was inoculated with a natural bacterial...... in an increased availability of the dissolved organic material as bacterial substrate. No inhibitory effect on the bacterial growth, due to the presence of toxic organic reaction products, was observed. (C) 1998 Published by Elsevier Science Ltd....

  20. Sunlight simulators-the key to understanding the physiological effects of the sun

    CSIR Research Space (South Africa)

    Singh, A

    2006-07-01

    Full Text Available simulator Slide 4 © CSIR 2006 www.csir.co.za ۞ Benefits of natural sunlight ۞ Restrictions of lifestyles ۞ Common misconceptions ۞ Experimental setups Slide 5 © CSIR 2006 www.csir.co.za Cancer Males... Females Cases Deaths Cases Deaths Oral cavity 175,916 80,736 98,373 46,723 Esophagus 315,394 261,162 146,723 124,730 Stomach 603,419 446,052 330,518 254,297 Colon/rectum 550,465 278,446 472,687 250,532 Liver 442,119 416,882 184...

  1. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    DEFF Research Database (Denmark)

    Laundal, Karl M.; Finlay, Chris; Olsen, Nils

    2016-01-01

    analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal...... show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV emissions on the dayside and on particle precipitation at pre-midnight magnetic local times. In sunlight, the horizontal equivalent current flows in two cells, resembling an opposite ionospheric...

  2. Photolysis and photocatalysis of ibuprofen in aqueous medium: characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia salina.

    Science.gov (United States)

    da Silva, Júlio César Cardoso; Teodoro, Janaina Aparecida Reis; Afonso, Robson José de Cássia Franco; Aquino, Sérgio Francisco; Augusti, Rodinei

    2014-02-01

    The degradation of the pharmaceutical compound ibuprofen (IBP) in aqueous solution induced by direct photolysis (UV-A and UV-C radiation) and photocatalysis (TiO2 /UV-A and TiO2 /UV-C systems) was evaluated. Initially, we observed that whereas photocatalysis (both systems) and direct photolysis with UV-C radiation were able to cause an almost complete removal of IBP, the mineralization rates achieved for all the photodegradation processes were much smaller (the highest value being obtained for the TiO2 /UV-C system: 37.7%), even after an exposure time as long as 120 min. Chemical structures for the by-products formed under these oxidative conditions (11 of them were detected) were proposed based on the data from liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) analyses. Taking into account these results, an unprecedented route for the photodegradation of IBP could thus be proposed. Moreover, a fortunate result was achieved herein: tests against Artemia salina showed that the degradation products had no higher ecotoxicities than IBP, which possibly indicates that the photocatalytic (TiO2 /UV-A and TiO2 /UV-C systems) and photolytic (UV-C radiation) processes can be conveniently employed to deplete IBP in aqueous media.

  3. Continuous irradiation and flash-photolysis studies of new[3H]naphtho[2,1-b]pyrans linked by covalent bonds to oligothiophene units. Effect of thiophene substituents on the photochromism.

    Science.gov (United States)

    Frigoli, Michel; Pimienta, Véronique; Moustrou, Corinne; Samat, André; Guglielmetti, Robert; Aubard, Jean; Maurel, François; Micheau, Jean-Claude

    2003-08-01

    The influence of oligothiophene substituents on five new [3H]naphtho[2,1-b]pyrans has been investigated using flash photolysis and continuous irradiation techniques. Photochromic properties strongly depend on the number and position of the thienyl units. Thienyl substitution increases the UV/visible absorbance of the lower energy transition of both the naphthopyran and merocyanine isomers. The rate constants of the thermal fading processes also increase with the number of thiophenic entities. Although several minor photoisomers, whose relative amounts depend on the irradiation conditions could be involved, it has been assumed that under continuous monochromatic irradiation, the evolution of the photochromic reaction can be described by the formation of only one photoisomer. Under these conditions, quantum yields of photocolouration and molar absorption coefficients of the non-isolable photomerocyanine isomer were evaluated by photokinetic analysis. Flash-photolytic colourability can be interpreted using continuous irradiation parameters. A linear correlation has been established between experimental and calculated colourability. This result shows that similar photochromic reactions leading to similar photoisomers are triggered either by polychromatic flash photolysis or by continuous monochromatic irradiation.

  4. Studies on laser flash photolysis and pulse radiolysis of quinoline and some of its derivatives%喹啉及其衍生物的脉冲辐解和激光光解研究

    Institute of Scientific and Technical Information of China (English)

    ZHU Dazhang; WANG Shilong; SUN Xiaoyu; LI Wenzhe; ZENG Kailing; NI Yaming; WANG Wenfeng; YAO Side

    2005-01-01

    Quinoline and some of its derivatives were reported to be carcinogenic, toxic and mutagenic[1-3]. The widespread use of quinoline and its derivatives entails that these compounds are distributed in the environment, polluting soil and water together with many other environmental chemicals.Time-resolved laser flash photolysis and pulse radiolysis have been used to study the reaction of quinoline (Q), 2, 6-dimethyl-quinoline (DMQ) and isoquinoline (IQ) with hydrated electrons, hydroxyl radicals and hydrogen radicals. Transient absorption spectra were obtained and reaction rate constants to the reactions were determined, as showed in Table 1. Rossible mechanisms of the reactions were suggested.In addition, oxidization reactions of SO4·-, Br2·- and N3·- with isoquinoline, quinoline and its derivatives were studied. It showed that SO4- could oxidize quinoline, 2, 6-dimethylquinoline and isoquinoline; Br2·-could oxidize isoquinoline to its cation radicals, but it could not oxidize quinoline or 2, 6-diemethylquinoline; N3·- could oxidize none of them.With a better understandings on photolysis and radiolysis of isoquinoline, quinoline and its derivates, the study is of help for degradation of the chemicals and for environment protection.

  5. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    Science.gov (United States)

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O3/H2O2 and UV/H2O2) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (kO3) (50% at specific ozone doses of 0.5 gO3/gDOC to ∼100% at ≥1.0 gO3/gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined kO3 and k(•)OH. The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H2O2. For a typical UV disinfection dose (400 J/m(2)), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H2O2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  6. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    Science.gov (United States)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  7. Mutation spectrum in sunlight-exposed mouse skin epidermis: small but appreciable contribution of oxidative stress-mediated mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Hironobu [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)]. E-mail: ikehata@mail.tains.tohoku.ac.jp; Nakamura, Shingo [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212 (Japan); Asamura, Takaaki [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Ono, Tetsuya [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)

    2004-11-22

    We studied the mutations induced in skin by sunlight using transgenic Muta{sup TM} mice. Noon sunlight during summer at Sendai, Japan induced mutations efficiently in both epidermis and dermis. The mutant frequency (MF) in epidermis reached nearly 0.5% during the first 40 min irradiation but became saturated at this level with the appearance of skin inflammation after further irradiation. At the equivalent inflammatory dose, sunlight was twice as genotoxic as 313 nm-peak UVB. The 81 mutations detected in 80 lacZ transgene mutants isolated from the sunlight-exposed epidermis were dominated by C {yields} T transitions (89%), occurring exclusively at dipyrimidine sites, and also included a CC {yields} TT tandem substitution. Thus, the sunlight-induced mutation spectrum is highly UV-specific, quite similar to that induced by UVB but significantly different from that induced by UVA. Although oxidative damage-related C {yields} A transversions were detected only in five mutants (6%), their frequency was elevated to at least 15 times the background level, suggesting that the contribution of UVA-mediated oxidative stress is comparatively small but considerable. An analysis of bases adjacent to the mutated cytosines revealed that the sunlight-induced mutations prefer 5'-TC-3' dipyrimidine sites to 5'-CC-3' and 5'-CT-3'. The distribution of the frequent C {yields} T transition sites in the transgene was well associated with the CpG motif, which is known to be completely methylated in the gene, and quite similar to that induced by UVB rather than that by UVA. Thus, the UVB component contributes to the sunlight-induced mutations in the mammalian skin much more than the UVA component, whose influence through reactive oxygen species (ROS)-mediated mutagenesis is still appreciable.

  8. Sunlight exposure and sun sensitivity associated with disability progression in multiple sclerosis.

    Science.gov (United States)

    D'hooghe, M B; Haentjens, P; Nagels, G; Garmyn, M; De Keyser, J

    2012-04-01

    Sunlight and vitamin D have been inversely associated with the risk of multiple sclerosis (MS). We investigated sunlight exposure and sun sensitivity in relation to disability progression in MS. We conducted a survey among persons with MS, registered by the Flemish MS society, Belgium, and stratified data according to relapsing-onset and progressive-onset MS. We used Kaplan-Meier survival and Cox proportional hazard regression analyses with time to Expanded Disability Status Scale (EDSS) 6 as outcome measure. Hazard ratios for the time from onset and from birth were calculated for the potentially predictive variables, adjusting for age at onset, gender and immunomodulatory treatment. 704 (51.3%) of the 1372 respondents had reached EDSS 6. In relapsing-onset MS, respondents reporting equal or higher levels of sun exposure than persons of the same age in the last 10 years had a decreased risk of reaching EDSS 6. In progressive-onset MS, increased sun sensitivity was associated with an increased hazard of reaching EDSS 6. The association of higher sun exposure with a better outcome in relapsing-onset MS may be explained by either a protective effect or reverse causality. Mechanisms underlying sun sensitivity might influence progression in progressive-onset MS.

  9. Factors influencing adherence with therapeutic sunlight exposure in older people in intermediate care facilities.

    Science.gov (United States)

    Durvasula, Seeta; Sambrook, Philip N; Cameron, Ian D

    2012-01-01

    The purpose of this study was to investigate the factors influencing low adherence with therapeutic sunlight exposure in a randomized controlled trial conducted with older people living in intermediate care facilities. The study involved participants in the FREEDOM (Falls Risk Epidemiology: Effect of vitamin D on skeletal Outcomes and other Measures) study, a randomized controlled trial of therapeutic sun exposure to reduce falls in older people in intermediate care facilities. Semi-structured interviews were conducted with thirty participants in the FREEDOM trial, and with ten sunlight officers who were employed to facilitate the sun exposure. Two focus groups involving 10 participants in the FREEDOM trial were also held at the end of the intervention period. Common themes were derived from the interview and focus group transcripts. The study showed that the perceived health benefits did not influence adherence with the sun exposure. Factors such as socializing with others and being outdoors were more important in encouraging attendance. The main barriers to adherence included the perceived inflexibility and regimentation of daily attendance, clash with other activities, unsuitable timing and heat discomfort. This study showed that providing greater flexibility and autonomy to older people in how and when they receive sun exposure is likely to improve adherence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Years of sunlight exposure and cataract: a case-control study in a Mediterranean population

    Science.gov (United States)

    Pastor-Valero, María; Fletcher, Astrid E; de Stavola, Bianca L; Chaqués-Alepúz, Vicente

    2007-01-01

    Background We aimed to investigate the relation between sunlight exposure and risk of cataract. Methods We carried out a frequency-matched case-control study of 343 cases and 334 controls attending an ophthalmology outpatient clinic at a primary health-care center in a small town near Valencia, Spain. All cases were diagnosed as having a cataract in at least one eye based on the Lens Opacification Classification system (LOCS II). Controls had no opacities in either eye. All cases and controls were interviewed for information on outdoor exposure, "usual" diet, history of severe episodes of diarrhea illness, life-style factors and medical and socio-demographic variables. Blood antioxidant vitamin levels were also analyzed. We used logistic regression models to estimate sex and age-adjusted odds ratios (ORs) by quintiles of years of occupational outdoor exposure, adjusting for potential confounders such as smoking, alcohol consumption, serum antioxidants and education. Results No association was found between years of outdoor exposure and risk of cataract. However, exploratory analyses suggested a positive association between years of outdoor exposure at younger ages and risk of nuclear cataract later in life. Conclusion Our study does not support an association with cataract and sunlight exposure over adult life. PMID:18039367

  11. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Fas(lpr) mice.

    Science.gov (United States)

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T; Lucas, Julie A; Rabacal, Whitney A; Croker, Byron P; Zong, Xiao-Hua; Stanley, E Richard; Kelley, Vicki R

    2008-11-15

    Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.

  12. Dose-Response Effect of Sunlight on Vitamin D2 Production in Agaricus bisporus Mushrooms

    DEFF Research Database (Denmark)

    Urbain, Paul; Jakobsen, Jette

    2015-01-01

    The dose response effect of UV-B irradiation from sunlight on vitamin D2 content of sliced Agaricus bisporus (white button mushroom) during the process of sun-drying was investigated.Real-time UV-B and UV-A data were obtained using a high-performance spectroradiometer. During the first hour...... of sunlight<