WorldWideScience

Sample records for sunfall monitor calibration

  1. Sunfall: a collaborative visual analytics system for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Aragon, Cecilia R.; Bailey, Stephen J.; Poon, Sarah; Runge, Karl; Thomas, Rollin C.

    2008-07-07

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  2. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  3. Calibration Monitor for Dark Energy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  4. Calibration and monitoring for crystal calorimetry

    CERN Document Server

    Zhu, Ren Yuan

    2005-01-01

    Crystal calorimetry provides excellent energy resolution in high energy and nuclear physics. The light output of heavy crystal scintillators, however, suffers from not negligible damage in radiation environment. A precision calibration and monitoring thus is crucial for maintaining crystal precision in situ. The performance of calibration and monitoring approaches used by BaBar, CLEO and L3 experiments are presented. The design and construction of a laser- based light monitoring system for CMS PWO calorimeter is also discussed.

  5. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  6. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  7. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  8. Luminosity monitoring and calibration of BLM

    Institute of Scientific and Technical Information of China (English)

    XUE Zhen; CAI Xiao; YU Bo-Xiang; FANG Jian; SUN Xi-Lei; SHI Feng; WANG Zhi-Gang; AN Zheng-Hua; SUN Li-Jun; LIU Hong-Bang; ZHANG Ai-Wu; XU Zi-Zong; WANG Xiao-Dong; WANG Xiao-Lian; HU Tao; WANG Zhi-Yong; FU Cheng-Dong; YAN Wen-Biao; L(U) Jun-Guang; ZHOU Li

    2011-01-01

    The BEPCⅡLuminosity Monitor(BLM)monitors relative luminosity per bunch.The counting rates of gamma photons,which are proportional to the luminosities from the BLM at the center of mass system energy of the ψ(3770)resonance,are obtained with a statistical error of 0.01% and a systematic error of 4.1%.Absolute luminosities are also determined by the BESⅢ End-cap Electro-Magnetic Calorimeter(EEMC)using Bhabha events with a statistical error of 2.3% and a systematic error of 3.5%.The calibration constant between the luminosities obtained with the EEMC and the counting rates of the BLM are found to be 0.84±0.03(x1026 cm-2·count-1).With the calibration constant,the counting rates of the BLM can be scaled up to absolute luminosities.

  9. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  10. Calibration and Monitoring of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; vandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Reports on the atmospheric monitoring, calibration, and other operating systems of the Pierre Auger Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.

  11. Calibration and Monitoring of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Arganda, E.; Argirò, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; DiGiulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; GarcíaGámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonçalves do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; LaRosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pȩkala, J.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Taşcuau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; vandenBerg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-01-01

    Reports on the atmospheric monitoring, calibration, and other operating systems of the Pierre Auger Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.

  12. Calibration of Community-based Coral Reef Monitoring Protocols ...

    African Journals Online (AJOL)

    Keywords: coral reef monitoring, community-based, calibration. Abstract—Coral reef monitoring (CRM) has been recognised as an important management tool and has ..... Pollution Bulletin 40: 537-550. Wilkinson, C., Green, A., Almany, J. &.

  13. Calibration of burnup monitor installed in Rokkasho Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Oeda, Kaoru; Naito, Hirofumi; Hirota, Masanari [Japan Nuclear Fuel Co. Ltd., Rokkasho, Aomori (Japan); Natsume, Koichiro [Isogo Engineering Center, Toshiba Corporation, Yokohama, Kanagawa (Japan); Kumanomido, Hironori [Nuclear Engineering Laboratory, Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2000-06-01

    Rokkasho Reprocessing Plant uses burnup credit for criticality control at the Spent Fuel Storage Facility (SFSF) and the Dissolution Facility. A burnup monitor measures nondestructively burnup value of a spent fuel assembly and guarantees the credit for burnup. For practical reasons, a standard radiation source is not used in calibration of the burnup monitor, but the burnup values of many spent fuel assemblies are measured based on operator-declared burnup values. This paper describes the concept of burnup credit, the burnup monitor, and the calibration method. It is concluded, from the results of calibration tests, that the calibration method is valid. (author)

  14. Monitoring the stability of wavelength calibration of spectrophotometers.

    Science.gov (United States)

    Korzun, W J; Miller, W G

    1986-01-01

    The difference in absorbance (delta A) between equimolar acid and alkaline solutions of methyl red, at a wavelength near the isosbestic point of the indicator, is reproducible. Furthermore, this delta A is sensitive to changes in the wavelength calibration of the instrument used to make the measurement. The delta A of methyl red can be used to monitor wavelength accuracy in both manual and automated spectrophotometric instruments. Although this measurement does not establish wavelength calibration, it is useful for monitoring the wavelength accuracy of previously calibrated, automated spectrophotometers that do not easily lend themselves to calibration checks by conventional techniques.

  15. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  16. Calibration and monitoring of spectrometers and spectrophotometers.

    Science.gov (United States)

    Frings, C S; Broussard, L A

    1979-06-01

    We have delineated some of the factors affecting the performance of spectrometers and spectrophotometers in the clinical laboratory and have presented some of the methods for verifying that these instruments are functioning properly. At a minimum, every laboratory should perform periodic inspections of spectrometric functions to check wavelength calibration, linearity of detector response, and stray radiation. Only through such an inspection program can a laboratory ensure that these instruments are not contributing to inaccurate analytical results.

  17. Research on Calibration of Radioactive Aerosol Monitor

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; WU; Chang-ping; ZHANG; Xi; MENG; Jun; DIAO; Li-jun; CHEN; Ke-sheng

    2015-01-01

    Radioactive aerosol monitors were used to monitor the radioactive substance concentration or the total amounts in effluents from the nuclear facilities,in according to which evaluation was done if the national regulated discharged limitations or the designated object amounts were met

  18. Luminosity monitoring and calibration of BLM

    Institute of Scientific and Technical Information of China (English)

    薛镇; 蔡啸; 俞伯祥; 方建; 孙希磊; 石峰; 王志刚; 交正华; 孙丽君; 刘宏邦; 章爱武; 许咨宗; 王晓东; 汪晓莲; 胡涛; 王至勇; 傅成栋; 鄢文标; 吕军光; 周莉

    2011-01-01

    The BEPC II Luminosity Monitor (BLM) monitors relative luminosity per bunch. The counting rates of gamma photons, which are proportional to the luminosities from the BLM at the center of mass system energy of the φ(3770) resonance, are obtained with a sta

  19. A harvester based calibration system for cotton yield monitors

    Science.gov (United States)

    The objective of this work was to develop a system for measuring seed cotton weight on a cotton harvester to facilitate on-farm research efforts and provide information for use in semi-real-time calibration of yield monitors. The system tested in 2014 was improved from the original design developed...

  20. Dynamic Beam Based Calibration of Beam Position Monitors

    CERN Document Server

    Dehning, Bernd; Galbraith, Peter; Mugnai, G; Placidi, Massimo; Sonnemann, F; Tecker, F A; Wenninger, J

    1998-01-01

    The degree of spin polarization at LEP is strongly dependent on the knowledge of the vertical orbit. Quadrupole magnet alignment and beam position monitor (BPM) offsets are the main source of the orbi t uncertainty. The error of the orbit monitor readings can be largely reduced by calibrating the monitor relative to the adjacent quadrupole. At LEP, 16 BPM offsets can be determined in parallel durin g 40 minutes. The error of the measure offset is about 30mm. During the LEP run 1997, more than 500 measurements were made and used for the optimisation of polarization. The method of dynamic beam bas ed calibration will be explained and the results will be shown.

  1. Calibration of burnup monitor in the Rokkasho reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Oheda, K.; Naito, H.; Hirota, M. [Japan Nuclear Fuel Ltd., Aomori (Japan); Natsume, K. [Toshiba Corp., Yokohama, Kawasaki, Kanagawa (Japan); Kumanomido, H. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1998-07-01

    The Rokkasho Reprocessing Plant has adopted a credit for burnup in criticality control in the Spent Fuel Storage Facility (SFSF) and the Dissolution Facility. The burnup monitor system, prepared for BWR and PWR type fuel assemblies, nondestructively measures the burnup value and determines the residual U-235 enrichment in a spent fuel assembly, and criticality is controlled by the value of residual U-235 enrichment in SFSF and by the value of top 50 cm average burnup in the Dissolution Facility. The burnup monitor consists of three measurement systems; a Boss gamma-ray profile measurement system, a high resolution gamma-ray spectrometry system, and a passive neutron measurement system. The monitor sensitivity is calibrated against operator-declared burnup values through repetitive measurements of 100 spent fuel assemblies: BWR 8 X 8, PWR 14 X 14. and 17 X 17. The outline of the measurement methods, objectives of the calibration, actual calibration method, and an example of calibration performed in a demonstration experiment are presented. (author)

  2. Design, test, and calibration of an electrostatic beam position monitor

    OpenAIRE

    Maurice Cohen-Solal

    2010-01-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerato...

  3. An alternative calibration method for counting P-32 reactor monitors

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, T.J. [Applied Nuclear Technologies, Sandia National Laboratories, MS 1143, PO Box 5800, Albuquerque, NM 87185-1143 (United States); Vehar, D.W. [Sandia National Laboratories, Albuquerque, NM 87185-1143 (United States)

    2011-07-01

    Radioactivation of sulfur is a common technique used to measure fast neutron fluences in test and research reactors. Elemental sulfur can be pressed into pellets and used as monitors. The {sup 32}S(n, p) {sup 32}P reaction has a practical threshold of about 3 MeV and its cross section and associated uncertainties are well characterized [1]. The product {sup 32P} emits a beta particle with a maximum energy of 1710 keV [2]. This energetic beta particle allows pellets to be counted intact. ASTM Standard Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32 (E265) [3] details a method of calibration for counting systems and subsequent analysis of results. This method requires irradiation of sulfur monitors in a fast-neutron field whose spectrum and intensity are well known. The resultant decay-corrected count rate is then correlated to the known fast neutron fluence. The Radiation Metrology Laboratory (RML) at Sandia has traditionally performed calibration irradiations of sulfur pellets using the {sup 252}Cf spontaneous fission neutron source at the National Inst. of Standards and Technology (NIST) [4] as a transfer standard. However, decay has reduced the intensity of NIST's source; thus lowering the practical upper limits of available fluence. As of May 2010, neutron emission rates have decayed to approximately 3 e8 n/s. In practice, this degradation of capabilities precludes calibrations at the highest fluence levels produced at test reactors and limits the useful range of count rates that can be measured. Furthermore, the reduced availability of replacement {sup 252}Cf threatens the long-term viability of the NIST {sup 252}Cf facility for sulfur pellet calibrations. In lieu of correlating count rate to neutron fluence in a reference field the total quantity of {sup 32}P produced in a pellet can be determined by absolute counting methods. This offers an attractive alternative to extended {sup 252}Cf exposures because

  4. Rapid Analysis, Self-Calibrating Array for Air Monitoring

    Science.gov (United States)

    Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.

    2012-01-01

    Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.

  5. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolo

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the CMS cavern for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing.The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of light to monitor the efficiency of the sys...

  6. Development of a Calibration and Monitoring System for GD-1 High Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    王俊席; 杨林; 冯静; 冒晓建; 卓斌

    2004-01-01

    Based on CAN calibration protocol, a new calibration and monitoring system was developed for the GD1 high pressure common rail diesel engine. CAN driver block, monitoring program and calibration program for this system were designed respectively. The inquiry mode was used in the monitoring program and the interrupt mode was used in calibration program. The calibration program was designed in structural programming model. This system provides a reliable, accurate and quick CAN bus between ECU and PC, with baud rate up to 500Kbit/s.The implementation of the compatible and universal CAN calibration protocol makes it easy to displace the system and its function modules. It also provides friendly, compatible and flexible calibration interface, and the functions of online calibration and real-time monitoring. This system was successfully used in a GD-1 high pressure common rail diesel engine and the engine performance and exhaust emissions were significantly improved.

  7. Calibration of the radiation monitor onboard Akebono using Geant4

    Science.gov (United States)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  8. A Self-Calibrating Remote Control Chemical Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  9. Resent Progress in Research on Calibration Instrument for Radioactive Aerosol Monitor

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; CHEN; Yong-yong; WU; Chang-ping; XING; Yu; MENG; Jun; YANG; Qiao-ling

    2013-01-01

    Radioactive aerosol monitors are widely used in monitoring the radioactivity concentration of the artificial nuclides in gaseous effluents from the nuclear facilities.An on-developing calibration instrument for radioactive aerosol monitors consists of an α and β aerosol generating unit,aerosol transferring unit,measurement unit of radioactivity concentration of aerosol for instruments calibrated and the waste gas

  10. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  11. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  12. Calibration and Monitoring of the CMS Electromagnetic Calorimeter

    Science.gov (United States)

    La Licata, C.

    2014-06-01

    The CMS Electromagnetic Calorimeter (ECAL) is a homogeneous and hermetic calorimeter with high granularity and fast response, designed to provide high resolution measurements of electron and photon energy. Precise calibration of the ECAL must be performed in situ at the LHC, in order to achieve and maintain its design performance and to fully exploit the physics reach of CMS. Several techniques have been developed for the intercalibration of ECAL using collision data. These methods are based on the reconstruction of the invariant mass peak of unconverted photons from low mass particle decays (π0and η) and on the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Further intercalibration is carried out by using isolated electrons from W and Z bosons decays to compare the energy measured in ECAL to the momentum of the reconstructed tracks. The absolute calibration of the energy scale is performed using Z decays into electron-positron pairs. Changes in the ECAL response due to crystal radiation damage and changes in photo-detector output must be monitored. A system based on the injection of laser light into each crystal is used to track and correct for these variations during LHC operations.

  13. Seismic Monitoring System Calibration Using Ground Truth Database

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Winston; Wagner, Robert

    2002-12-22

    Calibration of a seismic monitoring system remains a major issue due to the lack of ground truth information and uncertainties in the regional geological parameters. Rapid and accurate identification of seismic events is currently not feasible due to the absence of a fundamental framework allowing immediate access to ground truth information for many parts of the world. Precise location and high-confidence identification of regional seismic events are the primary objectives of monitoring research in seismology. In the Department of Energy Knowledge Base (KB), ground truth information addresses these objectives and will play a critical role for event relocation and identification using advanced seismic analysis tools. Maintaining the KB with systematic compilation and analysis of comprehensive sets of geophysical data from various parts of the world is vital. The goal of this project is to identify a comprehensive database for China using digital seismic waveform data that are currently unavailable. These data may be analyzed along with ground truth information that becomes available. To date, arrival times for all regional phases are determined on all events above Mb 4.5 that occurred in China in 2000 and 2001. Travel-time models are constructed to compare with existing models. Seismic attenuation models may be constructed to provide better understanding of regional wave propagation in China with spatial resolution that has not previously been obtained.

  14. Instruments for calibration and monitoring of the LHCb Muon Detector

    CERN Document Server

    Deplano, C; Lai, A

    2006-01-01

    The subject of this Ph. D. thesis is the study and the development of the instruments needed to monitor and calibrate the Muon Detector of the LHCb (Large Hadron Collider beauty) experiment. LHCb is currently under installation at the CERN Large Hadron Collider (LHC) and will start to take data during 2007. The experiment will study B mesons decays to achieve a profound understanding of favour physics in the Standard Model framework and to search signs of new physics beyond. Muons can be found in the final states of many B-decays which are sensitive to CP violation. The Muon Detector has the crucial role to identify the muon particles generated by the b-hadron decays through a measurement of their transverse momentum, already at the first trigger level (Level-0). A 95% effciency in events selection is required for the Muon Trigger, which operates at the Level-0. 1380 detectors are used to equip the whole Muon System and the corresponding 122,112 readout channels must be time aligned and monitored with a resol...

  15. Optical relative calibration and stability monitoring for the Auger fluorescence detector

    Energy Technology Data Exchange (ETDEWEB)

    Aramo, Carla; Brack, J.; Caruso, R.; D' Urso, D.; Fazio, D.; Fonte, R.; Gemmeke, H.; Kleifges, M.; Knapik, R.; Insolia, A.; /Catania U.; Matthews, J.A.J.; Menshikov, A.; Miller, W.; Privitera, P.; Rodriguez Martino, J.

    2005-07-01

    The stability of the fluorescence telescopes of the Pierre Auger Observatory is monitored with the optical relative calibration setup. Optical fibers distribute light pulses to three different diffuser groups within the optical system. The total charge per pulse is measured for each pixel and compared with reference calibration measurements. This allows monitoring the short and long term stability with respect of the relative timing between pixels and the relative gain for each pixel. The designs of the LED calibration unit (LCU) and of the Xenon flash lamp used for relative calibration, are described and their capabilities to monitor the stability of the telescope performances are studied. We report the analysis of relative calibration data recorded during 2004. Fluctuations in the relative calibration constants provide a measure of the stability of the FD.

  16. Radioactive contamination in monitors received for calibration; Contaminacao em monitores de radiacao recebidos para calibracao

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Paulo S.; Santos, Gilvan C. dos; Brunelo, Maria Antonieta G.; Paula, Tiago C. de; Pires, Marina A.; Borges, Jose C. [MRA Comercio de Instrumentos Eletronicos Ltda., Jardinopolis, SP (Brazil). Centro de Ensaios e Pesquisas em Metrologia (METROBRAS)

    2013-10-01

    The Calibration Laboratory - LABCAL, from the Research Center for Metrology and Testing - METROBRAS, MRA Comercio de Instrumentos Eletronicos Ltda., began activities in October 2008 and, in August 2009, decided to establish a procedure for monitoring tests, external and internal, of all packages received from customers, containing instruments for calibration. The aim was to investigate possible contamination radioactive on these instruments. On July 2011, this procedure was extended to packagings of personal thermoluminescent dosemeters - TLD, received by the newly created Laboratory Laboratorio de Dosimetria Pessoal - LDP . In the monitoring procedure were used monitors with external probe, type pancake, MRA brand, models GP - 500 and MIR 7028. During the 37 months in which this investigation was conducted, were detected 42 cases of radioactive contamination, with the following characteristics: 1) just one case was personal dosimeter, TLD type; 2) just one case was not from a packing from nuclear medicine service - was from a mining company; 3) contamination occurred on packs and instruments, located and/or widespread; 4) contamination values ranged from slightly above the level of background radiation to about a thousand fold. Although METROBRAS has facilities for decontamination, in most cases, especially those of higher contamination, the procedure followed was to store the contaminated material in a room used for storage of radioactive sources. Periodically, each package and/or instrument was monitored, being released when the radiation level matched the background radiation. Every contamination detected, the client and/or owner of the instrument was informed. The Brazilian National Energy Commission - CNEN, was informed, during your public consultation for reviewing the standard for nuclear medicine services, held in mid-2012, having received from METROBRAS the statistical data available at the time. The high frequency of contamination detected and the high

  17. An integrated approach to monitoring the calibration stability of operational dual-polarization radars

    Science.gov (United States)

    Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.; Cremonini, Roberto; Cassardo, Claudio

    2016-11-01

    The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetric radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July-October 2014. The set of methods considered appears suitable to establish an online tool to

  18. Calibration and Monitoring of the CMS Electromagnetic Calorimeter

    CERN Document Server

    La Licata, Chiara

    2014-01-01

    The CMS Electromagnetic Calorimeter (ECAL) is an homogeneous and hermetic calorimeter with high granularity and fast response, designed to provide high resolution measurements of electron and photon energy. Precise calibration of the ECAL must be performed in situ at the LHC, in order to achieve and maintain its design performance and to fully exploit the physics reach of CMS. Several techniques have been developed for the inter-calibration of ECAL using collision data. These methods are based on the reconstruction of the invariant mass peak of unconverted photons from low mass particle decays (pi0 and eta) and the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Further inter-calibration is carried out by using isolated electrons from W and Z bosons to compare the energy measured in ECAL to the momentum of the reconstructed track. The absolute calibration of the energy scale is performed using Z decays into electron-positron pairs. Changes in the ECAL response due to crystal rad...

  19. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields.

    Science.gov (United States)

    Gressier, V

    2014-10-01

    Neutron calibration facilities and monitoring techniques have been developed since the middle of the 20th century to support research and nuclear power energy development. The technical areas needing reference neutron fields and related instruments were mainly cross section measurements, radiation protection, dosimetry and fission reactors, with energy ranging from a few millielectronvolts to about 20 MeV. The reference neutron fields and calibration techniques developed for these purposes will be presented in this paper. However, in recent years, emerging fields have brought new needs for calibration facilities and monitoring techniques. These new challenges for neutron metrology will be exposed with their technical difficulties.

  20. Unraveling fabrication and calibration of wearable gas monitor for use under free-living conditions.

    Science.gov (United States)

    Yue Deng; Cheng Chen; Tsow, Francis; Xiaojun Xian; Forzani, Erica

    2016-08-01

    Volatile organic compounds (VOC) are organic chemicals that have high vapor pressure at regular conditions. Some VOC could be dangerous to human health, therefore it is important to determine real-time indoor and outdoor personal exposures to VOC. To achieve this goal, our group has developed a wearable gas monitor with a complete sensor fabrication and calibration protocol for free-living conditions. Correction factors for calibrating the sensors, including sensitivity, aging effect, and temperature effect are implemented into a Quick Response Code (QR code), so that the pre-calibrated quartz tuning fork (QTF) sensor can be used with the wearable monitor under free-living conditions.

  1. Deformation Monitoring of the Submillimetric UPV Calibration Baseline

    Science.gov (United States)

    García-Asenjo, Luis; Baselga, Sergio; Garrigues, Pascual

    2017-06-01

    A 330 m calibration baseline was established at the Universitat Politècnica de València (UPV) in 2007. Absolute scale was subsequently transferred in 2012 from the Nummela Standard Baseline in Finland and distances between pillars were determined with uncertainties ranging from 0.1 mm to 0.3 mm. In order to assess the long-term stability of the baseline three field campaigns were carried out from 2013 to 2015 in a co-operative effort with the Universidad Complutense de Madrid (UCM), which provided the only Mekometer ME5000 distance meter available in Spain. Since the application of the ISO17123-4 full procedure did not suffice to come to a definite conclusion about possible displacements of the pillars, we opted for the traditional geodetic network approach. This approach had to be adapted to the case at hand in order to deal with problems such as the geometric weakness inherent to calibration baselines and scale uncertainty derived from both the use of different instruments and the high correlation between the meteorological correction and scale determination. Additionally, the so-called the maximum number of stable points method was also tested. In this contribution it is described the process followed to assess the stability of the UPV submillimetric calibration baseline during the period of time from 2012 to 2015.

  2. Second IRMF comparison of surface contamination monitor calibrations 2001-2002

    CERN Document Server

    Scott, C J

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a second comparison of surface contamination monitor calibrations in which twenty establishments in the UK participated. The exercise involved the circulation of three surface contamination monitors for calibration using large area reference sources available in the participants' laboratories. The instruments used were a Mini Instruments EP15, a Berthold LB122 and an Electra ratemeter with DP6AD probe. The instrument responses were calculated by the individual participants and submitted to the for analysis along with details of the reference sources used. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments.

  3. Doses monitoring in radiology: calibration of air kerma-area product (PKA meters

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Terini

    2013-12-01

    Full Text Available Objective The authors have sought to study the calibration of a clinical PKA meter (Diamentor E2 and a calibrator for clinical meters (PDC in the Laboratory of Ionizing Radiation Metrology at Instituto de Energia e Ambiente - Universidade de São Paulo. Materials and Methods Different qualities of both incident and transmitted beams were utilized in conditions similar to a clinical setting, analyzing the influence from the reference dosimeter, from the distance between meters, from the filtration and from the average beam energy. Calibrations were performed directly against a standard 30 cm3 cylindrical chamber or a parallel-plate monitor chamber, and indirectly against the PDC meter. Results The lowest energy dependence was observed for transmitted beams. The cross calibration between the Diamentor E2 and the PDC meters, and the PDC presented the greatest propagation of uncertainties. Conclusion The calibration coefficient of the PDC meter showed to be more stable with voltage, while the Diamentor E2 calibration coefficient was more variable. On the other hand, the PDC meter presented greater uncertainty in readings (5.0% than with the use of the monitor chamber (3.5% as a reference.

  4. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  5. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  6. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  7. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration

    OpenAIRE

    2010-01-01

    BACKGROUND: Portable respiratory inductive plethysmography (RIP) is promising for noninvasive monitoring of breathing patterns in unrestrained subjects. However, its use has been hampered by requiring recalibration after changes in body position. OBJECTIVES: To facilitate RIP application in unrestrained subjects, we developed a technique for adjustment of RIP calibration using position sensor feedback. METHODS: Five healthy subjects and 12 patients with lung disease were monitored by portable...

  8. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    Science.gov (United States)

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards.

  9. Design, calibration, and operation of 220Rn stack effluent monitoring systems at Argonne National Laboratory.

    Science.gov (United States)

    Munyon, W J; Kretz, N D; Marchetti, F P

    1994-09-01

    A group of stack effluent monitoring systems have been developed to monitor discharges of 220Rn from a hot cell facility at Argonne National Laboratory. The stack monitors use flow-through scintillation cells and are completely microprocessor-based systems. A method for calibrating the stack monitors in the laboratory and in the field is described. A nominal calibration factor for the stack monitoring systems in use is 15.0 cts min-1 per kBq m-3 (0.56 cts min-1 per pCi L-1) +/- 26% at the 95% confidence level. The plate-out fraction of decay products in the stack monitor scintillation cells, without any pre-filtering, was found to be nominally 25% under normal operating conditions. When the sample was pre-filtered upstream of the scintillation cell, the observed cell plate-out fraction ranged from 16-22%, depending on the specific sampling conditions. The instantaneous 220Rn stack concentration can be underestimated or overestimated when the steady state condition established between 220Rn and its decay products in the scintillation cell is disrupted by sudden changes in the monitored 220Rn concentration. For long-term measurements, however, the time-averaged response of the monitor represents the steady state condition and leads to a reasonable estimate of the average 220Rn concentration during the monitoring period.

  10. Observations of the moon by the global ozone monitoring experiment: radiometric calibration and lunar albedo

    NARCIS (Netherlands)

    Dobber, M.R.; Goede, A.P.H.; Burrows, J.P.

    1998-01-01

    The Global Ozone Monitoring Experiment (GOME) is a new instrument, which was launched aboard the second European Remoting Sensing satellite ESA-ERS2 in 1995. For its long-term radiometric and spectral calibration the GOME observes the sun and less frequently the moon on a regular basis. These measur

  11. Monitoring and calibration of the ALICE time projection chamber

    CERN Document Server

    Larsen, Dag Toppe

    The aim of the A Large Ion Collider Experiment (ALICE) experiment at CERN is to study the properties of the Quark–Gluon Plasma (QGP). With energies up to 5.5 A T eV for Pb+Pb collisions, the Large Hadron Collider (LHC) sets a new benchmark for heavy- ion collisions, and opens the door to a so far unexplored energy domain. A closer look at some of the physics topics of ALICE is given in Chapter 1. ALICE consists of several sub-detectors and other sub-systems. The various sub- detectors are designed for exploring different aspects of the particle production of an heavy-ion collision. Chapter 2 gives some insight into the design. The main tracking detector is the Time Projection Chamber (TPC). It has more than half million read-out channels, divided into 216 Read-out Partitions (RPs). Each RP is a separate Front-End Electronics (FEE) entity, as described in Chapter 3. A complex Detector Control System (DCS) is needed for configuration, monitoring and control. The heart of it on the RP side is a small embedded ...

  12. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  13. Conditions database and calibration software framework for ATLAS monitored drift tube chambers

    CERN Document Server

    Cirilli, M; Orestano, D; Petrucci, F; Rothberg, J E; Van Eldik, N; van Kesteren, Z; Verducci, M; Woudstra, M

    2007-01-01

    The size and complexity of LHC experiments raise unprecedented challenges not only in terms of detector design, construction and operation, but also in terms of software models and data persistency. One of the most challenging tasks is the calibration of the 375,000 Monitored Drift Tubes (MDTs) that will be used as precision tracking detectors in the Muon Spectrometer of the ATLAS experiment. This paper reviews the status of the MDT Calibration software and computing model. In particular, the options for a dedicated database are described.

  14. Calibration of burnup monitor of spent nuclear fuel installed at Rokkasho reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Oeda, Kaoru; Matoba, Masaru; Wakabayashi, Genichiro [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Naito, Hirofumi; Hirota, Masanari [Nuclear Fuel Industries Ltd., Tokyo (Japan); Morizaki, Hidetoshi; Kumanomido, Hironori; Natsume, Koichiro [Toshiba Corp., Tokyo (Japan)

    2001-05-01

    The spent nuclear fuel storage pool of Rokkasho reprocessing plant adopts the burnup credit' conception. Spent fuel assemblies are measured every one by one, by burnup monitors, and stored to a storage rack which is designed with specified residual enrichment. For nuclear criticality control, it is necessary for the burnup monitor that the measured value includes a kind of margin, which consists of errors of the monitor. In this paper, we describe the error of the burnup monitors, and the way of taking of the margin. From the result of calibration of the burnup monitor carried out from July through November, 1999, we describe that the way of taking of the margin is validated. And comments about possibility of error reduction are remarked. (author)

  15. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  16. Calibration of Passive Samplers for the Monitoring of Pharmaceuticals in Water-Sampling Rate Variation.

    Science.gov (United States)

    Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda

    2017-05-04

    Passive sampling is one of the most efficient methods of monitoring pharmaceuticals in environmental water. The reliability of the process relies on a correctly performed calibration experiment and a well-defined sampling rate (Rs) for target analytes. Therefore, in this review the state-of-the-art methods of passive sampler calibration for the most popular pharmaceuticals: antibiotics, hormones, β-blockers and non-steroidal anti-inflammatory drugs (NSAIDs), along with the sampling rate variation, were presented. The advantages and difficulties in laboratory and field calibration were pointed out, according to the needs of control of the exact conditions. Sampling rate calculating equations and all the factors affecting the Rs value - temperature, flow, pH, salinity of the donor phase and biofouling - were discussed. Moreover, various calibration parameters gathered from the literature published in the last 16 years, including the device types, were tabled and compared. What is evident is that the sampling rate values for pharmaceuticals are impacted by several factors, whose influence is still unclear and unpredictable, while there is a big gap in experimental data. It appears that the calibration procedure needs to be improved, for example, there is a significant deficiency of PRCs (Performance Reference Compounds) for pharmaceuticals. One of the suggestions is to introduce correction factors for Rs values estimated in laboratory conditions.

  17. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    Science.gov (United States)

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration.

  18. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K

    2003-07-07

    This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The

  19. Calibration of a He accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    The helium accumulation fluence monitor (HAFM) has been developed for a fast reactor dosimetry. The HAFM measurement system was calibrated using He gas and He implanted samples and the measurement accuracy was confirmed to be less than 5%. Based on the preliminary irradiation test in JOYO, the measured He in the {sup 10}B type HAFM agreed well with the calculated values using the JENDL-3.2 library. (author)

  20. Usability of Calibrating Monitor for Soft Proof According to CIE CAM02 Colour Appearance Model

    Directory of Open Access Journals (Sweden)

    Dragoljub Novakovic

    2010-06-01

    Full Text Available Colour appearance models describe viewing conditions and enable simulating appearance of colours under different illuminants and illumination levels according to human perception. Since it is possible to predict how colour would look like when different illuminants are used, colour appearance models are incorporated in some monitor profiling software. Owing to these software, tone reproduction curve can be defined by taking into consideration viewing condition in which display is observed. In this work assessment of CIE CAM02 colour appearance model usage at calibrating LCD monitor for soft proof was tested in order to determine which tone reproduction curve enables better reproduction of colour. Luminance level was kept constant, whereas tone reproduction curves determined by gamma values and by parameters of CIE CAM02 model were varied. Testing was conducted in case where physical print reference is observed under illuminant which has colour temperature according to iso standard for soft-proofing (D50 and also for illuminants D65.  Based on the results of calibrations assessment, subjective and objective assessment of created profiles, as well as on the perceptual test carried out on human observers, differences in image display were defined and conclusions of the adequacy of CAM02 usage at monitor calibration for each of the viewing conditions reached.

  1. Usability of Calibrating Monitor for Soft Proof According to cie cam02 Colour Appearance Model

    Directory of Open Access Journals (Sweden)

    Ivana Tomić

    2010-01-01

    Full Text Available Colour appearance models describe viewing conditions and enable simulating appearance of colours under different illuminants and illumination levels according to human perception. Since it is possible to predict how colour would look like when different illuminants are used, colour appearance models are incorporated in some monitor profiling software. Owing to these software, tone reproduction curve can be defined by taking into consideration viewing condition in which display is observed. In this work assessment of cie cam02 colour appearance model usage at calibrating lcd monitor for soft proof was tested in order to determine which tone reproduction curve enables better reproduction of colour. Luminance level was kept constant, whereas tone reproduction curves determined by gamma values and by parameters of cie cam02 model were varied. Testing was conducted in case where physical print reference is observed under illuminant which has colour temperature according to iso standard for soft-proofing (d50 and also for illuminants d65. Based on the results of calibrations assessment, subjective and objective assessment of created profiles, as well as on the perceptual test carried out on human observers, differences in image display were defined and conclusions of the adequacy of cam02 usage at monitor calibration for each of the viewing conditions reached.

  2. Evaluation of the occupational dose reduction after automation process for calibration of gamma radiation monitors; Avaliacao da reducao da dose ocupacional apos automacao do processo de calibracao de monitores de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Iremar Alves da; Potiens, Maria da P.A., E-mail: iremarjr@gmail.com, E-mail: mppalbu@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2013-11-01

    In this study, it was evaluated the occupational dose of calibration technicians responsible for monitor calibration of gamma radiation in the Instrument Calibration Laboratory of the Institute of Energy and Nuclear Research (IPEN-LCI), Sp, Brazil in your calibration activities before and after the automation of the process monitor calibration gamma be completed. Various measures of occupational dose values were taken inside the room calibration and the control room of radiators allowing calculate and show the occupational dose values in these environments during a full calibration of a monitor gamma radiation, showing the advantage of automation process, with decrease in dose and time calibration. (author)

  3. Flume and field-based calibration of surrogate sensors for monitoring bedload transport

    Science.gov (United States)

    Mao, L.; Carrillo, R.; Escauriaza, C.; Iroume, A.

    2016-01-01

    Bedload transport assessment is important for geomorphological, engineering, and ecological studies of gravel-bed rivers. Bedload can be monitored at experimental stations that require expensive maintenance or by using portable traps, which allows measuring instantaneous transport rates but at a single point and at high costs and operational risks. The need for continuously measuring bedload intensity and dynamics has therefore increased the use and enhancement of surrogate methods. This paper reports on a set of flume experiments in which a Japanese acoustic pipe and an impact plate have been tested using four well-sorted and three poorly sorted sediment mixtures. Additional data were collected in a glacierized high-gradient Andean stream (Estero Morales) using a portable Bunte-type bedload sampler. Results show that the data provided by the acoustic pipe (which is amplified on 6 channels having different gains) can be calibrated for the grain size and for the intensity of transported sediments coarser than 9 mm (R2 = 0.93 and 0.88, respectively). Even if the flume-based calibration is very robust, upscaling the calibration to field applications is more challenging, and the bedload intensity could be predicted better than the grain size of transported sediments (R2 = 0.61 and 0.43, respectively). The inexpensive impact plate equipped with accelerometer could be calibrated for bedload intensity quite well in the flume but only poorly in the field (R2 = 0.16) and could not provide information on the size of transported sediments.

  4. Calibration Method for IATS and Application in Multi-Target Monitoring Using Coded Targets

    Science.gov (United States)

    Zhou, Yueyin; Wagner, Andreas; Wunderlich, Thomas; Wasmeier, Peter

    2017-06-01

    The technique of Image Assisted Total Stations (IATS) has been studied for over ten years and is composed of two major parts: one is the calibration procedure which combines the relationship between the camera system and the theodolite system; the other is the automatic target detection on the image by various methods of photogrammetry or computer vision. Several calibration methods have been developed, mostly using prototypes with an add-on camera rigidly mounted on the total station. However, these prototypes are not commercially available. This paper proposes a calibration method based on Leica MS50 which has two built-in cameras each with a resolution of 2560 × 1920 px: an overview camera and a telescope (on-axis) camera. Our work in this paper is based on the on-axis camera which uses the 30-times magnification of the telescope. The calibration consists of 7 parameters to estimate. We use coded targets, which are common tools in photogrammetry for orientation, to detect different targets in IATS images instead of prisms and traditional ATR functions. We test and verify the efficiency and stability of this monitoring method with multi-target.

  5. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre...

  6. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations.

    Science.gov (United States)

    Balleza, M.; Vargas, M.; Kashina, S.; Huerta, M. R.; Delgadillo, I.; Moreno, G.

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration.

  7. WFC3/UVIS Dark Calibration: Monitoring Results and Improvements to Dark Reference Files

    Science.gov (United States)

    Bourque, M.; Baggett, S.

    2016-04-01

    The Wide Field Camera 3 (WFC3) UVIS detector possesses an intrinsic signal during exposures, even in the absence of light, known as dark current. A daily monitor program is employed every HST cycle to characterize and measure this current as well as to create calibration files which serve to subtract the dark current from science data. We summarize the results of the daily monitor program for all on-orbit data. We also introduce a new algorithm for generating the dark reference files that provides several improvements to their overall quality. Key features to the new algorithm include correcting the dark frames for Charge Transfer Efficiency (CTE) losses, using an anneal-cycle average value to measure the dark current, and generating reference files on a daily basis. This new algorithm is part of the release of the CALWF3 v3.3 calibration pipeline on February 23, 2016 (also known as "UVIS 2.0"). Improved dark reference files have been regenerated and re-delivered to the Calibration Reference Data System (CRDS) for all on-orbit data. Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.

  8. Calibration of a Non-Linear Beam Position Monitor Electronics by Switching Electrode Signals

    CERN Document Server

    Gasior, M

    2013-01-01

    Button electrode signals from beam position monitors embedded into new LHC collimators will be individually processed with front-end electronics based on compensated diode detectors and digitized with 24-bit audio-range ADCs. This scheme allows sub-micrometre beam orbit resolution to be achieved with simple hardware and no external timing. As the diode detectors only operate in a linear regime with large amplitude signals, offset errors of the electronics cannot be calibrated in the classical way with no input. This paper describes the algorithms developed to calibrate the offset and gain asymmetry of these nonlinear electronic channels. Presented algorithm application examples are based on measurements performed with prototype diode orbit systems installed on the CERN SPS and LHC machines.

  9. CALIBRATION ERRORS IN THE CAVITY BEAM POSITION MONITOR SYSTEM AT THE ATF2

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A

    2011-01-01

    It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.

  10. Commissioning of an LED calibration and monitoring system for the prototype of a hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Wattimena, N.

    2006-12-15

    The anticipated physics program for the International Linear Collider (ILC) requires a highly granular hadronic calorimeter. One option for such a tracking calorimeter is a scintillator-steel sandwich structure placed inside the magnetic coil. The development of hadronic showers will be studied with a physics prototype, in order to improve current models. This prototype, currently being built within the collaboration for a CAlorimeter for the LInear Collider Experiment (CALICE) at the Deutsches Elektronen-Synchrotron (DESY) also serves to test a new semiconductor based photodetector the so called silicon photomultiplier. The calibration of these new photodetectors requires to take into account their nonlinear response.The response function, describing this behaviour, is investigated in this thesis. A calibration and monitoring system, needed to correct for the temperature and voltage dependence of the silicon photomultiplier signals and to observe changes of their response over time, is optimised and tested. (orig.)

  11. Carious lesions: diagnostic accuracy using pre-calibrated monitor in various ambient light levels: an in vitro study

    Science.gov (United States)

    Hellén-Halme, K; Lith, A

    2013-01-01

    Objectives: This study investigated the effect of different monitor calibration modes under various ambient lighting conditions on the ability of observers to recognize proximal carious lesions of varying depths. Methods: 7 observers evaluated 100 teeth for proximal carious lesions on standardized digital radiographs using 3 set-ups: (1) pre-calibrated monitor for high ambient light (higher than 1000 lux), (2) pre-calibrated monitor for low ambient light (less than 50 lux) and (3) Barten calibration (Digital Imaging and Communication in Medicine) on the monitor in dimmed ambient light (less than 50 lux). Receiver operating characteristic curves were plotted for all observations. The criterion standard was histological examination of the teeth. The effects of three conditions were compared using a paired t-test. The level of significance was set to p carious lesions between the different calibration modes of the monitor according to different ambient light levels. Conclusions: There is no evidence that any difference between ambient light levels affects the ability to detect carious lesions in digital radiographs as long as the monitor was calibrated in accordance with the surrounding light level. PMID:23775926

  12. A multistep algorithm for processing and calibration of microdialysis continuous glucose monitoring data.

    Science.gov (United States)

    Mahmoudi, Zeinab; Dencker Johansen, Mette; Christiansen, Jens Sandahl; Hejlesen, Ole Kristian

    2013-10-01

    The deviation of continuous subcutaneous glucose monitoring (CGM) data from reference blood glucose measurements is substantial, and adequate signal processing is required to reduce the discrepancy between subcutaneous glucose and blood glucose values. The purpose of this study was to develop a multistep algorithm for the processing and calibration of continuous subcutaneous glucose monitoring data with high accuracy and short delay. Algorithm The algorithm comprises three steps: rate-limiting filtering, selective smoothing, and robust calibration. Initially, the algorithm detects nonphysiological glucose rate-of-change and corrects it with a weighted local polynomial. Noisy signal parts that require smoothing are then detected based on zero crossing count of the sensor signal first-order differences, and an exponentially weighted moving average smooths the noisy parts of the signal afterward. Finally, calibration is performed using a first-order polynomial as the conversion function, with coefficients being estimated using robust regression with a bi-square weight function. ALGORITHM PERFORMANCE: The performance of the algorithm was evaluated on 16 patients with type 1 diabetes mellitus. To compare the algorithm with state-of-the-art CGM data denoising and calibration, the rate-limiting filter and selective smoothing were replaced with an adaptive Kalman filter, and the calibration method was replaced with the calibration algorithm presented in one of the Medtronic (Northridge, CA) CGM patents. The median (mean) of the absolute relative deviation (ARD) of the sensor glucose values processed by the newly developed algorithm from capillary reference blood glucose measurements was 14.8% (22.6%), 10.6% (14.6%), and 8.9% (11.7%) in hypoglycemia, euglycemia, and hyperglycemia, respectively, whereas for the alternative algorithm, the median (mean) was 22.2% (26.9%), 12.1% (15.9%), and 8.8 (11.3%), respectively. The median (mean) ARD in all ranges was 10.3% (14.7%) for

  13. Scheduling and calibration strategy for continuous radio monitoring of 1700 sources every three days

    Science.gov (United States)

    Max-Moerbeck, Walter

    2014-08-01

    The Owens Valley Radio Observatory 40 meter telescope is currently monitoring a sample of about 1700 blazars every three days at 15 GHz, with the main scientific goal of determining the relation between the variability of blazars at radio and gamma-rays as observed with the Fermi Gamma-ray Space Telescope. The time domain relation between radio and gamma-ray emission, in particular its correlation and time lag, can help us determine the location of the high-energy emission site in blazars, a current open question in blazar research. To achieve this goal, continuous observation of a large sample of blazars in a time scale of less than a week is indispensable. Since we only look at bright targets, the time available for target observations is mostly limited by source observability, calibration requirements and slewing of the telescope. Here I describe the implementation of a practical solution to this scheduling, calibration, and slewing time minimization problem. This solution combines ideas from optimization, in particular the traveling salesman problem, with astronomical and instrumental constraints. A heuristic solution using well established optimization techniques and astronomical insights particular to this situation, allow us to observe all the sources in the required three days cadence while obtaining reliable calibration of the radio flux densities. Problems of this nature will only be more common in the future and the ideas presented here can be relevant for other observing programs.

  14. Shielding of a room for installation of a calibration service for neutron monitors

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C. de; Estrada, Julio J.S.; Santos, Raphael F.G. dos [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Junior, Wilson F.R.S.; Gomes, Renato G.; Alves, Carlos F.E. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X. da, E-mail: eng.cavaliere@gmail.com, E-mail: jsestrada@bol.com.br, E-mail: renatoguedes@ime.eb.br, E-mail: faelfisica@gmail.com, E-mail: jsestrada@bol.com.br, E-mail: wilsonrebello@gmail.com, E-mail: cfealves@gmail.com, E-mail: ademir@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The Laboratorio de Ciencias Radiologicas (LCR) from Instituto de Biologia Roberto Alcantara Gomes (IBRAG/UERJ) is enhancing its metrological laboratory, implementing a set up for neutron monitor calibration. Considering the available space on site, it was decided to carry out the necessary adjustments to attend the regulatory rules for radiation protection. The Monte Carlo approach has been adopted using the MCNPX computer code, several measurements of the ambient dose equivalent were simulated to check if the areas surrounding the calibration room could still be classified as radiation free. In order to decrease the irradiation field, it was also simulated a shielding where a 185 GBq neutron source of {sup 241}Am-Be was inserted into. The dimensions of the simulated irradiator are large enough to guarantee that the individuals occupationally exposed do not have dose above the limit established by Brazilian authority, outside of the beam irradiation. The total ambient dose equivalent calculated using MCNPX shows that 3.8 cm of 5% borated polyethylene or 5.5 cm of concrete gives the necessary shielding to guarantee as radiation free all areas surrounding the calibration room. (author)

  15. Cross-calibration of DIMM monitors at Oukaimden observatory and Marrakesh site

    Science.gov (United States)

    Hach, Youssef; Abahamid, Abdelouahed; Sabil, Mohammed; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Habib, Abdelfatah; Elazhari, Youssef

    2010-12-01

    Over the past years, several differential image motion monitors (DIMM) have been built almost everywhere. The DIMM instrument is made up of simple material such as telescope, mask, camera ..., and it is widely used in seeing measurement campaigns. In order to carry out a prospecting campaign, for the European Extremely Large Telescope (ELT) project, in the Moroccan High Atlas, we have built a new DIMM instrument in our laboratory. To characterize this instrument, we have carried out a cross-calibration between DIMM monitors using different configurations. In this paper we will present the results of those various experiments respectively at Oukaimden site and at the “École Normal Supérieure” (ENS) in the city of Marrakech.

  16. Comparison and calibration of numerical models from monitoring data of a reinforced concrete highway bridge

    Directory of Open Access Journals (Sweden)

    R. G. M. de Andrade

    Full Text Available The last four decades were important for the Brazilian highway system. Financial investments were made so it could expand and many structural solutions for bridges and viaducts were developed. In parallel, there was a significant raise of pathologies in these structures, due to lack of maintenance procedures. Thus, this paper main purpose is to create a short-term monitoring plan in order to check the structural behavior of a curved highway concrete bridge in current use. A bridge was chosen as a case study. A hierarchy of six numerical models is shown, so it can validate the bridge's structural behaviour. The acquired data from the monitoring was compared with the finest models so a calibration could be made.

  17. A Proxy Calibration Monitoring Technique for the NCAR Airborne W-band Radar

    Science.gov (United States)

    Rilling, Robert; Romatschke, Ulrike; Vivekanandan, Jothiram; Ellis, Scott M.

    2017-04-01

    The National Center for Atmospheric Research (NCAR) has recently tested and deployed its new 94 GHz HIAPER Cloud Radar (HCR). HCR is a scanning W-band system, mounted in an under-wing pod on the National Science Foundation/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER, a Gulfstream-V). In order to ensure operational accuracy of this radar, the technique of Li, et al. (2005) has been reformulated to provide a simple means of estimating reflectivity bias using routine measurements of the ocean surface scattering. The methodology and formulation for reflectivity bias determination will be described, along with bias determination results from the 2015 Cloud Systems Evolution in the Trades (CSET) experiment. The HCR radar system is subjected to extreme changes in its operational environment that can cause changes in component response that affect radar calibration. While engineering efforts have focused on temperature and pressure stabilization of the wing pod, along with internal vessel and component temperature monitoring, it is recognized that some form of independent and ongoing verification of calibration stability is desired. When available, ocean surface scanning, with an assumed knowledge of ocean surface backscatter cross-section, can provide a useful proxy for this calibration. Therefore, during the CSET experiment, special care was taken to collect ocean scanning data during short episodes of stable flight with no clouds present; scans were coordinated with atmospheric profiling through release of dropsondes, and atmospheric attenuation calculated with the use of those data. Downward looking lidar data are also used to verify cloud and haze conditions during sampling. For HCR in CSET, eighteen usable ocean-scanning cases were found. Several of these were discarded due to cloud/haze issues that prevented accurate determination of atmospheric attenuation. Initial results show that a large (but fairly constant) bias

  18. Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge

    Science.gov (United States)

    Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming

    2017-07-01

    The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.

  19. In situ calibration of three passive samplers for the monitoring of steroid hormones in wastewater.

    Science.gov (United States)

    Škodová, Alena; Prokeš, Roman; Šimek, Zdeněk; Vrana, Branislav

    2016-12-01

    In situ extraction of steroid hormones from waste water using adsorption-based integrative passive samplers represents a promising approach for their monitoring in water at ultra-trace concentrations. Three passive samplers, namely a POCIS, a Chemcatcher fitted with an Empore SDB-RPS disk, and an Empore SDB-RPS disk-based sampler with enhanced water flow, were calibrated in situ in treated municipal wastewater for the purpose of monitoring five estrogens (17-β-estradiol, 17-α-estradiol, 17-α-ethinylestradiol, estrone and estriol) at sub ng per litre concentrations. Uptake of steroids to samplers during 14-day exposure in wastewater was compared with steroid concentrations in daily collected composite water samples. Sampling rates were obtained from a numerical solution of first order uptake kinetics equations describing the uptake of compounds into a passive sampler over time. Mass transfer of steroids in the Chemcatcher fitted with naked Empore disks was more than two times faster than in the POCIS sampler. The uptake capacity of the applied Empore disk was not sufficient for integrative uptake of all tested steroids during the entire 14-day exposure. Time-weighted average concentrations of steroids estimated at concentrations in units of ngL(-1) using the in situ-calibrated samplers were within a factor of two from values obtained using composite water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. How does higher frequency monitoring data affect the calibration of a process-based water quality model?

    Science.gov (United States)

    Jackson-Blake, Leah; Helliwell, Rachel

    2015-04-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto-calibrated

  1. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    CERN Document Server

    Sipos, Roland

    2017-01-01

    The Compact Muon Solenoid (CMS) experiment makes a vast use of alignment and calibration measurements in several crucial workflows in the event selection at the High Level Trigger (HLT), in the processing of the recorded collisions and in the production of simulated events.A suite of services addresses the key requirements for the handling of the alignment and calibration conditions such as recording the status of the experiment and of the ongoing data taking, accepting conditions data updates provided by the detector experts, aggregating and navigating the calibration scenarios, and distributing conditions for consumption by the collaborators. Since a large fraction of such services is critical for the data taking and event filtering in the HLT, a comprehensive monitoring and alarm generating system had to be developed. Such monitoring system has been developed based on the open source industry standard for monitoring and alerting services (Nagios) to monitor the database back-end, the hosting nodes and k...

  2. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry, First results

    DEFF Research Database (Denmark)

    Andersen, O.B.; Krogh, P.E.; Michailovsky, C.

    2008-01-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terre......Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration...... and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital...... change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented....

  3. Neutronic analysis for in situ calibration of ITER in-vessel neutron flux monitor with microfission chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Kondoh, Takashi; Kusama, Yoshinori [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC). ► The source transfer system deigned in this study does not affect MFC detection efficiency. ► The rotation method is appropriate for full calibration because the calibration time is shorter. ► But, point-by-point method should be performed to check the accuracy of the MCNP model. ► Combination of two methods are important to perform in situ calibration efficiently. -- Abstract: Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC), which is the in-vessel neutron-flux monitor at the International Thermonuclear Experimental Reactor (ITER). We present the design of the transfer system for a neutron generator, which consists of two toroidal rings and a neutron-generator holder, and estimate the effect of the system on MFC detection efficiency through neutronic analysis with the Monte Carlo N-particle (MCNP) code. The result indicates that the designed transfer system does not affect MFC detection efficiency. In situ calibrations by the point-by-point method and by the rotation method are also simulated and compared by neutronic analysis. The results indicate that the rotation method is appropriate for full calibration because the calibration time is shorter (all neutron-flux monitors can be calibrated simultaneously). However, the rotation method makes it difficult to compare the results with neutronic analysis, so the point-by-point method should be performed prior to full calibration to check the accuracy of the MCNP model.

  4. Scheduling and calibration strategy for continuous radio monitoring of 1700 sources every three days

    CERN Document Server

    Max-Moerbeck, Walter

    2014-01-01

    The Owens Valley Radio Observatory 40 meter telescope is currently monitoring a sample of about 1700 blazars every three days at 15 GHz, with the main scientific goal of determining the relation between the variability of blazars at radio and gamma-rays as observed with the Fermi Gamma-ray Space Telescope. The time domain relation between radio and gamma-ray emission, in particular its correlation and time lag, can help us determine the location of the high-energy emission site in blazars, a current open question in blazar research. To achieve this goal, continuous observation of a large sample of blazars in a time scale of less than a week is indispensable. Since we only look at bright targets, the time available for target observations is mostly limited by source observability, calibration requirements and slewing of the telescope. Here I describe the implementation of a practical solution to this scheduling, calibration, and slewing time minimization problem. This solution combines ideas from optimization,...

  5. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  6. Principle, calibration, and application of the in situ alkali chloride monitor.

    Science.gov (United States)

    Forsberg, Christer; Broström, Markus; Backman, Rainer; Edvardsson, Elin; Badiei, Shahriar; Berg, Magnus; Kassman, Håkan

    2009-02-01

    The extended use of biomass for heat and power production has caused increased operational problems with fouling and high-temperature corrosion in boilers. These problems are mainly related to the presence of alkali chlorides (KCl and NaCl) at high concentrations in the flue gas. The in situ alkali chloride monitor (IACM) was developed by Vattenfall Research and Development AB for measuring the alkali chloride concentration in hot flue gases (less than or approximately 650 degrees C). The measurement technique is based on molecular differential absorption spectroscopy in the UV range. Simultaneous measurement of SO(2) concentration is also possible. The measuring range is 1-50 ppm for the sum of KCl and NaCl concentrations and 4-750 ppm for SO(2). This paper describes the principle of the IACM as well as its calibration. Furthermore, an example of its application in an industrial boiler is given.

  7. Standardisation of a Vapour Generator for Calibration of Environmental Monitoring Instruments

    Directory of Open Access Journals (Sweden)

    Parul Rana

    2003-10-01

    Full Text Available Very low vapour pressure of 2,4,6 trinitrotoulene (TNT yields extremely low vapour concentrations at different flow rates in the air, yet considerable quantity of vapours and TNTdust during handling may be present at the workplace environment which is harmful to the health of the personnel working there. The explosive vapours, such as TNT,  2,6-dinitrotoluene (DNT, etc., though harmful to the health of the personnel, are not covered either in the emission standards or in the ambient air quality standards. Presently, no instrument is available for air monitoring of TNT vapours. These vapours need to be collected on-site to estimate TNT concentration. Realising the need for real-time air monitoring of TNT, efforts have been made to understand and device an instrument for on-site determination of TNT vapours parts per billiion (ppb range. Low-level TNT vapours and TNT buried in the soil in military operations are required to be detected. The instruments for this require careful calibration to yield accurate and reliable results. Hence, an effort has been made to develop a trace-level ppb vapour generator. The vapour generator of a spiral glass column of length 170 cm and inner diameter 4 mm 2 0.5 mm has been used. An activated charcoal glass tube has been used for sampling TNT vapours. The adsorbed TNT vapours were desorbed and analysed using high performance liquid chromatography. Thesolid support used has been studied. These vapours generated at different flow rates have been evaluated. The calibrated instrument can be used for in situ and on-site analysis of samples of TNT and also for samples collected.

  8. Performance characteristics and long-term calibration stability of a beam monitor for a proton scanning gantry

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporov, D.F., E-mail: nichipor@indiana.ed [Indiana University Cyclotron Facility, 2401 Milo B. Sampson Ln., Bloomington, IN 47408 (United States); Klyachko, A.V.; Solberg, K.A. [Indiana University Cyclotron Facility, 2401 Milo B. Sampson Ln., Bloomington, IN 47408 (United States); Zhao, Q. [Midwest Proton Radiotherapy Institute, 2425 Milo B. Sampson Ln., Bloomington, IN 47408 (United States)

    2011-02-15

    A monitor for a uniformly scanned beam was designed and constructed by the Indiana University Cyclotron Facility for use in a clinical proton gantry at the Midwest Proton Radiotherapy Institute. The beam monitor is a thin-walled, wide-aperture ionization chamber, which provides information about dose, beam size, symmetry, flatness, and position. Several characteristics of the monitor's performance were studied, including linearity in dose rate, reproducibility, recombination correction, and dependence on both radiation field size and gantry angle. Additionally, stability of the detector output was analyzed using daily monitor calibrations performed over a period of 21 months. The beam monitor was found to meet design requirements for linearity ({+-}1%), calibration stability ({+-}2%), and stability of response as a function of gantry angle ({+-}1%). Beam monitor calibration statistics also revealed a sine-like yearly trend with a {+-}2% maximum deviation from the average. These and other beam monitor test results are presented and discussed in the context of the detector design. Design changes aimed at further improving the detector's performance characteristics are proposed.

  9. Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-05-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  10. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.;

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  11. Calibration of area monitors for neutrons used in clinical linear accelerators; Calibracao de monitores de area para neutrons usados em aceleradores lineares clinicos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da, E-mail: asalgado@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This work demonstrates the complexity and the necessary cares for the realization of measurements of neutron fields in rooms for radiotherapy treatment containing clinical accelerators. The acquaintance of the technical characteristics of the monitors and the periodic calibration are actions and fundamental procedures to guarantee traceability and the reliability of measurements

  12. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    Science.gov (United States)

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  13. A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays

    CERN Document Server

    Silarski, M; Bednarski, T; Moskal, P; Białas, P; Kapłon, Ł; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Niedźwiecki, Sz; Pałka, M; Pawlik, M; Raczyński, L; Rudy, Z; Salabura, P; Sharma, N G; Słomski, A; Smyrski, J; Strzelecki, A; Wiślicki, W; Zieliński, M; Zoń, N

    2013-01-01

    All of the present methods for calibration and monitoring of TOF-PET scanner detectors utilize radioactive isotopes such as e.g. $^{22}$Na or $^{68}$Ge, which are placed or rotate inside the scanner. In this article we describe a novel method based on the cosmic rays application to the PET calibration and monitoring methods. The concept allows to overcome many of the drawbacks of the present methods and it is well suited for newly developed TOF-PET scanners with a large longitudinal field of view. The method enables also monitoring of the quality of the scintillator materials and in general allows for the continuous quality assurance of the PET detector performance.

  14. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  15. An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration

    Directory of Open Access Journals (Sweden)

    Michal Heliasz

    2011-08-01

    Full Text Available We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  16. An optical sensor network for vegetation phenology monitoring and satellite data calibration.

    Science.gov (United States)

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  17. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.

    Science.gov (United States)

    Pai, Praful P; Sanki, Pradyut K; Sarangi, Satyabrata; Banerjee, Swapna

    2015-06-01

    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems.

  18. PASTIS 57: Autonomous light sensors for PAI continuous monitoring. Principles, calibration and application to vegetation phenology

    Science.gov (United States)

    Lecerf, R.; Baret, F.; Hanocq, J.; Marloie, O.; Rautiainen, M.; Mottus, M.; Heiskanen, J.; Stenberg, P.

    2010-12-01

    The LAI (Leaf Area Index) is a key variable to analyze and model vegetation and its interactions with atmosphere and soils. The LAI maps derived from remote sensing images are often validated with non-destructive LAI measures obtained from digital hemispherical photography, LAI-2000 or ceptometer instruments. These methods are expensive and time consuming particularly when human intervention is needed. Consequently it is difficult to acquire overlapping field data and remotely sensed LAI. There is a need of a cheap, autonomous, easy to use ground system to measure foliage development and senescence at least with a daily frequency in order to increase the number of validation sites where vegetation phenology is continuously monitored. A system called PASTIS-57 (PAI Autonomous System from Transmittance Instantaneous Sensors oriented at 57°) devoted to PAI (Plant Area Index) ground measurements was developed to answer this need. PASTIS-57 consists in 6 sensors plugged on one logger that record data with a sampling rate of 1 to few minutes (tunable) with up to 3 months autonomy (energy and data storage). The sensors are plugged to the logger with 2x10m wires, 2x6m wires and 2x2m wires. The distance between each sensor was determined to obtain a representative spatial sampling over a 20m pixel corresponding to an Elementary Sampling Unit (ESU). The PASTIS-57 sensors are made of photodiodes that measure the incoming light in the blue wavelength to maximize the contrast between vegetation and sky and limit multiple scattering effects in the canopy. The diodes are oriented to the north to avoid direct sun light and point to a zenithal angle of 57° to minimize leaf angle distribution and plant clumping effects. The field of view of the diodes was set to ± 20° to take into consideration vegetation cover heterogeneity and to minimize environmental effects. The sensors were calibrated after recording data on a clear view site during a week. After calibration, the sensors

  19. Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction.

    Science.gov (United States)

    Staranowicz, Aaron N; Ray, Christopher; Mariottini, Gian-Luca

    2015-01-01

    Falls are the most-common causes of unintentional injury and death in older adults. Many clinics, hospitals, and health-care providers are urgently seeking accurate, low-cost, and easy-to-use technology to predict falls before they happen, e.g., by monitoring the human walking pattern (or "gait"). Despite the wide popularity of Microsoft's Kinect and the plethora of solutions for gait monitoring, no strategy has been proposed to date to allow non-expert users to calibrate the cameras, which is essential to accurately fuse the body motion observed by each camera in a single frame of reference. In this paper, we present a novel multi-Kinect calibration algorithm that has advanced features when compared to existing methods: 1) is easy to use, 2) it can be used in any generic Kinect arrangement, and 3) it provides accurate calibration. Extensive real-world experiments have been conducted to validate our algorithm and to compare its performance against other multi-Kinect calibration approaches, especially to show the improved estimate of gait parameters. Finally, a MATLAB Toolbox has been made publicly available for the entire research community.

  20. Fourth IRMF comparison of calibrations of portable gamma-ray dose- rate monitors 2001-2002 Ionising radiation

    CERN Document Server

    Lewis, V E

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a fourth comparison of calibrations of gamma-ray dose-rate monitors in which fifteen establishments in the UK participated. The exercise involved the circulation of three gamma-ray monitors for calibration in the fields produced using sup 1 sup 3 sup 7 Cs, sup 2 sup 4 sup 1 Am and sup 6 sup 0 Co. The instruments used were an Electra with MC 20 probe, a Mini-Instruments Mini-rad 1000 and a Siemens electronic personal dosemeter Mk 2 (EPD). The responses relative to 'true' dose equivalent rate were calculated by the individual participants and submitted to the for analysis along with details of the facilities and fields employed. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments. However, the participants' treatment of uncertainties needs improvement and demonstrates a need for guidance in this area.

  1. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    Science.gov (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  2. Near infrared spectroscopic calibration models for real time monitoring of powder density.

    Science.gov (United States)

    Román-Ospino, Andrés D; Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit; Méndez, Rafael; Ortega-Zuñiga, Carlos; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-10-15

    Near infrared spectroscopic (NIRS) calibration models for real time prediction of powder density (tap, bulk and consolidated) were developed for a pharmaceutical formulation. Powder density is a critical property in the manufacturing of solid oral dosages, related to critical quality attributes such as tablet mass, hardness and dissolution. The establishment of calibration techniques for powder density is highly desired towards the development of control strategies. Three techniques were evaluated to obtain the required variation in powder density for calibration sets: 1) different tap density levels (for a single component), 2) generating different strain levels in powders blends (and as consequence powder density), through a modified shear Couette Cell, and 3) applying normal forces during a compressibility test with a powder rheometer to a pharmaceutical blend. For each variation in powder density, near infrared spectra were acquired to develop partial least squares (PLS) calibration models. Test samples were predicted with a relative standard error of prediction of 0.38%, 7.65% and 0.93% for tap density (single component), shear and rheometer respectively. Spectra obtained in real time in a continuous manufacturing (CM) plant were compared to the spectra from the three approaches used to vary powder density. The calibration based on the application of different strain levels showed the greatest similarity with the blends produced in the CM plant.

  3. Calibration and field evaluation of Polar Organic Chemical Integrative Sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater.

    Science.gov (United States)

    Bailly, Emilie; Levi, Yves; Karolak, Sara

    2013-03-01

    The Polar Organic Chemical Integrative Sampler (POCIS) is a new tool for the sampling of organic pollutants in water. We tested this device for the monitoring of pharmaceuticals in hospital wastewater. After calibration, a field application was carried out in a French hospital for six pharmaceutical compounds (Atenolol, Prednisolone, Methylprednisolone, Sulfamethoxazole, Ofloxacin, Ketoprofen). POCIS were calibrated in tap water and wastewater in laboratory conditions close to relevant environmental conditions (temperature, flow velocity). Sampling rates (R(s)) were determined and we observed a significant increase with flow velocity and temperature. Whatever the compound, the R(s) value was lower in wastewater and the linear phase of uptake was shorter. POCIS were deployed in a hospital sewage pipe during four days and the estimated water concentrations were close to those obtained with twenty-four hour composite samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Ground calibration of the Chandrayaan-1 X-ray Solar Monitor (XSM)

    Energy Technology Data Exchange (ETDEWEB)

    Alha, L. [Observatory, P.O. Box 14, FI-00014 University of Helsinki (Finland)], E-mail: alha@mappi.helsinki.fi; Huovelin, J. [Observatory, P.O. Box 14, FI-00014 University of Helsinki (Finland); Nygard, K. [Division of X-ray Physics, Department of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Andersson, H. [Oxford Instruments Analytical, P.O. Box 85, FIN-02631 Espoo (Finland); Esko, E. [Observatory, P.O. Box 14, FI-00014 University of Helsinki (Finland); Howe, C.J.; Kellett, B.J. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Narendranath, S. [Space Astronomy and Instrumentation Division, ISRO Satellite Centre, Bangalore 560017 (India); Maddison, B.J. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Crawford, I.A. [School of Earth Sciences, Birkbeck College, London (United Kingdom); Grande, M. [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3BZ (United Kingdom); Shreekumar, P. [Space Astronomy and Instrumentation Division, ISRO Satellite Centre, Bangalore 560017 (India)

    2009-08-21

    The Chandrayaan-1 XSM ground calibrations are introduced. The aim of these calibrations was to characterize the performance of XSM, which enables a reliable spectral analysis with the solar X-ray data. The calibrations followed an improved procedure based on our experience from the SMART-1 XSM. The most important tasks in the calibrations were determination of the energy resolution as a function of the photon energy and mapping of the detector sensitivity over the FoV (Field of View) of the sensor. The FoV map was needed to determine the obscuration factor corresponding to various pointings with respect to the Sun. We made also a sensitivity comparison test between the Chandrayaan-1 XSM FM (Flight Model) and SMART-1 XSM FS (Flight Spare). The aim of this test was to link the new XSM performance to a performance of an already known and tested former instrument. We also performed a simple test to determine the pile up performance, and one specific test tailored for the operation of the new version of XSM. Also the first experiences on the in-flight operation are briefly described.

  5. In situ spectral calibration method for the impurity influx monitor (divertor) for ITER using angled physical contact fibers.

    Science.gov (United States)

    Iwamae, A; Ogawa, H; Sugie, T; Kusama, Y

    2011-03-01

    The in situ calibration method for the impurity influx monitor (divertor) is experimentally examined. The total reflectance of the optical path from the focal point of the Cassegrain telescope to the first mirror is derived using a micro retroreflector array. An optical fiber with angled physical contact (APC) connectors reduces the return edge reflection. APC fibers and a multimode coupler increase the signal-to-noise ratio by about one order compared to that of triple-branched fibers and enable measurement of the wavelength dependence of the total reflectance of the optical system even after potential deterioration of mirror surfaces reduces reflectance.

  6. Flux Calibration Monitoring: WFC3/IR G102 and G141 Grisms

    Science.gov (United States)

    Lee, Janice C.; Pirzkal, Norbert; Hilbert, Bryan

    2014-01-01

    As part of the regular WFC3 flux calibration mo nitoring program, we analyze WFC3/IR G102 and G141 grism observations of the standard star GD153 taken in 2013June (Cycle 20 P rogram 13092). The IR grism flux calibrations for the +1 order spectra are shown to have excellent temporal stability over WFC3's 4 years of operation, with average variations constr ained to be less than 1%. Tests of the current corrections for throughput variations over the field - of - view and aperture losses are also performed, and no significant changes are found. These results confirm that the G102 and G141 sensitivity functions and flat - field cubes currently in use for +1 order spectra are still valid.

  7. Calibration of LR-115 for 222Rn monitoring taking into account the plateout effect.

    Science.gov (United States)

    Da Silva, A A R; Yoshimura, E M

    2003-01-01

    The dose received by people exposed to indoor radon is mainly due to radon progeny. This fact points to the establishment of techniques that access either radon and progeny together, or only radon progeny concentration. In this work a low cost and easy to use methodology is presented to determine the total indoor alpha emission concentration. It is based on passive detection using LR-115 and CR-39 detectors, taking into account the plateout effect. A calibration of LR-115 track density response was done by indoor exposure in controlled environments and dwellings, places where 222Rn and progeny concentration were measured with CR-39. The calibration factor obtained showed great dependence on the ambient condition: (0.69 +/- 0.04) cm for controlled environments and (0.43 +/- 0.03) cm for dwellings.

  8. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    Science.gov (United States)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

  9. Evaluation of interspecimen trypsin digestion efficiency prior to multiple reaction monitoring-based absolute protein quantification with native protein calibrators.

    Science.gov (United States)

    van den Broek, Irene; Smit, Nico P M; Romijn, Fred P H T M; van der Laarse, Arnoud; Deelder, André M; van der Burgt, Yuri E M; Cobbaert, Christa M

    2013-12-06

    Implementation of quantitative clinical chemistry proteomics (qCCP) requires targeted proteomics approaches, usually involving bottom-up multiple reaction monitoring-mass spectrometry (MRM-MS) with stable-isotope labeled standard (SIS) peptides, to move toward more accurate measurements. Two aspects of qCCP that deserve special attention are (1) proper calibration and (2) the assurance of consistent digestion. Here, we describe the evaluation of tryptic digestion efficiency by monitoring various signature peptides, missed cleavages, and modifications during proteolysis of apolipoprotein A-I and B in normo- and hypertriglyceridemic specimens. Absolute quantification of apolipoprotein A-I and B was performed by LC-MRM-MS with SIS peptide internal standards at two time points (4 and 20 h), using three native protein calibrators. Comparison with an immunoturbidimetric assay revealed recoveries of 99.4 ± 6.5% for apolipoprotein A-I and 102.6 ± 7.2% for apolipoprotein B after 4 h of trypsin digestion. Protein recoveries after 20 h trypsin incubation equaled 95.9 ± 6.9% and 106.0 ± 10.0% for apolipoproteins A-I and B, respectively. In conclusion, the use of metrologically traceable, native protein calibrators looks promising for accurate quantification of apolipoprotein A-I and B. Selection of rapidly formed peptides, that is, with no or minor missed cleavages, and the use of short trypsin incubation times for these efficiently cleaved peptides are likely to further reduce the variability introduced by trypsin digestion and to improve the traceability of test results to reach the desirable analytical performance for clinical chemistry application.

  10. Evaluation of the calibration uncertainty of gamma radiation monitors using a {sup 137}Cs source; Avaliacao da incerteza de calibracao de monitores de radiacao gama com uma fonte de {sup 137}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Elisabeth; Leite, Sandro Passos; David, Mariano Gazineu; Estrada, Carlos Frederico Alves; Almeida, Carlos Eduardo de, E-mail: beth.fernandes56@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ/LCR), Rio de Janeiro (Brazil). Lab. de Ciencias Radiologicas

    2014-07-01

    This study shows all the relevant components to the calculation of the calibration uncertainty of gamma radiation area monitors performed by the Lab. Ciencias Radiologicas of UERJ . The uncertainty components will be related with their respective estimated values, details about the uncertainty components calculations of positioning and field homogeneity will be shown. There were obtained the values of 3,8 % and 5,8 % to the expanded uncertainty (k=2) for the dosimetry and for the area monitors calibration, respectively. (author)

  11. Flume-based calibration of different surrogate devices for bedload monitoring

    Science.gov (United States)

    Mao, Luca; Escauriaza, Cristian; Gordo, Fernanda; Carrillo, Ricardo

    2014-05-01

    Bedload assessment is important for geomorphological, engineering, and ecological studies of gravel-bed rivers. Bedload is usually assessed using portable traps, which allows measuring instantaneous transport rates, but at a single point and at high costs and operational risks. Slot traps or other fixed devices allow measuring bedload rate for longer periods, but require expensive maintenance. The need of measuring continuously bedload intensity and dynamics has therefore increased the use and enhancement of surrogate methods, such as geophones, hydrophones, and acoustic sensors. However, converting the signals recorded by these instruments to actual bedload fluxes, direct bedload measurements are needed to obtain a calibration relationship. Even if some noticeable examples are available in literature, only few flume experiments have been undertaken to calibrate rate and grain size of transported sediments, and to explore rigorously the sensitivity and signal dampening effects of various surrogate devices. Here we present some preliminary results obtained from a set of flume experiments on which different devices have been used. We have tested a 1m-long Japanese acoustic pipe sensor, a 150×130×6 mm steel plate linked to an accelerometer and a count input data logger, and a hydrophone. Experiments were made in a 0.8m-wide flume, using 4 homogeneous (4, 8, 32, and 45 mm) sediment mixtures. These fractions were then combined in order to obtain 3 further heterogeneous mixtures. Experiments with different discharges and slopes were performed, allowing to observe a wide range of shear stresses and transport rates. All transported sediments were captured with traps, weighted, and then manually recirculated at the upstream end of the flume. Preliminary results show that devices have different sensitivity to lower grain size that could be detected, being the transport of 4 mm particles detected relatively well only by the impact plates. Intense transport of 8 mm particles

  12. Source spectra, moment, and energy for recent eastern mediterranean earthquakes: calibration of international monitoring system stations

    Energy Technology Data Exchange (ETDEWEB)

    Mayeda, K M; Hofstetter, A; Rodgers, A J; Walter, W R

    2000-07-26

    In the past several years there have been several large (M{sub w} > 7.0) earthquakes in the eastern Mediterranean region (Gulf of Aqaba, Racha, Adana, etc.), many of which have had aftershock deployments by local seismological organizations. In addition to providing ground truth data (GT << 5 km) that is used in regional location calibration and validation, the waveform data can be used to aid in calibrating regional magnitudes, seismic discriminants, and velocity structure. For small regional events (m{sub b} << 4.5), a stable, accurate magnitude is essential in the development of realistic detection threshold curves, proper magnitude and distance amplitude correction processing, formation of an M{sub s}:m{sub b} discriminant, and accurate yield determination of clandestine nuclear explosions. Our approach provides a stable source spectra from which M{sub w} and m{sub b} can be obtained without regional magnitude biases. Once calibration corrections are obtained for earthquakes, the coda-derived source spectra exhibit strong depth-dependent spectral peaking when the same corrections are applied to explosions at the Nevada Test Site (Mayeda and Walter, 1996), chemical explosions in the recent ''Depth of Burial'' experiment in Kazahkstan (Myers et al., 1999), and the recent nuclear test in India. For events in the western U.S. we found that total seismic energy, E, scales as M{sub o}{sup 0.25} resulting in more radiated energy than would be expected under the assumptions of constant stress-drop scaling. Preliminary results for events in the Middle East region also show this behavior, which appears to be the result of intermediate spectra fall-off (f{sup 1.5}) for frequencies ranging between {approx}0.1 and 0.8 Hz for the larger events. We developed a Seismic Analysis Code (SAC) coda processing command that reads in an ASCII flat file that contains calibration information specific for a station and surrounding region, then outputs a coda

  13. In-flight calibration system for the INTEGRAL x-ray monitor

    DEFF Research Database (Denmark)

    Costa, E.; Feroci, M.; Barbanera, L.

    1996-01-01

    of Amptek Cool-X15 X-ray generators. The latter is a novel product, based on a pyroelectric crystal used to generate energetic electrons that produce fluorescence lines by hitting a metallic target. We plan to use the four low intensity radioactive sources for monitoring the four independent anode chains......JEM-X is the x-ray monitor serving the two gamma-ray experiments imager and spectrometer onboard the ESA's INTEGRAL satellite. Due to the intrinsic weakness of the celestial sources in the gamma energy range they will need very long integration times. During these long pointings JEM-X will be able...

  14. Calibration of qualitative HBsAg assay results for quantitative HBsAg monitoring.

    Science.gov (United States)

    Gunning, Hans; Adachi, Dena; Tang, Julian W

    2014-10-01

    Evidence is accumulating that quantitative hepatitis B surface antigen monitoring may be useful in managing patients with chronic HBV infection on certain treatment regimens. Based on these results with the Abbott Architect qualitative and quantitative HBsAg assays, it seems feasible to convert qualitative to quantitative HBsAg values for this purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. In-flight calibration system for the INTEGRAL x-ray monitor

    DEFF Research Database (Denmark)

    Costa, E.; Feroci, M.; Barbanera, L.;

    1996-01-01

    of Amptek Cool-X15 X-ray generators. The latter is a novel product, based on a pyroelectric crystal used to generate energetic electrons that produce fluorescence lines by hitting a metallic target. We plan to use the four low intensity radioactive sources for monitoring the four independent anode chains...

  16. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes.

    Science.gov (United States)

    Bhati, S; Patni, H K; Ghare, V P; Singh, I S; Nadar, M Y

    2012-03-01

    Internal contamination due to high-energy photon (HEP) emitters is assessed using a scanning bed whole-body monitor housed in a steel room at the Bhabha Atomic Research Centre (BARC). The monitor consists of a (203 mm diameter × 102 mm thickness) NaI(Tl) detector and is calibrated using a Reference BOMAB phantom representative of an average Indian radiation worker. However, a series of different size physical phantoms are required to account for size variability in workers, which is both expensive and time consuming. Therefore, a theoretical approach based on Monte Carlo techniques has been employed to calibrate the system in scanning geometry with BOMAB phantoms of different sizes characterised by their weight (W) and height (H) for several radionuclides of interest ((131)I, (137)Cs, (60)Co and (40)K). A computer program developed for this purpose generates the detector response and the detection efficiencies (DEs) for the BARC Reference phantom (63 kg/168 cm), ICRP Reference male phantom (70 kg/170 cm) and several of its scaled versions. The results obtained for different size phantoms indicated a decreasing trend of DEs with the increase in W/H values of the phantoms. The computed DEs for uniform distribution of (137)Cs in BOMAB phantom varied from 3.52 × 10(-3) to 2.88 × 10(-3) counts per photon as the W/H values increased from 0.26 to 0.50. The theoretical results obtained for the BARC Reference phantom have been verified with experimental measurements. The Monte Carlo results from this study will be useful for in vivo assessment of HEP emitters in radiation workers of different physiques.

  17. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    Science.gov (United States)

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  18. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    Science.gov (United States)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal

  19. Application of an Artificial Intelligence Method for Velocity Calibration and Events Location in Microseismic Monitoring

    Science.gov (United States)

    Yang, Y.; Chen, X.

    2013-12-01

    Good quality hydraulic fracture maps are heavily dependent upon the best possible velocity structure. Particle Swarm Optimization inversion scheme, an artificial intelligence technique for velocity calibration and events location could serve as a viable option, able to produce high quality data. Using perforation data to recalibrate the 1D isotropic velocity model derived from dipole sonic logs (or even without them), we are able to get the initial velocity model used for consequential events location. Velocity parameters can be inverted, as well as the thickness of the layer, through an iterative procedure. Performing inversion without integrating available data is unlikely to produce reliable results; especially if there are only one perforation shot and a single poor-layer-covered array along with low signal/noise ratio signal. The inversion method was validated via simulations and compared to the Fast Simulated Annealing approach and the Conjugate Gradient method. Further velocity model refinement can be accomplished while calculating events location during the iterative procedure minimizing the residuals from both sides. This artificial intelligence technique also displays promising application to the joint inversion of large-scale seismic activities data.

  20. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    Science.gov (United States)

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  1. Development and calibration of automatic real-time environmental radioactivity monitors using gamma-ray spectrometry

    OpenAIRE

    Casanovas Alegre, Ramon

    2014-01-01

    Esta tesis doctoral presenta una colección de seis artículos científicos, que han estado publicados en revistas científicas revisadas, en el campo de la detección de radiactividad ambiental en tiempo real. Después de las contribuciones de esta tesis, la red automática de vigilancia radiológica ambiental en tiempo real de Cataluña dispone de nueva y mejor información radiológica. Esto ha sido logrado gracias al desarrollo y calibración de tres tipos de monitores de radiactividad mediante espec...

  2. The Calibration and Characterization of Earth Remote Sensing and Environmental Monitoring Instruments. Chapter 10

    Science.gov (United States)

    Butler, James J.; Johnson, B. Carol; Barnes, Robert A.

    2005-01-01

    The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land

  3. Chemometric methods applied to the calibration of a Vis-NIR sensor for gas engine's condition monitoring.

    Science.gov (United States)

    Villar, Alberto; Gorritxategi, Eneko; Otaduy, Deitze; Ciria, Jose I; Fernandez, Luis A

    2011-10-31

    This paper describes the calibration process of a Visible-Near Infrared sensor for the condition monitoring of a gas engine's lubricating oil correlating transmittance oil spectra with the degradation of a gas engine's oil via a regression model. Chemometric techniques were applied to determine different parameters: Base Number (BN), Acid Number (AN), insolubles in pentane and viscosity at 40 °C. A Visible-Near Infrared (400-1100 nm) sensor developed in Tekniker research center was used to obtain the spectra of artificial and real gas engine oils. In order to improve sensor's data, different preprocessing methods such as smoothing by Saviztky-Golay, moving average with Multivariate Scatter Correction or Standard Normal Variate to eliminate the scatter effect were applied. A combination of these preprocessing methods was applied to each parameter. The regression models were developed by Partial Least Squares Regression (PLSR). In the end, it was shown that only some models were valid, fulfilling a set of quality requirements. The paper shows which models achieved the established validation requirements and which preprocessing methods perform better. A discussion follows regarding the potential improvement in the robustness of the models.

  4. Multi-site Observations of the March 2016 Total Solar Eclipse: Calibration of Images to Simulate Continuous Monitoring

    Science.gov (United States)

    Bosh, Robert; Penn, Matthew J.; McKay, Myles; Baer, Robert; Garrison, David; Gelderman, Richard; Hare, Honor; Isberner, Fred; Jensen, Logan; Kovac, Sarah; Mitchell, Adriana; Pierce, Michael; Thompson, Patricia; Ursache, Andrei; Varsik, John R.; Walter, Donald K.; Watson, Zachary; Young, David; Citizen Cate Team

    2017-01-01

    During the total solar eclipse of March 9, 2016, five teams of astronomers participating in the Citizen Continental America Telescopic Eclipse (CATE) experiment, traveled to different locations in Indonesia to observe the eclipse. Data was acquired to continuously monitor the progression of features in the inner solar corona: a region of the solar atmosphere where time evolution is not well understood. Image data from the eclipse consisted of sets of 7 exposure times 0.4, 1.3, 4, 13, 40, 130, and 400 milliseconds which are used to create a high dynamic range composite image. Eclipse data from these sites were then processed and calibrated using sets of dark and flat images. Further data processing included the compilation of exposures into high dynamic range images and were subsequently spatially filtered. Using these processing techniques, data from each site was aligned and compiled as frames in videos of the eclipse, each consisting of over 140 frames with the goal of being combined. Lessons learned from the data obtained in the observations of the 2016 total solar eclipse are being used to improve the procedure which will be used in the CATE experiment during the North American 2017 total solar eclipse.

  5. Atmospheric Correction and Vicarious Calibration of Oceansat-1 Ocean Color Monitor (OCM Data in Coastal Case 2 Waters

    Directory of Open Access Journals (Sweden)

    Sherwin Ladner

    2012-06-01

    Full Text Available The Ocean Color Monitor (OCM provides radiance measurements in eight visible and near-infrared bands, similar to the Sea-viewing Wide Field-of-View Sensor (SeaWiFS but with higher spatial resolution. For small- to moderate-sized coastal lakes and estuaries, where the 1 × 1 km spatial resolution of SeaWiFS is inadequate, the OCM provides a good alternative because of its higher spatial resolution (240 × 360 m and an exact repeat coverage of every two days. This paper describes a detailed step-by-step atmospheric correction procedure for OCM data applicable to coastal Case 2 waters. This development was necessary as accurate results could not be obtained for our Case 2 water study area in coastal Louisiana with OCM data by using existing atmospheric correction software packages. In addition, since OCM-retrieved radiances were abnormally low in the blue wavelength region, a vicarious calibration procedure was developed. The results of our combined vicarious calibration and atmospheric correction procedure for OCM data were compared with the results from the SeaWiFS Data Analysis System (SeaDAS software package outputs for SeaWiFS and OCM data. For Case 1 waters, our results matched closely with SeaDAS results. For Case 2 waters, our results demonstrated closure with in situ radiometric measurements, while SeaDAS produced negative normalized water leaving radiance (nLw and remote sensing reflectance (Rrs. In summary, our procedure resulted in valid nLw and Rrs values for Case 2 waters using OCM data, providing a reliable method for retrieving useful nLw and Rrs values which can be used to develop ocean color algorithms for in-water substances (e.g., pigments, suspended sediments, chromophoric dissolved organic matter, etc. at relatively high spatial resolution in regions where

  6. Characterization and calibration of a novel detection system for real time monitoring of radioactive contamination in water processed at water treatment facilities.

    Science.gov (United States)

    Carconi, P; De Felice, P; Fazio, A; Petrucci, A; Lunardon, M; Moretto, S; Stevanato, L; Cester, D; Pastore, P

    2017-08-01

    Characterization and calibration measurements were carried out at the National Institute of Ionizing Radiation Metrology of ENEA on the TAp WAter RAdioactivity (TAWARA) Real Time Monitor system recently developed for real time monitoring of radioactive contamination in water processed at water treatment facilities. Reference radiations and radionuclides were chosen in order to reflect energy ranges and radiation types of the major water radioactive contaminants possibly arising from environmental, industrial or terroristic origin. The following instrument parameters were tested: sensitivity, selectivity, background, short/long term stability, linearity with respect to activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of LR-115 Type 2 Detectors for Monitoring Indoor Radon 222: Determination of the Calibration Factor

    Directory of Open Access Journals (Sweden)

    P. Pereyra

    2016-08-01

    Full Text Available The city of Lima, capital of Peru, has about 11 million inhabitants. Lima has no records about the indoor Radon 222 concentration levels in dwellings. Hereby, we are planning to register the indoor radon concentrations in Lima and in other cities of Peru in the next three years. First, we will determine the calibration factor for the detectors which will be used in our measurements. For this purpose, Solid State Nuclear Tracks Detectors of nitrocellulose nitrate (LR-115 type 2 were used.The calibration process using a Radium 226 source was described to obtain the calibration factor. Linear response in tracks number was found in relation with irradiation time and its stability after time at the calibration chamber.

  8. Conversion of an Alpha CAM Monitor of Victoreen calibrated of factory for plutonium in a measurement monitor of radon in the atmosphere; Conversion de un monitor Alpha CAM de la Victoreen calibrado de fabrica para plutonio en un monitor para medicion de radon en la atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2004-07-01

    It is presented in this work the conversion of a monitor ALPHA CAM of the monitor Victoreen gauged of it manufactures for plutonium in a monitor for radon mensuration in the atmosphere. Those units in that the radon measures are expressed are: peak curies/unit of volume of air to sampling. This way one has to gauge and to supplement the software and the parts that the old one monitor for plutonium. It requires. This task implies: a) To calibrate and to determine the efficiency of the detector of accustomed to state of 1700 mm{sup 2} for alpha particles coming from the radioactive series of the radon. b) to connect in series and to calibrate a flow measurer of air in it lines with the detector. Measures are presented of the ambient air and other places of the the historical area of the city of Puebla obtained with the team Converted ALPHA-CAM. (Author)

  9. Monitoring the NOAA Operational VIIRS RSB and DNB Calibration Stability Using Monthly and Semi-Monthly Deep Convective Clouds Time Series

    Directory of Open Access Journals (Sweden)

    Wenhui Wang

    2016-01-01

    Full Text Available The Visible and Infrared Imaging Radiometer Suite (VIIRS onboard the Joint Polar Satellite System (JPSS/Suomi National Polar-Orbiting Partnership (SNPP satellite provide sensor data records for the retrievals of many environment data records. It is critical to monitor the VIIRS long-term calibration stability to ensure quality EDR retrieval. This study investigates the radiometric calibration stability of the NOAA operational SNPP VIIRS Reflective Solar Bands (RSB and Day-Night-Band (DNB using Deep Convective Clouds (DCC. Monthly and semi-monthly DCC time series for 10 moderate resolution bands (M-bands, M1–M5 and M7–M11, March 2013–September 2015, DNB (March 2013–September 2015, low gain stage, and three imagery resolution bands (I-bands, I1–I3, January 2014–September 2015 were developed and analyzed for long-term radiometric calibration stability monitoring. Monthly DCC time series show that M5 and M7 are generally stable, with a stability of 0.4%. DNB has also been stable since May 2013, after its relative response function update, with a stability of 0.5%. The stabilities of M1–M4 are 0.6%–0.8%. Large fluctuations in M1–M4 DCC reflectance were observed since early 2014, correlated with F-factor (calibration coefficients trend changes during the same period. The stabilities of M8-M11 are from 1.0% to 3.1%, comparable to the natural DCC variability at the shortwave infrared spectrum. DCC mean band ratio time series show that the calibration stabilities of I1–I3 follow closely with M5, M7, and M10. Relative calibration changes were observed in M1/M4 and M5/M7 DCC mean band ratio time series. The DCC time series are generally consistent with results from the VIIRS validation sites and VIIRS/MODIS (the Moderate-resolution Imaging Spectroradiometer simultaneous nadir overpass time series. Semi-monthly DCC time series for RSB M-bands and DNB were compared with monthly DCC time series. The results indicate that semi-monthly DCC

  10. Comparison of - and Mutual Informaton Based Calibration of Terrestrial Laser Scanner and Digital Camera for Deformation Monitoring

    Science.gov (United States)

    Omidalizarandi, M.; Neumann, I.

    2015-12-01

    In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,...) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.

  11. COMPARISON OF TARGET- AND MUTUAL INFORMATON BASED CALIBRATION OF TERRESTRIAL LASER SCANNER AND DIGITAL CAMERA FOR DEFORMATION MONITORING

    Directory of Open Access Journals (Sweden)

    M. Omidalizarandi

    2015-12-01

    Full Text Available In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,... is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006 and a high resolution digital camera (Nikon D750 are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.

  12. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    Science.gov (United States)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; hide

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  13. [Research on On-Line Calibration Based Photoacoustic Spectrometry System for Monitoring the Concentration of CO2 in Atmosphere].

    Science.gov (United States)

    Zhang, Jian-feng; Pan, Sun-qiang; Lin, Xiao-lu; Hu, Peng-bing; Chen, Zhe-min

    2016-01-01

    Resonate frequency and cell constant of photoacoustic spectrum system are usually calibrated by using standard gas in laboratory, whereas the resonate frequency and cell constant will be changed in-situ, leading to measurement accuracy errors, caused by uncertainties of standard gas, differences between standard and measured gas components and changes in environmental condition, such as temperature and humidity. As to overcome the above problems, we have proposed an on-line atmospheric oxygen-based calibration technology for photoacoustic spectrum system and used in measurement of concentration of carbon dioxide in atmosphere. As the concentration of atmospheric oxygen is kept as constant as 20.96%, the on-line calibration for the photoacoustic spectrum system can be realized by detecting the swept-frequency and peak signal at 763.73 nm. The cell of the PAS has a cavity with length of 100 mm and an inner diameter of 6 mm, and worked in a first longitudinal resonant mode. The influence of environmental temperature and humidity, gas components on the photoacoustic cell's performance has been theoretically analyzed, and meanwhile the resonant frequencies and cell constants were calibrated and acquired respectively using standard gas, indoor air and outdoor air. Compared with calibrated gas analyzer, concentration of carbon dioxide is more accurate by using the resonant frequency and cell constant calculated by oxygen in tested air, of which the relative error is less than 1%, much smaller than that calculated by the standard gas in laboratory. The innovation of this paper is that using atmospheric oxygen as photoacoustic spectrum system's calibration gas effectively reduces the error caused by using standard gas and environmental condition changes, and thus improves the on-line measuring accuracy and reliability of the photoacoustic spectrum system.

  14. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites

    Science.gov (United States)

    Chander, G.; Xiong, X.(J.); Choi, T.(J.); Angal, A.

    2010-01-01

    The ability to detect and quantify changes in the Earth's environment depends on sensors that can provide calibrated, consistent measurements of the Earth's surface features through time. A critical step in this process is to put image data from different sensors onto a common radiometric scale. This work focuses on monitoring the long-term on-orbit calibration stability of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors using the Committee on Earth Observation Satellites (CEOS) reference standard pseudo-invariant test sites (Libya 4, Mauritania 1/2, Algeria 3, Libya 1, and Algeria 5). These sites have been frequently used as radiometric targets because of their relatively stable surface conditions temporally. This study was performed using all cloud-free calibrated images from the Terra MODIS and the L7 ETM+ sensors, acquired from launch to December 2008. Homogeneous regions of interest (ROI) were selected in the calibrated images and the mean target statistics were derived from sensor measurements in terms of top-of-atmosphere (TOA) reflectance. For each band pair, a set of fitted coefficients (slope and offset) is provided to monitor the long-term stability over very stable pseudo-invariant test sites. The average percent differences in intercept from the long-term trends obtained from the ETM + TOA reflectance estimates relative to the MODIS for all the CEOS reference standard test sites range from 2.5% to 15%. This gives an estimate of the collective differences due to the Relative Spectral Response (RSR) characteristics of each sensor, bi-directional reflectance distribution function (BRDF), spectral signature of the ground target, and atmospheric composition. The lifetime TOA reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.4% per year in its TOA reflectance over the CEOS reference standard test sites. ?? 2009 Elsevier Inc.

  15. Extinction, seeing and sky transparency monitoring at the Observatorio Astrofísico de Javalambre for J-PAS and J-PLUS calibration and scheduling

    Science.gov (United States)

    Vázquez Ramió, H.; Díaz-Martín, M. C.; Varela, J.; Ederoclite, A.; Maícas, N. Lamadrid, J. L.; Abril, J.; Iglesias-Marzoa, R.; Rodríguez, S.; Tilve, V.; Cenarro, A. J.; Antón Bravo, J. L.; Bello Ferrer, R.; Cristóbal-Hornillos, D.; Guillén Civera, L.; Hernández-Fuertes, J.; Jiménez Mejías, D.; Lasso-Cabrera, N. M.; López Alegre, G.; López Sainz, A.; Luis-Simoes, R. M.; Marín-Franch, A.; Moles, M.; Rueda-Teruel, F.; Rueda-Teruel, S.; Suárez López, O.; Yanes-Díaz, A.

    2015-05-01

    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS; see Benítez et al. 2014) and the Javalambre-Photometric Local Universe Survey (J-PLUS) will be conducted at the brand-new Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. J-PLUS is planned to start by the first half of 2015 while J-PAS first light is expected to happen along 2015. Besides the two main telescopes (with 2.5 m and 80 cm apertures), several smaller-sized facilities are present at the OAJ devoted to site characterization and supporting measurements to be used to calibrate the J-PAS and J-PLUS photometry and to feed up the OAJ's Sequencer with the integrated seeing and the sky transparency. These instruments are: i) an extinction monitor, an 11 " telescope estimating the atmospheric extinction to finally obtain the OAJ extinction curve, which is the initial step to J-PAS overall photometric calibration procedure; ii) an 8 " telescope implementing the Differential Image Motion Monitor (DIMM) technique to obtain the integrated seeing; and iii) an All-Sky Transmission MONitor (ASTMON), a roughly all-sky instrument providing the sky transparency as well as sky brightness and the atmospheric extinction too.

  16. SECONDARY STANDARD CALIBRATION, MEASUREMENT AND IRRADIATION CAPABILITIES OF THE INDIVIDUAL MONITORING SERVICE AT THE HELMHOLTZ ZENTRUM MÜNCHEN: ASPECTS OF UNCERTAINTY AND AUTOMATION.

    Science.gov (United States)

    Greiter, M B; Denk, J; Hoedlmoser, H

    2016-09-01

    The individual monitoring service at the Helmholtz Zentrum München has adopted the recommendations of the ISO 4037 and 6980 standards series as base of its dosimetric systems for X-ray, gamma and beta dosimetry. These standards define technical requirements for radiation spectra and measurement processes, but leave flexibility in the implementation of irradiations as well as in the resulting uncertainty in dose or dose rate. This article provides an example for their practical implementation in the Munich IAEA/WHO secondary standard dosimetry laboratory. It focusses on two aspects: automation issues and uncertainties in calibration.

  17. ON-LINE MONITORING OF I&C TRANSMITTERS AND SENSORS FOR CALIBRATION VERIFICATION AND RESPONSE TIME TESTING WAS SUCCESSFULLY IMPLEMENTED AT ATR

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Phillip A.; O' Hagan, Ryan; Shumaker, Brent; Hashemian, H. M.

    2017-03-01

    The Advanced Test Reactor (ATR) has always had a comprehensive procedure to verify the performance of its critical transmitters and sensors, including RTDs, and pressure, level, and flow transmitters. These transmitters and sensors have been periodically tested for response time and calibration verification to ensure accuracy. With implementation of online monitoring techniques at ATR, the calibration verification and response time testing of these transmitters and sensors are verified remotely, automatically, hands off, include more portions of the system, and can be performed at almost any time during process operations. The work was done under a DOE funded SBIR project carried out by AMS. As a result, ATR is now able to save the manpower that has been spent over the years on manual calibration verification and response time testing of its temperature and pressure sensors and refocus those resources towards more equipment reliability needs. More importantly, implementation of OLM will help enhance the overall availability, safety, and efficiency. Together with equipment reliability programs of ATR, the integration of OLM will also help with I&C aging management goals of the Department of Energy and long-time operation of ATR.

  18. Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors.

    Science.gov (United States)

    Casanovas, R; Morant, J J; Salvadó, M

    2014-07-01

    The implementation of in-situ gamma-ray spectrometry in an automatic real-time environmental radiation surveillance network can help to identify and characterize abnormal radioactivity increases quickly. For this reason, a Real-time Airborne Radioactivity Monitor using direct gamma-ray spectrometry with two scintillation detectors (RARM-D2) was developed. The two scintillation detectors in the RARM-D2 are strategically shielded with Pb to permit the separate measurement of the airborne isotopes with respect to the deposited isotopes.In this paper, we describe the main aspects of the development and calibration of the RARM-D2 when using NaI(Tl) or LaBr3(Ce) detectors. The calibration of the monitor was performed experimentally with the exception of the efficiency curve, which was set using Monte Carlo (MC) simulations with the EGS5 code system. Prior to setting the efficiency curve, the effect of the radioactive source term size on the efficiency calculations was studied for the gamma-rays from (137)Cs. Finally, to study the measurement capabilities of the RARM-D2, the minimum detectable activity concentrations for (131)I and (137)Cs were calculated for typical spectra at different integration times.

  19. USING CALIBRATED RGB IMAGERY FROM LOW-COST UAVS FOR GRASSLAND MONITORING: CASE STUDY AT THE RENGEN GRASSLAND EXPERIMENT (RGE, GERMANY

    Directory of Open Access Journals (Sweden)

    U. Lussem

    2017-08-01

    Full Text Available Monitoring the spectral response of intensively managed grassland throughout the growing season allows optimizing fertilizer inputs by monitoring plant growth. For example, site-specific fertilizer application as part of precision agriculture (PA management requires information within short time. But, this requires field-based measurements with hyper- or multispectral sensors, which may not be feasible on a day to day farming practice. Exploiting the information of RGB images from consumer grade cameras mounted on unmanned aerial vehicles (UAV can offer cost-efficient as well as near-real time analysis of grasslands with high temporal and spatial resolution. The potential of RGB imagery-based vegetation indices (VI from consumer grade cameras mounted on UAVs has been explored recently in several. However, for multitemporal analyses it is desirable to calibrate the digital numbers (DN of RGB-images to physical units. In this study, we explored the comparability of the RGBVI from a consumer grade camera mounted on a low-cost UAV to well established vegetation indices from hyperspectral field measurements for applications in grassland. The study was conducted in 2014 on the Rengen Grassland Experiment (RGE in Germany. Image DN values were calibrated into reflectance by using the Empirical Line Method (Smith & Milton 1999. Depending on sampling date and VI the correlation between the UAV-based RGBVI and VIs such as the NDVI resulted in varying R2 values from no correlation to up to 0.9. These results indicate, that calibrated RGB-based VIs have the potential to support or substitute hyperspectral field measurements to facilitate management decisions on grasslands.

  20. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    Science.gov (United States)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant

  1. Micro-Arcsec mission: implications of the monitoring, diagnostic and calibration of the instrument response in the data reduction chain. .

    Science.gov (United States)

    Busonero, D.; Gai, M.

    The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.

  2. 医用显示器质量控制及校准周期的研究%Research on quality control and calibration period of medical monitor

    Institute of Scientific and Technical Information of China (English)

    张海成

    2015-01-01

    Objective:To do research on quality control and calibration period of medical monitor, to assure that the medical monitor is being its best performance and to provide a stable and consistency medical diagnostic images for doctors.Methods: Based on DICOM and AAPM-TG18 calibration standards and using luminance meter and monitor calibration software, our hospital implemented detection and correction quarterly to nine medical monitors. At the same time we tested the brightness response data of medical monitor continuously for 55 weeks and recorded the various brightness with the change of time, then we did some work in statistic analysis and curve fitting using MATLAB software.Results: The performance parameters of our hospital medical monitors are in AAPM-TG18 specified range and the display characteristics are also consistent with the DICOM standard; The change of brightness quarterly of medical monitor is 0~25cd/m2 which is accorded with the function of DICOM GSDF. Conclusion: In order to ensure the accuracy of the impact of image diagnosis system, it’s reasonable and effective to do medical monitors quarterly testing based on brightness response curve.%目的:对医用显示器进行质量控制并对校准周期进行研究,确保医用显示器处于最佳的性能状态,为医生提供稳定性和一致性的医学诊断影像。方法:依据医学数字成像和通信(DICOM)及AAPM-TG18校准标准,利用亮度计和显示器校准软件,每季度对9台BARCO医用显示器进行DICOM GSDF校正、几何失真、全屏亮度均一性以及显示分辨率项目的检测及校正。同时对医用显示器连续55周进行亮度检测,记录其亮度变化率随时间的变化数据,用MTALAB软件对其进行曲线拟合及统计分析。结果:检测后医用显示器各项参数均在AAPM-TG18规定的范围之内,显示特性符合DICOM标准;医用显示器每季度0~25 cd/m2的亮度变化符合DICOM GSDF函数的范围。结论

  3. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study.

    Science.gov (United States)

    Slagt, Cornelis; Helmi, Mochamat; Malagon, Ignacio; Groeneveld, A B Johan

    2015-01-01

    Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. To compare calibrated arterial pressure waveform analysis-derived CO (COap, VolumeView/EV1000) and the uncalibrated form (COfv, FloTrac/Vigileo) with transpulmonary thermodilution derived CO (COtptd). A prospective, observational, single-centre study. ICU of a general teaching hospital. Twenty consecutive patients with severe sepsis or septic shock requiring haemodynamic monitoring by VolumeView/EV1000 and receiving mechanical ventilation. Connection of FloTrac/Vigileo to radial artery catheter already in situ. Radial (COfv) and femoral (COap) arterial waveform-derived CO measurements were compared with COtptd with respect to bias, precision, limits of agreement and percentage error, and the percentage error in the course of time since the last calibration of COap by COtptd. In comparing COap with COtptd (n = 267 paired measurements), the bias was 0.02 and limits of agreement were -2.49 to 2.52 l min, with a percentage error of 31%. The percentage error between COap and COtptd remained less than 30% until 8 h after calibration. In comparing COfv with COtptd (n = 301), the bias was -0.86 l min and limits of agreement were -4.48 to 2.77 l min, with a percentage error of 48%. The biases of COap and COfv correlated with systemic vascular resistance [r = 0.13 (P = 0.029) and r = 0.42 (P arterial waveform analysis technique. Compared with the uncalibrated COfv, the recently introduced calibrated arterial pressure waveform analysis-derived COap was more accurate and less dependent on vascular tone for up to 8 hours after callibation when monitoring CO in patients with severe sepsis and septic shock. The COap and COfv methods have poor to moderate CO-tracking abilities.

  4. Doses monitoring in radiology: calibration of air kerma-area product (P{sub KA}) meters; Monitoracao de doses em radiologia: a calibracao de medidores do produto kerma-area (P{sub KA})

    Energy Technology Data Exchange (ETDEWEB)

    Terini, Ricardo Andrade; Campelo, Maria Carolina de Santana; Almeida Junior, Jose Neres de, E-mail: rterini@pucsp.br [Pontificia Universidade Catolica de Sao Paulo (PUC-SP), SP (Brazil); Herdade, Silvio Bruni; Pereira, Marco Aurelio Guedes [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Instituto de Energia e Ambiente

    2013-11-15

    Materials and methods: different qualities of both incident and transmitted beams were utilized in conditions similar to a clinical setting, analyzing the influence from the reference dosimeter, from the distance between meters, from the filtration and from the average beam energy. Calibrations were performed directly against a standard 30 cm{sup 3} cylindrical chamber or a parallel-plate monitor chamber, and indirectly against the PDC meter. Results: the lowest energy dependence was observed for transmitted beams. The cross calibration between the Diamentor E2 and the PDC meters, and the PDC presented the greatest propagation of uncertainties. Conclusion: the calibration coefficient of the PDC meter showed to be more stable with voltage, while the Diamentor E2 calibration coefficient was more variable. On the other hand, the PDC meter presented greater uncertainty in readings (5.0%) than with the use of the monitor chamber (3.5%) as a reference. (author)

  5. Calibration Method of Nickel Water Quality On-line Automatic Monitoring Instrument%镍水质在线自动监测仪校准方法

    Institute of Scientific and Technical Information of China (English)

    肖克

    2016-01-01

    通过分析镍水质在线自动监测仪工作原理及结构,探讨其计量特性和校准方法。提出了校准项目和技术指标,示值误差:当镍的质量浓度c≤0.05 mg/L时为±0.01 mg/L,当0.05 mg/L<c≤0.2 mg/L时为±10%,当c>0.2 mg/L时为±5%;重复性不大于5%;稳定性不大于5%。对示值误差测量结果不确定度进行了评定,相对扩展不确定度为1.6%(k=2)。用所建校准方法对不同厂家的监测仪进行校准试验,示值误差、重复性、稳定性满足校准项目技术指标要求。该校准方法可以用于评价镍水质在线自动监测仪的性能。%The metrological characteristics and calibration method of the nickel water quality on-line automatic monitoring instrument were discussed on the basis of analysis of its working principle and structure. The calibration items and technical specifications were put forward. The indicating value error were±0.01 mg/L,±10% and±5% at the corresponding concentration of standard solutionc≤0.05 mg/L,0.05 mg/L0.2 mg/L, respectively. The repeatability was not more than 5% while the stability was not more than 5%. The measurement uncertainty of indicating value error was evaluated,and the relative expanded uncertainty was 1.6% (k=2). The established calibration method was applied to test monitoring instruments from different manufacturers. The results indicated that value error, repeatability and stability meet the requirement of technical specifications. This method can be used for the evaluation of the performance of nickel water quality on-line automatic monitoring instrument.

  6. Continuous absolute g monitoring of the mobile LNE-SYRTE Cold Atom Gravimeter - a new tool to calibrate superconducting gravimeters -

    Science.gov (United States)

    Merlet, Sébastien; Gillot, Pierre; Cheng, Bing; Pereira Dos Santos, Franck

    2016-04-01

    Atom interferometry allows for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developed an absolute gravimeter (CAG) based on this technic, which can perform continuous gravity measurements at a high cycling rate. This instrument, operating since summer 2009, is the new metrological french standard for gravimetry. The CAG has been designed to be movable, so as to participate to international comparisons and on field measurements. It took part to several comparisons since ICAG'09 and operated in both urban environments and low noise underground facilities. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which is rejected thanks to isolation platforms and correlation with other sensors, such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity of 5.6 μGal at 1 s measurement time has been demonstrated. The long term stability averages down to 0.1 μGal for long term measurements. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of the gravity acceleration measurement and its performances. I will focus on continuous gravity measurements performed over several years and compared with our superconducting gravimeter iGrav signal. This comparison allows us to calibrate the iGrav scale factor and follow its evolution. Especially, we demonstrate that, thanks to the CAG very high cycling rate, a single day gravity measurement allows to calibrate the iGrav scaling factor with a relative uncertainty as good as 4.10-4.

  7. Uptake calibration of polymer-based passive samplers for monitoring priority and emerging organic non-polar pollutants in WWTP effluents.

    Science.gov (United States)

    Posada-Ureta, Oscar; Olivares, Maitane; Zatón, Leire; Delgado, Alejandra; Prieto, Ailette; Vallejo, Asier; Paschke, Albrecht; Etxebarria, Nestor

    2016-05-01

    The uptake calibration of more than 12 non-polar organic contaminants by 3 polymeric materials is shown: bare polydimetilsiloxane (PDMS, stir-bars), polyethersulfone tubes and membranes (PES) and polyoxymethylene membranes (POM), both in their free form and membrane-enclosed sorptive coating (MESCO). The calibration process was carried out exposing the samplers to a continuous flow of contaminated water at 100 ng mL(-1) for up to 28 days, and, consequently, the sampling rates (Rs, mL day(-1)) of several organic microcontaminants were provided for the first time. In situ Rs values were also determined disposing the samplers in the effluent of a wastewater treatment plant. Finally, these passive samplers were applied to monitor the effluents of two wastewater treatment plants. This application lead to the confirmation of the presence of galaxolide, tonalide and 4-tert-octylphenol at high ng mL(-1) levels, as well as the identification of compounds like some phthalates and alkylphenols at levels below the detection limits for active sampling methods.

  8. Performance of a 3 mm×3 mm silicon photomultiplier for use on the X-ray calibration system of the SVOM gamma ray monitor

    Institute of Scientific and Technical Information of China (English)

    JIA Fei; DONG Yong-Wei; CHAI Jun-Ying; LIU Jiang-Tao; WU Bo-Bing; ZHAO Dong-Hua; XU He

    2012-01-01

    The calibration detector of a gamma ray monitor (GRM) is designed to detect alpha particles from 241Am and to send out the coincidence signal to the GRM X-ray detector.The silicon photomultiplier (SiPM),as a novel photon device,is a good candidate to convert alpha-exciting fluorescent photons into electric signals.Three types of SiPMs from SSPM and MPPC,each having an active area of 3 mm×3 mm,were compared in the matter of the spectra from low-intensity light,dark count,crosstalk probability and Ⅰ-V curve.The temperature coefficient of SSPM-0710G9MM was alsocharacterized.The application of a SiPM on the GRM has been proved to be feasible.

  9. Evaluation of the homogeneity of reference flat sources used in calibration of surface contamination monitors; Avaliacao da homogeneidade das fontes planas de referencia utilizadas na calibracao de monitores de contaminacao de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Potiens, M.P.A., E-mail: iremarjr@ipen.br, E-mail: mxavier@ipen.br, E-mail: ptsiquei@ipen.br, E-mail: mppalbu@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The aim of this study was to re-evaluate the uniformity of the wide area reference sources of the Calibration Laboratory of Instruments (LCI-IPEN) used in the calibration of surface contamination monitors, according the recommendations of the ISO 8769 standard and the NRPB. In this work used six wide area reference sources of 150 cm{sup 2} of {sup 241}Am, {sup 14}C, {sup 36}Cl, {sup 137}Cs, {sup 90}Sr+{sup 90}Y and {sup 99}Tc with reference dates between 1996 and 1997 and three sources of 100 cm{sup 2} of {sup 14}C, {sup 137}Cs and {sup 60}Co were used with reference dates 2007. Measurements were performed with a radiation monitor of the Thermo, model FH40GX with a pancake probe, model FHZ732GM. We also made several models on paper with the objective of define each measurement position and an aluminum plate with a square hole (6.25 cm{sup 2}) in its center, allowing the passage of the radiation only through the hole. Each wide area reference source was positioned in setup and measurements were performed in order to cover the entire surface of the source. The values of the uniformity obtained partially confirm previous data obtained in another study conducted by LCI-IPEN, showing that some wide area reference sources 150 cm{sup 2} in disagree with ISO 8769. In the former work, just the source of {sup 241}Am (7.3%) was within the range specified by the standard, now have sources of {sup 241}Am (5.7%), {sup 137}Cs (8.8%), {sup 90}Sr+{sup 9}'0Y (8, 8%) and {sup 99}Tc (9.2%) with values within the specified uniformity. The sources of {sup 14}C (53.3%) and {sup 36}Cl (16.6%) were outside the specified. The wide area reference sources of 100 cm{sup 2}, show disagreement in values of uniformity of the sources {sup 14}C (46.7%) and {sup 60}Co (10.4%). The values of the uniformity of the wide area reference sources show that some fonts can not be used in calibrations, because not in accordance with the value of uniformity specified in ISO 8769:2010, this is a conditions

  10. A multi-agency sutrient dataset used to estimate loads, improve monitoring design, and calibrate regional sutrient SPARROW models

    Science.gov (United States)

    Saad, David A.; Schwarz, Gregory; Robertson, Dale M.; Booth, Nathaniel

    2011-01-01

    Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.

  11. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration unce...

  12. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    Science.gov (United States)

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  13. A Multi-Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models

    Science.gov (United States)

    Saad, D.A.; Schwarz, G.E.; Robertson, D.M.; Booth, N.L.

    2011-01-01

    Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  14. Assessing sleeping energy expenditure in children using heart-rate monitoring calibrated against open-circuit indirect calorimetry: a pilot study.

    Science.gov (United States)

    Beghin, L; Michaud, L; Guimber, D; Vaksmann, G; Turck, D; Gottrand, F

    2002-11-01

    Total energy expenditure (EE) can be assessed in children by the heart-rate (HR) monitoring technique calibrated against open-circuit indirect calorimetry (IC). In this technique, sleeping EE is usually estimated as the lowest value of a 30 min resting EE measurement x 0 x 90 to give an average for the total sleeping period. However, sleeping is a dynamic process in which sleeping EE is modulated by the effect of factors such as body movement and different sleep stages. The aim of the present study was to determine a new method to improve the sleeping EE measurement by taking into account body movements during sleep. Twenty-four non-obese children participated in the present study. All subjects passed through a calibration period. HR and EE measured by IC were simultaneously collected during resting, the postprandial period, and during different levels of activity. Different methods for computing sleeping EE (resting with different breakpoints ('flex point' HR with linear regression or 'inflection point' (IP) HR with the third order polynomial regression equation (P3)) were compared with EE measured for least 2.0 h in eight sleeping children. The best method of calculation was then tested in sixteen children undergoing HR monitoring and with a body movement detector. In a subset of eight children undergoing simultaneous sleeping EE measurement by IC and HR, the use of the equation resting when HRIP during the sleeping period gave the lowest difference (1 (sd 5.4) %) compared with other methods (linear or polynomial regressions). The new formula was tested in an independent subset of sixteen other children. The difference between sleeping EE computed with the formula resting and sleeping EE computed with resting when HRIP during sleeping periods was significant (13 (sd 5.9) %) only for active sleeping subjects (n 6 of 16 subjects). The correlation between the difference in the results from the two methods of calculation and body movements was close (r 0

  15. Monitoring temporal opacity fluctuations of large structures with muon tomography : a calibration experiment using a water tower tank

    CERN Document Server

    Jourde, Kevin; Marteau, Jacques; d'Ars, Jean de Bremond; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe

    2015-01-01

    The idea of using secondary cosmic muons to scan the internal structure of a given body has known significant developments since the first archaeological application by Alvarez and collaborators on the Gizah pyramids. Recent applications cover the fields of volcanology, hydrology, civil engineering, mining, archaeology etc. Muon radiography features are essentially identical to those of medical X-ray imaging techniques. It is a contrast densitometry method using the screening effect of the body under study on the natural flux of cosmic muons. This technique is non-invasive and complements the standard geophysical techniques, e.g. electrical tomography or gravimetry. It may be applied to a large variety of geological targets, among which the domes of active volcanoes. In this context muon tomography presents the noticeable advantage to perform measurements of large volumes, with a large aperture, from a distant point, far from the potentially dangerous zones. The same conclusions apply regarding the monitoring...

  16. Noninvasive near-infrared blood glucose monitoring using a calibration model built by a numerical simulation method: Trial application to patients in an intensive care unit.

    Science.gov (United States)

    Maruo, Katsuhiko; Oota, Tomohiro; Tsurugi, Mitsuhiro; Nakagawa, Takehiro; Arimoto, Hidenobu; Hayakawa, Mineji; Tamura, Mamoru; Ozaki, Yukihiro; Yamada, Yukio

    2006-12-01

    We have applied a new methodology for noninvasive continuous blood glucose monitoring, proposed in our previous paper, to patients in ICU (intensive care unit), where strict controls of blood glucose levels are required. The new methodology can build calibration models essentially from numerical simulation, while the conventional methodology requires pre-experiments such as sugar tolerance tests, which are impossible to perform on ICU patients in most cases. The in vivo experiments in this study consisted of two stages, the first stage conducted on healthy subjects as preliminary experiments, and the second stage on ICU patients. The prediction performance of the first stage was obtained as a correlation coefficient (r) of 0.71 and standard error of prediction (SEP) of 28.7 mg/dL. Of the 323 total data, 71.5% were in the A zone, 28.5% were in the B zone, and none were in the C, D, and E zones for the Clarke error-grid analysis. The prediction performance of the second stage was obtained as an r of 0.97 and SEP of 27.2 mg/dL. Of the 304 total data, 80.3% were in the A zone, 19.7% were in the B zone, and none were in the C, D, and E zones. These prediction results suggest that the new methodology has the potential to realize a noninvasive blood glucose monitoring system using near-infrared spectroscopy (NIRS) in ICUs. Although the total performance of the present monitoring system has not yet reached a satisfactory level as a stand-alone system, it can be developed as a complementary system to the conventional one used in ICUs for routine blood glucose management, which checks the blood glucose levels of patients every few hours.

  17. Precision monitoring and calibration of the high-voltage for the KATRIN experiment; Praezisionsueberwachung und Kalibration der Hochspannung fuer das KATRIN-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thuemmler, T.

    2007-11-12

    The goal of the KATRIN(KArlsruhe TRIritium Neutrino) Experiment is to directly determine the neutrino rest mass from the kinematics of the tritium-{beta}-decay. KATRIN uses the high resolution and luminosity of a spectrometer following the MAC-E filter principle. Based on the experience of the successful predecessor experiments in Mainz and Troisk and the improved experimental technology, KATRIN aims to reach a sensitivity on the neutrino mass of 0.2 eV/c{sup 2} (90% C.L.). One of the few systematic uncertainties that have to be reduced to meet this goal is the uncertainty of measuring and monitoring the potential of the electrostatic filter of the spectrometer. In tritium measurement mode voltages of about U{sub 0} =-18.6 kV have to be permanently monitored with a maximum uncertainty of 3.3 ppm ({approx} 61mV at U{sub 0}), in order not to add more than {delta}m{sup 2}{sub {nu}{sub ec}}{sup 4} {<=} 0.0075 eV{sup 2} to the total systematic uncertainty. The goal of this work is to build a new precision high voltage divider in cooperation with PTB Braunschweig that reaches an uncertainty of about 1 ppm at voltages up to 35 kV. The divider is based on a new type of precision resistors, which have been screened with respect to their warm up drift and their temperature coefficient at the ppm level. By combining 100 of the best matching samples, the mutual warm up effect could be reduced to a computed value of <0.02 ppm. The precision resistors are mounted in a shielded and temperature stabilized vessel under N{sub 2} gas. The properties of both installed low voltage outputs with the ratios 1972:1 and 3944:1 have been repeatedly calibrated with about one year time difference at the DC high voltage laboratory (division 2.31) of PTB. The performance of the new divider in real measurements has been tested with the prototype of the new condensed {sup 83m}Kr calibration source (CKrS) [Ost08] at the Mainz spectrometer. Detailed stability investigations of the energy of the {sup

  18. Self-Calibrating Pressure Transducer

    Science.gov (United States)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  19. In situ calibration of polar organic chemical integrative samplers to monitor organophosphate flame retardants in river water using polyethersulfone membranes with performance reference compounds.

    Science.gov (United States)

    Li, Ying; Yang, Cunman; Zha, Daoping; Wang, Li; Lu, Guanghua; Sun, Qin; Wu, Donghai

    2018-01-01

    Passive sampler is an innovative way of monitoring chemicals in different environmental. A modified polar organic chemical integrative sampler (m-POCIS) with a performance reference compound (PRC) was used to evaluate the concentrations of 8 organophosphate flame retardants (OPFRs) under field conditions. The m-POCIS was deployed for 15days under laboratory conditions and 21days under in situ conditions to determine the concentrations of OPFRs. The analytes were trapped in the sorbent and the microporous polyethersulfone (PES) membrane of the m-POCIS. Sampling rates (Rs) were determined for the studied compounds and ranged from 0.02±0.0003L/d (triphenylphosphine oxide, TPPO) to 0.24±0.021L/d (tripropyl phosphate, TPrP) in the laboratory. The membranes accumulation increased with usage and was correlated to the logKow. Among the tested compounds, tripentylphosphate (TPeP) and triphenylphosphate (TPhP) had the highest logKow values and were mostly detected in the membranes. This behavior resulted in a lag-phase, which was measured by extrapolating the data from the last third of the uptake phase (quasilinear) to the x-axis using a linear regression, before the compounds transferred into the sorbent. TPhP was the only compound with a lag-phase of 3.9days during the 15days experiment. Deuteratedtributyl phosphate (TBP-d27) and desisopropyl atrazine-d5 (DIA-d5) were identified through specific experiments as potential PRC. The results from the PRC calibrations suggested that DIA-d5 (ke (in situ)=0.075±0.0048day(-1)) can be used as a PRC for the evaluation of OPFRs using m-POCISs. The time-weighted average (TWA) concentrations estimated by the m-POCIS with or without a PRC were significantly correlated with the corresponding values determined from the grab samples. After the PRC calibration, the TWA concentrations of the tested OPFRs in an aquatic environment were lower than those estimated using the laboratory sampling rates (Rs). The m-POCIS with a PRC correction

  20. Calibration test of PET scanners in a multi-centre clinical trial on breast cancer therapy monitoring using 18F-FLT.

    Directory of Open Access Journals (Sweden)

    Francis Bouchet

    Full Text Available UNLABELLED: A multi-centre trial using PET requires the analysis of images acquired on different systems We designed a multi-centre trial to estimate the value of 18F-FLT-PET to predict response to neoadjuvant chemotherapy in patients with newly diagnosed breast cancer. A calibration check of each PET-CT and of its peripheral devices was performed to evaluate the reliability of the results. MATERIAL AND METHODS: 11 centres were investigated. Dose calibrators were assessed by repeated measurements of a 68Ge certified source. The differences between the clocks associated with the dose calibrators and inherent to the PET systems were registered. The calibration of PET-CT was assessed with an homogeneous cylindrical phantom by comparing the activities per unit of volume calculated from the dose calibrator measurements with that measured on 15 Regions of Interest (ROIs drawn on 15 consecutive slices of reconstructed filtered back-projection (FBP images. Both repeatability of activity concentration based upon the 15 ROIs (ANOVA-test and its accuracy were evaluated. RESULTS: There was no significant difference for dose calibrator measurements (median of difference -0.04%; min = -4.65%; max = +5.63%. Mismatches between the clocks were less than 2 min in all sites and thus did not require any correction, regarding the half life of 18F. For all the PET systems, ANOVA revealed no significant difference between the activity concentrations estimated from the 15 ROIs (median of difference -0.69%; min = -9.97%; max = +9.60%. CONCLUSION: No major difference between the 11 centres with respect to calibration and cross-calibration was observed. The reliability of our 18F-FLT multi-centre clinical trial was therefore confirmed from the physical point of view. This type of procedure may be useful for any clinical trial involving different PET systems.

  1. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration.

  2. Landsat TM and ETM+ Thermal Band Calibration

    Science.gov (United States)

    Barsi, Julia A.; Hook, Simon J.; Palluconi, Frank D.; Schott, John R.; Raqueno, Nina G.

    2006-01-01

    Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. The stability and calibration of the ETM+ has been monitored extensively since launch. Though not monitored for many years, TM now has a similar system in place to monitor stability and calibration. University teams have been evaluating the on-board calibration of the instruments through ground-based measurements since 1999. This paper considers the calibration efforts for the thermal band, Band 6, of both the Landsat-5 and Landsat-7 instruments.

  3. 手脚污染测量仪手部探测器β表面活度响应的校准%Beta Surface Activity Response Calibration of Hand Detectors in a Hand-Foot Surface Contamination Monitor

    Institute of Scientific and Technical Information of China (English)

    王勇; 刘倍; 牛强; 李强; 冯梅; 商洁

    2015-01-01

    Hand-foot surface contamination monitors are usually used in nuclear facilities for radiation protec-tion purpose ,which measure surface contamination levels on workers' hands and feet .A hand model and two plastic film sources were made to facilitate the calibration of surface activity response of hand detectors in a monitor of this kind ,and give rise to calibration results more in line with actual measurements .The effects of beta backscatter from hand tissue on measurement were investigated .The calibration results with aluminum substrate sources used were employed to perform a comparison in the meantime .Their difference was then ana-lyzed .%手脚表面污染测量仪用于测量辐射工作人员手部和脚部的放射性污染.为方便校准手部探头的表面活度响应 ,使校准结果更符合实际测量情况 ,制作了手部模型和90 Sr+ 90 Y薄膜放射源 ,分析研究了人体组织β散射对测量的影响 ,同时与使用铝衬底源的校准结果进行了比较分析.

  4. Infrasound Sensor Calibration and Response

    Science.gov (United States)

    2012-09-01

    functions with faster rise times. SUMMARY We have documented past work on the determination of the calibration constant of the LANL infrasound sensor...Monitoring Technologies 735 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated...National Laboratory ( LANL ) has operated an infrasound sensor calibration chamber that operates over a frequency range of 0.02 to 4 Hz. This chamber has

  5. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study

    NARCIS (Netherlands)

    Slagt, C.; Helmi, M.; Malagon, I.; Groeneveld, A.B.

    2015-01-01

    BACKGROUND: Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. OBJECTIVES: To compare calibrated arterial pressure waveform analysis-derived CO (COap, Vo

  6. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study

    NARCIS (Netherlands)

    Slagt, C.; Helmi, M.; Malagon, I.; Groeneveld, A.B.

    2015-01-01

    BACKGROUND: Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. OBJECTIVES: To compare calibrated arterial pressure waveform analysis-derived CO (COap,

  7. Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study

    NARCIS (Netherlands)

    Slagt, C.; Helmi, M.; Malagon, I.; Groeneveld, A.B.

    2015-01-01

    BACKGROUND: Cardiac output (CO) measurement is often required in critically ill patients. The performances of newer, less invasive techniques require evaluation in patients with severe sepsis and septic shock. OBJECTIVES: To compare calibrated arterial pressure waveform analysis-derived CO (COap, Vo

  8. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    Science.gov (United States)

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected.

  9. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  10. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  11. 环境监测校准曲线斜率的质量控制探讨%A Study on Quality Control for Calibration Curve Slope in Environmental Monitoring

    Institute of Scientific and Technical Information of China (English)

    朱惠敏; 王燕平; 石碧清

    2015-01-01

    在环境监测中使用分光光度法进行样品测定时,都要利用校准曲线的回归方程计算其待测样品的含量。为使监测结果更为准确,必须对校准曲线的准确性进行检验,即对校准曲线的斜率进行统计检验。在实际工作中,常采用 Dixon 检验法和斜率相对偏差(RbD)法检验校准曲线斜率,也可以利用校准曲线斜率均值控制图进行质量控制,使分析测试工作处于受控状态中,使监测结果更加真实可靠。%When the sample was measured by spectrophotometer in environmental monitoring, the regression equation of calibration curve was used to calculate content of the sample. To obtain more accurate results, the accuracy of the calibration curve must be tested, i.e. statistical tests for the slope of the calibration curve. Dixon test and the test for relative standard deviation of slope were often used in the practice. In addition to these two tests, control chart for slope mean value was also used to control quality, which made analytical testing in a controlled state and monitoring results more reliable.

  12. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  13. Comparison between calibration methods for in vivo monitoring in human body; Comparacao entre metodos de calibracao para monitoracao in vivo no corpo humano

    Energy Technology Data Exchange (ETDEWEB)

    Mello, J.Q. de; Almeida, A.PF.; Dantas, A.L.A.; Hunt, J.G.; Dantas, B.M., E-mail: bmdantas@ird.gov.br [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The determination of photon emitters in the human body through in vivo measurements requires the use of specific techniques to obtain calibration factors which correlate count rates and activities present in the body. In the present work two methods were compared for the measurement of {sup 40}K in whole body geometry with a scintillation detector type NaI(Tl)3x3: (1) experimental, using a BOMAB physical anthropomorphic phantom and (2) mathematical simulation of the phantom and the interaction of the photons with the detector. The results obtained show the equivalence between the methods in the geometry and energy conditions adopted in the experiment. (author)

  14. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  15. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  16. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  17. Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths

    CERN Document Server

    Kogut, A J; Fixsen, D J; Limon, M; Mirel, P G A; Levin, S; Seiffert, M; Lubin, P M

    2004-01-01

    We describe the design and calibration of an external cryogenic blackbody calibrator used for the first two flights of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) instrument. The calibrator consists of a microwave absorber weakly coupled to a superfluid liquid helium bath. Half-wave corrugations viewed 30 deg off axis reduce the return loss below -35 dB. Ruthenium oxide resistive thermometers embedded within the absorber monitor the temperature across the face of the calibrator. The thermal calibration transfers the calibration of a reference thermometer to the flight thermometers using the flight thermometer readout system. Data taken near the superfluid transition in 8 independent calibrations 4 years apart agree within 0.3 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

  18. Calibration of the RSS-131 high efficiency ionization chamber for radiation dose monitoring during plasma experiments conducted on plasma focus device

    Science.gov (United States)

    Szewczak, Kamil; Jednoróg, Sławomir

    2014-10-01

    Plasma research poses a radiation hazard. Due to the program of deuterium plasma research using the PF-1000 device, it is an intensive source of neutrons (up to 1011 n · pulse -1) with energy of 2,45 MeV and ionizing electromagnetic radiation with a broad energy spectrum. Both types of radiation are mostly emitted in ultra-short pulses (˜100 ns). The aim of this work was to test and calibrate the RSS-131 radiometer for its application in measurements of ultra-short electromagnetic radiation pulses with broad energy spectrum emitted during PF-1000 discharge. In addition, the results of raw measurements performed in the control room are presented.

  19. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  20. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  1. Calibration of sound calibrators: an overview

    Science.gov (United States)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  2. Calibration of the radiation monitors from DESY and SPring-8 at the quasi-mono-energetic neutron beams using 100 and 300 MeV 7Li(p,n) reaction at RCNP in Osaka Japan in November 2014

    Science.gov (United States)

    Leuschner, Albrecht; Asano, Yoshihiro; Klett, Alfred

    2017-09-01

    At the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP) Osaka University, Osaka, Japan a series of measurement campaigns had been continued with quasi mono-energetic neutron beams in November 2014. A 7Li target was bombarded with 100 and 300 MeV protons and the generated neutron beams were directed into a long time-of-flight tunnel at 0 and 25 degrees deflection angle with respect to the proton beam. At a distance of 41 m the cross section of the neutron beam was large enough for the illumination of square meter sized objects like extended range rem-counters. The research institutes SPring-8/RIKEN, Japan, and DESY, Germany, participated in this campaign for the calibration of 4 different types of active ambient dose rate monitors: LB 6411, LB 6411-Pb, LB 6419 and LB 6420. The measurements of their responses are reported and compared with the calculated values.

  3. 电力计量检定数字化车间3D动态感知监控技术研究%3D dynamic perception monitoring technologies of the digital workshop for electric power measurement calibration

    Institute of Scientific and Technical Information of China (English)

    蔡奇新; 邵雪松; 刘建; 王忠东; 黄奇峰

    2015-01-01

    For the operation stability requirement of the electric power measurement calibration digital workshop, this submission designs and builds 3D dynamic perception monitoring system. The monitoring technical architecture is based on the data layer, the communication layer, the service layer, and the exhibition layer. In order to reduce the com-putation complexity, the simulation monitoring system emploies the step by step hierarchical modeling method, which contains the appearance design, the behavior modeling, the simulation program design, and the simulation scene con-struction. Also, the 3D scene optimization strategy includes the model optimization, the program optimization and the composite optimization. The technology of the second level data synchronization and stream processing is proposed to distribute data processing pressure. The process smoothing and data fault tolerance mechanism are adopted to ensure the consistency of the 3D monitoring scene and the actual production. The 3D dynamic perception monitoring system of the electric power measurement calibration digital workshop has been applied in 26 companies of state grid. It has been real-ized virtual patrol and examination, and cooperative fault processing. The 3D dynamic perception monitoring system has improved the operation efficiency of calibration digital workshops significantly.%针对电力计量检定数字化车间稳定性运行要求,本文设计并建立一种数字化车间3D动态感知监控系统。设计基于数据层、传输层、服务层、展示层的监控系统技术架构。为降低仿真监控系统计算复杂度,采用外观建模、行为建模、仿真程序设计、仿真场景搭建的逐级分层建模方法,并对3D场景进行模型优化、程序优化、综合优化。提出秒级生产数据同步与流式处理技术,分散数据处理压力,采用过程平滑处理与数据容错机制,确保3D监控系统与实际生产过程同步。本文设计的

  4. Linking hydro-climate to the sediment archive: a combined monitoring and calibration study from a varved lake in central Turkey

    Science.gov (United States)

    Roberts, C. Neil; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Allcock, Samantha L.; Leng, Melanie J.; Metcalfe, Sarah E.; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Hydro-climatic reconstructions from lake sediment proxies require an understanding of modern formation processes and calibration over multiple years. Here we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for such a natural experiment. Fieldwork since 1997 has included observations and measurements of lake water and sediment trap samples, and automated data logging (Jones et al., 2005; Woodbridge and Roberts, 2010; Dean et al., 2015). We compare these data to isotopic, chemical and biotic proxies preserved in the lake's annually-varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010, and δ18O in both water and carbonates is correlated with this lake-level fall, responding to the change in water balance. Over the same period, sedimentary diatom assemblages responded via changes in habitat availability and mixing regime, while conductivity inferred from diatoms showed a rise in inferred salinity, although with a non-linear response to hydro-climatic forcing. There were also non-linear shifts in carbonate mineralogy and elemental chemistry. Building on the relationship between lake water balance and the sediment isotope record, we calibrated sedimentary δ18O against local meteorological records to derive a P/E drought index for central Anatolia. Application to of this to the longer sediment core isotope record from Nar Gölü (Jones et al. 2006) highlights major drought events over the last 600 years (Yiǧitbaşıoǧlu et al., 2015). Although this lacustrine record offers an archive of annually-dated, decadally-averaged hydro-climatic change, there were also times of non-linear lake response to climate. Robust reconstruction therefore requires understanding of physical processes as well as application of statistical correlations. Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D., Yiǧitbaşıoǧlu, H., Allcock, S.L., Woodbridge, J., Metcalfe, S.E. and Leng, M.J. (2015) Tracking the hydro

  5. Research and Development on Universal Monitor & Calibration System for Electric Vehicles%电动汽车通用型监控及标定系统的研发

    Institute of Scientific and Technical Information of China (English)

    周能辉; 杜森; 李磊; 赵春明

    2013-01-01

    This article develops a universal monitor & calibration system for electrical vehicles based on the CCP protocol and ASAP2 data Specification of the ASAM-MCD standard. The overall architecture of the system and design of corresponding modules are presented in this article. Simulation and vehicle test results show that the system, with relatively excellent universal accessibility and portability, is stable, reliable and able to meet international standards. Meanwhile, seamless integration of various file-based functions such as parameter monitoring, measurement, calibration, saving and offline review is realized, which greatly shortens the development cycle of vehicle and control system and cuts the development cost.%  利用ASAM-MCD标准中的CCP协议和ASAP2数据接口规范,开发了适用于电动汽车的通用型监控及标定系统,介绍了该系统的总体架构及相应模块的设计。仿真测试和实车测试结果表明,该系统运行稳定可靠,符合国标通用标准,具有较好的通用性和可移植性,实现了基于文件的参数监控、测量、标定、保存及离线回放等功能的无缝融合,极大地缩短了整车及其控制系统的开发周期,降低了开发成本。

  6. Modification and calibration of a passive air sampler for monitoring vapor and particulate phase brominated flame retardants in indoor air: application to car interiors.

    Science.gov (United States)

    Abdallah, Mohamed Abou-Elwafa; Harrad, Stuart

    2010-04-15

    A passive air sampler was modified to monitor both vapor and particulate phase brominated flame retardants (BFRs) in indoor air using polyurethane foam disks and glass fiber filters (GFF). Significant correlation (p GFF was investigated using environmental scanning electron microscopy which revealed gravitational deposition of particles as the main mechanism involved. The developed sampler was applied to monitor BFR concentrations in 21 cars. Average concentrations of SigmaHBCDs, TBBP-A, and Sigmatetra-deca BDEs were 400, 3, and 2200 pg m(-3) in cabins and 400, 1, and 1600 pg m(-3) in trunks. No significant differences (p < 0.05) were observed between levels of SigmaHBCDs and Sigmatrito hexa- BDEs in cabins and trunks. However, TBBP-A, BDE-209, and SigmaPBDEs concentrations were significantly higher in vehicle cabins.

  7. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 2: Data analysis and calibration for long-term monitoring

    Directory of Open Access Journals (Sweden)

    T. Leblanc

    2011-08-01

    Full Text Available The well-recognized, key role of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements triggered the development by JPL of a powerful Raman lidar to try to meet these needs. This development started in 2005 and was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review all the stages of the instrument data acquisition, data analysis, profile retrieval and calibration procedures, as well as selected results from the recent validation campaign MOHAVE-2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The stages in the instrumental development and the conclusions from three validation campaigns (including MOHAVE-2009 are presented in details in a companion paper (McDermid et al., 2011. In its current configuration, the lidar demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere with an estimated accuracy of 5 %. Since 2005, nearly 1000 profiles have been routinely measured with a precision of 10 % or better near 13 km. Since 2009, the profiles have typically reached 14 km for 1 h integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions.

  8. ELISA detection of multixenobiotic resistance transporter induction in indigenous freshwater Chironomidae larvae (Diptera): A biomarker calibration step for in situ monitoring of xenobiotic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, X.; Saez, G.; Thiery, A. [Equipe ' Biomarqueurs and Bioindicateurs Environnementaux' , UMR-CNRS 6116 IMEP, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France); Clot-Faybesse, O.; Guiraudie-Capraz, G. [' Neurobiologie Integrative et Adaptative' -UMR 6149, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France); Bienboire-Frosini, C. [' Neurobiologie Integrative et Adaptative' -UMR 6149, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France); Pherosynthese, Le Rieu Neuf, 84490 St Saturnin d' Apt (France); Martin, C. [Equipe ' Biomarqueurs and Bioindicateurs Environnementaux' , UMR-CNRS 6116 IMEP, UAPV, 33 rue Louis Pasteur, 84000 Avignon (France); De Jong, L. [Equipe ' Biomarqueurs and Bioindicateurs Environnementaux' , UMR-CNRS 6116 IMEP, Universite de Provence, 3 Place Victor Hugo, 13331 Marseille cedex 3 (France)], E-mail: laetitia.moreau@univ-provence.fr

    2008-06-15

    A new simple and sensitive method to distinguish chemically polluted from unpolluted situations in freshwater ecosystems is reported. For this purpose, Chironomus gr thumni larvae were collected from a polluted urban river downstream a sewage treatment plant. For the first time, ELISA assay was used to semi-quantify the multixenobiotic resistance transporters (MXR) in these small pertinent bioindicators. The use of samples immediately fixed in the field gives a delay to isolate larvae and allows multi-sampling along a longitudinal transect in a river at a given time. Results exhibit an induction of MXR proteins in larvae from the polluted river and a deinduction in larvae maintained 11 days in unpolluted water. They show new evidences to use midge larvae in biomonitoring environmental programs. They answer to first biomarker calibration steps for the ongoing development of MXR transporters as a detection tool of xenobiotic impacts on bioindicator invertebrates in their freshwater habitats. - Semi-quantification of midge larval MXR transporters by ELISA is a simple and sensitive method to detect chemically polluted situations in running freshwaters.

  9. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    Science.gov (United States)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  10. Performance of the ATLAS Tile LaserII Calibration System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00124895; The ATLAS collaboration

    2015-01-01

    The new laser calibration system of the ATLAS Tile hadron calorimeter is presented. The perfomances of the calibration and monitor tools internal to the laser system are given in terms of operation time stability. The use of the laser system in the normal Tile calibration procedures is also described.

  11. Calibration and Maintenance of Blood Pressure Monitor in Metrological Verification%计量检定中血压计的检定与维修保养

    Institute of Scientific and Technical Information of China (English)

    顾晓森

    2015-01-01

    血压是人体的重要生理参数,是人们了解人体生理状况的重要指标。测量血压的仪器称为血压计,血压计分为水银式血压计、气压表式血压计、电子血压计三种。本文通过分析介绍上述三种血压计,发现水银柱式血压计测量的准确性和稳定性最高,应大力推广和应用水银柱式血压计。%Blood pressure is one of the important physiological parameters, and it is the important physiology index to understand people’s physical activities. The measuring instrument for blood pressure is named blood pressure monitor. Blood pressure monitor is divided into mercury sphygmomanometer, gauge type sphygmomanometer and electronic sphygmomanometer. Through analyzing the above three kinds of sphygmomanometer, this paper finds that the accuracy and stability of mercury column type sphygmomanometer is highest. Mercury column type sphygmomanometer should be energetically popularized and applied.

  12. The KLOE Online Calibration System

    Institute of Scientific and Technical Information of China (English)

    E.Pasqualucci

    2001-01-01

    Based on all the features of the KLOE online software,the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed.Acalibration manager process controls the system,implementing the interface to the online system,receiving information from the run control and translating its state transitions to a separate state machine.It acts as a " calibration run controller"and performs failure recovery when requested by a set of process checkers.The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms.A client library and C,fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an bool-like interface.Several calibration processes running in parallel in a destributed,multiplatform environment can fill the same histograms,allowing fast external information check.A monitor thread allow remote browsing for visual inspection,Pre-filtered data are read in nonprivileged spy mode from the data acquisition system via the Kloe Integrated Dataflow,privileged spy mode from the data acquisiton system via the Kole Integrated Dataflow.The main characteristics of the system are presented.

  13. Review of Dose Monitoring System Calibration in BJ-6B Accelerator%BJ-6B加速器剂量监测系统校准10年回顾

    Institute of Scientific and Technical Information of China (English)

    李贤富; 谢力; 郭飞; 周进伟; 柳弥; 谭榜宪

    2013-01-01

    目的:明确按时对加速器剂量监测系统校准的必要性.方法:查阅国产BJ-6B 6Mv加速器剂量监测系统结构,以便结合电路分析剂量校准出现偏差的原因.按照IAEA提出的规程校准吸收剂量.对加速器剂量监测系统校准系数K随时间变化的情况进行回顾,选择连续的201周数据,做出校准系数和时间关系曲线.查阅维修记录,寻找系数变化大的原因.结果:系数变化大时,经过仔细排查,发现了以下比较严重的机器故障:1.电离室信号电缆因破损、漏电,校准系数由1.103变化为1.173,剂量偏低约6.3%.2.电离室击穿,输出剂量偏低约7.7%.3.防漏射铅板滑动,遮挡校准点,剂量偏低约9.9%.4.更换加速管,剂量偏低约4.7%.5.均整位置有偏移,中心轴剂量偏差7.7%.6.调制器稳压器坏,输出电压偏低,剂量偏低3.5%.较小的校准系数变化,与温度、湿度、气压等有关,有以年为周期的变化趋势.结论:元件老化,磨损,一些不容易发现的机器故障有可能影响剂量传递准确;由于加速器所处环境温度、湿度、气压等变化,也会影响加速器剂量监测系统监测准确性,一定要按国家标准GBZ126-2011规定的频次校准加速器剂量.%Objeetive:Emphasize the necessity of calibrating dose monitoring system of accelerator on time.Methods:Research the construction of dose monitoring system in BJ-6B accelerator to find the factors of dose deviation.Calibrate dose according to IAEA regulations.Review the calibration coefficient K of dose monitoring system of accelerator within the past 10 years.Draw the relation curve between calibration coefficient K and time in the past continuous 201 weeks.Look for the cause of the greater change of K by looking up the maintenance record.Results:Some serious machine trouble were found when the coefficient K change was great.1.Ionization chamber signal cable damaged,dose lower 6.3%.2.Ionization chamber broke,dose lower 7

  14. Optimum Experimental Design applied to MEMS accelerometer calibration for 9-parameter auto-calibration model.

    Science.gov (United States)

    Ye, Lin; Su, Steven W

    2015-01-01

    Optimum Experimental Design (OED) is an information gathering technique used to estimate parameters, which aims to minimize the variance of parameter estimation and prediction. In this paper, we further investigate an OED for MEMS accelerometer calibration of the 9-parameter auto-calibration model. Based on a linearized 9-parameter accelerometer model, we show the proposed OED is both G-optimal and rotatable, which are the desired properties for the calibration of wearable sensors for which only simple calibration devices are available. The experimental design is carried out with a newly developed wearable health monitoring device and desired experimental results have been achieved.

  15. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  16. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  17. DECal: A Spectrophotometric Calibration System For DECam

    CERN Document Server

    Marshall, J L; DePoy, D L; Prochaska, Travis; Allen, Richard; Behm, Tyler W; Martin, Emily C; Veal, Brannon; Villanueva,, Steven; Williams, Patrick; Wise, Jason

    2013-01-01

    DECal is a new calibration system for the CTIO 4 m Blanco telescope. It is currently being installed as part of the Dark Energy Survey and will provide both broadband flat fields and narrowband (about 1 nm bandwidth) spectrophotometric calibration for the new Dark Energy Camera (DECam). Both of these systems share a new Lambertian flat field screen. The broadband flat field system uses LEDs to illuminate each photometric filter. The spectrophotometric calibration system consists of a monochromator-based tunable light source that is projected onto the flat field screen using a custom line-to-spot fiber bundle and an engineered diffuser. Several calibrated photodiodes positioned along the beam monitor the telescope throughput as a function of wavelength. This system will measure the wavelength-dependent instrumental response function of the total telescope+instrument system in the range 300 < lambda < 1100nm. The spectrophotometric calibration will be performed regularly (roughly once per month) to determ...

  18. Calibration models for the vinyl acetate concentration in ethylene-vinyl acetate copolymers and its on-line monitoring by near-infrared spectroscopy and chemometrics: use of band shifts associated with variations in the vinyl acetate concentration to improve the models.

    Science.gov (United States)

    Watari, Masahiro; Ozaki, Yukihiro

    2005-07-01

    The present study investigates calibration models for the vinyl acetate (VA) concentration in ethylene-vinyl acetate (EVA) copolymers and its on-line monitoring by near-infrared (NIR) spectroscopy and chemometrics. The key point in the present study is to make use of band shifts associated with concentration changes in the vinyl acetate (VA) for the improvement of the models. NIR spectra of EVA in melt and solid states were measured by a Fourier transform near-infrared (FT-NIR) on-line monitoring system and a FT-NIR laboratory system. Some of the bands in the NIR spectra for both states show significant shifts with the variations in the VA concentration. The peak shifts induced by the VA concentration changes are larger in the solid-state EVA than those in the melt-state EVA. We have developed calibration models for the VA concentration in the solid-state EVA and investigated how to improve the calibration models. The factor analysis of partial least squares (PLS) regression has suggested that the wavenumber shifts caused by the VA concentration changes affect the calibration models for the VA concentration in EVA. From the analysis, it has been proposed that the wavenumbers in the spectrum of one sample in nine EVA samples (VA concentration range: 0-41.1%) are shifted for the improvement of the calibration models, and the effects of the proposed method have been confirmed by using the PLS calibration models for the VA concentration in the solid EVA samples. As the next step, the effects of the wavenumber shift method have been explored for the calibration models for the VA concentration in the melt-state EVA. After that, the discrimination method using the score plots of PLS and the application sequence for the on-line monitoring to use the proposed wavenumber shift method were studied. The simulation results using the discrimination and wavenumber shift methods have shown that those methods are very effective to improve the predicted values of the calibration

  19. Studies on calibration and validation of data provided by the Global Ozone Monitoring Experiment GOME on ERS-2 (CAVEAT). Final report; Studie zur Kalibrierung und Validation von Daten des Global Ozone Monitoring Experiments GOME auf ERS-2 (CAVEAT). Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, J.P.; Kuenzi, K.; Ladstaetter-Weissenmayer, A.; Langer, J. [Bremen Univ. (Germany). Inst. fuer Umweltphysik; Neuber, R.; Eisinger, M. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Potsdam (Germany)

    2000-04-01

    The Global Ozone Monitoring Experiment (GOME) was launched on 21 April 1995 as one of six scientific instruments on board the second European remote sensing satellite (ERS-2) of the ESA. The investigations presented here aimed at assessing and improving the accuracy of the GOME measurements of sun-standardized and absolute radiation density and the derived data products. For this purpose, the GOME data were compared with measurements pf terrestrial, airborne and satellite-borne systems. For scientific reasons, the measurements will focus on the medium and high latitudes of both hemispheres, although equatorial regions were investigated as well. In the first stage, operational data products of GOME were validated, i.e. radiation measurements (spectra, level1 product) and trace gas column densities (level2 product). [German] Am 21. April 1995 wurde das Global Ozone Monitoring Experiment (GOME) als eines von insgesamt sechs wissenschaftlichen Instrumenten an Bord des zweiten europaeischen Fernerkundungssatelliten (ERS-2) der ESA ins All gebracht. Das Ziel dieses Vorhabens ist es, die Genauigkeit der von GOME durchgefuehrten Messungen von sonnennormierter und absoluter Strahlungsdichte sowie der aus ihnen abgeleiteten Datenprodukte zu bewerten und zu verbessern. Dazu sollten die GOME-Daten mit Messungen von boden-, flugzeug- und satellitengestuetzten Systemen verglichen werden. Aus wissenschaftlichen Gruenden wird der Schwerpunkt auf Messungen bei mittleren und hohen Breitengraden in beiden Hemisphaeren liegen. Jedoch wurden im Laufe des Projektzeitraumes auch Regionen in Aequatornaehe untersucht. Im ersten Schritt sollen operationelle Datenprodukte von GOME validiert werden. Dieses sind Strahlungsmessungen (Spektren, Level1-Produkt) und Spurengas-Saeulendichten (Level2-Produkt). (orig.)

  20. The calibration of PIXIE

    Science.gov (United States)

    Fixsen, D. J.; Chuss, D. T.; Kogut, Alan; Mirel, Paul; Wollack, E. J.

    2016-07-01

    The FIRAS instrument demonstrated the use of an external calibrator to compare the sky to an instrumented blackbody. The PIXIE calibrator is improved from -35 dB to -65 dB. Another significant improvement is the ability to insert the calibrator into either input of the FTS. This allows detection and correction of additional errors, reduces the effective calibration noise by a factor of 2, eliminates an entire class of systematics and allows continuous observations. This paper presents the design and use of the PIXIE calibrator.

  1. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  2. Calibration for Radiation Protection Equipment for the Measuring Airborne Tritium

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; SHEN; En-wei; WEI; Ke-xin; WANG; Kong-zhao; LI; Hou-wen; GE; Jian-an; LV; Xiao-xia

    2012-01-01

    <正>Monitoring airborne tritium is an important routine work in heavy water reactor nuclear power stations and the units related with tritium. Nowadays direct measuring instruments like hand carrying tritium monitors are more often used in routine workshop environment check. Need for calibrating such monitors was suggested. A trial work about the calibration for radiation protection equipment for measuring airborne tritium was carried out with a domestic standard EJ/T 1077-1998 equivalent that of IEC 710.

  3. Configurations and calibration methods for passive sampling techniques.

    Science.gov (United States)

    Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-10-19

    Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.

  4. Landsat TM and ETM+ thermal band calibration

    Science.gov (United States)

    Barsi, J.A.; Schott, J.R.; Palluconi, F. D.; Helder, D.L.; Hook, S.J.; Markham, B.L.; Chander, G.; O'Donnell, E. M.

    2003-01-01

    Landsat-5 has been imaging the Earth since March 1984, and Landsat-7 was added to the series of Landsat instruments in April 1999. The Landsat Project Science Office and the Landsat-7 Image Assessment System have been monitoring the on-board calibration of Landsat-7 since launch. Additionally, two separate university teams have been evaluating the on-board thermal calibration of Landsat-7 through ground-based measurements since launch. Although not monitored as closely over its lifetime, a new effort is currently being made to validate the calibration of Landsat-5. Two university teams are beginning to collect ground truth under Landsat-5, along with using other vicarious calibration methods to go back into the archive to validate the history of the calibration of Landsat-5. This paper considers the calibration efforts for the thermal band, band 6, of both the Landsat-5 and Landsat-7 instruments. Though stable since launch, Landsat-7 had an initial calibration error of about 3 K, and changes were made to correct for this beginning 1 October 2000 for data processed with the National Landsat Archive Production System (NLAPS) and beginning 20 December 2000 for data processed with the Landsat Product Generation System (LPGS). Recent results from Landsat-5 vicarious calibration efforts show an offset of –0.7 K over the lifetime of the instrument. This suggests that historical calibration efforts may have been detecting errors in processing systems rather than changes in the instrument. A correction to the Landsat-5 processing has not yet been implemented but will be in the near future.

  5. Distributed Radio Interferometric Calibration

    CERN Document Server

    Yatawatta, Sarod

    2015-01-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distribute...

  6. The Science of Calibration

    Science.gov (United States)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  7. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  8. Landsat-7 ETM+ radiometric calibration status

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R.; Haque, Md. Obaidul

    2016-09-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.

  9. Calibration set up for load cells

    Science.gov (United States)

    Rao, T. V. Govinda; Venkatesh, C. S.; Shivashankar, N.

    1989-05-01

    The planning, designing, fabrication, and calibration of 30, 50, and 100 ton tension load cells and 30 ton shear load cells are described. The tension load cells are for monitoring the force developed by earth moving vehicles and the shear load cells are for monitoring the load that tipplers unload form platform to ground. The shear load cells were incorporated into a rotary wagon tippler.

  10. Calibrating transport lines using LOCO techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yves Roblin

    2011-09-01

    With the 12GeV upgrade underway at CEBAF, there is a need to re-characterize the beamlines after the modifications made to it to accommodate running at higher energies. We present a linear perturbation approach to calibrating the optics model of transport lines. This method is adapted from the LOCO method in use for storage rings. We consider the effect of quadrupole errors, dipole construction errors as well as beam position monitors and correctors calibrations. The ideal model is expanded to first order in Taylor series of the quadrupole errors. A set of difference orbits obtained by exciting the correctors along the beamline is taken, yielding the measured response matrix. An iterative procedure is invoked and the quadrupole errors as well as beam position monitors and corrector calibration factors are obtained. Here we present details of the method and results of first measurements at CEBAF in early 2011.

  11. Standard Procedure for Calibrating an Areal Calorimetry Based Dosimeter

    Science.gov (United States)

    2015-05-01

    2015 AFRL-RH-FS-TR-2015-0013 Standard Procedure for Calibrating an Areal Calorimetry Based Dosimeter Charles W. Beason Devon Ryan...0013 "Standard Procedure for Calibrating an Areal Calorimetry Based Dosimeter" TR LELAND JOHNSON, DR-III, DAF Contract Monitor Radio Frequency...Calibrating an Areal Calorimetry Based Dosimeter 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) 5d. PROJECT NUMBER N/A Charles W

  12. Immune System Model Calibration by Genetic Algorithm

    NARCIS (Netherlands)

    Presbitero, A.; Krzhizhanovskaya, V.; Mancini, E.; Brands, R.; Sloot, P.

    2016-01-01

    We aim to develop a mathematical model of the human immune system for advanced individualized healthcare where medication plan is fine-tuned to fit a patient's conditions through monitored biochemical processes. One of the challenges is calibrating model parameters to satisfy existing experimental

  13. Static and dynamic calibration of radar data for hydrological use

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The HYREX dense raingauge network over the Brue catchment in Somerset, England is used to explore the accuracy of calibrated (raingauge-adjusted weather radar data. Calibration is restricted to the use of any single gauge within the catchment so as to simulate the conditions in a typical rainfall monitoring network. Combination of a single gauge and a radar estimate is used to obtain calibrated radar estimates, with the 'calibration factor' varying dynamically from one time-frame to the next. Comparing this dynamic calibration with a static (long-term calibration factor indicates the distance from a gauge over which the dynamic calibration is useful. A tapered calibration factor is implemented which behaves in the same way as the raw dynamic calibration at short distances, tending towards the static calibration factor at larger distances. This hybrid approach outperforms raingauge, uncalibrated radar, and statically-calibrated radar estimates of rainfall for the majority of raingauges in the catchment. The results provide valuable guidance on the density of raingauge network to employ in combination with a weather radar for flood estimation and forecasting. Keywords: radar, raingauge, calibration, rainfall, accuracy

  14. Handheld temperature calibrator

    National Research Council Canada - National Science Library

    Martella, Melanie

    2003-01-01

    ... you sign on. What are you waiting for? JOFRA ETC Series dry-block calibrators from AMETEK Test & Calibration Instruments, Largo, FL, are small enough to be handheld and feature easy-to-read displays, multiple bore blocks, programmable test setup, RS-232 communications, and software. Two versions are available: the ETC 125A that ranges from -10[degrees]C to 125[d...

  15. OLI Radiometric Calibration

    Science.gov (United States)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  16. WFPC2 Polarization Calibration

    Science.gov (United States)

    Biretta, J.; McMaster, M.

    1997-12-01

    We derive a detailed calibration for WFPC2 polarization data which is accurate to about 1.5%. We begin by computing polarizer flats, and show how they are applied to data. A physical model for the polarization effects of the WFPC2 optics is then created using Mueller matricies. This model includes corrections for the instrumental polarization (diattenuation and phase retardance) of the pick-off mirror, as well as the high cross-polarization transmission of the polarizer filter. We compare this model against the on-orbit observations of polarization calibrators, and show it predicts relative counts in the different polarizer/aperture settings to 1.5% RMS accuracy. We then show how this model can be used to calibrate GO data, and present two WWW tools which allow observers to easily calibrate their data. Detailed examples are given illustrationg the calibration and display of WFPC2 polarization data. In closing we describe future plans and possible improvements.

  17. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  18. Advanced Calibration Source for Planetary and Earth Observing Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiometric calibration is critical to many NASA activities.  At NASA SSC, imaging cameras have been used in-situ to monitor propulsion test stand...

  19. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  20. Site Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the site calibration carried out at Østerild, during a given period. The site calibration was performed with two Windcube WLS7 (v1) lidars at ten measurements heights. The lidar is not a sensor approved by the current version of the IEC 61400-12-1 [1] and therefore the site...... calibration with lidars does not comply with the standard. However, the measurements are carried out following the guidelines of IEC 61400-12-1 where possible, but with some deviations presented in the following chapters....

  1. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  2. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  3. Calibration and study of the measurement capabilities of real-time gamma spectrometry equipment developed for the renewal of the network of stations automatic monitoring environmental radiation of the Generalitat of Catalunya; Calibracion y estudio de las capacidades de medida de los equipos de espectrometria gamma en tiempo real desarrollados para la renovacion de la Red de Estaciones Automaticas de vigilancia radiologia ambiental de la Generalitat de Catalunya

    Energy Technology Data Exchange (ETDEWEB)

    Casanovas, R.; Prieto, E.; Salvado, M.

    2014-10-01

    The renewal of the automatic environmental radiation surveillance network of the Generalitat of Catalunya has been carried out through the development and implementation of gamma-spectrometry-based equipment. the monitors use scintillation crystals, either Na(TI) or LaBr{sub 3}(Ce) and currently, there are 3 types of equipment water radioactivity monitors, aerosols on a particulate filter monitors and direct measurement monitors. In this paper, we expose the basic features of its operation, the details of their calibration and the minimum detectable activity concentration for some isotopes. (Author)

  4. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  5. Cumulative sum quality control for calibrated breast density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heine, John J.; Cao Ke; Beam, Craig [Cancer Prevention and Control Division, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612 (United States); Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, Illinois 60612 (United States)

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  6. Calibration of comprehension and performance in L2 reading

    Directory of Open Access Journals (Sweden)

    Seda SARAC

    2009-10-01

    Full Text Available Comprehension monitoring is crucial for successful reading. Although the researchers appreciate the importance of comprehension monitoring in L2 reading, there are only a few studies done on the comprehension monitoring ability of L2 readers. The main aim of this study was to investigate the comprehension monitoring abilities of university students while reading expository texts in L2. The results showed that the students’ were not able to calibrate their comprehension at above chance level whereas they were able to calibrate their performance. The results were discussed comparative to findings from earlier research in L1 reading.

  7. Internal Calibration of HJ-1-C Satellite SAR System

    Directory of Open Access Journals (Sweden)

    Yang Zhen

    2014-06-01

    Full Text Available The HJ-1-C satellite is a Synthetic Aperture Radar (SAR satellite of a small constellation for environmental and disaster monitoring. At present, it is in orbit and working well. The SAR system uses a mesh reflector antenna and centralized power amplifier, and has an internal calibration function in orbit. This study introduces the internal calibration modes and signal paths. The design and realization of the internal calibrator are discussed in detail. Finally, the internal calibration data acquired in orbit are also analyzed.

  8. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  9. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report...... presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated...... a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam...

  10. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  11. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  12. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  13. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  14. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  15. Sentinel-2 diffuser on-ground calibration

    Science.gov (United States)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  16. Calibrating nacelle lidars

    OpenAIRE

    Courtney, Michael

    2013-01-01

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail.The first of these is a line of sight...

  17. Scanner calibration revisited.

    Science.gov (United States)

    Pozhitkov, Alexander E

    2010-07-01

    Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2.) reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  18. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  19. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    box calibrator with unknown but constant total delay during a calibration tour Total Delay: The total electrical delay from the antenna phase center...to the UTCp including all the devices/cables that the satellite and clock signals pass through. It numerically equals the sum of all the sub-delays...PTB. To average out the dimnal effects and measurement noise , 5-7 days of continuous measurements is required. 3 Setups at the Lab(k) The setup

  20. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  1. Determination of the International Sensitivity Index of a new near-patient testing device to monitor oral anticoagulant therapy--overview of the assessment of conformity to the calibration model.

    Science.gov (United States)

    Tripodi, A; Chantarangkul, V; Clerici, M; Negri, B; Mannucci, P M

    1997-08-01

    A key issue for the reliable use of new devices for the laboratory control of oral anticoagulant therapy with the INR is their conformity to the calibration model. In the past, their adequacy has mostly been assessed empirically without reference to the calibration model and the use of International Reference Preparations (IRP) for thromboplastin. In this study we reviewed the requirements to be fulfilled and applied them to the calibration of a new near-patient testing device (TAS, Cardiovascular Diagnostics) which uses thromboplastin-containing test cards for determination of the INR. On each of 10 working days citrated whole blood and plasma samples were obtained from 2 healthy subjects and 6 patients on oral anticoagulants. PT testing on whole blood and plasma was done with the TAS and parallel testing for plasma by the manual technique with the IRP CRM 149S. Conformity to the calibration model was judged satisfactory if the following requirements were met: (i) there was a linear relationship between paired log-PTs (TAS vs CRM 149S); (ii) the regression line drawn through patients data points, passed through those of normals; (iii) the precision of the calibration expressed as the CV of the slope was <3%. A good linear relationship was observed for calibration plots for plasma and whole blood (r = 0.98). Regression lines drawn through patients data points, passed through those of normals. The CVs of the slope were in both cases 2.2% and the ISIs were 0.965 and 1.000 for whole blood and plasma. In conclusion, our study shows that near-patient testing devices can be considered reliable tools to measure INR in patients on oral anticoagulants and provides guidelines for their evaluation.

  2. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  3. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  4. Design and Implementation of A Circuit Board Calibration System

    Directory of Open Access Journals (Sweden)

    Bai Hang

    2016-01-01

    Full Text Available With the development of science and technology, the traditional artificial detection methods cannot meet the requirements of modern equipment testing and calibration. Combined with the actual demand, a kind of circuit boards calibration system are put forward. It can to realize automatic testing and calibration of the circuit boards. Many functions of the calibration system such as automatic testing, self-test and monitoring are summarized. The hardware is introduced which including the industrial computer system, calibration adapter and so on. Then, development platform, the thought of program design and the structure of the software are introduced in detail. The function of automatic calibration to specific circuit boards are realized. Because the system has good commonality and easy to extend to upgrade, the development ideas and experiences can be applied to similar circuit boards automatic testing system.

  5. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  6. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  7. Gearbox Reliability Collaborative Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  8. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  9. Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  10. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  11. The ENEA-IRP thoron calibration facility.

    Science.gov (United States)

    Calamosca, M; Penzo, S

    2010-10-01

    To check the consistency of a (220)Rn measurement, performed by passive alpha track detector (ATD), the use of an accurate (220)Rn exposure calibration facility is mandatory. The ENEA Radon Service developed a new CR-39 ATD-Tn, coupled to the radon ATD-Rn and, to assess its sensitivity, had to design a small calibration facility, which has been recently modified to improve the spatial homogeneity exposure conditions inside the chamber, to get a continuous monitoring of the (220)Rn concentration and to reduce radon contamination. A better knowledge of the circuit response allowed selecting the best-operating conditions and how to regulate the thoron concentration. The active thoron monitor has been changed to serve as a continuous sampling and measuring device rather than a grab one; particular care has been devoted to assess the (216)Po losses on the device's inner surfaces and to evaluate the chamber transit time correction factor.

  12. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  13. Iterative Magnetometer Calibration

    Science.gov (United States)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  14. Smart Calibration of Excavators

    DEFF Research Database (Denmark)

    Bro, Marie; Døring, Kasper; Ellekilde, Lars-Peter

    2005-01-01

    Excavators dig holes. But where is the bucket? The purpose of this report is to treat four different problems concerning calibrations of position indicators for excavators in operation at concrete construction sites. All four problems are related to the question of how to determine the precise ge...

  15. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    is suggested to cope with the singular design matrix most often seen in chemometric calibration. Furthermore, the proposed algorithm may be generalized to all convex norms like Sigma/beta (j)/(gamma) where gamma greater than or equal to 1, i.e. a method that continuously varies from ridge regression...

  16. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  17. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  18. CALIBRATION OF PHOSWICH DETECTORS

    NARCIS (Netherlands)

    LEEGTE, HKW; KOLDENHOF, EE; BOONSTRA, AL; WILSCHUT, HW

    1992-01-01

    Two important aspects for the calibration of phoswich detector arrays have been investigated. It is shown that common gate ADCs can be used: The loss in particle identification due to fluctuations in the gate timing in multi-hit events can be corrected for by a simple procedure using the measured ti

  19. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  20. LOFAR facet calibration

    CERN Document Server

    van Weeren, R J; Hardcastle, M J; Shimwell, T W; Rafferty, D A; Sabater, J; Heald, G; Sridhar, S S; Dijkema, T J; Brunetti, G; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Jones, C; Miley, G K; Rudnick, L; Sarazin, C L; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Ensslin, T; Ferrari, C; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at $\\sim$ 5arcsec resolu...

  1. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  2. Beowulf - Beta-Gamma Detector Calibration Graphical User Interface

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.

    2009-09-21

    Pacific Northwest National Laboratory (PNNL) has demonstrated significant advancement in using beta-gamma coincidence detectors to detect a wide range of radioxenon isotopes. To obtain accurate activities with the detector it must be properly calibrated by measuring a series of calibration gas samples. The data is analyzed to create the calibration block used in the International Monitoring System file format. Doing the calibration manually has proven to be tedious and prone to errors, requiring a high degree of expertise. The Beowulf graphical user interface (GUI) is a software application that encompasses several components of the calibration task and generates a calibration block, as well as, a detailed report describing the specific calibration process used. This additional document can be used as a Quality assurance certificate to assist in auditing the calibration. This paper consists of two sections. Section 1 will describe the capabilities of Beowulf and section 2 will be a representative report generated or the 137Cs calibration and quality assurance source.

  3. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  4. On-orbit lunar calibration compared with vicarious calibration for GOSAT

    Science.gov (United States)

    Shiomi, K.; Kawakami, S.; kuze, A.; Suto, H.; Hashiguchi, T.; Kataoka, F.; Higuchi, R.; Bruegge, C.; Schwandner, F. M.

    2013-12-01

    JAXA's Greenhouse Gases Observing Satellite (GOSAT) is since 2009 in polar orbit to monitor greenhouse gases such as CO2 and CH4 from space. GOSAT consists of a Fourier Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (TANSO-CAI). The FTS has 3 polarized SWIR narrow bands and a TIR wide band. The FTS observes globally with gridded points of 10 km FOV using discrete pointing. The CAI carries 4 radiometers in the UV to SWIR with high spatial resolution of 0.5-1.5 km and a wide swath of 1000 km. In this study, we compare the lunar calibration results with the results of our annual vicarious calibration campaigns. For lunar calibrations, GOSAT observes a nearly full moon for the on-orbit radiometric calibration of the FTS SWIR bands and the CAI. Lunar calibrations are operated in April for investigation of continuous annual sensitivity trends and in July, corresponding to the annual Railroad Valley Cal/Val campaign. Since the 3rd year, lunar calibration has been planned to observe in a phase angle around 7 degrees to avoid the reflectance opposition surge in order to target the nearly-unchanged and brightest reflectance as a function of phase angle. The Railroad Valley vicarious calibration campaign is conducted by measuring the surface reflectance and atmospheric parameters coincident with a dedicated GOSAT target observation, to derive top-of-the-atmosphere radiance. The nadir surface reflectance is collected in 500x500 m areas corresponding to the CAI resolution. The off-nadir reflectance is obtained simultaneously with BRDF values, for correction. We will discuss the sensitivity study by comparison between the GOSAT lunar observation and the vicarious calibration.

  5. Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology.

    Science.gov (United States)

    Hoss, Udo; Budiman, Erwin Satrya

    2017-05-01

    The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre(™) and FreeStyle Libre Pro(™) flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration.

  6. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  7. The Calibration Reference Data System

    Science.gov (United States)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  8. CP-50 calibration facility radiological safety assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  9. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  10. HIRDLS monochromator calibration equipment

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Djotni, Karim; Whitney, John G.; Bracken, Justain N.; Wolfenden, Roger; Row, Frederick; Palmer, Christopher W. P.; Watkins, Robert E. J.; Knight, Rodney J.; Gray, Peter F.; Hammond, Geoffory

    2003-11-01

    A specially designed and built monochromator was developed for the spectral calibration of the HIRDLS instrument. The High Resolution Dynamics Limb Sounder (HIRDLS) is a precision infra-red remote sensing instrument with very tight requirements on the knowledge of the response to received radiation. A high performance, vacuum compatible monochromator, was developed with a wavelength range from 4 to 20 microns to encompass that of the HIRDLS instrument. The monochromator is integrated into a collimating system which is shared with a set of tiny broad band sources used for independent spatial response measurements (reported elsewhere). This paper describes the design and implementation of the monochromator and the performance obtained during the period of calibration of the HIRDLS instrument at Oxford University in 2002.

  11. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  12. Calibration Facilities for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T.S.

    2000-06-15

    The calibration facilities will be dynamic and will change to meet the needs of experiments. Small sources, such as the Manson Source should be available to everyone at any time. Carrying out experiments at Omega is providing ample opportunity for practice in pre-shot preparation. Hopefully, the needs that are demonstrated in these experiments will assure the development of (or keep in service) facilities at each of the laboratories that will be essential for in-house preparation for experiments at NIF.

  13. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  14. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  15. Optimizing calibration intervals for specific applications to reduce maintenance costs

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Steve; Holland, Jack [Servomex Group, Crowborough (United Kingdom)

    2009-11-01

    The introduction of the Servomex MultiExact 5400 analyzer has presented an opportunity to review the cost of ownership and how improvements to an analyzer's performance may be used to reduce this. Until now, gas analyzer manufacturers have taken a conservative approach to calibration intervals based on site practices and experience covering a wide range of applications. However, if specific applications are considered, then there is an opportunity to reduce costs by increasing calibration intervals. This paper demonstrates how maintenance costs may be reduced by increasing calibration intervals for those gas analyzers used for monitoring Air Separation Units (ASUs) without detracting from their performance.(author)

  16. Calibration method of HLS's sensor used in SSRF

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The site of Shanghai Synchrotron Radiation Facility (SSRF) is of complicated geological conditions, and a system to monitor the uneven subsidence of foundation and key parts (different kinds of magnets) of the accelerators is a necessity. Considering actual conditions of the accelerator structure and the assembling place, a new type of sensor of hydrostatic levelling system (HLS) has been designed. In order to obtain the required measurement accuracy, every HLS's sensor was strictly calibrated. In this paper, we introduce the special calibration method to establish the HLS. The method has been used in the calibration for vessel sensor for SSRF.

  17. Calibration of Underwater Sound Transducers

    Directory of Open Access Journals (Sweden)

    H.R.S. Sastry

    1983-07-01

    Full Text Available The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  18. On-Orbit Performance of MODIS On-Board Calibrators

    Science.gov (United States)

    Xiong, X.; Che, N.; Chiang, K.; Esposito, J.; Barnes, William; Guenther, B.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The Terra MODIS (Moderate Resolution Imaging Spectroradiometer) was launched on December 18, 1999 and acquired the first scene data on February 24, 2000. It has 36 spectral bands covering spectral range from 0.41 to 14.2 microns and provides spatial resolutions of 250 (2 bands), 500 (5 bands), and 1000 m at Nadir. The instrument on-orbit calibration and characterization are determined and monitored through the use of a number of on-board calibrators (OBC). Radiometric calibration for the reflective solar bands (B1-B19, B26), from VIS (visible) to SWIR (short wavelength infrared) (0.41 to 2.1 microns), uses a Spectralon (tm) solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (B20-B25, B27-B36), from MWIR (medium wavelength infrared) to LWIR (long wavelength infrared) (3.75 to 14.2 micron), a V-grooved flat panel blackbody is used. The instrument spectral for the VIS to SWIR bands and spatial co-registration characterizations for all bands are monitored on-orbit by the spectral radiometric calibration assembly (SRCA). In this report, we discuss the application and performance of the key MODIS on-board calibrators and their impacts on the instrument system calibration and characterization.

  19. Summary of KOMPSAT-5 Calibration and Validation

    Science.gov (United States)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    Korean Multi-Purpose Satellite 5 (KOMPSAT-5), equipped with high resolution X-band (9.66 GHz) Synthetic Aperture Radar (SAR), is planning to be launched on August 22, 2013. With the satellite's primary mission objective being providing Geographical Information System (GIS), Ocean monitoring and Land management, and Disaster and ENvironment monitoring (GOLDEN), it is expected that its applications for scientific research on geographical processes will be extensive. In order to meet its mission objective, the KOMPSAT-5 will provide three different kinds of SAR imaging modes; High Resolution Mode (1 m resolution, 5 km swath), Standard Mode (3 m resolution, 30 km swath), and Wide Swath Mode (20 m resolution, 100 km swath). The KOMPSAT-5 will be operated in a 550 km sun-synchronous, dawn- dusk orbit with a 28-day ground repeat cycle providing valuable image information on Earth surface day-or-night and even in bad weather condition. After successful launch of the satellite, it will go through Launch and Early Operation (LEOP) and In-Orbit Testing (IOT) period about for 6 months to carry out various tests on satellite bus and payload systems. The satellite bus system will be tested during the first 3 weeks after the launch focusing on the Attitude and Orbit Control Subsystem (AOCS) and Integrated GPS Occultation Receiver (IGOR) calibration. With the completion of bus system test, the SAR payload system will be calibrated during initial In-Flight check period (11 weeks) by the joint effort of Thales Alenia Space Italy (TAS-I) and Korea Aerospace Research Institute (KARI). The pointing and relative calibration will be carried out during this period by analyzing the doppler frequency and antenna beam pattern of reflected microwave signal from selected regions with uniform backscattering coefficients (e.g. Amazon rainforest). A dedicated SAR calibration, called primary calibration, will be allocated at the end of LEOP for 12 weeks to perform thorough calibration activities

  20. 3C 286: a bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations

    CERN Document Server

    Agudo, Ivan; Wiesemeyer, Helmut; Molina, Sol N; Casadio, Carolina; Gomez, Jose L; Emmanoulopoulos, Dimitrios

    2012-01-01

    Context. A number of millimeter and submillimeter facilities with linear polarization observing capabilities have started operating during last years. These facilities, as well as other previous millimeter telescopes and interferometers, require bright and stable linear polarization calibrators to calibrate new instruments and to monitor their instrumental polarization. The current limited number of adequate calibrators implies difficulties in the acquisition of these calibration observations. Aims. Looking for additional linear polarization calibrators in the millimeter spectral range, in mid-2006 we started monitoring 3C 286, a standard and highly stable polarization calibrator for radio observations. Methods. Here we present the 3 and 1mm monitoring observations obtained between September 2006 and October 2011 with the XPOL polarimeter on the IRAM 30m Millimeter Telescope. Results. Our observations show that 3C 286 is a bright source of constant total flux with 3mm flux density S_3mm = (0.90 \\pm 0.02) Jy. ...

  1. 40 CFR 63.564 - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... obtained. For monitoring equipment purchased from a vendor, verification of the operational status of the... when the measured values (i.e., daily calibrations, multipoint calibrations, and performance audits... pressure device once each calendar year with a reference pressure monitor (traceable to National...

  2. Calibration of the Milagro Cosmic Ray Telescope

    CERN Document Server

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    1999-01-01

    The Milagro detector is an air shower array which uses the water Cherenkov technique and is capable of continuously monitoring the sky at energies near 1 TeV. The detector consists of 20000 metric tons of pure water instrumented with 723 photo-multiplier tubes (PMTs). The PMTs are arranged in a two-layer structure on a lattice of 3 m spacing covering 5000 $m^2$ area. The direction of the shower is determined from the relative timing of the PMT signals, necessitating a common time reference and amplitude slewing corrections to improve the time resolution. The calibration system to provide these consists of a pulsed laser driving 30 diffusing light sources deployed in the pond to allow cross-calibration of the PMTs. The system is capable of calibrating times and the pulse-heights from the PMTs using the time-over-threshold technique. The absolute energy scale is provided using single muons passing through the detector. The description of the calibration system of the Milagro detector and its prototype Milagrito...

  3. Internet-based calibration of a multifunction calibrator

    Energy Technology Data Exchange (ETDEWEB)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  4. Towards automatic calibration of 2-dimensional flood propagation models

    Directory of Open Access Journals (Sweden)

    P. Fabio

    2009-11-01

    Full Text Available Hydraulic models for flood propagation description are an essential tool in many fields, e.g. civil engineering, flood hazard and risk assessments, evaluation of flood control measures, etc. Nowadays there are many models of different complexity regarding the mathematical foundation and spatial dimensions available, and most of them are comparatively easy to operate due to sophisticated tools for model setup and control. However, the calibration of these models is still underdeveloped in contrast to other models like e.g. hydrological models or models used in ecosystem analysis. This has basically two reasons: first, the lack of relevant data against the models can be calibrated, because flood events are very rarely monitored due to the disturbances inflicted by them and the lack of appropriate measuring equipment in place. Secondly, especially the two-dimensional models are computationally very demanding and therefore the use of available sophisticated automatic calibration procedures is restricted in many cases. This study takes a well documented flood event in August 2002 at the Mulde River in Germany as an example and investigates the most appropriate calibration strategy for a full 2-D hyperbolic finite element model. The model independent optimiser PEST, that gives the possibility of automatic calibrations, is used. The application of the parallel version of the optimiser to the model and calibration data showed that a it is possible to use automatic calibration in combination of 2-D hydraulic model, and b equifinality of model parameterisation can also be caused by a too large number of degrees of freedom in the calibration data in contrast to a too simple model setup. In order to improve model calibration and reduce equifinality a method was developed to identify calibration data with likely errors that obstruct model calibration.

  5. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  6. Radiometric trend of lunar calibration compared with vicarious calibration for GOSAT

    Science.gov (United States)

    Shiomi, K.; Kawakami, S.; Kuze, A.; Suto, H.; Hashiguchi, T.; Kataoka, F.; Higuchi, R.; Bruegge, C. J.; Schwandner, F. M.; Chapsky, L.

    2014-12-01

    GOSAT observes a nearly full moon for the on-orbit radiometric calibration of the FTS SWIR bands and the CAI. Lunar calibrations are operated in April/May for investigation of continuous annual radiometric trends and in June/July, corresponding to the annual Railroad Valley Cal/Val campaign. JAXA's Greenhouse Gases Observing Satellite (GOSAT) is since 2009 in polar orbit to monitor greenhouse gases such as CO2 and CH4 from space. GOSAT consists of a Fourier Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (TANSO-CAI). The FTS has 3 polarized SWIR narrow bands and a TIR wide band. The FTS observes globally with gridded points of 10 km FOV using discrete pointing. The CAI carries 4 radiometers in the UV to SWIR with high spatial resolution of 0.5-1.5 km and a wide swath of 1000 km. Since the 3rd year, lunar calibration has been planned to observe at a phase angle around 7 degrees from normal incidence. This choice avoids the reflectance opposition surge in order to target the nearly-unchanged and brightest reflectance as a function of phase angle. The Railroad Valley vicarious calibration campaign is conducted by measuring the surface reflectance and atmospheric parameters coincident with a dedicated GOSAT target observation, to derive top-of-the-atmosphere radiance. The nadir surface reflectance is collected in 500x500 m areas corresponding to the CAI resolution. The off-nadir reflectance is measured simultaneously with BRDF values, for correction. We will summarize the radiometric study of the GOSAT lunar calibration compared with the vicarious calibration. In-flight coincident calibration activities will continue with GOSAT and OCO-2.

  7. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  8. Dynamic Torque Calibration Unit

    Science.gov (United States)

    Agronin, Michael L.; Marchetto, Carl A.

    1989-01-01

    Proposed dynamic torque calibration unit (DTCU) measures torque in rotary actuator components such as motors, bearings, gear trains, and flex couplings. Unique because designed specifically for testing components under low rates. Measures torque in device under test during controlled steady rotation or oscillation. Rotor oriented vertically, supported by upper angular-contact bearing and lower radial-contact bearing that floats axially to prevent thermal expansion from loading bearings. High-load capacity air bearing available to replace ball bearings when higher load capacity or reduction in rate noise required.

  9. ALTEA: The instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Zaconte, V. [INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: livio.narici@roma2.infn.it; Belli, F.; Bidoli, V.; Casolino, M.; Di Fino, L.; Narici, L.; Picozza, P.; Rinaldi, A. [INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sannita, W.G. [DISM, University of Genova, Genova (Italy); Department of Psychiatry, SUNY, Stoony Brook, NY (United States); Finetti, N.; Nurzia, G.; Rantucci, E.; Scrimaglio, R.; Segreto, E. [Department of Physics, University and INFN, L' Aquila (Italy); Schardt, D. [GSI/Biophysik, Darmstadt (Germany)

    2008-05-15

    The ALTEA program is an international and multi-disciplinary project aimed at studying particle radiation in space environment and its effects on astronauts' brain functions, as the anomalous perception of light flashes first reported during Apollo missions. The ALTEA space facility includes a 6-silicon telescopes particle detector, and is onboard the International Space Station (ISS) since July 2006. In this paper, the detector calibration at the heavy-ion synchrotron SIS18 at GSI Darmstadt will be presented and compared to the Geant 3 Monte Carlo simulation. Finally, the results of a neural network analysis that was used for ion discrimination on fragmentation data will also be presented.

  10. Operational Land Imager relative radiometric calibration

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.

    2015-09-01

    The Operational Land Imager (OLI), on board the Landsat-8 satellite, is a pushbroom sensor with nearly 7000 detectors per band, divided between 14 separate modules. While rigorously characterized prior to launch, the shear number of individual detectors presents a challenge to maintaining the on-orbit relative calibration, such that stripes, bands and other artifacts are minimized in the final image products. On-orbit relative calibration of the OLI is primarily monitored and corrected by observing an on-board primary solar diffuser panel. The panel is the most uniform target available to the OLI, though as observed but the OLI, it has a slope across the field of view due to view angle effects. Just after launch, parameters were derived using the solar diffuser data, to correct for the angular effects across the 14 modules. The residual discontinuities between arrays and the detector-to-detector uniformity continue to be monitored on a weekly basis. The observed variations in the responses to the diffuser panel since launch are thought to be due to real instrument changes. Since launch, the Coastal/Aerosol (CA) and Blue bands have shown the most variation in relative calibration of the VNIR bands, with as much as 0.14% change (3-sigma) between consecutive relative gain estimates. The other VNIR bands (Green, Red and NIR) initially had detectors showing a slow drift of about 0.2% per year, though this stopped after an instrument power cycle about seven months after launch. The SWIR bands also exhibit variability between collects (0.11% 3-sigma) but the larger changes have been where individual detectors' responses change suddenly by as much as 1.5%. The mechanisms behind these changes are not well understood but in order to minimize impact to the users, the OLI relative calibration is updated on a quarterly basis in order to capture changes over time.

  11. A Simple Accelerometer Calibrator

    Science.gov (United States)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  12. Calibration Procedures on Oblique Camera Setups

    Science.gov (United States)

    Kemper, G.; Melykuti, B.; Yu, C.

    2016-06-01

    the nadir camera and the GPS/IMU data, an initial orientation correction and radial correction were calculated. With this approach, the whole project was calculated and calibrated in one step. During the iteration process the radial and tangential parameters were switched on individually for the camera heads and after that the camera constants and principal point positions were checked and finally calibrated. Besides that, the bore side calibration can be performed either on basis of the nadir camera and their offsets, or independently for each camera without correlation to the others. This must be performed in a complete mission anyway to get stability between the single camera heads. Determining the lever arms of the nodal-points to the IMU centre needs more caution than for a single camera especially due to the strong tilt angle. Prepared all these previous steps, you get a highly accurate sensor that enables a fully automated data extraction with a rapid update of you existing data. Frequently monitoring urban dynamics is then possible in fully 3D environment.

  13. CALIBRATION PROCEDURES ON OBLIQUE CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    step with the help of the nadir camera and the GPS/IMU data, an initial orientation correction and radial correction were calculated. With this approach, the whole project was calculated and calibrated in one step. During the iteration process the radial and tangential parameters were switched on individually for the camera heads and after that the camera constants and principal point positions were checked and finally calibrated. Besides that, the bore side calibration can be performed either on basis of the nadir camera and their offsets, or independently for each camera without correlation to the others. This must be performed in a complete mission anyway to get stability between the single camera heads. Determining the lever arms of the nodal-points to the IMU centre needs more caution than for a single camera especially due to the strong tilt angle. Prepared all these previous steps, you get a highly accurate sensor that enables a fully automated data extraction with a rapid update of you existing data. Frequently monitoring urban dynamics is then possible in fully 3D environment.

  14. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  15. Optical Tweezer Assembly and Calibration

    Science.gov (United States)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and

  16. RX130 Robot Calibration

    Science.gov (United States)

    Fugal, Mario

    2012-10-01

    In order to create precision magnets for an experiment at Oak Ridge National Laboratory, a new reverse engineering method has been proposed that uses the magnetic scalar potential to solve for the currents necessary to produce the desired field. To make the magnet it is proposed to use a copper coated G10 form, upon which a drill, mounted on a robotic arm, will carve wires. The accuracy required in the manufacturing of the wires exceeds nominal robot capabilities. However, due to the rigidity as well as the precision servo motor and harmonic gear drivers, there are robots capable of meeting this requirement with proper calibration. Improving the accuracy of an RX130 to be within 35 microns (the accuracy necessary of the wires) is the goal of this project. Using feedback from a displacement sensor, or camera and inverse kinematics it is possible to achieve this accuracy.

  17. SURF Model Calibration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  18. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  19. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions....... It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometersmay take more than one month in order to have wind speeds covering a sufficiently large magnitude range...

  20. Calibration of Nanopositioning Stages

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-12-01

    Full Text Available Accuracy is one of the most important criteria for the performance evaluation of micro- and nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many applications. For example, in the mechanical characterisation of biological samples, it is difficult to perform several cycles in a repeatable way so as not to induce negative influences on the study. It also prevents one from controlling accurately a tool with respect to a sample without adding additional sensors for closed loop control. This paper aims at quantifying the positioning repeatability and accuracy based on the ISO 9283:1998 standard, and analyzing factors influencing positioning accuracy onto a case study of 1-DoF (Degree-of-Freedom nanopositioning stage. The influence of thermal drift is notably quantified. Performances improvement of the nanopositioning stage are then investigated through robot calibration (i.e., open-loop approach. Two models (static and adaptive models are proposed to compensate for both geometric errors and thermal drift. Validation experiments are conducted over a long period (several days showing that the accuracy of the stage is improved from typical micrometer range to 400 nm using the static model and even down to 100 nm using the adaptive model. In addition, we extend the 1-DoF calibration to multi-DoF with a case study of a 2-DoF nanopositioning robot. Results demonstrate that the model efficiently improved the 2D accuracy from 1400 nm to 200 nm.

  1. IOT Overview: Calibrations of the VLTI Instruments (MIDI and AMBER)

    Science.gov (United States)

    Morel, S.; Rantakyrö, F.; Rivinius, T.; Stefl, S.; Hummel, C.; Brillant, S.; Schöller, M.; Percheron, I.; Wittkowski, M.; Richichi, A.; Ballester, P.

    We present here a short review of the calibration processes that are currently applied to the instruments AMBER and MIDI of the VLTI (Very Large Telescope Interferometer) at Paranal. We first introduce the general principles to calibrate the raw data (the "visibilities") that have been measured by long-baseline optical interferometry. Then, we focus on the specific case of the scientific operation of the VLTI instruments. We explain the criteria that have been used to select calibrator stars for the observations with the VLTI instruments, as well as the routine internal calibration techniques. Among these techniques, the "P2VM" (Pixel-to-Visibility Matrix) in the case of AMBER is explained. Also, the daily monitoring of AMBER and MIDI, that has recently been implemented, is shortly introduced.

  2. Towards monitoring of geohazards with ESA's Sentinel-1 C-band SAR data: nationwide feasibility mapping over Great Britain calibrated using ERS-1/2 and ENVISAT PSI data

    Science.gov (United States)

    Cigna, Francesca; Bateson, Luke; Dashwood, Claire; Jordan, Colm

    2013-04-01

    Following the success of its predecessors ERS-1/2 and ENVISAT, ESA's Sentinel-1 constellation will provide routine, free of charge and globally-available Synthetic Aperture Radar (SAR) observations of the Earth's surface starting in 2013, with 12day repeat cycle and up to 5m spatial resolution. The upcoming availability of this unprecedented and long-term radar-based observation capacity is stimulating new scientific and operational perspectives within the geohazards and land monitoring community, who initiated and is being working on target preparatory studies to exploit this attractive and rich reservoir of SAR data for, among others, interferometric applications. The Earth and Planetary Observation and Monitoring, and the Shallow Geohazards and Risks Teams of the British Geological Survey (BGS) are routinely assessing new technologies for geohazard mapping, and carrying out innovative research to improve the understanding of landslide processes and their dynamics. Building upon the successful achievements of recent applications of Persistent Scatterer Interferometry (PSI) to geohazards mapping and monitoring in Europe, and with the aim of enhancing further the research on radar EO for landslide management in Britain, since the beginning of 2012 the BGS has been carrying out a research project funded by internal NERC grants aimed at evaluating the potential of these techniques to better understand landslide processes over Great Britain. We mapped the PSI feasibility over the entire landmass, based on the combination of topographic and landuse effects which were modelled by using medium to high resolution DEMs, land cover information from the EEA CORINE Land Cover map 2006, and six PSI datasets over London, Stoke-on-Trent, Bristol/Bath, and the Northumberland-Durham region, made available to BGS through the projects ESA-GMES Terrafirma and EC-FP7 PanGeo. The feasibility maps for the ERS-1/2 and ENVISAT ascending and descending modes showed that topography is not

  3. Using Dome C for MODIS calibration and characterization

    Science.gov (United States)

    Xiong, X.; Wu, A.; Wenny, B.

    2008-10-01

    MODIS is a scanning radiometer that has 36 spectral bands with wavelengths from visible (VIS) to long-wave infrared (LWIR). Its observations and data products have significantly enabled studies of changes in the Earth system of land, oceans, and atmosphere. Currently, there are two nearly identical MODIS instruments operated in space: one on the Terra spacecraft launched in December 1999 and another on the Aqua spacecraft lunched in May 2002. MODIS reflective solar bands (RSB) are calibrated on-orbit by a system that consists of a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) on a regular basis. Its thermal emissive bands (TEB) calibration is executed on a scan-by-scan basis using an on-board blackbody (BB). In addition to on-board calibrators (OBC), well-characterized ground targets have been used by MODIS calibration and validation scientists and by the MODIS Characterization Support Team (MCST) to evaluate and validate sensor on-orbit calibration, characterization, and performance. In this paper, we describe current MCST effort and progress made to examine sensor stability and inter-calibration consistency using observations over Dome Concordia, Antarctica. Results show that this site can provide useful calibration reference for a wide range of Earth-observing sensors.

  4. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  5. Hydrologic calibration of paired watersheds using a MOSUM approach

    Directory of Open Access Journals (Sweden)

    H. Ssegane

    2015-01-01

    Full Text Available Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment during the calibration (pre-treatment and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L. with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum, 14–15 year thinned loblolly pine with natural understory (control, and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  6. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  7. Opticle fibre calibration system and adaptive power supply

    CERN Document Server

    Cvach, J; Kovalcuk, M; Kvasnicka, J; Polak, I; Smolik, J

    2015-01-01

    We summarize the recent activity of our group in the calibration, monitoring and gain stabilization of photodetectors, primarily silicon photomultipliers, in calorimeters using scintillator as active medium. The task originally solved for the CALICE analog hadron calorimeter founds application in other experiments.

  8. Campaign for vicarious calibration of SumbandilaSat in Argentina

    CSIR Research Space (South Africa)

    Vhengani, LM

    2011-07-01

    Full Text Available to estimate Top-Of-Atmosphere (TOA) spectral radiance. A vicarious calibration field campaign was executed in Argentina to support monitoring of the radiometric response of the multispectral imager aboard SumbandilaSat. Results obtained using two Radiative...

  9. Tectonic calibrations in molecular dating

    Institute of Scientific and Technical Information of China (English)

    Ullasa KODANDARAMAIAH

    2011-01-01

    Molecular dating techniques require the use of calibrations, which are usually fossil or geological vicariance-based.Fossil calibrations have been criticised because they result only in minimum age estimates. Based on a historical biogeographic perspective, Ⅰ suggest that vicariance-based calibrations are more dangerous. Almost all analytical methods in historical biogeography are strongly biased towards inferring vicariance, hence vicariance identified through such methods is unreliable. Other studies, especially of groups found on Gondwanan fragments, have simply assumed vicariance. Although it was previously believed that vicariance was the predominant mode of speciation, mounting evidence now indicates that speciation by dispersal is common, dominating vicariance in several groups. Moreover, the possibility of speciation having occurred before the said geological event cannot be precluded. Thus, geological calibrations can under- or overestimate times, whereas fossil calibrations always result in minimum estimates. Another major drawback of vicariant calibrations is the problem of circular reasoning when the resulting estimates are used to infer ages of biogeographic events. Ⅰ argue that fossil-based dating is a superior alternative to vicariance, primarily because the strongest assumption in the latter, that speciation was caused by the said geological process, is more often than not the most tenuous. When authors prefer to use a combination of fossil and vicariant calibrations, one suggestion is to report results both with and without inclusion of the geological constraints. Relying solely on vicariant calibrations should be strictly avoided.

  10. UVIS G280 Wavelength Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Wavelength calibration of the UVIS G280 grism will be established using observations of the Wolf Rayet star WR14. Accompanying direct exposures will provide wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be obtained.

  11. Cobalt source calibration

    Energy Technology Data Exchange (ETDEWEB)

    Rizvi, H.M.

    1999-12-03

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10{sup 5} rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10{sup 5} rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10{sup 5} rad/h to 1.073 x 10{sup 5} rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10{sup 6} to 9.27 x 10{sup 5}. This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10{sup 7} rad/h. During irradiation of the Fricke dosimeter solution the Fe{sup 2+} ions ionize to Fe{sup 3+}. When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate.

  12. Automated calibration of multistatic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Henderer, Bruce

    2017-03-14

    A method is disclosed for calibrating a multistatic array having a plurality of transmitter and receiver pairs spaced from one another along a predetermined path and relative to a plurality of bin locations, and further being spaced at a fixed distance from a stationary calibration implement. A clock reference pulse may be generated, and each of the transmitters and receivers of each said transmitter/receiver pair turned on at a monotonically increasing time delay interval relative to the clock reference pulse. Ones of the transmitters and receivers may be used such that a previously calibrated transmitter or receiver of a given one of the transmitter/receiver pairs is paired with a subsequently un-calibrated one of the transmitters or receivers of an immediately subsequently positioned transmitter/receiver pair, to calibrate the transmitter or receiver of the immediately subsequent transmitter/receiver pair.

  13. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  14. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  15. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  16. The Advanced LIGO photon calibrators

    Science.gov (United States)

    Karki, S.; Tuyenbayev, D.; Kandhasamy, S.; Abbott, B. P.; Abbott, T. D.; Anders, E. H.; Berliner, J.; Betzwieser, J.; Cahillane, C.; Canete, L.; Conley, C.; Daveloza, H. P.; De Lillo, N.; Gleason, J. R.; Goetz, E.; Izumi, K.; Kissel, J. S.; Mendell, G.; Quetschke, V.; Rodruck, M.; Sachdev, S.; Sadecki, T.; Schwinberg, P. B.; Sottile, A.; Wade, M.; Weinstein, A. J.; West, M.; Savage, R. L.

    2016-11-01

    The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 1 0-18m /√{Hz } with accuracy and precision of better than 1%.

  17. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  18. An overview of Suomi NPP VIIRS calibration maneuvers

    Science.gov (United States)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-09-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  19. Hydrological processes and model representation: impact of soft data on calibration

    Science.gov (United States)

    J.G. Arnold; M.A. Youssef; H. Yen; M.J. White; A.Y. Sheshukov; A.M. Sadeghi; D.N. Moriasi; J.L. Steiner; Devendra Amatya; R.W. Skaggs; E.B. Haney; J. Jeong; M. Arabi; P.H. Gowda

    2015-01-01

    Hydrologic and water quality models are increasingly used to determine the environmental impacts of climate variability and land management. Due to differing model objectives and differences in monitored data, there are currently no universally accepted procedures for model calibration and validation in the literature. In an effort to develop accepted model calibration...

  20. Calibration requirements and methodology for remote sensors viewing the ocean in the visible

    Science.gov (United States)

    Gordon, Howard R.

    1987-01-01

    The calibration requirements for ocean-viewing sensors are outlined, and the present methods of effecting such calibration are described in detail. For future instruments it is suggested that provision be made for the sensor to view solar irradiance in diffuse reflection and that the moon be used as a source of diffuse light for monitoring the sensor stability.

  1. Real-time calibration of the AARTFAAC array for transient detection

    NARCIS (Netherlands)

    Prasad, P.; Wijnholds, S.J.; Huizinga, F.; Wijers, R.A.M.J.

    2014-01-01

    The search for transient phenomena at low radio frequencies is now coming of age with the development of radio sky monitors with a large field of view, which are made feasible by new developments in calibration algorithms and computing. However, accurate calibration of such arrays is challenging, es

  2. Hybrid DPWM with Process and Temperature Calibration

    Science.gov (United States)

    Lu, Jing

    In this thesis, a 12-bit high resolution, power and area efficiency hybrid DPWM with process and temperature calibration is proposed for DPWM controller IC for DC-DC converters. The hybrid structure of DPWM combines a 6-bit differential segmented tapped delay line structure and a 6-bit counter-comparator structure, resulting in a power and area saving solution. Furthermore, the 6-bit differential segmented delay line structure serves as the clock to the high 6-bit counter-comparator structure, thus a high frequency clock is eliminated and power is significantly saved. In order to have simple delay cell and flexible delay time controllability, voltage controlled inverter is adopted to build the differential delay cell, which allows fine-tuning of the delay time. The process and temperature calibration circuit is composed of process and temperature monitors, two 2-bit flash ADCs, and a lookup table. The monitor circuits sense the process and temperature variations, and the flash ADC converts the data into digital code. The lookup table combines both the process and the temperature digital information and provides an appropriate value to the control voltage of the differential delay cell. The complete circuits design has been verified under different corners of CMOS 0.11um process technology node.

  3. A calibrated Franklin chimes

    Science.gov (United States)

    Gonta, Igor; Williams, Earle

    1994-05-01

    Benjamin Franklin devised a simple yet intriguing device to measure electrification in the atmosphere during conditions of foul weather. He constructed a system of bells, one of which was attached to a conductor that was suspended vertically above his house. The device is illustrated in a well-known painting of Franklin (Cohen, 1985). The elevated conductor acquired a potential due to the electric field in the atmosphere and caused a brass ball to oscillate between two bells. The purpose of this study is to extend Franklin's idea by constructing a set of 'chimes' which will operate both in fair and in foul weather conditions. In addition, a mathematical relationship will be established between the frequency of oscillation of a metallic sphere in a simplified geometry and the potential on one plate due to the electrification of the atmosphere. Thus it will be possible to calibrate the 'Franklin Chimes' and to obtain a nearly instantaneous measurement of the potential of the elevated conductor in both fair and foul weather conditions.

  4. Monitoring of doses in hemodynamic medical team with dosemeters calibrated to measure the personal dose equivalent; Monitoracao das doses na equipe medica de hemodinamica com dosimetro calibrado em equivalente de dose pessoal

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T.C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Curso de Ciencias e Tecnicas Nucleares]. E-mail: alonso@cdtn.br; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: silvata@cdtn.br

    2005-07-01

    In hemodynamic, the exposure time of the workers to the radiation are larger than in the conventional one. Consequently, the received doses are larger. The dose of the medical team is also affected significantly by the uniqueness of the exams that are accomplished in two ways of irradiation and several angles of incidences, what stands out the need of the dosimeters use with metrologic reliability adapted for such situations. The individual monitoring of the doses received by individuals occupationally exposed to the radiation is accomplished with films dosimeters or thermo luminescent ones, with the main objective to guarantee that the limits of doses are not surpassed. The used in the system Brazilian metrologic system is still the individual dose for photons, in spite of the international recommendations for the use of the equivalent personal dose, that is the greatness adapted to assess the equivalent dose and the effective dose. In this work, the dosimeter composed by the Harshaw-Bicron badge and the detecting thermoluminescent of lithium fluoride was tested and adapted to measure the equivalent of personal dose in the depths 0,07 mm and 10 mm. It was applied in the hemodynamics practices and the doses were compared with those obtained by the routine film dosimeter. The results suggest, for daily use of the interventional services, the indication of the new dosimeter in substitution to the of the type films. (author)

  5. Mexican national pyronometer network calibration

    Science.gov (United States)

    VAldes, M.; Villarreal, L.; Estevez, H.; Riveros, D.

    2013-12-01

    In order to take advantage of the solar radiation as an alternate energy source it is necessary to evaluate the spatial and temporal availability. The Mexican National Meterological Service (SMN) has a network with 136 meteorological stations, each coupled with a pyronometer for measuring the global solar radiation. Some of these stations had not been calibrated in several years. The Mexican Department of Energy (SENER) in order to count on a reliable evaluation of the solar resource funded this project to calibrate the SMN pyrometer network and validate the data. The calibration of the 136 pyronometers by the intercomparison method recommended by the World Meterological Organization (WMO) requires lengthy observations and specific environmental conditions such as clear skies and a stable atmosphere, circumstances that determine the site and season of the calibration. The Solar Radiation Section of the Instituto de Geofísica of the Universidad Nacional Autónoma de México is a Regional Center of the WMO and is certified to carry out the calibration procedures and emit certificates. We are responsible for the recalibration of the pyronometer network of the SMN. A continuous emission solar simulator with exposed areas with 30cm diameters was acquired to reduce the calibration time and not depend on atmospheric conditions. We present the results of the calibration of 10 thermopile pyronometers and one photovoltaic cell by the intercomparison method with more than 10000 observations each and those obtained with the solar simulator.

  6. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun

    2003-01-01

    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  7. Jet energy calibration in ATLAS

    CERN Document Server

    Schouten, Doug

    A correct energy calibration for jets is essential to the success of the ATLAS experi- ment. In this thesis I study a method for deriving an in situ jet energy calibration for the ATLAS detector. In particular, I show the applicability of the missing transverse energy projection fraction method. This method is shown to set the correct mean energy for jets. Pileup effects due to the high luminosities at ATLAS are also stud- ied. I study the correlations in lateral distributions of pileup energy, as well as the luminosity dependence of the in situ calibration metho

  8. Timing calibration and spectral cleaning of LOFAR time series data

    Science.gov (United States)

    Corstanje, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    We describe a method for spectral cleaning and timing calibration of short time series data of the voltage in individual radio interferometer receivers. It makes use of phase differences in fast Fourier transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are stable over time, while being approximately uniform-random for a sum over many sources or for noise. Using only milliseconds-long datasets, the method finds the strongest interfering transmitters, a first-order solution for relative timing calibrations, and faulty data channels. No knowledge of gain response or quiescent noise levels of the receivers is required. With relatively small data volumes, this approach is suitable for use in an online system monitoring setup for interferometric arrays. We have applied the method to our cosmic-ray data collection, a collection of measurements of short pulses from extensive air showers, recorded by the LOFAR radio telescope. Per air shower, we have collected 2 ms of raw time series data for each receiver. The spectral cleaning has a calculated optimal sensitivity corresponding to a power signal-to-noise ratio of 0.08 (or -11 dB) in a spectral window of 25 kHz, for 2 ms of data in 48 antennas. This is well sufficient for our application. Timing calibration across individual antenna pairs has been performed at 0.4 ns precision; for calibration of signal clocks across stations of 48 antennas the precision is 0.1 ns. Monitoring differences in timing calibration per antenna pair over the course of the period 2011 to 2015 shows a precision of 0.08 ns, which is useful for monitoring and correcting drifts in signal path synchronizations. A cross-check method for timing calibration is presented, using a pulse transmitter carried by a drone flying over the array. Timing precision is similar, 0.3 ns, but is limited by transmitter position measurements, while requiring dedicated flights.

  9. External calibration technique of millimeter-wave cloud radar

    Science.gov (United States)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  10. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  11. Landsat 8 on-orbit characterization and calibration system

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  12. Calibration of the CMS electromagnetic calorimeter with LHC collision data

    Science.gov (United States)

    Obertino, M. M.; CMS Collaboration

    2013-08-01

    The CMS ECAL is a high resolution electromagnetic calorimeter which relies upon precision calibration in order to achieve and maintain its design performance. Variations in light collected from the lead tungstate crystals, due to intrinsic differences in crystals/photodetectors, as well as variations with time due to radiation damage for example, need to be taken into account. Sophisticated and effective methods of inter-crystal and absolute calibration have been devised, using collision data from the 2011 LHC run and a dedicated light injection system. For inter-calibration, low mass particle (π0 and η) decays to two photons are exploited, as well as the azimuthal symmetry of the average energy deposition at a given pseudorapidity. The light injection system monitors the channel response in real-time and enables the re-calibration of the measured energies over time. This is cross-checked by the comparison of E/p measurements of electrons from W decays (where the momentum is measured in the CMS tracker) with/without these re-calibrations applied. Absolute calibration has been performed using Z decays into electron-positron pairs.

  13. Calibração de extratores providos de cápsula porosa para monitoramento da salinidade e da concentração de íons Calibration of porous ceramic cup extractors in monitoring soil salinity and ion concentration

    Directory of Open Access Journals (Sweden)

    Francisco de A. de Oliveira

    2011-06-01

    Full Text Available Os resultados satisfatórios obtidos no monitoramento da salinidade e concentração de íons na solução do solo, usando extratores de cápsulas porosas, motivaram a realização deste trabalho, o qual teve como objetivo a obtenção de curvas de calibração para estes extratores monitorarem a condutividade elétrica e a concentração de nitrato e de potássio na solução de dois tipos de solo (Latossolo Vermelho-Amarelo Argissólico franco arenoso, e o outro como Cambissolo Eutrófico, em Mossoró - RN. As concentrações de nitrato utilizadas foram as mesmas nos dois solos (0; 84; 168; 252; 336; 420 e 504 mg L-1; quanto ao potássio, foram utilizadas concentrações diferentes no solo arenoso (0; 117; 234; 351; 468; 585 e 702 mg L-1 e no argiloso (0; 117; 234; 351; 468; 585; 702; 1.170; 1.755; 2.340; 2.925 e 3.510 mg L-1. A condutividade elétrica da solução do solo e a concentração de nitrato e de potássio foram estimadas com precisão satisfatória a partir da solução coletada com extratores providos de cápsulas porosas, sendo necessária uma calibração prévia para cada tipo de solo.The satisfactory results obtained in monitoring soil salinity and ion concentration, by means of porous ceramic cup extractors, motivated the realization of this study, which objective was obtaining calibration curves for these extractors to monitor soil electrical conductivity and concentration of nitrate and potassium in two different soils. The nitrate concentrations tested were the same for the two soils (0; 84; 168; 252; 336; 420 and 504 mg L-1 but, for potassium, different concentrations were used for sandy soil (0; 117; 234; 351; 468; 585 and 702 mg L-1 and clay soil (0; 117; 234; 351; 468; 585; 702; 1,170; 1,755; 2,340; 2,925 and 3,510 mg L-1. Electrical conductivity of soil solution and concentrations of nitrate and potassium were estimated with satisfactory precision from soil solution collected with porous ceramic cup extractors, but

  14. Calibration model for the MDT chambers of the ATLAS Muon Spectrometer

    CERN Document Server

    Bagnaia, P; Biebel, O; Bini, C; Borroni, S; Celio, P; Cirilli, M; Curti, M; De Salvo, A; Deile, M; Di Luise, S; Di Mattia, A; Diehl, E; Dimitrov, G; Dubbert, J; Duckeck, G; Falciano, S; Gadomski, S; Gauzzi, P; Groh, M; Hertenberger, R; Hessey, N; Horvat, S; Iodice, M; Kaiser, S; Kortner, O; Kroha, H; Kolos, S; Levin, D; Luminari, L; Martin, B; McKee, S; Merkl, D; Orestano, D; Pasqualucci, E; Petrucci, F; Pontecorvo, L; Potrap, I; Rauscher, F; Rosati, S; Solfaroli Camillocci, E; Spogli, L; Ströhmer, R; Tique Aires Viegas, F; Verducci, M; Vilucchi, E; Van Eldik, N; van Kesteren, Z; von Loeben, J; Woudstra, M; Zhou, B

    2008-01-01

    The calibration procedures defined for the Monitored Drift Tube detectors of the ATLAS Muon Spectrometer are reviewed with special emphasis on the model developed and on the data processing. The calibration is based upon track segments reconstructed in the spectrometer, therefore the achievable accuracy depends upon the muon tracks statistics. The calibration parameters have to be produced, validated and made available to be used in reconstruction within one day from the end of the LHC fill. These requirements on the statistics and the latency dictated the development of a dedicated data stream for calibration. The data collection, processing and computing is described.

  15. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  16. Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kamenev, Alexey; Konoplianikov, V; Kosarev, Ivan; Moissenz, K; Moissenz, P; Oleynik, Danila; Petrosian, A; Rogalev, Evgueni; Semenov, Roman; Sergeyev, S; Shmatov, Sergey; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Druzhkin, Dmitry; Ivanov, Alexander; Kudinov, Vladimir; Orlov, Alexandre; Smetannikov, Vladimir; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; de Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankoc, K; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grynev, B; Lyubynskiy, Vadym; Senchyshyn, Vitaliy; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; ODell, V; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gusum, K; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2008-01-01

    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\\% to 5\\%.

  17. Calibration of the active radiation detector for Spacelab-One

    Science.gov (United States)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  18. Coast guard STD calibration procedures

    National Research Council Canada - National Science Library

    Freeman, R.H; Krug, W.S

    1973-01-01

    This manual describes the procedures used by the Coast Guard Oceanographic UNIT (CGOU) to calibrate several Model 9040 STD systems, manufactured by Plessey Environmental Systems, currently in use within the Coast Guard...

  19. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  20. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    experiment built as a collaboration between the DTU, Department of Automation and the Department of Plasma Physics, The Alfvenlaboratory, Royal Institute of Technology (RIT), Stockholm. The final magnetic calibration of the Astrid-2 satellite was done at the Lovoe Magnetic Observatory under the Geological...... of the magnetometer readings in each position were related to the field magnitudes from the Observatory, and a least squares fit for the 9 magnetometer calibration parameters was performed (3 offsets, 3 scale values and 3 inter-axes angles). After corrections for the magnetometer digital-to-analogue converters...... fit calibration parameters. Owing to time shortage, we did not evaluate the temperature coefficients of the flight sensor calibration parameters. However, this was done for an identical flight spare magnetometer sensor at the magnetic coil facility belonging to the Technical University of Braunschweig...

  1. Field calibration of cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Jensen, G.; Hansen, A.; Kirkegaard, P.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statistical significance of the calibration expressions. It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometers may take more than one month in order to have wind speeds covering a sufficiently large magnitude range in a wind direction sector where we can be sure that the instruments are exposed to identical, simultaneous wind flows. Another main conclusion is that statistical uncertainty must be carefully evaluated since the individual 10 minute wind-speed averages are not statistically independent. (au)

  2. Bayesian Calibration of Microsimulation Models.

    Science.gov (United States)

    Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E

    2009-12-01

    Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.

  3. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  4. UVIS G280 Flux Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Flux calibration, image displacement, and spectral trace of the UVIS G280 grism will be established using observations of the HST flux standard start GD71. Accompanying direct exposures will provide the image displacement measurements and wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be derived.

  5. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  6. Calibration of shaft alignment instruments

    Science.gov (United States)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  7. Absolute calibration of an ultraviolet spectrometer using a stabilized laser and a cryogenic cavity radiometer

    Science.gov (United States)

    Jauniskis, L.; Foukal, P.; Kochling, H.

    1992-01-01

    We carry out the calibration of an ultraviolet spectrometer by using a cryogenic electrical-substitution radiometer and intensity-stabilized laser sources. A comparison of the error budgets for the laser-based calibration described here and for a calibration using a type-FEL tungsten spectral-irradiance standard indicates that this technique could provide an improvement of a factor of about three in the uncertainty of the spectrometer calibration, resulting in an absolute accuracy (standard deviation of three) of about 1 percent at 257 nm. The technique described here might significantly improve the accuracy of calibrations on NASA ozone-monitoring and solar ultraviolet-monitoring spectrophotometers when used to complement present procedures that employ lamps and the SURF II synchrotron ultraviolet radiation facility at the National Institute of Standards and Technology.

  8. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究%Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring

    Institute of Scientific and Technical Information of China (English)

    周勋; 杨再荣; 罗子江; 贺业全; 何浩; 韦俊; 邓朝勇; 丁召

    2011-01-01

    以反射式高能电子衍射(RHEED)作为实时监测工具,根据GaAs(100)表面重构相与衬底温度、As4等效束流压强之间的关系,对分子束外延(MBE)系统中衬底测温系统进行了校准,这种方法也适用于其他的MBE系统.为生长高质量的外延薄膜材料、研究InGaAs表面粗糙化及相变等过程提供了实验依据.%Using RHEED as a real-time monitoring tool, the MBE temperature measurement system was calibrated according to the relationship between GaAs ( 100 ) surface reconstruction phase and the substrate temperature, As4 beam equivalent pressure of the substrate. This approach can also be applied to other MBE systems. It provides an experimental basis of the growth of high-quality epitaxial thin films for studying of the surface roughness of InGaAs, the phase transformation process and the surface morphology.

  9. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    Science.gov (United States)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    is used to monitor the behavior of the NIS throughout flight operations. In addition, results are discussed from a vicarious calibration campaign at Railroad Valley Playa in Nevada collected during a Landsat 8 overpass.

  10. Real-time calibration of the AARTFAAC array for transient detection

    Science.gov (United States)

    Prasad, P.; Wijnholds, S. J.; Huizinga, F.; Wijers, R. A. M. J.

    2014-08-01

    The search for transient phenomena at low radio frequencies is now coming of age with the development of radio sky monitors with a large field of view, which are made feasible by new developments in calibration algorithms and computing. However, accurate calibration of such arrays is challenging, especially within the latency requirements of near real-time transient monitors, and is the main cause of limiting their sensitivities. This paper describes a strategy for real-time, wide-field direction-dependent calibration of the Amsterdam-ASTRON Radio Transients Facility and Analysis Center (AARTFAAC) array, which is a sensitive, continuously available all-sky monitor based on the LOw Frequency ARray (LOFAR). The monitor operates in a zenith pointing, snapshot imaging mode for image plane detection of bright radio transients. We show that a tracking calibration approach with solution propagation satisfies our latency, computing, and calibration accuracy constraints. We characterize the instrument and verify the calibration strategy under a variety of observing conditions. This brings out several phenomena, which can bias the calibration. The real-time nature of the application further imposes strict latency and computational constraints. We find that although ionosphere-induced phase errors present a major impediment to accurate calibration, these can be corrected in the direction of the brightest few sources to significantly improve image quality. Our real-time calibration pipeline implementation processes a single spectral channel of a snapshot observation in ~0.2 s on test hardware, which is well within its latency budget. Autonomously calibrating and imaging one second snapshots, our approach leads to a typical image noise of ~10 Jy for a ~90 kHz channel, reaching dynamic ranges of ~2000:1. We also show that difference imaging allows thermal-noise limited transient detection, despite the instrument being confusion-noise limited.

  11. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    Science.gov (United States)

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  12. Standard guide for calibrating reticles and light microscope magnifications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide covers methods for calculating and calibrating microscope magnifications, photographic magnifications, video monitor magnifications, grain size comparison reticles, and other measuring reticles. Reflected light microscopes are used to characterize material microstructures. Many materials engineering decisions may be based on qualitative and quantitative analyses of a microstructure. It is essential that microscope magnifications and reticle dimensions be accurate. 1.2 The calibration using these methods is only as precise as the measuring devices used. It is recommended that the stage micrometer or scale used in the calibration should be traceable to the National Institute of Standards and Technology (NIST) or a similar organization. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory lim...

  13. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  14. Method for out-of-focus camera calibration.

    Science.gov (United States)

    Bell, Tyler; Xu, Jing; Zhang, Song

    2016-03-20

    State-of-the-art camera calibration methods assume that the camera is at least nearly in focus and thus fail if the camera is substantially defocused. This paper presents a method which enables the accurate calibration of an out-of-focus camera. Specifically, the proposed method uses a digital display (e.g., liquid crystal display monitor) to generate fringe patterns that encode feature points into the carrier phase; these feature points can be accurately recovered, even if the fringe patterns are substantially blurred (i.e., the camera is substantially defocused). Experiments demonstrated that the proposed method can accurately calibrate a camera regardless of the amount of defocusing: the focal length difference is approximately 0.2% when the camera is focused compared to when the camera is substantially defocused.

  15. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); King, P.L. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Burkemper, L. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Berger, J.A. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Thompson, L. [Planetary and Space Science Centre, University of New Brunswick, Fredericton, NB E3B5A3 (Canada); Edgett, K.S. [Malin Space Science Systems, San Diego, CA 92191-0148 (United States); Yingst, R.A. [Planetary Science Institute, Tucson, AZ 85719-2395 (United States)

    2014-03-15

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe{sub 2}O{sub 3}, SO{sub 3}, Cl and Na{sub 2}O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate.

  16. Total Energy Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S

    2008-08-11

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  17. CALET On-orbit Calibration and Performance

    Science.gov (United States)

    Akaike, Yosui; Calet Collaboration

    2017-01-01

    The CALorimetric Electron Telescope (CALET) was installed on the International Space Station (ISS) in August 2015, and has been accumulating high-statistics data to perform high-precision measurements of cosmic ray electrons, nuclei and gamma-rays. CALET has an imaging and a fully active calorimeter, with a total thickness of 30 radiation lengths and 1.3 proton interaction lengths, that allow measurements well into the TeV energy region with excellent energy resolution, 2% for electrons above 100 GeV, and powerful particle identification. CALET's performance has been confirmed by Monte Carlo simulations and beam tests. In order to maximize the detector performance and keep the high resolution for long observation on the ISS, it is required to perform the precise calibration of each detector component. We have therefore evaluated the detector response and monitored it by using penetrating cosmic ray events such as protons and helium nuclei. In this paper, we will present the on-orbit calibration and detector performance of CALET on the ISS. This research was supported by JSPS postdoctral fellowships for research abroad.

  18. Calibration of the SNO+ experiment

    Science.gov (United States)

    Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ collaboration.

    2017-09-01

    The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

  19. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the DLT can be extended with non-linear models of the common lens aberrations/errors some of them caused by manufacturing defects like decentering and thin prism distortion. The relation between a warping and the non-linear defects are shown. The issue of making a good resampling of an image by using...

  20. Reduced Ambiguity Calibration for LOFAR

    CERN Document Server

    Yatawatta, Sarod

    2012-01-01

    Interferometric calibration always yields non unique solutions. It is therefore essential to remove these ambiguities before the solutions could be used in any further modeling of the sky, the instrument or propagation effects such as the ionosphere. We present a method for LOFAR calibration which does not yield a unitary ambiguity, especially under ionospheric distortions. We also present exact ambiguities we get in our solutions, in closed form. Casting this as an optimization problem, we also present conditions for this approach to work. The proposed method enables us to use the solutions obtained via calibration for further modeling of instrumental and propagation effects. We provide extensive simulation results on the performance of our method. Moreover, we also give cases where due to degeneracy, this method fails to perform as expected and in such cases, we suggest exploiting diversity in time, space and frequency.

  1. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....

  2. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    is calibrated rather than a reconstructed parameter. This contribution presents a generic methodology to calibrate profiling nacelle-mounted lidars. The application of profiling lidars to wind turbine power performance and corresponding need for calibration procedures is introduced in relation to metrological...... standards. Further, two different calibration procedure concepts are described along with their strengths and weaknesses. The main steps of the generic methodology are then explained and illustrated by calibration results from two types of profiling lidars. Finally, measurement uncertainty assessment...

  3. Flexible calibration procedure for fringe projection profilometry

    OpenAIRE

    Vargas, Javier; Quiroga Mellado, Juan Antonio; Terrón López, María José

    2007-01-01

    A novel calibration method for whole field three-dimensional shape measurement by means of fringe projection is presented. Standard calibration techniques, polynomial-and model-based, have practical limitations such as the difficulty of measuring large fields of view, the need to use precise z stages, and bad calibration results due to inaccurate calibration points. The proposed calibration procedure is a mixture of the two main standard techniques, sharing their benefits and avoiding their m...

  4. The DICE calibration project: design, characterization, and first results

    CERN Document Server

    Regnault, N; Schahmanèche, K; Guillou, L Le; Antilogus, P; Astier, P; Barrelet, E; Betoule, M; Bongard, S; Cuillandre, J -C; Juramy, C; Pain, R; Rocci, P -F; Tisserand, P; Villa, F

    2015-01-01

    We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{\\AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are m...

  5. Calibration of the CMS Electromagnetic Calorimeter with LHC collision data

    CERN Document Server

    Obertino, Margherita Maria

    2012-01-01

    The CMS ECAL is one of the highest resolution electromagnetic calorimeters ever constructed, but relies upon precision calibration in order to achieve and maintain its design performance. Variations in light collected from the lead tungstate crystals, due to intrinsic differences in crystals/photodetectors, as well as variations with time due to radiation damage for example, need to be taken into account. Sophisticated and effective methods of inter-crystal and absolute calibration have been devised, using collision data from the 2011 LHC run and a dedicated light injection system. For inter-calibration, low mass particle decays ($\\pi^0$ and $\\eta$) to two photons are exploited, as well as the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Absolute calibration has been performed using Z decays into electron-positron pairs. The light injection system monitors the channel response in real-time and enables the re-calibration of the measured energies over time. This is cross-checke...

  6. Potential of modern technologies for improvement of in vivo calibration.

    Science.gov (United States)

    Franck, D; de Carlan, L; Fisher, H; Pierrat, N; Schlagbauer, M; Wahl, W

    2007-01-01

    In the frame of IDEA project, a research programme has been carried out to study the potential of the reconstruction of numerical anthropomorphic phantoms based on personal physiological data obtained by computed tomography (CT) and Magnetic Resonance Imaging (MRI) for calibration in in vivo monitoring. As a result, new procedures have been developed taking advantage of recent progress in image processing codes that allow, after scanning and rapidly reconstructing a realistic voxel phantom, to convert the whole measurement geometry into computer file to be used on line for MCNP (Monte Carlo N-Particule code) calculations. The present paper overviews the major abilities of the OEDIPE software studies made in the frame of the IDEA project, on the examples of calibration for lung monitoring as well as whole body counting of a real patient.

  7. Tank calibration; Arqueacao de tanques

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ana [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work relates the analysis of the norms ISO (International Organization for Standardization) for calibration of vertical cylindrical tanks used in fiscal measurement, established on Joint Regulation no 1 of June 19, 2000 between the ANP (National Agency of Petroleum) and the INMETRO (National Institute of Metrology, Normalization and Industrial Quality). In this work a comparison between norms ISO and norms published by the API (American Petroleum Institute) and the IP (Institute of Petroleum) up to 2001 was made. It was concluded that norms ISO are wider than norms API, IP, and INMETRO methods in the calibration of vertical cylindrical tanks. (author)

  8. Instrument Calibration and Certification Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. Wesley [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-31

    The Amptec 640SL-2 is a 4-wire Kelvin failsafe resistance meter, designed to reliably use very low-test currents for its resistance measurements. The 640SL-1 is a 2-wire version, designed to support customers using the Reynolds Industries type 311 connector. For both versions, a passive (analog) dual function DC Milliameter/Voltmeter allows the user to verify the actual 640SL output current level and the open circuit voltage on the test leads. This procedure includes tests of essential performance parameters. Any malfunction noticed during calibration, whether specifically tested for or not, shall be corrected before calibration continues or is completed.

  9. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  10. Radioactive source control and electronics for the ATLAS tile calorimeter cesium calibration system

    CERN Document Server

    Shalanda, N A; Kopikov, S; Shalimov, A; Soldatov, M; Solodkov, A; Starchenko, E A

    2003-01-01

    A system using a radioactive /sup 137/Cs source to calibrate and monitor the Hadron Calorimeter (TileCal) of the ATLAS experiment at the LHC is described. The system includes a set of sensors to monitor the position of the source which moves via hydraulic propulsion. The design of the sensors, the corresponding electronic modules and their performance are detailed. (6 refs).

  11. On-line calibration of process instrumentation channels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  12. Practical intraoperative stereo camera calibration.

    Science.gov (United States)

    Pratt, Philip; Bergeles, Christos; Darzi, Ara; Yang, Guang-Zhong

    2014-01-01

    Many of the currently available stereo endoscopes employed during minimally invasive surgical procedures have shallow depths of field. Consequently, focus settings are adjusted from time to time in order to achieve the best view of the operative workspace. Invalidating any prior calibration procedure, this presents a significant problem for image guidance applications as they typically rely on the calibrated camera parameters for a variety of geometric tasks, including triangulation, registration and scene reconstruction. While recalibration can be performed intraoperatively, this invariably results in a major disruption to workflow, and can be seen to represent a genuine barrier to the widespread adoption of image guidance technologies. The novel solution described herein constructs a model of the stereo endoscope across the continuum of focus settings, thereby reducing the number of degrees of freedom to one, such that a single view of reference geometry will determine the calibration uniquely. No special hardware or access to proprietary interfaces is required, and the method is ready for evaluation during human cases. A thorough quantitative analysis indicates that the resulting intrinsic and extrinsic parameters lead to calibrations as accurate as those derived from multiple pattern views.

  13. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz;

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  14. Laboratory panel and radiometer calibration

    CSIR Research Space (South Africa)

    Deadman, AJ

    2011-07-01

    Full Text Available AND RADIOMETER CALIBRATION A.J Deadmana, I.D Behnerta, N.P Foxa, D. Griffithb aNational Physical Laboratory (NPL), United Kingdom bCouncil for Scientific and Industrial Research (CSIR), South Africa ABSTRACT This paper presents the results...

  15. CALIBRATION OF THE INFRARED OPTOMETER

    Science.gov (United States)

    An infrared optometer for measuring the absolute status of accommodation is subject to a constant error not associated with chromatic aberration or...on optometer accuracy as long as the pupil does not vignette the optometer beam. A modification is described for calibrating the infrared optometer ...for an individual subject without using trial lenses or a subjective optometer . (Author)

  16. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  17. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  18. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this repor...

  19. Radio Interferometric Calibration Using a Riemannian Manifold

    CERN Document Server

    Yatawatta, Sarod

    2013-01-01

    In order to cope with the increased data volumes generated by modern radio interferometers such as LOFAR (Low Frequency Array) or SKA (Square Kilometre Array), fast and efficient calibration algorithms are essential. Traditional radio interferometric calibration is performed using nonlinear optimization techniques such as the Levenberg-Marquardt algorithm in Euclidean space. In this paper, we reformulate radio interferometric calibration as a nonlinear optimization problem on a Riemannian manifold. The reformulated calibration problem is solved using the Riemannian trust-region method. We show that calibration on a Riemannian manifold has faster convergence with reduced computational cost compared to conventional calibration in Euclidean space.

  20. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  1. Operation and calibration of the Silicon Drift Detectors of the ALICE experiment during the 2008 cosmic ray data taking period

    CERN Document Server

    Alessandro, B; Bala, R; Batigne, G; Beolè, S; Biolcati, E; Bock Garcia, N; Bruna, E; Cerello, P; Coli, S; Corrales Morales, Y; Costa, F; Crescio, E; De Remigis, P; Di Liberto, S; Falchieri, D; Feofilov, G; Ferrarese, W; Gandolfi, E; Garcia, C; Gaudichet, L; Giraudo, G; Giubellino, P; Humanic, T J; Igolkin, S; Idzik, M; Kiprich, S K; Kisiel, A; Kolozhvari, A; Kotov, I; Kral, J; Kushpil, S; Kushpil, V; Lea, R; Lisa, M A; Martinez, M I; Marzari Chiesa, A; Masera, M; Masetti, M; Mazza, G; Mazzoni, M A; Meddi, F; Montano Zetina, L M; Monteno, M; Nilsen, B S; Nouais, D; Padilla Cabal, F; Petrácek, V; Poghosyan, M G; Prino, F; Ramello, L; Rashevsky, A; Riccati, L; Rivetti, A S; Senyukov, S; Siciliano, M; Sitta, M; Subieta Vasquez, M A; Sumbera, M L; Toscano, L; Tosello, F; Truesdale, D; Urciuoli, G M; Vacchi, A; Vallero, S; Werbrouck, A; Zampa, G; Zinovjev, G

    2010-01-01

    The calibration and performance of the Silicon Drift Detector of the ALICE experiment during the 2008 cosmic ray run will be presented. In particular the procedures to monitor the running parameters (baselines, noise, drift speed) are detailed. Other relevant parameters (SOP delay, time-zero, charge calibration) were also determined.

  2. Landsat-7 ETM+ radiometric stability and absolute calibration

    Science.gov (United States)

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  3. On the absolute calibration of SO2 cameras

    Directory of Open Access Journals (Sweden)

    P. Lübcke

    2013-03-01

    Full Text Available Sulphur dioxide emission rate measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 300 and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. One important step for correct SO2 emission rate measurements that can be compared with other measurement techniques is a correct calibration. This requires conversion from the measured optical density to the desired SO2 column density (CD. The conversion factor is most commonly determined by inserting quartz cells (cuvettes with known amounts of SO2 into the light path. Another calibration method uses an additional narrow field-of-view Differential Optical Absorption Spectroscopy system (NFOV-DOAS, which measures the column density simultaneously in a small area of the camera's field-of-view. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells. Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (I-DOAS, are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration

  4. An Overview of MODIS Radiometric Calibration and Characterization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for NASA's Earth Observing System (EOS), currently operating on both the Terra and Aqua satellites. The MODIS is a major advance over the previous generation of sensors in terms of its spectral, spatial, and temporal resolutions. It has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.1μm and 16 thermal emissive bands (TEB) with center wavelengths from 3.7 to 14.4μm,making observations at three spatial resolutions: 250 m (bands 1-2), 500 m (bands 3-7), and 1km (bands 8-36). MODIS is a cross-track scanning radiometer with a wide field-of-view, providing a complete global coverage of the Earth in less than 2 days. Both Terra and Aqua MODIS went through extensive pre-launch calibration and characterization at various levels. In orbit, the calibration and characterization tasks are performed using its on-board calibrators (OBCs) that include a solar diffuser (SD) and a solar diffuser stability monitor (SDSM), a v-grooved flat panel blackbody (BB), and a spectro-radiometric calibration assembly (SRCA). In this paper, we present an overview of MODIS calibration and characterization activities, methodologies, and lessons learned from pre-launch characterization and in-orbit operation. Key issues discussed in this paper include in-orbit efforts of monitoring the noise characteristics of the detectors,tracking the solar diffuser and optics degradations, and updating the sensor's response versus scan angle.The experiences and lessons learned through MODIS have played and will continue to play major roles in the design and characterization of future sensors.

  5. Jagiellonian University Development of the LHCb VELO monitoring software platform

    CERN Document Server

    Majewski, Maciej

    2017-01-01

    One of the most important parts of the LHCb spectrometer is the VErtex LOcator (VELO), dedicated to the precise tracking close to the proton–proton interaction point. The quality of data produced by the VELO depends on the calibration process, which must be monitored to ensure its correctness. This work presents details on how the calibration monitoring is conducted and how it could be improved. It also includes information on monitoring software and data flow in the LHCb software framework.

  6. Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration

    Science.gov (United States)

    Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart

    2015-09-01

    The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.

  7. ITER-relevant calibration technique for soft x-ray spectrometer.

    Science.gov (United States)

    Rzadkiewicz, J; Książek, I; Zastrow, K-D; Coffey, I H; Jakubowska, K; Lawson, K D

    2010-10-01

    The ITER-oriented JET research program brings new requirements for the low-Z impurity monitoring, in particular for the Be—the future main wall component of JET and ITER. Monitoring based on Bragg spectroscopy requires an absolute sensitivity calibration, which is challenging for large tokamaks. This paper describes both “component-by-component” and “continua” calibration methods used for the Be IV channel (75.9 Å) of the Bragg rotor spectrometer deployed on JET. The calibration techniques presented here rely on multiorder reflectivity calculations and measurements of continuum radiation emitted from helium plasmas. These offer excellent conditions for the absolute photon flux calibration due to their low level of impurities. It was found that the component-by-component method gives results that are four times higher than those obtained by means of the continua method. A better understanding of this discrepancy requires further investigations.

  8. COMPARISON METHODOLOGIES FOR CALIBRATION OF Hp(10) PERSONAL DOSEMETERS USING ISO 4037 AND ISO 29661 STANDARDS.

    Science.gov (United States)

    Cardoso, J; Santos, L; Carvalhal, G; Oliveira, C

    2016-09-01

    The calibration of electronic personal dosemeters at the Portuguese ionizing radiation metrology laboratory uses the standard IEC 61526 for calibration methodology. This standard describes the irradiation geometry for testing and indicates that the standard ISO 4037-1, 2, 3 and 4 should be used. The ISO 4037 establishes that the reference point of test is a point in the radiation monitor, known or established, and the calibration phantom should be placed on its back in order to simulate the trunk body. Recently, ISO published another standard, the ISO 29661, that changes the reference point from the radiation monitor to the front face of the calibration phantom. The aim of this work is to present the result of the comparison of these two methodologies on personal dosemeters from five different manufacturers. The work shows differences in the Hp(10) response up to 4% resulting from the two different reference point concepts.

  9. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  10. International Normalized Ratio (INR), coagulation factor activities and calibrated automated thrombin generation - influence of 24 h storage at ambient temperature

    DEFF Research Database (Denmark)

    Christensen, T D; Jensen, C; Larsen, T B

    2010-01-01

    International Normalized Ratio (INR) measurements are used to monitor oral anticoagulation therapy with coumarins. Single coagulation factor activities and calibrated automated thrombin (CAT) generation are considered as more advanced methods for evaluating overall haemostatic capacity. The aims...

  11. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  12. Calibration approach and plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.; Coppo, Peter

    2014-01-01

    The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, the infrared calibration sources, and the alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally, the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers.

  13. Calibration and in orbit performance of the reflection grating spectrometer onboard XMM-Newton

    CERN Document Server

    de Vries, C P; Gabriel, C; Gonzalez-Riestra, R; Ibarra, A; Kaastra, J S; Pollock, A M T; Raassen, A J J; Paerels, F B S

    2014-01-01

    Context: XMM-Newton was launched on 10 December 1999 and has been operational since early 2000. One of the instruments onboard XMM-Newton is the reflection grating spectrometer (RGS). Two identical RGS instruments are available, with each RGS combining a reflection grating assembly (RGA) and a camera with CCDs to record the spectra. Aims: We describe the calibration and in-orbit performance of the RGS instrument. By combining the preflight calibration with appropriate inflight calibration data including the changes in detector performance over time, we aim at profound knowledge about the accuracy in the calibration. This will be crucial for any correct scientific interpretation of spectral features for a wide variety of objects. Methods: Ground calibrations alone are not able to fully characterize the instrument. Dedicated inflight measurements and constant monitoring are essential for a full understanding of the instrument and the variations of the instrument response over time. Physical models of the instru...

  14. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  15. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  16. Calibration and Validation of Measurement System

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Riemann, Sven; Knapp, Wilfried

    The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype.......The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype....

  17. Crop physiology calibration in the CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2015-04-01

    scalable and adaptive scheme based on sequential Monte Carlo (SMC. The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  18. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    TAN ChengMing; YAN YiHua; TAN BaoLin; XU GuiRong

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrom-eter by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  19. Impact of calibration fitting models on the clinical value of chromogranin A

    OpenAIRE

    Ferraro, Simona; Marano, Giuseppe; Ciardi, Laura; Vendramin, Chiara; Bongo, Angelo S.; Bellomo, Giorgio; Boracchi, Patrizia; Biganzoli, Elia M.

    2009-01-01

    Background: The clinical relevance of chromogranin A (CgA) concentrations depends on the analytical performance of the assay. The goal of the present study was to define the clinical involvements in CgA calibration models by evaluating the confidence intervals (CIs) for values from patients who were undergoing monitoring for disease. Methods: Thirty calibration curves for the CgA assay [immunoradiometric assay (IRMA), (CIS-BIO)] were built using linear regression (LR), and four-parameter log...

  20. S-NPP VIIRS instrument telemetry and calibration data trend study

    Science.gov (United States)

    Sun, ZiPing; De Luccia, Frank J.; Cardema, Jason C.; Moy, Gabriel

    2015-09-01

    The Suomi National Polar Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) employs a large number of temperature and voltage sensors (telemetry points) to monitor instrument health and performance. We have collected data and built tools to study telemetry and calibration parameters trends. The telemetry points are organized into groups based on locations and functionalities. Examples of the groups are: telescope motor, focal plane array (FPA), scan cavity bulkhead, radiators, solar diffuser and Solar Diffuser Stability Monitor (SDSM). We have performed daily monitoring and long-term trending studies. Daily monitoring processes are automated with alarms built into the software to indicate if pre-defined limits are exceeded. Long-term trending studies focus on instrument performance and sensitivities of Sensor Data Record (SDR) products and calibration look-up tables (LUTs) to instrument temperature and voltage variations. VIIRS uses a DC Restore (DCR) process to periodically correct the analog offsets of each detector of each spectral band to ensure that the FPA output signals are always within the dynamic range of the Analog to Digital Converter (ADC). The offset values are updated based on observations of the On-Board Calibrator Blackbody source. We have performed a long-term trend study of DCR offsets and calibration parameters to explore connections of the DCR offsets with onboard calibrators. The study also shows how the instrument and calibration parameters respond to the VIIRS Petulant Mode, spacecraft (SC) anomalies and flight software (FSW) updates. We have also shown that trending studies of telemetry and calibration parameters may help to improve the instrument calibration processes and SDR Quality Flags.

  1. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity

    DEFF Research Database (Denmark)

    Brage, Søren; Ekelund, Ulf; Brage, Niels

    2007-01-01

    Combining accelerometry with heart rate (HR) monitoring may improve precision of physical activity measurement. Considerable variation exists in the relationships between physical activity intensity (PAI) and HR and accelerometry, which may be reduced by individual calibration. However, individual......, submaximal step and walk tests with and without calorimetry, and nonexercise calibration using sleeping HR and gender. Reference accelerometry and HR models explained >95% of the between-individual variance in PAI (P

  2. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    The Swedish micro-satellite Astrid-2 contains a tri-axial fluxgate magnetometer with the sensor co-located with a Technical University of Denmark (DTU) star camera for absolute attitude, and extended about 0.9 m on a hinged boom. The magnetometer is part of the RIT EMMA electric and magnetic fields...... experiment built as a collaboration between the DTU, Department of Automation and the Department of Plasma Physics, The Alfvenlaboratory, Royal Institute of Technology (RIT), Stockholm. The final magnetic calibration of the Astrid-2 satellite was done at the Lovoe Magnetic Observatory under the Geological...... the magnetometer orthogonalized axes and the star camera optical axes was determined from the observed stellar coordinates related to the Earth magnetic field from the Magnetic Observatory. The magnetic calibration of the magnetometer integrated into the flight configured satellite was done in the (almost...

  3. Calibrating thermal behavior of electronics

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  4. Calibrating thermal behavior of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2017-07-11

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  5. Nonlinear Observers for Gyro Calibration

    Science.gov (United States)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  6. Calibrating thermal behavior of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2017-01-03

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  7. Calibration of a Parallel Kinematic Machine Tool

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-mei; DING Hong-sheng; FU Tie; XIE Dian-huang; XU Jin-zhong; LI Hua-feng; LIU Hui-lin

    2006-01-01

    A calibration method is presented to enhance the static accuracy of a parallel kinematic machine tool by using a coordinate measuring machine and a laser tracker. According to the established calibration model and the calibration experiment, the factual 42 kinematic parameters of BKX-I parallel kinematic machine tool are obtained. By circular tests the comparison is made between the calibrated and the uncalibrated parameters and shows that there is 80% improvement in accuracy of this machine tool.

  8. Optimal Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, M. H.

    1994-01-01

    Calibration of partial safety factors is considered in general, including classes of structures where no code exists beforehand. The partial safety factors are determined such that the difference between the reliability for the different structures in the class considered and a target reliability...... level is minimized. Code calibration on a decision theoretical basis is also considered and it is shown how target reliability indices can be calibrated. Results from code calibration for rubble mound breakwater designs are shown....

  9. A Careful Consideration of the Calibration Concept

    Science.gov (United States)

    Phillips, S. D.; Estler, W. T.; Doiron, T.; Eberhardt, K. R.; Levenson, M. S.

    2001-01-01

    This paper presents a detailed discussion of the technical aspects of the calibration process with emphasis on the definition of the measurand, the conditions under which the calibration results are valid, and the subsequent use of the calibration results in measurement uncertainty statements. The concepts of measurement uncertainty, error, systematic error, and reproducibility are also addressed as they pertain to the calibration process. PMID:27500027

  10. Variability among polysulphone calibration curves

    Energy Technology Data Exchange (ETDEWEB)

    Casale, G R [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Borra, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Colosimo, A [University of Rome ' La Sapienza' , Department of Human Physiology and Pharmacology, P.le A. Moro 2, I-00185, Rome (Italy); Colucci, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Militello, A [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Siani, A M [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Sisto, R [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy)

    2006-09-07

    Within an epidemiological study regarding the correlation between skin pathologies and personal ultraviolet (UV) exposure due to solar radiation, 14 field campaigns using polysulphone (PS) dosemeters were carried out at three different Italian sites (urban, semi-rural and rural) in every season of the year. A polysulphone calibration curve for each field experiment was obtained by measuring the ambient UV dose under almost clear sky conditions and the corresponding change in the PS film absorbance, prior and post exposure. Ambient UV doses were measured by well-calibrated broad-band radiometers and by electronic dosemeters. The dose-response relation was represented by the typical best fit to a third-degree polynomial and it was parameterized by a coefficient multiplying a cubic polynomial function. It was observed that the fit curves differed from each other in the coefficient only. It was assessed that the multiplying coefficient was affected by the solar UV spectrum at the Earth's surface whilst the polynomial factor depended on the photoinduced reaction of the polysulphone film. The mismatch between the polysulphone spectral curve and the CIE erythemal action spectrum was responsible for the variability among polysulphone calibration curves. The variability of the coefficient was related to the total ozone amount and the solar zenith angle. A mathematical explanation of such a parameterization was also discussed.

  11. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  12. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  13. PACS photometer calibration block analysis

    CERN Document Server

    Moór, A; Kiss, Cs; Balog, Z; Billot, N; Marton, G

    2013-01-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic h...

  14. MODIS and SeaWIFS on-orbit lunar calibration

    Science.gov (United States)

    Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric

  15. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  16. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    Science.gov (United States)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Watanabe, Y.; Watabe, C.; Yamaguchi, N.; Tamano, T.

    2001-07-01

    A grazing incidence flat-field soft X-ray (20-350 Å) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  17. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    CERN Document Server

    Yoshikawa, M; Kawamori, E; Watanabe, Y; Watabe, C; Yamaguchi, N; Tamano, T

    2001-01-01

    A grazing incidence flat-field soft X-ray (20-350 A) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  18. Fiber Bragg gratings strain measuring system and a sensor calibration setup based on mechanical nanomotion transducer

    Science.gov (United States)

    Lazarev, Vladimir A.; Leonov, Stanislav O.; Tarabrin, Mikhail K.; Karasik, Valerii E.

    2017-06-01

    Fiber Bragg grating (FBG) strain sensors are powerful tools for structural health monitoring applications. However, FBG sensor fabrication and packaging processes can lead to a non-linear behavior, that affects the accuracy of the strain measurements. Here we present a novel nondestructive calibration technique for FBG strain sensors that use a mechanical nanomotion transducer. A customized calibration setup was designed based on dovetail-type slideways that were mechanized using a stepping motor. The performance of the FBG strain sensor was investigated through analysis of experimental data, and the calibration curves for the FBG strain sensor are presented.

  19. HCAL Calibration Status in Summer 2017

    CERN Document Server

    CMS Collaboration

    2017-01-01

    This note presents the status of the HCAL calibration in Summer 2017. In particular, results on the aging of the hadron endcap (HE) detector measured using the laser calibration system and the calibration of the hadron forward (HF) detector using electrons from Z boson decays are discussed.

  20. Net analyte signal calculation for multivariate calibration

    NARCIS (Netherlands)

    Ferre, J.; Faber, N.M.

    2003-01-01

    A unifying framework for calibration and prediction in multivariate calibration is shown based on the concept of the net analyte signal (NAS). From this perspective, the calibration step can be regarded as the calculation of a net sensitivity vector, whose length is the amount of net signal when the

  1. Code Calibration as a Decision Problem

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, M. H.

    1993-01-01

    Calibration of partial coefficients for a class of structures where no code exists is considered. The partial coefficients are determined such that the difference between the reliability for the different structures in the class considered and a target reliability level is minimized. Code...... calibration on a decision theoretical basis is discussed. Results from code calibration for rubble mound breakwater designs are shown....

  2. Backscatter nephelometer to calibrate scanning lidar

    Science.gov (United States)

    Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao

    2008-01-01

    The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...

  3. 14 CFR 33.45 - Calibration tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Calibration tests. 33.45 Section 33.45... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.45 Calibration tests. (a) Each engine must be subjected to the calibration tests necessary to establish its power characteristics...

  4. 14 CFR 33.85 - Calibration tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Calibration tests. 33.85 Section 33.85... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.85 Calibration tests. (a) Each engine must be subjected to those calibration tests necessary to establish its power characteristics and...

  5. Systems and methods of eye tracking calibration

    DEFF Research Database (Denmark)

    2014-01-01

    Methods and systems to facilitate eye tracking control calibration are provided. One or more objects are displayed on a display of a device, where the one or more objects are associated with a function unrelated to a calculation of one or more calibration parameters. The one or more calibration...

  6. 臭氧总量探测仪(TOU)与臭氧监测仪(OMI)和SBUV/2的交叉定标及其在环境中的应用%Cross-Calibration of the Total Ozone Unit (TOU) with the Ozone Monitoring Instrument (OMI) and SBUV/2 for Environmental Applications

    Institute of Scientific and Technical Information of China (English)

    王维和; 刘瑞霞; 郑照君; Wei Yu; 刘国扬; Lawrence E.Flynn; 张兴赢; 王咏梅; 王英鉴; 江芳; 张艳; 黄富祥; 李晓静

    2013-01-01

    基于臭氧监测仪(OMI)对FY-3A卫星臭氧总量探测仪(TOU)进行交叉定标,交叉定标的结果用于TOU全球臭氧总量的反演。OMI是搭载在美国国家航空和航天局的地球观测系统的Aura卫星上的一个仪器,将其Level 3臭氧总量产品作为辐射传输模式的输入,计算中低纬度太平洋上臭氧总量探测仪像元的辐亮度,通过回归过程计算TOU在轨辐亮度定标系数。结果显示,在轨交叉定标后,TOU反演的臭氧总量产品与OMI仪器基于TOMS-V8算法反演臭氧总量产品相比,相对偏差大约为3%,与地面观测站点测量的臭氧总量相比,相对偏差大约为了5%。TOU、太阳后向散射紫外辐射仪(SBUV/2)以及OMI反演的2010年1月份到2011年2月份期间臭氧总量的变化相当一致。%Across-sensor calibration technique is developed and applied to improve upon the prelaunch radiance calibration and characterization for the Total Ozone Unit (TOU) onboard the FengYun-3A satellite. The Level 3 products from the National Aeronautics and Space Administration Ozone Monitoring Instrument (OMI) onboard the Earth Observing System Aura are used as input to a radiative transfer model to predict the TOU radiances and characterize the biases for the measurements over the Pacific Ocean in low-and midlatitudes. The coefifcients are derived from a regression algorithm to adjust the TOU radiances. It is shown that, after the measurement bias correction, the biases between the retrieved total column ozone products from the TOU with those from the OMI Total Ozone Mapping Spectrometer (TOMS)-Version 8 products and those from a set of ground-based stationmeasurements are 3%and 5%, respectively. The variations in the estimated total ozone amounts from the TOU are consistent with those derived from Solar Backscatter Ultraviolet Radiometer instruments and OMI for a period from January 2010 to February 2011.

  7. The Collaborate Calibration and Alignment of Button-type BPM

    CERN Document Server

    Yuan, Jiandong; Zhang, Bin; Yao, Junjie

    2015-01-01

    Beam position monitor (BPM) can easily reinforce the handling of beam orbits and measure the absolute beam position [1]. Its data can be used to optimize and correct beam in both first turn and closed orbit mode. In order to set the absolute center position of Button-type BPM, and formulate the offset between mechanic and electronic center precisely, we mounted BPM together with solenoid on a vertical rotated test-bench when its calibration takes out, and developed transform software to calculate the offset. This paper describes the method and process of collaborate calibration: the assembly and alignment of BPM itself on the designed work-bench; the mechanic calibration of bundle BPM-Solenoid, and the alignment of mechanic to the wire center used by Laser Tracker and Portable coordinate measurement machine (CMM) jointly; the connection of coaxial cable and read-out for electronics; the electronic calibration of bundle BPM-Solenoid. Form the above four steps, the author analyses the error sources, measures an...

  8. Calibration and characterization of UV sensors for water disinfection

    Science.gov (United States)

    Larason, T.; Ohno, Y.

    2006-04-01

    The National Institute of Standards and Technology (NIST), USA is participating in a project with the American Water Works Association Research Foundation (AwwaRF) to develop new guidelines for ultraviolet (UV) sensor characteristics to monitor the performance of UV water disinfection plants. The current UV water disinfection standards, ÖNORM M5873-1 and M5873-2 (Austria) and DVGW W294 3 (Germany), on the requirements for UV sensors for low-pressure mercury (LPM) and medium-pressure mercury (MPM) lamp systems have been studied. Additionally, the characteristics of various types of UV sensors from several different commercial vendors have been measured and analysed. This information will aid in the development of new guidelines to address issues such as sensor requirements, calibration methods, uncertainty and traceability. Practical problems were found in the calibration methods and evaluation of spectral responsivity requirements for sensors designed for MPM lamp systems. To solve the problems, NIST is proposing an alternative sensor calibration method for MPM lamp systems. A future calibration service is described for UV sensors intended for low- and medium-pressure mercury lamp systems used in water disinfection applications.

  9. 42 CFR 493.1255 - Standard: Calibration and calibration verification procedures.

    Science.gov (United States)

    2010-10-01

    ..., if possible, traceable to a reference method or reference material of known value; and (ii) Including... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Calibration and calibration verification... for Nonwaived Testing Analytic Systems § 493.1255 Standard: Calibration and calibration...

  10. A new and simple calibration-independent method for measuring the beam energy of a cyclotron.

    Science.gov (United States)

    Gagnon, Katherine; Jensen, Mikael; Thisgaard, Helge; Publicover, Julia; Lapi, Suzanne; McQuarrie, Steve A; Ruth, Thomas J

    2011-01-01

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  11. A new and simple calibration-independent method for measuring the beam energy of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Katherine, E-mail: kgagnon1@ualberta.c [Cross Cancer Institute, Edmonton PET Centre, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Jensen, Mikael; Thisgaard, Helge [Hevesy Laboratory, Risoe-DTU, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Publicover, Julia; Lapi, Suzanne [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); McQuarrie, Steve A. [Cross Cancer Institute, Edmonton PET Centre, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Ruth, Thomas J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)

    2011-01-15

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of {sup nat}Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  12. Calibration of an electronic nose for poultry farm

    Science.gov (United States)

    Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.

    2017-03-01

    Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.

  13. In flight calibrations of Ibis/PICsIT

    Energy Technology Data Exchange (ETDEWEB)

    Malaguti, G.; Di Cocco, G.; Foschini, L.; Stephen, J.B. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Sezione di Bologne (Italy); Bazzano, A.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Bird, A.J. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Laurent, P. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Segreto, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Sezione di Palermo (Italy)

    2003-11-01

    PICsIT (Pixellated Imaging Caesium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. It consists of 4096 independent detection units, {approx} 0.7 cm{sup 2} in cross-section, operating in the energy range between 175 keV and 10 MeV. The intrinsically low signal to noise ratio in the gamma-ray astronomy domain implies very long observations, lasting 10{sup 5}- 10{sup 6} s. Moreover, the image formation principle on which PICsIT works is that of coded imaging in which the entire detection plane contributes to each decoded sky pixel. For these two main reasons, the monitoring, and possible correction, of the spatial and temporal non-uniformity of pixel performances, especially in terms of gain and energy resolution, is of paramount importance. The IBIS on-board {sup 22}Na calibration source allows the calibration of each pixel at an accuracy of <0.5% by integrating the data from a few revolutions at constant temperature. The two calibration lines, at 511 and 1275 keV, allow also the measurement and monitoring of the PICsIT energy resolution which proves to be very stable at {approx} 19% and {approx} 9% (FWHM) respectively, and consistent with the values expected analytical predictions checked against pre-launch tests. (authors)

  14. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  15. Gemini Planet Imager Observational Calibrations II: Detector Performance and Calibration

    CERN Document Server

    Ingraham, Patrick; Sadakuni, Naru; Ruffio, Jean-Baptiste; Maire, Jerome; Chilcote, Jeff; Larkin, James; Marchis, Franck; Galicher, Raphael; Weiss, Jason

    2014-01-01

    The Gemini Planet Imager is a newly commissioned facility instrument designed to measure the near-infrared spectra of young extrasolar planets in the solar neighborhood and obtain imaging polarimetry of circumstellar disks. GPI's science instrument is an integral field spectrograph that utilizes a HAWAII-2RG detector with a SIDECAR ASIC readout system. This paper describes the detector characterization and calibrations performed by the GPI Data Reduction Pipeline to compensate for effects including bad/hot/cold pixels, persistence, non-linearity, vibration induced microphonics and correlated read noise.

  16. Photometric Calibrations for the SIRTF Infrared Spectrograph

    CERN Document Server

    Morris, P W; Herter, T L; Armus, L; Houck, J; Sloan, G

    2002-01-01

    The SIRTF InfraRed Spectrograph (IRS) is faced with many of the same calibration challenges that were experienced in the ISO SWS calibration program, owing to similar wavelength coverage and overlapping spectral resolutions of the two instruments. Although the IRS is up to ~300 times more sensitive and without moving parts, imposing unique calibration challenges on their own, an overlap in photometric sensitivities of the high-resolution modules with the SWS grating sections allows lessons, resources, and certain techniques from the SWS calibration programs to be exploited. We explain where these apply in an overview of the IRS photometric calibration planning.

  17. Deer monitoring at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    1992-01-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter's cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  18. Deer monitoring at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    1992-10-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter`s cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  19. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    Science.gov (United States)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  20. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    Science.gov (United States)

    Sun, Junqiang; Wang, Menghua

    2014-11-01

    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  1. On the absolute calibration of SO2 cameras

    Directory of Open Access Journals (Sweden)

    J. Zielcke

    2012-09-01

    Full Text Available Sulphur dioxide emission flux measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 305 nm and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. While this approach is simple and delivers valuable insights into the two-dimensional SO2 distribution, absolute calibration has proven to be difficult. An accurate calibration of the SO2 camera (i.e., conversion from optical density to SO2 column density, CD is crucial to obtain correct SO2 CDs and flux measurements that are comparable to other measurement techniques and can be used for volcanological applications. The most common approach for calibrating SO2 camera measurements is based on inserting quartz cells (cuvettes containing known amounts of SO2 into the light path. It has been found, however, that reflections from the windows of the calibration cell can considerably affect the signal measured by the camera. Another possibility for calibration relies on performing simultaneous measurements in a small area of the camera's field-of-view (FOV by a narrow-field-of-view Differential Optical Absorption Spectroscopy (NFOV-DOAS system. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different calibration methods (DOAS and calibration cells. Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (IDOAS, are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The

  2. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S. [Somerville College, Oxford (United Kingdom)

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  3. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  4. "Calibration-on-the-spot": How to calibrate an EMCCD camera from its images.

    Science.gov (United States)

    Mortensen, Kim I; Flyvbjerg, Henrik

    2016-07-06

    In order to count photons with a camera, the camera must be calibrated. Photon counting is necessary, e.g., to determine the precision of localization-based super-resolution microscopy. Here we present a protocol that calibrates an EMCCD camera from information contained in isolated, diffraction-limited spots in any image taken by the camera, thus making dedicated calibration procedures redundant by enabling calibration post festum, from images filed without calibration information.

  5. Calibration-on-the-spot”: How to calibrate an EMCCD camera from its images

    DEFF Research Database (Denmark)

    Mortensen, Kim; Flyvbjerg, Henrik

    2016-01-01

    In order to count photons with a camera, the camera must be calibrated. Photon counting is necessary, e.g., to determine the precision of localization-based super-resolution microscopy. Here we present a protocol that calibrates an EMCCD camera from information contained in isolated, diffraction......-limited spots in any image taken by the camera, thus making dedicated calibration procedures redundant by enabling calibration post festum, from images filed without calibration information....

  6. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  7. Radio Interferometric Calibration Using The SAGE Algorithm

    CERN Document Server

    Kazemi, S; Zaroubi, S; de Bruyn, A G; Koopmans, L V E; Noordam, J

    2010-01-01

    The aim of the new generation of radio synthesis arrays such as LOFAR and SKA is to achieve much higher sensitivity, resolution and frequency coverage than what is available now. To accomplish this goal, the accuracy of the calibration techniques used is of considerable importance. Moreover, since these telescopes produce huge amounts of data, speed of convergence of calibration is a major bottleneck. The errors in calibration are due to system noise (sky and instrumental) as well as the estimation errors introduced by the calibration technique itself, which we call "solver noise". We define solver noise as the "distance" between the optimal solution, the true value of the unknowns corrupted by the system noise, and the solution obtained by calibration. We present the Space Alternating Generalized Expectation Maximization (SAGE) calibration technique, which is a modification of the Expectation Maximization algorithm, and compare its performance with the traditional Least Squares calibration based on the level...

  8. Calibration of radon-222 detectors using closed circuit radium-226 sources; Calibracao de detectores de radonio-222 atraves do uso de fontes de radio-222 em circuito fechado

    Energy Technology Data Exchange (ETDEWEB)

    Perna, Allan Felipe Nunes; Paschuk, Sergei Anatolyevich; Correa, Janine Nicolosi; Del Claro, Flavia, E-mail: allan_perna@hotmail.com, E-mail: sergei@utfpr.edu.br, E-mail: janine@utfpr.edu.br, E-mail: flavia_delclaro@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2012-07-01

    This paper presents the results of the calibration of the Radon-222 detectors used by the Laboratories specializing in measuring natural radiation from this gas. The research was conducted in collaboration between UTFPR, CDTN/CNEN, UFRN and IRD/CNEN. During the calibration the detectors were exposed in isolated chambers with radioactive calibrated sources. The calibration procedure was supported with four instant radon monitors AlphaGUARD (SAPHYMO Co.) responsible for radon activity measurements in the experimental chamber. The calibration procedure resulted an equation that relates the number of tracks found in solid-state detector CR-39 (Track-Etch detector) with the concentration of radon in the atmosphere. Obtained results are compatible with previously performed calibration at the National Institute of Radiological Sciences (NIRS, Japan) using high activity levels of radon in air. Present results of calibration give the possibility to expand the calibration curve of CR-39 for medium and low activity levels of radon. (author)

  9. Calibration system for measuring the radon flux density.

    Science.gov (United States)

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  10. Timing calibration and spectral cleaning of LOFAR time series data

    CERN Document Server

    Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Krause, M; Nelles, A; Rachen, J P; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G

    2016-01-01

    We describe a method for spectral cleaning and timing calibration of short voltage time series data from individual radio interferometer receivers. It makes use of the phase differences in Fast Fourier Transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are stable over time, while being approximately uniform-random for a sum over many sources or for noise. Using only milliseconds-long datasets, the method finds the strongest interfering transmitters, a first-order solution for relative timing calibrations, and faulty data channels. No knowledge of gain response or quiescent noise levels of the receivers is required. With relatively small data volumes, this approach is suitable for use in an online system monitoring setup for interferometric arrays. We have applied the method to our cosmic-ray data collection, a collection of measurements of short pulses from extensive air showers, recorded by the LOFAR radio telescope. Per air shower, we have collected 2 ms of raw tim...

  11. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  12. Calibration of TOB+ Thermometer's Cards

    CERN Document Server

    Banitt, Daniel

    2014-01-01

    Motivation - Under the new upgrade of the CMS detector the working temperature of the trackers had been reduced to -27 Celsius degrees. Though the thermal sensors themselves (Murata and Fenwal thermistors) are effective at these temperatures, the max1542 PLC (programmable logic controller) cards, interpreting the resistance of the thermal sensors into DC counts usable by the DCS (detector control system), are not designed for these temperatures in which the counts exceed their saturation and therefor had to be replaced. In my project I was in charge of handling the emplacement and calibration of the new PLC cards to the TOB (tracker outer barrel) control system.

  13. AFFTC Standard Airspeed Calibration Procedures

    Science.gov (United States)

    1981-06-01

    25x0UIXQXQ Results of groundLpeed course calibration are normally pre- sented in the following plots: 1. .AvP vs Vi Ŗ. All vs V ic 3. AMPC vs Mic .4...8217Average AfPeavgpo, tion correction AM /AH 10-5 per and figure V 9 PC PC feet . fu V AYpc" x q3 @ , Average position avg corred ion (AM @ AMPC /AVPC...instrument error 0 M ic From and 0), Mach number p Chart 8.5 in reference’l (AFTR 6273) (DO AMPPacer poqition error calibra- Pc tion at9 S( AMpc /’,HpC)p

  14. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  15. MESERAN Calibration for Low Level Organic Residues

    Energy Technology Data Exchange (ETDEWEB)

    Benkovich, M.G.

    2004-04-08

    Precision cleaning studies done at Honeywell Federal Manufacturing & Technologies (FM&T), the Kansas City Plant (KCP), and at other locations within the Department of Energy (DOE) Weapons complex over the last 30 years have depended upon results from MESERAN Evaporative Rate Analysis for detecting low levels of organic contamination. The characterization of the surface being analyzed is carried out by depositing a Carbon-14 tagged radiochemical onto the test surface and monitoring the rate at which the radiochemical disappears from the surface with a Geiger-Mueller counter. In the past, the total number of counts over a 2-minute span have been used to judge whether a surface is contaminated or not and semi-quantitatively to what extent. This technique is very sensitive but has not enjoyed the broad acceptance of a purely quantitative analysis. The work on this project developed calibrations of various organic contaminants typically encountered in KCP operations. In addition, a new analysis method was developed to enhance the ability of MESERAN Analyzers to detect organic contamination and yield quantitative data in the microgram and nanogram levels.

  16. NASA Lunar Impact Monitoring

    Science.gov (United States)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  17. Identifying Spatially Variable Sensitivity of Model Predictions and Calibrations

    Science.gov (United States)

    McKenna, S. A.; Hart, D. B.

    2005-12-01

    Stochastic inverse modeling provides an ensemble of stochastic property fields, each calibrated to measured steady-state and transient head data. These calibrated fields are used as input for predictions of other processes (e.g., contaminant transport, advective travel time). Use of the entire ensemble of fields transfers spatial uncertainty in hydraulic properties to uncertainty in the predicted performance measures. A sampling-based sensitivity coefficient is proposed to determine the sensitivity of the performance measures to the uncertain values of hydraulic properties at every cell in the model domain. The basis of this sensitivity coefficient is the Spearman rank correlation coefficient. Sampling-based sensitivity coefficients are demonstrated using a recent set of transmissivity (T) fields created through a stochastic inverse calibration process for the Culebra dolomite in the vicinity of the WIPP site in southeastern New Mexico. The stochastic inverse models were created using a unique approach to condition a geologically-based conceptual model of T to measured T values via a multiGaussian residual field. This field is calibrated to both steady-state and transient head data collected over an 11 year period. Maps of these sensitivity coefficients provide a means of identifying the locations in the study area to which both the value of the model calibration objective function and the predicted travel times to a regulatory boundary are most sensitive to the T and head values. These locations can be targeted for deployment of additional long-term monitoring resources. Comparison of areas where the calibration objective function and the travel time have high sensitivity shows that these are not necessarily coincident with regions of high uncertainty. The sampling-based sensitivity coefficients are compared to analytically derived sensitivity coefficients at the 99 pilot point locations. Results of the sensitivity mapping exercise are being used in combination

  18. Input calibration for negative originals

    Science.gov (United States)

    Tuijn, Chris

    1995-04-01

    One of the major challenges in the prepress environment consists of controlling the electronic color reproduction process such that a perfect match of any original can be realized. Whether this goal can be reached depends on many factors such as the dynamic range of the input device (scanner, camera), the color gamut of the output device (dye sublimation printer, ink-jet printer, offset), the color management software etc. The characterization of the color behavior of the peripheral devices is therefore very important. Photographs and positive transparents reflect the original scene pretty well; for negative originals, however, there is no obvious link to either the original scene or a particular print of the negative under consideration. In this paper, we establish a method to scan negatives and to convert the scanned data to a calibrated RGB space, which is known colorimetrically. This method is based on the reconstruction of the original exposure conditions (i.e., original scene) which generated the negative. Since the characteristics of negative film are quite diverse, a special calibration is required for each combination of scanner and film type.

  19. Calibration of atmospheric hydrogen measurements

    Directory of Open Access Journals (Sweden)

    A. Jordan

    2011-03-01

    Full Text Available Interest in atmospheric hydrogen (H2 has been growing in recent years with the prospect of H2 being a potential alternative to fossil fuels as an energy carrier. This has intensified research for a quantitative understanding of the atmospheric hydrogen cycle and its total budget, including the expansion of the global atmospheric measurement network. However, inconsistencies in published observational data constitute a major limitation in exploring such data sets. The discrepancies can be mainly attributed to difficulties in the calibration of the measurements. In this study various factors that may interfere with accurate quantification of atmospheric H2 were investigated including drifts of standard gases in high pressure cylinders. As an experimental basis a procedure to generate precise mixtures of H2 within the atmospheric concentration range was established. Application of this method has enabled a thorough linearity characterization of the commonly used GC-HgO reduction detector. We discovered that the detector response was sensitive to the composition of the matrix gas. Addressing these systematic errors, a new calibration scale has been generated defined by thirteen standards with dry air mole fractions ranging from 139–1226 nmol mol−1. This new scale has been accepted as the official World Meteorological Organisation's (WMO Global Atmospheric Watch (GAW H2 mole fraction scale.

  20. Crop physiology calibration in CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2014-10-01

    Full Text Available Farming is using more terrestrial ground, as population increases and agriculture is increasingly used for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity and net ecosystem exchange from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC.

  1. Third COS FUV Lifetime Calibration Program: Flatfield and Flux Calibrations

    Science.gov (United States)

    Debes, J. H.; Becker, G.; Roman-Duval, J.; Ely, J.; Massa, D.; Oliveira, C.; Plesha, R.; Proffitt, C.; Taylor, J.

    2016-10-01

    As part of the calibration of the third lifetime position (LP3) of the Cosmic Origins Spectrograph (COS) Far-Ultraviolet (FUV) detector, observations of WD 0308-565 were obtained with the G130M, G160M, and G140L gratings and observations of GD 71 were obtained in the G160M grating through the Point Source Aperture (PSA) to derive low-order flatfields (L-flats) and sensitivities at LP3. Observations were executed for all CENWAVES and all FP-POS with the exception of G130M/1055 and G130M/1096, which remained at LP2. The derivation of the L-flats and sensitivities at LP3 differed from their LP1 and LP2 counterparts in a few key ways, which we describe in this report. Firstly, we quantified a cut-off in spatial frequency that we assigned to the L-flats. Secondly, we derived a new method for simultaneously fitting both the L-flats, pixel-to-pixel flats (P-flats), and sensitvities which we compared to our previous method of separately fitting L-flats and sensitivities. These new methods produce comparable results, but provide us with an external test on the robustness of each approach individually. The results of our work show that with the new profile extraction routines, sensitivities, and L-flats, the relative and absolute flux calibration accuracies (1% and 2% respectively) at LP3 are slightly improved relative to previous locations on the COS FUV detector.

  2. Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon

    Science.gov (United States)

    Stone, T.C.

    2008-01-01

    With the increased emphasis on monitoring the Earth's climate from space, more stringent calibration requirements are being placed on the data products from remote sensing satellite instruments. Among these are stability over decade-length time scales and consistency across sensors and platforms. For radiometer instruments in the solar reflectance wavelength range (visible to shortwave infrared), maintaining calibration on orbit is difficult due to the lack of absolute radiometric standards suitable for flight use. The Moon presents a luminous source that can be viewed by all instruments in Earth orbit. Considered as a solar diffuser, the lunar surface is exceedingly stable. The chief difficulty with using the Moon is the strong variations in the Moon's brightness with illumination and viewing geometry. This mandates the use of a photometric model to compare lunar observations, either over time by the same instrument or between instruments. The U.S. Geological Survey in Flagstaff, Arizona, under NASA sponsorship, has developed a model for the lunar spectral irradiance that explicitly accounts for the effects of phase, the lunar librations, and the lunar surface reflectance properties. The model predicts variations in the Moon's brightness with precision ???1% over a continuous phase range from eclipse to the quarter lunar phases. Given a time series of Moon observations taken by an instrument, the geometric prediction capability of the lunar irradiance model enables sensor calibration stability with sub-percent per year precision. Cross-calibration of instruments with similar passbands can be achieved with precision comparable to the model precision. Although the Moon observations used for intercomparison can be widely separated in phase angle and/or time, SeaWiFS and MODIS have acquired lunar views closely spaced in time. These data provide an example to assess inter-calibration biases between these two instruments.

  3. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    Science.gov (United States)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  4. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  5. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    Science.gov (United States)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  6. Model based monitoring of stormwater runoff quality

    DEFF Research Database (Denmark)

    Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen

    2012-01-01

    the information obtained about MPs discharged from the monitored system. A dynamic stormwater quality model was calibrated using MP data collected by volume-proportional and passive sampling in a storm drainage system in the outskirts of Copenhagen (Denmark) and a 10-year rain series was used to find annual......) for calibration of the model resulted in the same predicted level but narrower model prediction bounds than calibrations based on volume-proportional samples, allowing a better exploitation of the resources allocated for stormwater quality management.......Monitoring of micropollutants (MP) in stormwater is essential to evaluate the impacts of stormwater on the receiving aquatic environment. The aim of this study was to investigate how different strategies for monitoring of stormwater quality (combination of model with field sampling) affect...

  7. Herschel SPIRE FTS Relative Spectral Response Calibration

    CERN Document Server

    Fulton, Trevor; Baluteau, Jean-Paul; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Polehampton, Edward; Swinyard, Bruce; Valtchanov, Ivan

    2014-01-01

    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose n...

  8. New method to calibrate a spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    2014-01-01

    The spinner anemometer is a wind sensor, based on three one dimensional sonic sensor probes, mounted on the wind turbine spinner, and an algorithm to convert the wind speeds measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion...... to be stopped during calibration in order for the rotor induction not to influence on the calibration, so that the spinner anemometer measures ”free” wind values in stopped condition. The calibration of flow angle measurements is made by calibration of the ratio of the two algorithm constants k2=k1 = k......_. The calibration of k_ is made by relating the spinner anemometer yaw misalignment measurements to the yaw position when yawing the wind turbine in and out of the wind several times. The calibration of the constant k1 is made by comparing the spinner anemometer wind speed measurement with a free metmast or lidar...

  9. NASA AURA HIRDLS instrument calibration facility

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Watkins, Robert E. J.; Row, Frederick; Wolfenden, Roger; Djotni, Karim; Oduleye, Olusoji O.; Whitney, John G.; Walton, Trevor W.; Arter, Philip I.

    2003-11-01

    A state-of-the-art calibration facility was designed and built for the calibration of the HIRDLS instrument at the University of Oxford, England. This paper describes the main features of the facility, the driving requirements and a summary of the performance that was achieved during the calibration. Specific technical requirements and a summary of the performance that was achieved during the calibration. Specific technical requirements and other constaints determined the design solutions that were adopted and the implementation methodology. The main features of the facility included a high performance clean room, vacuum chamber with thermal environmental control as well as the calibration sources. Particular attention was paid to maintenance of cleanliness (molecular and particulate), ESD control, mechanical isolation and high reliability. Schedule constraints required that all the calibration sources were integrated into the facility so that the number of re-press and warm up cycles was minimized and so that all the equipment could be operated at the same time.

  10. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  11. New method to calibrate a spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    2014-01-01

    The spinner anemometer is a wind sensor, based on three one dimensional sonic sensor probes, mounted on the wind turbine spinner, and an algorithm to convert the wind speeds measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion...... to be stopped during calibration in order for the rotor induction not to influence on the calibration, so that the spinner anemometer measures ”free” wind values in stopped condition. The calibration of flow angle measurements is made by calibration of the ratio of the two algorithm constants k2=k1 = k......_. The calibration of k_ is made by relating the spinner anemometer yaw misalignment measurements to the yaw position when yawing the wind turbine in and out of the wind several times. The calibration of the constant k1 is made by comparing the spinner anemometer wind speed measurement with a free metmast or lidar...

  12. GIFTS SM EDU Radiometric and Spectral Calibrations

    Science.gov (United States)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  13. Biogeographic calibrations for the molecular clock.

    Science.gov (United States)

    Ho, Simon Y W; Tong, K Jun; Foster, Charles S P; Ritchie, Andrew M; Lo, Nathan; Crisp, Michael D

    2015-09-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

  14. Radiocarbon calibration - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Plicht, J. van der E-mail: plicht@phys.rug.nl

    2004-08-01

    Calibration of the Radiocarbon timescale is traditionally based on tree-rings dated by dendrochronology. At present, the tree-ring curve dates back to about 9900 BC. Beyond this limit, marine datasets extend the present calibration curve INTCAL98 to about 15 600 years ago. Since 1998, a wealth of AMS measurements became available, covering the complete {sup 14}C dating range. No calibration curve can presently be recommended for the older part of the dating range until discrepancies are resolved.

  15. Calibration Procedure for 3D Turning Dynamometer

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluci, Walter

    1999-01-01

    The aim of the static calibration of the dynamometer is to obtain the matrix for evaluating cutting forces through the output voltage of the piezoelectric cells and charge amplifiers. In the same time, it is worth to evaluate the linearity of the dependencies between applied forces and output...... of the piezoelectric cells;5. Mounting of the dynamometer;6. Calibration of the dynamometer;7. Data analysis;8. Uncertainty budget of the calibration....

  16. Calibration of Avent Wind IRIS SN 01030167

    DEFF Research Database (Denmark)

    Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  17. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  18. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a four-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark.Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements...... with measurement uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  19. Calibration biases in logical reasoning tasks

    OpenAIRE

    Guillermo Macbeth; Alfredo López Alonso; Eugenia Razumiejczyk; Rodrigo Sosa; Carolina Pereyra; Humberto Fernández

    2013-01-01

    The aim of this contribution is to present an experimental study about calibration in deductive reasoning tasks. Calibration is defi ned as the empirical convergence or divergence between the objective and the subjective success. The underconfi dence bias is understood as the dominance of the former over the latter. The hypothesis of this study states that the form of the propositions presented in the experiment is critical for calibration phenomena. Affi rmative and negative propositions are...

  20. 1987 calibration of the TFTR neutron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  1. Calibration Procedure for 3D Turning Dynamometer

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluci, Walter

    1999-01-01

    The aim of the static calibration of the dynamometer is to obtain the matrix for evaluating cutting forces through the output voltage of the piezoelectric cells and charge amplifiers. In the same time, it is worth to evaluate the linearity of the dependencies between applied forces and output...... of the piezoelectric cells;5. Mounting of the dynamometer;6. Calibration of the dynamometer;7. Data analysis;8. Uncertainty budget of the calibration....

  2. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  3. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  4. Calibration strategy of CMS electromagnetic calorimeter

    CERN Document Server

    Paramatti, R

    2004-01-01

    Calibration is one of the main factors that set limits on the ultimate performance of the CMS electromagnetic calorimeter at LHC. Crystals raw intercalibration from lab measurements during assembly and CERN-SPS test beam of Supermodules will represent the precalibration at the start-up. In situ calibration with physics events will be the main tool to reduce the constant term to the design goal of 0.5%. The calibration strategy will be described in detail.

  5. ATLAS FCal Diagnostics using the Calibration Pulse

    CERN Document Server

    Rutherfoord, J

    2004-01-01

    The calibration pulser in the ATLAS Forward Calorimeter electronics is used to 1) directly calibrate the warm, active electronics and 2) diagnose the cold, passive electronics chain all the way to the liquid argon electrodes. The study presented here shows that reflections of the calibration pulse coming from discontinuities located at or between the warm preamplifier and the electrode can differentiate and identify all known defects so far observed in this chain.

  6. High level trigger online calibration framework in ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Bablok, S R; Djuvsland, Oe; Kanaki, K; Nystrand, J; Richter, M; Roehrich, D; Skjerdal, K; Ullaland, K; Oevrebekk, G; Larsen, D; Alme, J [Department of Physics and Technology, University of Bergen (Norway); Alt, T; Lindenstruth, V; Steinbeck, T M; Thaeder, J; Kebschull, U; Boettger, S; Kalcher, S; Lara, C; Panse, R [Kirchhoff Institute of Physics, Ruprecht-Karls-University Heidelberg (Germany)], E-mail: Sebastian.Bablok@uib.no (and others)

    2008-07-01

    The ALICE High Level Trigger (HLT) is designed to perform event analysis of heavy ion and proton-proton collisions as well as calibration calculations online. A large PC farm, currently under installation, enables analysis algorithms to process these computationally intensive tasks. The HLT receives event data from all major detectors in ALICE. Interfaces to the various other systems provide the analysis software with required additional information. Processed results are sent back to the corresponding systems. To allow online performance monitoring of the detectors an interface for visualizing these results has been developed.

  7. Development on Adjustable Calibration Marker for Shock Wave Focus

    Institute of Scientific and Technical Information of China (English)

    Xi-zhao Sun; Zhi-wei Zhang

    2005-01-01

    @@ Shock wave lithotripsy (SWL) is a treatment of choice for upper urinary stones. However, this procedure is inappropriate for obese patients because the focus is often unable to reach the target owing to the limited focal distance in shock wave source. Although treating such patients in a blast path may increase the application length of shock wave source,it's difficult to find this path on the lithotripter monitor. For this reason, we invented an adjustable calibration marker in order to set an effective focus in the shock wave path.

  8. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    Science.gov (United States)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  9. The calibration system of the GERDA muon veto Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Florian, E-mail: ritter@pit.physik.uni-tuebingen.d [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Lubsandorzhiev, Bayarto [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Institute for Nuclear Research of RAS, Moscow (Russian Federation); Freund, Kai; Grabmayr, Peter; Jochum, Josef; Knapp, Markus; Meierhofer, Georg [Kepler Centre for Astro and Particle Physics, Universitaet Tuebingen, Tuebingen (Germany); Shaibonov, Bator [Institute for Nuclear Research of RAS, Moscow (Russian Federation)

    2010-05-21

    The GERDA experiment searches for neutrinoless double beta decay (0{nu}{beta}{beta}). To achieve a sensitivity of 10{sup -3}counts/(keVkgy) or better within a specific region of interest (ROI), a good background identification is needed. Therefore GERDA is located in the LNGS (Laboratori Nationali del Gran Sasso) underground facility. In addition to the good rejection of cosmic muons due to the surrounding bedrocks, a dual muon veto system has to be used. For calibration and monitoring of the muon veto, two separate systems have been developed.

  10. The Collaborate Calibration and Alignment of Button-type BPM

    OpenAIRE

    Yuan, Jiandong; Ma, Lizhen; Zhang, Bin; Yao, Junjie

    2015-01-01

    Beam position monitor (BPM) can easily reinforce the handling of beam orbits and measure the absolute beam position [1]. Its data can be used to optimize and correct beam in both first turn and closed orbit mode. In order to set the absolute center position of Button-type BPM, and formulate the offset between mechanic and electronic center precisely, we mounted BPM together with solenoid on a vertical rotated test-bench when its calibration takes out, and developed transform software to calcu...

  11. Energy Self-calibration and low-energy efficiency calibration for an underwater in-situ LaBr3:Ce spectrometer

    CERN Document Server

    Zeng, Zhi; Ma, Hao; He, Jianhua; Cang, Jirong; Zeng, Ming; Cheng, Jianping

    2016-01-01

    An underwater in situ gamma ray spectrometer based on LaBr was developed and optimized to monitor marine radioactivity. The intrinsic background mainly from 138La and 227Ac of LaBr was well determined by low background measurement and pulse shape discrimination method. A method of self calibration using three internal contaminant peaks was proposed to eliminate the peak shift during long term monitoring. With experiments under different temperatures, the method was proved to be helpful for maintaining long term stability. To monitor the marine radioactivity, the spectrometer's efficiency was calculated via water tank experiment as well as Monte Carlo simulation.

  12. MULTIPLE ELECTRONIC CONTROL UNITS CALIBRATION SYSTEM BASED ON EXPLICIT CALIBRATION PROTOCOL AND J1939 PROTOCOL

    Institute of Scientific and Technical Information of China (English)

    YANG Shiwei; ZHU Keqing; XU Quankui; YANG Lin; ZHUO Bin

    2008-01-01

    The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP , with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.

  13. A Cryogenic Infrared Calibration Target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R < or = 0.003, from 800 to 4800/cm (12 - 2 microns ). Upon expanding the spectral range under consideration to 400-10,000/ cm-1 (25 - 1 microns) the observed performance gracefully degrades to R < or = 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  14. Sloan Digital Sky Survey Photometric Calibration Revisited

    Science.gov (United States)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  15. Absolute calibration of the Auger fluorescence detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; /Buenos Aires, IAFE; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  16. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li-dars......-ters pertaining in the different calibration periods. This is supported by sliding-window analyses of one lidar at one location where the same order of variation is observed as between pre-service and post-service calibrations....

  17. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  18. Calibration of ACS Prism Slitless Spectroscopy Modes

    CERN Document Server

    Larsen, S S; Walsh, J R

    2005-01-01

    The Advanced Camera for Surveys is equipped with three prisms in the Solar Blind (SBC) and High Resolution (HRC) Channels, which together cover the 1150 - 3500 A range, albeit at highly non-uniform spectral resolution. We present new wavelength- and flux calibrations of the SBC (PR110L and PR130L) and HRC (PR200L) prisms, based on calibration observations obtained in Cycle 13. The calibration products are available to users via the ST-ECF/aXe web pages, and can be used directly with the aXe package. We discuss our calibration strategy and some caveats specific to slitless prism spectroscopy.

  19. TOF PET offset calibration from clinical data

    Science.gov (United States)

    Werner, M. E.; Karp, J. S.

    2013-06-01

    In this paper, we present a timing calibration technique for time-of-flight positron emission tomography (TOF PET) that eliminates the need for a specialized data acquisition. By eliminating the acquisition, the process becomes fully automated, and can be performed with any clinical data set and whenever computing resources are available. It also can be applied retroactively to datasets for which a TOF offset calibration is missing or suboptimal. Since the method can use an arbitrary data set to perform a calibration prior to a TOF reconstruction, possibly of the same data set, one also can view this as reconstruction from uncalibrated data. We present a performance comparison with existing calibration techniques.

  20. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.