WorldWideScience

Sample records for sundesert nuclear licensing

  1. Early site review report for the Sundesert site, San Diego Gas and Electric Company. Project No. 558

    International Nuclear Information System (INIS)

    1977-01-01

    The purpose of the report is to present the Nuclear Regulatory Commission's evaluation of several of the matters relating to the suitability of the Sundesert site near Blythe, California, on which the San Diego Gas and Electric Company proposes to build the Sundesert Nuclear Plant, Units 1 and 2. The report summarizes the results of the technical evaluation of the suitability of the proposed Sundesert site for a nuclear plant and delineates the scope of the technical matters considered in evaluating the suitability of the site

  2. Nuclear power stations licensing

    International Nuclear Information System (INIS)

    Solito, J.

    1978-04-01

    The judicial aspects of nuclear stations licensing are presented. The licensing systems of the United States, Spain, France and Federal Republic of Germany are focused. The decree n 0 60.824 from July 7 sup(th), 1967 and the following legislation which define the systematic and area of competence in nuclear stations licensing are analysed [pt

  3. Trends in nuclear licensing

    International Nuclear Information System (INIS)

    Dalton, N.W.

    1990-01-01

    The development of nuclear safety and licensing is briefly reviewed in four stages namely: The Formative Period (1946-1959), The Expansive Period (1960-1969), The Mature Period (1970-1979) and the Apprehensive Period (1980-1989). Particular safety issues in the respective periods are highlighted to indicate the changing emphasis of nuclear licensing over the past thirty years or so. Against this background, nuclear licensing. (author)

  4. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  5. Nuclear facilities licensing

    International Nuclear Information System (INIS)

    Carvalho, A.J.M. de.

    1978-01-01

    The need for the adoption of a legal and normative system, defining objectives, pescriptions and the process of nuclear licensing and building of nuclear power plants in Brazil is enphasized. General rules for the development of this system are presented. The Brazilian rules on the matter are discussed. A general view of the German legal system for nuclear power plant licensing and the IAEA recommendations on the subject are finally presented. (A.L.S.L.) [pt

  6. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  7. Nuclear licensing in Slovenia

    International Nuclear Information System (INIS)

    Prah, M.; Spiler, J.; Vojnovic, D.; Pristavec, M.

    1998-01-01

    The article presents the approach to nuclear licensing in Slovenia. The paper describes, the initialization, internal authorization and review process in the Krsko NPP. The overall process includes preparation, internal independent evaluation, the Krsko Operating Committee and the Krsko Safety Committee review and internal approval. In addition, the continuation of the licensing process is discussed which includes independent evaluation by an authorized institution and a regulatory body approval process. This regulatory body approval process includes official hearing of the licensee, communication with the licensee, and final issuance of a license amendment. The internal evaluation, which follows the methodology of US NRC (defined in 10 CFR 50.59 and NUMARC 125) is described. This concept is partially implemented in domestic legislation.(author)

  8. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  9. Licensing Process for Nuclear Installations

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide describes how the licensing process should be applied at the various stages of the lifetime of a nuclear installation, with discussion of topics and required documents to be considered at each stage. Recommendations on the application by a regulatory body of a graded approach in the licensing process are also provided. It also describes the processes that should be undertaken to meet the regulatory and legal requirements in a Member State to authorize the establishment of a nuclear installation and/or initiation of its activities. While this Safety Guide focuses on safety at nuclear installations, it is noted that integration of safety and security aspects should be considered and evaluated by the regulatory body in the licensing process. Contents: 1. Introduction; 2. General recommendations for the licensing process; 3. Steps of the licensing process; Appendix I: Examples of documents to be submitted to the regulatory body.

  10. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  11. Licensing criteria for nuclear medicine

    International Nuclear Information System (INIS)

    Westerman, B.R.

    1986-01-01

    The use of radioactive materials in medicine is one of the most highly regulated areas the physician has to deal with. There are three basic types of licenses for use of radioactive material defined in the Code of Federal Regulations (CFR), chapter 10, part 35. These are the general license, which is mainly applicable to small volume in vitro work; the specific license, which is used in most medical facilities; and the broad license, which is suited for larger research-oriented practices. Licensing requires proof of competence of the user and of adequate provision for protection of public health. Materials used in medicine are grouped for convenience into three diagnostic categories and two therapeutic categories. A sixth group, for sealed implants, is not generally applicable in nuclear medicine. Training and experience of users may be documented in a number of ways, including board certification in nuclear medicine. Therapeutic applications require additional proof of direct personal experience. The radiation safety officer is a pivotal individual in the licensing procedure, being directly responsible for carrying out the highly detailed requirements for protection of personnel and patients. A radiation safety program based on the as low as reasonably achievable (ALARA) concept requires personal monitoring, inventory control, detection and control of contamination, and strict adherence to licensing rules. Training of personnel and proper maintenance of equipment and facilities are also vital parts of the licensing process. The requirements of licensing and for renewal are clearly spelled out by the various regulatory agencies and require meticulous record keeping with documentation that all prescribed procedures have been followed and duly recorded

  12. Evaluation of Terminated Nuclear Material Licenses

    International Nuclear Information System (INIS)

    Spencer, K.M.; Zeighami, E.A.

    1999-01-01

    This report presents the results of a six-year project that reviewed material licenses that had been terminated during the period from inception of licensing until approximately late-1994. The material licenses covered in the review project were Part 30, byproduct material licenses; Part 40, source material licenses; and Part 70, special nuclear material licenses. This report describes the methodology developed for the project, summarizes the findings of the license file inventory process, and describes the findings of the reviews or evaluations of the license files. The evaluation identified nuclear material use sites that need review of the licensing material or more direct follow-up of some type. The review process also identified licenses authorized to possess sealed sources for which there was incomplete or missing documentation of the fate of the sources

  13. List of Nuclear Materials Licensing Actions Received

    Data.gov (United States)

    Nuclear Regulatory Commission — A catalog of all Materials Licensing Actions received for review. The catalog lists the name of the entity submitting the license application, their city and state,...

  14. Yankee nuclear power station license renewal assessment

    International Nuclear Information System (INIS)

    Hinkle, W.D.

    1992-01-01

    Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology

  15. Nuclear powerplant licensing: need for additional improvements

    International Nuclear Information System (INIS)

    Staats, E.B.

    1978-01-01

    In this report GAO reviews the Nuclear Regulatory Commission's management process for evaluating nuclear powerplant designs and sites and makes recommendations for improvements. The report also discusses the Commission staff's perspective on the adequacy of the licensing process, Commission staff's ability to raise dissenting technical opinions without experiencing adverse personnel actions, and administration's proposed legislation to streamline the licensing process

  16. Nuclear licensing and supervision in Germany

    International Nuclear Information System (INIS)

    1996-06-01

    The legal instrument for implementing the licensing and supervisory procedure is specified by statutory ordinances, guidelines and provisions. The licensing requirements for nuclear power plants on the final storage of radioactive wastes in the federal republic of germany are described. The nuclear facilities are subject to continuous state supervision after they have been granted. The appendix gives a brief account of the most important ordinances relating to the AtG and extracts from the Nuclear Safety Convention. (HP)

  17. Licensing and decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Working Group 1 (Licensing and Decommissioning of Nuclear Installations) investigated the question, 'Should it be recommended to work out international principles and rules on the licensing and decommissioning of nuclear installations and to make them subject to international instruments'. It was found that the legal systems in the countries examined are still too disparate to allow for a recommendation aiming at harmonizing the provisions for licensing. With respect to decommissioning, the WG considers the IAEA three-stage-plan to be a valuable first step towards standardisation. (CW) [de

  18. International aspects of nuclear installations licensing

    International Nuclear Information System (INIS)

    Kunth, B.

    1987-01-01

    International collaboration, eg on the Superphenix and SNR 300 fast breeder reactors, is seen as a good thing. However, the question is asked whether the collaboration extends to the licensing procedure. Is this the reason why in some countries nuclear programmes flourish, whereas in others there are delays? The structure of the licensing procedures in the United Kingdom, France and West Germany is compared. The different licensing procedures only have a limited effect on the outcome of the fast breeder programme. The differences lie in the centralised or federal government structure and different socio-political aspects. However, these are reflected in licensing procedures. Means of international collaboration within the licensing framework are suggested, but may be difficult to achieve yet. A major step forward would be to develop uniform safety standards for the licensing procedure and to make sure each country complies with them. (U.K.)

  19. RM - ODP to express nuclear licensing

    International Nuclear Information System (INIS)

    Barbosa, E.A.; Martucci, M. Jr.

    2002-01-01

    The scope of CNEN (Comissao Nacional de Energia Nuclear) is established by standards and procedures, which allow one context where several activities for nuclear licensing are realized by persons, machines and other entities of real world and by software systems. The CNEN objectives for licensing nuclear installations can be specified and they define how the systems are consisted, its nature, and which important elements were considered relevant for its constitution. The behavior, where the software will be operated, was likely defined in this paper through all aspects of its business process, which means from its licensing context. The concepts and definition showed here defined one specifics business domain, through ODP context. The functionalities of nuclear licensing process, the relationship scope and the rules of interaction that contributed for to specify the nuclear licensing process were defined, too. Therefore, the definition of the domain follows the orientation of architecture concepts and allows to implement the reflection model, where, with the auxiliary from IDEF0 (Integration Definition for Function Modeling) diagrams, the interactions between extern domains were mapped

  20. Licensed bases management for advanced nuclear plants

    International Nuclear Information System (INIS)

    O'Connell, J.; Rumble, E.; Rodwell, E.

    2001-01-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  1. Licensing of nuclear and radioactive installations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1987-01-01

    In Peru, the Regulation for Ionizing Radiation Sources is applied, which establishes the norms and procedures to follow in the nuclear and radioactive installations of the country in order to assure their correct operation as concerns to the nuclear safety and radiological protection, allowing the emission of the respective licenses. As for the nuclear facilities, this authorization includes the Previous License, the Construction License and the Operation License (provisional and definitive) and for radioactive facilities and equipment generating ionizing radiations: the Construction License and the Operation License. The personnel also require a license that can be an operator license (as for nuclear reactors) or a supervisor license (for nuclear and radioactive facilities). In spite of the above mentioned regulation and its long enforcement period, less than 10% of radioactive facilities in this country are licensed, due to different problems which will be solved in the medium term. (Author)

  2. Licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Witt, S. de.

    1984-01-01

    De Witt, who as an advocate represents the interests of citizen's initiatives in lawsuits concerning nuclear power plants, contests an independent scope of discretion of the administration and criticizes the reduction of the control density of courts which can be noticed recently. The shift of emphasis from the courts to the administration would not only change the balance within the constitutional separation of powers but could also lead to a weakening of the protection of fundamental rights. When assessing the technical risks he wants above all to take into account the possible extent of the damage. De Witt also shows that - beyond the discretion of refusal according to section 7 of the Atomic Energy Act and the exertion of influence of the executive on public utilities - it could be possible to develop means - not used until now - to control the social impacts of nuclear energy. (orig./HSCH) [de

  3. Sellafield - a nuclear licensed site

    International Nuclear Information System (INIS)

    Bloom, Phillipa.

    1987-01-01

    The report is based on the experience gained when visiting the Exhibition Centre at the BNFL Sellafield site and joining the hour-long coach trip round the site. The sights are recorded and a description given of the processes undertaken at Sellafield to reprocess the Magnox fuel and store the spent fuel from AGR reactors. The purpose of the main plant building, and the passage of the spent fuel through the various processes is described. Criticism is made of the safety record at Sellafield and a full and open debate on nuclear power is called for. (UK)

  4. Safety Regulation of Nuclear Power Plant License Renewal

    Science.gov (United States)

    Zhang, Qiaoe; Liu, Ting; Qi, Yuan; Yang, LiLi

    2018-01-01

    China’s regulations stipulate that a nuclear power plant license is valid for a design life period (generally 30 or 40 years). Whether the nuclear power plant’s license is renewed after the expiration of the license is to be determined based on the safety and economy of the nuclear power plant..

  5. Nuclear power plant licensing: opportunities for improvement

    International Nuclear Information System (INIS)

    1977-06-01

    On April 20, 1977, the Commission directed that recently completed licensing actions be reviewed by the staff for the purpose of identifying ways to improve the effectiveness and efficiency of NRC nuclear power plant licensing activities. This report summarizes the results of a study undertaken by an internal ad hoc Study Group established in response to that directive. The Study Group limited its considerations to safety and environmental review activities. The background, scope, assumptions and objectives of the study are discussed. A prime assumption of this study was that improvements in the efficiency should not be permitted to reduce the current quality achieved in the licensing process. This consideration underlies the conclusions and recommendations of the study

  6. New nuclear plant design and licensing process

    International Nuclear Information System (INIS)

    Luangdilok, W.

    1996-01-01

    This paper describes latest developments in the nuclear power reactor technology with emphasis on three areas: (1) the US technology of advanced passive light water reactors (AP600 and S BWR), (2) regulatory processes that certify their safety, and (3) current engineering concerns. The goal is to provide and insight of how the government's regulatory agency guarantees public safety by looking into how new passive safety features were designed and tested by vendors and how they were re-evaluated and retested by the US NRC. The paper then discusses the US 1989 nuclear licensing reform (10 CFR Part 52) whose objectives are to promote the standardization of nuclear power plants and provide for the early and definitive resolution of site and design issues before plants are built. The new licensing process avoids the unpredictability nd escalated construction cost under the old licensing process. Finally, the paper summarizes engineering concerns found in current light water reactors that may not go away in the new design. The concerns are related the material and water chemistry technology in dealing with corrosion problems in water-cooled nuclear reactor systems (PWRs and BWRs). These engineering concerns include core shroud cracking (BWRs), jet pump hold-down beam cracking (BWRs), steam generator tube stress corrosion cracking (PWR)

  7. Investment issues in nuclear plant license renewal

    International Nuclear Information System (INIS)

    Eynon, R.T.

    1999-01-01

    A method that determines the operating lives for existing nuclear power plants is discussed. These assumptions are the basis for projections of electricity supply through 2020 reported in the Energy Information Administration's (EIA's) Annual Energy Outlook 1999. To determine if plants will seek license renewal, one must first determine if they will be operating to the end of their current licenses. This determination is based on an economic test that assumes an investment of $150/kW will be required after 30 yr of operation for plants with older designs. This expenditure is intended to be equivalent to the cost that would be associated with any of several needs such as a one0time investment to replace aging equipment (steam generators), a series of investments to fix age-related degradation, increases in operating costs, or costs associated with decreased performance. This investment is compared with the cost of building and operating the lowest-cost new plant over the same 10-yr period. If a plant fails this test, it is assumed to be retired after 30 yr of service. All other plants are then considered candidates for license renewal. The method used to determine if it is economic to apply for license renewal and operate plants for an additional 20 yr is to assume that plants face an investment of $250 million after 40 yr of operation to refurbish aging components. This investment is compared with the lowest-cost new plant alternative evaluated over the same 20 yr that the nuclear plant would operate. If the nuclear plant is the lowest cost option, it is projected to continue to operate. EIA projects that it would be economic to extend the operating licenses for 3.7 GW of capacity (6 units)

  8. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  9. Licensing and decommissioning of nuclear installations in France

    International Nuclear Information System (INIS)

    Derche, B.

    1986-01-01

    Nuclear licensing procedure in France is characterized by a great number of different kinds of licensing procedures with the possibility of mutual control and intervention. The effectiveness is achieved through centralisation of the licensing decisions. Only the degree of December 11, 1963 contains a regulation for decommissioning, still there exist practical experiences with decommissioning. (CW) [de

  10. Experience acquired by Furnas for licensing nuclear power plants

    International Nuclear Information System (INIS)

    Silva, A.J.C. da; Xavier, E.E.

    1986-01-01

    The system for licensing of Almirante Alvaro Alberto Nuclear Power Plant-Unit 1 is presented. The process phases for reactor construction and operation are described: preliminary site approval; bases for safety review; partial construction permits; final construction permits; emission of final report of safety analysis; initial operation license and permanent operation license. (M.C.K.) [pt

  11. Nuclear Safety Design Base for License Application

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-09-29

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  12. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-03-08

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period.

  13. US nuclear facility licensing gridlock, reform and the LES experience

    International Nuclear Information System (INIS)

    DiStefano, D.

    1995-01-01

    Problems on the unique legislative program, currently in force in the USA, related to licensing nuclear enterprises are presented. Participation of the public in the regulatory process is touched upon; idea of combined licensing is substantiated and legislative initiative of the senate on energetics, referring to nuclear industry, is approved. The initiated reform is the result of combined efforts undertaken by governmental bodies, industrial groups, nuclear materials suppliers and designers

  14. Development regulation regarding with licensing of nuclear installation

    International Nuclear Information System (INIS)

    Bambang Riyono; Yudi Pramono; Dahlia Cakrawati Sinaga

    2011-01-01

    Provisions of Article 17 paragraph (3) of Law Number 10 Year 1997 on Nuclear cleary mandates for the establishment of government regulations (GR) on Nuclear licensing containing the requirements and procedure, both from the standpoint of their utilization and installation. To use has been rising GR No.29 Year 2008 on the Use of Ionizing Radiation Sources and Nuclear Materials, while for the installation has been published PP No.43 Year 2006 on Nuclear Reactor Licensing, and BAPETEN Chairman Decree No.3 Year 2006 on Non-reactor Nuclear Installation Licensing. Based on the background of the preparation of both the aforementioned are just regulate the reactor and utilization, not yet fully meet the mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear, including other nuclear installations. For these reasons, it initiated the need for a separate regulation containing provisions concerning licensing of non-reactor nuclear installations. On the other side from the understanding the legal aspects and interpretations of the Law No.10 of 2004 on the Establishment Regulation Legislation, should be in single mandate of Article 17 paragraph (3) of Law No.10 of 1997 on Nuclear would only produce one of the requirements and procedure for the use or installation, or a maximum of two (2) GR related licensing the use and installation. This is encourages conducted the assessing or studies related to how possible it is according to the legal aspect is justified to combine in one Nuclear licensing regulations regarding both the use and installation, by looking at the complexity of installation and wide scope of utilization of nuclear energy in Indonesia. The results of this paper is expected to provide input in the preparation of GR on licensing of nuclear installations. (author)

  15. Essays on the economics of licensing nuclear power plants

    International Nuclear Information System (INIS)

    Cohen, L.R.

    1979-01-01

    Regulation and licensing of nuclear power plants by the United States Atomic Energy Commission and the United States Nuclear Regulatory Commission are discussed. Chapter 1 overviews the licensing process and issues raised in licensing cases. Based on a sample of plants licensed between 1967 and 1978, a statistical study of the impact of public participation in licensing is performed. The study concludes that public participation has had a major impact on licensing and power-plant costs. The impact is due to a fundamental weakness of the Commissions: their inability to resolve certain issues related to acceptable social risk. The study has important policy implications for reforming the Federal licensing process. Chapter 2 contains an analysis of the Price-Anderson Act, a Federal program for compensating victims of large nuclear accidents. The Price-Anderson Act is placed within the context of generalized federal disaster relief. A model is developed that allows an evaluation programs on the basis of moral hazard and equity principles. Chapter 3 analyzes the Nuclear Regulatory Commission's treatment of its mandatory antitrust review of applicants for nuclear power plants. The main conclusion of the chapter is that the reviews have not addressed the central economic issues of antitrust that are relevant to nuclear power. Instead, the reviews contribute to further cartelization of the electric utility industry. While politically expedient, the reviews are counter-productive to the development of an optimal industry structure

  16. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  17. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  18. The Licensing of New Nuclear Power Plants in Europe

    International Nuclear Information System (INIS)

    Raetzke, C.

    2008-01-01

    After an introduction dealing with the nuclear Renaissance in Europe and the specific situation of Germany and of Italy, the article focuses on the question of licensing processes for new reactors. New nuclear power plant projects involve a substantial investment and electric utilities will only take this decision if the licensing and regulatory risk can be adequately managed. Licensing processes should be predictable and efficient in order to give sufficient assurance to applicants. The article discusses best practice in licensing by giving some examples of suitable licensing processes of other countries. It also highlights international initiatives aimed at harmonizing safety requirements for new reactors and a multinational cooperation in reactor design review. These issues should be carefully considered by any country wanting to get new nuclear started. [it

  19. The problem of licensing and safety of nuclear power plants

    International Nuclear Information System (INIS)

    Silva, R.A. da.

    1987-01-01

    The historical evolution of licensing process of nuclear power plants is presented. The designs carried out by FURNAS for constructing Angra-1 reactor and its contribution to the Brazilian CNEN in de licensing process, are evaluated. The aims of FURNAS Research Programs are determined and the safety goals are established. (M.C.K.) [pt

  20. Licensing Trends for Construction of New Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Bae-Hyeuk; Ahn, Kyu-Suk; Kim, Young-Gyun; Kim, Tae-Wan; Baek, Jong-Hyuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Currently in Korea, an SFR (Sodium-cooled Fast Reactor) technology proving stage reactor called PGSFR (Prototype Gen-IV SFR) is being developed by KAERI and KEPCO E and C to be constructed by 2028. After the accident of the Fukushima nuclear power plants, how to regulate and license newly developing nuclear reactors requiring higher safety goals has been issued. As a result, in leading nuclear nations developing new reactors, the close cooperation between the developer and the regulator is becoming very important. In this study, the licensing processes of leading nuclear countries were surveyed and compared with that of Korea, and a new licensing direction for PGSFR was suggested. Reviewing licensing processes for newly developing reactors of other countries, the first step of the licensing process is the pre-safety review, which is to review the reactor design. This process is not legally binding, but is a review process for a better understanding of newly applied technologies by regulators prior to starting the legally binding licensing process as the construction and operation licensing. This process provides an opportunity for the reactor developer to adopt the regulator's licensing direction and a goal to designing newly developing reactors to meet the safety requirements.

  1. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Science.gov (United States)

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to...

  2. Generic environmental impact statement for license renewal of nuclear plants

    International Nuclear Information System (INIS)

    1996-05-01

    Volume 2 of the Generic Environmental Impact Statement for License Renewal of Nuclear Plants contains the appendices. These include: (A) General characterisitics and environmental settings of domestic nuclear plants, (B) Definition of impact initiators, (C) Socioeconomics and case studies, (D) Aquatic organisms and human health, (E) Radiation protection considerations, (F) Methodology for assessing impacts to aquatic ecology and water resources, (G) Postulated accidents, and (H) Environmental statutes and regulations affecting license renewal

  3. Yankee Nuclear Power Station lead plant license renewal project

    International Nuclear Information System (INIS)

    Hinkle, William D.

    1991-01-01

    The 185 MWe Yankee Nuclear Power Station (YNPS) is the lead pressurized water reactor plant in the industry's lead plant license renewal program. The plant's operating license will expire in the year 2000, and it will be the first U.S. nuclear power plant to apply for a renewal license. The purpose of this paper is to provide a description and summary of the current status of the YNPS lead plant license renewal project. The project began in January 1989 and submittal of the license renewal application is scheduled for September 1991. The plant's owner, Yankee Atomic Electric Company, is seeking a 20-year renewal term, which will allow continued operation to the year 2020. (author)

  4. Assuring nuclear plant safety before and after license renewal

    International Nuclear Information System (INIS)

    Berto, D.S.

    1992-01-01

    It is important in establishing a plant license renewal program that the specific goals of the program be identified at the very start. A detailed program can then be developed to focus on the stated goals, and efforts not related to accomplishing these specific goals can be excluded from the program. The goal of establishing and performing a license renewal evaluation is, of course, to obtain a renewed operating license from the US Nuclear Regulatory Commission (NRC). This goal is tied directly to the closely related goal of assuring plant safety during the license renewal term. The goal of assuring plant safety (without unnecessary costs) is the focus of the discussion in this paper. Assuring plant safety during the license renewal term is directly coupled with assuring plant safety during the current license term

  5. 77 FR 36015 - Atomic Safety and Licensing Board; Entergy Nuclear Operations, Inc. (Indian Point Nuclear...

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Atomic Safety and Licensing Board; Entergy Nuclear Operations, Inc. (Indian Point Nuclear... proceeding arises out of the April 23, 2007, application of Entergy Nuclear Operations, Inc. (Entergy) to.... (Riverkeeper). On October 18, 2007, this Atomic Safety and Licensing Board was established to conduct this...

  6. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  7. The United States nuclear regulatory commission license renewal process

    International Nuclear Information System (INIS)

    Holian, B.E.

    2009-01-01

    The United States (U.S.) Nuclear Regulatory Commission (NRC) license renewal process establishes the technical and administrative requirements for the renewal of operating power plant licenses. Reactor ope-rating licenses were originally issued for 40 years and are allowed to be renewed. The review process for license renewal applications (L.R.A.) provides continued assurance that the level of safety provided by an applicant's current licensing basis is maintained for the period of extended operation. The license renewal review focuses on passive, long-lived structures and components of the plant that are subject to the effects of aging. The applicant must demonstrate that programs are in place to manage those aging effects. The review also verifies that analyses based on the current operating term have been evaluated and shown to be valid for the period of extended operation. The NRC has renewed the licenses for 52 reactors at 30 plant sites. Each applicant requested, and was granted, an extension of 20 years. Applications to renew the licenses of 20 additional reactors at 13 plant sites are under review. As license renewal is voluntary, the decision to seek license renewal and the timing of the application is made by the licensee. However, the NRC expects that, over time, essentially all U.S. operating reactors will request license renewal. In 2009, the U.S. has 4 plants that enter their 41. year of ope-ration. The U.S. Nuclear Industry has expressed interest in 'life beyond 60', that is, requesting approval of a second renewal period. U.S. regulations allow for subsequent license renewals. The NRC is working with the U.S. Department of Energy (DOE) on research related to light water reactor sustainability. (author)

  8. Set of rules SOR 2 licensing of nuclear reactors

    International Nuclear Information System (INIS)

    1976-05-01

    This is the set of rules promulgated by the Israel Atomic Energy Commission pursuant to the Supervision of Supplies and Services Law 5718-1957, Order regarding Supervision of Nuclear Reactors (1974) Chapter 3: Permits, to provide for the Licensing of Nuclear Reactors. (B.G.)

  9. Licensing and safety of nuclear power plants in Canada

    International Nuclear Information System (INIS)

    Boyd, F.C.

    1981-09-01

    An overview of the regulatory framework and licensing process for nuclear power plants in Canada is given along with an outline of the evolution of the safety philosophy followed and some comments on how this philosophy and process could be applied by a country embarking on a nuclear power program

  10. Nuclear power reactor licensing and regulation in the United States

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1979-01-01

    The report is devoted to four subjects: an explanation of the origins, statutory basis and development of the present regulatory system in the United States; a description of the various actions which must be taken by a license applicant and by the Nuclear Regulatory Commission before a nuclear power plant can be constructed and placed on-line, an account of the current regulatory practices followed by the US NRC in licensing nuclear power reactors; an identification of some of the 'lessons learned' from the Three Mile Island accident and some proposed regulatory and legislative solutions. (NEA) [fr

  11. Licensing systems and inspection of nuclear installations

    International Nuclear Information System (INIS)

    1986-01-01

    The systems of each country member of the OECD is described according to a plan standardised to the extent possible, so as to facilitate comparison between the National systems. In most cases, the descriptions are supplemented by flow charts illustrating the steps in the licensing procedure and the intervention of the various bodies concerned

  12. De-licensing nuclear sites in the UK

    International Nuclear Information System (INIS)

    Robinson, I.F.

    2000-01-01

    The Health and Safety Executive (HSE) regulates nuclear safety on sites under civilian control in the United Kingdom (UK) via a nuclear site licence. From the time of granting such a licence a licensee is responsible for safety until the period of responsibility is ended by the HSE. HSE does this once it is of the opinion that there is no danger from ionising radiation from anything on the site. The process of ending the period of responsibility for the nuclear licensee is often called de-licensing. The paper outlines the UK law in relation to de-licensing and the liaison arrangements HSE has with the environment agencies. It goes on to describe the features the regulator expects to see in a submission for de-licensing. Some practicalities are discussed regarding judging whether levels of ionising radiation are sufficiently low to enable the removal of regulatory control and end the period of responsibility of a nuclear licensee for harm arising from ionising radiations from anything on the site. Land significantly contaminated with radioactive materials is considered to be radioactive waste and will be regulated accordingly, which necessarily precludes de-licensing of such areas. The author's views on numerical levels against which levels of radiation should be judged for de-licensing purposes are described. De-licensing results in the unconditional release of a site from nuclear licensing requirements, and it is noted that there is currently no provision in the UK for conditional release of a site; that is to say relaxed criteria cannot be invoked because of an intended use of the site, such as a factory or a car park. (author)

  13. Licensing of nuclear facilities according to the Bulgarian Act on the Safe Use of Nuclear Energy

    International Nuclear Information System (INIS)

    Stoyanova-Todorova, P.

    2004-01-01

    The new Bulgarian Act on the Safe Use of Nuclear Energy /Nuclear Act/ has replaced the former Act on the Use of Nuclear Energy for Peaceful Purposes. The new Nuclear Act covers the activities involving nuclear energy and sources of ionising radiation mainly by establishing a consistent licensing regime. About 13 regulations specifying the provisions of the Nuclear Act have been recently adopted by the Council of Ministers, the most important one being the Regulation on the Procedure for Issue of Licenses and Permits for the Safe Use of Nuclear Energy. The Chairman of the Nuclear Regulatory Agency (NRA) is authorised by the law to consider any application for issue of a license or a permit under the Bulgarian Nuclear Act. The procedure starts with an application, filed with the NRA, and continues about nine months. The final decision could be for issuing of the license or permit or a refusal for issuing the claimed document. The denial must be grounded and is subject to appeal. The Nuclear Act prescribes the conditions for issuing of two types of licensing documents (authorisations): licenses and permits. From a legal point of view the two types of licensing documents have one and the same nature - they are individual administrative acts according to the Bulgarian law. That is why there is no difference between them in terms of the issuing procedure. The difference between licenses and permits could be explained as follows: while a license is issued for reiterated activities, a permit is issued for non-reoccurring activities, this division being a specific feature of the Bulgarian Nuclear Act. In the field of nuclear facilities usage only one type of license is provided for by the Nuclear Act - a license for operation of a nuclear facility unit. For the rest of the activities issuing of permits is envisaged, those permits being in compliance with the main stages of the authorisation process formulated by the IAEA, following the step-by-step approach - siting, design

  14. Identification of licensing issues for SFR nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Choi, Yong Won; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    A conceptual design of sodium cooled fast reactor (SFR) in Korea has been developed by KAERI. An application for the design approval of a prototype SFR is scheduled in 2017. In order to prepare the licensing of a prototype SFR, KINS is developing the regulatory technologies for SFR since 2010. Fast reactors such as SFRs have fundamental differences in nuclear characteristics compared to thermal reactors such as LWRs. As a result, there are significant differences in reactivity feedback mechanism to assure the inherent safety of reactors. Especially, positive coolant density coefficient and void worth are main concern in passive safety argument. However, the current safety guidelines for nuclear facilities in Korea specify to regulate nuclear facilities targeting on LWRs, and therefore the development of regulatory guidelines reflecting SFR nuclear features is required. In this paper, the licensing issues for SFR nuclear safety, especially reactivity coefficients, are identified to derive the licensing issues and develop the regulatory review guidelines. In order to identify the issues, (1) the SFR nuclear characteristics and the p reapplication safety evaluation report of PRISM are reviewed, and (2) the applicability of guideline for LWR nuclear safety to SFR is evaluated.

  15. The licensing of nuclear power plants in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    In Brazil the governmental organization responsible for the licensing of NPPs is the Comissao Nacional de Energia Nuclear (CNEN), the Brazilian Regulatory Body. A description of CNEN's organization, responsabilities and working methods, as well as the present situation of the Brazilian NPPs undergoing licensing, has recently been presented. In this paper the experience gained by CNEN in the course of licensing Brazilian NPPs Units I and II is discussed. CNEN's present day technical competence and its future trends are analysed with regard to in-house capacity, foreign consultants and research contracts with Brazilian Universities. Finally, the immediate need for a Safety research programm in support of licensing is discussed. Manpower needs and major areas for such a programm are also indicated. (orig./RW)

  16. The work of the OECD Nuclear Energy Agency on safety and licensing of nuclear installations

    International Nuclear Information System (INIS)

    Strohl, P.

    1975-01-01

    The acceleration of nuclear power programmes in OECD Member countries is reflected in the emphasis given by OECD/NEA to its activities in nuclear safety and regulatory matters. Particular effort is devoted to work on radiation protection and radioactive waste management, safety of nuclear installations and nuclear law development. A Committee on the Safety of Nuclear Installations reviews the state of the art and identifies areas for research and co-ordination of national programmes. A Sub-Committee on Licensing collates information and data on licensing standards and practices of different countries with a view to considering problems of common interest. Comparative studies of various licensing systems and discussions between licensing authorities should help to improve regulatory control of nuclear installations for which there appears to be a need for internationally accepted standards in the long run. (author)

  17. Nuclear and environmental licensing process for a radioactive waste repository

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Carvalho Filho, Carlos A.; Branco, Otavio E.A.; Alves, Paulo R.R.; Santos, Rosana A.M.

    2009-01-01

    Maybe the greatest problem associated to the nuclear energy is what to do with the waste generated in the power plants. This question echoes in many people voices, every time that the nuclear energy is the subject in assignment. The long time that is necessary for the radioactive decay of some elements makes this issue a big challenge for the actual and future generations. Several environmental and nuclear aspects must be considered in this process, and the national and international legislation must be observed. The objective of the present work is to evaluate the applicability of the regulatory aspects of the Low and Intermediate Level Activity Waste Repository project, contemplating all the development phases, accomplishing a diagnosis of all the laws, norms and pertinent national regulations, observing the recommendations of the relevant international organs and the aspects of Nuclear and Environmental Licensing. Also, another goal is to discuss the compatibility of the application of these two licensing processes. (author)

  18. The impact of nuclear analysis on ITER design and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, Michael, E-mail: michael.oughlin@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115, Saint Paul Lez Durance (France); Polunovskiy, Eduard; Taylor, Neill [ITER Organization, Route de Vinon sur Verdon, 13115, Saint Paul Lez Durance (France)

    2012-08-15

    The complexity of nuclear analysis on the design components of ITER is discussed. These analyses include the determination of several nuclear responses and it is shown that these results are not only relevant to the component under examination but have implications for the design of many other, often remote, systems. The contribution of nuclear analysis to the licensing process is discussed. An example is given of how this complexity means that the there is a large set of complementary analyses required to address the concerns of the licensing authorities. It also means that the nuclear analysis must be co-ordinated to ensure that the results are self-consistent and provide an integrated solution.

  19. Licensing of New Nuclear Power Plants in Canada

    International Nuclear Information System (INIS)

    Schwarz, Garry; Miller, Doug

    2011-01-01

    The regulatory process for new power plant licensing in Canada, from receipt of the initial application to commercial operation, can be divided into three phases: - Environmental Assessment (EA) and License to Prepare Site; - License to Construct; and - License to Operate. The Nuclear Safety and Control Act (NSCA) does not have provisions for combined licenses for site preparation, construction, or operation. Separate licenses must, therefore, be granted for each phase, and would be issued in sequence. However, applications to prepare a site, to construct and to operate a new nuclear power plant could be assessed in parallel. The total duration from the application for the License to Prepare Site to the issuance of the License to Operate (which is a prerequisite for first fuel load) has been established as 9 years subject to certain factors. To help facilitate this timeline, the CNSC has undertaken an aggressive program of documenting regulatory practices, requirements and guidance to assist applicants in submitting complete applications. Working level procedures to assist CNSC staff in their review of submissions are also under development. Extensive program and project management has been introduced to ensure that timelines will be achieved. In parallel with the above activities, regulatory oversight measures to be employed during site preparation activities and plant construction and commissioning are also being developed. On the international front, the CNSC is participating in the MDEP program to leverage the resources and knowledge of other national regulatory authorities in reviews the CNSC is undertaking. The CNSC also participates in IAEA and other international activities to utilize/adapt international practices as appropriate in Canada. (authors)

  20. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    Science.gov (United States)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  1. Psychological characteristics of licensed nuclear power plant operators

    International Nuclear Information System (INIS)

    Sajwaj, T.; Ford, T.; McGee, R.K.

    1987-01-01

    The safe production of electricity by nuclear power plants has been the focus of considerable attention. Much of this concern has been focused on equipment and procedural issues, with less attention to the psychological factors that affect the operations staff of the plants, i.e., those individuals who are most directly responsible for a plant's operations. Stress and type A qualities would be significant for these individuals because of their relationships to job performance and health. Of equal significance would be work-related factors, such as job involvement and work pressure. Also of interest would be hostile tendencies because of the need for cooperation and communications among operations staff. Two variables could influence these psychological factors. One is the degree of responsibility for a plant's nuclear reactors. The individuals with the greatest responsibility are licensed by the US Nuclear Regulatory Commission (NRC). There are also individuals with less direct responsibilities who are not licensed. A second variable is the operating status of the plant, whether or not the plant is currently producing electricity. Relative to ensuring the safe operation of nuclear power plants, these data suggest a positive view of licensed operators. Of interest are the greater stress scores in the licensed staff of the operating plant in contrast with their peers in the nonoperating plant

  2. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    International Nuclear Information System (INIS)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z.

    2015-01-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  3. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  4. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  5. 75 FR 4877 - In the Matter of Beta Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective...

    Science.gov (United States)

    2010-01-29

    ... Gamma Nuclear Radiology; Confirmatory Order Modifying License (Effective Immediately) I Beta Gamma Nuclear Radiology (BGNR) (Licensee) is the holder of medical License No. 52-25542-01, issued by the U.S...

  6. Licensing procedure, nuclear codes and standards in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1980-01-01

    The present paper deals with legal background of licensing in nuclear technology and atomic energy use, licensing procedures for nuclear power plants and with codes, standards and guidelines in the Federal Republic of Germany. (orig./RW)

  7. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  8. CEQ regulations called peril to nuclear licensing process

    International Nuclear Information System (INIS)

    O'Neill, J.V.

    1979-01-01

    Court challenges are expected over regulations of the Council on Environmental Quality (CEQ) that were designed to improve nuclear-licensing decisions, but that have actually changed the meanings of National Environmental Policy Act (NEPA) regulations. The legal implications of these changes could, unless resolved, make the licensing process for nuclear facilities even more uncertain. Agency comments are thought to be critical, although the CEQ has declined to release them, and some question the Council's legality. The Nuclear Regulatory Commission faults the CEQ regulations for revising existing law, being inconsistent with the responsibilities of an independent regulatory body, and extending the CEQ's authority beyond the role assigned by NEPA and the President's Executive Order

  9. Public information and licensing procedures for nuclear installations. European experience

    International Nuclear Information System (INIS)

    Mayoux, J.C.; Chevillard, F.; Mutschler, U.; Stubbe, C.

    1981-10-01

    This paper reviews the licensing procedures for nuclear installations in various European countries and examines the form, content and methods selected for information and consultation of the public. The author stresses the importance of this stage in the procedure, both for the nuclear operator and the public authorities, given the population's concern about the environment. He concludes that, irrespective of its complexity, the nuclear field cannot remain the concern of a few initiates competent to take decisions and that, consequently, this implies creation of new information systems to meet the public's desire to participate more directly in the process. (NEA) [fr

  10. The licensing practice on nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Moon, S. P.

    1994-01-01

    The evolution of Korean regulatory system has tightly coupled with development ot Korean nuclear power program. The nuclear power plant licensing has become a major regulatory function of the government when the construction of the Kori NPP Unit 1 started in early 1970s. During this period, domestic laws and regulations applicable to the licensing of NPP were not yet fully developed. Therefore the vendor countries' laws and regulations were applied as mandatory requirement. Beginning in the early 19808, component approach was used and contracts were awarded separately for major components of the plants, thus enabling more domestic industries to participate in the projects. The two-step licensing system was incorporated into the law. In the third phase from 1987, major efforts have been concentrated on the maximum participation of local industries. The overriding priority for selecting suppliers was the condition of higher nuclear technology transfer to Korea. The Korea Institute of Nuclear Safety (KINS) was established in 1990 as an independent regulatory expert organization

  11. Selection/licensing of nuclear power plant operators

    International Nuclear Information System (INIS)

    Saari, L.M.

    1983-07-01

    An important aspect of nuclear power plant (NPP) safety is the reactor operator in the control room. The operators are the first individuals to deal with an emergency situation, and thus, effective performance on their part is essential for safe plant operations. Important issues pertaining to NPP reactor operators would fall within the personnel subsystem of our safety system analysis. While there are many potential aspects of the personnel subsystem, a key first step in this focus is the selection of individuals - attempting to choose individuals for the job of reactor operator who will safely perform the job. This requires a valid (job-related) selection process. Some background information on the Nuclear Regulatory Commission (NRC) licensing process used for selecting NPP reactor operators is briefly presented and a description of a research endeavor now underway at Battelle for developing a valid reactor operator licensing examination is included

  12. Probabilistic safety analysis : a new nuclear power plants licensing method

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de.

    1982-04-01

    After a brief retrospect of the application of Probabilistic Safety Analysis in the nuclear field, the basic differences between the deterministic licensing method, currently in use, and the probabilistic method are explained. Next, the two main proposals (by the AIF and the ACRS) concerning the establishment of the so-called quantitative safety goals (or simply 'safety goals') are separately presented and afterwards compared in their most fundamental aspects. Finally, some recent applications and future possibilities are discussed. (Author) [pt

  13. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF... transport. (a) A general license is issued to any person to possess formula quantities of strategic special...

  14. 78 FR 26812 - University of California, Irvine; License Renewal for University of California, Irvine Nuclear...

    Science.gov (United States)

    2013-05-08

    ... COMMISSION University of California, Irvine; License Renewal for University of California, Irvine Nuclear... Finding of No Significant Impact for the License Renewal for University of California, Irvine Nuclear... License No. R-116 for the Regents of the University of California (the licensee) which would authorize...

  15. Licensing new nuclear energy plants in the 90s

    International Nuclear Information System (INIS)

    Miller, J.H. III; Bishop, R.W.

    1992-01-01

    This paper reports that the framework for nuclear regulation in the United States was established by Congress in the Atomic Energy Act of 1954 (AEA). Under the AEA, the nuclear power program in the United States was launched with a technology just being developed and a nuclear power industry in its infancy. The regulations fashioned by the Atomic Energy Commission under the AEA took into account the evolving state of the technology and the emerging industry in those formative years. The process required a utility desiring to build and operate a nuclear power plant to obtain two separate licenses: one authorizing construction and one authorizing operation. At the construction permit stage, generally only preliminary design information was available and a construction permit could be issued with as little as ten to fifteen percent of the facility design completed. Thereafter, design completion, along with research and development required to address open technical issues, progressed in tandem with construction in what is fairly characterized as a design-as-you-go process. Only as plant construction approached completion was the adequacy of the final design evaluated in connection with the operating license review process

  16. Licensing procedures and siting problems of nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Saito, Osamu.

    1981-10-01

    This paper describes the legislative and regulatory framework for nuclear power plant licensing in Japan and the different stages in the licensing procedure. The role and responsibilities of the authorities competent for the different types of nuclear facilities (power generation, ship propulsion and research) are also reviewed. The Annexes to the paper contain charts of the administrative structure for nuclear activities, the licensing procedure and nuclear facilities. (NEA) [fr

  17. Licensing requirements for backfit incinerators at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Dodge, R.L.; Edwards, C.W.; Wilson, B.

    1984-01-01

    This paper, and the project it reports on, examines the licensing requirements for backfit incinerators at operating power plants. Analysis was made of incinerating low-level dry radioactive waste in a backfit incinerator at an existing power plant. The operation of the incinerator has been studied from viewpoints of operator safety, consequence of system failures including worst case scenarios, and radiological impact for normal and upset conditions. Analysis showed that releases under all normal operating or upset conditions are an extremely small fraction of the applicable limits. Nuclear Regulatory Commission review concluded that the document produced as a result of this project was useful as a design guide and of value in licensing backfit incinerators. 1 table

  18. 77 FR 12333 - Special Nuclear Material License Amendment From Louisiana Energy Services, LLC, for the National...

    Science.gov (United States)

    2012-02-29

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Special Nuclear Material License Amendment From Louisiana Energy Services, LLC, for the National Enrichment Facility, Hobbs, NM AGENCY: Nuclear Regulatory Commission. ACTION: Publication of environmental...

  19. Assessment of specialized educational programs for licensed nuclear reactor operators

    International Nuclear Information System (INIS)

    Melber, B.D.; Saari, L.M.; White, A.S.; Geisendorfer, C.L.; Huenefeld, J.C.

    1986-02-01

    This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation among individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs

  20. Nuclear knowledge portal for supporting licensing and controlling nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, E.; Braga, F.

    2005-01-01

    The knowledge economy is pivotal for moving the wealth and development of traditional industrial sectors - abundant in manual labour, raw materials and capital - to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organisation. Therefore, the objective of this paper is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN. (author)

  1. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, M.E.; Braga, M.F.

    2004-01-01

    The Knowledge Economy is pivotal for moving the wealth and development of traditional industrial sectors - abundant in manual labor, raw materials and capital - to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organization. Therefore, the objective of this article is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN. (author)

  2. Licensing of spent nuclear fuel dry storage in Russia

    International Nuclear Information System (INIS)

    Kislov, A.I.; Kolesnikov, A.S.

    1999-01-01

    The Federal nuclear and radiation safety authority of Russia (Gosatomnadzor) being the state regulation body, organizes and carries out the state regulation and supervision for safety at handling, transport and storage of spent nuclear fuel. In Russia, the use of dry storage in casks will be the primary spent nuclear fuel storage option for the next twenty years. The cask for spent nuclear fuel must be applied for licensing by Gosatomnadzor for both storage and transportation. There are a number of regulations for transportation and storage of spent nuclear fuel in Russia. Up to now, there are no special regulations for dry storage of spent nuclear fuel. Such regulations will be prepared up to the end of 1998. Principally, it will be required that only type B(U)F, packages can be used for interim storage of spent nuclear fuel. Recently, there are two dual-purpose cask designs under consideration in Russia. One of them is the CONSTOR steel concrete cask, developed in Russia (NPO CKTI) under the leadership of GNB, Germany. The other cask design is the TUK-104 cask of KBSM, Russia. Both cask types were designed for spent nuclear RBMK fuel. The CONSTOR steel concrete cask was designed to be in full compliance with both Russian and IAEA regulations for transport of packages for radioactive material. The evaluation of the design criteria by Russian experts for the CONSTOR steel concrete cask project was performed at a first stage of licensing (1995 - 1997). The CONSTOR cask design has been assessed (strength analysis, thermal physics, nuclear physics and others) by different Russian experts. To show finally the compliance of the CONSTOR steel concrete cask with Russian and IAEA regulations, six drop tests have been performed with a 1:2 scale model manufactured in Russia. A test report was prepared. The test results have shown that the CONSTOR cask integrity is guaranteed under both transport and storage accident conditions. The final stage of the certification procedure

  3. 77 FR 30559 - Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2012-05-23

    ... COMMISSION Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to..., notice is hereby given that an Atomic Safety and Licensing Board (Board) is being established to preside over the following proceeding: Entergy Nuclear Operations, Inc. (Pilgrim Nuclear Power Station) A...

  4. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Science.gov (United States)

    2010-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  5. Licensing of nuclear power plants, immediate implementation, constitutional appeal

    International Nuclear Information System (INIS)

    Winters, K.P.

    1980-01-01

    The decision relates to part of the licensing procedure of the Muelheim-Kaerlich Nuclear Power Station. The subject of the complaint of unconstitutionality is the immediate execution of the 7th clearance within the framework of the 1st partial permit, which had been confined by the Rhineland-Palatinate Higher Administrative Court in a decision of May 2, 1977 (DVBl. 1977, p. 730). The Federal Constitutional Court regards the complaint of unconstitutionality as being unfounded. The court expresses itself especially on the assessment, under consnitutional aspects, of the material rules and rules of procedure pertaining to the licensing of nuclear power plants and of major changes in such plants. Moreover, the dissenting opinions of Justices Dr. Simon and Professor Heussner are quoted in excerpts. The comment by K.- P. Winters regards as the nucleus of the decision and of the dissenting vote the statements about the guarantee functions procedural rules have in ensuring effective protection of human rights. In his view, these statements of constitutional law are of fundamental significance for problems of atomic law and radiation protection law. (HSCH) [de

  6. Geoprocessing semiautomated applied to licensing of nuclear facilities

    International Nuclear Information System (INIS)

    Oliveira, Aline Fabiane Gonçalves de

    2017-01-01

    In recent decades, Brazilian environmental legislation has undergone considerable evolution. This fact occurs concurrently with changes related to environmental studies, which aim increasingly to guarantee sustainability and environmental balance. Thus, it is important to use technological resources to optimize the environmental studies involved in the licensing processes. The present work sought to analyze and direct the application of geotechnologies (Geoprocessing) in environmental studies of the Local Report (RL) of the Center for the Development of Nuclear Technology (CDTN). The proposal to apply the Geoprocessing tools and the possibilities inherent to the Geographic Information Systems (GIS) technology, as a tool to subsidize the environmental studies in accordance with the requirements of the RL was aimed at contributing to the modernization of the stages involved in the process of Nuclear licensing, such as in the structuring and execution of environmental studies, as well as in the activities of environmental monitoring, always considering the precepts in force in the laws and resolutions and standards in force of the National Nuclear Energy Commission (CNEN) for nuclear licensing. In order to achieve the objective, the ArcGis application was adopted and one of its analytical tools Model Builder. This allowed the macro (schematization) of the methodology from the GIS tools applied, presenting as an advantage the efficiency and optimization of the execution time of the procedures in situations where it is necessary to apply the same routine of tasks, besides being editable, Which provides possibilities for adaptations and improvements. In order to achieve this objective, the applicability of the methodology was highly feasible, the model developed by Model Builder / ArcMap, provided a semi-automated process, and provided a flowchart that depicts the procedure to be performed in order to reach the Final process to make inferences and analyzes with greater

  7. The importance of environmental education in the process of nuclear and environmental licensing of nuclear facilities

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Ribeiro, Katia Maria Bruno

    2009-01-01

    Today, there is a thread with regard to the global environment. To reduce the environmental impact due to spending supplies to meet the basic needs of the global population. Can be considered as the power of these needs and in this context, the environmental impact occurs by the use of fossil fuels and loss of land for use of water resources. To minimize these impacts, governments are establishing appropriate laws towards the use of renewable energy. However it appears that there is still a great distance between the established law and implementation in practice. In this context nuclear energy is an attractive option, both economic and environmental. The facilities that are somehow associated with nuclear power plants are classified as radioactive or nuclear. These facilities are subject to two licensing procedures: Environmental (by IBAMA) and Nuclear (by CNEN). Nuclear installations such as nuclear power plants Angra 1 and 2, deposits and tailings facilities of the nuclear fuel cycle in Rezende that are more the attention of the population. As part of these processes are reports of analysis of safety and environmental impacts and socio-economic (EIA/RIMA RFAS), which are available to the public and then discussed at public hearings, where there is the opportunity for questions on these reports. These questions are mainly related with the social-environmental and economic due to construction and operation of these facilities. This work is a research, discussing the law, identifying the difficulties in the licensing process and presents a discussion on the importance of environmental education at all school levels, for adult audiences and is a connection between the environmental education and process of environmental licensing and nuclear, showing how the popular consciousness more informed can better discuss issues associated with these licenses, understand the advantages and disadvantages and obtain benefits. (author)

  8. Licensing Air and Transboundary Shipments of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Komarov, S.V.; Budu, M.E.; Derganov, D.V.; Savina, O.A.; Bolshinsky, I.M.; Moses, S.D.; Biro, L.

    2016-01-01

    Since 1996 the IAEA TS-R-1 regulation included new requirements applicable to transport of fissile materials by air. The later 2005 and 2009 editions confirmed the validity of those provisions. Despite the fact that the IAEA TS-R-1 allows for air shipments of SNF in Type B and Type C packages, the examples of such shipments are not abundant. Nuclear regulatory bodies and transport safety experts are cautious about air shipments of SNF. Why so? What are the risks? What are the alternatives? In this new regulatory framework, in 2009, two air shipments in Type B packages of Research Reactor (RR) Spent Nuclear Fuel (SNF) from Romania and Libya were performed under the U.S. DOE/NNSA RRRFR Program. The first licensing process of such shipment brought up many questions about package and shipment safety from the licensing experts' side and so the scope of analyses exceeded the requirements of IAEA. Under the thorough supervision of Rosatom and witnessed by DOE and CNCAN, all questions were answered by various strength analyses and risk evaluations. But the progress achieved didn't stop here. In 2010-2011, an energy absorption container (EAC) with titanium spheres as absorbers based on the SKODA VPVR/M cask was designed as the first Type C package in the world destined for RR SNF, currently under approval process. At the same time, intense preparations for the safe removal of the Russian-origin damaged RR SNF from Serbia, Vinca were in progress. The big amount of SNF and its rapidly worsening condition imposed as requirements to organize only one shipment as fast as possible, i.e. using at the maximum extent the entire experience available from other SNF shipments. The long route, several transit countries and means of transport, two different casks, new European regulations and many other issues resulted for the Serbian shipment in one of the most complex SNF shipments’ licensing exercise. This paper shows how the international regulatory framework ensures the

  9. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, Elizabeth; Braga, Fabiane

    2004-01-01

    importance of keeping the intellectual capital in the organizations that is to work with the knowledge from the collaborators. In Brazil still have many authors that discusses this concept and we adopt for this paper the definition form Cavalcanti where is the concept 'intellectual capital' refers either to the capacity, ability or experience, as well as to the formal education that the collaborators members have and add to the Organization. The 'intellectual capital' is an intangible asset, which belongs to the individual himself, thus it might be utilized by the organizations in order to generate value. The development and preservation of this intellectual capital is made through the implementation of forums of discussion, workshops or knowledge portals where the organization's collaborators share their experiences. Nevertheless, to assimilate and to develop the 'intellectual capital' does not add value to the organization: It is necessary to keep it. And one way to do so is to create desirable and encouraging work environments, to promote a sharing management and to offer programs of profits sharing. The objective of this paper is to describe how Brazilian Nuclear Energy Commission - CNEN has been developing a nuclear knowledge portal, focused in the Radiation and Safety Nuclear area. The Brazilian Nuclear Energy Commission (CNEN) is a federal autarchy created in October 10 of 1956, as a superior agency of planning, guiding, supervision and inspection in nuclear area being also the body entitled to establish standards and regulations on radiological protection, to issue licenses (permissions) and to survey and control the nuclear activities in Brazil. CNEN also develops researches related to the use of nuclear techniques in benefit of the society. The Radiation and Safety Nuclear directorate of CNEN acts, mainly, in the licensing of nuclear and radioactive installations. The people who work at this area recognize the importance of management and sharing the accumulated

  10. Licensing and decommissioning of nuclear installations -interpretation and further development of legal provisions by licensing authorities and by law courts

    International Nuclear Information System (INIS)

    Nobbe, U.

    1992-01-01

    Working Group 1, from this conference, whose brief was to deal with ''Licensing and Decommissioning of Nuclear Installations'', has based its results on the findings elaborated at earlier International Nuclear Law Association conferences, especially on the activities of Working Group 1 of Nuclear Inter Jura'85 (Constance), Nuclear Inter Jura'87 (Antwerp), and Nuclear Inter Jura'89 (Tokyo). Since then the Working Group has investigated the legal framework of licensing and decommissioning of nuclear installations on the basis of an international comparison. The legal and technical aspects of decommissioning measures are becoming more and more important and, consequently, continue to be topical subjects, both nationally and internationally. In the past, the Working Group had looked into the general aspects of the legal framework and its practical implementation; this time, the Group's deliberations focussed on some points of detail within these overall subjects. (author)

  11. Licensing method for new nuclear power plant: A study on decision making modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, N; Ohaga, E. O.; Jung, J. C. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2012-10-15

    This work provides a study on decision making modeling for a licensing method of a new nuclear power plant. SWOT analysis provides the licensing alternatives attributes, then the expectation from either COL or two step licensing method is decided by inputting the output from the Hurwitz mathematical model. From the analysis, COL shows the best candidate for both optimistic and pessimistic conditions.

  12. Licensing method for new nuclear power plant: A study on decision making modeling

    International Nuclear Information System (INIS)

    Ramli, N; Ohaga, E. O.; Jung, J. C.

    2012-01-01

    This work provides a study on decision making modeling for a licensing method of a new nuclear power plant. SWOT analysis provides the licensing alternatives attributes, then the expectation from either COL or two step licensing method is decided by inputting the output from the Hurwitz mathematical model. From the analysis, COL shows the best candidate for both optimistic and pessimistic conditions

  13. Examination of the conditions governing nuclear licensing, supervision, and backfitting of installations

    International Nuclear Information System (INIS)

    Papier, H.J.

    1991-01-01

    The expert opinion examines the following subjects: the licensing requirements and conditions as defined in the Atomic Energy Act, the Radiation Protection Ordinance and the X-ray Ordinance, their relation to each other and differences that would need a systematic coordination; licensing requirements and the term 'nuclear installation', the discretionary powers of a licensing authority; licensing and other official authorizations and questions arising therefrom, as e.g. concentrating effects; problems in connection with plan approval; the procedure of licensing by stages; prevention of damage by a dynamic system of precautionary measures and the backfitting of nuclear installations; licensing in connection with backfitting and the problem of a participation of the public in the licensing procedure; decommissioning of nuclear installations. (HSCH) [de

  14. The licensing procedure for construction and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1980-03-01

    The licensing procedure for the construction and operation of the nuclear power plants in Brazil is analysed, according to the International Atomic Energy Agency orientation. The risks related to the nuclear energy is also emphasized. (A.L.) [pt

  15. Risk and environmental impact assessment: nuclear and environmental licensing interface

    International Nuclear Information System (INIS)

    Costa, Eduardo M.; Monteiro, Iara A.

    1997-01-01

    The main aims of this paper are the identification and discussion of interfaces and application of common concepts in the existing nuclear and environmental licensing procedures. Risk and impact assessment of nuclear electricity generation are two of these concepts which are discussed detail. The risk concept, which had initially focused on engineering projects, has been extended to many other areas of human activity. Risk resulting from the use of ionization radiation has been associated to the dose for the critical members of the public. Therefore, radiation protection applies basic dose limits which are established in national and international recommendations. These recommendations are increasing the emphasis to keep all the exposures to ionizing radiation as low as reasonable achievable, economical and social factors being taken into account. On the other hand, environmental impact assessment has been used as a tool in planning and decision-making processes, thus including environmental concern in the discussion of social and economical development strategies. This paper aims to discuss the association of these two concepts by presenting the procedures of control of radiological impact during normal operation of a nuclear power plant and the various forms of risk communication to the public in the case of events occurrence. (author). 13 refs

  16. Simulator training and licensing examination for nuclear power station operator

    International Nuclear Information System (INIS)

    Xu Pingsheng

    2007-01-01

    For the recruitment, training and position qualification of the simulator instructors and feedback of training effect, the management approaches are formulated in 'The System for Simulator Training and Licensing Examination of Daya Bay Nuclear Power Station Operators'. The concrete requirements on the professional knowledge, work experience and foreign language ability of a simulator instructor are put forward. The process of instructor training is designed. The training items include the trainer training, pedagogy training, time management training, operation activities training during outage of unit, 'shadow' training and on-the-jot training on simulator courses. Job rotation is realized between simulator instructor and licensing personnel on site. New simulator instructor must pass the qualification identification. After a duration of 2 years, re-qualification has to be carried out. On the basis of the operator training method introduced from EDF (electricite De France), some new courses are developed and the improvement on the initial training, retaining courses, the technical support and the experience feedback by using the simulator is done also. (authors)

  17. Economic implications of nuclear plant license renewal in the U.S

    International Nuclear Information System (INIS)

    Smith, L.J.

    2001-01-01

    The NRC and the nuclear industry struggled for many years with the development of a viable license renewal rule. Now that a workable rule appears to have been developed, and the first license renewal applicants have received renewed licenses, the floodgates have opened and a large number of nuclear utilities have announced intentions to seek renewed NRC operating licenses. In this time when profound changes are being experienced in the electric generation markets in the United States, nuclear plant license renewal can have several economic effects that should be considered by utilities prior to the pursuit of an NRC license renewal. This paper examines some of the factors that may be affected by the prospect of an additional 20-year operating life of a nuclear plant. (author)

  18. Economic implications of nuclear plant license renewal in the U.S

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.J. [Esq., P.E., Wise Carter Child and Caraway, P.A. (United States)

    2001-07-01

    The NRC and the nuclear industry struggled for many years with the development of a viable license renewal rule. Now that a workable rule appears to have been developed, and the first license renewal applicants have received renewed licenses, the floodgates have opened and a large number of nuclear utilities have announced intentions to seek renewed NRC operating licenses. In this time when profound changes are being experienced in the electric generation markets in the United States, nuclear plant license renewal can have several economic effects that should be considered by utilities prior to the pursuit of an NRC license renewal. This paper examines some of the factors that may be affected by the prospect of an additional 20-year operating life of a nuclear plant. (author)

  19. A new approach to the nuclear power plant site licensing

    International Nuclear Information System (INIS)

    Kidron, A.A.

    1996-01-01

    The Israel Electric Corporation Ltd.(IEC) conducted a survey to determine the geotechnical suitability of the Shivta Site for the purpose of erecting a Nuclear Power Station and presented the results in a Preliminary Safety Analysis Report (PSAR) to the Licensing Division of the Israel Atomic Energy Commission (LD). The studies for selecting a site in the NW Negev were conducted by multi-disciplinary teams of Israeli and US professionals, beginning in 1982, over a twelve-year period. The investigations involved comprehensive geological, geophysical, geotechnical, hydrological, as well as geomorphic and pedologic evaluations of the region and the then- proposed site locale. The prior studies were completed using highly advanced and modern tools and approaches and provided a significant amount of information related to the tectonic and seismic characteristics of the NW Negev region. (author)

  20. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Science.gov (United States)

    2011-12-19

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL; ASLBP No. 09-879-04-COL-BD01] Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2...

  1. 75 FR 50009 - Babcock & Wilcox Nuclear Operations Group, Inc.; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2010-08-16

    ... COMMISSION Babcock & Wilcox Nuclear Operations Group, Inc.; Establishment of Atomic Safety and Licensing... Safety and Licensing Board (Board) is being established to preside over the following proceeding: Babcock & Wilcox Nuclear Operations Group, Inc. (Lynchburg, VA Facility). This proceeding concerns an Order...

  2. 77 FR 22362 - Exemption Requests for Special Nuclear Material License SNM-362, Department of Commerce...

    Science.gov (United States)

    2012-04-13

    ... Nuclear Material License SNM-362, Department of Commerce, Gaithersburg, MD AGENCY: Nuclear Regulatory... Commerce, National Institutes of Standards and Technology (NIST) in Gaithersburg, Maryland. NIST requested... within the Department of Commerce. The SNM license was renewed in 1979, 1985, 1991, and 1997. The current...

  3. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Science.gov (United States)

    2010-01-14

    ... COMMISSION Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment... June 15, 2009, from Constellation Energy (Constellation) to amend its Special Nuclear Material License... will remain the same for this action. An NRC review, documented in a letter to Constellation dated July...

  4. Nuclear regulation. License renewal questions for nuclear plants need to be resolved

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Kruslicky, Mary Ann; McDowell, William D. Jr.; Coleman, Robert L.

    1989-04-01

    A December 1986 pipe rupture at Virginia Power's Surry unit 2 nuclear power plant injured eight workers; four later died. As a result of this accident, Representative Edward J. Markey requested GAO to examine the Surry accident and assess the problems confronting aging nuclear plants. In March 1988 we reported our findings concerning the accident and a July 1987 incident at the Trojan nuclear plant in Oregon. This report addresses problems confronting aging nuclear plants by examining the Nuclear Regulatory Commission's (NRC) program to develop a license renewal policy and accompanying regulations, and the initiatives underway by the Department of Energy (DOE) and the electric utility industry to extend the operating lives of these plants. Nuclear power has become second only to coal as the largest producer of electricity in the United States. The 110 nuclear plants currently in service are operated by 54 utilities, provide about 20 percent of the nation's electricity, and represent a capital investment of over $200 billion. The Atomic Energy Act authorizes NRC to issue nuclear plant operating licenses for up to 40 years and provides for license extensions beyond the initial operating period. The act does not, however, stipulate the criteria for evaluating a utility request to operate a nuclear plant longer than 40 years. The oldest operating license currently in effect will expire in the year 2000. According to NRC, about one-half of the existing operating licenses will terminate by the year 2015, and most licenses will expire by about 2030. Many utilities will have to decide in the early 1990s whether to continue operating older nuclear plants or to construct new generating capacity. A clear understanding of the terms and conditions governing the license renewal process will be a key element in deciding how to meet future electricity demand. Although NRC has developed 3 possible license renewal policy options and identified 15 areas of regulatory uncertainty that

  5. Licensing process characteristics of Small Modular Reactors and spent nuclear fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Söderholm, Kristiina, E-mail: kristiina.soderholm@fortum.com [Fortum Power (Finland); Tuunanen, Jari, E-mail: jari.tuunanen@fortum.com [Fortum Power (Finland); Amaba, Ben, E-mail: baamaba@us.ibm.com [IBM Complex Systems (United States); Bergqvist, Sofia, E-mail: sofia.bergqvist@se.ibm.com [IBM Rational Software (Sweden); Lusardi, Paul, E-mail: plusardi@nuscalepower.com [NuScale Power (United States)

    2014-09-15

    Highlights: • We examine the licensing process challenges of modular nuclear facilities. • We compare the features of Small Modular Reactors and spent nuclear fuel repository. • We present the need of nuclear licensing simplification. • Part of the licensing is proposed to be internationally applicable. • Systems engineering and requirements engineering benefits are presented. - Abstract: This paper aims to increase the understanding of the licensing processes characteristics of Small Modular Reactors (SMR) compared with licensing of spent nuclear fuel repository. The basis of the SMR licensing process development lies in licensing processes used in Finland, France, the UK, Canada and the USA. These countries have been selected for this study because of their various licensing processes and recent actions in the new NPP construction. Certain aspects of the aviation industry licensing process have also been studied and selected practices have been investigated as possibly suitable for use in nuclear licensing. Suitable features for SMR licensing are emphasized and suggested. The licensing features of the spent nuclear fuel deep repository along with similar features of SMR licensing are discussed. Since there are similar types of challenges of lengthy licensing time frames, as well as modular features to be taken into account in licensing, these two different nuclear industry fields can be compared. The main SMR features to take into account in licensing are: • Standardization of the design. • Modularity. • Mass production. • Serial construction. Modularity can be divided into two different categories: the first category is simply a single power plant unit constructed of independently engineered modules (e.g. construction process for Westinghouse AP-1000 NPP) and the second one a power plant composed of many reactor modules, which are manufactured in factories and installed as needed (e.g. NuScale Power SMR design). The deep underground repository

  6. U.S. regulatory requirements for nuclear plant license renewal: The B and W Owners Group License Renewal Program

    International Nuclear Information System (INIS)

    Staudinger, Deborah K.

    2004-01-01

    This paper discusses the current U.S. Regulatory Requirements for License Renewal and describes the Babcock and Wilcox Owners Group (B and WOG) Generic License Renewal Program (GLRP). The B and W owners, recognizing the need to obtain the maximum life for their nuclear generating units, embarked on a program to renew the licenses of the seven reactors in accordance with the requirements of the Atomic Energy Act of 1954 and further defined by Title 10 of the Code of Federal Regulation Part 54 (10 CFR 54). These reactors, owned by five separate utilities, are Pressurized Water Reactors (PWR) ranging in net rated capacity from approximately 800 to 900 MW. The plants, predominately constructed in the 70s, have USNRC Operating Licenses that expire between 2013 to 2017. (author)

  7. The nuclear licensing and supervisory procedures for nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1982-02-01

    A combined system has been developed in the Federal Republic of Germany: the States execute the Atomic Energy Act on behalf of the Federal Government. Despite these differences, the safety requirements and the safety standard achieved vary only insignificantly, as a result of a world-wide communication and of international cooperation. The legal prerequesites for the German nuclear licensing procedures have been established about 20 years ago, and, by a number of amendments have been adapted to new perceptions and developments. Several supplementary ordinances, due to further developments in nuclear technology, are being prepared. The work on associated technical provision, which had been neglected for a long time, has in recent years been tackled systematically and should, before long, lead to a comprehensive programme of safety standards, which simplifies and expedites the nuclear licensing procedures. Essential features of the licensing procedure are the phased structure and the division into intermediate steps which render it possible to adapt the safety requirements to the advancing state of science and technology. The responsible authorities call in experts for the safety verification of the application documents. It is the task of these experts to make assessments and to conduct quality examinations in the manufacturing plants and at the site, and to carry out recurrent tests. The public is involved by the announcement of the projects, the display of the documents and by the opportunity to raise objections during the licensing procedure. Licenses granted can be contested before the administrative courts. This procedure paves the way for the achievement of a satisfactory balance between private and public interests. (orig./HP)

  8. Conceptual Design of On-line Based Licensing Review and Assesment System of Nuclear Installations and Nuclear Materials ('PRIBEN')

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. There are only three research reactors, one nuclear fuel fabrication plant for research reactors, and one experimental fuel fabrication plant for nuclear power, one isotope production facility and some other research facilities. All the facility is under Nuclear Energy Regulatory Agency (BAPETEN) controlling through regulation, licensing and inspection. The organizations operation submits licensing application to BAPETEN before utilizing the facility. According to the regulation before BAPETEN give license they perform review and assessment for the utility application. Based on the review and assessment result, BAPETEN may stipulate, reject, delay or terminate the license. In anticipation of expansion of the nuclear program in Indonesia, BAPETEN should have an integrated and updated system for review and asses the licensing application. For this reason, an expert system for the review and asses the licensing application, so-called PRIBEN (Perizinan Reaktor, Instalasi dan Bahan Nuklir/Licensing of Reactor, Nuclear Installations and Nuclear Materials), is developed which runs on the online-based reality environment

  9. 78 FR 71675 - License Amendment Application for Vermont Yankee Nuclear Power Station

    Science.gov (United States)

    2013-11-29

    ... Vermont Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: License amendment... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have... Vermont Yankee Nuclear Power Station, located in Windham County, VT. The proposed amendment would have...

  10. 10 CFR 110.21 - General license for the export of special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR... per year to any one country. (2) Special nuclear material in fuel elements as replacements for damaged...

  11. Recent developments in Canadian nuclear power plant licensing practices

    International Nuclear Information System (INIS)

    Marchildon, P.

    1985-06-01

    This paper examines the dominant factors which have influenced the safety evaluation and licensing process of current 600 MW reactors. It describes possible modifications to the process which are being considered for the licensing of a second 600 MW reactor at Point Lepreau. The key element is a firm licensing agreement covering the entire licensing cycle, to be established between the proponent and the AECB before a construction licence is issued. Progress accomplished to date in reaching such an agreement is described

  12. The comparison of license management procedure for nuclear power plant in China and United States

    International Nuclear Information System (INIS)

    Yu Zusheng

    2006-01-01

    'Tow steps' license management procedure for nuclear power plant has been performed bas- ted on the requirement of 10CFR Part50-DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES in United States since last century fifties. In order to ulterior reduce the risk of investment and technical for new construction nuclear power plants, new regulations 'One step' license management procedure-10CFR Part52-EARLY SITE PERMITS; STANDARD DESIGN CERTIFICATIONS; AND COMBINED LICENSES FOR NUCLEAR POWER PLANTS issued in 1989. The new regulations has been adopted by new design of nuclear power plant, for example AP1000. ‘The similar tow steps’ license management procedure for nuclear power plant has been performed basted on the requirement of HAFO01/01 Rules for the Implementation of Regulations on the Safety Regulation for Civilian Nuclear Installations of the People's Re- public of China Part One: Application and Issuance of Safety License for Nuclear Power Plant (December 1993) in China since last century nineties. This article introduces and compares the requirements and characteristics of above license management procedure for nuclear power plant in China and United States. (author)

  13. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  14. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement

  15. Development of standard design licensing system of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, S. K.; Yun, Y. K.; Kim, W. S.; Lee, J. H.; Baek, M.

    2001-01-01

    The design of the APR 1400 (Advanced Power Reactor 1400) is being developed based on the concept of a standard design so that the APR 1400 can be constructed repetitively without major design change. Therefore, in order to avoid repetitive licensing review for the portion of the standard design of the APR 1400, it is necessary to introduced a new licensing system for a standard design. Since the Korean government has acknowledged this necessity, it is now pursuing the legislation of a standard design licensing system. In this technical report, procedural requirements and the format and contents of licensing basis documents considered for the adaption of a standard design licensing system are introduced

  16. An overview of the licensing approach of the South African nuclear regulatory authority

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Hill, T.F.; Henderson, N.R.; Keenan, N.H.; Metcalf, P.E.; Mysenkov, A.

    1997-01-01

    This paper describes the approach adopted by the South African Nuclear Regulatory Authority, the Council for Nuclear Safety (CNS) in licensing nuclear installations in South Africa. An introduction to the current South African legislation and the CNS philosophy pertaining to the licensing of nuclear installations is discussed. A typical process for granting a nuclear licence is then presented. The risk assessment process, which is used to verify compliance with the fundamental safety standards and to establish licensing requirements for a specific nuclear installation, is discussed. Based on the outcome of this assessment process, conditions of licence are set down. The generic content of a nuclear licence and mechanisms to ensure ongoing compliance with the risk criteria are presented. The regulatory process discussed in this paper, based on such a fundamental approach, may be adapted to any type of nuclear installation taking into account plant specific designs and characteristics. (author)

  17. Review of the Brazilian experience in the licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Lederman, L.; Laborne, J.J.

    1983-01-01

    Survey of the licensing of the Brazilian Nuclear Power Plants (NPPs) is presented. The organization and technical expertise of the Comissao Nacional de Energia Nuclear, the Brazilian Regulatory Body, is reviewed with regard to in-house experience, foreign consultants, agreements with regulatory bodies of other countries and research contracts with Brazilian univerisities. The application of the two-stage licensing process and the stage of development of Brazilian nuclear standards is described. Finally, the paper speculates about the future role of probabilistic risk assessment in the Brazilian licensing process

  18. Licensing the First Nuclear Power Plant. INSAG-26. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2012-01-01

    This report is primarily addressed to policy makers and nuclear safety regulatory bodies in IAEA Member States planning to establish their first nuclear power plant. It outlines the key challenges with suggestions on how the regulator and policy makers might address them and also prepare for further development of nuclear power in the country. INSAG believes that development of technical competence of the national regulatory body is a necessary condition for the safe development of nuclear power. Therefore, regulatory infrastructure development should be a national policy requirement, as opposed to being a challenge only for the regulator. A major challenge in the deployment of the first nuclear power plant is the development of the underlying nuclear safety infrastructure and knowledge base. Since an independent regulatory body is an important part of such infrastructure, its establishment and development must be addressed at an early stage and adequate resources must be made available for this purpose. This is to ensure smooth and efficient conduct of the licensing process and regulatory oversight of the first nuclear power plant through an informed decision making process. It is essential that the legal framework starts to be implemented with a main component being the issuance of a nuclear law establishing fundamental principles and defining the responsibilities of the principal organizations, particularly the operating organization and the regulatory body. The regulatory body on its part should develop the regulatory framework that includes the establishment of regulations against which the nuclear power project will be assessed, definition of the licensing steps and corresponding documentation to be submitted by the applicant, and the implementation of a quality management system. It is expected that the 'reference plant' concept will be employed whereby the country's first nuclear power plant would have essentially the same design and safety features as a

  19. Licensing reform: a case study in public participation in the nuclear field

    International Nuclear Information System (INIS)

    Nordlinger, M.S.

    1993-01-01

    Political process and legal procedures join to accord the public a significant role in nuclear energy policy decision-making in the United States. We changed the two-stage license process in a combined license process with no separation between the construction and operating license, the policy statement requests public comment, allowing days for responses. It is a middle way between information and taking part in decision

  20. Post-TMI developments in U.S. nuclear power siting and licensing policies

    International Nuclear Information System (INIS)

    Rowden, M.A.

    1981-10-01

    The regulatory consequences of the Three Mile Island accident continue to exert a dominating influence on the American nuclear power programme, in particular on siting and licensing policies. The major regulatory and legislative measures are discussed and also listed in chronological order and summarized in the Appendices to the paper. These summaries illustrate the shift in focus of the regulatory measures from an initial emphasis on licensing constraints to a change so as to expedite the licensing procedure. (NEA) [fr

  1. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Calvert Cliffs Nuclear Power Plant Unit 3 (CCNPP3) and located at a site in Calvert County, Maryland. The CCNPP3 COL...

  2. The U.S. Nuclear Regulatory Commission's antitrust review of nuclear power plants: the conditioning of licenses

    International Nuclear Information System (INIS)

    Penn, D.W.; Delaney, J.B.; Honeycutt, T.C.

    1976-04-01

    The 1970 amendments to Section 105 of the Atomic Energy Act require the Nuclear Regulatory Commission to conduct a prelicensing antitrust review of applications for licenses to construct and operate nuclear power plants. The Commission must make a finding as to whether the granting of a license 'would create or maintain a situation inconsistent with the antitrust laws,' and it has the authority to issue or continue a license, to refuse to issue a license, to rescind or amend a license, and to issue a license with conditions that it deems appropriate. This report provides information about the antitrust license conditions that have resulted from the NRC's antitrust review process. The process itself is described and a catalog of the applications requiring antitrust license conditions is presented. For each application, the license conditions are put into the general categories of unit access, transmission services, coordination, and contractual provisions. For completeness, the report also catalogs applications requiring no antitrust license conditions, and lists applications that were exempted from the 1970 amendments, are the subject of litigation, or have been withdrawn

  3. The Role of License Renewal in PLiM for U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Young, G.G.

    2012-01-01

    At the 2nd International Symposium on Nuclear Power Plant Life Management (PLiM) in 2007, it was reported that the NRC had approved renewal of operating licenses for 48 nuclear units, which would allow operation for up to 60 years (i.e., an additional 20 years from the original 40-year license term). Of the 104 operating nuclear units in the U.S. in 2007, it was anticipated that almost 100% would eventually pursue license renewal. At that time, it was also concluded that the regulatory process was stable and predictable for license renewal, and that successful PLiM activities were helping to ensure the safety, economic, and political factors in the U.S. remained favorable for continued success with license renewal. The status of license renewal in 2012 is even better than it was in 2007. As of April 2012, the NRC has approved renewal of the operating licenses for 71 nuclear units and has applications under review for 15 more units. In addition, nuclear plant owners of at least 14 more units have announced plans to submit license renewal applications over the next few years. This brings the total of renewed licenses and announced plans for license renewal to 96% of the 104 currently operating nuclear units in the U.S. The prediction that almost 100% would eventually pursue license renewal is assured. This positive trend for long term operation of nuclear power plants in the U.S. is attributed to: (1) the success of PLiM activities in achieving an excellent safety record for the nuclear power industry and in ensuring on-going positive economics for nuclear plant operation, and (2) the stable and predictable regulatory process for license renewal. U.S. efforts are now underway to consider long term operation for more than 60 years and the process of preparing a second round of license renewals for up to 80 years of operation is likely to begin within the next few years. (author)

  4. Licensing systems and inspection of nuclear installations in NEA Member countries. Part 1, Description of licensing systems

    International Nuclear Information System (INIS)

    1977-01-01

    This study provides an assessment of the legislative and regulatory provisions applicable and of the practices followed in the countries concerned and is divided into two separate sections. This document is the first part only. It contains the description of national licensing and inspection systems for nuclear installations in the twenty OECD countries which have specific regulations in this field. Each analysis has been presented following a plan which is as standardised as possible so as to facilitate comparison between the national systems. Part II, which is not included in this document, contains the diagrams illustrating the steps in the licensing procedure and the duties of the bodies involved as well as certain additional documents. It also includes a table showing the sequence of the main steps in the licensing process in the countries covered by this Study

  5. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    Bradley, R.T.; Olson, A.W.; Rogue, F.; Scala, S.; Richard, E.W.

    1980-01-01

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  6. 75 FR 57820 - Luminant Generation Company, LLC.; Combined License Application for Comanche Peak Nuclear Power...

    Science.gov (United States)

    2010-09-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC.; Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuanc...

  7. 78 FR 25486 - Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power...

    Science.gov (United States)

    2013-05-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4, Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuanc...

  8. 78 FR 37325 - License Renewal of Nuclear Power Plants; Generic Environmental Impact Statement and Standard...

    Science.gov (United States)

    2013-06-20

    ... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...

  9. Nuclear law and environmental law in the licensing of nuclear installations

    International Nuclear Information System (INIS)

    Raetzke, Christian

    2013-01-01

    Large nuclear installations can have a considerable impact on the environment, both in actual terms, due to the construction and operation of the plant and in potential terms, related to the risk of an accident. A considerable part of the multiple authorisation processes required to develop a large nuclear project is devoted to addressing the possible impact on the environment. Accordingly, environmental protection is not only warranted by requirements and processes arising out of what is generally considered 'environmental law', but also by laws governing the design, siting, construction and operation of nuclear installations. By ensuring prevention and control of radiation releases to the environment, the aspects of nuclear law governing the design, construction, operation and decommissioning of nuclear facilities pertain to the field of environmental protection just like other fields of environmental law. The perception of the public that nuclear energy is 'anti-environmental' and the generally antinuclear stance of environmental non-governmental organisations (NGOs) should not deflect attention from the fact that protection of the environment is one of the main functions of the body of nuclear law. In this article, the general relationship between the law governing civil nuclear installations and environmental law will be analysed. The subsequent chapters will deal with environmental requirements and procedures as part of the authorisation process for a nuclear installation. The role of public participation and the involvement of neighbouring states in the licensing process will also be investigated, as they are today mainly based on environmental law. Some other aspects which may also have some relation to environmental protection, such as waste management, emergency planning, multinational early notification and assistance in the case of an accident and nuclear liability, have been omitted from discussion as they lie outside the focus of this article

  10. Licensing and regulatory control of nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Obenhaus, W.

    1976-01-01

    The paper deals with the legal background, the role of the 'Bund' (Federation) and the 'Laender' (States) in the field of atomic energy and radiation protection law and the licensing procedure for nuclear power plants. (RW) [de

  11. Gas reactor international cooperative program interim report: United States/Federal Republic of Germany nuclear licensing comparison

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    In order to compare US and FRG Nuclear Licensing, a summary description of United States Nuclear Licensing is provided as a basis. This is followed by detailed information on the participants in the Nuclear Licensing process in the Federal Republic of Germany (FRG). FRG licensing procedures are described and the rules and regulations imposed are summarized. The status of gas reactor licensing in both the U.S. and the FRG is outlined and overall conclusions are drawn as to the major licensing differences. An appendix describes the most important technical differences between US and FRG criteria.

  12. Legislative and regulatory aspects of nuclear power reactor licensing in the U.S.A

    International Nuclear Information System (INIS)

    Malsch, M.G.

    1976-01-01

    An explanation of the origins, statutory basis and development of the present regulatory system in the US. A description of the various actions which must be taken by a license applicant and by the USNRC before a nuclear power plant can be constructed and placed on-line. Account of the current regulatory practices followed by the USNRC in licensing nuclear power reactors. (orig./HP) [de

  13. International cooperation in nuclear safety and licensing in the framework of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Hayashi, M.; Oliver, P.; Olivier, J.P.; Stadie, K.B.; Stephens, M.

    1980-01-01

    This article describes the international cooperative program in nuclear safety and licensing that is carried out in the framework of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) and is directed by the NEA Committee on the Safety of Nuclear Installations (CSNI). Its prinicpal objectives are: (1) to increase the fund of knowledge in key areas of safety research through international cooperation and hence broaden the technical data base available to regulatory authorities; and (2) to bring about an international consensus on important safety issues. The CSNI also provides a forum for the exchange of information and experience between licensing authorities in the OECD countries. The program is made up of general exchanges of information and operational cooperation. The article gives examples of both aspects of the program, describing the objectives and the different working methods used. It goes on to point out the need for enhanced international cooperation in safety research and outlines the directions this should take

  14. Increased public participation in licensing installations according to the Nuclear Technology Act

    International Nuclear Information System (INIS)

    1996-01-01

    Proposals for amending the Nuclear Technology Act are given, and commented, in this report. The amendments will open the licensing procedures for public participation, obliging the operator to consult with concerned national and local authorities and interested organizations and individuals well in time before a license application is made. The consultation shall be performed in conjunction with the establishment of an environmental impact assessment. The authority preparing the licensing procedure should, as a part of this preparation, arrange to meet at the locality concerned, giving the public the right to comment the license application

  15. Licensing authority's control of radiation sources and nuclear materials in Brazil

    International Nuclear Information System (INIS)

    Binns, D.A.C.

    2002-01-01

    Full text: The Brazilian Nuclear Energy Commission is the national licensing authority and among its responsibilities is the control of nuclear materials and radiation sources. This control is carried out in three different ways: 1) Control of the import and export of nuclear materials and radiation sources. To be able to import or export any nuclear material or radiation source, the user has to have an explicit permission of the licensing authority. This is controlled by electronic means in which the user has to fill a special form found on the licensing authority's home page, where he has to fill in his name, license number, license number of his radiation protection officer and data of the material to be imported or exported. These data are checked with a data base that contains all the information of the licensed users and qualified personnel before authorization is emitted. The airport authorities have already installed x-ray machines to check all baggages entering or leaving the country. 2) Transport and transfer permit for radiation sources. In order to transport and/or transfer radiations sources and nuclear materials within the country, the user(s) have to submit an application to the licensing authority. The user(s) fill out an application form where he fills in his company's name, licensing I.D., radiation protection officer's name and I.D and identification of the sources involved. These information are checked with the licensing operations data before the operations is permitted. 3) Inspections and radiation monitoring systems. Routine and regulatory inspections are continuously carried out where the user's radiation sources and nuclear materials inventory are checked. Also the physical security and protection of these materials are verified. The installation of monitoring systems is an item that is being discussed with the airport authorities so as to increase the possibilities of detecting any illegal transport of these materials. (author)

  16. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, Larry D.; Harrison, Dennis L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE co-sponsored with the Electric Power Research Institute (EPRI) 'pilot-plant' efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankees Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. These include (1) development of a methodology for identifying systems, structures, and components important to license renewal, (2) development of industry reports that describe industry-accepted approaches for license renewal of ten important classes of equipment, (3) development of technical basis to support license renewal, and (4) interaction/negotiation with the NRC through the Nuclear Management Resources Council (NUMARC) regarding appropriate regulatory requirements for license renewal. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions and ongoing activities of the DOE effort

  17. The Regime of Spent Nuclear Fuel Management in Korea: Focused on the Licensing Process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Ri; Hwang, Yong Soo; Chang, Sun Young [Korea Institute of Nuclear nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    In June 2015, the Public Engagement Commission on Spent Nuclear Fuel Management submits the recommendations for Spent Nuclear Fuel (SNF) management. It recommends a site for Underground Research Laboratory (URL) will be selected in 2020. The government was composed of SNF management general plan task force in August 2015 and is scheduled to establish a management general plan in the second half of this year. During the last two decades, the government has failed to site selection a Low and Intermediate Level Waste (LILW) disposal repository in the face of vehement opposition from the potential host sites. If the governments do not want to repeat the mistakes in the past, the government investigated the other countries licensing process concerning SNF disposal facilities and it is desirable to formulate licensing process suitable for the situation in Korea. The problem of licensing process relating to nuclear facility in Korea was investigated based on licensing processes of Sweden and Finland and discussed improvements. Even if the licensing process of Sweden and Finland has been successfully applied to each country, Korea may not to suitable. However, the systematic licensing process in Sweden and Finland could be a good example that can be given a solution to the licensing process problems in Korea.

  18. 10 CFR 110.26 - General license for the export of nuclear reactor components.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF... Denmark Finland France Germany Greece Indonesia Ireland Italy Japan Latvia Lithuania Luxembourg...

  19. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  20. Aseismic Design Licensings and guidelines for nuclear power plant in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Kazumi [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    This paper describes Aseismic Design Licensing for Japanese Nuclear Power Plants which includes system, procedures and brief contents concerned application, permit and inspection, and the `Examination Guide for Aseismic Design of the Nuclear Power Reactor Facilities` which focused principals of seismic design loads, load combinations, and allowable limits. (J.P.N.)

  1. Public participation in nuclear licensing procedures from the viewpoint of constitutional law

    International Nuclear Information System (INIS)

    Mutschler, Ulrich

    1981-10-01

    This paper reviews public participation in the licensing procedure for nuclear installations, in particular in the Federal Republic of Germany. Examples are given of practical experience acquired to date, also in the field of case-law. Finally, the paper stresses the importance of public information in nuclear procedures in view of the growing concerns for the environment. (NEA) [fr

  2. 77 FR 20853 - Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2012-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293-LR; ASLBP No. 12-917-05-LR-BD01] Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the Commission's regulations, see, e.g., 10 CFR 2.104,...

  3. 75 FR 53985 - Southern Nuclear Operating Company Establishment of Atomic Safety And Licensing Board

    Science.gov (United States)

    2010-09-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-025-COL and 52-026-COL; ASLBP No.10-903-01-COL-BD02] Southern Nuclear Operating Company Establishment of Atomic Safety And Licensing Board Pursuant to delegation by the Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the Commission's regulations, see 10...

  4. 77 FR 30029 - Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2012-05-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293-LR; ASLBP No. 12-920-07-LR-BD01] Entergy Nuclear Operations, Inc.; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the Commission's regulations, see, e.g., 10 CFR 2.104,...

  5. 77 FR 2766 - Facility Operating License Amendment from Duke Energy Carolinas, LLC., Catawba Nuclear Station...

    Science.gov (United States)

    2012-01-19

    ..., Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory... from periodic SG tube inspections and plugging, Permanently reduce the primary to secondary leakage... not affected by the primary to secondary leakage flow during the event, as primary to secondary...

  6. Licensing and regulatory control of nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Obenhaus, W.

    1977-01-01

    The lecture is divided into three parts: 1) the legal conception and requirements of the German Atomic Energy Law (with special view on construction and operation of nuclear power plants), 2) the role of the Federation ('Bund') and the 'Laender' in the field of atomic energy and the Radiation Protection Ordinance (especially for licensing and supervision of nuclear power plants), 3) the function, participants, types and sequence of the strongly formalised licensing procedure for nuclear power plants, technical assessment in the frame of this procedure, content of a licence, possibility for altering the licence at a later date, role of administrative courts, continual supervision. (orig./HP) [de

  7. Renewing the licenses of US nuclear plants: An assessment of the socioeconomic impacts

    International Nuclear Information System (INIS)

    Schweitzer, M.; Saulsbury, J.W.; Schexnayder, S.M.

    1993-01-01

    In recent years, increased national attention has been focused on the potential effects of renewing, or not renewing, the licenses of nuclear power plants as the oldest of them approach the end of the 40-year operating period allowed by their original licenses. As part of a larger study for the US Nuclear Regulatory commission (NRC), the authors conducted an assessment of the potential socioeconomic impacts to those communities throughout the country in which nuclear power plants are located and which, therefore, are most directly affected by renewal of nuclear power plant licenses. This paper focuses on six key issues that are traditionally considered essential in the assessment of social impacts: Population; housing; tax payments; local public services; land use and development; and economic structure

  8. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2013-01-22

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...

  9. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... a Combined License) of New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY... a COL intending to construct and operate new nuclear power plants (NPPs) on multi-unit sites to... Impacts of Construction (under a Combined License) of New Nuclear Power Plants on Operating Units at Multi...

  10. Regulations concerning licensing of nuclear reactor facilities and other nuclear installations, Decree No 7/9141, 6 January 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Decree lays down the licensing system for nuclear installations in Turkey and also sets up a Nuclear Safety Committee whose duty is to ensure that the requirements of this Decree are met. The Committee is made up of members of the Atomic Energy Commission specialized in reactors, nuclear safety, health physics, reactor physics as well as two experts respectively appointed by the Ministry of Health and Social Welfare and the Ministry of Energy and National Resources. (NEA) [fr

  11. SSM's licensing review of a spent nuclear fuel repository in Sweden

    International Nuclear Information System (INIS)

    Dverstorpand, Bjoern; Stroemberg, Bo

    2014-01-01

    On 16 March 2011 the Swedish Nuclear Fuel and Waste Management Co. (SKB) submitted license applications for a general license to construct, possess and operate a KBS-3 type spent nuclear fuel repository at the Forsmark site, in Oesthammar municipality, and an encapsulation plant in Oskarshamn municipality. The KBS-3 method, which has been developed by SKB over a period of more than 30 years, entails disposing of the spent fuel in copper canisters, surrounded by a swelling bentonite clay, at about 500 m depth in crystalline basement rock. SKB's applications are being evaluated in parallel by the Swedish Radiation Safety Authority (SSM) according to the Act on Nuclear Activities and by the Land and Environmental Court according to the Environmental Code. During the review SSM will act as an expert review body to the Land and Environmental Court in the areas of radiation protection, safety and security/non-proliferation. Both SSM and the court will produce a statement with a recommendation regarding a licensing decision and licensing conditions to the government. The government will make the final decision after consulting the municipalities concerned by SKB's facilities (municipal veto applies). The current licensing decision is just one of several licensing decisions that will be required for the repository. However it is arguably the most important one, because it is the last licensing stage with a broad societal involvement including an environmental impact assessment (EIA) process, national consultations and municipal veto for the concerned municipalities. The licensing steps to follow, should SKB be granted a license by the government, only require approval by SSM. These steps include application for start of actual construction work, test operation and routine operation. (authors)

  12. Communities in the nuclear licensing procedure according to Atomic Energy Act, Article 7

    International Nuclear Information System (INIS)

    Wald, A.

    1978-01-01

    The legal positions to be taken by communities in administrative procedures as well as in administrative proceedings in court are pointed out. It is discussed to what extent a community can plead the rights of its inhabitants. The nuclear licensing procedure is investigated more closely and compared with other licensing procedures. The legal position of the communities is discussed with special regard to the right of complaint. (HSCH) 891 HP/HSCH 892 MKO [de

  13. Decree No. 83/7405 of 18 November 1983 on the licensing procedure for nuclear installations

    International Nuclear Information System (INIS)

    1983-01-01

    This Decree (No. 83/7405) on the licensing procedure for nuclear installations came into force on 19 December 1983 and supersedes Decree No. 7/9141 of 5 December 1974 on the same subject. The general lines of the licensing procedure laid down by this new Decree are similar to that provided by the 1979 Decree; it is also carried out in three stages: site, construction and operating licences are delivered in succession. (NEA) [fr

  14. VGH Mannheim: legitimacy of the decommissioning license for a nuclear power plant

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    The contribution describes the details of the court (VGH) decision on the legitimacy of the decommissioning license for the NPP Obrigheim. Inhabitants of the neighborhood (3 to 4.5 km distance from the NPP) are suspect hazards for life, health and property due to the dismantling of the nuclear power plant in case of an accident during the licensed measures or a terroristic attack with radioactive matter release.

  15. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act.

  16. Status of the Monticello nuclear generating plant lead plant license renewal program

    International Nuclear Information System (INIS)

    Pickens, T.A.

    1992-01-01

    In 1988, the Monticello nuclear generating plant was chosen by the US Department of Energy through Sandia National Laboratories and the Electric Power Research Institute to serve as the lead boiling water reactor in the lead plant license renewal program. The purpose of the lead plant license renewal program is to provide insights during the development of and to demonstrate the license renewal regulatory process with the US Nuclear Regulatory Commission (NRC). The work being performed in three phases: (1) preparation of the technical basis for license renewal; (2) development of the technical basis into a formal license renewal application; and (3) review of the application by the NRC. This paper discusses the systems and structures identified as important to license renewal in accordance with 10CFR54 as well as the plant documents and programs that were used in going through the identification process. The systems and structures important to license renewal will then provide insights into how structures and components were identified that are required to be evaluated for aging, the elements of the aging evaluations, and the effective programs used to manage potentially significant aging

  17. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, L.D.; Harrison, D.L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs

  18. Demarcation of the licensing and supervisory procedures for nuclear engineering installations

    International Nuclear Information System (INIS)

    Schattke, H.

    1986-01-01

    The remarks can be summed up under 12 points: 1) The protective purpose outlined in Paragraph 1 No. 2 of the Atomic Energy Law is the top priority for both licensing and regulatory authorities. 2) Both authorities must aim at the best possible prevention of hazards and precautions against risks. 3) The licensing procedures cover applications for licenses, the regulatory procedures check and supervise actual activities. 4) The licensing procedures take precedence in chronology and in substance over the regulatory procedure. 5) The licensing procedure is a preliminary check on the intention to carry out nuclear activities before the event; whereas the regulatory procedure controls the licensee after the event to ensure that the latter's activities really do conform to the framework laid down in the license. 6) The licensing procedure must be verified by state supervision with regard to its prognostic activity. 7) The examination criteria are largely identical for both the authorites. 8) The examination tools for the licensing and regulatory authorities also coincide to a large extent. Legal differences in the possible means of enforcement have no effect in practice. 9) Decisions made by either authority can be either in the licensee's favour or to its disadvantage. Nevertheless, the contents of decisions differ widely between the two authorities. 10) The regulatory authorities execute and prepare the decisions of the licensing authorites. 11) Licensing decisions can be designated static/prognostic, whereas regulatory measures accompany the actual performance of the plant and the operating personnel in a dynamic/controlling manner. 12) Regulatory instructions are usually of a temporary nature, whereas licensing actions are permanent as a rule. (orig.) [de

  19. Delimitation of the licensing and the supervisory procedure for nuclear installations

    International Nuclear Information System (INIS)

    Schattke, H.

    1986-01-01

    The remarks can be summed up under 12 points: 1) The protective purpose outlined in Paragraph 1 No. 2 of the Atomic Energy Law is the top priority for both licensing and regulatory authorities. 2) Both authorities must aim at the best possible prevention of hazards and precautions against risks. 3) The licensing procedures cover applications for licenses, the regulatory procedures check and supervise actual activities. 4) The licensing procedures take precedence in chronology and in substance over the regulatory procedure. 5) The licensing procedure is a preliminary check on the intention to carry out nuclear activities before the event; whereas the regulatory procedure controls the licensee after the event to ensure that the latter's activities really to conform to the framework laid down in the license. 6) The licensing procedure must be verified by state supervision with regard to its prognostic activity. 7) The examination criteria are largely identical for both authorities. 8) The examination tools for the licensing and regularoty authorities also coincide to a large extent. Legal differences in the possible means of enforcement have no effect in practice. 9) Decisions made by either authority can be either in the licensee's favour or to its disadvantage. Nevertheless, the contents of decisions differ widely between the two authorities. 10) The reulatory authorities execute and prepare the decisions of the licensing authorities. 11) Licensing decisions can be designated static/prognostic, whereas regulatory measures accompany the actual performance of the plant and the operating personnel in a dynamic/controlling manner. 12) Regulatory instructions are usually of a temporary nature, whereas licensing actions are permanent as a rule. (orig.) [de

  20. Licensing issues associated with the use of computers in the nuclear industry

    International Nuclear Information System (INIS)

    Ehrenberger, W.D.; Bloomfield, R.E.

    1987-01-01

    Computers are increasingly important to ensuring the safety of nuclear power stations. They have been proposed or introduced into operator information systems, operational control systems, as well as into systems for core protection and plant protection. Although the developments in the individual countries are not at the same pace, they do tend to render similar results. Particular licensing problems arise because of the increasing complexity of computer systems and the software involved. In the past licensing has been closely connected with the mental understanding of the systems to be licensed. This understanding is endangered with greater complexity of the systems. Although several ''manual'' methods of licensing exist, the problem of cost effective licensing is still more or less unsolved. For the future it is expected that tools will reduce the licensing efforts leaving the licenser and assessor free to concentrate on the most important issues. Such tools will probably make use of artificial intelligence techniques. They will enable the inclusion of more complex functions into safety systems and thereby increase the number of safety criteria and the number of echelons od defense. Another important use of artificial intelligence techniques will be the area of operator information systems and maintenance, including computer hardware maintenance. They will provide early detection of problems in the plant and thereby largely enhance plant availability and safety. Further studies are being proposed in the fields of software licensing tools, artificial intelligence, fail-safe and fault-tolerant software architectures, test procedures and system specification

  1. Public perspectives on proposed license renewal regulations for nuclear power plants

    International Nuclear Information System (INIS)

    Ligon, D.; Hughes, A.; Seth, S.

    1991-01-01

    On 17 July 1990, the U.S Nuclear Regulatory Commission (NRC) issued for public comment its proposed rule for renewing the operating licenses of nuclear power plants (55 FR 29043). This solicitation marked the fourth time that NRC has Invited public comments on its efforts to develop regulatory requirements for re licensing nuclear power plants. Previously, NRC solicited public comments on establishing a policy statement on plant life extension, and on the issues and options for license renewal discussed in NUREG-1317. On 13-14 November 1989, NRC held a public workshop where the NRC staff discussed a conceptual approach to the rule and solicited written comments on the regulatory philosophy, conceptual rule, and on certain questions. NRC is taking into account all comments received in its development of the final rule which is scheduled for issuance in the summer of 1991

  2. Development model to public hearing for environmental licensing of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, Luciana Gomes; Aquino, Afonso Rodrigues de, E-mail: lu_vasques@usp.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of nuclear technology has always been a matter of concern from an environmental point of view. Although disputed, the generation of electricity in nuclear reactors was considered a source of clean emission in relation to emission of gases responsible for the greenhouse effect. In Brazil, nuclear activities are regulated and supervised by the Brazilian Commission of Nuclear Energy - CNEN. Environmental issues associated with nuclear activities are described by CONAMA, and the developments in this area are licensed by IBAMA, regardless of obtaining nuclear licenses issued by CNEN. Obtaining environmental licenses (prior, installation and operation) depends initially on preparing the Environmental Impact Study - EIS and the Environmental Impact Report - EIR, consisting of a presentation of EIS in language accessible to all. EIR is forwarded to bodies and entities with some connection to the enterprise, to be manifested with IBAMA about the relevance of its content. This information serves as a resource for Public Hearings, which are meetings organized by entrepreneurs, conducted by IBAMA, and rely on public participation, can be considered as a licensing step. Public Hearings are subject to subjectivity, and the model proposed in this research becomes more objective ill-defined, difficult to understand actions for the entrepreneur. (author)

  3. Development model to public hearing for environmental licensing of nuclear facilities

    International Nuclear Information System (INIS)

    Vasques, Luciana Gomes; Aquino, Afonso Rodrigues de

    2015-01-01

    The use of nuclear technology has always been a matter of concern from an environmental point of view. Although disputed, the generation of electricity in nuclear reactors was considered a source of clean emission in relation to emission of gases responsible for the greenhouse effect. In Brazil, nuclear activities are regulated and supervised by the Brazilian Commission of Nuclear Energy - CNEN. Environmental issues associated with nuclear activities are described by CONAMA, and the developments in this area are licensed by IBAMA, regardless of obtaining nuclear licenses issued by CNEN. Obtaining environmental licenses (prior, installation and operation) depends initially on preparing the Environmental Impact Study - EIS and the Environmental Impact Report - EIR, consisting of a presentation of EIS in language accessible to all. EIR is forwarded to bodies and entities with some connection to the enterprise, to be manifested with IBAMA about the relevance of its content. This information serves as a resource for Public Hearings, which are meetings organized by entrepreneurs, conducted by IBAMA, and rely on public participation, can be considered as a licensing step. Public Hearings are subject to subjectivity, and the model proposed in this research becomes more objective ill-defined, difficult to understand actions for the entrepreneur. (author)

  4. Licensing issues in the context of terrorist attacks on nuclear power plants

    International Nuclear Information System (INIS)

    Danwitz, T. von

    2002-01-01

    The terrorist attack on the World Trade Center in September 2001 has prompted enhanced nuclear risk awareness among the German population. But in the current public debate about the safety of nuclear power plants in Germany in times of new dimensions of danger, aspects such as the role of the constitutional law, the German Atomic Energy Act, and the regulatory system governing nuclear power plant licensing in the context of protection and safety have not been addressed. The author therefore discusses the German nuclear power plant licensing law and administrative regime, elaborating on the significance attributed in those bodies of law to risks like terrorist attacks on nuclear power plants. (orig./CB) [de

  5. Organization and practices on regulatory review in the licensing process of nuclear power plants in Spain

    International Nuclear Information System (INIS)

    Trueba, P.

    1979-01-01

    The actual organisation, practices and experience of the JEN Nuclear Safety Department on the regulatory review in the licensing process of nuclear power plants in Spain, are presented. Topics to be covered are: The structure, organisation, staff and principal functional areas of the NSD, the academic qualifications and work experience of the NSD personnel, recruiting and training, the conduct of the regulatory review during the licensing process and working procedures, the manpower and coverage of the different technical areas, the principal problems and conclusions. (author)

  6. Finnish experiences on licensing and using of programmable digital systems in nuclear power plants

    International Nuclear Information System (INIS)

    Haapanen, P.; Maskuniitty, M.; Heimburger, H.; Hall, L.E.; Manninen, T.

    1993-01-01

    Finnish utility companies, Imatran Voima Oy (IVO) and Teollisuuden Voima (TVO), and the licensing authority, the Finnish Centre for Radiation and Nuclear Safety (STUK), are preparing for a new nuclear power plant in Finland. Plant vendors are proposing programmable digital automation systems for both the safety-related and the operational I and C (instrumentation and control) systems in this new unit. Also in existing plant units the replacement of certain old analog systems with state-of-the-art digital ones will become necessary in the years to come. Licensing of programmable systems for safety critical applications requires a new approach due to the special properties and failure modes of these systems. The major difficulties seem to be in the assessment and quantification of software reliability. The Technical Research Centre of Finland has in co-operation with the authority and the utilities conducted a project (AJA) to develop domestically applicable licensing requirements, guidelines and practices. International standards, guidelines and licensing practices have been analyzed in order to specify national licensing requirements. The paper describes and discusses the findings and experiences of the AJA project so far. The experience in introducing advanced programmable digital control and computer systems in the operating nuclear power plants will be covered briefly. Although these systems are not safety-related but systems of more general interest regarding nuclear safety, some routines regarding the licensing of safety- related systems have been followed. In these backfitting and replacement projects some experience have been gained in how to license safety-related programmable systems. (Author) 31 refs., 2 figs

  7. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  8. Environmental assessment for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    The Atomic Energy Act and Nuclear Regulatory Commission (NRC) regulations provide for the renewal of nuclear power plant operating licenses beyond their initial 40-year term. The Act and NRC regulations, however, do not specify the procedures, criteria, and standards that must be satisfied in order to renew a license. The NRC is promulgating a rule (10 CFR Part 54) to codify such requirements prior to the receipt of applications for license renewal. The NRC has assessed the possible environmental effects of promulgating requirements in 10 CFR Part 54 now rather than employing such requirements in an ad hoc manner in individual licensing actions. The final part 54 rule requires the development of information and analyses to identify aging problems of systems, structures, and components unique to license renewal that will be of concern during the period of extended operation and will not be controlled by existing effective programs. In general, licensee activities for license renewal may involve replacement, refurbishment, inspection, testing, or monitoring. Such actions will be generally be within the range of similar actions taken for plants during the initial operating term. These actions would be primarily confined within the plants with potential for only minor disruption to the environment. It is unlikely that these actions would change the operating conditions of plants in ways that would change the environmental effects already being experienced. Relicensing under existing regulations would also be primarily focused on aging degradation and would likely result in requirements similar to those that will result from relicensing under the final rule

  9. On the reform of nuclear licensing procedures for plants and operation

    International Nuclear Information System (INIS)

    Lecheler, H.

    1977-01-01

    The nuclear licensing procedures require basic reforming. In doing so, there must be a differentiation between (concrete) licensing of plants and (abstract) decisions on site provision. The provision of sites is exercised directly by the diets of the Laender. For this purpose they enact planning laws on sites for nuclear power plants of different sizes. As far as the Federal law is touched upon (especially the Federal act on construction), the Federal legislator has to concede competences to the Laender. No. 6 of section 7 II of the Atomic Energy Act would have to be deleted. The plant licensing procedure is to be limited to a mere safety check-up of a concrete plant. Licensing prerequisites of the Atomic Energy Act are to be made more precise by the Federal legislator, namely by deciding unequivocally the purpose of the law, whether priority is given to promotion or to protection, and by making the enacting of tangible regulations a duty. When these licensing prerequisites exist, the law has to concede the applicant a plain title to licensing. (orig.) [de

  10. Licensing Process for Nuclear Power Plants in Pakistan and its comparison with other Countries

    International Nuclear Information System (INIS)

    Iqbal, Javed; Choi, Kwang Sik

    2012-01-01

    Pakistan Nuclear Regulatory Authority (PNRA) was established in January 2001 with the promulgation of the Ordinance, No-III of 2001. Pakistan is one of the countries in the world who intend to expand its nuclear power program for energy generation upto 8800 MWe by 2030. Presently, there are two research reactors and three nuclear power plants in operation and two power plants are under various stages of construction which are expected to be in commercial operation in 2016. It is obvious that the primary responsibility of ensuring safety of nuclear power plants (NPPs) operation rests with the Pakistan Atomic Energy Commission (PAEC). However, PNRA's prime mission is to ensure the safe operation of nuclear and radiation facilities, safe use of radioactive sources and protection of the radiation workers, general public and the environment from the harmful hazards of radiation by formulating and implementing effective regulations. Pakistan Nuclear Regulatory Authority issues authorizations for nuclear power plants in three stages i.e. site permit, construction license and operation license after detailed safety review. This paper presents the licensing process for NPPs in Pakistan and its comparison with SSG-12, USA and Finland

  11. Model Checking for Licensing Support in the Finnish Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Antti, Pakonen; Janne, Valkonen [VTT Technical Research, VTT (Finland); Sami, Matinaho; Markus, Hartikainen [Protum Power and Heat, Fortum (Finland)

    2014-08-15

    This paper examines how model checking can be used to support the qualification of digital I and C software in nuclear power plants, in a way that is consistent with regulatory demands specifically, the common position of seven European nuclear regulators and authorised technical support organisations. As a practical example, we discuss the third-party review service provided by VTT for the power company Fortum in the I and C renewal project of the Loviisa plant in southern Finland.

  12. Licensing of nuclear power plants: The case of Sweden in an international comparison

    International Nuclear Information System (INIS)

    Michanek, Gabriel; Soederholm, Patrik

    2009-01-01

    Efficient power plant licensing procedures are essential for the functioning of deregulated electricity markets. The purpose of this paper is to review and analyse the licensing process for nuclear power plants in Sweden, and in part contrast the Swedish case with the corresponding approaches in a selection of other countries. This approach permits a discussion of how licensing processes can be altered and what the benefits and drawbacks of such changes are. The paper highlights and discusses a number of important legal issues and implications, including, for instance: (a) the role of political versus impartial decision-making bodies; (b) the tension between national policy goals and implementation at the local level; (c) public participation and access to justice; (d) consistency and clarity of the legal system; and (e) the introduction of license time limits.

  13. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Science.gov (United States)

    2010-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To..., apply to construction permits and operating licenses subject to this appendix N. 2. Applications for...

  14. Regulatory analysis for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This regulatory analysis provides the supporting information for the final rule (10 CFR Part 54) that defines the Nuclear Regulatory Commission's requirements for renewing the operating licenses of commercial nuclear power plants. A set of four specific alternatives for the safety review of license renewal applications is defined and evaluated. These are: Alternative A-current licensing basis; Alternative B-extension of Alternative A to require assessment and managing of aging; Alternative C -- extension of Alternative B to require assessment of design differences against selected new-plant standards using probabilistic risk assessment; and Alternative D -- extension of Alternative B to require compliance with all new-plant standards. A quantitative comparison of the four alternatives in terms of impact-to-value ratio is presented, and Alternative B is the most cost-beneficial safety review alternative

  15. Legal issues, authoritative licenses and tasks in relation with nuclear safety in Hungary

    International Nuclear Information System (INIS)

    Oerdoegh, J.; Voeroess, L.

    1998-01-01

    After a brief historical overview of nuclear authorities in Hungary, the role and functions of the National Atomic Energy Office are presented. It is the primary authority in this country on nuclear safety, with tasks and functions of licensing, inspection and enforcing safety measures. The organizational structure of NAEO and its position as a Governmental body is shown. Other tasks include the promotion of R and D coordination and international cooperation. (R.P.)

  16. 78 FR 33449 - FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board

    Science.gov (United States)

    2013-06-04

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346-LA; ASLBP No. 13-928-02-LA-BD01] FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board Pursuant to delegation by the Commission, see 37 Fed. Reg. 28,710 (Dec. 29, 1972), and the Commission's regulations, see 10 CFR 2.104, 2.105, 2.300, 2.309, 2.313, 2.318, and...

  17. 78 FR 52219 - Notice of Acceptance of Renewal Application for Special Nuclear Materials License From Tennessee...

    Science.gov (United States)

    2013-08-22

    ... Plant, Unit 2, Opportunity To Request a Hearing, and Petition for Leave To Intervene, and Commission... Preparation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of acceptance of the license renewal... party as defined in Sec. 2.4 of Title 10 of the Code of Federal Regulations (10 CFR), who believes...

  18. Guide to request license for the use of nuclear meters, analytic devices and of detection

    International Nuclear Information System (INIS)

    2000-04-01

    In this work they are reflected the steps to continue to request license for the use of nuclear meters. the main instructions to continue are to give all the data of the responsible for the department, data of the team, classification and norms and the facilities

  19. Process of licensing nuclear facilities (resume from the Spanish National Report for the Joint Convention, 2005)

    International Nuclear Information System (INIS)

    Prieto, N.

    2007-01-01

    The process of licensing both nuclear and radioactive facilities is governed by the Regulation on Nuclear and Radioactive Facilities (Span. Reglamento de Instalaciones Nucleares y Radiactivas, RINR), approved by Royal Decree 1836/1999, of 3 December. According to the RINR, these authorizations are granted by the Ministry of Industry, Tourism and Trade (Span. Ministerio de Industria, Turismo y Comercio, MITYC), to which the corresponding requests should be addressed, along with the documentation required in each case, The MITYC sends a copy of each request and accompanying documentation to the Nuclear Safety Council (Span. Consejo de Seguridad Nuclear, CSN) for its mandatory report.) The CSN reports are mandatory and binding, both were negative or withholding in nature with respect to the request and, when positive, as regards the conditions established. On receiving the report from the CSN, and following whatever decisions or further reports might be required in each case, the MITYC will adopt the appropriate resolution. System for the licensing of nuclear facilities. According to the definitions included in the RINR, the following are nuclear facilities: - Nuclear power plants. - Nuclear reactors. - Manufacturing facilities using nuclear fuels to produce nuclear substances and those at which nuclear substances are treated. - Facilities for the permanent storage of nuclear substances. In compliance with the RINR, the nuclear facilities require different permits or administrative authorizations for their operation, these being the preliminary or site authorization, the construction permit, the operating permit, the authorization for modification and the dismantling permit. The procedure for the awarding of each of these authorizations is regulated by the Regulation itself and is briefly described below. (author)

  20. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  1. Legislative and regulatory aspects of nuclear power reactor licensing in the U.S.A

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1975-01-01

    This paper provides a general overview of the following topics: 1) the origins, statutory basis and development of nuclear power plant regulations in the USA. Salient provisions of the Atomic Energy Act of 1954 as amended, and of the Energy Reorganization Act of 1974, as amended, are briefly described; 2) the nuclear power plant design-licensing-construction cycle, including a description of the various actions which must be taken by a license applicant and by the USNRC before a nuclear power plant can be constructed and placed on-line; 3) the regulatory changes instituted under existing statutory authority to shorten the over-all design-licensing-construction cycle. These regulatory reforms include revisions in NRC's rules of practice, improvements in consistency and predictability of licensing reviews through use of standard review plans and issuance and use of new regulations and regulatory guides, use of a regulatory requirements review committee to monitor changes in design and construction requirements for nuclear power plants, use of a limited work authorization procedure to permit certain construction work to proceed prior to issuance of a construction permit, and increased emphasis on standardization; 4) NRC's proposed licensing reform legislation, H.R. 7002 and S. 1717. The basic concepts of H.R. 7002 and S. 1717 - separate and early site reviews and decisions and standardized facility designs - are explained and the principal provisions of the legislation are described. The latter include authority to encourage open and advance planning, authority to strengthen Federal-state cooperation, standby authority to allow, under certain conditions, interim operation of nuclear power reactors in advance of a hearing, and authority confirmatory of NRC's limited work authorization procedure. The paper concludes with a brief summary of the anticipated benefits of the proposed legislation. (orig.) [de

  2. Evaluation of experience and trends in international co-operation in nuclear safety and licensing

    International Nuclear Information System (INIS)

    Stadie, K.B.; Strohl, P.

    1977-01-01

    The paper traces the development of co-operation in nuclear safety technology between the OECD Member countries which began as early as 1965 and is now organised under the auspices of the Committee on the Safety of Nuclear Installations of the OECD Nuclear Energy Agency. The principal objective is to exchange and evaluate information on relevant R and D and hence broaden the technical basis for decision-making by licensing authorities in the different countries. The membership of the Committee on the Safety of Nuclear Installations combines expertise in nuclear safety R and D and in licensing questions so that licensing procedures in the different countries may be exposed continuously to the influence of overall technological progress. The Committee actively seeks to narrow the differences between administrative procedures and traditional legal practices in Member countries as these affect the licensing of nuclear installations, primarily by assessing and comparing the methods employed. The paper shows how the Committee's working arrangements provide for maximum flexibility: the various co-ordinated programmes are selected after in-depth evaluation of potential areas of priority and are implemented through ad hoc Working Groups, specialist meetings or task forces, or in the form of special studies involving all interested countries. The results, conclusions and recommendations emerging from each programme are reviewed by the Committee before dissemination. Hitherto the greater part of the Committee's activities has been concerned with the safety of light water reactors and related subjects, but more attention is now being given to other topics such as LMFBR safety technology and the safety of fuel cycle facilities, particularly those at the end of the process, the so-called ''back-end'' plants. The paper discusses certain problems and constraints encountered in implementing the programme, some of which stem from Member countries' different degrees of penetration

  3. Cost/benefit consideration of the Nuclear Regulatory Commission's Radioisotopes Licensing Program

    International Nuclear Information System (INIS)

    Wade, Leo Jr.

    1978-01-01

    The Nuclear Regulatory Commission's (NRC) Radioisotopes Licensing Branch evaluates license applications to determine if the applicant has provided sufficient information to ensure that the public health and safety will be protected if the applicant is authorized to conduct his proposed program. The applicant must provide information on the training and experience of users and of the radiation safety officer and a description of his facilities, equipment and radiation protection program. NRC has prepared a series of licensing guides that identify for applicants and licensees the specific information needed for various types of licenses (e.g., medical, academic, Type A broad). The guides describe the information that is generally required for issuance of a particular type of license. However, each application is evaluated on its own merits. NRC's regulations, as well as its licensing policies, procedures and guides are undergoing continuing review. They are revised as new practices and procedures become available or as specific problem areas are identified. Any changes are considered in terms of a risk/benefit assessment. (author)

  4. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  5. The control density of the administrative courts with regard to nuclear licensing

    International Nuclear Information System (INIS)

    Deppe, V.

    1982-01-01

    A possibility does not exist to limit the extent of the activities of administrative courts with regard to the control of the nuclear license decision by a shifting of one part of the ultimate decision competence from the jurisdiction to the executive. The responsibility of the administrative courts which is established in the constitution gives them a comprehensive controlling function with regard to nuclear licensing. Their right of ultimate decision, which is established in the constitution, corresponds to a duty of ultimate decision, which is of paramount importance in such a fundamental law relevant area, as it is nuclear law. The legislator has to help the overburdened courts. The courts themselves are bound to their responsibility as it is laid down in the constitution and the Atomic Energy Act to guarantee legal protection so that any form of self-restraint is inadmissable. (orig./HSCH) [de

  6. Current status of LTO licensing programme for Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    Borak, J.; Kupca, L.

    2012-01-01

    The objective of long term operation (LTO) licensing programme for Bohunice nuclear power plant is to demonstrate that the relevant structures and components shall perform their functions throughout the entire LTO period during which they shall meet all the relevant safety requirements. All the activities-which should result in utility's request to obtain the licence for LTO-must be performed in line with the relevant legal basis. As of May 2012, the anticipated duration of currently running programme is thirteen months. All relevant documentation, required by the established legal basis, shall be submitted to the licensing authority one year before the Unit 3 design life expiry. (author)

  7. Incorporation of severe accidents in the licensing of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz, E-mail: bayout@cnen.gov.b, E-mail: sidney@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  8. Tast Force report on bonding and perpetual care of nuclear licensed activities

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Potential issues which should be considered prior to the adoption and implementation of a bonding or perpetual care program are examined. The following topics are discussed: problem definition; major processors; factors in setting the amount of a bond; waste handling licensees; ore refineries and mills; former AEC licensed facilities; other specific licenses; authority; states where it is deemed that amendment of existing statutes is necessary to authorize imposition of a bonding requirement for licenses; administration; and recommendations. The following appendices are included: summary of cost estimate to decontaminate the American Nuclear Company; report on 1974 national conference on radiation control workshop no. 3; suggested changes to state regulations; and suggested legislation for licensee bonding and perpetual care trust funds

  9. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A.

    2013-01-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  10. Importance of the licensing process on the safety culture in the Brazilian nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Motta, E.S.; Sousa, A.L.B. de; Paiva, R.L.C. de; Mezrahi, A., E-mail: emotta@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of the Nuclear Fuel Cycle Facilities licensing processes is to ensure the safety of these installations in their entire life cycle (in the installation site selection, designing, construction, pre-operational tests, operational and decommissioning phases). The Brazilian licensing process requires from the operator, among others, before the operating license: (I) a Site Report and a Final Safety Analysis Report, ensuring that all safety related issues are adequately analyzed and understood; (II) a formal structured Management System focused on the installation safety; and (III) dissemination of safety related information to all involved operator employees and subcontractors. Therefore, these requirements reflect in an adequate operator actions and practices, ensuring a working environment with a high level of safety culture. (author)

  11. Magnox Electric plc's strategy for decommissioning its nuclear licensed sites

    International Nuclear Information System (INIS)

    2002-02-01

    The 1995 White Paper 'Review of Radioactive Waste Management Policy: Final Conclusions', Cm 2919, determined that the Government would ask all nuclear operators to draw up strategies for the decommissioning of their redundant plant and that the Health and Safety Executive (HSE) would review these strategies on a quinquennial basis in consultation with the environment agencies. This review has considered Magnox Electric pie (Magnox Electric) arrangements for the identification of its responsibilities for decommissioning and radioactive waste management, the quantification of the work entailed, the standards and timing of the work, and the arrangements to provide the financial resources to undertake the work. This is the second review by the HSE in response to Cm 2919 of Magnox Electric's nuclear power station decommissioning and radioactive waste management strategies and is based on the situation in April 2000. It reports the Nuclear Installations Inspectorate's (NIl) view that the strategies proposed by Magnox Electric are appropriate. The strategies are considered to be largely consistent with both national and international policy statements and guidance, and are potentially flexible enough to be able to accommodate lessons learned during ongoing decommissioning activities. During the review the Nil has considered whether Magnox Electric has identified all the tasks required to fully decommission its sites. Generally this has been found to be the case. Some additional tasks have been identified due, in part, to the reviewers' noting the changes which have recently taken place in environmental expectations. At this time, on the basis of the information presented, and with the provisos stated below, Magnox Electric's provisioning for final dismantling after 85 years is considered to be reasonable. The Nil expects Magnox Electric to further justify why a shorter timescale is not reasonably practicable before the next review. One of the purposes of this review

  12. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Strohal, P.; Subasic, D.; Valcic, I.

    1996-01-01

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  13. Licensing of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    International Nuclear Information System (INIS)

    Ramirez, R.M.; Arrendondo, R.R.

    1990-01-01

    The TRIGA Mark III reactor at the Mexican Nuclear Centre went critical in 1968 and remained so until 1979 when the National Commission for Nuclear Safety and Safeguards (CNSNS), the Mexican regulatory authority, was set up. The reactor was therefore operating without a formal operating license, and the CNSNS accordingly requested the ININ to license the reactor under the existing conditions and to ensure that any modification of the original design complied with Standards ANSI/ANS-15 and with the code of practice set out in IAEA Safety Series No. 35. The most relevant points in granting the operating licence were: (a) the preparation of the Safety Report; (b) the formulation and application of the Quality Assurance Programme; (c) the reconditioning of the following reactor systems: the cooling systems; the ventilation and exhaust system; the monitoring system and control panel; (d) the training of the reactor operating staff at junior and senior levels; and (e) the formulation of procedures and instructions. Once the provisional operating license was obtained for the reactor it was considered necessary to modify the reactor core, which has been composed of 20% enriched standards fuel, to a mixed core based on a mixture of standard fuel and FLIP-type fuel with 70% 235 U enrichment. The CNSNS therefore requested that the mixed core be licensed and a technical report was accordingly annexed to the Safety Report, its contents including the following subjects: (a) neutron analysis of the proposed configuration; (b) reactor shutdown margins; (c) accident analysis; and (d) technical specifications. The licensing process was completed this year and we are now hoping to obtain the final operating license

  14. Nuclear Licensing and Safety Office (NLSO) regulatory practices of IAEC Research Reactors

    International Nuclear Information System (INIS)

    Barnea, Y.; Mintzer, U.; Hirschfeld, H.; Markovits, M.

    2014-01-01

    The achievement and maintenance of a high level of safety in the siting, design, construction, commissioning, operation and decommissioning of nuclear facilities, and in the closure of waste disposal facilities, requires a sound legal and governmental infrastructure, including a regulatory body with well-defined responsibilities and functions. The ISRAEL Atomic Energy Commission (IAEC) is committed to safe operation of its two nuclear Research Reactors (RRs) by implementing comprehensive safety practices such as the International Atomic Energy Agency (IAEA) Safety Standards and Technical Guides. These standards are studied, validated and adopted by the Nuclear Licensing and Safety Office (NLSO), the professional Regulatory Authority of the IAEC nuclear facilities. Following practices of regulatory bodies worldwide, the Research Reactor Section (RRS) of the NLSO has three basic functions: a) to develop and enact appropriate and clear safety requirements; b) to review, assess and verify compliance with these requirements; and c) in the event of departure from the license conditions, malpractice or wrongdoing by the operating organization (OO) under oversight, to revoke the operating license. The presentation refers to the principles of maintaining independent regulatory decision along with an overview of various regulatory activities of RRS/NLSO. These activities include the performance of the review and assessment (R&A) processes, such as: 1) the bases for process; 2) the verification of the safety analysis; 3) the regulatory inspection; 4) the records and documentation etc... Most of these practices were recently presented and evaluated by an IAEA Integrated Nuclear Safety Assessment of Research Reactors (INSARR) mission held in Israel from 7 to 11 July 2013. The purpose of the audit was to conduct a peer-review of the safety of the IRR-1 Pool type Research Reactor, located in the Soreq Nuclear Research Center (SNRC). Regardless the acknowledged successful review

  15. Analysis of license renewal at U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nagayama, Munehiro

    2017-01-01

    The U.S. NRC had implemented the rules for LR (License Renewal) of NPPs (Nuclear Power Plants) and the LR rules allow plus 20-year operation of NPPs adding to initial 40-year term for reactor license. The U.S. NRC has already issued ROL (Renewed Operating License) for over forty NPPs. The Atomic Energy Act do not limit the number of LR, so the fleet of U.S. Nuclear, including agency, industry and academy, is continuing efforts to develop rules for SLR (Subsequent License Renewal). The framework of SLR rules has been developed and there is a plan of implementation of SLR for a pilot plant on FY 2018. The total operating term of a SLR plant is 80-year. The LR/SLR of NPPs is effective for stable power supply, greenhouse gas suppression, maintenance of technology, and securing employment. These profits will return to society. It is important to maintain required function of SSCs (Structure, System, and Components) for period of long term operation of NPPs. The U.S. fleet has established integrated ageing management strategy and each NPPs is developing their maintenance plans for long term operation. These adequate maintenance plans may enable to achieve good capacity factor of LR applied NPPs. In this report, domestic LR position will be considered by referring the good performance of U.S. NPPs which entered long term operation beyond 40-year and some conditions such as energy security. (author)

  16. The Brazilian experience in licensing Angra 2, a 'delayed' nuclear power plant

    International Nuclear Information System (INIS)

    Almeida, C.

    2001-01-01

    The Brazilian nuclear power programme comprises two nuclear power plants in operation from different supplier countries. Furthermore, the second plant, Angra 2, had its construction started in 1976 and only recently in 2000 has achieved full power operation. This paper presents the experience of the Brazilian Regulatory Body in licensing this utility with all the complications arising from the different technologies, and safety philosophy, and the changes in safety standards, owners, suppliers, contractors and operators during the 25 years of construction. The paper presents first a history of the construction and commissioning of Angra 2, and then highlights some of the problems encountered in the licensing process. Some of the difficulties faced by CNEN due to several reorganizations and loss of personnel are also discussed. (author)

  17. Survey of probabilistic methods in safety and risk assessment for nuclear power plant licensing

    International Nuclear Information System (INIS)

    1984-04-01

    After an overview about the goals and general methods of probabilistic approaches in nuclear safety the main features of probabilistic safety or risk assessment (PRA) methods are discussed. Mostly in practical applications not a full-fledged PRA is applied but rather various levels of analysis leading from unavailability assessment of systems over the more complex analysis of the probable core damage stages up to the assessment of the overall health effects on the total population from a certain practice. The various types of application are discussed in relation to their limitation and benefits for different stages of design or operation of nuclear power plants. This gives guidance for licensing staff to judge the usefulness of the various methods for their licensing decisions. Examples of the application of probabilistic methods in several countries are given. Two appendices on reliability analysis and on containment and consequence analysis provide some more details on these subjects. (author)

  18. Accident consequence analysis models applied to licensing process of nuclear installations, radioactive and conventional industries

    International Nuclear Information System (INIS)

    Senne Junior, Murillo; Vasconcelos, Vanderley de; Jordao, Elizabete

    2002-01-01

    The industrial accidents happened in the last years, particularly in the eighty's decade, had contributed in a significant way to call the attention to government authorities, industry and society as a whole, demanding mechanisms for preventing episodes that could affect people's safety and environment quality. Techniques and methods already thoroughly used in the nuclear, aeronautic and war industries were then adapted for performing analysis and evaluation of the risks associated to other industrial activities, especially in the petroleum, chemistry and petrochemical areas. Some models for analyzing the consequences of accidents involving fire and explosion, used in the licensing processes of nuclear and radioactive facilities, are presented in this paper. These models have also application in the licensing of conventional industrial facilities. (author)

  19. Selected review of regulatory standards and licensing issues for nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Thomas, F.A.

    1982-11-01

    This report presents a compilation and description of current foreign regulatory standards and licensing issues in the areas of interest associated with Siting, Structural Engineering, Metallurgy and Materials, and Mechanical Engineering. In addition, summary comparisons of the requirements of both the US and foreign nuclear power plant regulatory standards are provided. The selected foreign countries surveyed include Canada, France, Japan, Sweden, United Kingdom of Great Britain and Northern Ireland, and the Federal Republic of Germany

  20. Involvement of experts in nuclear licensing and supervisory procedures who are known for their critical attitude towards nuclear technology

    International Nuclear Information System (INIS)

    Schirp, W.

    1996-01-01

    The article discusses legal and procedural aspects in the context of expert opinions demanded by the supervisory and licensing authorities of nuclear power plants, and the role and activities of experts known for their critical approach to nuclear electricity generation. The aspects addressed are: Reasons to break the dominance of ''established'' experts who in general are members of the TUeV organisations (technical control boards), reasons for challenging motions such as suspicion of prejudice or insufficient expertise, order by the supervisory authority to take a ''dual approach'' and involve two experts for a task, as well as the relevant administrative and legal procedures. (orig./CB) [de

  1. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Science.gov (United States)

    2010-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...

  2. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Draft environmental impact statement; public...

  3. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Science.gov (United States)

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear... relating to pending appeal filed by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has...

  4. Regulatory challenges for independent organization and licensing procedures for Egypt first nuclear power program

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2012-01-01

    In March 2010 the Government of Egypt issued an Ordinance creating an independent regulatory body the Egypt Nuclear and Radiological Regulatory Authority (NRRA) reporting directly to the Prime Minister and responsible for matters dealing with protection of the radiation worker, public and environment from the harmful effects of ionizing radiation. A little more than 2 years have elapsed since this date. Some of the challenges faced by NRRA to its regulatory independence are given below. This paper will discuss the major challenges relating to Egyptian nuclear power program and specially the regulatory effectiveness and licensing procedures compared to international comparison.

  5. Will nuclear power plant standardization reduce the licensing impact on construction

    International Nuclear Information System (INIS)

    Allen, J.M.; Bingham, W.G.; Keith, D.G.

    1976-01-01

    The NRC and the nuclear industry have been pursuing standardization quite vigorously in an effort to reduce the cost and schedule for the design and construction of nuclear power plants. The NRC is currently reviewing standard plant applications submitted under each of four standardization options. In addition, the NRC has published Standard Review Plans and Standard Technical Specifications. Although problems exist in the implementation of standardization and in areas unaffected by standardization, each of these standardization methods has the potential to reduce the licensing impact on construction

  6. Nuclear Regulatory Commission Staff practice and procedure digest. Commission, Appeal Board and Licensing Board Decision, July 1972 - June 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This is the seventh edition of the Nuclear Regulatory Commission (NRC) Staff Practice and Procedure Digest. It contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to June 1995 interpreting the NRC rules of practice in 10 CFR part 2

  7. Technological evaluation for the extension of the operation license to the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Arganis J, C. R.; Medina A, A. L.

    2010-01-01

    At the present time one of the tendencies in the nuclear industry is the renovation of operation licenses of the nuclear power plants, with the purpose of prolonging their operation 20 years more than the time settled down in their original license, which is of 30 years for the case of the nuclear power plant of Laguna Verde. This allows the electric power generation for a major period of time and to a relatively low price, giving this way a bigger competitiveness to the power stations of nuclear power. However, to request the license extension of the nuclear power plant requires to get ready the documentation and necessary studies for: to maintain a high level of security, to optimize the operation, maintenance and service life of the structures, systems and components, to maintain an acceptable level of performance, to maximize the recovery of the investment about the service of the nuclear power plant and to preserve the sure conditions for a major operation period at the license time. This paper describes the studies conducted by the Materials Technology Department of the Instituto Nacional de Investigaciones Nucleares (ININ) to substantiate the required documentation for obtaining the extension of operating license of the nuclear power plant. These studies are focused mainly in the reactor pressure vessels of both units, as well as in the deposit of noble metals and the influence of the sludges (crud s) in this deposit. (Author)

  8. Support of the Community of Independent States and of central and east European states in the establishment of nuclear licensing and surveillance authorities

    International Nuclear Information System (INIS)

    Mauker, R.

    1995-01-01

    Specific tasks are: exchange of experience between western and eastern safety experts in the field of nuclear safety and radiation protection; advising in the establishment of nuclear licensing authorities and handling of nuclear licensing procedures as well as nuclear surveillance, and in the establishment of expert organisations and their activities. (orig./HP) [de

  9. Generic environmental impact statement for license renewal of nuclear plants. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This GEIS examines the possible environmental impacts that could occur as a result of renewing the licenses of individual nuclear power plants under 10 CFR 54. To the extent possible, it establishes the bounds and significance of these potential impacts. The analysis encompasses all operating light-water reactors. For each type of environmental impact, the GEIS attempts to establish generic findings covering as many plants as possible. While plant and site-specific information is used in developing the generic findings, the NRC does not intend for the GEIS to be a compilation of individual plant environmental impacts statements. This document has three principal objectives: (1) to provide an understanding of the types and severity of environmental impacts that may occur as a result of license renewal, (2) to identify and assess those impacts that are expected to be generic to license renewal, and (3) to support rulemaking (10 CFR 51) to define the number and scope of issues that need to be addressed by the applicants in plant-by-plant license renewal proceedings

  10. Analyses of operating license renewal for nuclear power plants in USA

    International Nuclear Information System (INIS)

    Chiba, Goro

    2007-01-01

    Although the originally-approved operating period for nuclear power plants in the U.S. is 40 years, the operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, in Japan, plant life management is carried out assuming long-term operation of the plant, and the electric power company submits reports, such as aging technology assessment, and receives evaluation by the authorities. In this paper, the situation regarding plant life management was investigated and a Japan-U.S. comparison was made. As a result, differences were found in the procedure, the background, the manpower, the review period, etc. in Japan and the U.S. but there is no difference between Japan and the U.S. in aiming for a check of the integrity of components, assuming long-term operation for 60 years. Moreover, trend analysis using the overseas fault database of INSS examined the effect on the preservation activities of a license renewal. As a result, there is a tendency for license renewal not to be applied for in units in which the number of aging faults increases with the increase in elapsed years. The U.S. license renewal system was considered to be effective in plant life management, and suggested the validity of plant life management in Japan which is employing the equivalent system to the U.S. (author)

  11. Summary and analysis of public comments on NUREG-1317: Regulatory options for nuclear plant license renewal: Final report

    International Nuclear Information System (INIS)

    Ligon, D.M.; Seth, S.S.

    1989-03-01

    On August 29, 1988, the US Nuclear Regulatory Commission (NRC) issued an Advance Notice of Proposed Rulemaking on nuclear plant license renewal and solicited public comments on NUREG-1317, ''Regulatory Options for Nuclear Plant License Renewal.'' NUREG-1317 presents a discussion of fifteen topics involving technical, environmental, and procedural issues and poses a set of related questions. As part of its ongoing task for the NRC, The MITRE Corporation has summarized and analyzed the public comments received. Fifty-three written comments were received. Of these, 83 percent were from nuclear industry representatives; the remaining comments represented federal and state agencies, public interest groups, and a private citizen

  12. Technology of geographical information systems applied to the licensing of nuclear sector installations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aline F.G. De; Barreto, Alberto A.; Carvalho Filho, Carlos A. de; Rodrigues, Paulo Cezar Horta [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Moura, Igor Felipe Silva, E-mail: afgo@cdtn.br, E-mail: aab@cdtn.br, E-mail: cacf@cdtn.br, E-mail: igorfelipedx@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The nuclear licensing process involves the preparation of documents such as Local's Report (LR), Preliminary Safety Analysis Report (PSAR), Final Safety Analysis Report (FSAR), Physical Protection Plans, Radiation Protection Plans and Emergency plans that must be submit to the National Nuclear Energy Commission (DRS / CNEN) for approval. This work presents an analysis and a guide for the use of Geoprocessing tools in the updating of environmental studies necessary to update the Local's Report (LR) of the Center for the Development of Nuclear Technology (CDTN). The main purpose is to contribute to streamline the execution of steps involved in the nuclear licensing process, such as structuring and executing environmental studies, planning environmental monitoring activities, etc. To achieve the objective, we search for and obtained available data of high reliability in various organs using a methodological flowchart for data acquisition and treatment. The study was develop using the ArcMap 10.2 application from ArcGis, especially the Model Builder analytic tool. This tool allowed the (macro) schematization of the methodology from the applied GIS tools, which presents as advantages to the efficiency and optimization of the execution time of the procedures in situations where it is necessary to apply the same routine of tasks, besides the fact of being editable, which offers possibilities for adaptations and improvements. (author)

  13. Technology of geographical information systems applied to the licensing of nuclear sector installations

    International Nuclear Information System (INIS)

    Oliveira, Aline F.G. De; Barreto, Alberto A.; Carvalho Filho, Carlos A. de; Rodrigues, Paulo Cezar Horta; Moura, Igor Felipe Silva

    2017-01-01

    The nuclear licensing process involves the preparation of documents such as Local's Report (LR), Preliminary Safety Analysis Report (PSAR), Final Safety Analysis Report (FSAR), Physical Protection Plans, Radiation Protection Plans and Emergency plans that must be submit to the National Nuclear Energy Commission (DRS / CNEN) for approval. This work presents an analysis and a guide for the use of Geoprocessing tools in the updating of environmental studies necessary to update the Local's Report (LR) of the Center for the Development of Nuclear Technology (CDTN). The main purpose is to contribute to streamline the execution of steps involved in the nuclear licensing process, such as structuring and executing environmental studies, planning environmental monitoring activities, etc. To achieve the objective, we search for and obtained available data of high reliability in various organs using a methodological flowchart for data acquisition and treatment. The study was develop using the ArcMap 10.2 application from ArcGis, especially the Model Builder analytic tool. This tool allowed the (macro) schematization of the methodology from the applied GIS tools, which presents as advantages to the efficiency and optimization of the execution time of the procedures in situations where it is necessary to apply the same routine of tasks, besides the fact of being editable, which offers possibilities for adaptations and improvements. (author)

  14. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, C.; Williams, B.; Hemez, F.; Atamturktur, S.H.; McClure, P.

    2011-01-01

    Research highlights: → The best estimate plus uncertainty methodology (BEPU) is one option in the licensing of nuclear reactors. → The challenges for extending the BEPU method for fuel qualification for an advanced reactor fuel are primarily driven by schedule, the need for data, and the sufficiency of the data. → In this paper we develop an extended BEPU methodology that can potentially be used to address these new challenges in the design and licensing of advanced nuclear reactors. → The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. → The methodology includes a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. - Abstract: Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M and S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M and S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in

  15. Requests for licensing of new nuclear sources. New nuclear power source in Slovakia

    International Nuclear Information System (INIS)

    Vidlicka, R.

    2010-01-01

    Presentation indicates a new NPP licensing process in the Slovak Republic from the point of the Preparatory Stage - Siting, Design Stage and Construction. The presentation lists individual main criteria and legislation requirements. A part of the presentation covers the estimated new NPP construction schedule and the comparison to proceeding in several foreign countries. (author)

  16. Evolution of design requirements to accommodate class 9 accidents during floating nuclear plant licensing review

    International Nuclear Information System (INIS)

    Walker, D.H.; Haga, P.B.

    1980-01-01

    As part of the Final Environmental Statement for the application for a license to manufacture Floating Nuclear Plants (FNP), NRC required that the concrete biological shield beneath the reactor vessel in the FNP design be replaced with a layer of refractory magnesium oxide or equivalent material to provide increased resistance to melt-through in the event of a postulated core-melt accident. It was further concluded that future applicants for siting an FNP at an estuarine or riverine site must provide an essentially impermeable basin enclosure so as to limit introduction of radioactivity into the surrounding water body in the event of a postulated core-melt accident. This paper traces the evolution of the environmental regulatory requirement to add design features to mitigate the consequences of a core-melt accident over six-years of licensing reviews and attempts to identify some of the factors leading to its imposition

  17. Analysis of public comments on the proposed rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This report provides a summary and analysis of public comments on the proposed license renewal rule for the nuclear power plants (10 CFR Part 54) published in the Federal Register on 17 July 1990. It also documents the NRC's resolution of the issues raised by the commenters. Comments from 121 organizations and 76 individuals were reviewed and analyzed to identify the issues, including those pertaining to the adequacy of the licensing basis, the performance of an integrated plant assessment, backfit considerations, and need for public hearings. The analysis included grouping of commenters' views according to the issues raised. The public comments analyzed in this report were taken into consideration in the development of the final rule and revisions to the supporting documents

  18. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented

  19. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented.

  20. Lessons learnt from ITER safety and licensing for DEMO and future nuclear fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Neill, E-mail: neill.taylor@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Cortes, Pierre [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France)

    2014-10-15

    Highlights: •The ITER safety and licensing process successfully reached the stage of the granting of the authorization to construct the facility. •Despite differences between ITER and DEMO, there are lessons to be learned for DEMO safety and licensing. •A number of issues have been identified where development is required for DEMO, strategies to be decided, technical issues to be resolved. -- Abstract: One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S and E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S and E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during this process are recalled, particularly those that may also have an impact on DEMO safety. These include issues related to postulated accident scenarios, environmental releases during operation, occupational radiation exposure, and radioactive waste.

  1. The Public Opinion participation in the Nuclear Facilities Licensing Regime: A study for The Egyptian Nuclear Law and other countries laws

    International Nuclear Information System (INIS)

    Ali, A. M.; Abd El-Moniem, A. E.

    2012-12-01

    This paper deals with the Nuclear Facilities Licensing Regime and the public Opinion participation. It discusses the general conceptual framework such as the importance of public opinion in the licensing process for nuclear facilities. It deals with the transparency principle and the nuclear safety. It also an analysis the Egyptian nuclear law for regulating the nuclear and radiological activities(law No.7) and its provisions that regulate the participation of the public in the licensing process (Article No.12 paragraph No.7 and 16 ) that staled that the regulatory body will set the regulation to involve the public in the licensing and it will also issues publicly a garrulity report about the nuclear safety situation in the state. It also deals with the legal rules for licensing and the participation of public in it many states such as Japan, France and Germany. The paper concluded that the lunch of a nuclear programme should lunch, in parallel, a programme for the public communications because in the absent of such a public programme, the political decisions of nuclear programme might be lose its effectiveness and the programme might be slow dow. (Author)

  2. Recruitment training and licensing of operating personnel for nuclear power plants

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1979-01-01

    This article covers the step-by-step and most rigid recruitment, training, and licensing procedures undertaken in the selection for personnel involved in nuclear power plant operations. These procedures are true to all countries. However, for developing countries such as the Philippines, a bachelor's degree may be required as compared with the U.S. wherein a high school diploma is the minimum requirement. Because of the complexity of a nuclear facility, the work will require highly capable individuals with mature judgement who can render correct decisions even under highly stressed conditions. Thus during the selection and recruitment of applicants for the operator position, they are not only given aptitude tests but are also subjected to a series of psychological examintions. Once they are accepted, they are made to undergo a comprehensive and in-depth training to ensure that they will be capable of operating the nuclear power plant safely and effectively. Finally, those prospective operators have to pass licensing examinations in order to prove their competence and skills. Retraining programs follow after their training to maintain their skills. (RTD)

  3. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework. 1. ed.

    International Nuclear Information System (INIS)

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  4. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework; 1. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  5. Development in France of nuclear safety technical regulations and standards used in the licensing procedure

    International Nuclear Information System (INIS)

    Lebouleux, P.

    1983-04-01

    Initially, the Commissariat a l'Energie Atomique was the overall structure which encompassed all nuclear activities in France, including those connected with radiological protection and nuclear safety. As other partners appeared, the Authorities have laid down national regulations relative to nuclear installations since 1963. These regulations more particularly provide for the addition of prescriptions with which the applicant must comply to obtain the necessary licenses and the establishment of General Technical Regulations pertaining to nuclear safety. The technical regulation related to nuclear safety in France is made of a set of regulation texts, of a different nature, that define the requirements for the construction, commissioning and operation of nuclear facilities. Simultaneously, the safety authorities (Service Central de Surete des Installations Nucleaires: SCSIN) issue recommendations or guides which are not strictly speaking regulations in the juridical sense; they are called ''Regles Fondamentales de Surete'' (RFS). The RFS set up and detail the conditions, the respect of which is deemed to be complying with the French regulation practice, for the subject to which they relate. Their purpose is to make known rules judged acceptable by safety authorities, thus making the safety review easier. A RFS, or a letter, can also give the result of the examination of the constructor and operator codes (RCC) by safety authorities

  6. The Finnish Experience with the Construction of Onkalo. Licensing of a repository for nuclear waste in Finland

    International Nuclear Information System (INIS)

    Avolahti, Jaana

    2014-01-01

    Pursuant to the Nuclear Energy Act (990/1987), a license holder whose operations result, or have resulted, in the generation of nuclear waste must perform all measures included in the management of nuclear waste and preparation thereof and bear all the costs of nuclear waste management. Under law, spent nuclear fuel is regarded as nuclear waste. According to the amendment made to the Nuclear Energy Act in 1994, nuclear waste generated in Finland must be handled, stored and permanently disposed of in Finland. Nuclear waste generated elsewhere may not be handled, stored and permanently disposed of in Finland. The Finnish nuclear legislation defines spent fuel as nuclear waste and requires that it has to be disposed of in the Finnish bedrock. Over 30 years of systematic R and D has been carried out to develop the repository concept, site selection, technologies, safety assessment and the regulatory approach. Activities are based on the Finnish Government's long term strategies since 1983. The stepwise development and future plans for disposal are presented in Table 1. The licensing procedure for a disposal facility has several steps that are similar to all nuclear facilities in Finland and are defined in Nuclear Energy Act (990/1987) and Decree (161/1988). These licensing steps are: - Decision in Principle (DiP); - Construction License; - Operational License. An Environmental Impact Assessment (EIA) shall be conducted prior to the first authorization step of a major nuclear waste facility. The EIA procedure for the final disposal of spent nuclear fuel from three units of the Olkiluoto nuclear power plant and two units of the Loviisa nuclear power plant was carried out in 1998-1999 and extended to one more unit at Olkiluoto in 2008- 2009. Pursuant to the Nuclear Energy Act, before making the DiP the Government shall ascertain whether the municipality planned as the location of the nuclear facility is in favour of the facility, and ensure that no facts indicating a

  7. Nuclear power plant diagnostics - Safety aspects and licensing. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the Technical Committee Meeting (TCM) was to review developed systems and methods in diagnostics in the scope of their impacts and importance to the safety of Nuclear Power Plants. Papers presented on TCM came from different sources, from developers, from manufacturers, from licensing authorities and from NPP personal. They reflect up to date status in the given subject. Participants of TCM formulated three working groups to elaborate different questions which were raised during the discussions. Their results are reflected in the three chapter titles of the given material. Annex 1 to this document contains presentations made at the Technical Committee Meeting. Refs, figs, tabs

  8. The development and application of quantitative methods in licensing nuclear power plants

    International Nuclear Information System (INIS)

    Cave, L.; Kastenberg, W.E.; Tweedy, J.N.

    1984-01-01

    The development and application of two quantitative methods, which could be used as part of the decision making process in nuclear power plant licensing, are decribed. These methods are the use of quantitative screening criteria to assess the adequacy of the safety functions in existing plants and the use of cost/benefit analysis to determine limits to the cost effective expenditure on ''back-fitting'' to improve safety. It is shown that the results obtained by the two methods are not necessarily compatible with one another. The need for clear guidance from regulatory bodies on the choice of some major parameters used in cost/benefit analysis is demonstrated. (orig.)

  9. An assessment on the applicability of licensing requirements for safety analysis of CANDU nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S. H. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1992-05-15

    The purpose of this project is to establish safety analysis requirements for CANDU nuclear power plants to be licensed for construction and operation in Korea. Main emphasis is given to assess the applicability of the Canada AECB consultant Document C-6 and to establish the method of application. Examination of the NPP regulation philosophy and safety analysis requirements in Canada. Assessment of the applicability of the C-6 requirements for CANDU plants to be built in Korea. Establishment of the method of application for C-6 requirements. Assessment of the PSA requirements for CANDU. Examination of the validity of computer programs used for CANDU safety analysis.

  10. Participation of the public in the nuclear licensing procedure, as seen by an experienced administrative officer

    International Nuclear Information System (INIS)

    Blickle, D.

    1989-01-01

    The author is an administrative officer of a licensing authority. From his point of view, there is no concrete reason to call for a modification of the legal provisions concerning the participation of the public. The legal provisions are stated to be sufficient and suitable for the task to be fulfilled, i.e. to provide for a hearing. Communication problems are said to be due to attempts of misusing hearings as a platform for questioning the peaceful use of nuclear energy altogether. (orig./HSCH) [de

  11. 77 FR 36012 - PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant Combined License Application; Notice of Intent...

    Science.gov (United States)

    2012-06-15

    ... by relocating the power block footprint and other plant components. For purposes of developing the... COMMISSION PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant Combined License Application; Notice of Intent... its Bell Bend Nuclear Power Plant (BBNPP) site, located west of the existing Susquehanna Steam...

  12. 78 FR 14842 - Crystal River Nuclear Generating Plant, Unit 3; Application for Renewal of License to Facility...

    Science.gov (United States)

    2013-03-07

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-302; NRC-2009-0039] Crystal River Nuclear Generating... operating license DPR-72, which authorizes Florida Power Corporaton (FPC) to operate the Crystal River... the application is based upon a determination to retire CR3. The CR3 is located near Crystal River, FL...

  13. Improving regulatory effectiveness in federal/state siting actions: water supplies and the nuclear licensing process

    International Nuclear Information System (INIS)

    Davenport, F.S.

    1977-07-01

    The Interstate Conference on Water Problems (ICWP) is a national association of State, intrastate, and interstate officials concerned with water resources administration and related matters. The Conference was established in 1959 as an outgrowth of regional conferences on water problems as recognized in the same year by action of the General Assembly of the States. This report was produced by the Interstate Conference on Water Problems in an effort to provide a compilation and summary of the views of selected States regarding relationships of water supplies to the nuclear power plant licensing process. This publication does not represent the official position of the U.S Water Resources Council, or the U.S. Nuclear Regulatory Commission, nor does it represent the position of any single state or the ICWP

  14. Nuclear power plant licensing and supervision in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Gehrhardt, H.J.; Gottschalk, P.A.

    1991-01-01

    This paper briefly describes nuclear power plant licensing and supervision in the Federal Republic of Germany (FRG). Peculiarities due to the federal structure of the FRG are outlined paying due regard to the long tradition of using consultation by qualified and independent technical experts. The participating authorities, commissions, expert organizations, vendors, utilities and the public as well as their respective competences are mentioned. Also, the hierarchy in nuclear legislation by means of ordinances, administrative regulations, guidelines and technical standards is pointed out. Typical examples are presented. The paper ends in mentioning important items concerning the evaluation of operating experience, recurrent tests, backfitting, lessons learned from the Chernobyl accident, safety research concerning accident management measures, on-site and off-site emergency planning, as well as qualification and occupational training of the responsible shift personnel. (orig.)

  15. Environmental assessment proposed license renewal of Nuclear Metals, Inc. Concord, Massachusetts

    International Nuclear Information System (INIS)

    Miller, R.L.; Easterly, C.E.; Lombardi, C.E.; Treitler, I.E.; Winbow, R.T.; Zimmerman, G.P.

    1997-02-01

    The US Nuclear Regulatory Commission (NRC) has prepared this Environmental Assessment (EA) to evaluate environmental issues associated with the renewal of licenses issued by NRC for facilities operated by Nuclear Metals, Inc. (NMI) in Concord, Massachusetts. By renewing the licenses, NRC proposes to allow the continuation of ongoing operations involving radioactive materials at NMI's facilities. This EA focuses on the potential impacts related to air emissions at NMI during normal (incident-free) operations and accidental releases. Findings indicate that there are only two areas of potential concern. First, modeling results for sulfur dioxide (SO 2 ) emissions from the boilers during normal operations indicate that the potential exists for exceeding the short-term National Ambient Air Quality Standards (NAAQS). NMI is prepared to undertake mitigative action to prevent potential exceedances of the short-term SO 2 NAAQS, and the Massachusetts Department of Environmental Protection is prepared to resolve the issue via a permit/approval change or through a Consent Order. Second, in the unlikely event of a severe fire, predicted sulfuric acid (H 2 SO 4 ) concentrations based on conservative (upper bound) modeling exceed the Emergency Response Planning Guideline (ERPG) levels. NMI has committed to NRC to give a briefing for local emergency response officials regarding the potential for an accidental H 2 SO 4 release

  16. Environmental assessment proposed license renewal of Nuclear Metals, Inc. Concord, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Easterly, C.E.; Lombardi, C.E.; Treitler, I.E.; Winbow, R.T.; Zimmerman, G.P. [Oak Ridge National Lab., TN (United States)

    1997-02-01

    The US Nuclear Regulatory Commission (NRC) has prepared this Environmental Assessment (EA) to evaluate environmental issues associated with the renewal of licenses issued by NRC for facilities operated by Nuclear Metals, Inc. (NMI) in Concord, Massachusetts. By renewing the licenses, NRC proposes to allow the continuation of ongoing operations involving radioactive materials at NMI`s facilities. This EA focuses on the potential impacts related to air emissions at NMI during normal (incident-free) operations and accidental releases. Findings indicate that there are only two areas of potential concern. First, modeling results for sulfur dioxide (SO{sub 2}) emissions from the boilers during normal operations indicate that the potential exists for exceeding the short-term National Ambient Air Quality Standards (NAAQS). NMI is prepared to undertake mitigative action to prevent potential exceedances of the short-term SO{sub 2} NAAQS, and the Massachusetts Department of Environmental Protection is prepared to resolve the issue via a permit/approval change or through a Consent Order. Second, in the unlikely event of a severe fire, predicted sulfuric acid (H{sub 2}SO{sub 4}) concentrations based on conservative (upper bound) modeling exceed the Emergency Response Planning Guideline (ERPG) levels. NMI has committed to NRC to give a briefing for local emergency response officials regarding the potential for an accidental H{sub 2}SO{sub 4} release.

  17. Regulatory challenges in the licensing of new nuclear power plant. From CORDEL to ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR, Leipzig (Germany); Micklinghoff, Michael

    2012-12-15

    The contribution deals with the international standardization of reactor designs. This concept may be a way to reduce licensing risks, lower obstacles to investments and, at the same time, enhance exchanges of experience towards ensuring more safety. Instead of 're-inventing the wheel' in each country, as in the case of the EPR in Europe, it would make more sense to simply replicate in other countries the first-of-its-kind design of a reactor as far as this is possible on the respective sites. Design modifications in the interest only of the particularities of national regulations should be a thing of the past. The article presents some initiatives towards increased cooperation and standardization. The focus is on the CORDEL working group of the World Nuclear Association (WNA) and the ERDA (European Reactor Design Acceptance) group of the European Nuclear Energy Forum (ENEF). This latter group is hoped to produce impulses enabling progress to be achieved within the EU. There are models. In Germany, there are still memories of German-French cooperation on the EPR in the 1990s as a model case of pragmatic cooperation. Another example is the civilian aircraft industry which, for more than 60 years, has developed structures for strong international cooperation so as to allow uniform worldwide licensing of standardized types of aircraft without infringing upon the rights and duties of national regulatory authorities. (orig.)

  18. VGH Mannheim: legitimacy of the decommissioning license for a nuclear power plant; VGH Mannheim: Rechtmaessigkeit der Stilllegungsgenehmigung fuer ein Kernkraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2015-03-16

    The contribution describes the details of the court (VGH) decision on the legitimacy of the decommissioning license for the NPP Obrigheim. Inhabitants of the neighborhood (3 to 4.5 km distance from the NPP) are suspect hazards for life, health and property due to the dismantling of the nuclear power plant in case of an accident during the licensed measures or a terroristic attack with radioactive matter release.

  19. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing

    International Nuclear Information System (INIS)

    1980-06-01

    This volume of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power - generating capability and one without

  20. Challenges in the Licensing of New Nuclear Power Plant, Service Life Extension of Operating Ones (Safeguards-Safety-Security Aspects)

    International Nuclear Information System (INIS)

    Horvath, K.

    2016-01-01

    The Hungarian Atomic Energy Authority (HAEA), as the Hungarian nuclear regulator is faced with dual challenges meant by the licensing of the planned construction of two AES-2006 type nuclear power plant units and the licensing of the service life extension of the existing units that have been operating for more than 30 years. The HAEA has full regulatory competence; its mission is to oversee the safety and security of all the peaceful applications of atomic energy. Accordingly, the licensing scope covers safeguards, safety as well as security. The paper shows the current status of the Hungarian nuclear programme and the future plans, as well as summarizes the regulatory approach followed by HAEA. (author)

  1. Licensing of safety critical software for nuclear reactors. Common position of seven European nuclear regulators and authorised technical support organisations

    International Nuclear Information System (INIS)

    2010-01-01

    It is widely accepted that the assessment of software cannot be limited to verification and testing of the end product, i.e. the computer code. Other factors such as the quality of the processes and methods for specifying, designing and coding have an important impact on the implementation. Existing standards provide limited guidance on the regulatory and safety assessment of these factors. An undesirable consequence of this situation is that the licensing approaches taken by nuclear safety authorities and by technical support organisations are determined independently with only limited informal technical co-ordination and information exchange. It is notable that several software implementations of nuclear safety systems have been marred by costly delays caused by difficulties in co-ordinating the development and qualification process. It was thus felt necessary to compare the respective licensing approaches, to identify where a consensus already exists, and to see how greater consistency and more mutual acceptance could be introduced into current practices. This report is the result of the work of a group of regulator and safety authorities' experts. The 2007 version was completed at the invitation of the Western European Nuclear Regulators' Association (WENRA). The major result of the work is the identification of consensus and common technical positions on a set of important licensing issues raised by the design and operation of computer based systems used in nuclear power plants for the implementation of safety functions. The purpose is to introduce greater consistency and more mutual acceptance into current practices. To achieve these common positions, detailed consideration was paid to the licensing approaches followed in the different countries represented by the experts of the task force. The report is intended to be useful: - to coordinate regulators' and safety experts' technical viewpoints in the design of regulators' national policies and in revisions

  2. Independent modelling in SSM's licensing review of a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Xu, Shulan; Dverstorp, Bjoern; Norden, Maria

    2014-01-01

    In 2011 the Swedish Nuclear Fuel and Waste Management Co. (SKB) submitted a license application for construction of a geological repository for spent nuclear fuel at Forsmark. SKB's disposal method, the KBS-3 method, involves disposing of the spent nuclear fuel in cast iron canisters with an outer layer of 5 cm copper. The canisters will be placed in vertical deposition holes at approximately 500 m depths in crystalline bedrock. Each canister is surrounded by a buffer of swelling bentonite clay. The repository is designed to accommodate 6 000 canisters, corresponding to 12 000 tonnes of spent nuclear fuel. The license application is supported by a post-closure safety assessment, SR-Site. Along with other parts of the application, SR-Site is currently being reviewed by the Swedish Radiation Safety Authority (SSM). The main method for review of SKB's licensing documentation is document review carried out by SSM, supported by SSM's external experts. However, SSM's document review is also supported by regulatory modelling, technical reviews of SKB's quality assurance programme and consideration of external review comments partly from two broad national consultations and an international peer review organised by the OECD's Nuclear Energy Agency (NEA, 2012). SSM's review is divided into three main phases: the initial review phase, the main review phase and the reporting phase. The overall goal of the initial review phase is to achieve a broad coverage of SR-Site and its supporting references and in particular to identify the need for complementary information and clarifications to be provided by SKB, as well as to identify critical review issues that require a more comprehensive treatment in the main review phase. SSM completed the initial review phase at the end of 2012. During the initial review phase SSM has identified a number of issues requiring either clarifications, complementary information from SKB or further in-depth review by SSM. Important issues include the

  3. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  4. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, Cetin; Williams, Brian; McClure, Patrick; Nelson, Ralph A.

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M and S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for

  5. Licensing of safety critical software for nuclear reactors. Common position of seven European nuclear regulators and authorised technical support organisations

    International Nuclear Information System (INIS)

    2007-01-01

    The major result of the work is the identification of consensus and common technical positions on a set of important licensing issues raised by the design and operation of computer-based systems used in Nuclear Power Plants for safety functions. The purpose is to introduce greater consistency and more mutual acceptance into current practices. To achieve these common positions, detailed consideration was paid to the licensing approaches followed in the different countries represented by the experts of the task force. The report is intended to be useful: - to coordinate regulators' and safety experts' technical viewpoints in the design of regulators' national policies and in revisions of guidelines; - as a reference in safety cases and demonstrations of safety of software based systems; - as guidance for system design specifications by manufacturers and major I and C suppliers on the international market. The task force decided at an early stage to focus attention on computer based systems used in Nuclear Power Plants for the implementation of safety functions; namely, those systems classified by the IAEA as 'Safety Systems'. Therefore, recommendations of this report - except those of chapter 1.11 - primarily address 'safety systems' and not 'safety related systems'. It was felt that the most difficult aspects of the licensing of digital programmable systems are rooted in the specific properties of the technology. The objective was therefore to delineate practical and technical licensing guidance, rather than discussing or proposing basic principles or requirements. The design requirements and the basic principles of nuclear safety in force in each member state are assumed to remain applicable. This report represents the consensus view achieved by the experts who contributed to the task force. It is the result of what was at the time of its initiation a first attempt at the international level to achieve consensus among nuclear regulators on practical methods for

  6. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  7. Delivering Regulatory Consents for Decommissioning and Restoration of the Dounreay Nuclear Licensed Site

    International Nuclear Information System (INIS)

    Crawford, R.W.; Zyda, P.W.

    2006-01-01

    On behalf of the Nuclear Decommissioning Authority (NDA) the United Kingdom Atomic Energy Authority (UKAEA) has implemented a strategy to translate the near-term Dounreay restoration plan into a suite of land use documents designed to deliver the necessary planning consents to decommission and restore the Dounreay Nuclear Licensed Site. The legal consents and authorizations required to enable UKAEA to commence major projects and progress the decommissioning of the site are highlighted along with the measures taken to secure political, public and regulatory acceptance at the earliest opportunity. The approach taken by UKAEA is explained, focusing particularly on the critical need to secure planning permission and stakeholder approval well before the onset of construction works. The intention is to realize the benefits of forging a close working relationship with the land use regulator, The Highland Council. UKAEA has taken an approach to suitably inform the planning authority, in particular, the production of the Dounreay Planning Framework (DPF) document. This paper describes the role and need for the DPF, focusing on the key purpose of amending the local development plan to secure supportive planning policies and to set a land use context for the subsequent site decommissioning and restoration. This also has the advantage of securing public acceptance through an established legal process. Strategic milestones subsequent to the Highland Council's adoption of the DPF are highlighted, including the submission of phased planning applications and compliance with environmental legislation generally. The paper describes and underscores the need for early engagement of other regulators in the planning process such as the Scottish Environment Protection Agency (SEPA), and the safety regulator, the Nuclear Installations Inspectorate (NII). It describes the linkages amongst land use consents, Best Practicable Environmental Options (BPEO), radioactive substances

  8. Study of a conceptual nuclear energy center at Green River, Utah: licensing considerations

    Energy Technology Data Exchange (ETDEWEB)

    Dowdle, M.; Russell, R.; Zillman, D.

    1982-04-01

    This report examines the laws governing the location of a 9-unit nuclear energy center (NEC) near Green River, Utah. The time frame being considered for development of the conceptual NEC is from 1995 to 2013. Accordingly, the report is forced to speculate about some aspects of the plant, its site and its construction. Most of the report examines existing legal requirements for constructing an NEC. Where pertinent, changes in the law are discussed that would affect an NEC that is to be licensed in one or two decades. In general, no insurmountable legal problems exist that would prevent an NEC from being licensed at the Green River location. Several legal requirements pose significant concerns and would have to be faced before an NEC could be built. Among the major legal constraints are radiation protection, regulatory approval of financing, access to water, and local zoning restrictions. Two other constraints that involve legal matters are the wisdom of standardization of the units and the responsibility of the NEC builder to correct socio-economic impacts on the local area.

  9. Preliminary statement on general policy for rulemaking to improve nuclear power plant licensing

    International Nuclear Information System (INIS)

    1978-11-01

    In June 1977 an NRC study group seeking to identify ways to improve the effectiveness of NRC nuclear power plant licensing procedures, recommended (among other measures) that rulemaking should be considered for the generic resolution of certain major issues that are presently litigated in individual licensing proceedings (NUREG--0292). In response to a Commission directive, the staff prepared an interim statement of general policy and plans for rulemaking, which the Commission approved for publication n the Federal Register at Affirmation Session 78-7 held on October 26, 1978. This interim policy statement fully supports Executive Order 12044 of March 23, 1978, requesting improvement of existing and future government regulations so as to be as simple and clear as possible and avoid imposing unnecessary burdens on the economy, on individuals, on public and private organizations, or on State and local governments. This NUREG publication includes the full text of the Federal Register notice published concurrently. Also provided are Enclosures A and B which contain more complete information than is presented in the FR notice regarding the selection and discussion of issues proposed by the staff for generic rulemaking. However, the discussion of issues avoids being overly specific about the likely outcome of rulemaking in order to stimulate creative public and industry comments as desirable inputs to shaping the ultimate form of generic rules

  10. Study of a conceptual nuclear energy center at Green River, Utah: licensing considerations

    International Nuclear Information System (INIS)

    Dowdle, M.; Russell, R.; Zillman, D.

    1982-04-01

    This report examines the laws governing the location of a 9-unit nuclear energy center (NEC) near Green River, Utah. The time frame being considered for development of the conceptual NEC is from 1995 to 2013. Accordingly, the report is forced to speculate about some aspects of the plant, its site and its construction. Most of the report examines existing legal requirements for constructing an NEC. Where pertinent, changes in the law are discussed that would affect an NEC that is to be licensed in one or two decades. In general, no insurmountable legal problems exist that would prevent an NEC from being licensed at the Green River location. Several legal requirements pose significant concerns and would have to be faced before an NEC could be built. Among the major legal constraints are radiation protection, regulatory approval of financing, access to water, and local zoning restrictions. Two other constraints that involve legal matters are the wisdom of standardization of the units and the responsibility of the NEC builder to correct socio-economic impacts on the local area

  11. Calvert Cliffs nuclear power plant Life-Cycle Management/License Renewal Program: Integrated plant assessment

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Tilden, B.M.; DiBello, D.J.; Klein, D.J.; Negin, C.A.; Hostetler, D.R.; Simpson, J.M.

    1993-08-01

    Baltimore Gas and Electric's Life Cycle Management (LCM) Program is a leading, proactive effort to identify and execute actions necessary to achieve the optimum economic life of their Calvert Cliffs, twin unit Nuclear Power Plant. Preparation for license renewal, a part of this effort, requires conduct of an Integrated Plant Assessment that meets regulatory requirements specified in 10CFR54. The maturity of BG and E's LCM program suggests that their work would be of substantial benefit to other utilities contemplating similar activities. The benefits should be evidenced as significant cost reduction and problem avoidance. This is the first of a series of EPRI reports on the Calvert Cliffs programs aimed at providing such benefits

  12. Licensing evaluation of CANDU-PHW nuclear power plants relative to U.S. regulatory requirements

    International Nuclear Information System (INIS)

    Erp, J.B. van

    1978-01-01

    Differences between the U.S. and Canadian approach to safety and licensing are discussed. U.S. regulatory requirements are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to current Regulatory Requirements and Guides. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S. These modifications are proposed solely for the purpose of maintaining consistency within the current U.S. regulatory system and not out of a need to improve the safety of current-design CANDU-PHW nuclear power plants. A number of issues are identified which still require resolution. Most of these issues are concerned with design areas not (yet) covered by the ASME code. (author)

  13. Pre-license team training at San Onofre Nuclear Generating Station

    International Nuclear Information System (INIS)

    Freers, S.M.; Hyman, M.

    1987-01-01

    Team Training at San Onofre Nuclear Generating Station (SONGS) Units 2 and 3 has been developed to enhance the performance of station operations personnel. The FACT Training Program (Formality, Attention to Detail, Consistency and Team Effort) is the common denominator for operations team training. Compliance with good operating practices is enhanced by operators working as a team toward the same goal, using the same language, practicing the same operating and communication skills, possessing a clear understanding of individual roles and responsibilities of team members and practicing attention to detail in every task. These elements of effective teamwork are emphasized by the processes and criteria used in the Pre-License Operator Training Program at SONGS

  14. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  15. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as 'endangered' when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A 'threatened' classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals

  16. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico

    International Nuclear Information System (INIS)

    Serrano R, M. L.

    2012-10-01

    So that the construction stages, of operation, closing, dismantlement and the radioactive waste disposal of a nuclear power plant (NPP) are carried out in Mexico, is necessary that the operator has a license, permission or authorization for each stage. In Mexico, these licenses, permissions or authorizations are granted by the Energy Secretariat with base in the verdict of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The operation licenses ar the moment effective for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) they will expire respectively in the year 2020 and 2025 for the Unit 1 and Unit 2, for what the CNSNS has begun its preparation before a potential solicitude of the licensee to continue the operation of the NPP-L V. Defining the process to continue and to generate the documents that would help in this phase as normalization, guides, procedures, regulations, controls, etc., is the task that intends to be carried out the regulator body so that the evaluation process is effective and efficient, so much for the same regulator body as for the licensee. This work exposes the advance that the CNSNS has in this aspect and is centered specifically in the conformation of an evaluation process of license renovation solicitude, taking as base what the regulator body of the United States of North America (US NRC) established and following to the IAEA. Also, this work includes statistical of electric power production in Mexico, licensing antecedents for the NPP-L V, a world perspective of the license renovations and the regulation of the US NRC related to the license renovation of a NPP. (Author)

  17. Environmental-impact appraisal related to special nuclear materials. License No. SNM-696; Docket No. 70-734

    International Nuclear Information System (INIS)

    1983-06-01

    This Environmental Impact Appraisal is issued by the US Nuclear Regulatory Commission in response to an application by GA Technologies, Inc., (GA) for renewal of Special Nuclear Material (SNM) License No. SNM-696 covering plant operations at San Diego, California. The proposed action provides for continuing research, development, and production activities involving SNM, uranium enriched in the U-235 and U-233 isotopes, and plutonium

  18. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  19. Potential threat to licensed nuclear activities from insiders (insider study). Technical report

    International Nuclear Information System (INIS)

    Mullen, S.A.; Davidson, J.J.; Jones, H.B. Jr.

    1980-07-01

    The Insider Study was undertaken by NRC staff at the request of the Commission. Its objectives were to: (1) determine the characteristics of potential insider adversaries to licensed nuclear activities; (2) examine security system vulnerabilities to insider adversaries; and (3) assess the effectiveness of techniques used to detect or prevent insider malevolence. The study analyzes insider characteristics as revealed in incidents of theft or sabotage that occurred in the nuclear industry, analogous industries, government agencies, and the military. Adversary characteristics are grouped into four categories: position-related, behavioral, resource and operational. It also analyzes (1) the five security vulnerabilities that most frequently accounted for the success of the insider crimes in the data base; (2) the 11 means by which insider crimes were most often detected; and (3) four major and six lesser methods aimed at preventing insider malevolence. In addition to case history information, the study contains data derived from non-NRC studies and from interviews with over 100 security experts in industry, government (federal and state), and law enforcement

  20. HSE policy on decommissioning and radioactive waste management at licensed nuclear sites

    International Nuclear Information System (INIS)

    Bacon, M.

    1997-01-01

    In the UK, radioactive waste management and decommissioning on a licensed nuclear is regulated by the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to radioactive waste management and decommissioning activities. This provides a continuous but flexible safety regime until there is no danger from ionizing radiations. The regulatory policy is discussed, taking into account the implications of the 1995 White Paper reviewing radioactive waste management policy. For both radioactive waste management and decommissioning the key element of HSE policy is the need for strategic planning. This should ensure that problems are not allowed to build up and to demonstrate that, taking into account all factors, the proposed actions are the optimum in terms of safety. There is a presumption in HSE's policy towards disposal of radioactive waste as soon as possible where disposal routes exist. Where long-term storage is necessary passively safe forms are preferred over those requiring continuous monitoring or frequent intervention. (author)

  1. Licensing and regulatory control of nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.

    1975-01-01

    Legal basis; licensing requirements by the Atomic Energy Act, national law, international law and recommendations, and by technical rules and standards; licensing process: types of licences, responsibilities, sequence of the procedure; role of technical advisory bodies, enforcement of licensing actions. (HP) [de

  2. Regulator process for the authorization of an amendment to the operation license of a nuclear power plant in Mexico

    International Nuclear Information System (INIS)

    Perez, R.; Espinosa V, J.M.; Salgado, J.R.; Mamani, Y.R.

    2005-01-01

    The regulator process by which an authorization is granted from an amendment to the License of Operation of a nuclear power station in Mexico is described. It makes an appointment the effective legal mark, the technical characteristics of the modification, the evaluation process and deposition upon oath of tests and finally the elaboration of the Safety report and the Technical Verdict that is a correspondent for the regulator organism to the Secretary of Energy, the one that in turn is the responsible of granting the amendment the License just as it establishes it the Law. (Author)

  3. Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission's environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC's review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative

  4. Division of nuclear liabilities between different license holders and owners - 59214

    International Nuclear Information System (INIS)

    Lindskog, Staffan; Sjoeblom, Rolf

    2012-01-01

    Sweden was one of the first six countries to build and operate a nuclear power reactor. Thus, there exists a corresponding legacy in terms of liabilities for decommissioning and waste management of the historic facilities. Compliance with the Polluter Pays Principle (PPP) and its corollary on equity between generations implies that plans for decommissioning must be made and funds set aside for its execution. The need for precision in the cost estimates often governs the timing of the technical planning. Cost estimates are treacherous since cost raisers may be identified and evaluated only after considerable efforts have been made. Further complications and challenges arise as a result of changes that take place between construction and decommissioning of facilities in terms of the entities involved as owners, operators, license holders, Authorities and financiers. From this perspective, the present paper summarizes the general legislation as well as the legislation that applies particularly to nuclear activities. It also summarizes the relation between the nuclear decommissioning fund system and financial reporting. Three examples are provided that wholly or partially fall under the Studsvik act (that specifically covers old facilities): - The Aagesta nuclear power plant; - The Ranstad uranium mining and beneficiation facility; - The Neutron Research Laboratory at Studsvik; The findings include the following: - It is important that the legislation be clear as to what is included and not. - The rationale for the legislation should also be clear and well communicated. - Old agreements can be significant for the assessment of liabilities, even in cases where a party may no longer exist. - Support for assessment of when activities are continuing or not (which may have a strong significance for the liability) can be found in court cases on chemically contaminated soil. - Analysis of facilities and the work carried out at different times can be very helpful in

  5. The status of nuclear industry Cost Beneficial Licensing Actions (CBLA) activities. Final report

    International Nuclear Information System (INIS)

    Ross, A.M.; Sokolsky, D.

    1995-05-01

    The project addressed in this report investigated the status of nuclear utility industry Cost Beneficial Licensing Action (CBLA) and Commitment Reduction (CR) activities. The CBLA program was a recent NRC initiative to enable utilities to revise regulatory commitments that have minimal safety impact and have but have been costly to implement. The project determined that approximately half of the utilities in the industry have formal programs to address this issue and that the programs implemented to date have had mixed results: some utilities benefited greatly and others only achieved minimal rewards. The project also determined that there are some significant factors that impact the potential for success of such programs. These factors include the level of management involvement and support, the level of resources dedicated to CBLA/CR activities, and the willingness of the utility to pursue issues that previously had not been considered. In addition, the overall success of the industry efforts will be highly dependent upon the effectiveness of the respective assigned NRR Project Manager, NRC's newly formed CBLA Task Group, and the NRC's ability to effect a mechanism to provide real value added for those submittals made to the Commission that are designated as CBLA submittals. It is anticipated that the next 12 months will be critical to the success or failure of industry CBLA/CR efforts as the industry begins to use an NEI process designed to facilitate the evaluation of CBLA/CR issues and the NRC CBLA Task Group begins to function in a routine manner

  6. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico. Part 2

    International Nuclear Information System (INIS)

    Serrano R, M. de L.

    2013-10-01

    At the present time the operation licenses in force for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) will expire in the year 2020 and 2025 for the Unit-1 and Unit-2, respectively, for which the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has begun its preparation to assist a solicitude of the licensee to continue the operation of the NPP-L V. The present work has the purpose of defining the steps to continue and to generate the documents that would help in this process, as the normative, guides, procedures, regulations, controls, etc. so that the evaluation process will be effective and efficient, as much for the regulator organ as for the licensee. The advance carried out in the continuation of the conformation of an evaluation process of license renovation solicitude is also exposed, taking like base the requirements established by the CNSNS, the regulator organ of the United States (US NRC), and the IAEA for license renovation solicitude of this type. A summary of the licenses granted from the beginning of commercial operation of the NPP-L V is included, both units and the amendments to these licenses, explaining the reason of the amendment shortly and in the dates they were granted. A brief exposition of the nuclear power plants to world level that have received extension of its operation is included. The normative that can be applied in a life extension evaluation is presented, the evaluation process to continue with the guides of the US NRC, the reach of the evaluation and the minimum information required to the licensee that should accompany to their solicitude. (author)

  7. Federal/State cooperation in the licensing of a nuclear power project. A joint licensing process between the US Nuclear Regulatory Commission and the Washington State Energy Facility Site Evaluation Council

    International Nuclear Information System (INIS)

    1984-05-01

    This report summarizes and documents a joint environmental review and licensing process established between the US Nuclear Regulatory Commission (NRC) and the Washington State Energy Facility Site Evaluation Council (EFSEC) in 1980-1983 for the Skagit/Hanford Nuclear Project (S/HNP). It documents the agreements made between the agencies to prepare a joint environmental impact statement responsive to the requirements of the National Environmental Policy Act of 1969 (NEPA) and the Washington State Environmental Policy Act. These agreements also established protocol to conduct joint public evidentiary hearings on matters of mutual jurisdiction, thereby reducing the duplication of effort and increasing the efficiency of the use of resources of federal and state governments and other entities involved in the process. This report may provide guidance and rationale to licensing bodies that may wish to adopt some of the procedures discussed in the report in the event that they become involved in the licensing of a nuclear power plant project. The history of the S/HNP and of the agreement processes are discussed. Discussions are provided on implementing the joint review process. A separate section is included which presents independent evaluations of the process by the applicant, NRC, and EFSEC

  8. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    Energy Technology Data Exchange (ETDEWEB)

    Regan, C.; Lee, S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Reactor Program Management; Chopra, O.K.; Ma, D.C.; Shack, W.J. [Argonne National Lab., IL (United States)

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal.

  9. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    International Nuclear Information System (INIS)

    Regan, C.; Lee, S.

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal

  10. Environmental impact appraisal for renewal of Special Nuclear Material License No. SNM-1097 (Docket No. 70-1113)

    International Nuclear Information System (INIS)

    1984-06-01

    The proposed action, the full 5-year renewal of License SNM-1097, is necessary for GE to continue producing fuel used in light-water nuclear reactors. The fuel manufacturing operation principally involves converting UF 6 to UO 2 powder, pressing the UO 2 powder into pellets, sintering and grinding the pellets, loading the pellets into Zircaloy tubes, and then assembling the loaded tubes into fuel bundles. A variety of radiological and nonradiological gaseous, liquid, and solid wastes are generated. After treatment, some of the wastes are released to the environment. In addition to the nuclear fuel fabrication operation, there are other operations performed at GE which do not require NRC licensing (e.g., zirconium metal processing, production of fuel bundle and mechanical reactor components, and the manufacture of aircraft engine parts) and are not associated with the proposed action. 28 references, 15 figures, 21 tables

  11. Defects and their consequences in the nuclear licensing procedure. A study into the procedure for the elaboration of the 5th part-permit issued to the MOX unit of the Hanau nuclear fuel fabrication plant

    International Nuclear Information System (INIS)

    Lange, K.

    1994-01-01

    The expert opinion presented in the book deals with a nuclear licensing procedure and its specific aspects in terms of the nuclear law and the factual and dogmatic situation. As to the facts, one major peculiarity is stated, namely the close cooperation between the licensing authority and the plant owner applying for the license, and also between the licensing authority and the expert preparing the expert opinion. The expert opinion in this book concretizes essential elements of the nuclear licensing procedure, such as examination of the licensing requirements by the competent authority, the participation of other authorities and departments, the participation of experts, distinctness, submission in writing, detailed explanation. Examining the consequences of non-compliance with any of the procedural provisions however shows that the punishments by the law do not really bite: defects in a licensing procedure will only in exceptional cases lead to complete or partial invalidity of a licence. Recourse to the courts will be successful only in case of infringement of subjective rights. A licence resulting from a defective licensing procedure can, if at all, only be declared null and void by the licensing authority whose scope of discretion under the Atomic Energy Act is subject only to the Federal Government's power to give instructions to the Land Governments. This makes clear that it is very important to see to it that the licensing authorities strictly adhere to the legal provisions in force governing the administrative licensing procedure. (orig./HSCH) [de

  12. Guide for the preparation of applications for special nuclear material licenses of less than critical mass quantities - July 1976

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This guide describes the type of information needed to evaluate an application for a specific license for receipt, possession, use, and transfer of special nuclear material. It is intended for applicants requesting authorization to possess and use up to 2000 grams of plutonium, total, in the form of sealed plutonium-beryllium neutron sources, and any special nuclear material in quantities and forms not sufficient to form a critical mass. The latter quantities are considered to be 350 grams of contained uranium-235, 200 grams of uranium-233, 200 grams of plutonium (in any form other than plutonium-beryllium neutron sources) or any combination of them

  13. Licensing procedures for a dedicated ship for carrying spent nuclear fuel and radioactive waste. Report from workshop held at GOSAOMNADZOR, Moscow 2 -3 July 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Margorzata K.; Bergman, Curt; Markarov, Valentin

    2001-07-01

    The report describes information exchange and discussion about the licensing principles and procedures for spent nuclear fuel and radioactive waste transportation at sea. Russian health, environment and safety requirements for transportation of waste by ships. (Author)

  14. Establishing credibility in the environmental models used for safety and licensing calculations in the nuclear industry

    International Nuclear Information System (INIS)

    Davis, P.A.

    1997-01-01

    Models that simulate the transport and behaviour of radionuclides in the environment are used extensively in the nuclear industry for safety and licensing purposes. They are needed to calculate derived release limits for new and operating facilities, to estimate consequences following hypothetical accidents and to help manage a real emergency. But predictions generated for these purposes are essentially meaningless unless they are accompanied by a quantitative estimate of the confidence that can be placed in them. For example, in an emergency where there has been an accidental release of radioactivity to the atmosphere, decisions based on a validated model with small uncertainties would likely be very different from those based on an untested model, or on one with large uncertainties. This paper begins with a discussion of some general methods for establishing the credibility of model predictions. The focus will be on environmental transport models but the principles apply to models of all kinds. Establishing the credibility of a model is not a trivial task, It involves a number of tasks including face validation, verification, experimental validation and sensitivity and uncertainty analyses. The remainder of the paper will present quantitative results relating to the credibility of environmental transport models. Model formation, choice of parameter values and the influence of the user will all be discussed as sources of uncertainty in predictions. The magnitude of uncertainties that must be expected in various applications of the models will be presented. The examples used throughout the paper are drawn largely from recent work carried out in BIOMOVS and VAMP. (DM)

  15. Expertise and participation of the population in the context of nuclear risk: democracy and environmental licensing of Angra 3 nuclear power plant

    Directory of Open Access Journals (Sweden)

    Gláucia Silva

    2010-01-01

    Full Text Available This article discusses the specificity of citizens' "participation" in contexts of decision-making on the acceptance of nuclear risk, demonstrating that such acceptance depends on mediation by professionals who are willing to translate the typical scientific jargon of technical reports and/or produce their own reports, by way of counter-expertise; otherwise, lay people are unable to confer scientific legitimacy to their arguments. The basic empirical references for the current analysis are the recurrent themes from public hearings organized for the licensing of two Brazilian nuclear power plants using German technology, Angra 2 and Angra 3, with emphasis on the latter, now undergoing prior environmental licensing. The forms of "social control" engendered in France serve as a counterpoint for developing the article's argument.

  16. Decree-Law no. 49398 of 24 November 1969 - Establishment of a licensing system for nuclear activities of an industrial nature

    International Nuclear Information System (INIS)

    1969-01-01

    This decree-Law lists the nuclear activities subject to licensing in Portugal. These include: research involving use of nuclear laboratories, pilot and industrial facilities; prospecting for and exploration of radioactive ore deposits, including the production of concentrates; import and export of radioactive materials and nuclear fuels, including fabrication of the latter; nuclear reactors and power plants; trade in irradiated fuels and recycling of recovered fuels. The Decree-Law lays down that the licensing procedure for such activities will be fixed by decree. (NEA) [fr

  17. Licensing for the construction of 'Almirante Alvaro Alberto' nuclear power plant

    International Nuclear Information System (INIS)

    1974-09-01

    The BRAZILIAN NUCLEAR ENERGIA COMMISSION (Comissao Nacional de Energia Nuclear - CNEN) presents in Report n 0 51 of its Reactors Department all the requirements for the construction permit of 'Almirante Alvaro Alberto' Nuclear Power Plant [pt

  18. Decree No 70-440 of 22 May 1970 abolishing the licensing system, set up by the Decree of 30 October 1935, in respect of thermal and nuclear electricity-generating plants

    International Nuclear Information System (INIS)

    1970-01-01

    With this Decree, nuclear power plants are subject only to the licensing system established by the 1963 Decree on nuclear installations, as amended subsequently by the Decree of 1973 and regulations specific to nuclear installations. (NEA) [fr

  19. An overview of the U.S. Department of Energy Program to extend the service life and operating license of nuclear powerplants

    International Nuclear Information System (INIS)

    Harrison, D.L.; Giessing, D.F.; McGoff, D.J.

    1992-01-01

    Today, 112 nuclear powerplants provide over 20 percent of the electrical energy generated in the United States. The operating license of the first of these plants will expire in the year 2000; one third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2031. The continued operation of these plants is essential to ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth and improved us competitiveness. In order to preserve this energy resource, three major tasks must be successfully completed: (1) establishment of the regulations, technical standards, and procedures for the preparation and review of license renewal applications; (2) development of the technical criteria and bases for needed monitoring, refurbishment, or replacement of plant equipment; and (3) demonstration of the regulatory process by a lead plant obtaining a renewed license. Since 1986, the Department of Energy (DOE) has been working with the nuclear industry and the safety regulator to establish and demonstrate by the end of 1995 the option to extend the life of nuclear powerplants through renewal of operating licenses. This paper provides an overview of the importance and role of license

  20. A real-time material control concept for safeguarding special nuclear material in United States licensed processing facilities

    International Nuclear Information System (INIS)

    Shea, T.E.

    1976-01-01

    This paper describes general safeguards research being undertaken by the United States Nuclear Regulatory Commission. Efforts to improve the ability of United States licensed plants to contend with the perceived threat of covert material theft are emphasized. The framework for this improvement is to break down the internal control and accounting system into subsystems to achieve material isolation, inventory control, inventory characterization, and inventory containment analysis. A general programme is outlined to develop and evaluate appropriate mechanisms, integrate selected mechanisms into subsystems, and evaluate the subsystems in the context of policy requirements. (author)

  1. Allocation of responsibilities between central and local authorities concerning nuclear power plant licensing

    International Nuclear Information System (INIS)

    Peltzer, P.

    1983-01-01

    This paper examines Belgian regulations on licences to construct and operate nuclear power plants in the context of implementation of the 1980 Act concerning regionalisation. It also reviews the relevant nuclear legislation in certain other countries. (NEA) [fr

  2. NEP Nuclear Power Plant, Units 1 and 2. License application, general and financial information

    International Nuclear Information System (INIS)

    1976-01-01

    A license application is presented for 2 pressurized water reactors at a proposed location in Charlestown RI. Each reactor will have a net capacity of 1150 MW. Cooling water will be supplied by the Atlantic Ocean. NEP-1 is scheduled for operation in 1983 and NEP-2 in 1985

  3. Regulatory challenges for the licensing of future nuclear plants: A public interest perspective

    International Nuclear Information System (INIS)

    Lyman, Edwin S.

    2001-01-01

    Regulatory challenges concerned with licensing of advanced NPPs must ensure that economic imperatives do not have adverse impacts on safety, risk of radiological sabotage, waste management and disposal, non-proliferation, full opportunity for public participation. This presentation explains the mentioned issues using pebble bed reactor as an example

  4. Regulatory licensing status summary report. Nuclear power plants data for decisions (blue book), June 17-July 10, 1982

    International Nuclear Information System (INIS)

    1982-07-01

    This management report, Regulatory Licensing Status Summary Report, is designed to provide the necessary information for controlling the progress of review processes for central station nuclear reactor applications. It utilizes data collected from the Office of Nuclear Reactor Regulation, Office of the Executive Legal Director, Office of Inspection and Enforcement, and the National Laboratories, and analyzed by the Office of Resource Management in the implementation of the Regulatory Information System. Section I of this edition consists of the three summary of accomplishments, the new application forecast for OL's and CP's, and an abbreviation key. Section II represents the main body of the report and consists of the facility information. All OL's are listed first, followed by CP's, standard design reviews, other reviews, and finally, a non-power reactor summary. Each project consists of general facility data, current status for all phases of the review, and targeted and actual completion dates for all key milestones in the review

  5. 77 FR 59994 - Nuclear Fuel Services, Inc., Erwin, TN; Issuance of License Renewal

    Science.gov (United States)

    2012-10-01

    ... Environmental Assessment). If you do not have access to ADAMS or if there are problems in accessing the... NUCLEAR REGULATORY COMMISSION [Docket No. 70-143; NRC-2009-0435] Nuclear Fuel Services, Inc... No. SNM-124, to Nuclear Fuel Services, Inc. (the licensee), which authorizes the licensee to continue...

  6. Preliminary evaluation of licensing issues associated with U. S. -sited CANDU-PHW nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    van Erp, J B

    1977-12-01

    The principal safety-related characteristics of current CANDU-PHW power plants are described, and a distinction between those characteristics which are intrinsic to the CANDU-PHW system and those that are not is presented. An outline is given of the main features of the Canadian safety and licensing approach. Differences between the U.S. and Canadian approach to safety and licensing are discussed. Some of the main results of the safety analyses, routinely performed for CANDU-PHW reactors, are presented. U.S.-NRC General Design Criteria are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to its conformance to the U.S.-NRC General Design Criteria. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S.

  7. Nuclear power plant simulators for operator licensing and training. Part I. The need for plant-reference simulators. Part II. The use of plant-reference simulators

    International Nuclear Information System (INIS)

    Rankin, W.L.; Bolton, P.A.; Shikiar, R.; Saari, L.M.

    1984-05-01

    Part I of this report presents technical justification for the use of plant-reference simulators in the licensing and training of nuclear power plant operators and examines alternatives to the use of plant-reference simulators. The technical rationale is based on research on the use of simulators in other industries, psychological learning and testing principles, expert opinion and user opinion. Part II discusses the central considerations in using plant-reference simulators for licensing examination of nuclear power plant operators and for incorporating simulators into nuclear power plant training programs. Recommendations are presented for the administration of simulator examinations in operator licensing that reflect the goal of maximizing both reliability and validity in the examination process. A series of organizational tasks that promote the acceptance, use, and effectiveness of simulator training as part of the onsite training program is delineated

  8. Ergonomics in the licensing and evaluation of nuclear reactors control room

    International Nuclear Information System (INIS)

    Santos, Isaac Jose Antonio Luquetti dos; Vidal, Mario Cesar Rodriguez

    2002-01-01

    A nuclear control room is a complex system that controls a thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear plant safety and influence the operator activity. The TMI (Three Mile Island) accident demonstrated that only the anthropometric aspects were not enough for an adequate nuclear control room design. The studies showed that the accident was aggravated because the designers had not considered adequately human factor aspects. After TMI accident, the designers introduce in the nuclear control room development only human factors standards and human factors guidelines. The ergonomics approaches was not considered. Our objective is introduce in nuclear control room design and nuclear control room evaluation, a methodology that. includes human factors standards, human factors guidelines and ergonomic approaches, the operator activity analysis. (author)

  9. Environmental Impact Appraisal for renewal of special nuclear material license No. SNM-42 (Docket No. 70-27)

    International Nuclear Information System (INIS)

    1984-03-01

    The Babcock and Wilcox Company (B and W) Naval Nuclear Fuel Division (NNFD) facility near Lynchburg, Virginia, produces fuel assemblies and complete fuel modules for reactors used in the US Navy nuclear propulsion program and fuel components for university and other research reactors; and processes scrap material to recover the enriched uranium content. No significant modifications of the production procedures for the US Navy nuclear fuel fabrication have been made since the previous environmental assessment, and none are anticipated during the five-year license renewal period being considered. In 1982 the fabrication of fuel assemblies for university and other research reactors was begun. This environmental assessment provides a review of the past five years of operation and an analysis of future impacts, including the effect of plant changes. The proposed action is the renewal of the license necessary for B and W to continue the existing fuel fabrication operations. Principal operations in the fabrication facility include the processing of highly enriched uranium (> 90% 235 U) into fuel elements and assembling the elements into complete reactor cores for shipment and eventual installation in US Navy facilities. The principal environmental impacts of current operation of the NNFD result from release of radioactive gases to the atmosphere and of radioactively contaminated liquids to the adjacent James River. The actual gaseous and liquid pollutants released during normal operation of the plant have been monitored and documented. The principal subjects addressed in this environmental assessment include water use, pollutant controls, environmental monitoring, and environmental impact of operation and accidents. Other site factors and plant operations necessary for this assessment are described, and aspects of insignificant impacts are identified. 10 figures, 36 tables

  10. Legal and administrative problems in regulating public participation in licensing of nuclear installations

    International Nuclear Information System (INIS)

    Cornelis, J.C.

    1981-10-01

    This general analysis of the question of public acceptance of nuclear activities focuses on the problems met by all governmental authorities in implementing their nuclear programmes. The author highlights the need for more specific regulations aimed at guaranteeing fuller information of the public and ensuring closer participation by it. (NEA) [fr

  11. 10 CFR 110.8 - List of nuclear facilities and equipment under NRC export licensing authority.

    Science.gov (United States)

    2010-01-01

    ... and components for nuclear reactors. (See Appendix A to this part.) (b) Plants for the separation of isotopes of uranium (source material or special nuclear material) including gas centrifuge plants, gaseous diffusion plants, aerodynamic enrichment plants, chemical exchange or ion exchange enrichment plants, laser...

  12. 77 FR 5853 - In the Matter of Entergy Nuclear Operations Inc; Confirmatory Order Modifying License (Effective...

    Science.gov (United States)

    2012-02-06

    ...; respectively. This Confirmatory Order is the result of an agreement reached during an ADR mediation session.... During that ADR mediation session, an agreement in principle was reached. This Confirmatory Order is the... commercial nuclear power plants in 2009. b. Conducted training for Entergy nuclear fleet personnel, including...

  13. Licensing the first nuclear power plant in the United Arab Emirates

    Energy Technology Data Exchange (ETDEWEB)

    Grant, I. [Federal Authority for Nuclear Regulation, Abu Dhabi, (United Arab Emirates)

    2013-07-01

    United Arab Emirates (UAE) has established a comprehensive legal & regulatory framework conforming to IAEA standards/guidance to regulate the nuclear sector. Federal Authority for Nuclear Regulation (FANR) is a functioning independent nuclear regulator providing controls on safety, security and non-proliferation. UAE benefits from strong international support, incl. IAEA and access to Korean organizations and practices. UAE has an active capacity building programme both human and technical. Peer reviews show UAE regulatory system is aligned with good international practices. UAE has long term commitment to develop and maintain safety culture.

  14. A platform for effective requirements management and collaboration in nuclear compliance and licensing

    International Nuclear Information System (INIS)

    Fechtelkotter, P. L.

    2012-01-01

    Buoyed by its promise as a cost effective and low-carbon-footprint source of electricity, the nuclear industry is in the midst of a world-wide renaissance. However, significant challenges, including responding to increased safety and regulatory mandates, making a smooth transition to next-generation reactor technology, and dealing with the adoption of digital instrumentation and control (I and C) systems that rely heavily on software must be effectively addressed to ensure the momentum continues. New technology solutions, such as those developed by IBM's Rational business unit, coupled with well codified processes, policies and best practices leveraged across the nuclear ecosystem's participants have been shown to aid in overcoming these obstacles. This paper will highlight some of the compliance and collaboration challenges facing the extended nuclear ecosystem, describe a potential solution that can aid in addressing the challenges, and present several examples of where the solution has been implemented in the nuclear space. (authors)

  15. LOFT: a nuclear plant providing realistic answers to PWR licensing issues

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, C.W.

    1980-01-01

    The following topics are discussed: the LOFT mission; LOFT results which have been used by NRC's office of Nuclear Reactor Regulation (NRR); NRR current LOFT information needs; and the channels of LOFT results dissemination.

  16. A platform for effective requirements management and collaboration in nuclear compliance and licensing

    Energy Technology Data Exchange (ETDEWEB)

    Fechtelkotter, P. L. [Rational IBM Software Group, IBM Corporation, Medfield, MA 02052 (United States)

    2012-07-01

    Buoyed by its promise as a cost effective and low-carbon-footprint source of electricity, the nuclear industry is in the midst of a world-wide renaissance. However, significant challenges, including responding to increased safety and regulatory mandates, making a smooth transition to next-generation reactor technology, and dealing with the adoption of digital instrumentation and control (I and C) systems that rely heavily on software must be effectively addressed to ensure the momentum continues. New technology solutions, such as those developed by IBM's Rational business unit, coupled with well codified processes, policies and best practices leveraged across the nuclear ecosystem's participants have been shown to aid in overcoming these obstacles. This paper will highlight some of the compliance and collaboration challenges facing the extended nuclear ecosystem, describe a potential solution that can aid in addressing the challenges, and present several examples of where the solution has been implemented in the nuclear space. (authors)

  17. Technical Challenges in the Application and Licensing of Digital Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2015-01-01

    With the modernization of existing analogue instrumentation and control (I&C) systems in nuclear power plants through digital I&C technology, and the implementation of digital I&C systems in new plants, the industry is faced with significant challenges. These challenges appear in the form of difficulties in managing the necessarily incremental transition, highly integrated (and interdependent) architectures, the flexible configurability enabled by digital technology, and uncertainty and inconsistency in licensing digital I&C systems and equipment in the different Member States. This publication discusses 17 major issues that utilities, developers, suppliers and regulatory stakeholders need to consider, so that the industry can capture and benefit from shared experience, recent technological developments, and emerging best practices

  18. Regulatory licensing. Status summary report. Nuclear power plants data for decisions (Blue Book), August 17-September 15, 1982

    International Nuclear Information System (INIS)

    1982-09-01

    This management report, regulatory licensing status summary report, is designed to provide the necessary information for controlling the progress of review processes for central station nuclear reactor applications. Section I of this edition consists of the three summary of accomplishments, the new application forecast for OL's and CP's, and an abbreviation key. Section II represents the main body of the report and consists of the facility information. All OL's are listed first, followed by CP's, standard design reviews, other reviews, and finally, a non-power reactor summary. Each project consists of general facility data, current status for all phases of the review, and targeted and actual completion dates for all key milestones in the review

  19. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  20. Safety Evaluation Report related to the renewal of the operating license for the General Electric-Nuclear Test Reactor (GE-NTR) (Docket No. 50-73)

    International Nuclear Information System (INIS)

    1984-09-01

    This Safety Evaluation Report for the application filed by the General Electric Company (GE) for a renewal license number R-33 to continue to operate its research reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by GE and is located in Pleasanton, California. The staff concludes that the reactor can continue to be operated by GE without endangering the health and safety of the public

  1. Improving regulatory effectiveness in Federal/State siting actions: Federal/State regulatory permitting actions in selected nuclear power station licensing cases

    International Nuclear Information System (INIS)

    Baroff, J.

    1977-06-01

    The Federal/State regulatory permitting actions in 12 case histories of nuclear power station licensing in nine different states are documented. General observations regarding Federal/State siting roles in the siting process are included. Eleven of the case histories are illustrated with a logic network that gives the actions of the utilities in addition to the Federal/State permits

  2. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Revision 1 to Regulatory Guide (RG) 4.2, Supplement 1 (RG 4.2S1), ``Preparation of Environmental Reports... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 51 and 54 [NRC-2008-0608] RIN 3150-AI42 Preparation of... applicants in the preparation of environmental reports that are submitted with the application for the...

  3. Nuclear Fuel Recovery and Recycling Center. License application, PSAR, volume 3

    International Nuclear Information System (INIS)

    1976-01-01

    Volume 3 comprises Chapter 5 which provides descriptive information on Nuclear Fuel Recovery and Recycling Center buildings and other facilities, including their locations. The design features discussed include those used to withstand environmental and accidental forces and to insure radiological protection

  4. Nuclear Fuel Recovery and Recycling Center. License application, PSAR, volume 1

    International Nuclear Information System (INIS)

    1976-01-01

    A summary of the location and major design features of the proposed Nuclear Fuel Recovery and Recycling Center is presented. The safety aspects of the proposed facilities and operations are summarized, taking into account possible normal and abnormal operating and environmental conditions. A chapter on site characteristics is included

  5. Response to 'Audiences, rationales and quantitative measure for demonstrations of nuclear safety and licensing by tests'

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1990-01-01

    There are key overriding issues which are independent of the specific nature of the nuclear system itself which require concentrated attention to assure public safety and reliable, economic operation: - the need to keep the risk of external events to an acceptable level for all reactor systems; - the need to assure highly reliable operation of all elements of the system, many of which are the same regardless of what the nuclear system is composed of; - the importance of human proficiency in operating this total complex in a highly reliable manner. Nuclear system-specific demonstrations of public safety, although valuable, will not accomplish this and will not convince the public that there is zero risk. The very claim that a nuclear system or for that matter any big industrial complex, poses zero public risk raises a credibility gap with the public and is, therefore, counterproductive. So, we must take the dull, detailed technical steps to address the challenge: - define the minimal risk and accept that there is no zero risk; - demonstrate the achievement of that risk by detailed testing, conformance to standards and regulation, and trouble-free operation

  6. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil; Licenciamento de reatores: proposta de uma estrutura regulatoria integrada com abordagem em qualidade e meio ambiente para reatores de pesquisa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Reynaldo Cavalcanti

    2014-07-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  7. Licensing issues

    International Nuclear Information System (INIS)

    Roberts, J.P.; Desell, L.J.; Birch, M.L.; Berkowitz, L.; Bader, J.F.

    1992-01-01

    To provide guidance for the Department of Energy's (DOE) Civilian Radioactive Waste Management Program, the Nuclear Regulatory Commission (NRC) has issued a draft regulatory guide on the Format and Content for the License Application for the High-Level Waste Repository (FCRG). To facilitate the development of the FCRG, NRC suggested that DOE use the draft guide as the basis for preparing an annotated outline for a license application. DOE is doing so using an iterative process called the Annotated Outline Initiative. DOE;s use of the Initiative will assist in achieving the desired incorporation of actual experience in the FCRG, contribute to the development of shared interpretation and understanding of NRC regulations, and provide other important programmatic benefits described in this paper

  8. Audiences, rationales and quantitative measure for demonstrations of nuclear safety and licensing by tests

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1990-01-01

    Nuclear power is one of several potential prime movers under consideration for central station production of electricity. As with any technology, the extent of its utilization depends on a complex set of interactions determined by its particular physical embodiments and the structure and temper of the society in which its use is considered. This paper focuses on the situation in the United States; its conclusions cannot easily be extrapolated to other nations. The interplay of indigenous resource base, political structure, and history is complex and must be analyzed case-by-case. I believe that the development of nuclear power plants with the ability to survive a definitive worst-case, 'absolute', test is a minimum requirement if nuclear power is to play a significant role in the future. The test protocols are somewhat dependent upon plant design, but include, at a minimum, simultaneous loss of coolant, control rod withdrawal, and the presence of a malicious operator. The test requirements are not determined by cost-benefit analysis nor by the imposition of mandated safety goals. They are substantially more stringent than would be required to meet even the most conservative commercial standards. Nonetheless, imposition of an absolute test is essential if the social and political prerequisites for the utilization of nuclear power are to be put in place. There are, of course, many other essential conditions, low cost being prime among them. The de facto imposition of an absolute test requirement would have several notable beneficial side effects: It would, for example, change the role of the NRC to one that has far greater public acceptance and it would lead to 'market force' standardization with attendant commercial ramifications

  9. NRC's license renewal regulations

    International Nuclear Information System (INIS)

    Akstulewicz, Francis

    1991-01-01

    In order to provide for the continuity of the current generation of nuclear power plant operating licenses and at the same time ensure the health and safety of the public, and the quality of the environment, the US Nuclear Regulatory Commission (NRC) established a goal of developing and issuing regulations and regulatory guidance for license renewal in the early 1990s. This paper will discuss some of those activities underway to achieve this goal. More specifically, this paper will discuss the Commission's regulatory philosophy for license renewal and the two major license renewal rule makings currently underway. The first is the development of a new Part 54 to address procedural and technical requirements for license renewal; the second is a revision to existing Part 51 to exclude environmental issues and impacts from consideration during the license renewal process. (author)

  10. The licensing procedure for nuclear power plants in the Federal Republic of Germany, focusing especially on the SNR-300

    International Nuclear Information System (INIS)

    Munk, P.J. de

    1975-01-01

    Contrary to other prototype fast reactors, the SNR 300 project is submitted to the normal licensing procedure for commercial reactors in Germany. This licensing procedure is explained in detail. Cooperation between Germany and the Netherlands with respect to licensing and safety is briefly reviewed

  11. Socioeconomic impact assessment and nuclear power plant licensing, Greene County, New York

    International Nuclear Information System (INIS)

    Peelle, E.

    1980-01-01

    The paper reviews the setting, participants and status of the joint federal-state hearings, findings of the FES, problems of conducting social impact assessment (SIA) for the GCNPP, and the nature and effect of public participation in the formal, legalistic hearings process. The GCNPP is evaluated in terms of trends in Atomic Energy Commission-Nuclear Regulatory Commission social impact assessments from 1972 to 1979. Progress in the adequacy and relevance of social impact assessment is defined according to steps in a lengthy, evolutionary legitimation process

  12. 10 CFR 60.43 - License specification.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false License specification. 60.43 Section 60.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses License Issuance and Amendment § 60.43 License specification. (a) A license issued under this part shall...

  13. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--December 1987

    International Nuclear Information System (INIS)

    1988-11-01

    This Revision 10 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and licensing Board decisions issued during the period from July 1, 1972 to December 31, 1987 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 10 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through December 31, 1987. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on ''general matters.'' Where appropriate, particular decisions are indexed under more than one heading. Some topical headings contain no decision citations or discussion

  14. Magnox Electric plc's strategy for decommissioning its nuclear licensed sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The 1995 White Paper 'Review of Radioactive Waste Management Policy: Final Conclusions', Cm 2919, determined that the Government would ask all nuclear operators to draw up strategies for the decommissioning of their redundant plant and that the Health and Safety Executive (HSE) would review these strategies on a quinquennial basis in consultation with the environment agencies. This review has considered Magnox Electric pie (Magnox Electric) arrangements for the identification of its responsibilities for decommissioning and radioactive waste management, the quantification of the work entailed, the standards and timing of the work, and the arrangements to provide the financial resources to undertake the work. This is the second review by the HSE in response to Cm 2919 of Magnox Electric's nuclear power station decommissioning and radioactive waste management strategies and is based on the situation in April 2000. It reports the Nuclear Installations Inspectorate's (NIl) view that the strategies proposed by Magnox Electric are appropriate. The strategies are considered to be largely consistent with both national and international policy statements and guidance, and are potentially flexible enough to be able to accommodate lessons learned during ongoing decommissioning activities. During the review the Nil has considered whether Magnox Electric has identified all the tasks required to fully decommission its sites. Generally this has been found to be the case. Some additional tasks have been identified due, in part, to the reviewers' noting the changes which have recently taken place in environmental expectations. At this time, on the basis of the information presented, and with the provisos stated below, Magnox Electric's provisioning for final dismantling after 85 years is considered to be reasonable. The Nil expects Magnox Electric to further justify why a shorter timescale is not reasonably practicable before the next review. One of the

  15. License stewardship and other approaches to commercial nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Daly, P.T.; Moloney, B.P.

    2011-01-01

    This paper addresses the challenge of how our industry could arrange itself to deliver decommissioning of Nuclear Power Plants (NPPs) safely, in good time and affordably. There is a growing wealth of experience across the world in safe decommissioning techniques. Most - arguably all - of the techniques required to perform the full decommissioning of NPPs have been demonstrated on full-scale projects. Waste processing and disposal challenges remain in many countries, where the major issues are societal acceptance and political will. Interim storage possibilities have been identified in most countries. In decommissioning, the outstanding significant issues lie now in the domain of affordability and risk management. This paper will illustrate approaches to decommissioning with examples from the US and UK, to explore how the industry can achieve configurations to deliver lower risk and improved affordability for utilities. Different configurations, or models, will be used to illustrate the approaches taken. (orig.)

  16. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico; Conformacion de un proceso de evaluacion para una solicitud de renovacion de licencia de una central nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, M. L., E-mail: mlserrano@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2012-10-15

    So that the construction stages, of operation, closing, dismantlement and the radioactive waste disposal of a nuclear power plant (NPP) are carried out in Mexico, is necessary that the operator has a license, permission or authorization for each stage. In Mexico, these licenses, permissions or authorizations are granted by the Energy Secretariat with base in the verdict of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The operation licenses ar the moment effective for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) they will expire respectively in the year 2020 and 2025 for the Unit 1 and Unit 2, for what the CNSNS has begun its preparation before a potential solicitude of the licensee to continue the operation of the NPP-L V. Defining the process to continue and to generate the documents that would help in this phase as normalization, guides, procedures, regulations, controls, etc., is the task that intends to be carried out the regulator body so that the evaluation process is effective and efficient, so much for the same regulator body as for the licensee. This work exposes the advance that the CNSNS has in this aspect and is centered specifically in the conformation of an evaluation process of license renovation solicitude, taking as base what the regulator body of the United States of North America (US NRC) established and following to the IAEA. Also, this work includes statistical of electric power production in Mexico, licensing antecedents for the NPP-L V, a world perspective of the license renovations and the regulation of the US NRC related to the license renovation of a NPP. (Author)

  17. Activities of the TUV experts during the period of construction and commissioning of a nuclear power plant ordered by the licensing authorities of the FRG

    International Nuclear Information System (INIS)

    Dommke, J.; Fendler, H.

    1977-01-01

    The inspection organisations in the Federal Republic of Germany (Technische Uberwachungs-Vereine) are independent systems grouped on a regional basis. The competent licensing authorities of the various Lander consult them concerning assessments for site selection and the design, construction, commissioning and operation of nuclear power plants. Furthermore the TUV experts inspect the manufacture of components in the suppliers' facilities and on site. (NEA) [fr

  18. Lessons learned from the licensing process and the operational performance of the important to safety digital application implemented at the Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Ledesma-Carrion, R.

    1998-01-01

    This paper describes the main concerns detected during the licensing processes performed by the Mexican Nuclear Regulatory Commission (CNSNS) for the NUMAC-PRNM, the Integrated Computer Systems at the Laguna Verde Nuclear Power Station (LVNPS) and for the Digital Control Console of the Triga Mark III Research Reactor (TMRR). The review and approval process was performed following the guidelines of the US Nuclear Regulatory Commission (USNRC); the regulatory frame applied includes the Code of Federal Regulation (10CFR50), some Regulatory Guides, such as: RG 1.152, RG 1.153, some Industrial Standards, for example: IEEE-279, IEEE-603, IEEE-7.4.3-2. Also, based on the operational experience taken from the LVNPS License Event Report (LER) reported under the 10CFR50.72 and 10CFR50.73 USNRC rules, and from the Report of Events to be Analyzed (REA) issued for a CNSNS agreement with the utility stated by the necessity to determine failure rates of digital equipment, some case studies and a preliminary failure cause classification is shown. The Event Report evaluation covered topics related to the software, hardware and firmware issues. Finally, the lessons learned from the licensing assessments and from the operational experience of the digital applications implemented are presented. It will also give the regulatory activities related to an IAEA international cooperation project on I and C digital upgrade concerns. (author)

  19. License to build

    International Nuclear Information System (INIS)

    Huntelaar, Mark; Vos, Renate de; Roobol, Lars

    2007-01-01

    Full text: A new license under the nuclear power act is applied for at the Dutch Government for the building of a High Active Repackaging Unit (HAVA-VU in Dutch) at NRG in Petten, The Netherlands. This new building is necessary to comply with our nuclear license to dispose of high active nuclear waste at Petten to the intermediate storage facility (COVRA). In the first part of this paper attention is given to the formal procedure followed by the Government, what type of documents are to be submitted, what time frames are followed, how citizen participation is organized, and as final result a new license. In the second part more detailed information is given about the present license renewal needed for the High Active Repackaging Unit

  20. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245)

    International Nuclear Information System (INIS)

    1985-10-01

    The Safety Evaluation Report for the full-term operating license application filed by the Connecticut Light and Power Company, the Hartford Electric Light Company, Western Massachusetts Electric Company and the Millstone Point Company [(now known as Connecticut Light and Power Company (CL and P) and Western Massachusetts Electric Company (WMECO) having authority to possess Millstone-1, 2, and 3, and the Northeast Nuclear Energy Company (NNECO) as the responsible entity for operation of the facilities)] for Millstone Nuclear Power Station Unit 1 has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, Connecticut. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public

  1. Regulator process for the authorization of an amendment to the operation license of a nuclear power plant in Mexico; Proceso regulador para la autorizacion de una enmienda a la licencia de operacion de una central nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Espinosa V, J.M.; Salgado, J.R.; Mamani, Y.R. [CNSNS, Dr. Barragan 779, Col. Narvarte, 03020 Mexico D.F. (Mexico)

    2005-07-01

    The regulator process by which an authorization is granted from an amendment to the License of Operation of a nuclear power station in Mexico is described. It makes an appointment the effective legal mark, the technical characteristics of the modification, the evaluation process and deposition upon oath of tests and finally the elaboration of the Safety report and the Technical Verdict that is a correspondent for the regulator organism to the Secretary of Energy, the one that in turn is the responsible of granting the amendment the License just as it establishes it the Law. (Author)

  2. The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program

    International Nuclear Information System (INIS)

    Tyacke, Michael; Bolshinsky, Igor; Tomczak, Wlodzimierz; Naletov, Sergey; Pichugin, Oleg

    2001-01-01

    The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy's Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic's vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic's capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

  3. PWR Fuel licensing in France - from design to reprocessing: licensing of nuclear PWR fuel rod design to satisfy with criteria for normal and abnormal fuel operation in France

    International Nuclear Information System (INIS)

    Beraha, R.

    1999-01-01

    In this lecture are presented: French regulatory context; Current fuel management methods; Request from the french operator EdF; Most recent actions of the french Nuclear safety authority; Fuel assemblies deformations (impact of high burn-up; investigations during reactor's exploitation; control rods drop off times)

  4. Technological evaluation for the extension of the operation license to the nuclear power plant of Laguna Verde; Evaluacion tecnologica para la extension de la licencia de operacion de la Central Nucleoelectrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C. R.; Medina A, A. L., E-mail: carlos.arganis@inin.gob.m [ININ, Departamento de Tecnologia de Materiales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    At the present time one of the tendencies in the nuclear industry is the renovation of operation licenses of the nuclear power plants, with the purpose of prolonging their operation 20 years more than the time settled down in their original license, which is of 30 years for the case of the nuclear power plant of Laguna Verde. This allows the electric power generation for a major period of time and to a relatively low price, giving this way a bigger competitiveness to the power stations of nuclear power. However, to request the license extension of the nuclear power plant requires to get ready the documentation and necessary studies for: to maintain a high level of security, to optimize the operation, maintenance and service life of the structures, systems and components, to maintain an acceptable level of performance, to maximize the recovery of the investment about the service of the nuclear power plant and to preserve the sure conditions for a major operation period at the license time. This paper describes the studies conducted by the Materials Technology Department of the Instituto Nacional de Investigaciones Nucleares (ININ) to substantiate the required documentation for obtaining the extension of operating license of the nuclear power plant. These studies are focused mainly in the reactor pressure vessels of both units, as well as in the deposit of noble metals and the influence of the sludges (crud s) in this deposit. (Author)

  5. License renewal process

    International Nuclear Information System (INIS)

    Fable, D.; Prah, M.; Vrankic, K.; Lebegner, J.

    2004-01-01

    The purpose of this paper is to provide information about license renewal process, as defined by Nuclear Regulatory Commission (NRC). The Atomic Energy Act and NRC regulations limit commercial power reactor licenses to an initial 40 years but also permit such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations not on limitations of nuclear technology. Due to this selected time period; however, some structures and components may have been engineered on the basis of an expected 40-year service life. The NRC has established a timely license renewal process and clear requirements codified in 10 CFR Part 51 and 10 CFR Part 54, that are needed to assure safe plant operation for extended plant life. The timely renewal of licenses for an additional 20 years, where appropriate to renew them, may be important to ensuring an adequate energy supply during the first half of the 21st Century. License renewal rests on the determination that currently operating plants continue to maintain adequate levels of safety, and over the plant's life, this level has been enhanced through maintenance of the licensing bases, with appropriate adjustments to address new information from industry operating experience. Additionally, NRC activities have provided ongoing assurance that the licensing bases will continue to provide an acceptable level of safety. This paper provides additional discussion of license renewal costs, as one of key elements in evaluation of license renewal justifiability. Including structure of costs, approximately value and two different approaches, conservative and typical. Current status and position of Nuclear Power Plant Krsko, related to license renewal process, will be briefly presented in this paper. NPP Krsko is designed based on NRC Regulations, so requirements from 10 CFR 51, and 10 CFR 54, are applicable to NPP Krsko, as well. Finally, this paper will give an overview of current status of

  6. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico. Part 2; Conformacion de un proceso de evaluacion para una solicitud de renovacion de licencia de una central nuclear en Mexico. Parte 2

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, M. de L., E-mail: mlserrano@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    At the present time the operation licenses in force for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) will expire in the year 2020 and 2025 for the Unit-1 and Unit-2, respectively, for which the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has begun its preparation to assist a solicitude of the licensee to continue the operation of the NPP-L V. The present work has the purpose of defining the steps to continue and to generate the documents that would help in this process, as the normative, guides, procedures, regulations, controls, etc. so that the evaluation process will be effective and efficient, as much for the regulator organ as for the licensee. The advance carried out in the continuation of the conformation of an evaluation process of license renovation solicitude is also exposed, taking like base the requirements established by the CNSNS, the regulator organ of the United States (US NRC), and the IAEA for license renovation solicitude of this type. A summary of the licenses granted from the beginning of commercial operation of the NPP-L V is included, both units and the amendments to these licenses, explaining the reason of the amendment shortly and in the dates they were granted. A brief exposition of the nuclear power plants to world level that have received extension of its operation is included. The normative that can be applied in a life extension evaluation is presented, the evaluation process to continue with the guides of the US NRC, the reach of the evaluation and the minimum information required to the licensee that should accompany to their solicitude. (author)

  7. The SLOWPOKE licensing model

    International Nuclear Information System (INIS)

    Snell, V.G.

    1992-01-01

    The SLOWPOKE Energy System (SES-10) is a 10 MW heating reactor that has been developed in Canada. It will be capable of running without a licensed operator in continuous attendance, and will be sited in urban areas. It has forgiving safety characteristics, including transient time-scales of the order of hours. A process called 'up-front' licensing has been evolved in Canada to identify, and resolve, regulatory concerns early in the process. Because of the potential market in Hungary for nuclear district heating, a licensing plan has been developed that incorporates Canadian licensing experience, identifies specific Hungarian requirements, and reduces the risk of licensing delays by seeking agreement of all parties at an early stage in the program. (orig.)

  8. The SLOWPOKE licensing model

    International Nuclear Information System (INIS)

    Snell, V.G.; Takats, F.; Szivos, K.

    1989-08-01

    The SLOWPOKE Energy System (SES-10) is a 10 MW heating reactor that has been developed in Canada. It will be capable of running without a licensed operator in continuous attendance, and will be sited in urban areas. It has forgiving safety characteristics, including transient time-scales of the order of hours. A process called 'up-front' licensing has been evolved in Canada to identify, and resolve, regulatory concerns early in the process. Because of the potential market in Hungary for nuclear district heating, a licensing plan has been developed that incorporates Canadian licensing experience, identifies specific Hungarian requirements, and reduces the risk of licensing delays by seeking agreement of all parties at an early stage in the program

  9. Generic environmental impact statement in support of rulemaking on radiological criteria for license termination of NRC-licensed nuclear facilities. Final report, main report

    International Nuclear Information System (INIS)

    1997-07-01

    The action being considered in this Final Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the final GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, conclusions on radiological criteria for decommissioning were provided. Contained in the GEIS are results and conclusions related to achieving, as an objective of decommissioning ALARA, reduction to preexisting background, the radiological criterion for unrestricted use, decommissioning ALARA analysis for soils and structures containing contamination, restricted use and alternative analysis for special site specific situations, and groundwater cleanup. In its analyses, the final GEIS includes consideration of comments made on the draft GEIS during the public comment period

  10. Sociological impacts of nuclear generating stations - summary report on the NRC post-licensing studies. Final report 1 Oct 78-4 Jan 82

    International Nuclear Information System (INIS)

    Chalmers, J.; Pijawka, D.; Branch, K.; Bergmann, P.; Flynn, J.

    1982-07-01

    The Post-Licensing Studies had four objectives. The first was to identify the socioeconomic effects resulting from the construction and operation of each of twelve nuclear power stations. The socioeconomic variables examined included: economic, demographic, housing, government, public response, and social organization characteristics. The second objective was to determine the way in which the identified effects were evaluated by study area groups. The third objective was to identify the determinants of the project-related effects. This task required knowledge of what combination of site, project, or other determinants was responsible for the project-related effects and for the evaluation of the effects. The fourth objective was to make recommendations with respect to assessment methodologies that could best be used to project the socioeconomic effects of the construction and operation of proposed nuclear generating stations. The objectives of the Post-Licensing Studies are met by the twelve individual case studies and by the Summary Report. The case studies identified the nuclear power stations and describe the evaluation of the effects by area residents. The Summary Report describes the collective findings of the individual case studies, compares the findings across sites to identify possible determinants of the effects, and examines the implication of the findings for future siting decisions and for the methodology most appropriate for projective assessments

  11. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-01-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  12. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-05-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  13. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  14. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-03-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  15. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-11-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  16. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  17. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--September 1987

    International Nuclear Information System (INIS)

    1988-07-01

    This Revision 9 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1987 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 9 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1987. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on ''general matters.'' Where appropriate, particular decisions are indexed under more than one heading. Some topical headings contain no decisions citations or discussion. It is anticipated that future updates to the Digest will utilize these headings

  18. Project 2019 of Garona Nuclear power plant. First project to licensing renew more than 40 years in Spain

    International Nuclear Information System (INIS)

    Fernandez, R. A.; Torralbo, J. R.

    2004-01-01

    NUCLENOR has been developing lifetime management and modernisation activities at Santa Maria de Garona NPP since the end of the 80's and the plant is now in optimum technical conditions to continue in operation beyond its original lifetime planned in the design (40 years). In the USA, the country of origin of the project, a good number of power plants with a similar design, age and history to SMG are in the process of obtaining or have already obtained, a licensing extension of up to 60 years from the NRC. In Spain, the activities required for requesting a long-term operating licensing extension include the Ageing Assessment and Management of the plant systems, structures and components, in accordance with the american regulation 10CFR54, a Radiological Impact Study for the new operating period, and an Analysis of New Legislation, not included in the licensing bases and considered to be important to safety by the CSN. With a view to obtaining a renewal of the current operating permit for the period 2009-2019, NUCLENOR has launched the Proyecto 2019, which extends to technical and licensing aspects, as it involves all the company's personnel. (Author)

  19. Harmonization of the licensing process for digital instrumentation and control systems in nuclear power plants. Report prepared within the framework of the Technical Working Group on Nuclear Power Plant Control and Instrumentation

    International Nuclear Information System (INIS)

    2002-12-01

    This report was prepared in response to the recommendation of the Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI). This recommendation was based on the recognition of the present diversity in national practices in licensing digital Instrumentation and control (I and C). The goal of this report is to promote harmonization of I and C licensing requirements in the Member States. It applies to I and C modernization, retrofits, upgrades, replacement, new installation, and other aspects of digital I and C in both existing and new nuclear power plants. It should be pointed out that a single publication, like this report, can only take the first step towards initiating a process leading to licensing requirements, which are more harmonized. It is therefore hoped that that this report will get a broad readership among those who can influence requirements that are set on digital I and C. This report provides general and high level recommendations to assist senior officials at utilities, vendor organizations, regulatory bodies, and their support organizations who are involved in the licensing of digital I and C. It is also intended to be read by persons participating in technical committees which are writing standards. The authors of this report believe that harmonization can be achieved through a consideration of the technical and scientific basis of high integrity digital I and C systems. It is also believed that many benefits can be reached in resolving various issues of a technical and engineering nature, which presently are creating controversies in the licensing of digital I and C in NPP safety applications. This publication is based on a consideration of the licensing process of I and C in a top down fashion to discuss generic principles to be applied when assessing digital I and C in NPP safety applications. This report gives an overview of the confidence building process in which evidence is created that digital I and C fulfils

  20. Preliminary evaluation of licensing issues associated with U.S.-sited CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    van Erp, J.B.

    1977-12-01

    The principal safety-related characteristics of current CANDU-PHW power plants are described, and a distinction between those characteristics which are intrinsic to the CANDU-PHW system and those that are not is presented. An outline is given of the main features of the Canadian safety and licensing approach. Differences between the U.S. and Canadian approach to safety and licensing are discussed. Some of the main results of the safety analyses, routinely performed for CANDU-PHW reactors, are presented. U.S.-NRC General Design Criteria are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to its conformance to the U.S.-NRC General Design Criteria. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S

  1. How should a legal system of approval adequate to democracy look like. Nuclear power station licensing for example

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1986-01-01

    The concept of an administrative referendum is explained as a possibility of reshaping the current system of approval so as to make it commensurate with democratic principles. Introduction of such a concept would require only few modifications of the valid legal provisions: The licensing procedure would remain as it is, but in addition, a referendum would be made possible, on the initiative of the population, which would give the population of a Federal Land a right of decision on the political level, deciding whether a given, licensed installation is conductive to the public good. Through such an administrative referendum, the political sovereign would be given political power of control of administrative decisions, and assume responsibility, which would be legally based on Art. 20, para. II GG (Basic Law). (HSCH) [de

  2. 10 CFR 60.45 - Amendment of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amendment of license. 60.45 Section 60.45 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses License Issuance and Amendment § 60.45 Amendment of license. (a) An application for amendment of a license...

  3. 10 CFR 61.26 - Amendment of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amendment of license. 61.26 Section 61.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.26 Amendment of license. (a) An application for amendment of a license must be filed in accordance...

  4. 10 CFR 110.42 - Export licensing criteria.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Export licensing criteria. 110.42 Section 110.42 Energy... License Applications § 110.42 Export licensing criteria. (a) The review of license applications for export... licensing criteria in § 110.42(a). Exports of nuclear reactor components, as specified in paragraphs (5...

  5. 10 CFR 110.43 - Import licensing criteria.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Import licensing criteria. 110.43 Section 110.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Review of License Applications § 110.43 Import licensing criteria. The review of license applications for imports...

  6. The Swedish radiological environmental protection regulations applied in a review of a license application for a geological repository for spent nuclear fuel.

    Science.gov (United States)

    Andersson, Pål; Stark, Karolina; Xu, Shulan; Nordén, Maria; Dverstorp, Björn

    2017-11-01

    For the first time, a system for specific consideration of radiological environmental protection has been applied in a major license application in Sweden. In 2011 the Swedish Nuclear Fuel & Waste Management Co. (SKB) submitted a license application for construction of a geological repository for spent nuclear fuel at the Forsmark site. The license application is supported by a post-closure safety assessment, which in accordance with regulatory requirements includes an assessment of environmental consequences. SKB's environmental risk assessment uses the freely available ERICA Tool. Environmental media activity concentrations needed as input to the tool are calculated by means of complex biosphere modelling based on site-specific information gathered from site investigations, as well as from supporting modelling studies and projections of future biosphere conditions in response to climate change and land rise due to glacial rebound. SKB's application is currently being reviewed by the Swedish Radiation Safety Authority (SSM). In addition to a traditional document review with an aim to determine whether SKB's models are relevant, correctly implemented and adequately parametrized, SSM has performed independent modelling in order to gain confidence in the robustness of SKB's assessment. Thus, SSM has used alternative stylized reference biosphere models to calculate environmental activity concentrations for use in subsequent exposure calculations. Secondly, an alternative dose model (RESRAD-BIOTA) is used to calculate doses to biota that are compared with SKB's calculations with the ERICA tool. SSM's experience from this review is that existing tools for environmental dose assessment are possible to use in order to show compliance with Swedish legislation. However, care is needed when site representative species are assessed with the aim to contrast them to generic reference organism. The alternative modelling of environmental concentrations resulted in much lower

  7. Part-construction licenses and preliminary licenses issued within the licensing procedure under atomic energy law

    International Nuclear Information System (INIS)

    Feldmann, F.J.

    1984-01-01

    The author elaborates a delimitation in terms of law of various licenses available under atomic energy law within the licensing procedure for nuclear installations, such as the part-construction license, preliminary license and preliminary approval of the overall concept, preliminary conceptual approval and conceptual license, preliminary conceptual approval subject to subsequent examinations and decisions, preliminary site ruling and site approval, advance permits and subsequent partial licenses. Such a delimitation becomes particularly significant in case of the plant conceptual design or the site being the subject under review, and the definitions stated also have considerable impact on administrative court proceedings. In this review the author tries to bear in mind the various interests of all parties involved in the licensing procedure. (HSCH) [de

  8. Software Licensing

    OpenAIRE

    Nygrýnová, Dominika

    2014-01-01

    Summary: Software Licensing The thesis deals with different practical aspects of commercial software licensing from the perspective of the Czech legal system. The focus is put on software license agreement as the most important legal instrument granting rights of use for computer programs. The thesis opens with a summary of Czech legislation in force in this area in the context of European community law and international law. The legislation in effect is largely governed by the Copyright Act....

  9. Licensing issues associated with the use of mixed-oxide fuel in U.S. commercial nuclear reactors

    International Nuclear Information System (INIS)

    Williams, D.L. Jr.

    1997-04-01

    On January 14, 1997, the Department of Energy, as part of its Record of Decision on the storage and disposition of surplus nuclear weapons materials, committed to pursue the use of excess weapons-usable plutonium in the fabrication of mixed-oxide (MOX) fuel for consumption in existing commercial nuclear power plants. Domestic use of MOX fuel has been deferred since the late 1970s, principally due to nuclear proliferation concerns. This report documents a review of past and present literature (i.e., correspondence, reports, etc.) on the domestic use of MOX fuel and provides discussion on the technical and regulatory issues that must be addressed by DOE (and the utility/consortia selected by DOE to effect the MOX fuel consumption strategy) in obtaining approval from the Nuclear Regulatory Commission to use MOX fuel in one or a group of existing commercial nuclear power plants

  10. Radiopharmaceutical licensing

    International Nuclear Information System (INIS)

    Mather, S.J.

    1992-01-01

    Recent health service legislation, and especially the loss of crown immunity has once again focussed attention on the arrangements for licensing of radiopharmaceuticals. The aim of the article is to describe in general terms the UK licensing system and in particular to provide guidance to those responsible for the supply of radiopharmaceuticals in hospitals. (author)

  11. Report of the Federal Government concerning feasible measures for expediting the procedure under Atomic Energy Law for licensing installations of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1983-01-01

    The measures mentioned in the report aim at shortening and expediting of the licensing procedure for installations of supply and waste disposal of nuclear power stations (e.g. manufacturing plants for fuel elements, reprocessing plants). At the same time improved conditions are created for reducing impediments of investment. After coordination with the authorities of the Laender the Federal Government proposes a set of measures accelerating the procedure. Primarily the set contains: - improved coordination of all authorities participating in the procedure, as for instance by a harmonized plan of the course of the whole project at the beginning of the licensing procedure under atomic energy law, - more precise information on the part of the authorities on the documents to be submitted by applicants, - information concerning safety requirements for the individual installations, to be required by the authorities at the beginning of the procedure, and not during the course of the procedure, because otherwise among others a long-term planning of the project by the applicant is made more difficult. (orig./HSCH) [de

  12. Qualification, training, licensing/authorization and retraining of operating personnel in nuclear power plants. Noteworthy topics identified by evaluation of the practices in countries of the European Communities

    International Nuclear Information System (INIS)

    Kraut, A.; Pfeffer, W.

    1987-01-01

    In the report EUR 10118 '' Qualification, training, licensing and retraining of operating shift personnel in nuclear power plants'' the current practice in the countries of the European Communities as well as the procedures and programmes applied in Sweden, Switzerland and the USA are outlined and evaluated. The intent was to derive fundamental and generally valid concepts concerning shift-staff training and other relevant aspects. Those items were identified that seemed to be noteworthy because they give some guidance on how to achieve and maintain the qualification of the shift staff of NPPs or how to improve the staffing of the control room. These noteworthy topics identified by evaluation of the practice in countries of the European Communities and also elsewhere are presented in the publication at hand. The report addresses the following topics: tasks of the shift personnel, nomenclature for different grades of the personnel; shift staffing and staffing of the control room; criteria for personnel selection when recruiting new shift staff; personnel qualification necessary for recruitment; training of shift personnel; retraining and preservation of qualification standards; training facilities, especially simulators; responsibility for training; licensing/authorization; retirement from shift work. Consideration of these more general aspects and concepts may lead to improvement in training. The job descriptions given in the Annex to the document are only intended to give a general understanding of the typical designations, tasks and responsibilities of shift staff

  13. Ergonomics in the licensing and evaluation of nuclear reactors control room; A ergonomia no licenciamento e na avaliacao de salas de controle de reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac Jose Antonio Luquetti dos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Vidal, Mario Cesar Rodriguez [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia de Producao

    2002-07-01

    A nuclear control room is a complex system that controls a thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear plant safety and influence the operator activity. The TMI (Three Mile Island) accident demonstrated that only the anthropometric aspects were not enough for an adequate nuclear control room design. The studies showed that the accident was aggravated because the designers had not considered adequately human factor aspects. After TMI accident, the designers introduce in the nuclear control room development only human factors standards and human factors guidelines. The ergonomics approaches was not considered. Our objective is introduce in nuclear control room design and nuclear control room evaluation, a methodology that. includes human factors standards, human factors guidelines and ergonomic approaches, the operator activity analysis. (author)

  14. Analysis of replies to an IAEA questionnaire on procedures for accreditation of training programmes and for authorization and licensing of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1991-06-01

    The intent of this survey was to gather data and present results to facilitate the international exchange of information and experience in this field. This was accomplished using a questionnaire developed by the IAEA that was sent in September, 1989 to the thirty-one Member States having nuclear power plants operating or under construction. Of these, twenty-one responses were received. The questionnaire was constructed in two parts: (1) Accreditation of Training Programmes; and (2) Authorization and (Formal) Licensing of Operations Personnel. The analysis was conducted by IAEA staff with the assistance of consultants and resulted in an identification of the commonalities and differences in approach on these issues. An advisory group subsequently considered this analysis, interpreted the results relative to the original responses, and reached conclusions that are contained in this document

  15. 10 CFR 81.20 - Nonexclusive licenses.

    Science.gov (United States)

    2010-01-01

    ...) The license may extend to wholly-owned subsidiaries of the licensee but shall be nonassignable, or... 10 Energy 2 2010-01-01 2010-01-01 false Nonexclusive licenses. 81.20 Section 81.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) STANDARD SPECIFICATIONS FOR THE GRANTING OF PATENT LICENSES Nrc-Owned...

  16. Environmental assessment for renewal of special nuclear material, License No. SUB-1010 (Docket No. 40-8027)

    International Nuclear Information System (INIS)

    1985-08-01

    The proposed action is the renewal of the license necessary for continued operation of the SFC production plant at Gore, Oklahoma. The plant has been in operation with authority to use source material for the production of UF 6 since February 1970. In addition to facilities for production of UF 6 the site also includes: (1) a storage area for drums of uranium ore concentrates received from uranium mills, (2) a uranium sampling facility, (3) bulk storage of hazardous chemicals such as hydrofluoric (HF), nitric (HNO 3 ), and sulfuric (H 2 SO 4 ) acids and tributyl phosphate-hexane solvent, (4) a facility for electrolytic production of fluorine from HF, (5) separate treatment systems and storage ponds for radiological and nonradiological liquid wastes, and (6) a program for disposal of raffinate from a solvent extraction system in the UF 6 production as fertilizer on land owned by SFC. 13 figs., 30 tabs

  17. Environmental Assessment for renewal of Special Nuclear Material License No. SNM-368 (Docket No. 70-371)

    International Nuclear Information System (INIS)

    1985-01-01

    The proposed action is the renewal of the license necessary for UNC to continue the existing fuel fabrication operation. Principal operations in the fabrication facility include the processing of highly enriched uranium (>90% 235 U) into fuel elements and assembling of the elements into complete reactor cores. The present application for renewal involves no major changes in the current authorization and no new facilities are planned. The current operation of the UNC facilities results in the release of radioactive and nonradioactive effluent to the environment. The gaseous and liquid pollutants released during normal operation of the plant have been monitored and documented. The principal subjects addressed in this environmental assessment include water use, pollutant controls, environmental monitoring, and environmental impact of operation and accidents. Other site factors and plant operations necessary for this assessment are described, and aspects of insignificant impacts are identified. 7 figures, 23 tables

  18. Proceedings of an international workshop on passive system reliability - A challenge to reliability engineering and licensing of advanced nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    The workshop provided a forum for the exchange of information on the technical issues associated with assessing the reliability of passive systems in the context of nuclear safety, regulatory practices and probabilistic safety analysis. Special emphasis was placed on the reliability of the systems based on thermal hydraulics, for which the methods are still in developing phase. Issues and discussions topics included lessons learned from designing passive systems, developing methodologies, performed studies, field experience with passive systems and need for future development. These proceedings provide a compilation of the papers presented and a summary of the discussions. Designs for Passive Systems have been and are currently being developed for new nuclear power plants. Based on the results of the survey performed by WGRisk and the workshop papers and discussions it is apparent that progress is being made in the development of methodologies to deal with the reliability of the Passive Systems being designed. In the three (3) main areas reviewed during the workshop: development and use, methodologies and licensing, the following conclusions were derived: 1. Development and Use of Passive Systems - Any new reactor being designed will most likely contain passive systems. Testing of passive systems has been performed by several groups but further testing and development is still required. Discussions are already in progress to make clear how passive systems should be introduced in a design; e.g., back-up of an active system, BOPHR strategy, etc. 2. Methodologies - While work is being performed on methodologies and progress is being made, a lack of data exists mainly since very little or no operational experience is available. This is especially true in the area of thermal hydraulics and the result is a large amount of uncertainties. 3. Licensing - Very little progress has been made relating to licensing of passive systems. This mainly due to the fact that it is

  19. The need for legislative framework (licensing)

    International Nuclear Information System (INIS)

    Krech, H.

    1977-01-01

    For reasons of public acceptance the basis of a licensing system should be laid down in a law, details can be fixed in regulations below the law-level. The competence for licensing nuclear installations should be attributed to one body, which is not a the same time charged with the promotion of nuclear energy. The licensing authority has to be provided with sufficient technical advice, given by experts organized in advisory bodies. Normally a licensing procedure is split into several steps (site approval, construction permit, operation licence), each step can be subdivided. Some general aspects of licensing conditions (personal, technical and financial) as well as of the licensing procedure are outlined. The participation of the public is of particular importance but also involves most intricate problems. The paper concludes with some critical remarks on the role of administrative courts with respect to the licensing of nuclear power plants. (orig.) [de

  20. Status of the U.S. nuclear option, conditions leading to its resurgence, and current licensing requirements

    International Nuclear Information System (INIS)

    Ioannidi, J.

    2007-01-01

    The projected increase in electricity demand, increased concern over emissions along with more stringent emission requirements, volatility of the gas and oil supplies and prices, and the convergence of favourable conditions and legislation make nuclear power a practical option for meeting future electricity base-load demands. (author)

  1. Means for improving state participation in the siting, licensing, and development of Federal nuclear waste facilities. A report to Congress

    International Nuclear Information System (INIS)

    1979-03-01

    This report is based on the premise that State involvement in any national nuclear waste management program is important in making the program work. The following issues are discussed: national planning process, technical review capability, state participation in the Federal processes, grant programs, transportation, and consultation and concurrence. Recommendations are given

  2. Occupational Licensing

    OpenAIRE

    Morris M. Kleiner

    2000-01-01

    The study of the regulation of occupations has a long and distinguished tradition in economics. In this paper, I present the central arguments and unresolved issues involving the costs and benefits of occupational licensing. The main benefits that are suggested for occupational licensing involve improving quality for those persons receiving the service. In contrast, the costs attributed to this labor market institution are that it restricts the supply of labor to the occupation and thereby dr...

  3. Flexible licensing

    OpenAIRE

    Martyn Jansen

    2012-01-01

    The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs) to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they ar...

  4. Licensing documentation and licensing process for dismantling and decontamination projects in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Uspuras, Eugenijus; Rimkevicius, Sigitas; Babilas, Egidijus [Lithuanian Energy Institute (LEI), Kaunas (Lithuania)

    2013-07-01

    One of the main tasks of any decommissioning project is the licensing process which allows implementation of developed strategies in real NPP. The Lithuanian laws on nuclear energy and on radioactive waste management require that the dismantling and decontamination (D and D) projects shall be licensed by the Lithuanian State Nuclear Power Safety Inspectorate (VATESI) and other Authorities. Licensing is an inseparable part of the Lithuania regulatory and supervisory system for safety of nuclear facilities. The licensing process starts when NPP submits the first licensing document(s) to the Authorities. It is completed when all the licensing documents are approved by the Authorities and authorization to start D and D works is received by NPP. Current paper will discuss one of the main steps in D and D projects implementation process - Licensing and will provide information about D and D licensing approach used in Lithuania. (orig.)

  5. Overview of the Yucca Mountain Licensing Process

    International Nuclear Information System (INIS)

    M. Wisenburg

    2004-01-01

    This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process

  6. Challenges of SMR licensing practices

    International Nuclear Information System (INIS)

    Soderholm, K.

    2012-01-01

    This paper aims to increase the understanding of high level Nuclear Power Plant (NPP) licensing processes in Finland, France, the UK, Canada and the USA. These countries have been selected for this study because of their different licensing processes and recent actions in new NPP construction. After discussing their similarities and differences, suitable features for Small Modular Reactor licensing can be emphasized and suggested. Some of the studied licensing processes have elements that are already quite well suited for application to SMRs, but all of these different national processes can benefit from studying and implementing lessons learned from SMR specific licensing needs. The main SMR features to take into account in licensing are standardization of the design, modularity, mass production and serial construction. Modularity can be divided into two different categories: the first category is simply a single unit facility constructed of independently engineered modules (e.g., construction process for Westinghouse AP-1000 NPP) and the second is a facility structure composed of many reactor modules where modules are manufactured in factories and installed into the facility as needed (e.g., NuScale Power SMR design). Short construction schedules will not be fully benefited from if the long licensing process prolongs the commissioning and approach to full-power operation. The focus area of this study is to better understand the possibility of SMR deployment in small nuclear countries, such as Finland, which currently has four operating NPPs. The licensing process needs to be simple and clear to make SMR deployment feasible from an economical point of view. This paper uses public information and interviews with experts to establish the overview of the different licensing processes and their main steps. A high-level comparison of the licensing steps has been carried out. Certain aspects of the aviation industry licensing process have also been studied and certain

  7. Challenges of SMR licensing practices

    Energy Technology Data Exchange (ETDEWEB)

    Soderholm, K., E-mail: kristiina.soderholm@fortum.com [Fortum Power, Espoo (Finland)

    2012-12-15

    This paper aims to increase the understanding of high level Nuclear Power Plant (NPP) licensing processes in Finland, France, the UK, Canada and the USA. These countries have been selected for this study because of their different licensing processes and recent actions in new NPP construction. After discussing their similarities and differences, suitable features for Small Modular Reactor licensing can be emphasized and suggested. Some of the studied licensing processes have elements that are already quite well suited for application to SMRs, but all of these different national processes can benefit from studying and implementing lessons learned from SMR specific licensing needs. The main SMR features to take into account in licensing are standardization of the design, modularity, mass production and serial construction. Modularity can be divided into two different categories: the first category is simply a single unit facility constructed of independently engineered modules (e.g., construction process for Westinghouse AP-1000 NPP) and the second is a facility structure composed of many reactor modules where modules are manufactured in factories and installed into the facility as needed (e.g., NuScale Power SMR design). Short construction schedules will not be fully benefited from if the long licensing process prolongs the commissioning and approach to full-power operation. The focus area of this study is to better understand the possibility of SMR deployment in small nuclear countries, such as Finland, which currently has four operating NPPs. The licensing process needs to be simple and clear to make SMR deployment feasible from an economical point of view. This paper uses public information and interviews with experts to establish the overview of the different licensing processes and their main steps. A high-level comparison of the licensing steps has been carried out. Certain aspects of the aviation industry licensing process have also been studied and certain

  8. Post licensing case study of community effects at two operating nuclear power plants. Final report, March 1975--March 1976

    International Nuclear Information System (INIS)

    Purdy, B.J.; Peelle, E.; Bjornstad, D.J.; Mattingly, T.J. Jr.; Soderstrom, J.; DeVault, R.C.

    1976-06-01

    The social, economic, and political/institutional impacts of two operating nuclear power complexes on two New England communities are studied. The report includes discussions of the study design and objectives, profiles of the towns of Plymouth, Massachusetts, and Waterford, Connecticut, and analysis of the social, economic, and political impacts as observed by members of the ORNL staff. Results are presented from an attitude survey as well as a social impact classification schema devised as a methodological tool

  9. 10 CFR 60.3 - License required.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false License required. 60.3 Section 60.3 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General Provisions § 60.3 License required. (a) DOE shall not receive or possess source, special nuclear, or...

  10. 10 CFR 61.3 - License required.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false License required. 61.3 Section 61.3 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General... containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...

  11. 10 CFR 110.5 - Licensing requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Licensing requirements. 110.5 Section 110.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.5 Licensing requirements. Except as provided under subpart B of this part, no person may export...

  12. NRC licensing requirements: DOD options

    International Nuclear Information System (INIS)

    Pike, W.J.; O'Reilly, P.D.

    1982-09-01

    This report describes the licensing process (both safety and environmental) that would apply if the Department of Defense (DOD) chooses to obtain licenses from the US Nuclear Regulatory Commission (NRC) for using nuclear energy for power and luminous sources. The specific nuclear energy sources being considered include: small or medium-size nuclear power reactors; radioisotopic thermoelectric generators with 90 Sr or 238 Pu; radioisotopic dynamic electric generators with 90 Sr or 238 Pu; and applications of radioisotopes for luminous sources (lights) with 3 H, 85 Kr, or 147 Pm. The steps of the licensing process are summarized in the following sections, with particular attention given to the schedule and level of effort necessary to support the process

  13. NRC licensing requirements: DOD options

    Energy Technology Data Exchange (ETDEWEB)

    Pike, W.J.; O' Reilly, P.D.

    1982-09-01

    This report describes the licensing process (both safety and environmental) that would apply if the Department of Defense (DOD) chooses to obtain licenses from the US Nuclear Regulatory Commission (NRC) for using nuclear energy for power and luminous sources. The specific nuclear energy sources being considered include: small or medium-size nuclear power reactors; radioisotopic thermoelectric generators with /sup 90/Sr or /sup 238/Pu; radioisotopic dynamic electric generators with /sup 90/Sr or /sup 238/Pu; and applications of radioisotopes for luminous sources (lights) with /sup 3/H, /sup 85/Kr, or /sup 147/Pm. The steps of the licensing process are summarized in the following sections, with particular attention given to the schedule and level of effort necessary to support the process.

  14. License renewal in the United States

    International Nuclear Information System (INIS)

    Brons, Jack

    2002-01-01

    Full text: Nuclear plants in the United States are licensed for 40 years, a length specified in the Atomic Energy Act of 1954, which laid out much of the regulatory basis for the commercial nuclear industry. The Act, however, made provision for license renewal. The original 40-year license period was chosen arbitrarily by the U.S. Congress because it was the typical period over which utilities recovered their investment in electricity generating plants. Nuclear plants, however, are subject to a rigorous program of Nuclear Regulatory Commission oversight, maintenance and equipment replacement. In effect, they must be in the same operating condition on the last day of their licenses as they were on the first. As the industry matured, it became apparent that there was no physical limitation on the continued operation of nuclear plants past 40 years. The industry turned its attention toward license renewal. When the issue was first raised, the NRC considered stringent process equivalent to seeking a new operating license for each plant. The complexity, length and cost of the process made it unlikely that many nuclear plants would seek license renewal. The nuclear industry worked successfully with NRC on the application of generic principles to license renewal, however, and in 1995, the NRC issued an efficient, tightly-focused rule that made license renewal a safe, viable option. To extend the operating license for a reactor, a company must demonstrate to the NRC that aging effects will be adequately managed during the renewal terms, thus ensuring equipment functionality. The rule allows licensees to apply for extensions of up to 20 years. The first license renewal application was filed in 1998 by the owner of the two-unit Calvert Cliffs plant. Shortly thereafter, an application was filed for the three-unit Oconee Nuclear Station. The NRC renewed the licenses for all five units in 2000, and since then, five more licenses have been renewed. The NRC has received 37

  15. Flexible licensing

    Directory of Open Access Journals (Sweden)

    Martyn Jansen

    2012-07-01

    Full Text Available The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they are required. This article describes the process of developing a flexible approach to licensing and proposes a new model licence for online library resources which has the adaptability needed in this new global educational landscape. These ideas have been presented and discussed at various workshops across Eduserv's and JISC Collections' higher education and publisher communities, and further consultation is ongoing.

  16. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-11-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the errata page

  17. 10 CFR 61.30 - Transfer of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of license. 61.30 Section 61.30 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... maintenance, the licensee may apply for an amendment to transfer the license to the disposal site owner. The...

  18. 10 CFR 61.31 - Termination of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Termination of license. 61.31 Section 61.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... of the disposal site and a copy has been sent to the Commission immediately prior to license...

  19. NUMARC view of license renewal criteria

    International Nuclear Information System (INIS)

    Edwards, D.W.

    1989-01-01

    The Atomic Energy Act and the implementing regulations of the US Nuclear Regulatory Commission (NRC) permit the renewal of nuclear plant operating licenses upon expiration of their 40-year license term. However, the regulatory process by which license renewal may be accomplished and the requirements for the scope and content of renewal applications are yet to be established. On August 29, 1988, the NRC published an Advanced Notice of Proposed Rulemaking regarding the subject of license renewal. This Advanced Notice and the NUREG which it references, NUREG-1317, Regulatory Options for Nuclear Plant License Renewal, provide the most recent regulatory thought on this issue. The basic issue addressed by NUREG-1317 is the definition of an adequate licensing basis for the renewal of a plant license. The report contemplates three alternatives in this regard. This paper discusses each of these three proposals. The NUMARC NUPLEX Working Group endorses a license renewal process based on a plant's current licensing basis along with an evaluation of the pertinent components, systems, and structures affected by age-related degradation. The NUMARC NUPLEX Working group believes that an appropriate scope for NRC review of the license renewal application should focus on those safety-significant structures systems, and components subject to significant age-related degradation that are not subject to existing recognized effective replacement, refurbishment, or inspection programs. The paper also briefly discusses NUMARC's view of the role of the Backfit Rule in the license renewal process

  20. IAEA news: • Newcomer countries face common challenges in nuclear infrastructure development. • Safety and licensing requirements for small modular reactors: IAEA hosts first workshop for regulators. • IAEA reaches milestone in disposal of radioactive sources

    International Nuclear Information System (INIS)

    Kollar, Lenka; Dyck, Elisabeth; Dixit, Aabha; Gaspar, Miklos; Gil, Laura

    2016-01-01

    • Newcomer countries face common challenges in nuclear infrastructure development: Countries embarking on a nuclear power programme need to make sure that the development of their legal, regulatory and support infrastructure keeps pace with the construction of the power plant itself. This is the only way to ensure that the programme proceeds in a safe, secure and sustainable way, concluded participants of a workshop on nuclear power infrastructure development hosted at the IAEA last February. • Safety and licensing requirements for small modular reactors: IAEA hosts first workshop for regulators: A new generation of advanced, prefab nuclear power reactors called small modular reactors (SMRs) could be licensed and hit the market as early as 2020, and the IAEA is helping regulators prepare for their debut. In a series of workshops that began earlier this year, the IAEA is working closely with regulators on approaches to safety and licensing ahead of potential SMR deployment worldwide. • IAEA reaches milestone in disposal of radioactive sources: Successful tests of a promising technology for moving and storing low level radioactive sealed sources are paving the way for a new disposal method for dealing with small volumes of radioactive waste around the world. The method, which involves placing and covering sealed sources in a narrow hole a few hundred metres deep, would allow countries to safely and securely take charge of their own disused radioactive sources. The proof of concept for the technology was tested in Croatia late last year — without the use of actual radioactive material.

  1. 75 FR 76757 - Licensing Support System Advisory Review Panel

    Science.gov (United States)

    2010-12-09

    ... NUCLEAR REGULATORY COMMISSION Licensing Support System Advisory Review Panel AGENCY: U.S. Nuclear... Review Panel (LSNARP). SUMMARY: The Licensing Support System Advisory Review Panel was established by the... system to be used to store and retrieve documents relating to the licensing of a geologic repository for...

  2. 10 CFR 61.24 - Conditions of licenses.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions of licenses. 61.24 Section 61.24 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... licensee's receipt, possession, and disposal of source, special nuclear or byproduct material as it deems...

  3. Data Licensing

    OpenAIRE

    Ball, Alexander

    2011-01-01

    This talk is intended to help workshop participants decide how to apply a licence to their research data, and which licence would be most suitable. It covers why licensing data is important, the impact licences have on future research, and the potential pitfalls to avoid.

  4. Research and development and related capabilities for safety and licensing of nuclear power reactors: a regulatory perspective

    International Nuclear Information System (INIS)

    Newland, D.B.

    2001-01-01

    In today's increasingly competitive environment within the electrical power generation industry, the nuclear power utilities are constantly striving for greater efficiency and lower operating costs. Economic de-regulation costs. Economic de-regulation of the electrical market is occurring in a number of countries, including Canada, and this places additional pressure on utilities to be economically competitive. The industry examines all its business activities critically to determine if they provide benefit and good value for money. In these circumstances there can be a tendency for the longer term strategic activities to be treated as lower priority and have reduced funding. Such activities include research and development, design authority, corporate knowledge, and technical expertise, and their associated infrastructure. This paper discusses how the situation with regard to funding of research and development (R and D) has evolved in Canada over the past 5 years, and how the Canadian Nuclear Safety Commission (CNSC) has responded to the changing environment. Of particular interest is a R and D capability review that the industry undertook, the results of which are briefly described. Other related infrastructure aspects such as technical expertise, design authority, education and their inter-relationship with R and D. are also discussed. There are a number of important elements that are needed for a successful way forward: recognition of the depth of the problem by stakeholders; clarification of the roles and responsibilities of these stakeholders; strong leadership within the power reactor industry; improved co-ordinating amongst the industry partners; effective international co-operation; and succession planning in the broadest sense. It is finally concluded that the issue of R and D funding and expertise maintenance is one that will not go away and will inevitably worsen. It is a difficult issue to tackle and there are no simple solutions. The situation has

  5. Calvert Cliffs Nuclear Power Plant Life Cycle Management/License Renewal Program: System, structure, and component screening. Final report

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Tilden, B.M.

    1994-09-01

    Central to the Life Cycle Management (LCM) Program for the Calvert Cliffs Nuclear Plant is its Integrated Plant Assessment (IPA) process; a comprehensive, systematic evaluation of the effectiveness of age-related degradation management for the plant's important systems, structures, and components. The first step in this process is the screening of functionally important systems, structures that warrant further evaluation of aging issues. A detailed method and procedures for conducting this screening have been developed and thoroughly tested. The development and application of these procedures at Calvert Cliffs should permit other utilities to avoid implementation problems and avoid substantial front-end development costs. The IPA process is initiated by a screening step that identifies important systems, structures, and components for further evaluation. This report contains the screening methodology, provides procedures for System Level Screening and Component Level Screening, and summarizes results for five systems that represent a wide range of use. These are the Reactor Coolant System, Compressed Air System, Saltwater Cooling System, Electrical 4 Kv Transformers and Buses, and the Reactor Protective System. Examples of component screening are included for the Reactor Coolant System. These screening results show how to determine which equipment's maintenance programs should be checked for degradation management effectiveness

  6. Review process for license renewal applications

    International Nuclear Information System (INIS)

    Craig, John W.; Kuo, P.T.

    1991-01-01

    In preparation for license renewal reviews, the Nuclear Regulatory Commission has recently published for public review and comment a proposed rule for license renewal and a draft Standard Review Plan as well as a draft Regulatory Guide relating to the implementation of the proposed rule. In support of future license renewal applications, the nuclear industry has also submitted 11 industry reports for NRC review and approval. This paper briefly describe how these parallel regulatory and industry activities will be factored into the NRC review process for license renewal. (author)

  7. Licensing reform in the USA

    International Nuclear Information System (INIS)

    1991-01-01

    The licensing process for nuclear power plants in the USA is currently in two distinct stages: the issuance of a construction permit followed later by the issuance of an operation license. The ''two-step'' process has come under heavy criticism from the U.S. nuclear industry on the grounds that it causes uncertainty and delays and therefore inhibits new commitments to nuclear power plants. In 1989 the NRC published new regulations for the licensing of nuclear power plants which provide for the issuance of early site permits, safety certifications of standard designs, and combined construction permits and operating licences. The new rule was challenged by intervenors representing antinuclear groups who filed a legal challenge seeking to have the rule set aside on the grounds that it violates the Atomic Energy Act which they allege makes two-step licensing mandatory. In November 1990 the US Court of Appeals upheld the NRC's authority to issue combined licenses. An appeal for a rehearing has been filed. The paper analyses the events and the possible consequences of an adverse court decision. It reviews the options open to the NRC and industry if the court decision is upheld. The possibility of congressional action to amend the Atomic Energy Act is discussed. (author)

  8. Operating reactors licensing actions summary. Vol.4, No. 4

    International Nuclear Information System (INIS)

    1984-06-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  9. United States Nuclear Regulatory Commission Staff Practice and Procedure Digest: Commission, Appeal Board and Licensing Board decisions, July 1972--March 1992

    International Nuclear Information System (INIS)

    1993-02-01

    This 5th revision of the sixth edition of the NRC Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period of July 1, 1972 to March 31, 1992, interpreting the NRC's Rules of Practice in 10 CFR Part 2

  10. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--December 1991

    International Nuclear Information System (INIS)

    1992-11-01

    This 4th revision of the sixth edition of the NRC Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period of July 1, 1972 to December 31, 1991, interpreting the NRC's Rules of Practice in 10 CFR Part 2

  11. Materials licensing study, Phase 1. Volume 2. Findings and recommendations

    International Nuclear Information System (INIS)

    Elliot, J.M.; Arcuni, A.A.; Immerman, W.H.; Welles, B.W.; Varnado, G.B.

    1983-11-01

    This is one of a series of seven reports which describe a study of nuclear material licensing conducted for the Office of Nuclear Regulatory Material Safety and Safeguards, US Nuclear Regulatory Commission (NRC). The purposes of this project are to analyze the process used by NRC to license nuclear materials, and based upon this analysis to recommend measures to improve the efficiency of such license application review. This report presents summary findings and recommendations relevant to the data collection effort documented in SAND83-7081/1 of 3. Recommendations are based upon findings derived from review of deficiency letters, dockets, application guides, the license application review process, and the license renewal process. Several of the eleven (11) recommendations address the need for an improved regulatory base which would integrate and streamline all the diverse regulatory documents and procedures. In addition, the report proposes implementation of a computer based nuclear materials licensing support system to aid in all phases of materials license review

  12. Perspective about the US license Renewal for NNPP's; Perspectiva sobre la renovacion de licencia para centrales nucleares en los Estados Unidos

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, D. F.

    2004-07-01

    This article provides and overview of the US License Renewal Rule, 10 CFR 54, and its implementation in the US leading to the preparation and review of a license renewal application. The key regulatory documents and the industry's methodology and guidance for successfully implementing the Rule are discussed. While the process still undergoes change and optimization, it has become predictable and reliable, such that utilities can establish realistic schedules and budgets to complete the license renewal process. Nearly 60% of the US operating units have either received and extended operating license, have submitted their application for review, or have committed to submit an application in the next few years. The article concludes with a discussion of lessons learned from this wealth of experience and some emerging issues that may affect license renewal process. (Author)

  13. The USNCR license renewal process

    International Nuclear Information System (INIS)

    Kuo, Pao-Tsin

    2002-01-01

    The US Congress promulgated a law in 1954, entitled 'Atomic Energy Act'. This Act states that operating licenses for commercial nuclear power plants are limited to a fixed term of 40 years, but they may be renewed for a period not to exceed 20 years. The terms were established mainly for economic considerations, not based on technical limitations. The U.S. Nuclear Regulatory Commission (USNRC) published the license renewal rule, Title 10 of the Code of Federal Regulations, Part 54 (10 CFR Part 54), in December, 1991. The rule has since been amended in May, 1995. The underlying principle of the rule is that the regulatory process is adequate for ensuring safety of operating plants. The regulatory process includes NRC's issuance of Orders, Bulletins, Generic Letters, and Information Notices, as well as a number of special inspections in addition to the continuous oversight and routine inspection activities performed by on-site inspectors. Because of this comprehensive regulatory process, compilation of the current license basis or re-verification of the current licensing basis is not considered necessary for a license renewal review. The USNRC also determined on the basis of the findings of its research programs that active structures and components are well maintained by the existing programs. Therefore, the focus of the license renewal review is on passive, long-lived structures and components and on time-limited ageing analyses. The time-limited ageing analyses are for those structures and components which were originally designed to a 40 year service life

  14. Identification of the Current Licensing Basis

    International Nuclear Information System (INIS)

    Kurtz, E.F.; Kaskie, D.J.

    1998-01-01

    Current Licensing Basis (CLB) is the combination of regulatory requirements and the related licensee commitments to implement those requirements. Knowledge of these requirements could significantly influence the utility in resources expenditure and regulatory posture. The Nuclear Regulatory Commission (NRC) issues regulatory requirements after reviewing licensing commitments to address specific regulations. All other commitments not addressed in regulatory requirement documents are within a utility's span of control for commercial application (i.e., cost, personnel safety, power production, etc.). The purpose of the paper will be to inform non-licensing personnel as to the benefits of understanding Current Licensing Basis, as well as providing a basic background. This paper discusses the concept of Current Licensing Basis, how the development of Current Licensing Basis is useful to the utility from a resource allocation and safety improvement perspective, how the Current Licensing Basis is compiled, and what benefits can be derived from it

  15. Validation, acceptance and licensing

    International Nuclear Information System (INIS)

    Wene, C.O.

    1992-01-01

    The licensing process requires communication of complex scientific and technical information. In this paper transfer of such information is discussed using concepts and ideas from systems analysis, cybernetics and argumentation theory. A simple model for the decision process is developed. The analysis stresses the need for careful design of the communication channels between the three systems involved: the political system, the judicial-regulatory system and the scientific-technical community. The Dialogue - Scenario project initiated by the Swedish nuclear Inspectorate is briefly presented

  16. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  17. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  18. 77 FR 31894 - Portable Gauge Licenses

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Portable Gauge Licenses AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for... guidance for portable gauge licensees. The NRC is requesting public comment on NUREG-1556, Volume 1... Gauge Licenses.'' The document has been updated to include safety culture, security of radioactive...

  19. Licensing Process for International Projects

    International Nuclear Information System (INIS)

    Raetzke, Christan

    2014-01-01

    Christan Raetzke, lawyer, then outlined why nuclear constructions were always international projects and in which cases it would make sense to also make the licensing process be international. His law consulting firm CONLAR focuses specifically on design review so he could adequately present why an international process would make a lot of sense without being a loss of sovereignty

  20. United States Nuclear Regulatory Commission staff practice and procedure digest. Commission, Appearl Board and Licensing Board decisions, July 1972-June 1985. Digest No. 4

    International Nuclear Information System (INIS)

    1986-01-01

    This edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period July 1, 1972 to June 30, 1985 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This edition replaces earlier editions and supplements and includes appropriate changes reflecting the amendment to the Rules of Practice effective June 30, 1985

  1. United State Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board, and Licensing Board decisions, July 1972--June 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to June 30, 1988 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This edition replaces in their entirety earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through June 30, 1988

  2. Public comments on the proposed 10 CFR Part 51 rule for renewal of nuclear power plant operating licenses and supporting documents: Review of concerns and NRC staff response. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report documents the Nuclear Regulatory Commission (NRC) staff review of public comments provided in response to the NRC`s proposed amendments to 10 Code of Federal Regulations (CFR) Part 51, which establish new requirements for the environmental review of applications for the renewal of operating licenses of nuclear power plants. The public comments include those submitted in writing, as well as those provided at public meetings that were held with other Federal agencies, State agencies, nuclear industry representatives, public interest groups, and the general public. This report also contains the NRC staff response to the various concerns raised, and highlights the changes made to the final rule and the supporting documents in response to these concerns.

  3. WNA CORDEL Code Convergence Effort, The example of Harmonisation of NDE Qualification requirements. AP1000R Global Plant Licensing. EPR Family Presentation. WNA CORDEL report - What can nuclear learn from aviation?

    International Nuclear Information System (INIS)

    Wasylyk, Andrew; Delong, Richard; Green, John; Bouteille, Francois; Pouget-Abadie, Xavier; Raetzke, Christian

    2013-01-01

    The industry representatives provided their insights about new reactor activities, what reactor designers, operators/licensees, and representatives from standards development organizations are doing to promote standardization of designs and convergence of standards and what are their expectations toward MDEP to further enhance standardization of designs and convergence of standards. The industry emphasised that they are embracing harmonisation to address new reactor issues and that they would hope that the regulators do the same. AREVA, Westinghouse and CORDEL described their efforts in maintaining standard design as much as possible to gain efficiency in licensing, constructing and operating new nuclear power plant worldwide. They considered that MDEP work was valuable, but should be pursed further to avoid differences in the design driven by differing regulatory requirements. The need that the regulators identify areas where convergence is not likely to be reached was also underlined. Cooperation between regulators involved in licensing of aircraft was mentioned as an example to be followed

  4. Licensed operating reactors

    International Nuclear Information System (INIS)

    1991-08-01

    The Nuclear Regulatory Commission's annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar 1990) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided

  5. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  7. Licensed operating reactors

    International Nuclear Information System (INIS)

    Hartfield, R.A.

    1990-03-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  8. Licensing the ACR-700 in Canada: progress on the pre-licensing review

    International Nuclear Information System (INIS)

    Popov, N.K.; Snell, V.G.; West, J.E.

    2004-01-01

    The ACR-700 is an evolutionary adaptation of the CANDU reactor; based on the pressure-tube technology of current operating CANDU reactors, but using slightly enriched uranium fuel and light-water coolant. To ensure that the risk of changes due to licensing is small during the project phase, a pre-project licensing review is underway with the Canadian Nuclear Safety Commission (CNSC) in Canada. The CNSC is performing a pre-licensing review of the ACR-700 to assess the licensability of the design in Canada. In particular, the CNSC licensability assessment of the design during the pre-project phase has the purpose 'to determine if the ACR-700 design meets the Nuclear Safety and Control Act licensing requirements in Canada for a nuclear power plant design, and if there are fundamental barriers that would prevent licensing of the ACR-700'. It is anticipated that the Canadian licensing requirements for the ACR-700 will rely on the CNSC's extensive experience with the operating CANDU reactors and the previously completed, in-depth licensability assessment of the CANDU 9 design, and evolve to reflect the advanced safety characteristics of ACR- 700. This paper provides an overview of the ACR-700 pre-licensing programme in Canada. (author)

  9. Licensing process of the digital application: Nuclear measurement analysis and control power range neutron monitor (NUMAC-PRNM) system for their implementation in the Laguna Verde NPP unit 2

    International Nuclear Information System (INIS)

    Ledesma-Carrion, R.; Hernandez-Cortes, A.

    1998-01-01

    This paper describe the licensing process performed by the Mexican Regulatory Commission (CNSNS) for the NUclear Measurement Analysis and Control-Power Range Neutron Monitor (NUMAC-PRNM) system, which sends trip signals to the Reactor Protection System (RPS), and has been implemented in the Laguna Verde Nuclear Power Plant Unit (LVNPP-U2) before its first fuel loading. The review and approval process was performed with the advise role of the United States of America Nuclear Regulatory Commission (USNRC): the regulatory frame applied includes the Code of Federal Regulation, some Regulatory Guides and some Industrial Standards. The evaluation covered topics related with the software, hardware and firmware specifications, design, tests, training, maintenance and operational experience. After the revision of these topics, the NUMAC-PRNM was approved through the CNSNS Safety Evaluation Report (SER) and then installed in the LVNPP-U2. This paper include a description of the regulatory requirements to this digital application, the safety concerns involved, the compliance to these requirements by the utility and the results of the CNSNS evaluation, mentioning the experience acquired during the process and the method used to perform the evaluation. Additionally, the interface between the designer-vendor, the utility and the regulatory body during the licensing process is commented. Finally, the conclusion is presented, taking into account the operational experience of the NUMAC applications implemented in the LVNPP. It also gives the future regulatory tasks related to the assessment of digital performance equipment and upgrades. (author)

  10. Nuclear Installations Act 1965

    International Nuclear Information System (INIS)

    1965-01-01

    This Act governs all activities related to nuclear installations in the United Kingdom. It provides for the licensing procedure for nuclear installations, the duties of licensees, the competent authorities and carriers of nuclear material in respect of nuclear occurrences, as well as for the system of third party liability and compensation for nuclear damage. The Act repeals the Nuclear Installations (Licensing and Insurance) Act 1959 and the Nuclear Installations (Amendment Act) 1965 except for its Section 17(2). (NEA) [fr

  11. PBMR-SA licensing project organization

    International Nuclear Information System (INIS)

    Clapisson, G.A.; Metcalf, P.E.; Mysen, A.

    2001-01-01

    The South African nuclear regulatory authority, the Council for Nuclear Safety (CNS), is beginning the safety review of the Pebble Bed Modular Reactor (PBMR) design under development by the South African National Electrical Utility, Eskom. This paper describes the CNS licensing process, including the establishment of basic licensing criteria, general design criteria, and specific design rules, as well the safety assessment to be conducted in accordance with the established structure. It also summarises the CNS PBMR review project activities, including the overall organisational arrangements, licensing basis, safety and risk assessment, general operating rules and plant design engineering, and pre-operational testing. (author)

  12. 10 CFR 34.11 - Application for a specific license.

    Science.gov (United States)

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Specific Licensing Provisions § 34.11 Application for a... industrial radiography on NRC Form 313, “Application for Material License,” in accordance with the provisions...

  13. 10 CFR 60.51 - License amendment for permanent closure.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false License amendment for permanent closure. 60.51 Section 60.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Permanent Closure § 60.51 License amendment for permanent closure. (a) DOE...

  14. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    International Nuclear Information System (INIS)

    Grecheck, Eugene S.; Batalo, David P.

    2010-01-01

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  15. Nuclear Security: Action May Be Needed to Reassess the Security of NRC-Licensed Research Reactors. Report to the Ranking Member, Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives. GAO-08-403

    Science.gov (United States)

    Aloise, Gene

    2008-01-01

    There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…

  16. License Agreements concerning trademarks

    OpenAIRE

    Dráb, Ladislav

    2014-01-01

    The thesis deals with license agreements in relation to trademarks, specially the trademark license agreement. The thesis contains in its theoretical interpretation of the concept and sources of the license agreement. There are also analyzed various types of license agreements, including modifying the license agreement in the new Civil Code, and related types of contracts as a franchising or merchandising. Another interpretation is more concerned with trademark and trademark license agreement...

  17. 77 FR 13376 - Notice of License Termination for the University of Arizona Research Reactor, License No. R-52

    Science.gov (United States)

    2012-03-06

    ... the University of Arizona Research Reactor, License No. R-52 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-52, for the University of Arizona... Operating License No. R-52 is terminated. For further details with respect to the proposed action, see the...

  18. 78 FR 5840 - Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115

    Science.gov (United States)

    2013-01-28

    ... University of Illinois Advanced TRIGA Reactor, License No. R-115 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-115, for the University of Illinois... Operating License No. R-115 is terminated. The above referenced documents may be examined, and/or copied for...

  19. 2015 Business Licenses

    Data.gov (United States)

    City of Jackson, Mississippi — This data displays all business license information for the year of 2015. This information details license classifications and status. This information will updated...

  20. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  1. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  2. Regulation of Federal radioactive waste activities. Report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    International Nuclear Information System (INIS)

    1979-09-01

    The report contains two recommendations for extending the Commission's regulatory authority: (1) NRC licensing authority should be extended to cover all new DOE facilities for disposal of transuranic (TRU) waste and nondefense low-level waste. (2) A pilot program, focused on a few specific DOE waste management activities, should be established to test the feasibility of extending NRC regulatory authority on a consultative basis to DOE waste management activities not now covered by NRC's licensing authority or its extension as recommended in Recommendation 1

  3. United States Nuclear Regulatory Commission staff practice and procedure digest. Commission, Appeal Board and Licensing Board decisions, July 1972-September 1985. Digest No. 4, Revision No. 1

    International Nuclear Information System (INIS)

    1986-04-01

    This Revision 1 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1985 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 1 replaces earlier editions and supplements and includes appropriate changes reflecting the admendments to the Rules of Practice effective through September 20, 1985

  4. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--December 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This Revision 6 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to December 31, 1989 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 6 replaces in part earlier editions and revisions and includes appropriate changes reflecting the amendments to the Rules of Practice effective through December 31, 1989

  5. United States Nuclear Regulatory Commission Staff Practice and Procedure Digest. Commission, Appeal Board and Licensing Board decisions, July 1972-December 1985. Digest No. 4, Revision No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    This Revision 2 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period July 1, 1972 to December 31, 1985, interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 2 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendment to the Rules of Practice effective December 31, 1985. Topics covered include prehearing and posthearing matters, herings, appeals, and general matters

  6. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board, and Licensing Board decisions issued from July 1, 1972 through March 31, 1986

    International Nuclear Information System (INIS)

    1986-10-01

    A digest is given of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to March 31, 1986, interpreting the NRC's Rules of Practice. Parts of earlier editions and supplements are replaced, and amendments to the Rules of Practice effective through March 31, 1986 are reflected. The material included deals with applications, prehearing matters, hearings, post-hearing matters, appeals, and decisions related to general matters. Decisions are indexed by facility, citation, CFR, statutes, case law, and other legal citations

  7. United States Nuclear Regulatory Commission staff practice and procedure digest: Commission, Appeal Board and Licensing Board decisions, July 1972--September 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This Revision 1 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1988 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 1 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1988

  8. United States Nuclear Regulatory Commission Staff practice and procedure digest: Commission, Appeal Board and Licensing Board Decisions, July 1972-March 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This Revision 7 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to March 31, 1987 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 7 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through March 31, 1987

  9. United States Nuclear Regulatory Commission Staff Practice and Procedure Digest: Commission, Appeal Board and Licensing Board decisions, July 1972-December 1986

    International Nuclear Information System (INIS)

    1987-11-01

    This Revision 6 of the fourth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to December 31, 1986, interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 6 replaces in part earlier editions and supplements and includes appropriate changes reflecting the amendments to the Rules of Practice effective through December 31, 1986

  10. Nuclear Regulatory Commission issuances. Volume 40, Number 5

    International Nuclear Information System (INIS)

    1994-11-01

    This book contains issuances of the Atomic Safety and Licensing Boards for November 1994. The issuances include Cameo Diagnostic Centre, Inc. byproduct material license; Georgia Power Company license amendment, transfer to Southern Nuclear for Vogtle Electric Generating Plant, units 1 and 2; Indiana Regional Cancer Center, order modifying and suspending byproduct material license; Louisiana Energy Services, special nuclear material license; Pacific Gas and Electric Company, construction period recovery, facility operating license, Diablo Canyon Nuclear Power plant; and Sequoyah Fuels Corporation, source materials license

  11. Regulatory view on licensing and commissioning of Temelin NPP

    International Nuclear Information System (INIS)

    Drabova, D.; Boehm, K.; Brandejs, P.; Tipek, Z.

    2004-01-01

    The competencies delegated to the Czech State Office for Nuclear Safety by Czech legislation are highlighted and the history of construction and commissioning of the Temelin nuclear power plant in relation to the licensing process is described. (P.A.)

  12. S. 2073: a bill to encourage the standardization of nuclear powerplants, to improve the nuclear licensing and regulatory process, to amend the Atomic Energy Act of 1954, and for other purposes. Introduced in the Senate of the United States, Ninety-Ninth Congress, Second Session, February 18, 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Nuclear Facility Standardization Act of 1986 (S. 2073) seeks more efficient licensing and regulation through standardization of design and technology as a way to shorten the lead time for the siting, construction, and operation of new nuclear power plant facilities. Standardization would improve personnel training and performance, encourage more public participation in the regulatory process and decision making, and reduce costs as well. The Bill outlines new procedures for approving standardized designs, with an emphasis on early site approval and more efficient procedures for granting permits and licenses. The Act also amends Section 187 of the Atomic Energy Act dealing with design and construction modifications to require that they result in significant safety improvement

  13. Current status of the PBMR licensing project

    International Nuclear Information System (INIS)

    Mysen, A.; Clapisson, G.A.; Metcalf, P.E.

    2000-01-01

    The CNS is currently reviewing the PBMR conceptual design from a licensibility point of view. The PBMR concept is based on a High Temperature Gas Cooled Reactor - pebble bed reactor type. It is anticipated that the PBMR design will rely on inherent safety characteristics to contain fission products within fuel over the full range of design basis events. This feature combined with the high temperature integrity of the fuel and structural graphite, allows the safe use of a high coolant temperature, which allows consideration of the future development of this reactor for non-electrical applications of nuclear heat for industrial use. The CNS licensing approach requires that the licensing and design basis of the plant should respect prevailing international norms and practices and that a quantitative risk assessment should demonstrate compliance with the CNS fundamental safety standards. The first stage of the licensing process is now ongoing; this is a pre-application phase, which will result in a statement on licensibility being issued. Identification of the specific documentation requirements and information needed is required across every step of the licensing process. Top level regulatory requirements have been established for the PBMR. They include the CNS fundamental safety standard and basic licensing criteria, which describes requirements on licensees of nuclear installations regarding risk assessment and compliance with the safety criteria and define classification of licensing basis events. (author)

  14. Licensing of ''grandfather's'' facilities: Ukrainian experience

    International Nuclear Information System (INIS)

    Mikolaitchouk, H.; Bogdan, L.; Steinberg, N.

    1995-01-01

    In the former USSR, unlike most countries, radioactive waste management activities including waste disposal needed no license. But after the USSR breakdown the Ukrainian Parliament -- Verkhovna Rada -- invoked the revised Law on Business activities. According to Article 4 of the Law, in order to treat or to dispose radioactive waste every enterprise has to get a special permission or license. In compliance with the Law, the Cabinet of Ministers by its Ordinance of January 13, 1993, authorized the Ukrainian State Committee for Nuclear and Radiation Safety (UkrSCNRS) to issue special permissions or licenses for waste treatment and disposal. And that requirement was valid not only for future activities but also for existing facilities in operation. Taking into account the undergoing legislative process, SCNRS began to develop its licensing process without waiting for the special nuclear laws to be passed. On the basis of the legislation already in effect, first of all the Law on Enterprises (full responsibility of enterprises for their activities) and Law on Business activities (requirement to have a license for special types of activities), the newly formed national regulatory body had to identify all the enterprises that needed to be licensed, to establish relevant procedures, to develop related regulatory documents, to implement these procedures and documents at operating enterprises, and for each case to make a decision concerning feasibility of issuing a license, period of validity and license conditions

  15. Atomic Safety and Licensing Board Panel annual report

    International Nuclear Information System (INIS)

    1991-09-01

    In Fiscal Year 1990, The Atomic Safety and Licensing Board Panel (Panel) handled 40 proceedings involving the construction, operation, and maintenance of commercial nuclear power reactors or other activities requiring a license from the Nuclear Regulatory Commission. This report summarizes, highlights, and analyzes how the judges and licensing boards of the Panel addressed the wide-ranging issues raised in these proceedings during the year

  16. Operating reactors licensing actions summary. Volume 5, Number 1

    International Nuclear Information System (INIS)

    1985-03-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  17. Roundtable discussion: Materials management issues supporting licensing renewal

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of this technical session is to discussion the relationships between nuclear materials management/procurement engineering and plant license renewal. The basis for the discussion is DG-1009 'Standard format and content of technical information for applications to renew nuclear power plant operating licenses', dated 12/90

  18. Operating reactors licensing actions summary. Volume 4, No. 9

    International Nuclear Information System (INIS)

    1984-11-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the division of licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  19. Operating reactors licensing actions summary. Vol. 4, No. 2

    International Nuclear Information System (INIS)

    1984-04-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  20. 10 CFR 72.50 - Transfer of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of license. 72.50 Section 72.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... applicable provisions of the law, and the regulations and orders issued by the Commission. ...

  1. Stability in licensing requirements: a technical perspective

    International Nuclear Information System (INIS)

    Szalay, R.A.

    1978-01-01

    The serious difficulties encountered in the licensing procedure for nuclear power plants in the United States have resulted in the elaboration of a Bill on the siting and licensing of nuclear installations for the purpose of reforming the present system. The author fears, however, that this Bill will not reduce the complexity of present regulations and will be unable to reach the object sought which is to reduce the length of the procedure; he analyses the technical and political reasons underlying this situation, and in particular the role of the staff of the Nuclear Regulatory Commission. (NEA) [fr

  2. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  3. Waste management and licensing

    International Nuclear Information System (INIS)

    Dauk, W.

    1980-01-01

    It is the Court's consideration of the repercussions the regulation on waste management of Sect. 9a of the Atomic Energy Law will have, relating to the licensing of a plant according to Sect. 7 (2) of the Atomic Energy Law which is noteworthy. Overruling its former legal conception, the Administrative Court Schleswig now assumes, together with the public opinion, that the problem of waste management being brought to a point only with the initial operation of a nuclear power station is accordingly to be taken into account in line with the discretion of licensing according to Sect. 7 (2) of the Atomic Energy Law. In addition, the Administrative Court expressed its opinion on the extent to the right of a neighbour to a nuclear power station to file suit. According to the Sections 114 and 42 (2) of the rules of Administrative Courts it is true that a plaintiff cannot take action to set aside the licence because public interests have not been taken into account sufficiently, but he may do so because his own interests have not been included in the discretionary decision. The Administrative Court is reserved when qualifying the regulation on waste management with regard to the intensity of legal control. The Court is not supposed to replace controversial issues of technology and natural sciences on the part of the executive and its experts by its own assessment. According to the proceedings, the judicial review refers to the finding as to whether decisions made by authorities are suited - according to the way in which they were made - to guarantee the safety standard prescribed in Subdivision 3 of Sect. 7 (2) of the Atomic Energy Law. (HSCH) [de

  4. Review of the first partial licence for the Muelheim-Kaerlich reactor on the basis of the licensing requirements under nuclear law

    International Nuclear Information System (INIS)

    Hahn, L.; Wimmer, J.

    1990-11-01

    The expert opinion is restricted in the main to the licensing requirements in connection with the latest state-of-the-art precautionary measures against damage, i.e. subsection 3 of paragraph 7 section 2 Atomic Energy Act. Subject of the evaluations regarding the required new scope of licensing were the cancelled first partial licence, subsequent partial licences, the TUEV (Technical Control Board) expert opinion, the safety report with its continuations as well as the judgments of the Higher Administrative Court in Koblenz and the Federal Administrative Court. For determining the state-of-the-art, the expert opinion refers to the valid body of regulations, the latest concepts for PWRs in particular in the Federal Republic of Germany, and more recent results in reactor safety research. (orig./DG) [de

  5. Licensing of the Ignalina NPP

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    Since 1991 State Nuclear Power Safety Inspectorate (VATESI) has regulated Ignalina NPP operation by issuing annual operating permits. Those have been issued following submission of specified documents by the Ignalina NPP that have been reviewed by VATESI. However, according to to the procedures that are now established in the Law on Nuclear Energy and subordinate regulations the use of nuclear energy in the Republic of Lithuania is subject to strict licensing. Therefore a decision about the licence for continued operation of unit 1 should be taken. Licence would be granted by VATESI in cooperation with the Ministry of Health, Ministry of Environment and the institutions of local authorities. Ignalina NPP presented to the VATESI safety analysis report (SAR) with other documents. SAR was made mainly by foreign experts and financed by European Bank for Reconstruction and Development (EBRD). VATESI in this process is supported by western regulators. A special project LAP - Licensing Assistance Project was launched to help VATESI perform licensing according western practices

  6. 78 FR 17943 - Draft Program-Specific Guidance About Fixed Gauge Licenses

    Science.gov (United States)

    2013-03-25

    ... COMMISSION Draft Program-Specific Guidance About Fixed Gauge Licenses AGENCY: Nuclear Regulatory Commission... revising its licensing guidance for fixed gauge licenses. The NRC is requesting public comment on draft... Guidance About Fixed Gauge Licenses.'' The document has been updated from the previous revision to include...

  7. NRC antitrust licensing actions, 1978--1996

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.J.; Simpson, J.J.

    1997-09-01

    NUREG-0447, Antitrust Review of Nuclear Power Plants, was published in May 1978 and includes a compilation and discussion of U.S. Nuclear Regulatory Commission (NRC) proceedings and activity involving the NRC`s competitive review program through February 1978, NUREG-0447 is an update of an earlier discussion of the NRC`s antitrust review of nuclear power plants, NR-AIG-001, The US Nuclear Regulatory Commission`s Antitrust Review of Nuclear Power Plants: The Conditioning of Licenses, which reviewed the Commission`s antitrust review function from its inception in December 1970 through April 1976. This report summarizes the support provided to NRC staff in updating the compilation of the NRC`s antitrust licensing review activities for commercial nuclear power plants that have occurred since February 1978. 4 refs., 4 tabs.

  8. NRC antitrust licensing actions, 1978--1996

    International Nuclear Information System (INIS)

    Mayer, S.J.; Simpson, J.J.

    1997-09-01

    NUREG-0447, Antitrust Review of Nuclear Power Plants, was published in May 1978 and includes a compilation and discussion of U.S. Nuclear Regulatory Commission (NRC) proceedings and activity involving the NRC's competitive review program through February 1978, NUREG-0447 is an update of an earlier discussion of the NRC's antitrust review of nuclear power plants, NR-AIG-001, The US Nuclear Regulatory Commission's Antitrust Review of Nuclear Power Plants: The Conditioning of Licenses, which reviewed the Commission's antitrust review function from its inception in December 1970 through April 1976. This report summarizes the support provided to NRC staff in updating the compilation of the NRC's antitrust licensing review activities for commercial nuclear power plants that have occurred since February 1978. 4 refs., 4 tabs

  9. Licensing of HTGRs in the United States

    International Nuclear Information System (INIS)

    Fisher, C.R.; Orvis, D.D.

    1981-01-01

    The licensing history of the high-temperature gas-cooled reactor (HTGR) in the United States is given historical perspective. The experience began with the licensing of the Peach Bottom Atomic Power Station and extends to the continuing experience at the Fort St. Vrain Nuclear Generating Station. Additional experience was obtained from the licensing reviews in the mid-1970s of the large HTGR plants that were to be built by Philadelphia Electric Company and Delmarva Power and Light. Also, information was provided by the licensing review of the General Atomic standard plant by the U.S. Nuclear Regulatory Commission (NRC) at about the same time. These experiences are summarized in terms of the principal design criteria that were required by the regulatory authority for each project. These criteria include specification of the design basis accidents that were postulated for the plant safety analysis. Several technical issues raised by the NRC during their review of the large HTGR are presented. (author)

  10. Technical specifications, Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322): Appendix ''A'' to License No. NPF-82

    International Nuclear Information System (INIS)

    1989-04-01

    The Shoreham, Unit 1, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. 20 figs., 75 tabs

  11. Current safety issues of CANDU licensing

    International Nuclear Information System (INIS)

    Lee, Y.; Natalizio, A.

    1994-01-01

    As requested by Korea Institute of Nuclear Safety(KINS), the status of five generic licensing issues has been examined and their potential impact on a new plant that would be constructed in Canada has been evaluated. The results and conclusions of this evaluation are summarized as follows: steam explosion in calandria, hydrogen explosion in containment, use of PSA in reactor licensing, human factors, safety critical software

  12. Regulations and the licensing process in Austria

    International Nuclear Information System (INIS)

    Matulla, Herbert U.

    1979-01-01

    A review of the licensing process which took place from 1971 to 1978 shows which laws, regulations and standards were used in checking the safety aspects of the nuclear power plant and which organisations participated in the licensing process. The internal organisation of the Austrian main-expert in the procedure is illustrated. Examples of detail-work are explained. The importance of intensive co-operation of the different technical groups and the problems of comparable examination depth are underlined. (author)

  13. ACR: Licensing and design readiness

    International Nuclear Information System (INIS)

    Alizadeh, A.

    2009-01-01

    Full text The Canadian nuclear technology has a long history dating back to the 1940s. In this regard, Canada is in a unique situation, shared only by a very few countries, where original nuclear power technology has been invented and further developed. Canadian Nuclear Safety Commission (CNSC), then called AECB, was established in 1946. CNSC focuses on nuclear security, nuclear safety, establishing health and safety regulations, and has also played an instrumental role in the formation of the IAEA. CNSC has provided assistance to the establishment of regulatory authorities in AECL's client countries such as Korea, Argentina, China and Romania. AECL has developed the Gen III+ ACR 1000 as evolutionary advancement of the current CANDU 6 reactor. ACR-1000 has evolved from AECL's in depth experience with CANDU systems, components, and materials, as well as the feedback received from owners and operators of CANDU plants. The ACR-1000 design retains the proven strengths and features of CANDU reactors, while incorporating innovations and state-of-the-art technology. It also features major improvements in economics, inherent safety characteristics, and performance. ACR-1000 has completed its Basic Engineering, has advanced in the licensing process in Canada, and is ready for deployment in Canadian and world markets. EC6 is an evolution of CANDU 6 and is a Gen III natural uranium fuelled reactor. Its medium size and potential for fuel localization and advanced fuel cycles is an optimal strategic solution in many markets.AECL's reactor products are shown to be compliant with a variety of licensing and regulatory requirements. These include the new CNSC DRD-337, IAEA NS-R1, and EUR. This allows the countries interested in CANDU reactor products to be confident of its licensing in their own regulatory regimes.

  14. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  15. Licensing aspects regarding the RBMN project

    International Nuclear Information System (INIS)

    Cuccia, Valeria; Sacramento, Arivaldo M.; Aleixo, Bruna L.; Ferreira, Vinicius V.M.

    2013-01-01

    The licensing process of a waste disposal facility is a complex and demanding undertaking. It proceeds in phases, starting with the site selection and ending many decades later, when the radionuclides decayed and no longer offer possible hazard. That is one of the reasons why the licensing process for the Brazilian repository for low and intermediate level radioactive waste (RBMN Project) is a challenge for all the technicians involved. Besides that, the only national experience associated to this subject arose after a radiological accident in the State of Goias, in 1987. Two different institutions are involved in this licensing process: IBAMA, for environmental licensing, and CNEN, for nuclear licensing. Both of them will evaluate the possible impacts caused by the waste disposal, so it is essential to avoid conflicts and duplications of activities. The RBMN project has different teams for each main activity, and one of them is the Licensing group. This team has been planning the licensing activities for the repository, studying the legal framework and estimating costs and execution time for each step. This paper presents the status of the licensing activities regarding to the RBMN project done by the CNEN staff. (author)

  16. Licensing aspects regarding the RBMN project

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Sacramento, Arivaldo M.; Aleixo, Bruna L.; Ferreira, Vinicius V.M., E-mail: vc@cdtn.br, E-mail: ams@cdtn.br, E-mail: bla@cdtn.br, E-mail: vvmf@cdtn.br [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The licensing process of a waste disposal facility is a complex and demanding undertaking. It proceeds in phases, starting with the site selection and ending many decades later, when the radionuclides decayed and no longer offer possible hazard. That is one of the reasons why the licensing process for the Brazilian repository for low and intermediate level radioactive waste (RBMN Project) is a challenge for all the technicians involved. Besides that, the only national experience associated to this subject arose after a radiological accident in the State of Goias, in 1987. Two different institutions are involved in this licensing process: IBAMA, for environmental licensing, and CNEN, for nuclear licensing. Both of them will evaluate the possible impacts caused by the waste disposal, so it is essential to avoid conflicts and duplications of activities. The RBMN project has different teams for each main activity, and one of them is the Licensing group. This team has been planning the licensing activities for the repository, studying the legal framework and estimating costs and execution time for each step. This paper presents the status of the licensing activities regarding to the RBMN project done by the CNEN staff. (author)

  17. Operating reactors licensing actions summary. Vol. 3, No. 6

    International Nuclear Information System (INIS)

    1983-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  18. Technology licensing in China

    DEFF Research Database (Denmark)

    Wang, Yuandi; Li-Ying, Jason; Chen, Jin

    2015-01-01

    We explore the landscape of technology licensing among Chinese entities in the period 2000–12, using a unique database on technological licensing from the State Intellectual Property Office of China. We find that: first, among Chinese licensee organizations, firms have dominated in terms of the n......We explore the landscape of technology licensing among Chinese entities in the period 2000–12, using a unique database on technological licensing from the State Intellectual Property Office of China. We find that: first, among Chinese licensee organizations, firms have dominated in terms...... of the number of licensed technologies; second, the geographical distribution of licensed technologies among the provinces has gradually reached a new quantitative balance; third, utility models are the most popular technologies to be licensed and the majority of technology licensing in China has been between...

  19. State Licenses & Permits

    Data.gov (United States)

    Small Business Administration — Starting a business? Confused about whether you need a business license or permit? Virtually every business needs some form of license or permit to operate legally....

  20. Online driver's license renewal.

    Science.gov (United States)

    2015-09-01

    The Kentucky Department of Vehicle Regulation is exploring the possibility of developing and implementing online : drivers license renewal. The objective of this project was to: 1) evaluate online drivers license and REAL ID renewal : programs ...

  1. Order of 30 March 1988 on licensing of gaseous radioactive effluent releases by the Fontenay-aux-Roses Nuclear Research Centre

    International Nuclear Information System (INIS)

    1988-01-01

    This Decree prescribes the documents and information the Fontenay-aux-Roses Nuclear Research Centre must provide to the Central Service for Protection against Ionizing Radiation (SCPRI) and lays down the permissible effluent release limits for the Centre [fr

  2. United States Nuclear Regulatory Commission Staff practice and procedure digest: Commission, Appeal Board and Licensing Board Decisions, July 1972--December 1988

    International Nuclear Information System (INIS)

    1989-10-01

    This Revision 2 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to December 31, 1988, interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 2 replaces in part earlier editions and revisions and includes appropriate changes reflecting the amendments to the Rules of Practice Effective through December 31, 1988. The Practice and Procedure Digest was originally prepared by attorneys in the NRC's Office of the Executive Legal Director (now, Office of the General Counsel) as an internal research tool. Because of its proven usefulness to those attorneys, it was decided that it might also prove useful to members of the public. Accordingly, the decision was made to publish the Digest and subsequent editions thereof. This edition of the Digest was prepared by attorneys from Aspen Systems Corporation pursuant to Contract number 18-89-346

  3. Public notice no. 23/77, concerning the application for a license to establish a rationalisation syndicate for nuclear fuel supply

    International Nuclear Information System (INIS)

    1977-01-01

    The public utilities Badenwerk AG, EVS, VEW, ELEKTROMARK (Hagen), Neckarwerke (Esslingen) and TW (Stuttgart) applied for a licence in order to conclude a syndicate contract according to article 5 paragraph 2 and 3 of the Corporation Law. The contract provides cooperation in the field of acquisition of nuclear fuel. The partners involved founded the 'Gesellschaft fuer Kernbrennstoff mbH (GKB) [Nuclear Fuel Company Limited] with a registered seat in Bonn. Essential contents of the contract is given in full. (HP) [de

  4. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eugene S. Grecheck

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  5. EPRI support of license renewal

    International Nuclear Information System (INIS)

    Byron, Jeff; Carey, John J.

    1991-01-01

    During the early 1980's, the US utility industry recognized that Light Water Reactors (LWRs) could have a useful life substantially in excess of the current licensed term of 40 years service. These observations were confirmed by two plant specific studies and have led to a major initiative undertaken by EPRI and DOE to demonstrate the technical and institutional basis for a predictable, rational, and stable life extension option. The primary objective of the lead plants project is to establish and demonstrate, by the end of 1993, nuclear plant license renewal as a viable option. As part of this initiative, the lead plants project will result in a complete license renewal application to the NRC and will document the license renewal process for use by other utilities. A number of EPRI and DOE sponsored projects are providing technical support for the license renewal process. These projects are identifying deteriorating service environments for key components, systems, and structures and are establishing methods of assessing consequences and remedial actions. Other projects include economic evaluations and life cycle management assessment tools to address deterioration mechanisms. However, the principal means for providing technical support for license renewal is the generic Industry Reports (IRs), which as of October 1990, have all been submitted to the NRC for review. The IRs discussed in this paper are intended to identify and resolve key technical issues associated with extended operation of major LWR components, structures, and systems. The principle means of providing technical support for license renewal is the IRs whose objective is to document results of generic component, structure, or system evaluations to support life extension by addressing potential impacts of aging on components, structures, or systems as it relates to the plant's performance for extended service. Ten IRs on major components or systems have been completed and submitted to the NRC. The

  6. Licensing and Patent Protection

    OpenAIRE

    Aniruddha Bagchi; Arijit Mukherjee

    2010-01-01

    We show the impact of technology licensing on optimal patent policy. Strong patent protection that eliminates imitation may not be the equilibrium outcome in the presence of licensing. Depending on the cost of innovation, licensing may either increase or reduce the strength of the patent protection.

  7. Licensing an assured isolation facility for low-level radioactive waste. Volume 1: Licensing strategy and issues

    International Nuclear Information System (INIS)

    Silverman, D.J.; Bauser, M.A.; Baird, R.D.

    1998-07-01

    This report provides a detailed set of proposed criteria and guidance for the preparation of a license application for an assured isolation facility (AIF). The report is intended to provide a detailed planning basis upon which a prospective applicant may begin pre-licensing discussions with the Nuclear Regulatory Commission and initiate development of a license application. The report may also be useful to the NRC or to state regulatory agencies that may be asked to review such an application. Volume 1 of this report provides background information, and describes the licensing approach and methodology. Volume 2 identifies specific information that is recommended for inclusion in a license application

  8. Differences in the licensing requirements for Cernavoda NPP Unit 2 as compared to Cernavoda Unit 1

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Dina, Dumitru; Ghita, Sorin; Stefanescu, Petre

    2000-01-01

    The main stages of Cernavoda NPP Unit 1 and Unit 2 licensing process, according to CNCAN (National Commission for Nuclear Activities) requirements, are presented comparatively. The differences occur for the following licenses: - site license; - construction license; - PIF license, regarding the loading of D 2 O in the moderator and primary circuits, fuel loading, first criticality, power increase; - trial operating license; - operating license. The paper addresses the following items: steps in licensing and the Unit 1 corresponding documentation; - the process of Unit 2 licensing; - requirements to designer; - updating the nuclear safety guides; - editing codes, guides and reference standards and implications on NPP design; - NPP behavior during severe accidents (beyond the design accident consequence); - level 2 and 3 PSA issuing prior to operation licensing; - fulfilling ISO 9000 standard by equipment components already manufactured; improving the warning/display systems in the control room

  9. 76 FR 39918 - Honeywell International, Inc., Metropolis Works; License Amendment Request and Request for a Hearing

    Science.gov (United States)

    2011-07-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Honeywell International, Inc., Metropolis Works; License Amendment Request and Request for a... Metropolis Works Facility site located in Metropolis, Illinois. License No. SUB-526 authorizes the licensee...

  10. Operator licensing examiner standards

    International Nuclear Information System (INIS)

    1987-05-01

    The Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes

  11. Order of 21 October 1988 on licensing the release of gaseous radioactive effluents by the Cattenom nuclear production centre (units 1 and 2)

    International Nuclear Information System (INIS)

    1988-01-01

    This Order fixes the conditions and limits of authorised releases of gaseous radioactive effluents from Units 1 and 2 of the Cattenom nuclear power plant. The annual limits are 1650 terabecquerels for gas and 55 gigabecquerels for gaseous halogens and aerosols. The Order specifies these are maximum limits, below which the radioactive releases should be as low as possible. (NEA) [fr

  12. Order of 4 august 1989 on licensing the release of gaseous radioactive effluents by the Cattenom nuclear production centre (units 3 and 4)

    International Nuclear Information System (INIS)

    1989-08-01

    This Order fixes the conditions and limits of authorised releases of gaseous radioactive effluents from Units 3 and 4 of the Cattenom nuclear power plant. It specifies these are maximum limits, below which the radioactive releases should be as low as possible [fr

  13. Acquired experience on organizing 3D S.UN.COP: international course to support nuclear license by user training in the areas of scaling, uncertainty, and 3D thermal-hydraulics/neutron-kinetics coupled codes

    International Nuclear Information System (INIS)

    Petruzzi, Alessandro; D'Auria, Francesco; Galetti, Regina; Bajs, Tomislav; Reventos, Francesc

    2011-01-01

    Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers, vendors, and research organizations. Computer code user represents a source of uncertainty that may significantly affect the results of system code calculations. Code user training and qualification represent an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes the experience in applying a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In addition, this paper presents the organization and the main features of the 3D S.UN.COP (scaling, uncertainty, and 3D coupled code calculations) seminars during which particular emphasis is given to practical applications in connection with the licensing process of best estimate plus uncertainty methodologies, showing the designer, utility and regulatory approaches. (author)

  14. Acquired experience on organizing 3D S.UN.COP: international course to support nuclear license by user training in the areas of scaling, uncertainty, and 3D thermal-hydraulics/neutron-kinetics coupled codes

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzi, Alessandro; D' Auria, Francesco [University of Pisa, San Piero a Grado (Italy). Nuclear Research Group San Piero a Grado (GRNSPG); Galetti, Regina, E-mail: regina@cnen.gov.b [National Commission for Nuclear Energy (CNEN), Rio de Janeiro, RJ (Brazil); Bajs, Tomislav [University of Zagreb (Croatia). Fac. of Electrical Engineering and Computing. Dept. of Power Systems; Reventos, Francesc [Technical University of Catalonia, Barcelona (Spain). Dept. of Physics and Nuclear Engineering

    2011-07-01

    Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers, vendors, and research organizations. Computer code user represents a source of uncertainty that may significantly affect the results of system code calculations. Code user training and qualification represent an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes the experience in applying a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In addition, this paper presents the organization and the main features of the 3D S.UN.COP (scaling, uncertainty, and 3D coupled code calculations) seminars during which particular emphasis is given to practical applications in connection with the licensing process of best estimate plus uncertainty methodologies, showing the designer, utility and regulatory approaches. (author)

  15. Background as a residual radioactivity criterion for decommissioning: Appendix A to the Generic Environmental Impact Statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Draft report

    International Nuclear Information System (INIS)

    Huffert, A.M.; Meck, R.A.; Miller, K.M.

    1994-08-01

    This report was originally published as an appendix to the draft U.S. Nuclear Regulatory Commission (NRC) document entitled, open-quotes Generic Environmental Impact Statement in Support of Rulemaking on Radiological Criteria for Decommissioning of NRC-Licensed Nuclear Facilities.close quotes Because of the great interest in this report by members of the public, citizen and environmental organizations, academicians, licensees, and regulators, the NRC staff is publishing this report separately, so that it can be readily available to a diverse audience. This report was created to assist both the NRC staff and interested members of the public in evaluating background radiation (background) as a decommissioning criterion, by serving as a primer on background and providing information on the existing applications of background in regulatory criteria and standards. This report also discusses some of the methods available to measure and distinguish between the very low radiation levels associated with background and man-made sources of radiation. Two approaches are considered for applying background as a decommissioning criterion; these are the use of background dose rates and background radionuclide concentrations. This report concludes that the temporal and spatial variability of background produces a wide range of doses to United States residents, which prevents the application of background dose rates as a decommissioning criterion. Instead, this report recommends that local background radionuclide concentrations serve as a benchmark for decommissioning criteria, while taking into account the concept of reducing residual radioactivity to a level as low as is reasonably achievable

  16. Methodology and findings of the NRC's materials licensing process redesign

    International Nuclear Information System (INIS)

    Rathbun, P.A.; Brown, K.D.; Madera, J.R.; Moriarty, M.; Pelchat, J.M.; Usilton, W.K.; Whitten, J.E.; Vacca, P.C.

    1996-04-01

    This report describes the work and vision of the team chartered to redesign the process for licensing users of nuclear materials. The Business Process Redesign team was chartered to improve the speed of the existing licensing process while maintaining or improving public safety and to achieve required resource levels. The report describes the team's methods for acquiring and analyzing information about the existing materials licensing process and the steps necessary to radically change this process to the envisioned future process

  17. Development of licensing requirements for LMFBRs: a reactor designer's view

    International Nuclear Information System (INIS)

    Bradbury, P.; Huang, H.C.

    1977-01-01

    The framework of rules and regulations for nuclear power plant licensing in the U.S. has been developed and established mainly through the experience in LWR licensing. Because of the important differences in technology and design between LMFBR and LWR plants, development of specific new requirements and criteria and appropriate modification of old ones must be undertaken such that the established licensing regulations can be equally and fairly implemented for commercial LMFBR licensing. The paper presents a broad overview of U.S. licensing rules and regulations and provides a review of licensing criteria, standards and ongoing development effort, with a focus on commercial LMFBR licensing needs. The review results are presented and discussed. In addition, the selection of design basis accidents and the treatment of events beyond Design Base are also reviewed and discussed

  18. Order of 21 October 1988 on licensing the release of liquid radioactive effluents by the Cattenom nuclear production centre (units 1 and 2)

    International Nuclear Information System (INIS)

    1988-01-01

    This Order fixes the conditions and limits of authorized releases of liquid radioactive effluents from units 1 and 2 of the Cattenom nuclear power plant. The annual limits are 1.1 terabecquerel for radioelements other than tritium, potassium 40 and radium and 80 terabecquerels for tritium. The Order specifies these are maximum limits, below which the radioactive releases should be as low as possible. (NEA) [fr

  19. 10 CFR 61.23 - Standards for issuance of a license.

    Science.gov (United States)

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE... disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be... nuclear material to be possessed before disposal under the license. (j) The applicant's criticality safety...

  20. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Format and Content. NUREG-1537, Part 1

    International Nuclear Information System (INIS)

    1996-02-01

    NUREG - 1537, Part 1 gives guidance to non-power reactor licensees and applicants on the format and content of applications to the Nuclear Regulatory Commission for licensing actions. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination

  1. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Format and Content. NUREG-1537, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    NUREG - 1537, Part 1 gives guidance to non-power reactor licensees and applicants on the format and content of applications to the Nuclear Regulatory Commission for licensing actions. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  2. The Atomic Safety and Licensing Board Panel

    International Nuclear Information System (INIS)

    1998-01-01

    Through the Atomic Energy Act, Congress made is possible for the public to get a full and fair hearing on civilian nuclear matters. Individuals who are directly affected by any licensing action involving a facility producing or utilizing nuclear materials may participate in a formal hearing, on the record, before independent judges on the Atomic Safety and Licensing Board Panel (ASLBP or Panel). Frequently, in deciding whether a license, permit, amendment, or extension should be granted to a particular applicant, the Panel members must be more than mere umpires. If appropriate, they are authorized to go beyond the issues the parties place before them in order to identify, explore, and resolve significant questions involving threats to the public health and safety that come to a board's attention during the proceedings. This brochure explains the purpose of the panel. Also addressed are: type of hearing handled; method of public participation; formality of hearings; high-level waste; other panel responsibilities and litigation technology

  3. Nuclear liability - nuclear insurance

    International Nuclear Information System (INIS)

    Roesch, H.

    1981-01-01

    In the fourth concluding article on this subject (following articles in VW 1981 pp. 483, 552 and 629), the author explains procedures, duties and obligations according to the Para. Para. 5, 6 and 7 of the AHBKA. These obligations are to be observed before or after the occurrence of damages. In addition, legal consequences following violations of duties - loss of right - joint, insurance, transfer ban, period for filing suit, duty to notify, 'The German Nuclear Reactor Insurance and Reinsurance Community', the insurance according to the 'General terms and conditions governing the liability insurance of licensed activities involving nuclear fuels and other radioactive substances outside nuclear installations (AHBStr.)', object, beginning and exclusion of coverage, 'Special conditions governing the transport of nuclear fuels according to Para. 25 (2) of the Atomic Energy Law' are attached to the General Terms and Conditions governing the liability insurance of licenced activities involving nuclear fuels and other radioactive substances outside nuclear installations. (HSCH) [de

  4. 10 CFR 34.13 - Specific license for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY... safety responsibilities in industrial radiography, including specified delegation of authority and...

  5. 77 FR 38742 - Non-Power Reactor License Renewal

    Science.gov (United States)

    2012-06-29

    ...-0087] RIN 3150-AI96 Non-Power Reactor License Renewal AGENCY: Nuclear Regulatory Commission. ACTION... existing non-power reactor regulations. The NRC is seeking input from the public, licensees, certificate... rulemaking regarding non-power reactor licenses. The preliminary draft regulatory basis document describes...

  6. 10 CFR 51.54 - Environmental report-manufacturing license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-manufacturing license. 51.54 Section 51.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy Act-Regulations...

  7. 10 CFR 60.52 - Termination of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Termination of license. 60.52 Section 60.52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... Energy Act, as amended. [46 FR 13980, Feb. 25, 1981, as amended at 48 FR 28222, June 21, 1983] ...

  8. 10 CFR 60.42 - Conditions of license.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions of license. 60.42 Section 60.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses... as provided by the Atomic Energy Act and the Commission's regulations. (2) The DOE shall at any time...

  9. 10 CFR 2.321 - Atomic Safety and Licensing Boards.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Atomic Safety and Licensing Boards. 2.321 Section 2.321 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS Rules of General Applicability: Hearing Requests, Petitions To Intervene, Availability of Documents, Selection of Specific Hearing...

  10. Operator licensing examiner standards

    International Nuclear Information System (INIS)

    1993-01-01

    The Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining licensees and applicants for reactor operator and senior reactor operator licenses at power reactor facilities pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). The Examiner Standards are intended to assist NRC examiners and facility licensees to better understand the initial and requalification examination processes and to ensure the equitable and consistent administration of examinations to all applicants. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator licensing policy changes

  11. Libraries and licensing

    Directory of Open Access Journals (Sweden)

    Maja Žumer

    2001-01-01

    Full Text Available In the mid 90s, the abundance of various electronic publications exposed libraries to the problems of licensing electronic content. Various licensing principles have been prepared recently to help libraries in the process; it can be said that in general, the knowledge of licensing issues has improved in libraries of all types. Libraries form consortia in order to gain stronger negotiating positions and obtain better conditions.In the article, new licensing principles are presented in more detail, as well as some domestic and foreign experiences with consortia forming.

  12. 78 FR 31985 - Atomic Safety and Licensing Board Panel; Before the Licensing Board: G. Paul Bollwerk, III...

    Science.gov (United States)

    2013-05-28

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-8943-MLA-2; ASLBP No. 13-926-01-MLA-BD01] Atomic Safety and Licensing Board Panel; Before the Licensing Board: G. Paul Bollwerk, III, Chairman, Dr. Richard E. Wardwell, Dr. Thomas J. Hirons; Crow Butte Resources, Inc. (Marsland Expansion Area); Memorandum and Order (Notice of Hearing) May 16, 2013....

  13. Generic environmental impact statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Main report; Draft report for comment: Volume 1

    International Nuclear Information System (INIS)

    1994-08-01

    The action being considered in this draft Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, preliminary recommendations were provided. Contained in the GEIS are recommendations related to the definition of decommissioning, the scope of rulemaking, the radiological criteria, restrictions on use, citizen participation, use of the GEIS in site-specific cases, and minimization of contamination

  14. Generic environmental impact statement in support of rulemaking on radiological criteria for decommissioning of NRC-licensed nuclear facilities. Appendices; Draft report for comment -- Volume 2

    International Nuclear Information System (INIS)

    1994-08-01

    The action being considered in this draft Generic Environmental Impact Statement (GEIS) is an amendment to the Nuclear Regulatory Commission's (NRC) regulations in 10 CFR Part 20 to include radiological criteria for decommissioning of lands and structures at nuclear facilities. Under the National Environmental Policy Act (NEPA), all Federal agencies must consider the effect of their actions on the environment. To fulfill NRC's responsibilities under NEPA, the Commission is preparing this GEIS which analyzes alternative courses of action and the costs and impacts associated with those alternatives. In preparing the GEIS, the following approach was taken: (1) a listing was developed of regulatory alternatives for establishing radiological criteria for decommissioning; (2) for each alternative, a detailed analysis and comparison of incremental impacts, both radiological and nonradiological, to workers, members of the public, and the environment, and costs, were performed; and (3) based on the analysis of impacts and costs, preliminary recommendations were provided. Contained in the GEIS are recommendations related to the definition of decommissioning, the scope of rulemaking, the radiological criteria, restrictions on use, citizen participation, use of the GEIS in site-specific cases, and minimization of contamination

  15. Licensing of away-from-reactor (AFR) installations

    International Nuclear Information System (INIS)

    Gray, P.L.

    1980-01-01

    Storage of spent fuel at Away-From-Reactor (AFR) installations will allow reactors to continue to operate until reprocessing or other fuel disposal means are available. AFR installations must be licensed by the Nuclear Regulatory Commission (NRC). Although wide experience in licensing reactors exists, the licensing of an AFR installation is a relatively new activity. Only one has been licensed to date. This paper delineates the requirements for licensing an AFR installation and projects a licensing schedule. Because the NRC is developing specific AFR requirements, this schedule is based primarily on draft NRC documents. The major documents needed for an AFR license application are similar to those for a reactor. They include: a Safety Analysis Report (SAR), and Environmental Report (ER), safeguards and security plans, decommissioning plans, proposed technical specifications, and others. However, the licensing effort has one major difference in that for AFR installations it will be a one-step effort, with follow-up, rather than the two-step process used for reactors. The projected licensing schedule shows that the elapsed time between filing an application and issuance of a license will be about 32 months, assuming intervention. The legal procedural steps will determine the time schedule and will override considerations of technical complexity. A license could be issued in about 14 months in the absence of intervention

  16. 76 FR 62868 - Washington State University; Notice of Issuance of Renewed Facility Operating License No. R-76

    Science.gov (United States)

    2011-10-11

    ...; Notice of Issuance of Renewed Facility Operating License No. R-76 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance of renewed facility operating license No. R- 76. ADDRESSES: You can access.... Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility Operating License No. R-76...

  17. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  18. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    Powers, J.; Ogura, C.; Arai, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  19. NRC materials licensing business process reengineering

    International Nuclear Information System (INIS)

    Cool, D.A.

    1995-01-01

    The United States Nuclear Regulatory Commission (NRC) has issued 6550 active licenses that authorize possession and use of byproduct, source, and special nuclear material. In October 1994, the NRC staff began to examine the process used to issue these licenses to identify ways to improve the process. In addition to examining the current process, the staff was directed to develop a new process design that would accomplish the following goals: (1) Maintain or raise the level of public safety achieved by the current process, (2) Perform licensing reviews and associated tasks an order of magnitude faster than the current process, (3) Exploit modern information technology as a fundamental part of the new process, and (4) Reduce the resources needed to carry out the licensing program to meet the projected 1997-1999 staffing levels. The method used for this examination is called Business Process Reengineering (BPR). BPR is the process of fundamentally changing the way work is performed so as to achieve radical performance improvements in speed, cost, and quality. Features of the new licensing process, scheduled to begin in 1996, are outlined in this paper

  20. Cask development, testing, and licensing

    International Nuclear Information System (INIS)

    Quinn, G.J.; Haelsig, R.T.; Warrant, M.M.

    1986-01-01

    The NuPac 125-B Rail Cask was developed to provide a safe means of transporting the damaged core of Three Mile Island Unit 2 from the TMI site at Middletown, PA, to the Idaho National Engineering laboratory (INEL) at Idaho Falls, ID. The development of the NuPac 125-B Rail Cask posed two engineering and technical management challenges; Licensing Strategy - The NuPac 125-B Rail Cask represented the first irradiated fuel rail cask developed within the United States in the past decade, a decade characterized by changing nuclear regulations, and Accelerated Schedule - The TMI-2 defueling schedule demanded a cask development schedule one-third as long as normally required. These challenges governed the overall development and licensing process for the cask. First, a high degree of conservation was incorporated into the design to allow quick, simplified demonstrations of adequacy to regulatory staff. Second, redundant design techniques were employed in all areas of uncertainty. The testing program eliminated performance uncertainties and validated predictions and predictive models. Drop tests of a quarter-scale model of the cask were conducted, and results were correlated with analytic predictions to verify structural and mechanical performance of the cask. Full-scale tests of the canisters were conducted to verify structural behavior of canister internals which provide criticality control. This paper describes the testing program for the NuPac 125-B Rail Cask, presents results therefrom, and correlates findings with Regulation 10 CFR 71 of the U.S. Nuclear Regulatory Commission