WorldWideScience

Sample records for sunderban mangrove wetland

  1. Biomonitoring of Heavy metals using the bivalve molluscs in sunderban mangrove wetland, Northeast Coast of Bay of bengal (india): possible risks to Human health

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Henrique; Cardoso, Ines [Departamento de Biologia Animal/Instituto de Oceanografia, Campo Grande, Lisboa (Portugal); Chatterjee, Mousumi; Kumar Bhattacharya, Asok; Aftab Alam, Mohammad [Department of Marine Science, University of Calcutta, Calcutta (India); Kanta Satpathy, Kamala [Indira Gandhi Centre for Atomic Research, Environmental and Industrial Safety Section, Safety Group, Kalpakkam, Tamil Nadu (India); Kumar Sarkar, Santosh

    2008-02-15

    The suitability of using four bivalve molluscs (Sanguinolaria acuminata, Anadara granosa, Meretrix meretrix, and Pelecyora trigona) in biomonitoring of heavy metals (Cu, Pb, Cd, Zn, and Hg) collected from intertidal regions of the Sunderban mangrove wetland, northeastern part of the Bay of Bengal, were evaluated. Both speciesdependent variability and temporal variations were pronounced. A high degree of organ specificity was evident in the bivalves where gill and mantle exhibited higher metal accumulation due to ion exchange property of the mucous layer covering these organs while shells represent very poor accumulation. Elevated values of Zn and Cu reflect high potential for biomagnification through marine food chain. Metal concentrations in different body size groups of the bivalves do not follow uniform trend. Correlation coefficient between different metal couplings as tested statistically revealed significant coupling for Pb-Zn, Pb-Cu, Zn-Cu, and Hg-Cu. Concentrations of all the metals in specific organs (visceral mass, mantle and gill) of the bivalves exceeded the safe levels according to the international standards for metals compiled by Food and Agricultural Organization of the United Nations and would be of great risk for human consumption. It is concluded that the mussel and clam are suitable biomonitors to employ in programs designed to assess changes in metal pollution in the Sunderban mangrove wetland. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  2. Rhizospheric metagenome of the terrestrial mangrove fern Acrostichum from Indian Sunderbans

    Directory of Open Access Journals (Sweden)

    Sayak Ganguli

    2017-12-01

    Full Text Available This study reports the analyses of the rhizospheric microbiome of the terrestrial mangrove fern Acrostichum aureum Linn. from the Indian Sunderbans. Samples were collected using standard protocols and 16S rRNA gene V3–V4 region amplicon sequencing was performed to identify the microbial communities prevalent in the rhizosphere. A total of 1,931,252 quality checked reads were assembled into 204,818 contigs and were analysed using QIIME to reveal the abundance of Proteobacteria, Acidobacteria and Planctomycetes. The data is available at the NCBI - Sequence Read Archive with accession number: SRX2660456. This is the first report of the rhizospheric microbiome belonging to a fern species.

  3. Ecosystem development after mangrove wetland creation: plant-soil change across a 20-year chronosequence

    Science.gov (United States)

    Osland, Michael J.; Spivak, Amanda C.; Nestlerode, Janet A.; Lessmann, Jeannine M.; Almario, Alejandro E.; Heitmuller, Paul T.; Russell, Marc J.; Krauss, Ken W.; Alvarez, Federico; Dantin, Darrin D.; Harvey, James E.; From, Andrew S.; Cormier, Nicole; Stagg, Camille L.

    2012-01-01

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10-30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0-10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.

  4. Ecosystem Development after Mangrove Wetland Creation: Plant-Soil Change across a 20-year Chronosequence

    Science.gov (United States)

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland loss. However, ecosystem development and functional equivalence in restored and created mangrove wetlands is poorly understood. We compared a 20-yr chrono...

  5. Redescription of Cadrema pallida var. bilineata (de Meijere, 1904 (Diptera: Chloropidae and its role as pollinator and carrion feeder from Indian Sunderbans

    Directory of Open Access Journals (Sweden)

    Sankarsan Roy

    2016-10-01

    Full Text Available Sunderbans, the UNESCO World Heritage Site is one of the largest mangrove forests in the World. This unique tidal halophytic mangrove ecosystem is also spread over the neighbouring country- Bangladesh. This ecosystem supports a variety of halophytic mangrove species and provides shelter and food to many faunal components (Chakraborty, 2011. Till date, several studies have been made on dipteran fauna from SBR which was altogether compiled by Mitra (2013. Further, Mitra et al. (2014, 2015 added some more records of the Diptera from this area. Apart from documenting the dipteran insects, we attempted here their functional contribution towards sustainability of this sensitive ecosystem.

  6. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    Science.gov (United States)

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  7. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    OpenAIRE

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew S.; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove w...

  8. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    Science.gov (United States)

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  9. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise.

    Science.gov (United States)

    Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E

    2017-04-21

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  10. Performance and bacterial community structure of a 10-years old constructed mangrove wetland.

    Science.gov (United States)

    Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe

    2017-11-30

    Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    Science.gov (United States)

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  13. Silanimonas mangrovi sp. nov., a member of the family Xanthomonadaceae isolated from mangrove sediment, and emended description of the genus Silanimonas

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Kailash, T.B.; AnilKumar, P.

    A novel Gram-negative, rod-shaped, motile bacterium, designated strain AK13 sup(T), was isolated from a sediment sample collected from mangrove of Namkhana, Sunderbans, West Bengal, India. Strain AK13 sup(T) was positive for oxidase, DNase...

  14. [Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].

    Science.gov (United States)

    Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-02-01

    Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.

  15. Assessing Niger-Delta Wetland Resources: A Case-Study of Mangrove Ecosystem

    Science.gov (United States)

    Anwan, R. H.; Ndimele, P. E.; Whenu, O. O.; Anetekhai, M. A.; Essien-Ibok, M. A.; Erondu, E. S.

    2016-02-01

    The Niger Delta is located in the Atlantic coast of Southern Nigeria and is the world's second largest delta with a coastline of about 450km. The Niger Delta region occupies a surface area of about 112,110km2, representing about 12% of Nigeria's total surface area. The Delta's environment can be broken down into four ecological zones: coastal barrier islands, mangrove swamp forests, freshwater swamps, and lowland rainforests. The mangrove swamps of Niger Delta, which is the largest delta in Africa constitute the dominant wetland ecosystem in the Niger Delta region and covers an area of about 1,900km2. Mangroves constitute important nurseries for fishes, crustaceans, sponges, algae and other invertebrates, and also acts as a sink, retaining pollutants from contaminated tidal water. The Niger Delta mangrove together with the creeks and rivers are a major source of food and livelihood for about 30 million people, which represents more than 17% of Nigeria's population. Other ecosystem services provided by this unique environment are flood control, ground water re-fill, reservoir of biodiversity, fuel wood, cultural values etc. This ecosystem also plays important role in climate change mitigation because of its high blue carbon sequestration potential. This is particularly important because of continuous gas flaring in Niger Delta from petroleum operations, which releases carbon dioxide among other gases into the atmosphere. This wetland is potentially a good site for ecotourism and also qualifies to be a world heritage site and Ramsar site if proper steps are taken. The benefits derivable from this fragile ecosystem are under severe threat by anthropogenic stressors. These include the installation of pipelines and seismic exploration by oil companies, crude oil pollution, deforestation, urbanization etc. This paper discusses the extent of depletion and loss of mangrove ecosystem in the Niger Delta region and the value of its goods and services.

  16. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems

    Science.gov (United States)

    Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.

    2011-01-01

    Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.

  17. Will fluctuations in salt marsh–mangrove dominance alter vulnerability of a subtropical wetland to sea‐level rise?

    Science.gov (United States)

    Mckee, Karen L.; Vervaeke, William

    2018-01-01

    To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment

  18. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?

    Science.gov (United States)

    McKee, Karen L; Vervaeke, William C

    2018-03-01

    To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories-contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion

  19. Controls of Carbon Preservation in Coastal Wetlands of Texas: Mangrove vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Louchouarn, P.; Norwood, M. J.; Kaiser, K.

    2014-12-01

    The estimated magnitude of the carbon (C) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire C stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of C under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze total hydrolysable carbohydrates, amino acids, phenols and stable isotopic data (δ13C) at two study sites located on the Texas coastline to investigate chemical compositions and the stage of decomposition in mangrove and marsh grass dominated wetlands. Carbohydrates are used as specific decomposition indicators of the polysaccharide component of wetland plants, whereas amino acids are used to identify the contribution of microbial biomass, and acid/aldehyde ratios of syringyl (S) and vanillyl (V) phenols (Ac/AlS,V) follow the decomposition of lignin. Preliminary results show carbohydrates account for 30-50 % of organic carbon in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Ecological differences (between marsh grass and mangrove dominated wetlands) are discussed to better constrain the role of litter biochemistry and ecological shifts on C preservation in these anoxic environments.

  20. Temporal Variability of Canopy Light Use Efficiency and its Environmental Controls in a Subtropical Mangrove Wetland

    Science.gov (United States)

    Zhu, X.

    2016-12-01

    Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and

  1. Environmental challenges to the mangrove wetlands of North Malabar (Kerala, India: Their sustainable development and influence on local people

    Directory of Open Access Journals (Sweden)

    C.A. Jaleel

    2009-05-01

    Full Text Available Wetlands, including mangroves, perform several functions such as inundation control, and protection from erosion, storm, floods and tidal damage, and generate goods and products such as fish and forest resources. These functions are of fundamental importance for society. The present study aims to identify the challenges of the mangrove wetlands of north Malabar, their uses and socio-economic influence on local people, and the value of ecosystem services, and to suggest the way forward for sustainable development.

  2. The mangrove tangle: short-term bio-physical interactions in coastal mangroves

    NARCIS (Netherlands)

    Horstman, Erik

    2014-01-01

    Mangroves are coastal wetland ecosystems in the upper intertidal area. Salt-tolerant mangrove vegetation dwells on fine substrates in sheltered, low-energy coastal environments such as estuaries and lagoons. At the interface between land and sea, mangroves provide a plethora of regulating, habitat

  3. Effects of Spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland.

    Science.gov (United States)

    Yu, Xiaoqing; Yang, Jun; Liu, Lemian; Tian, Yuan; Yu, Zheng

    2015-02-01

    The invasion by exotic cordgrass (Spartina alterniflora) has become one of the most serious and challenging environmental and ecological problems in coastal China because it can have adverse effects on local native species, thereby changing ecosystem processes, functions, and services. In this study, 300 surface sediments were collected from 15 stations in the Jiulong River Estuary, southeast China, across four different seasons, in order to reveal the spatiotemporal variability of biogenic elements and their influencing factors in the subtropical coastal mangrove wetland. The biogenic elements including carbon, nitrogen, and sulfur (C, N, and S) were determined by an element analyzer, while the phosphorus (P) was determined by a flow injection analyzer. The concentrations of biogenic elements showed no significant differences among four seasons except total phosphorus (TP); however, our ANOVA analyses revealed a distinct spatial pattern which was closely related with the vegetation type and tidal level. Values of total carbon (TC) and total nitrogen (TN) in the surface sediment of mangrove vegetation zones were higher than those in the cordgrass and mudflat zones. The concentrations of TC, TN, TP, and total sulfur (TS) in the high tidal zones were higher than those in the middle and low tidal zones. Redundancy analysis (RDA) revealed that tidal level, vegetation type, and season had some significant influence on the distribution of biogenic elements in the Jiulong River Estuary, by explaining 18.2, 7.7, and 4.9 % of total variation in the four biogenic elements, respectively. In conclusion, S. alterniflora invasion had substantial effects on the distributions of biogenic elements in the subtropical coastal wetland. If regional changes in the Jiulong River Estuary are to persist and much of the mangrove vegetation was to be replaced by cordgrass, there would be significant decreases on the overall storage of C and N in this coastal zone. Therefore, the native

  4. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    Directory of Open Access Journals (Sweden)

    Khot Mahesh

    2012-05-01

    Full Text Available Abstract Background Single cell oils (SCOs accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w of their dry cell mass (4.14 - 6.44 g L-1 as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0, stearic (C18:0 and oleic (C18:1 acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass

  5. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel.

    Science.gov (United States)

    Khot, Mahesh; Kamat, Srijay; Zinjarde, Smita; Pant, Aditi; Chopade, Balu; Ravikumar, Ameeta

    2012-05-30

    Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were obtained at 30gL-1

  6. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    Science.gov (United States)

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  7. Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds

    Directory of Open Access Journals (Sweden)

    Catherine E. Lovelock

    2017-05-01

    Full Text Available The sediments of coastal wetlands contain large stores of carbon which are vulnerable to oxidation once disturbed, resulting in high levels of CO2 emissions that may be avoided if coastal ecosystems are conserved or restored. We used a simple model to estimate CO2 emissions from mangrove forests, seagrass beds, and tidal marshes based on known decomposition rates for organic matter in these ecosystems under either oxic or anoxic conditions combined with assumptions of the proportion of sediment carbon being deposited in either oxic or anoxic environments following a disturbance of the habitat. Our model found that over 40 years after disturbance the cumulative CO2 emitted from tidal marshes, mangrove forests, and seagrass beds were ~70–80% of the initial carbon stocks in the top meter of the sediment. Comparison of our estimates of CO2 emissions with empirical studies suggests that (1 assuming 50% of organic material moves to an oxic environment after disturbance gives rise to estimates that are similar to CO2 emissions reported for tidal marshes; (2 field measurements of CO2 emissions in disturbed mangrove forests were generally higher than our modeled emissions that assumed 50% of organic matter was deposited in oxic conditions, suggesting higher proportions of organic matter may be exposed to oxic conditions after disturbance in mangrove ecosystems; and (3 the generally low observed rates of CO2 emissions from disturbed seagrasses compared to our estimates, assuming removal of 50% of the organic matter to oxic environments, suggests that lower proportions may be exposed to oxic conditions in seagrass ecosystems. There are significant gaps in our knowledge of the fate of wetland sediment carbon in the marine environment after disturbance. Greater knowledge of the distribution, form, decomposition, and emission rates of wetland sediment carbon after disturbance would help to improve models.

  8. Data mining using multivariate statistical analysis: The case of heavy metals in sediments of the Msimbazi Creek mangrove wetland

    OpenAIRE

    A. Mrutu; G. B. Luilo

    2013-01-01

    Mangrove wetlands are important biological systems that usually filter out organic and inorganic contaminants from the wastewaters before entering the ocean. Our previous work showed that sediments of the Msimbazi Creek wetland are contaminated with heavy metals and the amounts decreased with increasing depth. However, the hidden relationships between the heavy metals and clay particles were not fully understood based on the numerical data. Therefore this work used the data from literature an...

  9. Belowground dynamics in mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  10. Measuring the Role of Ecological Shift and Environmental Change on Organic Carbon Stocks in Salt Marshes and Mangrove Dominated Wetlands from the Texas Gulf Coast

    Science.gov (United States)

    Norwood, M. J.; Louchouarn, P.; Armitage, A. R.; HighField, W.; Brody, S.; White, N.

    2014-12-01

    Texas coastal wetlands are dynamic marsh-mangrove ecotones that play an important role in fishery recruitment, storm buffering, and carbon storage. Historically, C4 salt marsh plants, such as Spartina alterniflora, have dominated the Texas Gulf Coast. For the past 2-3 decades, some of these ecosystems have experienced community shifts with woody tropical plants (Avicennia germinans) competing for resources. This study presents new results on the carbon sequestration potential following such ecological shifts as well as coastal development and wetland loss along the coast of Texas. The recorded change from native grass-dominated C4 salt marshes to wood-dominated C3 mangroves over the last 20 years (1990-2010: 4,660 km2) leads to a non-significant loss in aboveground organic carbon (OC) stocks (-6.5.106 g OC). The most substantial loss of aboveground OC in Texas coastal salt marshes is due to the transformation of these wetlands into tidal flats and open water (-7.53.108 g OC). Similarly, the largest losses in aboveground OC stocks from mangrove ecosystems (-1.57.107 g OC) are due to replacement by open water. Along with the decrease in aboveground OC stocks, we identified a significant decrease in sedimentary OC inventories due to the loss of salt marsh and mangrove coverage (-3.69.109 g OC and 5.71.107 g OC, respectively). In contrast, mangrove expansion into mudflat and salt marsh environments led to a positive addition in aboveground OC stocks (2.78.108 g OC) and increased OC sedimentary inventories (2.32.109 g OC). Mangrove expansion offsets only 70% of the total calculated OC loss (-4.51.109 g OC) in coastal wetlands along the Texas gulf coast over the 20-year study period. This deficit loss is primarily attributed to environmental pressures on coastal salt marshes (i.e., sea level rise, urban and coastal development, erosion).

  11. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  12. Extending REDD+ to mangroves and wetlands for small island states and a case study for the conservation of mangroves and inter-tidal mudflats in Singapore

    OpenAIRE

    LYE, Lin Heng; Dharmarajah, Vinayagan

    2013-01-01

    This paper briefly discusses the prospects of using coastal wetlands as REDD+ projects for small island states. The paper contends that the city-state of Singapore would do well to enhance existing laws to more specifically address the challenges and threats faced in conserving mangroves and inter-tidal mudflats, and support their conservation and rehabilitation, not just to facilitate the implementation of REDD+ projects but also to meet other goals like biodiversity conservation and climate...

  13. Data mining using multivariate statistical analysis: The case of heavy metals in sediments of the Msimbazi Creek mangrove wetland

    Directory of Open Access Journals (Sweden)

    A. Mrutu

    2013-12-01

    Full Text Available Mangrove wetlands are important biological systems that usually filter out organic and inorganic contaminants from the wastewaters before entering the ocean. Our previous work showed that sediments of the Msimbazi Creek wetland are contaminated with heavy metals and the amounts decreased with increasing depth. However, the hidden relationships between the heavy metals and clay particles were not fully understood based on the numerical data. Therefore this work used the data from literature and the Statistical Package for Social Sciences (SPSS software to study how significant the relationships are and predict the sources of heavy metals and clays. The results showed that Cd is the only metal that showed insignificant correlations with other heavy metals (with Pb and Zn while the rest of heavy metals exhibited significant positive correlation (except Pb vs. Ni. Cluster analysis classified the heavy metals based on the concentration and the first 50 cm cores (0-50 cm had higher heavy metals and % clay than the second 50 cm cores (51-100 cm. The results from the factor analysis suggests that Pb, Cd, Ni, and clay owe their source mostly from anthropogenic activities while Fe, Co, Cr, Zn and sand come from both anthropogenic and natural sources. These results support our previous suggestions that heavy metals and clays found in this wetland have mostly anthropogenic origin. However, we recommend isotopic tracing studies in order to accurately identify the origins of the heavy metals and clays in sediments of Msimbazi Creek mangrove wetland.

  14. Ecological resilience indicators for mangrove ecosystems

    Science.gov (United States)

    Day, Richard H.; Allen, Scott T.; Brenner, Jorge; Goodin, Kathleen; Faber-Langendoen, Don; Ames, Katherine Wirt

    2018-01-01

    Mangrove ecosystems are coastal wetland ecosystems dominated by mangrove species that are typically found in the intertidal zone, characterized by frequently flooded saline soil conditions. The majority of the approximately 500,000 acres of mangrove ecosystem in the United States occurs in the NGoM, and almost all of that is in Florida, with over 90 percent in the four southern counties of Lee, Collier, Miami-Dade, and Monroe. Scattered stands and individuals occur north and westward into Louisiana and Texas (Osland et al., 2016). The three common mangrove species are: black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). The mangrove system described in this project includes Tidal Mangrove Shrubland and Tidal Mangrove Forest as classified in CMECS (FGDC, 2012). It is classified as Caribbean Fringe Mangrove (G004) in the USNVC (2016), with a variety of distinct associations, based on species dominance and ecological setting.

  15. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  16. [Sedimentological Implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpa National Wetlands, Costa Rica].

    Science.gov (United States)

    Silva Benavides, Ana Margarita; Picado Barboza, Jorge; Mora Rodríguez, Fernando; González Gairaud, Carmen

    2015-09-01

    In the last sixty years many geomorphological changes have occurred in Costa Rica's Térraba-Sierpe National Wetlands. Changes in coastal geomorphology are generally associated with erosion or accretion of sediment, which has led to the removal of sections of mangrove forests or sediment banks colonized by mangroves. The aim of this study was to analyze sedimentation as a leading process in the dynamics of coastal morphology and its implications for mangrove forest cover in the Boca Zacate area of Térraba-Sierpe wetlands. The study was conducted in the sectors of Bocón, Brujo and Coco Island in Boca Zacate, from 2008 to 2013. The research was based on a multi-temporal analysis of coastal morphology using aerial photographs from the years 1948, 1960, 1974, 1978, 1984, 1992 and 2011. The following measurements were also performed: monthly sedimentation rate (g/cm2/day), and granulometric composition and content of chemical elements in the sediments of the study area. These last two measurements were performed once each in the dry and rainy seasons during the years of study. The results indicated that over the past 60 years, Boca Zacate has witnessed a process of sustained erosion; from 1948 through 2001, losing 10.6 % of its land and approximately 8.9 % of its forest cover. It has also experienced accretion in the area of Coco Island. The Brujo sector showed the highest sedimentation rate and the Camibar estuary, the lowest. The dominant type of sediment in all study sites was sand, followed by clay and silt. The most widespread chemical elements (mg/L) included magnesium, calcium and potassium; others, such as manganese, iron, aluminum, phosphorus, zinc and copper, were measured in smaller amounts. Transport, composition and quantity of sediment in Boca Zacate are crucial to the changes that have occurred on the coastal area of La Boca, where the presence of dead trees was evident. This geomorphological analysis holds great importance for future guidelines and

  17. Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico

    Directory of Open Access Journals (Sweden)

    Manuel Mendoza-Carranza

    Full Text Available Mangrove and seagrass habitats are important components of tropical coastal zones worldwide, and are conspicuous habitats of Centla Wetland Biosphere Reserve (CWBR in Tabasco, Mexico. In this study, we examine food webs in mangrove- and seagrass-dominated habitats of CWBR using stable isotope ratios of carbon and nitrogen. Our objective was to identify the importance of carbon derived from mangroves and seagrasses to secondary production of aquatic consumers in this poorly studied conservation area. Carbon and nitrogen isotope ratios of basal sources and aquatic consumers indicated that the species-rich food webs of both habitats are dependent on riparian production sources. The abundant Red mangrove Rhizophora mangle appears to be a primary source of carbon for the mangrove creek food web. Even though dense seagrass beds were ubiquitous, most consumers in the lagoon food web appeared to rely on carbon derived from riparian vegetation (e.g. Phragmites australis. The introduced Amazon sailfin catfish Pterygoplichthys pardalis had isotope signatures overlapping with native species (including high-value fisheries species, suggesting potential competition for resources. Future research should examine the role played by terrestrial insects in linking riparian and aquatic food webs, and impacts of the expanding P. pardalis population on ecosystem function and fisheries in CWBR. Our findings can be used as a baseline to reinforce the conservation and management of this important reserve in the face of diverse external and internal human impacts.

  18. Abiotic water quality control on mangrove distribution in estuarine ...

    African Journals Online (AJOL)

    Therefore, to replace the mangrove that has been lost due to die-off, the red mangrove maybe used in viable restoration efforts for the protection of inland areas from floods, as well as to provide ecosystem goods and services. Keywords: electromagnetic-induction, tropical wetland, water quality, mangrove distribution ...

  19. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    International Nuclear Information System (INIS)

    Qiu Yaowen; Yu Kefu; Zhang Gan; Wang Wenxiong

    2011-01-01

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 μg g -1 , whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 μg g -1 , respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  20. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Yaowen, E-mail: yqiu@scsio.ac.cn [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Yu Kefu [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Zhang Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Wenxiong [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-06-15

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 {mu}g g{sup -1}, whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 {mu}g g{sup -1}, respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  1. Global patterns in the poleward expansion of mangrove forests

    Science.gov (United States)

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  2. An International Assessment of Mangrove Management: Incorporation in Integrated Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Haille N. Carter

    2015-04-01

    Full Text Available Due to increasing recognition of the benefits provided by mangrove ecosystems, protection policies have emerged under both wetland and forestry programs. However, little consistency remains among these programs and inadequate coordination exists among sectors of government. With approximately 123 countries containing mangroves, the need for global management of these ecosystems is crucial to sustain the industries (i.e., fisheries, timber, and tourism and coastal communities that mangroves support and protect. To determine the most effective form of mangrove management, this review examines management guidelines, particularly those associated with Integrated Coastal Zone Management (ICZM. Five case studies were reviewed to further explore the fundamentals of mangrove management. The management methodologies of two developed nations as well as three developing nations were assessed to encompass comprehensive influences on mangrove management, such as socioeconomics, politics, and land-use regulations. Based on this review, successful mangrove management will require a blend of forestry, wetland, and ICZM programs in addition to the cooperation of all levels of government. Legally binding policies, particularly at the international level, will be essential to successful mangrove management, which must include the preservation of existing mangrove habitat and restoration of damaged mangroves.

  3. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia

    OpenAIRE

    Brown, Ben; Fadillah, Ratna; Nurdin, Yusran; Soulsby, Iona; Ahmad, Rio

    2014-01-01

    While successful examples of large-scale (5 000-10 000 ha) ecological wetland/mangrove rehabilitation projects exist worldwide, mangrove rehabilitation efforts in Indonesia, both large and small, have mainly failed. The majority of projects (both government programs and non-government initiatives) have oversimplified the technical processes of mangrove rehabilitation, favouring the direct planting of a restricted subset of mangrove species (from the family Rhizophoracea), commonly in the lowe...

  4. Rising tides, rising gates: The complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions

    Science.gov (United States)

    Sandi, Steven G.; Rodríguez, José F.; Saintilan, Neil; Riccardi, Gerardo; Saco, Patricia M.

    2018-04-01

    Coastal wetlands are vulnerable to submergence due to sea-level rise, as shown by predictions of up to 80% of global wetland loss by the end of the century. Coastal wetlands with mixed mangrove-saltmarsh vegetation are particularly vulnerable because sea-level rise can promote mangrove encroachment on saltmarsh, reducing overall wetland biodiversity. Here we use an ecogeomorphic framework that incorporates hydrodynamic effects, mangrove-saltmarsh dynamics, and soil accretion processes to assess the effects of control structures on wetland evolution. Migration and accretion patterns of mangrove and saltmarsh are heavily dependent on topography and control structures. We find that current management practices that incorporate a fixed gate for the control of mangrove encroachment are useful initially, but soon become ineffective due to sea-level rise. Raising the gate, to counteract the effects of sea level rise and promote suitable hydrodynamic conditions, excludes mangrove and maintains saltmarsh over the entire simulation period of 100 years

  5. A survey of ASEAN instruments relating to peatlands, mangroves and other wetlands: The REDD+ context

    Directory of Open Access Journals (Sweden)

    Kheng-Lian Koh

    2013-07-01

    Full Text Available Since the 13th Association of Southeast Asian Nations (ASEAN Summit in November 2007, held in Singapore, ASEAN has accelerated its response to climate change issues, including REDD+ as a mechanism for climate change mitigation and adaptation, and to enhance conservation and sustainable use of natural resources. There are many wetlands in ASEAN including more than 25 million ha of peatlands spread over Indonesia, Malaysia, Thailand, Brunei, Philippines, Vietnam and Lao PDR. The peatlands account for 60 per cent of global tropical peatland resources. They are of significance for sequestration of carbon. However, degraded wetlands, including peatlands, are also a major source of greenhouse gases contributing to global warming. Of the types of wetlands, ASEAN has focused attention predominantly on peatlands in relation to REDD+, mainly because of the ‘Indonesian Haze’. The Asia-Pacific Centre for Environmental Law (APCEL organised a Workshop titled, REDD+ and Legal Regimes of Mangroves, Peatland and Other Wetlands: ASEAN and the World, in Singapore from 15-16 November 2012. The articles contained in this special themed edition of the International Journal of Rural Law and Policy (IJRLP contains a selection of the papers presented. This editorial will provide a brief background to some aspects of REDD+. Included in this issue of IJRLP is a summary of the proceedings of the workshop as interpreted by the assigned rapporteur and editors of APCEL. These summaries were reviewed and approved by the presenters.

  6. How a clogged canal impacts ecological health in a tropical urban wetland ecosystem

    Science.gov (United States)

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem interwoven among a series of interconnected bays, lagoons, canals, and mangrove wetlands. As the city has expanded, infilling and urban encroachment on what was previously mangrove wetland and open estuarine ...

  7. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    Science.gov (United States)

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  8. The Economic Value of Mangroves: A Meta-Analysis

    Science.gov (United States)

    Marwa Salem; D. Evan Mercer

    2012-01-01

    This paper presents a synthesis of the mangrove ecosystem valuation literature through a meta-regression analysis. The main contribution of this study is that it is the first meta-analysis focusing solely on mangrove forests, whereas previous studies have included different types of wetlands. The number of studies included in the regression analysis is 44 for a total...

  9. Effects of hydrology on red mangrove recruits

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Coastal wetlands along the Gulf of Mexico have been experiencing significant shifts in hydrology and salinity levels over the past century as a result of changes in sea level and freshwater drainage patterns. Local land management in coastal zones has also impacted the hydrologic regimes of salt marshes and mangrove areas. Parks and refuges in south Florida that contain mangrove forests have, in some cases, been ditched or impounded to control mosquito outbreaks and to foster wildlife use. And while mangroves dominate the subtropical coastlines of Florida and thrive in saltwater environments, little is known about how they respond to changes in hydrology under managed or variable tidal conditions. USGS researchers designed a study to evaluate the basic hydrological requirements of mangroves so that their health and survival may be more effectively managed in controlled impoundments and restored wetlands. Mangroves are commonly found in the intertidal zone (between low and high tides) in a rather broad spectrum of hydrologic settings. Because they thrive at the interface of land and sea, mangroves are subject to changes in freshwater flow (flow rate, nutrients, pollutants) and to marine influences (sea-level rise, salinity). Salinity has long been recognized as a controlling factor that determines the health and distribution of mangrove forests. Field and experimental observations indicate that most mangrove species achieve their highest growth potential under brackish conditions (modest salinity) between 10 and 20 parts per thousand (ppt). Yet, if provided with available propagules, successful regeneration, and limited competition from other plants, then mangroves can survive and thrive in freshwater systems as well. Because little is known about the growthand survival patterns of mangrove species relative to changing hydrology, USGS scientists conducted greenhouse and field experiments to determine how flooded or drained patterns of hydrology would influence

  10. How a clogged canal effects ecological and human health in a tropical urban wetland ecosystem

    Science.gov (United States)

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem interwoven among a series of interconnected bays, lagoons, canals, and mangrove wetlands. As the city has expanded, infilling and urban encroachment on what was previously mangrove wetland and open estuarine ...

  11. Extending REDD+ to mangroves and wetlands for small island states and a case study for the conservation of mangroves and inter-tidal mudflats in Singapore

    Directory of Open Access Journals (Sweden)

    Lin Heng LYE

    2013-07-01

    Full Text Available This paper briefly discusses the prospects of using coastal wetlands as REDD+ projects for small island states. The paper contends that the city-state of Singapore would do well to enhance existing laws to more specifically address the challenges and threats faced in conserving mangroves and inter-tidal mudflats, and support their conservation and rehabilitation, not just to facilitate the implementation of REDD+ projects but also to meet other goals like biodiversity conservation and climate change adaptation. The proposal is to expand Sungei Buloh to encompass the mudflats at Kranji which is home to the mangrove horseshoe crab (Carcinoscrorpius rotundicauda; aligned with inter-tidal and coastal management strategies advanced under the auspices of the Ramsar Convention, the Convention on Biological Diversity and the IUCN. However, there are considerable challenges in maintaining an intact eco-system in the face of rapid development, not only in Singapore itself but also in the neighbouring state of Johor, Malaysia. The paper examines the specific legal strategies that will be required to meet the various objectives of conservation in the context of Singapore's laws and the challenges posed by the development plans of both Singapore and Malaysia.

  12. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  13. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.

    Science.gov (United States)

    Guo, Hongyu; Weaver, Carolyn; Charles, Sean P; Whitt, Ashley; Dastidar, Sayantani; D'Odorico, Paolo; Fuentes, Jose D; Kominoski, John S; Armitage, Anna R; Pennings, Steven C

    2017-03-01

    Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired. © 2016 by the Ecological Society of America.

  14. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  15. The state of the world’s mangroves in the 21st century under climate change

    Science.gov (United States)

    Feller, Ilka C.; Friess, Daniel A.; Krauss, Ken W.; Lewis, Roy R.

    2017-01-01

    Concerted mangrove research and rehabilitation efforts over the last several decades have prompted a better understanding of the important ecosystem attributes worthy of protection and a better conservation ethic toward mangrove wetlands globally. While mangroves continue to be degraded and lost in specific regions, conservation initiatives, rehabilitation efforts, natural regeneration, and climate range expansion have promoted gains in other areas, ultimately serving to curb the high mangrove habitat loss statistics from the doom and gloom of the 1980s. We highlight those trends in this article and introduce this special issue of Hydrobiologia dedicated to the important and recurring Mangrove and Macrobenthos Meeting. This collection of papers represents studies presented at the fourth such meeting (MMM4) held in St. Augustine, Florida, USA, on July 18–22, 2016. Our intent is to provide a balanced message about the global state of mangrove wetlands by describing recent reductions in net mangrove area losses and highlighting primary research studies presented at MMM4 through a collection of papers. These papers serve not only to highlight on-going global research advancements, but also provide an overview of the vast amount of data on mangrove ecosystem ecology, biology and rehabilitation that emphasizes the uniqueness of the mangrove community.

  16. The Mangroves of Kenya: general information. Compiled for Netherlands Wetlands Conservation and Training Programme, 1996.

    OpenAIRE

    Martens, Els

    1996-01-01

    The report contains general information on mangroves in Kenya with the following main topics: Mangrove ecology, Mangrove distribution, Mangrove vegetation, Mangrove associated flora, Mangrove fauna, Values and utilization, threats. Interactions between mangroves, seagrasses & coral reefs. Main problems related to mangrove management and Conservation. Managing mangroves to insure their survival.

  17. Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities

    Science.gov (United States)

    Randy Kolka; D. Murdiyarso; J. B. Kauffman; Richard Birdsey

    2016-01-01

    Tropical wetland ecosystems, especially mangroves and peatlands, are carbon (C) rich ecosystems. Globally, tropical mangroves store about 20 PgC, however, deforestation has contributed 10 % of the total global emissions from tropical deforestation, even though mangroves account for only about 0.7 % of the world’s tropical forest area (Donato et al. 2011). Meanwhile,...

  18. Blue Carbon Sequestration in Florida Coastal Wetlands - Response to Recent Climate Change and Holocene Climate Variability

    Science.gov (United States)

    Vaughn, D.; Bianchi, T. S.; Osborne, T.; Shields, M. R.; Kenney, W.

    2017-12-01

    Intertidal forests and salt marshes represent a major component of Florida's coasts and are essential to the health and integrity of coastal Florida's ecological and economic systems. In addition, coastal wetlands have been recognized as highly efficient carbon sinks with their ability to store carbon on time scales from centuries to millennia. Although losses of salt marshes, mangroves, and seagrass beds through both natural and anthropogenic forces are threatening their ability to act as carbon sinks globally, the poleward encroachment of mangroves into higher latitude salt marshes may lead to regional increases in carbon sequestration as mangroves store more carbon than salt marshes. For Florida, this encroachment of mangroves into salt marshes is prominent along the northern coasts where fewer freeze events have coincided with an increase in mangrove extent over the past several decades. Soil cores collected from a northeastern Florida wetland will allow us to determine whether the recent poleward encroachment of mangroves into northern Florida salt marshes has led to an increase in belowground carbon storage. The soil cores, which are approximately two to three meters in length, will also provide the first known record of carbon storage in a northern Florida wetland during the Holocene. Initial results from the top 40 cm, which represents 100 years based on dating of other northern Florida wetland cores, suggest more carbon is currently being stored within the transition between marsh and mangrove than in areas currently covered by salt marsh vegetation or mangroves. The transitional zone also has a much larger loss of carbon within the top 40 cm compared to the mangrove and marsh cores. Lignin-based degradation indices along with other biomarker data and 210Pb/137Cs ages will be presented to demonstrate how much of this loss of carbon may be related to degradation and how much may be related to changes in carbon sources.

  19. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  20. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene

    Science.gov (United States)

    Yao, Qiang; Liu, Kam-biu; Platt, William J.; Rivera-Monroy, Victor H.

    2015-05-01

    Palynological, loss-on-ignition, and X-ray fluorescence data from a 5.25 m sediment core from a mangrove forest at the mouth of the Shark River Estuary in the southwestern Everglades National Park, Florida were used to reconstruct changes occurring in coastal wetlands since the mid-Holocene. This multi-proxy record contains the longest paleoecological history to date in the southwestern Everglades. The Shark River Estuary basin was formed 5700 cal yr BP in response to increasing precipitation. Initial wetlands were frequently-burned short-hydroperiod prairies, which transitioned into long-hydroperiod prairies with sloughs in which peat deposits began to accumulate continuously about 5250 cal yr BP. Our data suggest that mangrove communities started to appear after 3800 cal yr BP; declines in the abundance of charcoal suggested gradual replacement of fire-dominated wetlands by mangrove forest over the following 2650 yr. By 1150 cal yr BP, a dense Rhizophora mangle dominated mangrove forest had formed at the mouth of the Shark River. The mangrove-dominated coastal ecosystem here was established at least 2000 yr later than has been previously estimated.

  1. Mangrove ecosystem of India: Conservation and management

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Murthy, P.S.; Komarpant, D.S.

    groups of islands in the Bay of Bengal and the Arabian Sea respectively. Coastal wetlands area of about 63,600 sq km in the country hardly includes about 5% of mangrove cover. Due to unawareness regarding the importance and lack of management in the past...

  2. Mercury Bioaccumulation in Tropical Mangrove Wetland Fishes: Evaluating Potential Risk to Coastal Wildlife.

    Science.gov (United States)

    Le, Dung Quang; Satyanarayana, Behara; Fui, Siau Yin; Shirai, Kotaro

    2018-03-26

    The present study, aimed at observing the total concentration of mercury (Hg) in edible finfish species with an implication to human health risk, was carried out from the Setiu mangrove wetlands on the east coast of Peninsular Malaysia. Out of 20 species observed, the highest Hg concentrations were found among carnivores-fish/invertebrate-feeders, followed by omnivores and carnivores-invertebrate-feeders, while the lowest concentrations in herbivores. The Hg concentrations varied widely with fish species and body size, from 0.12 to 2.10 mg/kg dry weight. A positive relationship between body weight and Hg concentration was observed in particular for Toxotes jaculatrix and Tetraodon nigroviridis. Besides the permissible range of Hg concentration up to 0.3 mg/kg (cf. United States Environmental Protection Agency (USEPA)) in majority of species, the carnivore feeders such as Acanthopagrus pacificus, Gerres filamentosus, and Caranx ignobilis have shown excess amounts (> 0.40 mg/kg flesh weight) that raising concerns over the consumption by local people. However, the weekly intake of mercury-estimated through the fish consumption in all three trophic levels-suggests that the present Hg concentrations are still within the range of Provisional Tolerable Weekly Intake (PTWI) reported by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Perhaps, a multi-species design for Hg monitoring at Setiu wetlands would be able to provide further insights into the level of toxicity transfer among other aquatic organisms and thereby a strong health risk assessment for the local communities.

  3. A rop net and removable walkway used to quantitatively sample fishes over wetland surfaces in the dwarf mangrove of the Southern Everglades

    Science.gov (United States)

    Lorenz, J.J.; McIvor, C.C.; Powell, G.V.N.; Frederick, P.C.

    1997-01-01

    We describe a 9 m2 drop net and removable walkways designed to quantify densities of small fishes in wetland habitats with low to moderate vegetation density. The method permits the collection of small, quantitative, discrete samples in ecologically sensitive areas by combining rapid net deployment from fixed sites with the carefully contained use of the fish toxicant rotenone. This method requires very little contact with the substrate, causes minimal alteration to the habitat being sampled, samples small fishes in an unbiased manner, and allows for differential sampling of microhabitats within a wetland. When used in dwarf red mangrove (Rhizophora mangle) habitat in southern Everglades National Park and adjacent areas (September 1990 to March 1993), we achieved high recovery efficiencies (78–90%) for five common species <110 mm in length. We captured 20,193 individuals of 26 species. The most abundant fishes were sheepshead minnowCyprinodon variegatus, goldspotted killifishFloridichthys carpio, rainwater killifishLucania parva, sailfin mollyPoecilia latipinna, and the exotic Mayan cichlidCichlasoma urophthalmus. The 9 m2 drop net and associated removable walkways are versatile and can be used in a variety of wetland types, including both interior and coastal wetlands with either herbaceous or woody vegetation.

  4. Nutrient controls on biocomplexity of mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  5. Mangroves in the Gulf of California increase fishery yields.

    Science.gov (United States)

    Aburto-Oropeza, Octavio; Ezcurra, Exequiel; Danemann, Gustavo; Valdez, Víctor; Murray, Jason; Sala, Enric

    2008-07-29

    Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly "externalities." Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove-water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands.

  6. Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India)

    Energy Technology Data Exchange (ETDEWEB)

    Binelli, Andrea [Department of Biology, University of Milan, Via Celoria 26, 20133 Milan (Italy)]. E-mail: andrea.binelli@unimi.it; Sarkar, Santosh Kumar [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Chatterjee, Mousumi [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Riva, Consuelo [Department of Biology, University of Milan, Via Celoria 26, 20133 Milan (Italy); Parolini, Marco [Department of Biology, University of Milan, Via Celoria 26, 20133 Milan (Italy); Bhattacharya, Bhaskar deb [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Bhattacharya, Asok Kumar [Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019 (India); Satpathy, Kamala Kanta [Indira Gandhi Center for Atomic Research, Environmental and Industrial Safety Section, Safety Group, Kalpakkam 603 102, Tamil Nadu (India)

    2007-08-15

    The paper presents the first comprehensive survey of congener profiles (12 congeners) of polybrominated diphenyl ethers (PBDEs) in core sediment samples (<63 {mu}m) covering seven sites in Sundarban mangrove wetland (India). Gas-chromatographic analyses were carried out in GC-Ms/Ms for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the wetland with {sigma}{sub 12} PBDE values ranging from 0.08 to 29.03 ng g{sup -1}, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. Although tetrabromodiphenyl ether BDE 47 was found in all samples followed by hexabromodiphenyl ether BDE-154, they were not necessarily the dominant congeners. No uniform temporal trend on PBDE levels was recorded probably due to particular hydrological characteristics of the wetland and/on non-homologous inputs from point sources (untreated municipal wastewater and local industries, electronic wastes from the dump sites, etc.) of these compounds. Because of the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority.

  7. How mangrove forests adjust to rising sea level

    Science.gov (United States)

    Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-01-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  8. A socio-ecological assessment aiming at improved forest resource management and sustainable ecotourism development in the mangroves of Tanbi Wetland National Park, The Gambia, West Africa.

    Science.gov (United States)

    Satyanarayana, Behara; Bhanderi, Preetika; Debry, Mélanie; Maniatis, Danae; Foré, Franka; Badgie, Dawda; Jammeh, Kawsu; Vanwing, Tom; Farcy, Christine; Koedam, Nico; Dahdouh-Guebas, Farid

    2012-07-01

    Although mangroves dominated by Avicennia germinans and Rhizophora mangle are extending over 6000 ha in the Tanbi Wetland National Park (TWNP) (The Gambia), their importance for local populations (both peri-urban and urban) is not well documented. For the first time, this study evaluates the different mangrove resources in and around Banjul (i.e., timber, non-timber, edible, and ethnomedicinal products) and their utilization patterns, including the possibility of ecotourism development. The questionnaire-based results have indicated that more than 80% of peri-urban population rely on mangroves for timber and non-timber products and consider them as very important for their livelihoods. However, at the same time, urban households demonstrate limited knowledge on mangrove species and their ecological/economic benefits. Among others, fishing (including the oyster-Crassostrea cf. gasar collection) and tourism are the major income-generating activities found in the TWNP. The age-old practices of agriculture in some parts of the TWNP are due to scarcity of land available for agriculture, increased family size, and alternative sources of income. The recent focus on ecotourism (i.e., boardwalk construction inside the mangroves near Banjul city) received a positive response from the local stakeholders (i.e., users, government, and non-government organizations), with their appropriate roles in sharing the revenue, rights, and responsibilities of this project. Though the guidelines for conservation and management of the TWNP seem to be compatible, the harmony between local people and sustainable resource utilization should be ascertained.

  9. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Adame

    Full Text Available Coastal wetlands can have exceptionally large carbon (C stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes, and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N and phosphorus (P from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1 followed by medium mangroves (623±41 Mg ha(-1, dwarf mangroves (381±52 Mg ha(-1 and marshes (177±73 Mg ha(-1. At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%. Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  10. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia

    Science.gov (United States)

    Howe, A. J.; Rodríguez, J. F.; Saco, P. M.

    2009-08-01

    The aim of this work was to quantify the soil carbon storage and sequestration rates of undisturbed natural wetlands and disturbed wetlands subject to restriction of tidal flow and subsequent rehabilitation in an Australian estuary. Disturbed and undisturbed estuarine wetlands of the Hunter estuary, New South Wales, Australia were selected as the study sites for this research. Vertical accretion rates of estuarine substrates were combined with soil carbon concentrations and bulk densities to determine the carbon store and carbon sequestration rates of the substrates tested. Relationships between estuary water level, soil evolution and vertical accretion were also examined. The carbon sequestration rate of undisturbed wetlands was lower (15% for mangrove and 55% for saltmarsh) than disturbed wetlands, but the carbon store was higher (65% for mangrove and 60% for saltmarsh). The increased carbon sequestration rate of the disturbed wetlands was driven by substantially higher rates of vertical accretion (95% for mangrove and 345% for saltmarsh). Estuarine wetland carbon stores were estimated at 700-1000 Gg C for the Hunter estuary and 3900-5600 Gg C for New South Wales. Vertical accretion and carbon sequestration rates of estuarine wetlands in the Hunter are at the lower end of the range reported in the literature. The comparatively high carbon sequestration rates reported for the disturbed wetlands in this study indicate that wetland rehabilitation has positive benefits for regulation of atmospheric carbon concentrations, in addition to more broadly accepted ecosystem services.

  11. Impact of multispecies diatom bloom on plankton community structure in Sundarban mangrove wetland, India

    International Nuclear Information System (INIS)

    Biswas, Sejuti Naha; Rakshit, Dibyendu; Sarkar, Santosh Kumar; Sarangi, Ranjit Kumar; Satpathy, Kamala Kanta

    2014-01-01

    Highlights: • A multispecies algal bloom was studied in coastal regions of Sundarban wetland. • Sharp changes in plankton community structure and hydrological parameters observed. • Chlorophyll a showed highest cell density (11.4 × 10 5 cells l −1 ) during bloom phase. • MODIS Aqua derived chlorophyll maps have been interpreted. - Abstract: A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 10 3 cells l −1 to 11.4 × 10 5 cells l −1 ) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 10 3 to 50 × 10 3 ind m −3 ). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted

  12. Impact of climate change on mangrove forests along the south west coast: A case study from Kasargod, Kerala, India

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Ansari, Z.A.; Coutinho, F.B.; Charulata, S.; Gaidhane, D.M.

    Mangrove habitats are an important constituent of coastal wetlands. They are unique and located between sea and land, influenced by tidal and fresh water regimes, and hence are fragile in nature. The impact of sea level rise on mangrove community...

  13. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  14. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.

    Science.gov (United States)

    Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun

    2018-03-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.

  15. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  16. Ecosystem Services and Disservices of Mangrove Forests: Insights from Historical Colonial Observations

    Directory of Open Access Journals (Sweden)

    Daniel A. Friess

    2016-08-01

    Full Text Available Ecosystem services are now strongly applied to mangrove forests, though they are not a new way of viewing mangrove-people interactions; the benefits provided by such habitats, and the negative interactions (ecosystem disservices between mangroves and people have guided perceptions of mangroves for centuries. This study quantified the ecosystem services and disservices of mangroves as written by colonial explorers from 1823–1883 through a literature survey of 96 expedition reports and studies. Ecosystem disservices were most commonly discussed (60%, with settlers considering mangroves as reservoirs of diseases such as malaria, with wide-ranging implications, such as the global drainage of wetlands in the 19th–20th centuries. Multiple ecosystem services were discussed, especially provisioning services for export, representing colonial views of new lands as ripe for economic use. Interestingly, regulating services of mangroves such as erosion control and sediment accretion that are a focus of much contemporary research were recognized as early as 1865. This study shows that the ecosystem service paradigm has a long history in mangroves. We should not underestimate mangrove ecosystem disservices, and how contemporary perceptions of mangroves may be influenced by such historical viewpoints. Archival materials provide a rich resource to study human-environment interactions, and how they change through time.

  17. Brominated flame retardants in mangrove sediments of the Pearl River Estuary, South China: spatial distribution, temporal trend and mass inventory.

    Science.gov (United States)

    Zhang, Zai-Wang; Sun, Yu-Xin; Sun, Kai-Feng; Xu, Xiang-Rong; Yu, Shen; Zheng, Tian-Ling; Luo, Xiao-Jun; Tian, Yun; Hu, Yong-Xia; Diao, Zeng-Hui; Mai, Bi-Xian

    2015-03-01

    Sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Concentrations of ΣPBDEs, DBDPE and BTBPE in mangrove sediments of the PRE ranged from 1.25-206, 0.364-34.9, and not detected-0.794 ng g(-1) dry weight, respectively. The highest concentrations of ΣPBDEs, DBDPE and BTBPE were found at the mangrove wetland from Shenzhen, followed by Zhuhai and Guangzhou, showing the dependence on the proximity to urban areas. PBDEs were the predominant brominated flame retardants (BFRs) in mangrove sediments. The concentrations of ΣPBDEs, DBDPE and BTBPE in sediment cores showed an increasing trend from the bottom to top layers, reflecting the increasing usage of these BFRs. The inventories of ΣPBDEs, DBDPE and BTBPE in mangrove sediments were 1962, 245, and 4.10 ng cm(-2), respectively. This is the first study to report the occurrence of DBDPE and BTBPE in mangrove ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Distribution and accumulation of polybrominated diphenyl ethers (PBDEs) in Hong Kong mangrove sediments.

    Science.gov (United States)

    Zhu, Haowen; Wang, Ying; Wang, Xiaowei; Luan, Tiangang; Tam, Nora F Y

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants in various polymers, and have become serious environmental contaminants, particularly in coastal sediments. Mangrove wetlands are important coastal ecosystems in tropical and subtropical regions, and mangrove sediments are often the pollutant sinks due to their close proximity with human activities. In Hong Kong, sediment samples collected from five mangrove swamps were found to be contaminated with PBDEs and the eight measured BDE congeners, including BDE-28, -47, -99, -100, -153, -154, -183 and -209 were detected in all mangrove sediments, indicating that these pollutants were widespread in Hong Kong mangrove wetlands. Among the five swamps, relatively high concentrations of PBDEs were recorded in Mai Po mangrove swamp in the northwestern Hong Kong, which is part of the RAMSAR site but is severely influenced by the pollution from the Pearl River Delta. The depth profile of PBDEs in sediment cores collected from Mai Po also showed the inputs of PBDEs in this mangrove swamp increased year by year. In all sediments, the concentrations of BDE-209 were 1-2 orders of magnitude higher than the other congeners in the same sediment. The concentrations of BDE-209 and ∑PBDEs (defined as the sum of seven targeted BDE congeners except BDE-209) ranged from 1.53 to 75.9 ng g(-1) and from 0.57 to 14.4 ng g(-1), respectively. Among the targeted BDE congeners except BDE-209, slightly different composition was recorded among samples collected from different locations, with BDE-153 and -183 being the pre-dominated congeners. In all mangrove swamps, except Tai O in the southwest of Hong Kong, ∑PBDEs concentrations showed a common trend of landward>seaward>mudflat. The concentrations of ∑PBDEs were significantly correlated with total organic matter (TOM) content in sediments but not with the sediment particle sizes in each mangrove swamp. © 2013.

  19. Effects of urban wastewater on crab and mollusc assemblages in equatorial and subtropical mangroves of East Africa

    Science.gov (United States)

    Cannicci, Stefano; Bartolini, Fabrizio; Dahdouh-Guebas, Farid; Fratini, Sara; Litulo, Carlos; Macia, Adriano; Mrabu, Elisha J.; Penha-Lopes, Gil; Paula, José

    2009-09-01

    Mangrove forests are known to accomplish crucial ecosystem functions and services. They are nursery areas for fish, prawns and crabs, which provide coastal communities with a variety of food, timber and chemicals, and protect coasts from catastrophic events, such as tsunamis. Recently, a novel ecological service has been proposed for mangrove systems, namely natural wastewater treatment wetlands. This hypothesis was based on experimental data collected mainly in Chinese mangrove systems, which proved that mangrove soils were efficient in absorbing nutrients. Moreover, sewage loading seemed harmless to both plants and benthic communities in these systems. However, before promoting the use of natural mangroves as pollution buffers, or constructed mangrove wetlands as sewage treatment facilities, more data are needed on their overall tolerance to organic loading. Differences in macrobenthos patterns were thus investigated between peri-urban mangroves and sites not affected by sewage disposal in East Africa. We assessed differences in epifaunal assemblages, comprising crabs and molluscs, employing multivariate ACI unbalanced analyses to compare peri-urban mangrove swamps with those characteristic of non-urban mangroves with similar ecological traits. The sampling design was spatially nested, replicates being assessed at equatorial (southern Kenya) and subtropical (southern Mozambique) sites. The results manifested a consistent increase in crab biomass at the peri-urban sites in both Kenya and Mozambique. Moreover, the peri-urban systems were richer than the non-urban mangroves, both in terms of fiddler crabs ( Uca spp.) which feed on benthic microalgae and bacteria, and sesarmids, such as Perisesarma guttatum and Neosarmatium meinerti, which feed on both substratum and leaf litter. The abundance of gastropods, in contrast, decreased significantly, especially in Kenya, mainly due to the disappearance of the mud whelk Terebralia palustris. The results thus indicate that

  20. Fringe wetlands

    International Nuclear Information System (INIS)

    Lugo, A.E.

    1990-01-01

    Fringe wetlands are characterized by the dominance of few species, a clear species zonation, synchrony of ecological processes with episodic events, and simplicity in the structure of vegetation. The structure and ecosystem dynamics of fringe forested wetlands are presented with emphasis on saltwater wetlands because they have been studied more than freshwater ones. The study areas were Caribbean and Florida mangroves. Fringe wetlands are found on the water edge of oceans, inland estuaries, and lakes. Water motion in the fringe is bi-directional and perpendicular to the forest and due mostly to tidal energy in oceanic and estuarine fringes. in lakes, water moves in and out of the fringe under the influence of wind, waves, or seiches. some fringe forests are occasionally flushed by terrestrial runoff or aquifer discharge. In contrast, fringe forests located on small offshore islands or steep coastal shroes are isolated from terrestrial runoff or aquifer discharge, and their hydroperiod is controlled by tides and waves only. Literature reviews suggest that ecosystem parameters such as vegetation structure, tree growth, primary productivity, and organic matter in sediments respond proportionally to hydrologic energy. Human activity that impacts on fringe forested wetlands include harvesting of trees, oil pollution and eutrophication. 72 refs., 12 figs., 9 tabs

  1. Ecosystem Carbon Stocks of Intertidal Wetlands in Singapore

    Science.gov (United States)

    Phang, V. X. H.; Friess, D.; Chou, L. M.

    2014-12-01

    Mangrove forests and seagrass meadows provide numerous ecosystem services, with huge recent interest in their carbon sequestration and storage value. Mangrove forests and seagrass meadows as well as mudflats and sandbars form a continuum of intertidal wetlands, but studies that consider these spatially-linked habitats as a whole are limited. This paper presents the results of a field-based and remote sensing carbon stock assessment, including the first study of the ecosystem carbon stocks of these adjacent habitats in the tropics. Aboveground, belowground and soil organic carbon pools were quantified at Chek Jawa, an intertidal wetland in Singapore. Total ecosystem carbon stocks averaged 499 Mg C ha-1 in the mangrove forest and 140 Mg C ha-1 in the seagrass meadow. Soil organic carbon dominated the total storage in both habitats. In the adjacent mudflats and sandbars, soil organic carbon averaged 143 and 124 Mg C ha-1 respectively. High amount of carbon stored in soil demonstrate the role of intertidal wetlands in sequestering large amount of carbon in sediments accumulated over millennia. High-resolution remote sensing imagery was used to create spatial models that upscaled field-based carbon measurements to the national scale. Field-based data and spatial modeling of ecosystem carbon stocks to the entire island through remote sensing provides a large-scale and holistic carbon stock value, important for the understanding and management of these threatened intertidal ecosystems.

  2. Balancing Methane Emissions and Carbon Sequestration in Tropical/Subtropical Coastal Wetlands: A Review

    Science.gov (United States)

    Mitsch, W. J.; Schafer, K. V.; Cabezas, A.; Bernal, B.

    2016-02-01

    Wetlands are estimated to emit about 20 to 25 percent of current global CH4 emissions, or about 120 to 180 Tg-CH4 yr-1. Thus, in climate change discussions concerning wetlands, these "natural emissions" often receive the most attention, often overshadowing the more important ecosystem services that wetlands provide, including carbon sequestration. While methane emissions from coastal wetlands have generally been described as small due to competing biogeochemical cycles, disturbance of coastal wetlands, e.g., the introduction of excessive freshwater fluxes or substrate disturbance, can lead to much higher methane emission rates. Carbon sequestration is a more positive carbon story about wetlands and coastal wetlands in particular. The rates of carbon sequestration in tropical/subtropical coastal wetlands, mainly mangroves, are in the range of 100 to 200 g-C m-2 yr-1, two to ten times higher rates than in the more frequently studied northern peatlands. This function of coastal wetlands has significant international support now for mangrove conservation and it is referred to in the literature and popular press as blue carbon. This presentation will summarize what we know about methane emissions and carbon sequestration in tropical/subtropical coastal wetlands, how these rates compare with those in non-tropical and/or inland wetlands, and a demonstration of two or three models that compare methane fluxes with carbon dioxide sequestration to determine if wetlands are net sinks of radiative forcing. The presentation will also present a global model of carbon with an emphasis on wetlands.

  3. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    Science.gov (United States)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  4. A demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    Science.gov (United States)

    Butera, M. K. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.

  5. The Economic Value of Mangroves: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Marwa E. Salem

    2012-03-01

    Full Text Available This paper presents a synthesis of the mangrove ecosystem valuation literature through a meta-regression analysis. The main contribution of this study is that it is the first meta-analysis focusing solely on mangrove forests, whereas previous studies have included different types of wetlands. The number of studies included in the regression analysis is 44 for a total of 145 observations. We include several regressions with the objective of addressing outliers in the data as well as the possible correlations between observations of the same study. We also investigate possible interaction effects between type of service and GDP per capita. Our findings indicate that mangroves exhibit decreasing returns to scale, that GDP per capita has a positive effect on mangrove values and that using the replacement cost and contingent valuation methods produce higher estimates than do other methods. We also find that there are statistically significant interaction effects that influence the data. Finally, the results indicate that employing weighted regressions provide a better fit than others. However, in terms of forecast performance we find that all the estimated models performed similarly and were not able to conclude decisively that one outperforms the other.

  6. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion.

    Science.gov (United States)

    Servino, Ricardo Nogueira; Gomes, Luiz Eduardo de Oliveira; Bernardino, Angelo Fraga

    2018-07-01

    Extreme weather events are likely to become more frequent in the 21st century bringing significant impacts to coastal ecosystems. However, the capacity to detect and measure those impacts are still limited, with effects largely unstudied. In June 2016, a hailstorm with wind gusts of over 100 km·h -1 caused an unprecedented mangrove dieback on Eastern Brazil. To quantify the scale of impact and short-term recovery of mangroves (15-mo), we used satellite imagery and field sampling to evaluate changes in forest structure in control and impacted areas after the hailstorm. Satellite imagery revealed mangrove dieback in over 500 ha, corresponding to 29.3% of the total forest area suddenly impacted after the hailstorm. Fifteen months after the hailstorm, some impacted areas show an initial recovery, while others continued to degrade. The El Niño years of 2014-2016 created mild drought conditions in Eastern Brazil. As observed in wetlands of semi-arid regions during the same period, mangrove recovery may have been impaired by continued physiological stress and climate change effects. Economic losses in the study site from typical mangrove ecosystem services including food provision, climate regulation, raw materials and nurseries are estimated to at least US$ 792,624 yr -1 . This is the first evidence of an extreme weather impact on mangroves in Brazil that typically provide unique ecological and economic subsistence to coastal populations. Our results reveal that there is a pressing need for long-term monitoring and climate change adaptation actions for coastal wetlands in Brazil, and to provide broad estimates of ecosystem values associated with these ecosystems given many areas are already experiencing chronic stress from local impacts, drought and high temperatures. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    Science.gov (United States)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  8. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    DF Barros

    Full Text Available Wetlands cover approximately 6% of the Earth's surface. They are frequently found at the interface between terrestrial and aquatic ecosystems and are strongly dependent on the water cycle. For this reason, wetlands are extremely vulnerable to the effects of climate change. Mangroves and floodplain ecosystems are some of the most important environments for the Amazonian population, as a source of proteins and income, and are thus the types of wetlands chosen for this review. Some of the main consequences that can be predicted from climate change for wetlands are modifications in hydrological regimes, which can cause intense droughts or inundations. A possible reduction in rainfall can cause a decrease of the areas of mangroves and floodplains, with a consequent decline in their species numbers. Conversely, an increase in rainfall would probably cause the substitution of plant species, which would not be able to survive under new conditions for a long period. An elevation in water temperature on the floodplains would cause an increase in frequency and duration of hypoxic or anoxic episodes, which might further lead to a reduction in growth rates or the reproductive success of many species. In mangroves, an increase in water temperature would influence the sea level, causing losses of these environments through coastal erosion processes. Therefore, climate change will likely cause the loss of, or reduction in, Amazonian wetlands and will challenge the adaptability of species, composition and distribution, which will probably have consequences for the human population that depend on them.

  9. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    Science.gov (United States)

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  10. Remote Sensing for Mapping RAMSAR Heritage Site at Sungai Pulai Mangrove Forest Reserve, Johor, Malaysia

    International Nuclear Information System (INIS)

    Hasmadi, I.M.; Pakhriazad, H.Z.; Norlida, K.

    2011-01-01

    The Sungai Pulai Mangrove Forest Reserve (SPMFR) is the largest reverin mangrove system in Johore. In 2003 about 9,126 ha of the Sungai Pulai mangrove was designated as a RAMSAR site. RAMSAR sites are wetland areas that are deemed to have international importance and are included in the List of Wetlands of International Importance. The SPMFR plays a significant socio-economic role to the adjacent 38 villages. Satellite remote sensing is a useful source of information where it provides timely and complete coverage for vegetation mapping especially in mangroves where the accessibility is difficult. This study was carried out to identify and map land cover types using SPOT-4 imagery at the Sungai Pulai-RAMSAR site and its surrounding areas. Through unsupervised classification technique a total of seven classes of land cover type were mapped, where about 90 % mapping accuracy was gained from the accuracy assessment. Later, vegetation densities were classified into five levels namely very high, high, medium, low and very low based on crown density scale using vegetation indices model such as NDVI, AVI and OSAVI. Results from NDVI and OSAVI model were almost similar but AVI model detected more on medium vegetation which did not show the real ground condition. The study concludes that SPOT-4 imagery was able to discriminate mangrove area clearly from other land covers type. Vegetation indices model can be used as a tool for mapping vegetation density level in the SPMFR and its surrounding area. Therefore VIs models from remote sensing are useful to monitor and manage the mangrove forest for sustainable management and preserve the SPMFR as a RAMSAR site in Peninsular Malaysia. (author)

  11. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Science.gov (United States)

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  12. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  13. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-07-01

    Full Text Available Background Mangrove restoration seeks to restore or rebuild degraded mangrove systems. The methods of mangrove restoration include ecological projects and restoration-oriented technologies, the latter of which are designed to restore the structure, processes as well as related physical, chemical and biological characteristics of wetlands and to ensure the provision of ecosystem services. As important components of mangrove ecosystem, benthic organisms and crabs play a key role in nutrient cycling. In addition, mangrove restoration, such as vegetation restoration measures, can lead to changes in the benthic faunal communities. This study investigates whether the presence of different mangrove species, age and canopy cover of mangrove communities affect the density of crab burrows. Methods The Luoyangjiang Estuary, in the southeast of Fujian Province, was selected as our research area. A survey, covering 14 sites, was conducted to investigate the impacts of mangrove restoration on the density of crab burrows in four rehabilitated forests with different stand ages and canopy. Results It was found that differences in vegetation types had a large impact on crab density and that the density of crab burrows was lower on exposed beaches (non-mangrove than under mature Kandelia candel, Aegiceras corniculatum and Avicennia marina communities. In general, the amount of leaf litter and debris on mangrove mudflats was greater than on the beaches as food sources for crabs. Two-factor analysis of variance (ANOVA shows that changes in mangrove species and age since restoration had different effects on crab burrow density. The effect of canopy cover was highly significant on crab burrow density. Conclusions The results suggest that in the process of mangrove restoration the combined effects of mangrove stand age, canopy cover and other factors should be taken into account. This study further supports the findings of the future scientific research and practice on

  14. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    Science.gov (United States)

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-01-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  15. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

    Science.gov (United States)

    Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-22

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  16. Surficial and vertical distribution of heavy metals in different estuary wetlands in the Pearl river, South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honggang; Cui, Baoshan [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing (China); Zhang, Kejiang [Xinjiang Research Center of Water and Wastewater Treatment, Xinjiang Deland Co., LTD., Urumqi (China)

    2012-10-15

    A total of 87 soil profiles sampled from five types of wetlands in the Pearl River estuary were analyzed to investigate the surficial and vertical distributions of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn). The results show that wetlands directly connected with rivers (e.g., riparian wetlands, estuarine wetlands, and mangrove wetlands) has much higher metal concentrations than those indirectly connected with rivers (e.g., pond wetlands and reclaimed wetlands). The river water is the major pollution source for all investigated heavy metals. The vertical distribution of heavy metals can be classified into three patterns: (i) linear distribution pattern. The concentration of heavy metals gradually decreases with an increase in soil depth (for riparian and estuarine wetlands); (ii) irregular and stable pattern (for pond and reclaimed wetlands); and (iii) middle enrichment pattern (for mangrove wetlands). In addition to river-borne inputs, a variety of vegetation composition, hydraulic conditions, and human activities also contribute to the variation in distribution of heavy metals in different wetlands. Soil properties (e.g., particle size, pH, salinity, and SOM) also affect the distribution of trace metals in each soil layer. The major pollution source of heavy metals is industrial wastewater. Other sources include agriculture and domestic premises, and atmospheric deposition. This study provides a sound basis for the risk assessment of heavy metals in the studied wetlands and for wetland conservation in general. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Holocene palaeoenvironmental history of the Amazonian mangrove belt

    Science.gov (United States)

    Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão

    2012-11-01

    Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.

  18. Ecosystem engineering potential of the gastropod Terebralia palustris (Linnaeus, 1767) in mangrove wastewater wetlands - A controlled mesocosm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Penha-Lopes, Gil, E-mail: gil.penha-lopes@biology-research.co [Centro de Oceanografia - Laboratorio Maritimo da Guia, Departamento de Biologia Animal, Faculdade de Ciencias da Universidade de Lisboa, Avenida Na, Senhora do Cabo 939, 2750-374 Cascais (Portugal); Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussels, Brussels (Belgium); Bartolini, Fabrizio [Dipartimento di Biologia Evoluzionistica, Universita degli Studi di Firenze, via Romana 17, I-50125 Firenze (Italy); Limbu, Samwel [University of Dar es Salaam, Department of Aquatic Sciences and Fisheries, P.O. Box 35064, Dar es Salaam (Tanzania, United Republic of); Cannicci, Stefano [Dipartimento di Biologia Evoluzionistica, Universita degli Studi di Firenze, via Romana 17, I-50125 Firenze (Italy); Mgaya, Yunus [University of Dar es Salaam, Department of Aquatic Sciences and Fisheries, P.O. Box 35064, Dar es Salaam (Tanzania, United Republic of); Kristensen, Erik [Institute of Biology, University of Southern Denmark, DK-5230 Odense M (Denmark); Paula, Jose [Centro de Oceanografia - Laboratorio Maritimo da Guia, Departamento de Biologia Animal, Faculdade de Ciencias da Universidade de Lisboa, Avenida Na, Senhora do Cabo 939, 2750-374 Cascais (Portugal)

    2010-01-15

    The effect of different sewage concentrations (0, 20, 60 and 100%), vegetation (Bare, Avicennia marina or Rhizophora mucronata) and immersion periods (immersion/emersion period of 12/12 h or 3/3 days just for 100%) conditions were studied for 6 months on survival and growth rates of Terebralia palustris (Linnaeus, 1767). Gastropods' activity and ecosystem engineering preformed at bare and A. marina planted cells and 3 sewage conditions (0, 20 and 60%) were determined. Survival rates were higher than 70% in all treatments. Growth rate decreased significantly with increasing sewage concentrations (mainly at unplanted conditions) and longer immersion periods. A complete shift (from immersion to emersion periods) and a significant decrease in mobility and consequently its engineer potential, due to sewage contamination, lead to a 3-4 fold decrease in the amount of sediment disturbed. Sewage contamination, primary producers' abundance and environmental conditions may have influenced the gastropods survival, growth and its ecosystem engineering potential. - Terebralia palustris high ecosystem engineering potential in constructed mangrove wetlands.

  19. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  20. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  1. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  2. Mangrove soil and vegetation change after tidal wetland creation: a 20-year chronosequence in Tampa Bay, FL

    Science.gov (United States)

    Mangrove restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove loss (which has been high in recent decades: ~30-50% global loss). However, ecosystem development and functionality following mangrove restoration and creation is poorly u...

  3. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    Science.gov (United States)

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  4. Organic carbon burial rates in mangrove sediments: Strengthening the global budget

    Science.gov (United States)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-09-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10-15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8-15% of all OC burial in marine settings occurs in mangrove systems.

  5. Characteristics of mangrove swamps managed for mosquito control in eastern Florida, USA

    Science.gov (United States)

    Middleton, B.; Devlin, D.; Proffitt, E.; McKee, K.; Cretini, K.F.

    2008-01-01

    Manipulations of the vegetation and hydrology of wetlands for mosquito control are common worldwide, but these modifications may affect vital ecosystem processes. To control mosquitoes in mangrove swamps in eastern Florida, managers have used rotational impoundment management (RIM) as an alternative to the worldwide practice of mosquito ditching. Levees surround RIM swamps, and water is pumped into the impoundment during the summer, a season when natural swamps have low water levels. In the New World, these mosquito-managed swamps resemble the mixed basin type of mangrove swamp (based on PCA analysis). An assessment was made of RIM, natural (control), and breached-RIM (restored) swamps in eastern Florida to compare their structural complexities, soil development, and resistance to invasion. Regarding structural complexity, dominant species composition differed between these swamps; the red mangrove Rhizophora mangle occurred at a higher relative density in RIM and breached-RIM swamps, and the black mangrove Avicennia germinans had a higher relative density in natural swamps. Tree density and canopy cover were higher and tree height lower in RIM swamps than in natural and breached-RIM swamps. Soil organic matter in RIM swamps was twice that in natural or breached-RIM swamps. RIM swamps had a lower resistance to invasion by the Brazilian pepper tree Schinus terebinthifolius, which is likely attributable to the lower porewater salinity in RIM swamps. These characteristics may reflect differences in important ecosystem processes (primary production, trophic structure, nutrient cycling, decomposition). Comparative assessments of managed wetlands are vital for land managers, so that they can make informed decisions compatible with conservation objectives. ?? Inter-Research 2008.

  6. Organophosphorus flame retardants in mangrove sediments from the Pearl River Estuary, South China.

    Science.gov (United States)

    Hu, Yong-Xia; Sun, Yu-Xin; Li, Xiao; Xu, Wei-Hai; Zhang, Ying; Luo, Xiao-Jun; Dai, Shou-Hui; Xu, Xiang-Rong; Mai, Bi-Xian

    2017-08-01

    Forty-eight surface sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate the distribution of organophosphorus flame retardants (OPFRs) and the relationship between OPFRs and microbial community structure determined by phospholipid fatty acid. Concentrations of ΣOPFRs in mangrove sediments of the PRE ranged from 13.2 to 377.1 ng g -1 dry weight. Levels of ΣOPFRs in mangrove sediments from Shenzhen and Guangzhou were significantly higher than those from Zhuhai, indicating that OPFRs were linked to industrialization and urbanization. Tris(chloropropyl)phosphate was the predominant profile of OPFRs in mangrove sediments from Shenzhen (38.9%) and Guangzhou (35.0%), while the composition profile of OPFRs in mangrove sediments from Zhuhai was dominated by tris(2-chloroethyl) phosphate (25.5%). The mass inventories of OPFRs in the mangrove sediments of Guangzhou, Zhuhai and Shenzhen were 439.5, 133.5 and 662.3 ng cm -2 , respectively. Redundancy analysis revealed that OPFRs induced a shift in the structure of mangrove sediment microbial community and the variations were significantly correlated with tris(1,3-dichloro-2-propyl)phosphate and tris(2-butoxyethyl) phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  8. From Ecosystem-Scale to Litter Biochemistry: Controls on Carbon Sequestration in Coastal Wetlands of the Western Gulf of Mexico

    Science.gov (United States)

    Louchouarn, P.; Kaiser, K.; Norwood, M. J.; Sterne, A. M. E.; Armitage, A. R.; HighField, W.; Brody, S.

    2015-12-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the structure and services of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones of the U.S., where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. Here we present the synthesis of 3 years of multidisciplinary work to quantify ecosystem shifts at the regional scale, along the entire Texas (USA) coast of the western Gulf of Mexico, and transcribe these shifts into carbon (C) sequestration mass balances. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify shifts in areal coverage of black mangrove (Avicennia germinans) and salt marsh (Spartina alterniflora and other grass and forb species) over 20 years across the Texas Gulf coast. Between 1990 and 2010, mangrove area expanded by 74% (+16 km2). Concurrently, salt marsh area experienced a net loss of 24% (-78 km2). Most of that loss was due to conversion to tidal flats or water, likely a result of relative sea level rise, with only 6% attributable to mangrove expansion. Although relative carbon load (per surface area) are statistically larger for mangrove wetlands, total C loads are larger for salt marsh wetlands due to their greater aerial coverage. The entire loss of above ground C (~7.0·109 g), was offset by salt marsh expansion (2.0·109 g) and mangrove expansion (5.6·109 g) over the study period. Concurrently, the net loss in salt marsh coverage led to a loss in below ground C accumulation capacity of 2.0·109 g/yr, whereas the net expansion of mangrove wetlands led to an added below ground C accumulation capacity of 0.4·109 g/yr. Biomarker data show that neutral carbohydrates and lignin contributed 30-70% and 10-40% of total C, respectively, in plant litter and surface sediments. Sharp declines of carbohydrate yields with depth occur parallel to increases in lignin

  9. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  10. Vegetation dynamics of the Tanbi Wetland National Park, The Gambia

    Science.gov (United States)

    Ceesay, A.

    2016-12-01

    Changes in mangrove vegetation have been identified as an important indicator of environmental change. The mangroves of the Tanbi Wetland National Park (TWNP) connect the Atlantic coast with the estuary of the River Gambia and as such, play an invaluable role in the agriculture, tourism and fisheries sectors of The Gambia. Our research seeks to understand the long-term changes in the mangrove vegetation to strengthen the formulation of sustainable alternative livelihoods and adaptation strategies to climate change. Mangrove vegetation dynamics was assessed by remote sensing, using decadal Landsat images covering 1973 - 2012. Physicochemical parameters were analyzed during the rainy and dry seasons of The Gambia for correlation with climate data. Our findings indicate that the long-term changes in salinity (24.5 and 35.8ppt) and water temperature (27.6oC and 30.2oC) during the rainy and dry seasons respectively are retarding mangrove growth. Mangrove vegetation cover declined by 6%, while grassland increased by 56.4%. This research concludes that long-term hyper-salinity is the cause for the stunted vegetation and lack of mangrove rejuvenation. We propose that specialized replanting systems such as the use of saplings be adopted instead of the conventional use of propagules. Alternative livelihoods also need to be diversified to support coastal communities.

  11. Study of the sediment contamination levels in a mangrove swamp polluted by a marine oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.W.Y.; Ke, L.; Wong, Y.S.; Tam, N.F.Y. [City University of Hong Kong, Hong Kong SAR (China)

    2002-07-01

    The pattern of oil retention in mangrove sediments was studied in an effort to determine the temporal changes of petroleum hydrocarbon concentrations and composition several months after oil spills occur. Mangroves are inter-tidal wetlands in tropical and subtropical coastlines. Due to the anoxic and water logging characteristics of mangrove sediments, oil residues linger much longer in these wetlands compared to other coastal habitats. In November 2000, an accidental oil spill occurred in the Pearl River Estuary in which approximately 230,000 litres of crude oil was leaked from an oil tanker. The spilled oil migrated to the YiO, a typical mangrove swamp in Hong Kong Special Administrative Region. The degree of oil contamination in the sediments depended on the sediment texture and topography of the mangrove. The total petroleum hydrocarbon (TPH) concentration of the sediments in the most affected area near a freshwater creek flowing into the sea was 130 times higher than normal, one month after the accident. The mean TPH concentration was 2862 ug/g of dry sediment while the mean carbon preference index was 1.22 compared to the background value of 3.97. The temporal changes of the petroleum hydrocarbon level in 5 defined areas were examined for 7 months after the spill. The most polluted area next to the creek was determined to have very high TPH levels in the muddy sediments even 7 months after the spill. Oil residues infiltrated as deep as 20 cm into the sediments, making it more difficult to degrade than surface pollution and posing long-term adverse effects on trees in the area. It was determined that with growing industrialization and increasing demands for fuel and energy supply, mangroves in South China should be ranked as top priority for protection from oil spills. 19 refs., 6 tabs., 6 figs.

  12. Study of the sediment contamination levels in a mangrove swamp polluted by a marine oil spill

    International Nuclear Information System (INIS)

    Wong, T.W.Y.; Ke, L.; Wong, Y.S.; Tam, N.F.Y.

    2002-01-01

    The pattern of oil retention in mangrove sediments was studied in an effort to determine the temporal changes of petroleum hydrocarbon concentrations and composition several months after oil spills occur. Mangroves are inter-tidal wetlands in tropical and subtropical coastlines. Due to the anoxic and water logging characteristics of mangrove sediments, oil residues linger much longer in these wetlands compared to other coastal habitats. In November 2000, an accidental oil spill occurred in the Pearl River Estuary in which approximately 230,000 litres of crude oil was leaked from an oil tanker. The spilled oil migrated to the YiO, a typical mangrove swamp in Hong Kong Special Administrative Region. The degree of oil contamination in the sediments depended on the sediment texture and topography of the mangrove. The total petroleum hydrocarbon (TPH) concentration of the sediments in the most affected area near a freshwater creek flowing into the sea was 130 times higher than normal, one month after the accident. The mean TPH concentration was 2862 ug/g of dry sediment while the mean carbon preference index was 1.22 compared to the background value of 3.97. The temporal changes of the petroleum hydrocarbon level in 5 defined areas were examined for 7 months after the spill. The most polluted area next to the creek was determined to have very high TPH levels in the muddy sediments even 7 months after the spill. Oil residues infiltrated as deep as 20 cm into the sediments, making it more difficult to degrade than surface pollution and posing long-term adverse effects on trees in the area. It was determined that with growing industrialization and increasing demands for fuel and energy supply, mangroves in South China should be ranked as top priority for protection from oil spills. 19 refs., 6 tabs., 6 figs

  13. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  14. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    Science.gov (United States)

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  15. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    Science.gov (United States)

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  16. Evaluation Of Management Properties Of Wetland Soils Of Akwa ...

    African Journals Online (AJOL)

    Evaluation Of Management Properties Of Wetland Soils Of Akwa Ibom State, Nigeria For Sustainable Crop Production. ... Organic matter content values were high with mean of 12.59, 60.01, and 3.20 percent for Inland valley, Flood plain and mangrove soils respectively. Effective cation exchange capacity (ECEC) was below ...

  17. Blue Carbon distribution in mangrove forests of the Americas

    Science.gov (United States)

    Simard, M.; Rivera-Monroy, V.; Fatoyinbo, T. E.; Roy Chowdhury, R.

    2013-12-01

    Globally, coastal ecosystems are critical to maintaining human livelihood and biodiversity. These ecosystems including mangroves, salt marshes, and sea grasses provide essential ecosystem services, such as supporting fisheries by providing important spawning grounds, filtering pollutants and contaminants from coastal waters, and protecting coastal development and communities against storms, floods and erosion. Additionally, recent research indicates that these vegetated coastal ecosystems are highly efficient carbon sinks (i.e. 'Blue Carbon') and can potentially play a significant role in ameliorating the effect of increasing global climate change by capturing significant amounts of carbon into sediments and plant biomass. The term blue carbon indicates the carbon stored in coastal vegetated wetlands (i.e., mangroves, intertidal marshes, and seagrass meadows). As a result of rapid global changes in coastal regions, it is crucial that we improve our understanding of the current and future state of the remaining coastal ecosystems and associated ecosystem services and their vulnerability to global climate change. In this study, we present a continental scale study of mangrove distribution and assess patterns of forest structural development associated to latitude and geomorphological setting. We produced a baseline map of mangrove canopy height and biomass for all mangrove forests of the Americas using data from the Shuttle Radar Topography Mission (SRTM) and publicly available land cover maps (Figure 1). The resulting canopy height map was calibrated using ICEsat/Geoscience Laser Altimeter system (GLAS). Biomass was derived from field data and allometry. The maps were validated with field data and results in accuracies that vary spatially around 2 to 3m in height and 20% in biomass. Figure 1: Global distribution of mangrove forests (green) and SRTM elevation data. These data were used to produce large scale maps of mangrove canopy height and biomass.

  18. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  19. Eco-geomorphological Response of an Estuarine Wetland to Changes in the Hydraulic Regime

    Science.gov (United States)

    Howe, A.; Rodrí Guez, J.

    2006-12-01

    In the Hunter Estuary, NSW, Australia, tidal regimes of numerous wetlands have been affected by extensive anthropomorphic intervention, including harbour dredging, land reclamation, and construction of infrastructure. The importance of these wetlands to ecosystem services such as primary productivity, flood attenuation and water quality enhancement has led to an increased effort to rehabilitate degraded sites by reintroduction of tidal flows. Because of the complex and dynamics interactions among hydraulic regime, vegetation and geomorphology, it is difficult to predict how wetlands will respond to the reintroduction of these flows and whether the resulting habitat distribution will achieve desired management outcomes. Eco-geomorphology research conducted at a rehabilitated wetland comprised of mangrove forest and saltmarsh has tracked the response of estuarine vegetation distribution and wetland geomorphology to reinstatement of tidal flows following removal of impediments in 1995. The wetland is an important site for migratory shorebirds and is highly compartmentalized due to the presence of roads and culverts. Our research methodology integrates historical analysis, field measurements and laboratory experiments. Historical analysis matched vegetation evolution obtained from aerial photography to bird roosting habitat use, which is in decline. Field data collection carried out in the last two years included topographic, vegetation and soil surveys; velocity, water quality and water level profiling; and high precision measurements of substrate shallow subsidence and vertical accretion. Laboratory studies focussed on the effects of estuarine vegetation on flow resistance. All this information has allowed for the characterization and conceptualization of the system, which includes zones with different tidal attenuation levels and vegetation distribution. It was found that an increased tidal frame resulting from hydraulic manipulation lead to a landward shift in

  20. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    Science.gov (United States)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  1. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    Directory of Open Access Journals (Sweden)

    Andrade Luiza L

    2012-08-01

    Full Text Available Abstract Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil, which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm being greater than in both deeper sediment layers (15–20 and 35–40 cm, which were similar to each other.

  2. Impacts of climate change on submerged and emergent wetland plants

    Science.gov (United States)

    Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore

    2016-01-01

    Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...

  3. Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses.

    Science.gov (United States)

    Ernesto Medina; Elvira Cuevas; Ariel Lugo

    2007-01-01

    Pterocarpus officinalis L. is a dominant tree of freshwater coastal wetlands in the Caribbean and the Guiana regions. It is frequently associated with mangroves in areas with high rainfall and/or surface run-off. We hypothesized that P. officinalis is a freshwater swamp species that when occurring in association with mangroves occupies low-salinity soil microsites, or...

  4. Mangrove plantation over a limestone reef - Good for the ecology?

    Science.gov (United States)

    Asaeda, Takashi; Barnuevo, Abner; Sanjaya, Kelum; Fortes, Miguel D.; Kanesaka, Yoshikazu; Wolanski, Eric

    2016-05-01

    There have been efforts to restore degraded tropical and subtropical mangrove forests. While there have been many failures, there have been some successes but these were seldom evaluated to test to what level the created mangrove wetlands reproduce the characteristics of the natural ecosystem and thus what ecosystem services they can deliver. We provide such a detailed assessment for the case of Olango and Banacon Islands in the Philippines where the forest was created over a limestone reef where mangroves did not exist in one island but they covered most of the other island before deforestation in the 1940s and 1950s. The created forest appears to have reached a steady state after 60 years. As is typical of mangrove rehabilitation efforts worldwide, planting was limited to a single Rhizophora species. While a forest has been created, it does not mimic a natural forest. There is a large difference between the natural and planted forests in terms of forest structure and species diversity, and tree density. The high density of planted trees excludes importing other species from nearby natural forests; therefore the planted forest remains mono-specific even after several decades and shows no sign of mimicking the characteristics of a natural forest. The planted forests provided mangrove propagules that invaded nearby natural forests. The planted forest has also changed the substratum from sandy to muddy. The outline of the crown of the planted forest has become smooth and horizontal, contrary to that of a natural forest, and this changes the local landscape. Thus we recommend that future mangrove restoration schemes should modify their methodology in order to plant several species, maintain sufficient space between trees for growth, include the naturally dominant species, and create tidal creeks, in order to reproduce in the rehabilitated areas some of the key ecosystem characteristics of natural mangrove forests.

  5. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    Science.gov (United States)

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2017-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  6. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  7. Climate change and intertidal wetlands.

    Science.gov (United States)

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  8. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    Science.gov (United States)

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  9. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  10. Mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.; Untawale, A.G.

    bordering Persian Gulf are represented with only few mangrove species. The information on the usages and the impacts on the mangroves of the Indian Ocean region call for an urgent measure of conservation and management of mangroves and are dealt in detail...

  11. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India--a UNESCO World Heritage Site.

    Science.gov (United States)

    Chatterjee, Mousumi; Canário, João; Sarkar, Santosh Kumar; Branco, Vasco; Godhantaraman, Nallamuthu; Bhattacharya, Bhaskar Deb; Bhattacharya, Asokkumar

    2012-09-01

    This study was performed to elucidate the distribution, concentration trend and possible sources of total mercury (Hg(T)) and methylmercury (MeHg) in sediment cores (<63 μm particle size; n = 75) of Sundarban mangrove wetland, northeastern part of the Bay of Bengal, India. Total mercury was determined by atomic absorption spectrometry (AAS) in a Leco AMA 254 instrument and MeHg by gas chromatography-atomic fluorescence spectrometry (GC-AFS). A wide range of variation in Hg(T) (0.032-0.196 μg g(-1) dry wt.) as well as MeHg (0.04-0.13 ng g(-1) dry wt.) concentrations revealed a slight local contamination. The prevalent low Hg(T) levels in sediments could be explained by sediment transport by the tidal Hugli (Ganges) River that would dilute the Hg(T) values via sediment mixing processes. A broader variation of MeHg proportions (%) were also observed in samples suggesting that other environmental variables such as organic carbon and microbial activity may play a major role in the methylation process. An overall elevated concentration of Hg(T) in surface layers (0-4 cm) of the core is due to remobilization of mercury from deeper sediments. Based on the index of geoaccumulation (I (geo)) and low effects-range (ER-L) values, it is considered that the sediment is less polluted by Hg(T) and there is less ecotoxicological risk. The paper provides the first information of MeHg in sediments from this wetland environment and the authors strongly recommend further examination of Hg(T) fluxes for the development of a detailed coastal MeHg model. This could provide more refine estimates of a total flux into the water column.

  12. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  13. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation

    Science.gov (United States)

    Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.

    2018-05-01

    Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.

  14. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  15. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  16. Mangrove postcard

    Science.gov (United States)

    Ball, Lianne C.

    2016-07-14

    Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.

  17. Mangrove forests

    Science.gov (United States)

    Ariel E. Lugo; Ernesto. Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  18. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Science.gov (United States)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  19. Measuring Mangrove Type, Structure And Carbon Storage With UAVSAR And ALOS/PALSAR Data

    Science.gov (United States)

    Fatoyinbo, T. E.; Cornforth, W.; Pinto, N.; Simard, M.; Pettorelli, N.

    2011-12-01

    Mangrove forests provide a great number of ecosystem services ranging from shoreline protection (e.g. against erosion, tsunamis and storms), nutrient cycling, fisheries production, building materials and habitat. Mangrove forests have been shown to store very large amounts of Carbon, both above and belowground, with storage capacities even greater than tropical rainforests. But as a result of their location and economic value, they are among the most rapidly changing landscapes in the World. Mangrove extent is limited 1) in total extent to tidally influenced coastal areas and 2) to tropical and subtropical regions. This can lead to difficulties mapping mangrove type (such as degraded vs non degraded, scrub vs tall, dense vs sparse) because of cloud cover and limited access to high-resolution optical data. To accurately quantify the effect of land use and climate change on tropical wetland ecosystems, we must develop effective mapping methodologies that take into account not only extent, but also the structure and health of the ecosystem. This must be done by including Synthetic Aperture Radar (SAR) data. In this research, we used L-band Synthetic Aperture Radar data from the ALOS/PALSAR and UAVSAR instruments over selected sites in the Americas (Sierpe, Costa Rica and Everglades, Florida)and Asia (Sundarbans). In particular, we used the SAR data in combination with other remotely sensed data and field data to 1) map mangrove extent 2) determine mangrove type, health and adjascent land use, and 3) estimate aboveground biomass and carbon storage for entire mangrove systems. We used different classification methodologies such as polarimetric decomposition, unsupervised classification and image segmentation to map mangrove type. Because of the high resolution of the radar data, and its ability to interact with forest volume, we are able to identify mangrove zones and differentiate between mangroves and other forests/land uses. We also integrated InSAR data (SRTM

  20. The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in South Florida

    Science.gov (United States)

    Rivera-Monroy, Victor H.; Twilley, Robert R.; Davis, Stephen E.; Childers, Daniel L.; Simard, Marc; Chambers, Randolph; Jaffe, Rudolf; Boyer, Joseph N.; Rudnick, David T.; Zhang, Keqi; Castañeda-Moya, Edward; Ewe, Sharon M.L.; Price, Rene M.; Coronado-Molina, Carlos; Ross, Michael; Smith, Thomas J.; Michot, Beatrice; Meselhe, Ehab; Nuttle, William; Troxler, Tiffany G.; Noe, Gregory B.

    2011-01-01

    The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height -1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (~1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

  1. Evaluating the relationship between the photochemical reflectance index and the light use efficiency in a mangrove forest with Spartina alterniflora invasion

    Science.gov (United States)

    Shi, C.; Wang, L.; Yang, S.

    2017-12-01

    Mangrove forest is an important component of wetland ecosystems, which has high productivity, strong carbon sequestration capacity and great ecological values. The light use efficiency (LUE) of photosynthesis is a major parameter for estimating plant productivity. Recent studies have shown that the photochemical reflectance index (PRI) has a strong relationship with LUE and the relationship is significantly influenced by plant species and environmental factors. In this paper, we evaluated the relationship between PRI and LUE for different mangrove species (Avicennia marina and Aegiceras corniculatum) and the effects of Spartina alterniflora invasion on the PRI-LUE relationship. The results showed that the LUE of mangroves had a good correlation with PRI, and the correlation of Avicennia marina was stronger than that of Aegiceras corniculatum. In addition, the invasion of Spartina alterniflora impaired the PRI-LUE relationship for both mangrove species.

  2. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    Science.gov (United States)

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  3. Identifying the best season for mapping evergreen swamp and mangrove species using leaf-level spectra in an estuarine system in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-10-01

    Full Text Available would provide the best discrimination of six evergreen tree species, associated with swamp (Ficus Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, Hibiscus tiliaceus), wetlands in adjacent woodlands (Syzygium cordatum) and coastal...

  4. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    Science.gov (United States)

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important

  5. A Multi-Sensor Approach to Enhance the Prediction of Mangrove Biophysical Characteristics in Chilika Lagoon and Bhitarkanika Wildlife Sanctuary, Odisha, India

    Science.gov (United States)

    Kumar, A.; Bledsoe, R.; Mishra, D. R.; Cameron, C.; Dahal, S.; Remillard, C.; Stone, A.; Stupp, P.

    2017-12-01

    Mangroves, one of the most productive ecosystems on Earth, play a major role in coastal ecosystem processes from mitigating erosion to acting as a barrier against tidal and storm surges associated with tropical cyclones. India has about 5 % of the world's mangrove vegetation, and over half of which is found along the east coast of the country. Chilika Lagoon and Bhitarkanika Wildlife Sanctuary are Ramsar sites of international wetland importance, situated in the state of Odisha along the east coast of India. Chilika Lagoon holds three small, but distinct mangrove patches, while Bhitarkanika Wildlife Sanctuary has several large, dense patches of mangroves. There is growing concern for the effective management and conservation of these mangrove forests. This study demonstrated the use of a suite of satellite data (Terra, Landsat, and Sentinel-1) for meeting the following objectives: 1. Derive a long-term spatio-temporal phenological maps of the biophysical parameters (chlorophyll, leaf area index, gross primary productivity, and evapotranspiration); 2. Analyze long-term spatio-temporal variability of physical and meteorological parameters; 3. Document decadal changes in mangroves area estimates starting from 1995 to 2017 using Landsat and radar data. The time series developed in this study revealed a phenological pattern for mangrove biophysical characteristics. Historical analysis of land cover maps indicated decrease in dense mangrove area and increase in open mangrove area and fragmentation. The results of this study will be used as an efficient biophysical mapping and monitoring protocol for mangrove forests in restoration decision-making.

  6. Mangrove state

    International Nuclear Information System (INIS)

    Casas Monroy, Oscar; Perdomo Trujillo, Laura

    2002-01-01

    The authors do a diagnostic of the mangroves in Colombia, on the natural regeneration of the mangrove forest, the quality of the waters in the Bay of Chengue and on the structure of the mangrove forest, among other topics

  7. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Science.gov (United States)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  8. Characterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment

    OpenAIRE

    Semboung Lang, Firmin; Destain, Jacqueline; Delvigne, Frank; Druart, Philippe; Ongena, Marc; Thonart, Philippe

    2016-01-01

    Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation result from human activities such as oil and gas exploration and exploitation operations. Remediation of these ecosystems requires the development of adequate and effective strategies. Natural attenuation, biostimulation, and bioaugmentation are all biological soil treatme...

  9. Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta

    Science.gov (United States)

    Fatoyinbo, Temilola; Feliciano, Emanuelle A.; Lagomasino, David; Kuk Lee, Seung; Trettin, Carl

    2018-02-01

    Mangroves are ecologically and economically important forested wetlands with the highest carbon (C) density of all terrestrial ecosystems. Because of their exceptionally large C stocks and importance as a coastal buffer, their protection and restoration has been proposed as an effective mitigation strategy for climate change. The inclusion of mangroves in mitigation strategies requires the quantification of C stocks (both above and belowground) and changes to accurately calculate emissions and sequestration. A growing number of countries are becoming interested in using mitigation initiatives, such as REDD+ (reducing emissions from deforestation and forest degradation), in these unique coastal forests. However, it is not yet clear how methods to measure C traditionally used for other ecosystems can be modified to estimate biomass in mangroves with the precision and accuracy needed for these initiatives. Airborne Lidar (ALS) data has often been proposed as the most accurate way for larger scale assessments but the application of ALS for coastal wetlands is scarce, primarily due to a lack of contemporaneous ALS and field measurements. Here, we evaluated the variability in field and Lidar-based estimates of aboveground biomass (AGB) through the combination of different local and regional allometric models and standardized height metrics that are comparable across spatial resolutions and sensor types, the end result being a simplified approach for accurately estimating mangrove AGB at large scales and determining the uncertainty by combining multiple allometric models. We then quantified wall-to-wall AGB stocks of a tall mangrove forest in the Zambezi Delta, Mozambique. Our results indicate that the Lidar H100 height metric correlates well with AGB estimates, with R 2 between 0.80 and 0.88 and RMSE of 33% or less. When comparing Lidar H100 AGB derived from three allometric models, mean AGB values range from 192 Mg ha-1 up to 252 Mg ha-1. We suggest the best model

  10. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  11. Hyperspectral Estimation of the Chlorophyll Content in Short-Term and Long-Term Restorations of Mangrove in Quanzhou Bay Estuary, China

    Directory of Open Access Journals (Sweden)

    Zhiguo Dou

    2018-04-01

    Full Text Available The chlorophyll content can indicate the general health of vegetation, and can be estimated from hyperspectral data. The aim of this study is to estimate the chlorophyll content of mangroves at different stages of restoration in a coastal wetland in Quanzhou, China, using proximal hyperspectral remote sensing techniques. We determine the hyperspectral reflectance of leaves from two mangrove species, Kandelia candel and Aegiceras corniculatum, from short-term and long-term restoration areas with a portable spectroradiometer. We also measure the leaf chlorophyll content (SPAD value. We use partial-least-squares stepwise regression to determine the relationships between the spectral reflectance and the chlorophyll content of the leaves, and establish two models, a full-wave-band spectrum model and a red-edge position regression model, to estimate the chlorophyll content of the mangroves. The coefficients of determination for the red-edge position model and the full-wave-band model exceed 0.72 and 0.82, respectively. The inverted chlorophyll contents are estimated more accurately for the long-term restoration mangroves than for the short-term restoration mangroves. Our results indicate that hyperspectral data can be used to estimate the chlorophyll content of mangroves at different stages of restoration, and could possibly be adapted to estimate biochemical constituents in leaves.

  12. The role of biogenic structures on the biogeochemical functioning of mangrove constructed wetlands sediments - A mesocosm approach

    International Nuclear Information System (INIS)

    Penha-Lopes, Gil; Kristensen, Erik; Flindt, Mogens; Mangion, Perrine; Bouillon, Steven; Paula, Jose

    2010-01-01

    Benthic metabolism (measured as CO 2 production) and carbon oxidation pathways were evaluated in 4 mangrove mesocosms subjected daily to seawater or 60% sewage in the absence or presence of mangrove trees and biogenic structures (pneumatophores and crab burrows). Total CO 2 emission from darkened sediments devoid of biogenic structures at pristine conditions was comparable during inundation (immersion) and air exposure (emersion), although increased 2-7 times in sewage contaminated mesocosms. Biogenic structures increased low tide carbon gas emissions at contaminated (30%) and particularly pristine conditions (60%). When sewage was loaded into the mesocosms under unvegetated and planted conditions, iron reduction was substituted by sulfate reduction and contribution of aerobic respiration to total metabolism remained above 50%. Our results clearly show impacts of sewage on the partitioning of electron acceptors in mangrove sediment and confirm the importance of biogenic structures for biogeochemical functioning but also on greenhouse gases emission.

  13. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

    Science.gov (United States)

    Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.

    2012-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.

  14. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  15. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands

    NARCIS (Netherlands)

    Hayes, Matthew A.; Jesse, Amber; Tabet, Basam; Reef, Ruth; Keuskamp, Joost A.; Lovelock, Catherine E.

    2017-01-01

    Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how

  16. Diversity and composition of sediment bacteria in subtropical coastal wetlands of North Stradbroke Island, Queensland, Australia

    Science.gov (United States)

    Chuvochina, Maria; Sampayo, Eugenia; Welti, Nina; Hayes, Matthew; Lu, Yang; Lovelock, Catherine; Lockington, David

    2013-04-01

    Coastal wetlands provide a wide variety of important ecosystem services but continue to suffer disturbance, degradation and deforestation. Sediment bacteria are responsible for major nutrient transformation and recycling in these ecosystems. Insight into microbial community composition and the factors that determine them may improve our understanding of biogeochemical processes, food web dynamics, biodegradation processes and, thus, help to develop the management strategies for preserving the ecosystem health and services. Characterizing shifts in community taxa along environmental gradients has been shown to provide a useful tool for determining the major drivers affecting community structure and function. North Stradbroke Island (NSI) in Southern Queensland presents considerable habitat diversity including variety of groundwater dependent ecosystems such as lakes, swamps, sedge-like salt marshes and mangroves. Ecological responses of continuous groundwater extraction for municipal purposes and sand mining operations on NSI are still need to be assessed in order to protect its unique environment. Changes in coastal hydrology due to either climate change or human activity may directly affect microbial populations and, thus, biogeochemical cycles of nutrients. These may result in altering/losing some ecosystem services provided by coastal wetlands. In this study we examine microbial diversity and determine environmental controls on bacterial community structure along a natural transition from freshwater forested wetland (melaleuca woodland), sedge-like salt marsh and into mangroves located at NSI. The study area is characterized by significant groundwater flow, nutrient limitation and sharp transition from one ecosystem type to another. Sediment cores (0-5 cm and 20-25 cm depth) were collected from three representative sites of each zone (mangroves - salt marsh - freshwater wetland) along the salinity gradient in August 2012. Subsamples were set aside for use in

  17. Hydrocarbon biodegradation in intertidal wetland sediments.

    Science.gov (United States)

    McGenity, Terry J

    2014-06-01

    Intertidal wetlands, primarily salt marsh, mangrove and mudflats, which provide many essential ecosystem services, are under threat on numerous fronts; a situation that is made worse by crude-oil pollution. Microbes are the main vehicle for remediation of such sediments, and new discoveries, such as novel biodegradation pathways, means of accessing oil, multi-species interactions, and community-level responses to oil addition, are helping us to understand, predict and monitor the fate of oil. Despite this, there are many challenges, not least because of the heterogeneity of these ecosystems and the complexity of crude oil. For example, there is growing awareness about the toxicity of the oxygenated products that result from crude-oil weathering, which are difficult to degrade. This review highlights how developments in areas as diverse as systems biology, microbiology, ecology, biogeochemistry and analytical chemistry are enhancing our understanding of hydrocarbon biodegradation and thus bioremediation of oil-polluted intertidal wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    Science.gov (United States)

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  19. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  20. ALOS PALSAR Applications in the Tropics and Subtropics: Characterisation, Mapping and Detecting Change in Forests and Coastal Wetlands

    Science.gov (United States)

    Lucas, Richard; Carreiras, Joao; Proisy, Christophe; Buniting, Peter

    2008-11-01

    Research undertaken as part of the Japanese Space Exploration Agency (JAXA) Principal Investigator (PI) and Kyoto and Carbon (K&C) programs has focused on the regional characterization (growth stage as a function of biomass and structure) and mapping of forests across northern Australia and mangroves (including wetlands) in selected tropical regions (northern Australia, Belize, French Guiana and Brazil) using Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) data, either singularly or in conjunction with other remote sensing (e.g., optical) data. Comparison against existing baseline datasets has allowed these data to be used for detecting change in these tropical and subtropical regions. Regional products (e.g., forest growth stage, mangrove/wetland extent and change) generated from the K&C dual polarimetric strip data are anticipated to benefit conservation of these ecosystems and allow better assessments of carbon stocks and changes in these as a function of natural and anthropogenic drivers, thereby supporting key international conventions.

  1. Cordaiteans in paleotropical wetlands: An ecological re-evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Anne [Dept. of Geology and Geophysics, Texas A and M University, College Station, TX 77843-3115 (United States); Ecology and Evolutionary Biology, Texas A and M University, College Station, TX 77843-3115 (United States); Lambert, Lance [Dept. of Geological Sciences, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Costanza, Suzanne [Paleobotanical Museum, Harvard University, Cambridge, MA 02138 (United States); Slone, E.J. [Dept. of Geology and Geophysics, Texas A and M University, College Station, TX 77843-3115 (United States); Cutlip, P.C. [Dept. of Natural Science, St. Petersburg College, St. Petersburg, FL 33733-3489 (United States)

    2010-08-01

    Cordaiteans in cordaite-dominated permineralized peat from Pennsylvanian coals in Iowa have been reconstructed as mangroves using root anatomy, peat taphonomy, and geochemical data. Macrofloral, palynofloral, and conodont biostratigraphy indicate that these peats come from the latest Atokan Blackoak coal and earliest Desmoinesian Cliffland coal (mid-Moscovian), both in the Kalo Formation. Thus, their depositional setting can be used to evaluate the mangrove hypothesis. In Recent mires, thick mangrove peats have accumulated in tropical to subtropical carbonate systems; in contrast, thick tropical freshwater peats have accumulated in siliclastic systems. Kalo Formation coals, which we interpret as freshwater deposits, formed in siliciclastic depositional settings, similar to those of modern tropical freshwater peat, and to other Pennsylvanian coals in North America interpreted as freshwater deposits. In the late Atokan and earliest Desmoinesian (mid-Moscovian), cordaiteans and tree ferns predominated in the Western Interior and Illinois Basins; lycopsids and cordaiteans predominated in the Appalachian and Donets Basins. The scarcity of lycopsid-only mires in North America during the late Atokan-earliest Desmoinesian (mid-Moscovian) suggests drier climates than during the mid-to-late Desmoinesian (late Moscovian). Rather than indicating mangrove swamps, cordaite-dominated peat may indicate climates with a 'low-rain' season. Although most plants in cordaite-dominated peat probably grew in freshwater, coastal mires in climate zones with seasons of 'low-rain' may harbor mangrove taxa. The Changuinola Swamp of Panama, a modern peat-accumulating wetland that has a 'low-rain' season, is a possible analog of ancient cordaite-dominated mires. In Changuinola, most plants require freshwater; however mangroves, sustained by salt-water influx into the swamp, grow along the seaward edge and along blackwater creeks. The 'low-rain' season

  2. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme.

    Science.gov (United States)

    Valderrama-Landeros, L; Flores-de-Santiago, F; Kovacs, J M; Flores-Verdugo, F

    2017-12-14

    Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had  the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.

  3. Advancing mangrove macroecology

    Science.gov (United States)

    Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.

    2017-01-01

    Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and

  4. Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Ayman Abdel-Hamid

    2018-02-01

    Full Text Available Mangroves ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They are among the most productive forest ecosystems. They provide various ecological and economic ecosystem services. Despite of their economic and ecological importance, mangroves experience high yearly loss rates. There is a growing demand for mapping and assessing changes in mangroves extents especially in the context of climate change, land use change, and related threats to coastal ecosystems. The main objective of this study is to develop an approach for mapping of mangroves extents on the Red Sea coastline in Egypt, through the integration of both L-band SAR data of ALOS/PALSAR, and high resolution optical data of RapidEye. This was achieved via using object-based image analysis method, through applying different machine learning algorithms, and evaluating various features such as spectral properties, texture features, and SAR derived parameters for discrimination of mangroves ecosystem classes. Three non-parametric machine learning algorithms were tested for mangroves mapping; random forest (RF, support vector machine (SVM, and classification and regression trees (CART. As an input for the classifiers, we tested various features including vegetation indices (VIs and texture analysis using the gray-level co-occurrence matrix (GLCM. The object-based analysis method allowed clearly discriminating the different land cover classes within mangroves ecosystem. The highest overall accuracy (92.15% was achieved by the integrated SAR and optical data. Among all classifiers tested, RF performed better than other classifiers. Using L-band SAR data integrated with high resolution optical data was beneficial for mapping and characterization of mangroves growing in small patches. The maps produced represents an important updated reference suitable for developing a regional action plan for conservation and management of mangroves resources along

  5. FISHERIES ASSOCIATED WITH MANGROVE ECOSYSTEM IN INDONESIA: A View from a Mangrove Ecologist

    Directory of Open Access Journals (Sweden)

    SUKRISTIJONO SUKARDJO

    2004-01-01

    Full Text Available Blessed with mangrove area of some 9.6 million ha in extent, Indonesia represents an important country with fishery resources being a source of food an d nutrients. The fishery resources utilized by man, such as fishes, crustaceans and mollusks that are found in the mangrove ecosystem/swamp ar ea arc enormous. There is a range of species caught in the mangrove and surrounding areas with over 70 species. However, commercially valued species are limited to a few such as rabbit fish, snapper, grouper, marline catfish, fringe-scale sard ine, and anchovy. Leaf detritus from mangroves contribute a major energy input into fisheries. But information about the study on the relationship between fishery species and mangroves, ecologically and biologically, arc scanty. The mangrove is a physiographic unit, the principal components of which arc organisms. Therefore, the problems are predominantly of a biological nature (e.g., mangroves - fishery relationship. Positive correlation between the mangrove area and penaeid shrimp catch found in Indonesia, the Philippines, Australia and Mexico. Finally, the most important part of the variance of the MSY (Maximum Sustainable Yield of penaieds (53% of the variance could be explained by a combination of area of mangrove habitats and latitude.

  6. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes.

    Science.gov (United States)

    Kelleway, Jeffrey J; Saintilan, Neil; Macreadie, Peter I; Skilbeck, Charles G; Zawadzki, Atun; Ralph, Peter J

    2016-03-01

    Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global 'blue carbon' stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate-mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south-eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km(-2)  yr(-1) (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km(-2) yr(-1) ), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km(-2) yr(-1) (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming. © 2015 John Wiley & Sons Ltd.

  7. Mangrove forest decline

    DEFF Research Database (Denmark)

    Malik, Abdul; Mertz, Ole; Fensholt, Rasmus

    2017-01-01

    Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds...... of diverse marine biota; and for direct use (such as firewood, charcoal, and construction material)—all of which benefit the sustainability of local communities. However, for many mangrove areas of the world, unsustainable resource utilization and the profit orientation of communities have often led to rapid...... and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from...

  8. Investigation of microbial community structure in constructed mangrove microcosms receiving wastewater-borne polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs)

    International Nuclear Information System (INIS)

    Wang, Ya-fen; Wu, Yan; Pi, Na; Tam, Nora Fung-yee

    2014-01-01

    The study aims to examine relationships between microbial community structure and mixed pollutants of polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) in constructed wetland microcosms, planted with Excoecaria agallocha or Kandelia obovata, two common mangrove plant species, and under two tidal regimes, everyday tidal (Te) and no tidal flooding (Tn). Results showed both microbial community structure and the retained amounts of pollutants were significantly determined by tidal regime, while the effect of plant species was small. Higher amounts of PAHs but lower amounts of PBDEs were always retained in sediments under Te than Tn regimes. Accordingly, temporal and vertical distributions of microbial community structure differed greatly between the two tidal regimes. Redundancy analysis further revealed significant correlation between a subgroup of the mixed PAHs and PBDEs with variation in microbial community structure. The findings will help to propose specific strategies to improve the bioremediation efficiency of constructed wetland. - Highlights: • We found synchronous degradation of PAHs and PBDEs in constructed mangrove microcosms. • Retained amounts of PAHs and PBDEs were determined mainly by tidal regime. • Tidal regime in turn significantly determined microbial community structure. • Variations of microbial EL-FAME profiles were more affected by PBDEs than PAHs. • Bap and BDE-154 were two most influential pollutants on microbial community structure. - Sedimentary microbial community structure was significantly determined by tidal regime, which in turn determined retained amounts of PAHs and PBDEs in constructed mangrove microcosms

  9. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store

    Science.gov (United States)

    Livesley, Stephen J.; Andrusiak, Sascha M.

    2012-01-01

    Tidal saline wetlands (TSW), such as mangrove and salt marsh systems, provide many valuable ecosystem services, but continue to suffer disturbance, degradation and deforestation. Tropical mangroves perform a critical role in the exchange and storage of terrestrial-marine carbon but can function as a source of methane (CH 4) and nitrous oxide (N 2O). However, little is known of biogeochemical processes in temperate mangrove and salt marsh systems in the southern hemisphere. In this study, the soil/sediment exchange of CO 2, CH 4 and N 2O was measured seasonally along a natural transition from melaleuca woodland, salt marsh and into mangroves along the Mornington Peninsula edge of Westernport Bay, Victoria, Australia. Soil/sediment physiochemical properties and sediment C density were measured concurrently. The melaleuca woodland soil was a constant CH 4 sink of approximately -25 μg C m -2 h -1 but along the transect this rapidly switched to a weak CH 4 source (mangrove sediments where emissions of up to 375 μg C m -2 h -1 were measured in summer. Sediment CH 4 exchange correlated with salinity, pneumatophore number and the redox potential of sediment water at depth. All three ecosystems were a small N 2O source of ecosystem and season along with soil temperature and salinity. Sediment C density was significantly greater in the salt marsh than the mangrove. Salt marsh sediment C density was 168 Mg C ha -1 which is comparable with that measured globally, whereas the mangrove sediment C density of 145 Mg C ha -1 is among the lowest reported. Contrary to global patterns in terrestrial soil C content and salt marsh sediment C content, data from our study indicate that mangrove sediments from a cooler, drier temperate latitude may store less C than mangroves in warmer and wetter tropical latitudes. Understanding both C storage and the greenhouse gas balance of TSWs will help us to better value these vulnerable ecosystems and manage them accordingly.

  10. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  11. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    Science.gov (United States)

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  12. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  13. Algae associated with mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    are uprooted and enter the mangrove area. The epiphytic algal flora on mangrove trunks, pneumatophores, stilt roots, upper branches and canopies are comparatively poor. With regard to biotic factors there are a number of animals grazing on mangrove associated...

  14. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2015-01-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  15. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2015-12-15

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  16. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Science.gov (United States)

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  17. ANALISIS FINANSIALPOLA PENGGUNAAN LAHAN MANGROVE

    Directory of Open Access Journals (Sweden)

    Indra Gumay Febryano

    2014-11-01

    The expansion of aquaculture in coastal areas has become a major cause of mangroves deforestation. That has been taking place on a massive scale and impact on the social, economics, and ecology aspects in coastal areas. This study aims to explain the value of mangrove resources through the study of the financial analysis of some mangrove land use patterns. Data were collected through in-depth interviews, participant observation, and document analysis. The results showed that some landuse patterns of mangrove in Pesawaran Regency are intensive shrimp farming, mangrove nursery, and ecotourism that financially feasible to be developed. The high value of landuse patterns for intensive shrimp ponds created a high interest on the bussinesmen to own the mangrove. When intensive shrimp farms have a negative impact to the environment and its surrounding communities, also the constrain of mangrove nursery by market, then ecotourism gives great potential to mangrove protection and its biodiversity along the empowerment of local communities.

  18. TINGKAT KEPEKAAN MANGROVE INDONESIA TERHADAP TUMPAHAN MINYAK (The Sensitivity Levels of Indonesian Mangrove to Oil Spills

    Directory of Open Access Journals (Sweden)

    Muarif Muarif

    2016-09-01

    Full Text Available ABSTRAK Kepekaan mangrove merupakan komponen penting dalam menentukan tingkat kepekaan ekosistem mangrove terhadap tumpahan minyak. Mangrove Indonesia dapat dikelompokkan dalam 5 tingkat kepekaan terhadap tumpahan minyak, yaitu tidak peka (Acanthus, Nypa, Inocarpus, Acrostichum, kurang peka (Aegiceras, Excoecaria, Hibiscus, Lumnitzera, Ficus, Scyphiphora, Thespasia, Merope, Osbornea, Pandanus, cukup peka (Bruguiera, Ceriops, Xylocarpus, Heritiera, peka (Rhizophora, dan sangat peka (Avicennia, dan Sonneratia. Penilaian terhadap komunitas mangrove di Indonesia menunjukkan sebagian besar tergolong ke dalam katagori sangat peka dan peka apabila komunitas mangrove tersebut terkena tumpahan minyak.   ABSTRACT The sensitivity of mangrove is an important component to determine the sensitivity of mangrove ecosystem to oil spills. The Indonesian mangrove can be grouped into five levels of sensitivity to the oil spill, include not sensitive (Acanthus, Nypa, Inocarpus, and Acrostichum, low sensitive (Aegiceras, Excoecaria, Hibiscus, Lumnitzera, Ficus, Scyphiphora, Thespasia, Merope, Osbornea, and Pandanus, intermediate sensitive (Bruguiera, Ceriops, Xylocarpus, and Heritiera, sensitive (Rhizophora, and very sensitive (Avicennia, and Sonneratia. Assessment of mangrove communities in Indonesia showed mostly belong to the category of very sensitive and sensitive if the mangrove communities injured by the oil spill.

  19. Mangrove vulnerability index using GIS

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ahmad, Fatimah Shafinaz; Ibrahim, Nuremira

    2018-02-01

    Climate change, particularly its associated sea level rise, is major threat to mangrove coastal areas, and it is essential to develop ways to reduce vulnerability through strategic management planning. Environmental vulnerability can be understood as a function of exposure to impacts and the sensitivity and adaptive capacity of ecological systems towards environmental tensors. Mangrove vulnerability ranking using up to 14 parameters found in study area, which is in Pulau Kukup and Sg Pulai, where 1 is low vulnerability and 5 is very high vulnerability. Mangrove Vulnerability Index (MVI) is divided into 3 main categories Physical Mangrove Index (PMI), Biological Mangrove Index (BMI) and Hazard Mangrove Index (HMI).

  20. Seawater and Freshwater Circulations through Coastal Forested Wetlands on a Caribbean Island

    Directory of Open Access Journals (Sweden)

    Luc Lambs

    2015-07-01

    Full Text Available Structure and composition of coastal forested wetlands are mainly controlled by local topography and soil salinity. Hydrology plays a major role in relation with tides, seaward, and freshwater inputs, landward. We report here the results of a two-year study undertaken in a coastal plain of the Guadeloupe archipelago (FWI. As elsewhere in the Caribbean islands, the study area is characterized by a micro-tidal regime and a highly seasonal climate. This work aimed at understanding groundwater dynamics and origin (seawater/freshwater both at ecosystems and stand levels. These hydrological processes were assessed through 18O/16O and 2H/1H isotopic analyses, and from monthly monitoring of water level and soil salinity at five study sites located in mangrove (3 and swamp forest (2. Our results highlight the importance of freshwater budget imbalance during low rainfall periods. Sustained and/or delayed dry seasons cause soil salinity to rise at the mangrove/swamp forest ecotone. As current models on climate change project decreasing rainfall amounts over the inner Caribbean region, one may expect for this area an inland progression of the mangrove forest to the expense of the nearby swamp forest.

  1. Mangroves and Their Response to a Heavy Metal Polluted Wetland in The North Coast of Puerto Rico

    Directory of Open Access Journals (Sweden)

    Marixa Maldonado-Román

    2016-11-01

    Full Text Available Peninsula La Esperanza is part of the San Juan Bay Estuary and located in the north coast of Puerto Rico. Mangroves are the predominant type of vegetation; that can exhibit diverse external and internal mechanisms allowing them to tolerate and to act as phytoremediators of heavy metals (HM in surrounding soils. This study was focused in three mangrove species that can be found in La Esperanza: Rhizophora mangle (RM, Laguncularia racemosa (LR and Avicennia germinans (AG. Arsenic (As, cadmium (Cd, chromium (Cr, copper (Cu, mercury (Hg, lead (Pb, and zinc (Zn were selected to be identified, measure concentrations in sediments, in green (GL and senescent (SL leaves, and study phytoremediation potential as a mitigation alternative calculating bioconcentration afctors (BCFs and retranslocation percents (RT%. For this, Peninsula La Esperanza was divided in three main research sites. Our results show a significant difference among all heavy metals and their distribution in each site. Moreover, the mangrove species, A. germinans, showed lower RT% for Hg in all three sites, which could be considered the best species for phytoextraction of this heavy metal. The results suggest that the three species have a synergistic effect in the way they manage the heavy metal in surrounding polluted soils, although each species have a different capacity to manage each heavy metal.

  2. Use of Mangroves by Lemurs.

    Science.gov (United States)

    Gardner, Charlie J

    Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar's lemurs are a top global conservation priority, with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals, and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in 5 families using mangroves, representing >20% of lemur species and >50% of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping, and traveling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However, most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognized and merit greater attention from primate researchers and conservationists in Madagascar.

  3. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia

    Science.gov (United States)

    Krauss, K.W.; Cahoon, D.R.; Allen, J.A.; Ewel, K.C.; Lynch, J.C.; Cormier, N.

    2010-01-01

    . Fringe mangrove forests are most susceptible to sea-level rise, such that protection of these outer zones from anthropogenic disturbances (for example, harvesting) may slow the rate at which these zones convert to open water. ?? 2010 GovernmentEmployee: U.S. Geological Survey, National Wetlands Research Center.

  4. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    Science.gov (United States)

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  5. Degradation of mangrove-derived organic matter in mangrove associated sponges

    NARCIS (Netherlands)

    Hunting, E.R.; de Goeij, J.M.; Asselman, M.; van Soest, R.W.M.; van der Geest, H.G.

    2010-01-01

    Sponge communities found in Caribbean mangroves are typical to this habitat: partly endemic and very distinct from sponge communities on nearby reefs. A trade-off between resistance to competitors and predators appears to influence success of individual sponge species in mangrove habitats. We

  6. Monitoring coastal wetlands in a highly dynamic tropical environment

    International Nuclear Information System (INIS)

    Saynor, M.J.; Finlayson, C.M.; Spiers, A.; Eliot, I.

    2001-01-01

    The Alligator Rivers Region in the wet-dry tropics of northern Australia has been selected by government and collaborating agencies as a key study area for the monitoring of natural and human-induced coastal change. The Region contains the floodplain wetlands of Kakadu National Park which have been recognised internationally for their natural and cultural heritage value. A coastal monitoring program for assessing and monitoring environmental change in the Alligator Rivers Region has been established at the Environmental Research Institute of the Supervising Scientist. This program has developed a regional capacity to measure and assess change on the wetlands, floodplains and coastline within the region. Field assessment and monitoring procedures have been developed for the program. The assessment procedures require use of georeferencing and data handling techniques to facilitate comparison and relational overlay of a wide variety of information. Monitoring includes regular survey of biophysical and cultural processes on the floodplains; such as the extension of tidal creeks and mangroves, shoreline movement, dieback in Melaleuca wetlands, and weed invasion of freshwater wetlands. A differential Global Positioning System is used to accurately georeference spatial data and a Geographic Information System is then used to store and assess information. The assessment and monitoring procedures can be applied to the wet-dry tropics in general. These studies are all particularly pertinent with the possibility of greenhouse gases causing global warming and potential sea-level rise, a major possible threat to the valued wetlands of Kakadu National Park, and across the wet-dry tropics in general

  7. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution

    Directory of Open Access Journals (Sweden)

    Mario D.P. Godoy

    2015-06-01

    Full Text Available Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.

  8. KEANEKARAGAM MANGROVE DI WILAYAH TAPAK, TUGUREJO, SEMARANG

    Directory of Open Access Journals (Sweden)

    NKT Martuti

    2014-06-01

    Full Text Available Abstrak __________________________________________________________________________________________ Konversi kawasan mangrove menjadi lahan tambak ikan/udang merupakan penyebab utama rusaknya ekosistem mangrove di Indonesia. Eksploitasi kawasan mangrove yang terus menerus dilakukan berpotensi mereduksi keanekaragaman spesies tumbuhan yang memiliki peran dan fungsi utama secara ekologis. Dusun Tapak merupakan salah satu wilayah di Kota Semarang yang ekosistem mangrovenya masih terjaga. Pengumpulan data primer pada penelitian ini meliputi pengukuran sebaran vegetasi mangrove. Data vegetasi mangrove dianalisis untuk mendapatkan Indeks Nilai Penting (INP dan Indeks Keanekaragaman. Pada tingkat pertumbuhan pohon, Avicennia marina merupakan spesies yang memiliki nilai penting tertinggi pada S II (300 %, S III (287,14 %, dan S IV (186,08 %, sedangkan spesies Rhizophora mucronata memiliki nilai penting tertinggi pada S I (232,06. Berdasarkan hasil analisis vegetasi mangrove di Wilayah Tapak, terdapat 5 spesies mangrove yang berhasil dijumpai, yaitu Rhizophora mucronata, Avicennia marina, Excoecaria aghalloca, Brugueira cylindrical, dan Xylocarpus mocullensis. Hasil penelitian dapat disimpulkan  bahwa Nilai Keanekaragaman mangrove wilayah Tapak rendah (0-0,469.  Hal ini dikarenakan ekosistem mangrove Wilayah Tapak merupakan ekosistem buatan, dengan jenis dan jumlah mangrove yang dominan terdiri dari Rhizophora mucronata dan Avicennia marina.   Abstract __________________________________________________________________________________________ The conversion of the mangrove conservation area into fish/shrimp ponds has been the major cause of the destruction of mangrove ecosystem in Indonesia. The ongoing exploitation of mangrove area potentially reduces the plant species diversity of the area. The mangrove area in Tapak Sub-Village of Semarang City is relatively conserved. The primary data collected in this research consisted of the mangrove vegetation

  9. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  10. Review: Mangrove ecosystem in Java: 2. Restoration

    Directory of Open Access Journals (Sweden)

    PURIN CANDRA PURNAMA

    2004-07-01

    Full Text Available R E V I E W:Ekosistem Mangrove di Jawa: 2. RestorasiThe restoration of mangroves has received a lot of attentions world wide for several reasons. Mangrove ecosystem is very important in term of socio-economic and ecology functions. Because of its functions, wide range of people paid attention whenever mangrove restoration taken place. Mangrove restoration potentially increases mangrove resource value, protect the coastal area from destruction, conserve biodiversity, fish production and both of directly and indirectly support the life of surrounding people. This paper outlines the activities of mangrove restoration on Java island. The extensive research has been carried out on the ecology, structure and functioning of the mangrove ecosystem. However, the findings have not been interpreted in a management framework, thus mangrove forests around the world continue to be over-exploited, converted to aquaculture ponds, and polluted. We strongly argue that links between research and sustainable management of mangrove ecosystem should be established.

  11. Coastal sediment elevation change following anthropogenic mangrove clearing

    Science.gov (United States)

    Hayden, Heather L.; Granek, Elise F.

    2015-11-01

    Coastal mangrove forests along tropical shorelines serve as an important interface between land and sea. They provide a physical buffer protecting the coastline from erosion and act as sediment "traps" catching terrestrial sediment, thus preventing smothering of subtidal coral reefs. Coastal development that removes mangrove habitat may impact adjacent nearshore coral reefs through sedimentation and nutrient loading. We examined differences in sediment elevation change between patches of open-coast intact and anthropogenically cleared red mangroves (Rhizophora mangle) on the east side of Turneffe Atoll, Belize, to quantify changes following mangrove clearing. Samples were collected over a 24 month period at five study sites, each containing paired intact (+mangrove) and cleared (-mangrove) plots. Five sediment elevation pins were deployed in each plot: behind areas cleared of mangroves (-mangrove) and behind adjacent intact mangroves (+mangrove). Sediment elevation increased at intact mangrove sites (M = +3.83 mm, SE = 0.95) whereas cleared mangrove areas suffered elevation loss (M = -7.30 mm, SE = 3.38). Mangroves inshore of partial or continuous gaps in the adjacent fringing reefs had higher rates of elevation loss (M = -15.05 mm) than mangroves inshore of continuous fringing reefs (M = -1.90 mm). Our findings provide information on potential effects of mangrove clearing and the role of offshore habitat characteristics on coastal sediment trapping and maintenance of sediment elevation by mangroves. With implications for coastline capacity to adjust to sea level rise, these findings are relevant to management of coastal fringing mangrove forests across the Caribbean.

  12. Discrimination of coastal wetland environments in the Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery

    Science.gov (United States)

    Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.

    2011-11-01

    This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.

  13. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves

    Science.gov (United States)

    Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.

    2014-03-01

    Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.

  14. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  15. The carbon holdings of northern Ecuador's mangrove forests

    OpenAIRE

    Hamilton, Stuart E.; Lovette, John; Borbor, Mercy; Millones, Marco

    2016-01-01

    Within a GIS environment, we combine field measures of mangrove diameter, mangrove species distribution, and mangrove density with remotely sensed measures of mangrove location and mangrove canopy cover to estimate the mangrove carbon holdings of northern Ecuador. We find that the four northern estuaries of Ecuador contain approximately 7,742,999 t (plus or minus 15.47 percent) of standing carbon. Of particular high carbon holdings are the Rhizophora mangle dominated mangrove stands found in-...

  16. Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida

    Directory of Open Access Journals (Sweden)

    Daniel A. Marchio

    2016-05-01

    Full Text Available This study compares carbon sequestration rates along two independent tidal mangrove creeks near Naples Bay in Southwest Florida, USA. One tidal creek is hydrologically disturbed due to upstream land use changes; the other is an undisturbed reference creek. Soil cores were collected in basin, fringe, and riverine hydrogeomorphic settings along each of the two tidal creeks and analyzed for bulk density, total organic carbon profiles, and sediment accretion. Radionuclides 137Cs and 210Pb were used to estimate recent sediment accretion and carbon sequestration rates. Carbon sequestration rates (mean ± standard error for seven sites in the two tidal creeks on the Naples Bay (98 ± 12 g-C m−2·year−1 (n = 18 are lower than published global means for mangrove wetlands, but consistent with other estimates from the same region. Mean carbon sequestration rates in the reference riverine setting were highest (162 ± 5 g-C m−2·year−1, followed by rates in the reference fringe and disturbed riverine settings (127 ± 6 and 125 ± 5 g-C m−2·year−1, respectively. The disturbed fringe sequestered 73 ± 10 g-C m−2·year−1, while rates within the basin settings were 50 ± 4 g-C m−2·year−1 and 47 ± 4 g-C m−2·year−1 for the reference and disturbed creeks, respectively. These data support our hypothesis that mangroves along a hydrologically disturbed tidal creek sequestered less carbon than did mangroves along an adjacent undisturbed reference creek.

  17. Mangroves - Nursery for fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Singh, C.

    Mangrove habitats are of a great ecological and socio-economic significance. Goa exhibits fringing mangroves comprising of 15 species. Shizophora mucronata, Avicennia officinalis, Sonneretia alba, S. caseolaris, Exoecaria agallocha and Acanthus...

  18. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  19. KEANEKARAGAMAN JENIS KRUSTASEA DI KAWASAN MANGROVE KABUPATEN PURWOREJO, JAWA TENGAH (Biodiversity of Crustacea in Mangrove Area, Purworejo Regency, Central Java

    Directory of Open Access Journals (Sweden)

    Slamet Mardiyanto Rahayu

    2017-05-01

    Full Text Available dan pendidikan. Luas kawasan mangrove di Kabupaten Purworejo semakin berkurang akibat adanya penebangan, pemukiman, tambak, dan pertanian. Ada tiga stasiun, yaitu mangrove lebat (Desa Gedangan, mangrove sedang (Desa Jatikontal, dan mangrove jarang (Desa Ngentak. Ditemukan 19 jenis dari 6 famili krustasea yaitu Ocypodidae, Sesarmidae, Portunidae,Alpheidae, Palaemonidae, dan Penaeidae. Terdapat empat jenis krustasea bernilai ekonomi tinggi. Kepadatan krustasea tertinggi di stasiun I, terendah di stasiun III. Indeks keanekaragaman (H’ krustasea di seluruh stasiun termasuk kategori sedang dengan. Indeks keseragaman (E krustasea di seluruh stasiun termasuk kategori sedang. Indeks  dominansi (C krustasea di seluruh stasiun termasuk kategori rendah. Vegetasi mangrove pada stasiun I adalah Rhizophora mucronata, Nypa fruticans, Sonneratia alba, dan Hibiscus tiliaceus. Vegetasi mangrove pada stasiun II adalah Sonneratia caseolaris, Rhizophora stylosa, N.fruticans, H.tiliaceus, dan Morinda citrifolia.Vegetasi mangrove pada stasiun III adalah S.alba, S.caseolaris, N.fruticans, dan R.mucronata. Kondisi faktor lingkungan di seluruh stasiun relatif baik untuk kehidupan mangrove dan krustasea.   Kata Kunci: krustasea, mangrove, Purworejo, keanekaragaman   Kata Kunci: krustasea, mangrove, Purworejo, keanekaragaman

  20. Recent advances in understanding Colombian mangroves

    Science.gov (United States)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  1. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    Directory of Open Access Journals (Sweden)

    Jennifer M Peterson

    Full Text Available Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  2. Mangrove Conservation in East Java: The Ecotourism Development Perspectives

    Directory of Open Access Journals (Sweden)

    Luchman Hakim

    2017-09-01

    Full Text Available An analysis of the role of mangrove ecosystems in tourism was undertaken in order to build a strategy for mangrove conservation and conceptualize sustainable mangrove-based tourism development in East Java, Indonesia. The results of the present study suggest that mangroves could be used as nature-based tourism destinations. While tourism in mangrove areas in East Java clearly contributes to mangrove conservation, it still lacks a mangrove tour program, in which it is important to deliver the objectives of ecotourism. For the sustainable use of mangrove biodiversity as a tourist attraction, it is essential to know the basic characteristics of mangroves and establish mangrove tourism programs which are able to support a conservation program. It is also crucial to involve and strengthen the participation of local communities surrounding mangrove areas. The involvement of local wisdom could increase the sustainability of mangrove ecosystems.

  3. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  4. Natural Products from Mangrove Actinomycetes

    Science.gov (United States)

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  5. Environmental Policy of Mangroves Management in Rembang Regency

    Science.gov (United States)

    Roziqin, Ali

    2018-02-01

    Mangrove area is an area overgrown mangrove in a natural or artificial, to maintain the environmental sustainability of coastal areas. In addition to maintaining the ecosystem of biodiversity, the mangrove area also has a role to social-economic, and socio-cultural. Rembang regency is one of the districts on the north coast of Java which has a large mangrove area. However, due to the high economic activity in the region of Rembang Regency, the mangrove area becomes less and damaged. This research to describe how environmental policy to manage mangrove area in Rembang regency with qualitative descriptive approach. The result is the role of government and society gradually able to restore mangrove ecosystem. Moreover the district government through Environmental Agency has made a masterplan for the development of mangrove ecotourism in Pasarbanggi Village. The existence of sustainable mangrove conservation has a positive impact on the environment and society.

  6. Natural Products from Mangrove Actinomycetes

    Directory of Open Access Journals (Sweden)

    Dong-Bo Xu

    2014-05-01

    Full Text Available Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.

  7. Comparison of the quantitative determination of soil organic carbon in coastal wetlands containing reduced forms of Fe and S

    Science.gov (United States)

    Passos, Tassia R. G.; Artur, Adriana G.; Nóbrega, Gabriel N.; Otero, Xosé L.; Ferreira, Tiago O.

    2016-06-01

    The performance of the Walkley-Black wet oxidation chemical method for soil organic carbon (SOC) determination in coastal wetland soils (mangroves, coastal lagoons, and hypersaline tidal flats) was evaluated in the state of Ceará along the semiarid coast of Brazil, assessing pyrite oxidation and its effects on soil C stock (SCS) quantification. SOC determined by the chemical oxidation method (CWB) was compared to that assessed by means of a standard elemental analyzer (CEA) for surficial samples (mangroves, whereas lower values were found in the other settings. CWB values were higher than CEA values. Significant differences in SCS calculations based on CWB and CEA were recorded for the coastal lagoons and hypersaline tidal flats. Nevertheless, the CWB and CEA values were strongly correlated, indicating that the wet oxidation chemical method can be used in such settings. In contrast, the absence of correlation for the mangroves provides evidence of the inadequacy of this method for these soils. Air drying and oxidation decrease the pyrite content, with larger effects rooted in oxidation. Thus, the wet oxidation chemical method is not recommended for mangrove soils, but seems appropriate for SOC/SCS quantification in hypersaline tidal flat and coastal lagoon soils characterized by lower pyrite contents.

  8. A conceptual approach to integrate management of ecosystem service and disservice in coastal wetlands

    Directory of Open Access Journals (Sweden)

    Jon Knight

    2017-04-01

    Full Text Available Management of coastal wetlands is increasingly difficult because of increasing pressure arising from anthropogenic causes. These include sea level and climate change as well as coastline development caused by population growth and demographic shifts, for example, amenity migration where people move to coastal communities for lifestyle reasons. Management of mangroves and salt marshes is especially difficult because maintaining ecosystem values, including the goods and services provided, is countered by the potential of enhancing or even creating ecosystem disservices, such as unpleasant odour and mosquito hazards. Here we present, explain and apply a conceptual model aimed at improving understanding of management choices that primarily focus on mitigation of disservice while enabling improvement in ecosystem services. The model was developed after more than 30 years of habitat management following modification of a salt marsh to control mosquito production. We discuss the application of the model in a mangrove forest known to produce mosquitoes and outline the benefits arising from using the model.

  9. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    Science.gov (United States)

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  10. Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands

    Science.gov (United States)

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A.; Nunes, Paulo A. L. D.

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from 215 to 233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  11. Mangrove macrobenthos: Assemblages, services, and linkages

    Science.gov (United States)

    Lee, S. Y.

    2008-02-01

    Macrobenthic assemblages are relatively poorly known compared to other components of the mangrove ecosystem. Tropical mangroves support macrobenthic biodiversity resources yet to be properly documented and interpreted. Some methodological challenges, such as the generally high spatial heterogeneity and complexity of the habitat, evidently reduce sampling efficiency and accuracy, while also leaving some microhabitats under-sampled. Macrobenthic assemblage structure seems to be influenced by local environmental conditions, such as hydroperiod, organic matter availability and sediment characteristics. Brachyurans, gastropods and oligochaetes dominate in the sediment, with the former two groups also common on hard surfaces provided by tree trunks, while insects and arachnids inhabit the canopy. Traditionally, studies of mangrove macrobenthos have focused on assemblage structure or the biology of individual species, but more complex inter-specific interactions and the inter-relationship between habitat and the biota are recently being addressed. Brachyuran crabs are the best-studied macrobenthos group, but many issues about their role in mangrove ecosystem dynamics are still controversial. Despite many species of mangrove macrobenthos being referred to as 'trophic dead ends', most serve as important links between recalcitrant mangrove organic matter and estuarine secondary production, through feeding excursion by mobile nekton during the high tide, and macrobenthos-mediated processing and exportation of organic matter. A significant difference in the standing crop biomass of forests between the Indo-west-Pacific (IWP)' and Atlantic-east-Pacific (AEP) mangroves may be related to the difference in species richness of mangrove as well as macrobenthos diversity in the two bioregions. Such differences in assemblage structure may also result in different ecosystem functioning, but the nature of the links is, however, yet to be explored. There is also a strong need for

  12. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    Science.gov (United States)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  13. Management Mangrove Experiences Form Coastal People

    Science.gov (United States)

    Indah, P. N.; Radianto, I.; Abidin, Z.; Amir, I. T.; Pribadi, D. U.

    2018-01-01

    The mangrove area has an important meaning in beach ecosystem, both from ecological and economical aspects. For this, the rehabilitation of mangrove forest is done as one effort that aims to maintain and return the mangrove forest function as one of life system supporters, especially in beach area. The most respondent ages of coast people of Gending, Pajarakan, dan Kraksaan districts, Probolinggo Regency are between 30 to 59 years old, i.e. as 86 people or 95.55% indicates that coast people are productive ages so they can be hoped very potential for having role in supporting mangrove ecosystem management of Probolinggo Regency coast. The average respondent educational rates are mostly Elementary School to Senior High School, i.e. as 76 people. Generally, human resources of coast people have relatively good education level. Thereby, it can be hoped to have positive potencies for the role of coast people themselves toward the mangrove ecosystem management support of Probolinggo Regency coast. The average most respondents have family burdens two and three people as six people or 6.67 percent. But, there are still three respondents who have not have family burdens. Generally, more and more members help in respondent’s jobs. The mangrove ecosystem management strategy of Probolinggo Regency coast is by involving people role (people and people figures) and governmental supports through the models of mangrove forest management strategy, the model of embankment cultivation management by entering mangrove as input resources of production facilities, and ecotourism management by the purpose of improving people income.

  14. Global Mangrove Forests Distribution, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Mangrove Forests Distribution, 2000 data set is a compilation of the extent of mangroves forests from the Global Land Survey and the Landsat archive with...

  15. Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific

    Directory of Open Access Journals (Sweden)

    Chunhua Zhang

    2014-11-01

    Full Text Available Given the scale and rate of mangrove loss globally, it is increasingly important to map and monitor mangrove forest health in a timely fashion. This study aims to identify the conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using proximal hyperspectral remote sensing techniques. The dominant mangrove species in this area includes the red (Rhizophora mangle, the black (Avicennia germinans and the white (Laguncularia racemosa mangrove. Moreover, large patches of poor condition black and red mangrove and healthy dwarf black mangrove are commonly found. Mangrove leaves were collected from this forest representing all of the aforementioned species and conditions. The leaves were then transported to a laboratory for spectral measurements using an ASD FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., USA. R2 plot, principal components analysis and stepwise discriminant analyses were then used to select wavebands deemed most appropriate for further mangrove classification. Specifically, the wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were selected, which correspond to chlorophyll absorption, red edge, starch, cellulose, nitrogen and protein regions of the spectrum. The classification and validation indicate that these wavebands are capable of identifying mangrove species and mangrove conditions common to this degraded forest with an overall accuracy and Khat coefficient higher than 90% and 0.9, respectively. Although lower in accuracy, the classifications of the stressed (poor condition and dwarf mangroves were found to be satisfactory with accuracies higher than 80%. The results of this study indicate that it could be possible to apply laboratory hyperspectral data for classifying mangroves, not only at the species level, but also according to their health conditions.

  16. IDENTIFIKASI TINGKAT KERAWANAN DEGRADASI KAWASAN HUTAN MANGROVE DESA MUARA, TANGERANG, BANTEN

    Directory of Open Access Journals (Sweden)

    Hadisti Nur Aini

    2015-07-01

    Full Text Available This study is intended to estimate the vulnerability of degradation of mangrove forest in Muara Village, Tangerang, Banten. There are five species of mangroves found in mangrove forest of Muara, which are: Avicennia alba, Avicennia officinnalis. Rhizophora apiculata, Rhizophora stylosa, and Rhizophora mucronata. The results showed that the mangrove forest in Muara has a high vulnerability of degradation based on the three vegetation characteristics, such as: density, domination, and biodiversity of mangrove species. The density of mangrove vegetation has only reached 739 individual/Ha. While the biodiversity of mangrove species is low and the domination level of mangrove species is high, in which the dominant species is Rhizophora mucronata. Mangrove rehabilitation activities are required by revegetation methods, and the mangrove species that are used in revegetation process are local species which available in the mangrove forest of Muara. Mangrove rehabilitation process that needs to be done is by revegetation of mangroves and mangrove species conservation. Mangrove species which is suitable for mangrove rehabilitation in Muara Village are Rhizophora mucronata and Avecinnea alba. Keywords: mangrove, forest, degradation, rehabilitation

  17. Mangroves

    Indian Academy of Sciences (India)

    Proper stress management is the only survival strategy of man- grove plants facing extreme ... Distribution and Indian Perspective. Mangroves occur in ..... and economic concern to many developing countries including. India. Indiscriminate ...

  18. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  19. The Amazon Mangrove Coast: The Role of Geological Factors in its Evolution During the Quaternary

    Science.gov (United States)

    Souza-Filho, P. W.; Lara, R.; Silveira, O.; Miranda, F. P.

    2007-05-01

    reactived by peripheral bulge. In this sector, the location of these inactive cliffs is spatially coincident with the peripheral bulge. Hence, we suggest that the inactive cliffs are a result of the flexural reactivation of ancient normal faults, which is supported by studies of in the northeastern Brazilian coast. Sector 3 is also marked by normal faults and peripheral bulge influence, presenting geomorphological characteristics similar to Sector 2. In Sectors 2 and 3 the retreated coastal plateau and inundation deposits of the estuaries allowed the development of wide tidal flats where the largest mangrove belt is established. In Sector 4 there is a great mangrove development. This area is characterized by a gravimetric high, with little influenced by peripheral bulge and is structurally controlled by normal faults limited by the Cururupu arch. The interaction of regional framework and flexural deformation explains the reactivation of ancient faults responsible for the geomorphology of the North Brazilian mangrove coast. However, further structural and geodetic monitoring from interferometric SAR data are needed for a more detailed knowledge of the Quaternary tectonics of this region. This may provide elements for a better comprehension of wetland evolution in the moist tropics, particularly regarding their response to coastal subsidence and relative sea level changes in time of global changes.

  20. Strategi Pengembangan Ekowisata Mangrove Wonorejo Surabaya

    Directory of Open Access Journals (Sweden)

    Khoirul Umam

    2016-03-01

    Full Text Available The aim of the research are to describe the potential of ecotourism development in mangrove forest, to describe the benefits that can be gained by the community, to analyze the internal and external environment in the development of Mangrove Ecotourism Surabaya, and to formulate development strategiy of Mangrove Ecotourism Wonorejo Surabaya based on internal and external environment. The first and second objectives were answered using descrip­tive analysis, while the third objective was answered using IFAS (Internal Factors Analysis Strategy and EFAS (External Factors Analysis. The result showed that the Mangrove Ecotourism Wonorejo Surabaya has potential aspects to develop in referring to the ecology places/sutainability places, the natural resources including flora and fauna, the government support, the organizational, and the community of Wonorejo support for facilities and infrastructure. There are three aspects in terms of the benefit that owned by Mangrove Ecotourism Wonorejo Surabaya includ­ing social, economic and agribusiness aspects. Based on internal factors analysis (IFAS and external factors analysis (EFAS, it was suggested that the aggressive strategy (growth, It can uses to get the opportunity strengthly, must be taken to develop mangrove ecotourism potential in Wonorejo, Surabaya.

  1. The use of mangroves in coastal protection

    NARCIS (Netherlands)

    Loi, T.T.; Verhagen, H.J.

    2012-01-01

    Apart from many ecological advantages, mangroves in front of a coastal defence may lower the construction and maintenance costs of the defence. Although mangroves have hardly any reducing effect on water levels (and on tsunami impact) mangroves may significantly reduce wave attack on a coastal dike,

  2. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  3. Preparing for Sea-level Rise: Conflicts and Opportunities in Coastal Wetlands Coexisting with Infrastructure

    Science.gov (United States)

    Rodriguez, J. F.; Saco, P. M.; Sandi, S. G.; Saintilan, N.; Riccardi, G.

    2017-12-01

    Even though on a large scale the sustainability and resilience of coastal wetlands to sea-level rise depends on the slope of the landscape and a balance between the rates of soil accretion and the sea-level rise, local man-made flow disturbances can have comparable effects. Coastal infrastructure controlling flow in the wetlands can pose an additional constraint on the adaptive capacity of these ecosystems, but can also present opportunities for targeted flow management to increase their resilience. Coastal wetlands in SE Australia are heavily managed and typically present infrastructure including flow control devices. How these flow control structures are operated respond to different ecological conservation objectives (i.e. bird, frog or fish habitat) that can sometimes be mutually exclusive. For example, promoting mangrove establishment to enhance fish habitat results in saltmarsh decline thus affecting bird habitat. Moreover, sea-level rise will change hydraulic conditions in wetlands and may result in some flow control structures and strategies becoming obsolete or even counterproductive. In order to address these problems and in support of future management of flows in coastal wetlands, we have developed a predictive tool for long-term wetland evolution that incorporates the effects of infrastructure and other perturbations to the tidal flow within the wetland (i.e. vegetation resistance) and determines how these flow conditions affect vegetation establishment and survival. We use the model to support management and analyse different scenarios of sea-level rise and flow control measures aimed at preserving bird habitat. Our results show that sea-level rise affects the efficiency of management measures and in some cases may completely override their effect. It also shows the potential of targeted flow management to compensate for the effects of sea-level rise.

  4. Aspects of productivity of mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.

    The term 'mangroves' refers to an assemblage of different flowering plants which can grow in saline brackish water areas like creeks, backwaters, estuaries and deltas. Mangrove forest cover in the tropical area is about 0.5 million km sup(2...

  5. A global predictive model of carbon in mangrove soils

    Science.gov (United States)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  6. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm

    Science.gov (United States)

    Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R.

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline

  7. The physiology of mangrove trees with changing climate

    Science.gov (United States)

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  8. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  9. Associational resistance protects mangrove leaves from crab herbivory

    Science.gov (United States)

    Erickson, Amy A.; Bell, Susan S.; Dawes, Clinton J.

    2012-05-01

    While associational defenses have been well documented in many plant and algal ecosystems, this study is the first to document associational resistance in mangroves. Mangrove tree crab (Aratus pisonii) density and herbivory on three life-stages of the red mangrove (Rhizophora mangle) were documented in pure red versus mixed-species and predominantly non-red mangrove stands containing black (Avicennia germinans) and white (Laguncularia racemosa) mangroves in 1999-2000 in Tampa Bay, Florida. This study first established that R. mangle is the focal species in the context of associational resistance because it is damaged more than either of the other mangrove species. Next, it was hypothesized that crab density and leaf damage on R. mangle would be lower when in mixed-species and predominantly non-red versus red mangrove stands. A non-significant trend suggested that crab density varies among stands, and crab damage on R. mangle leaves was significantly lower in mixed-species and non-red stands. Mechanisms to explain associational resistance were examined. Positive Pearson correlations between the percent of adult R. mangle in a stand and both crab density and R. mangle leaf damage provided support for the resource concentration hypothesis. Limited support was found for the attractant-decoy hypothesis because the total amount of damaged leaves of all mangrove species combined typically differed among stands, suggesting that crabs were not shifting to alternative mangrove species to offset reduced availability of R. mangle leaves. Finally, while R. mangle seedlings were shorter in non-red stands compared to others, intra-specific differences in R. mangle leaf chemistry and sclerophylly among stands failed to explain associational patterns. These combined results argue for the need for additional experiments to elucidate mechanisms responsible for defensive plant associations in mangrove ecosystems and to determine whether such associations could be of use in mangrove

  10. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    Science.gov (United States)

    Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  11. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    Directory of Open Access Journals (Sweden)

    Anne F Van Loon

    Full Text Available Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number

  12. Mangrove microclimates alter seedling dynamics at the range edge.

    Science.gov (United States)

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  13. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  14. Strategi Pengembangan Ekowisata Mangrove Wonorejo Surabaya

    OpenAIRE

    Umam, Khoirul; Sudiyarto, Sudiyarto; Winarno, Sri Tjondro

    2015-01-01

    The aim of the research are to describe the potential of ecotourism development in mangrove forest, to describe the benefits that can be gained by the community, to analyze the internal and external environment in the development of Mangrove Ecotourism Surabaya, and to formulate development strategiy of Mangrove Ecotourism Wonorejo Surabaya based on internal and external environment. The first and second objectives were answered using descrip­tive analysis, while the third objective was answe...

  15. Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

    Science.gov (United States)

    Ahmad, Rifandi Raditya; Fuad, Muhammad

    2018-02-01

    Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

  16. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  17. Ecosystem carbon stocks of micronesian mangrove forests

    Science.gov (United States)

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  18. Economic Valuation of Mangrove Restoration in Indonesia

    Directory of Open Access Journals (Sweden)

    Djoko Suprapto

    2015-12-01

    Full Text Available Mangrove forest is one of the important ecosystems in Karimunjawa, Indonesia. It provides a variety of services both ecologically and economically. However, over-exploited activity, such as timber theft, can be threatening the sustainability of mangrove forest in Karimunjawa now and in the future. Thus, the improved management for mangrove forest is necessary to ensure its sustainability, and it is depending on how people value the conservation from economic and environment consideration. This study examines the factors influencing on the willingness to pay (WTP of respondents for mangrove restoration in Karimunjawa. A total of 502 respondents were interviewed using census method. The method employed is Contingent Valuation Method (CVMSingle Bounded. In CVM, the logit model was defined based on dichotomous choice method to estimate the willingness-to-pay (WTP randomly with three different starting bid value. Findings showed that local awareness of the importance of the values given by mangroves was popularized among local communities. The findings also indicated that respondents who are higher education and have more income were more likely to pay for the mangrove restoration.

  19. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    Science.gov (United States)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  20. A global predictive model of carbon in mangrove soils

    International Nuclear Information System (INIS)

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  1. Population characteristics of the mangrove clam Polymesoda (geloina) erosa (solander, 1786) in the Chorao mangrove, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Naik, S.; Furtado, R.; Ansari, Z.A.; Chatterji, A.

    Mangroves are the tropical and sub tropical coastal and/or estuarine intertidal or island plant communities. Since the early history of mankind, mangrove ecosystems have played important role in the socio-economic development of coastal people...

  2. Deposition gradients across mangrove fringes

    NARCIS (Netherlands)

    Horstman, Erik Martijn; Mullarney, Julia C.; Bryan, K.R.; Sandwell, Dean R.; Aagaard, Troels; Deigaard, Rolf; Fuhrman, David

    2017-01-01

    Observations in a mangrove in the Whangapoua Harbour, New Zealand, have shown that deposition rates are greatest in the fringing zone between the tidal flats and the mangrove forest, where the vegetation is dominated by a cover of pneumatophores (i.e. pencil roots). Current speeds and suspended

  3. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    Science.gov (United States)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  4. Penaeid prawns and their culture in mangrove areas

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.

    Culture of penaeid prawns in mangrove areas has been described. Mangrove ecosystem is rich in particulate organic matter or detritus. Detritus is nutritionally very rich and is the major source of food for the juvenile prawns. The mangrove...

  5. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  6. Hydrological classification, a practical tool for mangrove restoration

    NARCIS (Netherlands)

    Loon, van Anne F.; Brake, te Bram; Huijgevoort, Van Marjolein H.J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration

  7. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets

    Science.gov (United States)

    Mangroves are essential fish habitats acting as shelters and nurseries, but the relative contribution of mangrove resources to fish diets relies on site-specific context and fish life history stage. Stable isotope (δ13C, δ15N) and gut-content analyses were used to investigate siz...

  8. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    Science.gov (United States)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  9. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    International Nuclear Information System (INIS)

    Marchand, C.; Fernandez, J.-M.; Moreton, B.

    2016-01-01

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low. • Low

  10. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, C., E-mail: cyril.marchand@ird.fr [Institut de Recherche pour le Développement (IRD), UR 206/UMR 7590 IMPMC, 98848 Nouméa, New Caledonia (France); Fernandez, J.-M.; Moreton, B. [AEL/LEA, 7 rue Loriot de Rouvray, 98800 Nouméa, New Caledonia (France)

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low.

  11. A mangrove creek restoration plan utilizing hydraulic modeling

    Science.gov (United States)

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. As a result, the restoration of mangrove forests has become an important topic of research. Urban development has been a primary cause for mangrove destruction and d...

  12. Mangroves can provide protection against wind damage during storms

    Science.gov (United States)

    Das, Saudamini; Crépin, Anne-Sophie

    2013-12-01

    Research has established that mangroves can protect lives and property from storms by buffering the impacts of storm surges. However, their effects in attenuating wind velocity and providing protection from wind damage during storms are not known. This study examined whether mangroves attenuate damage from cyclonic winds and found that they provide substantial protection to properties, even relatively far away from mangroves and the coast. We devised a theoretical model of wind protection by mangroves and calibrated and applied this model using data from the 1999 cyclone in the Odisha region of India. The model predicted and quantified the actual level of damage reasonably accurately and showed that mangroves reduced wind damage to houses. The wind protection value of mangroves in reducing house damage amounted to approximately US$177 per hectare at 1999 prices. This provides additional evidence of the storm protection ecosystem services that mangroves supply in the region and an additional reason to invest in mangrove ecosystems to provide better adaptability to coastal disasters such as storms.

  13. LESSON LEARNED FROM MANGROVE REHABILITATION PROGRAM IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2017-07-01

    Full Text Available Indonesia as an archipelagic country more than 17,504 islands with the length of coastline estimated at 95,181 km bears mangroves from several meters to several kilometers. They grow extensively in the five big islands (Jawa, Sumatra, Kalimantan, Sulawesi, Papua. At the year of 2009, Agency of Survey Coordination and National Mapping (Bakosurtanal of Indonesia reported the existing mangrove forest area in Indonesia of about 3,244,018 ha, however Directorate General of Land Rehabilitation and Social Forestry, Ministry of Forestry (Ditjen RLPS MoF of Indonesia at 2007 reported about 7,758,411 ha of mangrove area in Indonesia (including existing vegetated mangrove area. It was further reported that those mangroves were 30.7% in good condition, 27.4% moderate-destroyed, and 41.9% heavy-destroyed. In order to rehabilitate destroyed mangrove ecosystems, Indonesia applies at least three type of planting designs (square planting design, zig zag planting design, and cluster planting design and eight planting techniques (“banjar harian” technique, bamboo pole technique, guludan technique, water break technique, huge polybag technique, ditch muddy technique, huge mole technique, cluster technique. Generally, in Indonesia Rhizophora spp. are used for mangrove rehabilitation and/or restoration with the spacing of 1x1 m spending varied planting cost based on the site local condition and planting technique used. The mangrove planting ranged from about Rp. 14.2 million using propagules to Rp. 18.5 million using cultured seedlings. Recently, local community used to utilizing associated mangrove aquatic fauna for supporting their daily life as well as utilizing mangrove habitat for multipurpose uses through agroforestry techniques (silvofishery, agrosilvofishery, agrosilvopastoralfishery systems. So that, the good mangrove ecosystem serves luxurious both flora and fauna species (biodiversity as well as their abundance for significantly

  14. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    International Nuclear Information System (INIS)

    Parida, A.; Parani, M.; Lakshmi, M.; Elango, S.; Ram, N.; Anuratha, C.S.

    1998-01-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author)

  15. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management

    Science.gov (United States)

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W.; Rovai, Andre S.; Beever, James W.; Flynn, Laura L

    2016-01-01

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for “mangrove forest heart attack prevention”, and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring.

  16. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management.

    Science.gov (United States)

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W; Rovai, André S; Beever, James W; Flynn, Laura L

    2016-08-30

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for "mangrove forest heart attack prevention", and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Potensi Ekowisata di Kawasan Mangrove, Desa Mororejo, Kabupaten Kendal

    Directory of Open Access Journals (Sweden)

    Haikal Hilman Fahrian

    2015-09-01

    Full Text Available Desa Mororejo memiliki kawasan mangrove yang belum dimanfaatkan secara optimal. Salah satu upaya yang dapat dilakukan untuk mengoptimalisasi adalah dengan menjadikan kawasan ekowisata. Penelitian dilaksanakan dari bulan Agustus-November 2014 yang dilakukan melalui survei yang dilanjutkan dengan kegiatan pengamatan kondisi fisik kimia dan biologi kawasan, inventarisasi keanekaragaman fauna, analisis vegetasi, serta pengambilan data persepsi masyarakat lokal. Analisis data menggunakan analisis kesesuaian wisata mangrove dan analisis SWOT (Strengths–Weakness–Opportunity–Treats. Berdasarkan hasil penelitian, kawasan mangrove Desa Mororejo didominasi oleh tiga jenis mangrove yaitu Rhizophora mucronata,  Rhizophora stylosa, dan Avicennia marina. Fauna yang ditemukan antara lain burung, ikan, dan crustacea. Indeks kesesuaian untuk kegiatan wisata mangrove termasuk kategori sesuai bersyarat (63.24%. Strategi alternatif pengelolaan ekowisata mangrove yang diprioritaskan meliputi: melibatkan masyarakat lokal dalam kegiatan ekowisata (skor 2,834; meningkatkan peran serta Dinas terkait (skor 2.517; dan adanya zonasi wilayah supaya tidak terjadi gesekan dengan berbagai pihak (skor 2.25. Mangrove areas at Mororejo village have not been optimally utilized. One effort to accelerate the optimalization of the area is by empowering its ecotourism. The study was conducted in August-November 2014 using a survey method, inventory of assorted fauna, vegetation analysis, and data collection of local community perception. Data analysis was conducted by feasibility analysis and SWOT (Strengths–Weakness–Opportunity–Treats analysis to determine the alternatives strategy in exploring the potency of eco-tourism. Based on the result of this study, mangrove areas in Mororejo were dominated by three types of mangrove, i.e. Rhizopora mucronata, Rhizopora stylosa, and Avicennia marina. Fauna found in the areas were birds, fish, and crustacean. Feasibility index for

  18. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida

    Science.gov (United States)

    Fourqurean, James W.; Smith, Thomas J.; Possley, Jennifer; Collins, Timothy M.; Lee, David; Namoff, Sandra

    2010-01-01

    Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.

  19. Komposisi dan Kelimpahan Ikan di Ekosistem Mangrove di Kedungmalang, Jepara (Fish Community Structure in Mangrove Ecosystem at Kedung Malang, Jepara Regency

    Directory of Open Access Journals (Sweden)

    Sri Redjeki

    2014-06-01

    Full Text Available Ekosistem mangrove di Kedungmalang, Kabupaten Jepara dilaporkan telah mengalami kerusakan ekologis. Kondisi ini mempengaruhi biota termasuk ikan yang hidup di kawasan tersebut. Penelitian ini dilakukan untuk mengetahui komposisi dan kelimpahan ikan di ekosistem mangrove di Desa Kedungmalang, Kecamatan Kedung, Kabupaten Jepara. Penelitian dilaksanakan bulan Mei sampai Agustus 2011. Pengambilan sampel ikan dilakukan di 3 lokasi perairan bervegetasi mangrove sejati (true mangrove Rhizophora sp. dan mangrove asosiasi (associate mangrove rumput Cyperus sp. Hasil penelitian menunjukkan terdapat 10 famili ikan, yaitu Mugilidae, Ariidae, Eleotridae, Pristigasteridae, Gobiidae, Drepanidae, Belonidae, Adrianichtyidae, Aplocheilidae, dan Haemulidae. Ikan paling banyak ditemui adalah famili Mugilidae, sedangkan ikan yang jarang ditemui adalah Famili Belonidae. Ikan Mugilidae hidup pada kisaran salinitas luas, sering masuk estuari dan sungai serta bersifat katadromous, biasanya membentuk kelompok besar di daerah dengan dasar pasir atau lumpur. Ikan famili Mugilidae yang paling banyak tertangkap adalah fase anakan dan juvenil. Jenis ikan Belanak ini merupakan ikan  yang berasosiasi dengan hutan mangrove selama periode anakan, tetapi saat dewasa cenderung menggerombol di sepanjang pantai berdekatan dengan hutan mangrove. Secara umum kelimpahan ikan pada saat surut selalu lebih tinggi dibandingkan saat pasang. Kelimpahan ikan di Rhizophora sp. lebih tinggi dibandingkan Cyperus sp. baik pada saat surut maupun pasang. Kata kunci: ekosistem mangrove, ikan, komposisi, Mugillidae Mangrove ecosystem at Kedungmalang has been reported experiencing  an ecological damage. This condition directly or indirectly affect the organisms, including fish that live around the area ecosystem. The purpose of this study was to identify and determine the abundance the fish communities in mangrove ecosystem in the Kedungmalang Village, Kedung District, Jepara Regency. The research

  20. Mangrove expansion into salt marshes alters associated faunal communities

    Science.gov (United States)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  1. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan

    2017-08-22

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  2. Low Carbon sink capacity of Red Sea mangroves

    KAUST Repository

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M.; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-01-01

    Mangroves forests of Avicennia marina occupy about 135 km2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C-org) stocks, soil accretion rates (SAR; mm y(-1)) and soil C-org sequestration rates (g C-org m(-2) yr(-1)) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C-org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 +/- 0.3 mg Corg cm(-3) and 43 +/- 5 Mg C-org ha(-1) (in 1 m-thick soils), respectively. Sequestration rates of C-org, estimated at 3 +/- 1 and 15 +/- 1 g C-org m(-2) yr(-1) for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C-org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  3. Management of mangroves for energy needs

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    Utilization of mangroves for firewood and fodder is quite common along the Indian coast. In order to maintain the supply of different beneficial products, conservation and management practices with large scale afforestation of mangroves have been...

  4. Importance of water source in controlling leaf leaching losses in a dwarf red mangrove ( Rhizophora mangle L.) wetland

    Science.gov (United States)

    Davis, Stephen E., III; Childers, Daniel L.

    2007-01-01

    The southern Everglades mangrove ecotone is characterized by extensive dwarf Rhizophora mangle L. shrub forests with a seasonally variable water source (Everglades - NE Florida Bay) and residence times ranging from short to long. We conducted a leaf leaching experiment to understand the influence that water source and its corresponding water quality have on (1) the early decay of R. mangle leaves and (2) the early exchange of total organic carbon (TOC) and total phosphorus (TP) between leaves and the water column. Newly senesced leaves collected from lower Taylor River (FL) were incubated in bottles containing water from one of three sources (Everglades, ambient mangrove, and Florida Bay) that spanned a range of salinity from 0 to 32‰, [TOC] from 710 to 1400 μM, and [TP] from 0.17 to 0.33 μM. We poisoned half the bottles in order to quantify abiotic processes (i.e., leaching) and assumed that non-poisoned bottles represented both biotic (i.e., microbial) and abiotic processes. We sacrificed bottles after 1,2, 5, 10, and 21 days of incubation and quantified changes in leaf mass and changes in water column [TOC] and [TP]. We saw 10-20% loss of leaf mass after 24 h—independent of water treatment—that leveled off by Day 21. After 3 weeks, non-poisoned leaves lost more mass than poisoned leaves, and there was only an effect of salinity on mass loss in poisoned incubations—with greatest leaching-associated losses in Everglades freshwater. Normalized concentrations of TOC in the water column increased by more than two orders of magnitude after 21 days with no effect of salinity and no difference between poisoned and non-poisoned treatments. However, normalized [TP] was lower in non-poisoned incubations as a result of immobilization by epiphytic microbes. This immobilization was greatest in Everglades freshwater and reflects the high P demand in this ecosystem. Immobilization of leached P in mangrove water and Florida Bay water was delayed by several days and may

  5. Bioinformatics study of the mangrove actin genes

    Science.gov (United States)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  6. Status of mangrove research in India

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    the Indian coast have reached an alarming stage, particularly along the west coast. A brief review of the status of various aspects of mangrove research suggests certain areas for future investigations. A tentative National Mangrove Plan is proposed...

  7. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  8. Ecophysiological approach to mangroves: a review

    Directory of Open Access Journals (Sweden)

    Sávia Soares Pascoalini

    2014-09-01

    Full Text Available Mangrove has a high primary productivity that partly results from physiological mechanisms applied by plant species to environmental restrictions. This synthesis aims to assess the state of the art of ecophysiological studies on mangroves and identify gaps that allow increasing scientific knowledge on Brazilian mangroves and their potential contributions to climate changes. The worsening of environmental restrictions, such as increased salinity, longer flooding, and nutrient deficiency, induces a decrease in photosynthetic assimilation, resulting in a reduction in the development of species. The response of a given species to stress depends on its tolerance. We conclude that ecophysiological studies on mangrove vegetation are occasional, and their results differ between field and laboratory studies. In Brazil, this knowledge is still incipient, making it difficult to predict the behavior of species in face of climate change.

  9. Coastal erosion and mangrove progradation of Southern Thailand

    NARCIS (Netherlands)

    Thampanya, U.; Vermaat, J.E.; Sinsakul, S.; Panapitukkul, N.

    2006-01-01

    Approximately 60% of the southern Thai coastline used to be occupied by mangroves according to the first mangrove forest assessment in 1961. During the past three decades, these mangrove areas have been reduced to about 50% with less than 10% left on the east coast. Coastal erosion and accretion

  10. Treatment Wetlands

    OpenAIRE

    Dotro, Gabriela; Langergraber, Günter; Molle, Pascal; Nivala, Jaime; Puigagut, Jaume; Stein, Otto; Von Sperling, Marcos

    2017-01-01

    Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.

  11. Leveraging Carbon Cycling in Coastal Wetlands for Habitat Conservation: Blue Carbon Policy Opportunities (Invited)

    Science.gov (United States)

    Sutton-Grier, A.

    2013-12-01

    Recent scientific studies suggest that the carbon sequestered and stored in coastal wetlands (specifically mangroves, salt marshes, and seagrass meadows) is an important, previously not well-recognized service provided by these ecosystems. Coastal wetlands have unique characteristics that make them incredibly efficient, natural carbon sinks with most carbon stored belowground in soils. Based on this new scientific evidence, there is growing interest in leveraging the carbon services of these habitats (termed 'blue carbon') to develop new policy opportunities to protect and restore coastal wetlands around the globe. The overall goal is to take full advantage of the carbon services of these habitats in order to ensure and maintain the many benefits provided to society by these habitats - including natural climate, food security, and storm protection benefits - and to enhance the resiliency of coastal communities and economies around the world. This presentation will give an update on some of the policy opportunities including: (1) examining how the implementation of U.S. federal policies can be expanded to include carbon services of ecosystems in order to improve management and decision making; (2) developing an international blue carbon community of science and practice to provide best practice guidance for protection and restoration of blue carbon habitats; and (3) developing innovative financing mechanisms for coastal conservation including carbon market credits for wetlands. Finally, the presentation will conclude by highlighting some of the most pressing blue carbon scientific gaps that need to be filled in order to support these developing policies.

  12. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    Science.gov (United States)

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  13. Ecology of mangroves in the Jewfish Chain, Exuma, Bahamas

    Science.gov (United States)

    Wilcox, L. V.; Yocom, Thomas G.; Forbes, A. M.

    1976-01-01

    The structure and function of mangrove communities in the Jewfish Chain, Exumas, Bahamas, were investigated for 3-1/2 years. Mangrove vegetation in the Jewfish Chain is similar to that in all the Caribbean-Florida area; Rhizophora mangle L. dominates and is interspersed with Avicennia germinans (L.) Lamk. and Laguncularia racemosa (L.) Gaertn. There is no apparent zonation of these three species. The mangrove communities in the Jewfish Chain occur only where they are protected from prevailing winds, storms, and tides, although all are periodically devastated by hurricanes. We found little or no evidence of coast building within these protected locations. The importance of the mangroves appears to be in providing protection and food for other flora and fauna within this unique ecosystem. Twenty-four species of algae were found in the mangroves, 9 of which had not previously been reported from the Bahamas. Distribution of these algae appears to be correlated to incident solar radiation, desiccation, and tide level. A total of 56 species of fish were found in the mangroves, 2 of which were not previously known from the Bahamas. Many fish taken were juveniles, suggesting that mangroves are a nursery ground for numerous species. Nine species of molluscs were found. Each species had a distinct distribution pattern relative to distance from the seaward edge of the mangroves, as well as a distinct vertical distribution pattern. Seventeen species of decapod crustaceans were recorded. Though several species of birds were noted in the mangroves, three species were most abundant: the white-crowned pigeon (Columba leucocephala) uses the mangrove for nesting but feeds in nearby shrub-thorn communities; the gray kingbird (Tyrannus dominicensis) and green heron (Butorides virescens) nest and feed in the mangroves. Our data do not completely describe a stereotyped mangrove community in the Bahamas, but they do give an indication of community structure and suggest several

  14. Low Carbon sink capacity of Red Sea mangroves.

    Science.gov (United States)

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  15. SPATIAL ANALYSIS FRAMEWORK FOR MANGROVE FORESTS RESTORATION

    Directory of Open Access Journals (Sweden)

    Arimatéa de Carvalho Ximenes

    2016-09-01

    Full Text Available Mangroves are coastal ecosystems in transition between sea and land, localized worldwide on the tropical and subtropical regions. However, anthropogenic pressure in coastal areas has led to the conversion of many mangrove areas to other uses. Due to the increased awareness of the importance of mangroves worldwide, restoration methods are being studied. Our aim is to develop a framework for selecting suitable sites for red mangrove planting using Geographic Information Systems (GIS. For this reason, the methodology is based on abiotic factors that have an influence on the zonation (distribution and growing of the Rhizophora mangle. A total suitable area of 6,12 hectares was found, where 15.300 propagules could be planted.

  16. Distribution and dynamics of mangrove forests of South Asia

    Science.gov (United States)

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R. Mani; Qamer, Faisal M.; Pengra, Bruce; Thau, David

    2014-01-01

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests.

  17. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    Energy Technology Data Exchange (ETDEWEB)

    Parida, A; Parani, M; Lakshmi, M; Elango, S; Ram, N; Anuratha, C S [M.S. Swaminathan Research Foundation, Taramani, Madras (India)

    1998-10-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author) 25 refs, 2 figs, 2 tabs

  18. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    Science.gov (United States)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  19. PERANAN MANGROVE SEBAGAI BIOFILTER PENCEMARAN AIR WILAYAH TAMBAK BANDENG TAPAK, SEMARANG (Role of Mangrove as Water Pollution Biofilter in Milkfish Pond, Tapak, Semarang

    Directory of Open Access Journals (Sweden)

    Nana T.M. Kariada

    2014-10-01

    Full Text Available ABSTRAK Mangrove yang tumbuh di ujung sungai besar berperan sebagai penampung terakhir bagi limbah dari industri di perkotaan dan perkampungan hulu yang terbawa aliran sungai. Area hutan mangrove mempunyai kemampuan mengakumulasi logam berat yang terdapat dalam ekosistem tempat tumbuhnya. Tujuan yang hendak dicapai dari  penelitian ini adalah mengkaji peranan mangrove sebagai biofilter pencemaran air dan  mengetahui jenis mangrove yang terbaik berperan sebagai biofilter pencemaran air di di lingkungan tambak bandeng Tapak Kota Semarang. Desain yang digunakan dalam penelitian ini adalah deskriptif eksploratif. Berdasarkan hasil penelitian tentang akumulasi logam berat Cu antara air dan sedimen tambak, diperoleh hasil telah terjadi akumulasi Cu dengan Faktor Konsentrasi antara 43-400.  Pada stasiun 3 dan 4 terdapat akumulasi Cu dengan nilai Faktor Konsentrasi 3 dan 0,3. Hal ini menunjukkan akumulasi Cu dari sedimen ke akar mangrove relatif masih kecil. Perbedaan akumulasi dari tiap stasiun penelitian yang diamati menunjukkan adanya perbedaan jenis mangrove yang tumbuh pada masing-masing stasiun penelitian. Mangrove yang berada di lingkungan tambak bandeng wilayah Tapak Kota Semarang disimpulkan dapat berperan sebagai biofilter pencemaran air yang ada di perairan tersebut. Mangrove dari jenis Avicennia marina mempunyai peranan yang lebih baik dari jenis Rhizophora sp sebagai biofilter pencemaran air di lingkungan tambak bandeng Tapak Kota Semarang.   ABSTRACT Mangroves,  that is growing at the end of a great river, has a role as the last place for the waste water from urban and domestic industry at the upstream that were carried by the flow of river. Mangrove area  has  ability to accumulate a heavy metals  which is contained in it. The  goals  from this research is to assess role of mangrove as biofilter of water pollution and to find out the best species of mangrove as biofilter of water pollution in milkifish pond in Tapak, Semarang

  20. Change Detection and Sustainable Policies of Mangrove Forests

    DEFF Research Database (Denmark)

    Malik, Abdul

    Deforestation and degradation of mangrove forests have become one of the main issues for coastal ecosystems in Indonesia and elsewhere in Southeast Asia. Over the past decades, over-exploitation of timber, firewood, charcoal production, housing materials, and commercial logging and conversion...... into other forms of land use such as agriculture, settlement, mining, and especially aquaculture have led to a reduction in the extent of mangrove forests and their biodiversity, which has had significant effects on local communities. This thesis addresses mangrove forest change over the past 33 years...... and the environmental and socioeconomic consequences of the observed changes for communities living around mangrove areas. In this connection, the effects of mangrove exploitation on biodiversity and ecosystem services, including forestry and fishery products, are explored. Finally, the total economic value...

  1. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.

    Science.gov (United States)

    Weaver, Carolyn A; Armitage, Anna R

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010-2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  2. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment

    Science.gov (United States)

    Armitage, Anna R.

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010–2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  3. Ecophysiological approach to mangroves: a review

    Directory of Open Access Journals (Sweden)

    Sávia Soares Pascoalini

    2014-05-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2014v27n3p1 Mangrove has a high primary productivity that partly results from physiological mechanisms applied by plant species to environmental restrictions. This synthesis aims to assess the state of the art of ecophysiological studies on mangroves and identify gaps that allow increasing scientific knowledge on Brazilian mangroves and their potential contributions to climate changes. The worsening of environmental restrictions, such as increased salinity, longer flooding, and nutrient deficiency, induces a decrease of photosynthetic assimilation, resulting in a reduction in the development of species. The response of a given species to stress depends on its tolerance. We conclude that ecophysiological studies on mangrove vegetation are occasional, and their results differ between field and laboratory studies. In Brazil, this knowledge is still incipient, making it difficult to predict the behavior of species in face of climate change.

  4. MANGROVE RESOURCE USES BY LOCAL COMMUNITY IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2016-12-01

    Full Text Available Indonesia is an archipelagic country of more than 17,504 islands (28 big islands and 17,475 small islands with the length of coastline estimated at 95,181 km, which bears mangroves from several meters to several kilometers. They are estimated at 3.2 million hectares growing extensively in the five big islands (Java, Sumatra, Kalimantan, Sulawesi, Papua with various community types comprising of about 157 species (52 species of trees, 21 species of shrubs, 13 species of lyana, seven species of palms, 14 species of grasses, eight species of herbs, three species of parasites, 36 species of epiphytes, three species of ferns. The mangroves resources in Indonesia involve the flora, fauna, and land resources which are needed for supporting many kinds of human needs, especially for local community living in surrounding mangroves. For centuries, the Indonesian people have traditionally utilized mangroves. The most significant value of mangrove utilization is the gathering of forest products, classified into timber and non-timber products. The timber refers to poles and firewood, charcoal, and construction materials (e.g. housing material and fishing gears; the latter include tannin, medicines, dye, nypa thatch and shingles, nypa sap for vinegar and winemaking, and food drinks. Traditional uses of mangrove forest products are mainly the direct utilization of the products, usually in small scale. Beside of those, local community are used to utilizing associated mangrove aquatic fauna for supporting their daily life as well as utilizing mangrove habitat for multipurpose uses through agroforestry techniques (silvofishery, agrosilvofishery, agrosilvopastoralfishery systems. So that, the good mangrove ecosystem serves luxurious both flora and fauna species (biodiversity as well as their abundance for signicantly supporting the welfare of coastal community

  5. PENILAIAN JASA EKOSISTEM MANGROVE DI TELUK BLANAKAN KABUPATEN SUBANG

    Directory of Open Access Journals (Sweden)

    Martini Dwi Indrayanti

    2015-08-01

    Full Text Available Mangrove is one of the natural resource that has an important role in maintaining the balance between land-based and aquatic ecosystems. Therefore the ecosystems are placed as one of the life-supporting ecosystems which is needed to be preserved. This study was held in Blanakan Bay with objectives were: 1 To describe the covered area of mangrove ecosystem; and 2 To calculate the value of mangrove ecosystem services. Mangrove covered area was obtained through satellite image analysis while ecosystem services was anlyzed by economic valuation method. Economic valuation for mangrove ecosystem services is an important variable in coastal management. The result showed that mangrove covered area was decreasing by 5% per year during the period of 2005-2012 while the value of the ecosystem services in the study area was Rp3.815.790.110,97/year.

  6. Remote sensing techniques for mangrove mapping

    NARCIS (Netherlands)

    Vaiphasa, C.

    2006-01-01

    Mangroves, important components of the world's coastal ecosystems, are threatened by the expansion of human settlements, the boom in commercial aquaculture, the impact of tidal waves and storm surges, etc. Such threats are leading to the increasing demand for detailed mangrove maps for the purpose

  7. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    Science.gov (United States)

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  8. Mapping and Change Analysis in Mangrove Forest by Using Landsat Imagery

    Science.gov (United States)

    Dan, T. T.; Chen, C. F.; Chiang, S. H.; Ogawa, S.

    2016-06-01

    Mangrove is located in the tropical and subtropical regions and brings good services for native people. Mangrove in the world has been lost with a rapid rate. Therefore, monitoring a spatiotemporal distribution of mangrove is thus critical for natural resource management. This research objectives were: (i) to map the current extent of mangrove in the West and Central Africa and in the Sundarbans delta, and (ii) to identify change of mangrove using Landsat data. The data were processed through four main steps: (1) data pre-processing including atmospheric correction and image normalization, (2) image classification using supervised classification approach, (3) accuracy assessment for the classification results, and (4) change detection analysis. Validation was made by comparing the classification results with the ground reference data, which yielded satisfactory agreement with overall accuracy 84.1% and Kappa coefficient of 0.74 in the West and Central Africa and 83.0% and 0.73 in the Sundarbans, respectively. The result shows that mangrove areas have changed significantly. In the West and Central Africa, mangrove loss from 1988 to 2014 was approximately 16.9%, and only 2.5% was recovered or newly planted at the same time, while the overall change of mangrove in the Sundarbans increased approximately by 900 km2 of total mangrove area. Mangrove declined due to deforestation, natural catastrophes deforestation and mangrove rehabilitation programs. The overall efforts in this study demonstrated the effectiveness of the proposed method used for investigating spatiotemporal changes of mangrove and the results could provide planners with invaluable quantitative information for sustainable management of mangrove ecosystems in these regions.

  9. Geochemical approach to evaluate deforest of mangroves

    OpenAIRE

    Ishiga, Hiroaki; Diallo, Ibrahima M'bemba; Bah Mamadou Lamine Malick,; Ngulimi. Faustine Miguta,; Magai. Paschal Justin,; Shati Samwel Stanley,

    2016-01-01

    Processes of mangrove deforest related human activities were examined. To evaluate changes of soil feature, multielements geochemical compositions of mangrove muds and soils of deforest were analyzed. To describe present situation of the mangrove, Conakry in Guinea, Dar es Salaam in Tanzania, Sundarbans of Bangladesh and Nago in Okinawa of Japan were selected. Soil samples of the forests were evaluated enrichment of biologically concentrated heavy metals such as Zn, Cu and Fe, and TS (total s...

  10. Predicting future mangrove forest migration in the Everglades under rising sea level

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Mangroves are highly productive ecosystems that provide valued habitat for fish and shorebirds. Mangrove forests are universally composed of relatively few tree species and a single overstory strata. Three species of true mangroves are common to intertidal zones of the Caribbean and Gulf of Mexico Coast, namely, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangrove forests occupy intertidal settings of the coastal margin of the Everglades along the southwest tip of the Florida peninsula (fig. 1).

  11. Restoring Myanmar’s mangrove forests and coastal communities’ socioeconomic stability with community based mangrove management

    OpenAIRE

    Lindholt, Jonathan Grevstad

    2016-01-01

    Mangrove forests have a significant capacity to provide ecosystem services. However, deforestation from land use changes has led to widespread degradation of these services and consequently jeopardizes coastal populations. Reforestation projects and attempts to develop sustainable management procedures are widely attempted worldwide. However, these projects often have sustainable rural livelihood improvements as a complementary goal. Integrated approaches such as Community Based Mangrove Mana...

  12. Evolutionary diversity among Atlantic coast mangroves

    Science.gov (United States)

    Dodd, Richard S.; Rafii, Zara A.; Fromard, François; Blasco, François

    1998-06-01

    Current knowledge of intraspecific variation of mangrove species is limited in terms of rangewide distributions and is mostly restricted to morphological analyses, which have indicated a high degree of homogeneity. However, our analyses of the aliphatic hydrocarbon and triterpenoid fraction of foliar waxes (by gas chromatography and mass spectroscopy) of mangrove species ( Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) from Gabon in West Africa and French Guiana in South America show significant genetic differentiation between eastern and western Atlantic provenances. The greater diversity in lipid composition, and the tendency for longer carbon chain lengths in all taxa from Africa, may suggest that American mangroves exhibit derived characteristics. A consequence of this hypothesis would be that Atlantic mangroves are unlikely to have dispersed from the Tethys via the Pacific, as has been proposed by some authors. More widespread sampling within the Atlantic and east Pacific region is needed to support and confirm these results.

  13. Microbial diversity in Brazilian mangrove sediments – a mini review

    Science.gov (United States)

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-01-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems. PMID:24031949

  14. Kajian Perubahan Bioekologi pada Restorasi Ekosistem Mangrove di Segara Anakan Cilacap

    Directory of Open Access Journals (Sweden)

    Erwin Riyanto Ardli

    2015-01-01

    Full Text Available Mangroves are coastal ecosystems that have a very large role for humans and ecosystems in the vicinity. Mangrove condition in Indonesia, including in Segara Chicks Cilacap experiencing enormous pressure resulting in damage to the mangrove ecosystem. Mangrove restoration is the process of return of mangrove ecosystems of the conditions are broken into previously conditioned as well. The general objective of this study was 1 determine the conditions and amendments BioEkologi mangrove ecosystem restoration in the area of results Segara Chicks. Specific objectives in the study the first year is to determine: 1 the community structure of mangrove ecosystems (vegetation and fauna associations at a restoration site in the region Segara Chicks, 2 the spatial variation community mangrove ecosystem in the area of restoration, and 3 the condition of the environmental factors that support the mangrove restoration in the region Segara Chicks. The method used was survey method with the technique of sampling cluster random sampling. The data obtained were analyzed multivatiate covering biodiversity analysis, cluster analysis, multi-dimensional sclae (MDS, and Bio-env using PRIMER-E program. The study shows the restoration of mangrove vegetation in the region have relatively low diversity (H ' 95%.

  15. Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants.

    Directory of Open Access Journals (Sweden)

    Yutao Wang

    Full Text Available The communities of arbuscular mycorrhizal fungi (AMF colonizing the roots of three mangrove species were characterized along a tidal gradient in a mangrove swamp. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU, the entire internal transcribed spacer (ITS and part of the large subunit (LSU of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. Similar levels of AMF diversity to those observed in terrestrial ecosystems were detected in the roots, indicating that the communities of AMF in wetland ecosystems are not necessarily low in diversity. In total, 761 Glomeromycota sequences were obtained, which grouped, according to phylogenetic analysis using the SSU-ITS-LSU fragment, into 23 phylotypes, 22 of which belonged to Glomeraceae and one to Acaulosporaceae. The results indicate that flooding plays an important role in AMF diversity, and its effects appear to depend on the degree (duration of flooding. Both host species and tide level affected community structure of AMF, indicating the presence of habitat and host species preferences.

  16. A post-classifier for mangrove mapping using ecological data

    NARCIS (Netherlands)

    Vaiphasa, C.; Skidmore, A.K.; Boer, de W.F.

    2006-01-01

    global decline in tropical mangrove forests is one of the most serious problems of the world's coastal ecosystems. This problem results in an increasing demand of detailed mangrove maps at the species level for monitoring mangrove ecosystems and their diversity. Consequently, this research is the

  17. PENILAIAN JASA EKOSISTEM MANGROVE DI TELUK BLANAKAN KABUPATEN SUBANG

    OpenAIRE

    Martini Dwi Indrayanti; Achmad Fahrudin; Isdradjad Setiobudiandi

    2015-01-01

    Mangrove is one of the natural resource that has an important role in maintaining the balance between land-based and aquatic ecosystems. Therefore the ecosystems are placed as one of the life-supporting ecosystems which is needed to be preserved. This study was held in Blanakan Bay with objectives were: 1) To describe the covered area of mangrove ecosystem; and 2) To calculate the value of mangrove ecosystem services. Mangrove covered area was obtained through satellite image analysis while e...

  18. Biological impacts of oil pollution: mangroves. V. 4

    International Nuclear Information System (INIS)

    1997-01-01

    From the beginning of history, mangroves - the coastal forests of the tropics - have traditionally provided a variety of plant products, fish and shellfish for local communities. They also provide services such as coastal stabilization, and food chain support for near-shore fisheries. In recent decades there has been increased conversion for uses which do not sustain the mangrove habitat, such as large-scale fish culture ponds and industrial salt production, and there is concern about the resulting loss of mangroves. Nevertheless, all these uses -traditional and industrial - may be affected following oil spills and need to be considered during the contingency planning process. This report provides information on the ecology and human use of mangroves, and on the fate and effects of oil. Mangrove forests are notorious oil traps, and oiled trees commonly die - so it is important for spill response plans to address habitat protection options. These, together with clean-up methods, are discussed with reference to case history experience and results from field experiments. In the longer term, rehabilitation may be desirable for oil-damaged mangrove areas, and there is information on how this can be achieved. (UK)

  19. Shrimp-based livelihoods in mangrove silvo-aquaculture farming systems

    NARCIS (Netherlands)

    Bosma, R.H.; Nguyen, T.H.; Siahainenia, A.J.; Tran, H.T.P.; Tran, H.N.

    2016-01-01

    The paper reviews the following three types of mangrove-shrimp systems: (i) integrated with canals between platforms planted with mangrove; (ii) associated having larger areas of water and a large mangrove area; and (iii) separated, with a dyke separating ponds from forest. The variations in shrimp

  20. Are mangroves in arid environments isolated systems? Life-history and evidence of dietary contribution from inwelling in a mangrove-resident shrimp species

    Science.gov (United States)

    Al-Maslamani, I.; Walton, M. E. M.; Kennedy, H. A.; Al-Mohannadi, M.; Le Vay, L.

    2013-06-01

    The Arabian Gulf represents one of the more northerly extremes of mangrove distribution in the Indo-Pacific, and is populated only by Avicennia marina, due to its tolerance of high salinity and wide temperature extremes. Recent studies suggest that in the arid coastal environment of the western Arabian Gulf, export of carbon and nitrogen from mangroves to adjacent habitats may be limited, though it is not clear if this is due to low productivity or physical factors such as the lack of freshwater flow and the tidal regime. Although seagrass and macroalgal habitats are relatively much more dominant by area, with only small pockets of mangrove around the edges of embayments, it is not evident if inwelling from these habitats support mangrove fauna. Year-round sampling in mangroves at Al-Khor, Qatar, indicates that Palaemon khori, an endemic shrimp species, is strongly associated with mangroves throughout its post-settlement life cycle, from recruitment as small 9-10 mm juveniles through to mating and egg production. Rapid post-recruitment growth (k = 1.8, L∞ = 42 mm for females, k = 1.5, L∞ = 35 mm for male) means that most individuals reached adult size in the first few months after settlement, with reproduction occurring in the following spring. As might be expected from year-round residence in the mangrove, dual 13C and 15N isotope analysis indicated a strong contribution of mangroves to shrimp tissue growth (Mean and 95% confidence range, 37% and 27-48%), but with a weaker significant contribution from particulate organic matter (20% and 1-37%), mangrove epiphytes (16% and 2-33%) and seagrasses (9% and 0.2-18%). Other primary producers contribute the remaining 18% to shrimp nutrition but the 95% confidence ranges include zero, suggesting possibly non-significant roles in supporting the shrimp population. This dietary information supports the view that fauna resident within arid mangrove systems are mainly dependent on localised retention and cycling of

  1. Mangrove sedimentation and response to relative sea-level rise

    Science.gov (United States)

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  2. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    Science.gov (United States)

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.

  3. Effects of conversion of mangroves into gei wai ponds on sediment heavy metals accumulation in tidal flat estuary, South China

    Science.gov (United States)

    Li, R.; Qiu, G.; Chai, M.; Li, R.

    2017-12-01

    Gei wai ponds act as important component in mangrove ecosystem, but the conversion of mangroves into gei wai ponds and its ecological function on heavy metal accumulation is still not clear. The study quantified the sediment heavy metal concentration and speciation in gei wai pond, Avicennia marina marsh and mudflat in Futian mangrove wetlands, South China. The results showed that gei wai pond acidified the sediment and reduced its fertility due to reduced pH, electronic conductivity (EC) and total organic carbon (TOC) compared to A. marina marsh and mudflat. The concentrations of Cd, Cu, Zn and Pb at all depth in gei wai pond sediment were also lower than other sites, indicating reduced storage function on heavy metals. Multiple analysis implied that heavy metals in all sites could be attributed to anthropogenic sources, with Cr as natural and anthropogenic sources in gei wai pond. Gei wai pond sediment had lower heavy metal pollution based on multiple evaluation methods, including potential ecological risk coefficient (Eir), potential ecological risk index (RI), geo-accumulation index (Igeo), mean PEL quotients (m-PEL-q), pollution load index (PLI), mean ERM quotients (m-ERM-q) and total toxic unit (∑TU). Heavy metal speciation analysis indicated that gei wai pond improved the conversion from the immobilized Cd and Cr to the mobilized fraction. SEM-AVS analysis indicated no adverse toxicity occurred in all sites, and the role of TOC in relieving sediment heavy metal toxicity of gei wai pond is limited.

  4. FEEDING ECOLOGY OF TREE-CLIMBING MANGROVE SESARMID CRABS FROM LUZON, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    JIMMY TEVAR MASAGCA

    2009-01-01

    Full Text Available Despite the large ecological study of tree-climbing mangrove sesarmid crabs in other countries, the Philippine representatives appear to have not been investigated extensively. This paper presents the feeding ecology as to dependence on mangrove trees of sesarmids in different mangrove areas of southern Luzon. This is biased on the nature of the crab habitats, arboreal climbing skills and burrowing behavior of the sesarmids: Selatium elongatum and Episesarma versicolor − exclusive mangrove tree climbers (EMTC; Sarmatium germaini − occasional mangrove tree climber (OMTC; and the non-mangrove tree-climbing (NMTC sesarmids- Neosarmatium smithii, Perisesarma bidens and Perisesarma eumolpe

  5. National Level Assessment of Mangrove Forest Cover in Pakistan

    Science.gov (United States)

    Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.

    2011-09-01

    Mangroves ecosystems consist of inter tidal flora and fauna found in the tropical and subtropical regions of the world. Mangroves forest is a collection of halophytic trees, shrubs, and other plants receiving inputs from regular tidal flushing and from freshwater streams and rivers. A global reduction of 25 % mangroves' area has been observed since 1980 and it is categorized as one of to the most threatened and vulnerable ecosystems of the world. Forest resources in Pakistan are being deteriorating both quantitatively and qualitatively due to anthropogenic activities, climatic v and loose institutional management. According to the FAO (2007), extent of forest cover of Pakistan in 2005 is 1,902,000 ha, which is 2.5% of its total land area. Annual change rate during 2000-2005 was -2.1% which is highest among all the countries in Asia. The Indus delta region contains the world's fifth-largest mangrove forest which provides a range of important ecosystem services, including coastal stabilisation, primary production and provision of nursery habitat for marine fish. Given their ecological importance in coastal settings, mangroves receive special attention in the assessment of conservation efforts and sustainable coastal developments. Coastline of Pakistan is 1050km long shared by the provinces, Sind (350km) and Baluchistan (700 km). The coastline, with typical arid subtropical climate, possesses five significant sites that are blessed with mangroves. In the Sindh province, mangroves are found in the Indus Delta and Sandspit. The Indus Delta is host to the most extensive mangroves areas and extends from Korangi Creek in the West to Sir Creek in the East, whereas Sandspit is a small locality in the West of Karachi city. In the Balochistan province, mangroves are located at three sites, Miani Hor, Kalmat Khor and Jiwani. Contemporary methods of Earth observation sciences are being incorporated as an integral part of environmental assessment related studies in coastal areas

  6. Plant diversity and biomass of Marudu bay mangroves in Malaysia

    International Nuclear Information System (INIS)

    Hanum, F.; Kudus, K.A.; Saari, N.S

    2012-01-01

    The mangroves of Marudu Bay in the state of Sabah is situated at the tip of Borneo Island, and at the southern limit of the Coral Triangle whose waters hold the highest diversity of corals, fish, molluscks, crustaceans and marine plant species in the world. The ecosystem shows a deterioration due to unsustainable fishing, pollution and encroachment, and these are impacting the Marudu Bay coastal communities economically. Fishing is the major economic activity here. Realising the importance of conserving the mangroves to uplift the socio-economic livelihood of the coastal community, a resource inventory of the mangroves and its productivity study were carried out. A total of 16 plant species in 12 genera and 9 families were identified. It was also found that 0.7 ha is capable of capturing all the species in the mangrove forest. The mangrove forests of Marudu Bay are dominated by Rhizopora apiculata and R. mucronata. The highest Importance Value index (IVI) was given by Rhizophora mucronata. Total Above Ground Biomass (TAGB) for 1-ha of mangrove forest in Marudu Bay was estimated to be 98.4 t/ha. It was found in other parallel studies that the mangroves of Marudu Bay are productive ecosystems that provide valuable habitats, nurseries and spawning grounds for various commercially important species of fish and invertebrates such as shrimp besides many species of wildlife. The mangroves at Marudu Bay are not only aesthetically attractive but provide opportunities for ecotourism activities that can be undertaken by the local community inhabiting the area to uplift their meagre income, These activities include mangrove cruising, recreational fishing, educational tourism and mangrove honey production, amongst others. This way, the degradation of the mangrove in Marudu Bay can be halted and reversed. (author)

  7. Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012.

    Science.gov (United States)

    Richards, Daniel R; Friess, Daniel A

    2016-01-12

    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.

  8. Hydrological Classification, a Practical Tool for Mangrove Restoration

    OpenAIRE

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined....

  9. Distribution and dynamics of mangrove forests of South Asia.

    Science.gov (United States)

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David

    2015-01-15

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and

  10. Evaluation of mangrove management through community-based silvofishery in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Yani, P.; Hartini, K. S.

    2018-02-01

    Aquaculture expansion has been reported as the primary driver of mangrove loss and a significant cause of mangrove deforestation in North Sumatra, Indonesia. Development of silvofishery based on creating balance condition between conserving mangrove forest and offering better livelihood for local communities surrounding mangrove. The present study evaluates of mangrove management through community-based silvofishery in three villages, namely Paluh Manan, Paluh Kurau, and Lama, Hamparan Perak of Deli Serdang Regency, North Sumatra, Indonesia. Three communities used the same ecological type-silvofishery, characterized by planted mangrove surrounded aquaculture. Results showed that in the Paluh Manan village, planted mangrove and aquaculture in the ratio of 75:25 with planting distance of mangrove 50x50 cm, containing 2,500 trees/ha, resulted in US 36.2/month/ha of fish and shrimp farming. In the Paluh Kurau village, a mixture mangrove and aquaculture in an 84:16 ratio, planting distance of 1x1 m, consists of 1,600 trees/ha, US 23.8 of generating revenue from crab farming. Furthermore, in the third village, Lama village, consists of mangrove and aquaculture in the proportions 90:10, with planting spacing 2x2 m, composing 1,000 trees/ha, led to US 45.8/month/ha from fish, shrimp and crab farming. The present study suggested the mangrove management through community-based mangrove-friendly aquaculture.

  11. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.

    2017-02-01

    Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.

  12. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Almeida A. Sitoe

    2014-08-01

    Full Text Available Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth. We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg = 3.254 × exp(0.065 × DBH], root mean square error (RMSE = 4.244, and coefficient of determination (R2 = 0.89. The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha−1, of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates.

  13. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  14. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    Science.gov (United States)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC

  15. Chemical ecology of red mangroves, Rhizophora mangle, in the Hawaiian Islands

    Science.gov (United States)

    Fry, Brian; Cormier, Nicole

    2011-01-01

    The coastal red mangrove, Rhizophora mangle L., was introduced to the Hawaiian Islands from Florida 100 yr ago and has spread to cover many shallow intertidal shorelines that once were unvegetated mudflats. We used a field survey approach to test whether mangroves at the land-ocean interface could indicate watershed inputs, especially whether measurements of leaf chemistry could identify coasts with high nutrient inputs and high mangrove productivities. During 2001-2002, we sampled mangroves on dry leeward coasts of southern Moloka'i and O'ahu for 14 leaf variables including stable carbon and nitrogen isotopes (delta13C, delta15N), macronutrients (C, N, P), trace elements (B, Mn, Fe, Cu, Zn), and cations (Na, Mg, K, Ca). A new modeling approach using leaf Na, N, P, and delta13C indicated two times higher productivity for mangroves in urban versus rural settings, with rural mangroves more limited by low N and P nutrients and high-nutrient urban mangroves more limited by freshwater inputs and salt stress. Leaf chemistry also helped identify other aspects of mangrove dynamics: especially leaf delta15N values helped identify groundwater N inputs, and a combination of strongly correlated variables (C, N, P, B, Cu, Mg, K, Ca) tracked the mangrove growth response to nutrient loading. Overall, the chemical marker approach is an efficient way to survey watershed forcing of mangrove forest dynamics.

  16. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    Science.gov (United States)

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  17. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    Science.gov (United States)

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Does 'you are what you eat' apply to mangrove grapsid crabs?

    Science.gov (United States)

    Bui, Thi Hong Hanh; Lee, Shing Yip

    2014-01-01

    In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using (13)C and (15)N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ(13)C and Δδ(15)N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ(13)C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2 ± 1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon

  19. Protecting mangrove forests in Cambodia | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-15

    Jul 15, 2011 ... ... of trees, and the rich resources of mangroves are rapidly dwindling. ... jagged and gnarled mangrove trees are able to grow in the brackish ... when we invited them to come to a meeting, they were still thinking about Pol Pot.

  20. Soil Organic Carbon in Mangrove Ecosystems with Different Vegetation and Sedimentological Conditions

    Directory of Open Access Journals (Sweden)

    Naohiro Matsui

    2015-11-01

    Full Text Available A large number of studies have been conducted on organic carbon (OC variation in mangrove ecosystems. However, few have examined its relationship with soil quality and stratigraphic condition. Mangrove OC characteristics would be explicitly understood if those two parameters were taken into account. The aim of this study was to examine mangrove OC characteristics qualitatively and quantitatively after distinguishing mangrove OC from other OC. Geological survey revealed that the underground of a mangrove ecosystem was composed of three layers: a top layer of mangrove origin and two underlying sublayers of geologic origin. The underlying sublayers were formed from different materials, as shown by X-ray fluorescence analysis. Despite a large thickness exceeding 700 cm in contrast to the 100 cm thickness of the mangrove mud layer, the sublayers had much lower OC stock. Mangrove mud layer formation started from the time of mangrove colonization, which dated back to between 1330 and 1820 14C years BP, and OC stock in the mangrove mud layer was more than half of the total OC stock in the underground layers, which had been accumulating since 7200 14C years BP. pH and redox potential (Eh of the surface soils varied depending on vegetation type. In the surface soils, pH correlated to C% (r = −0.66, p < 0.01. C/N ratios varied widely from 3.9 to 34.3, indicating that mangrove OC had various sources. The pH and Eh gradients were important factors affecting the OC stock and the mobility/uptake of chemical elements in the mangrove mud layer. Humic acids extracted from the mangrove mud layer had relatively high aliphatic contents, in contrast with the carboxylic acid rich sublayers, indicating that humification has not yet progressed in mangrove soil.

  1. Invasion by Cordgrass Increases Microbial Diversity and Alters Community Composition in a Mangrove Nature Reserve

    Directory of Open Access Journals (Sweden)

    Min Liu

    2017-12-01

    Full Text Available Invasion by exotic plant species can alter ecosystem function and reduce native plant diversity, but relatively little is known about their effects on belowground microbial communities. Here we investigated the effects of exotic cordgrass (Spartina alterniflora invasion on the distribution of soil bacterial communities in a mangrove nature reserve of the Jiulong River Estuary, southeast China using high-throughput sequencing of 16S rRNA gene and multivariate statistical analysis. Our results showed that S. alterniflora invasion altered soil properties, and significantly increased soil bacterial taxa richness, primarily by stimulating an increase in conditionally rare or rare taxa, and changes in community composition and function. Abundant, conditionally rare and rare subcommunities exhibited similar response patterns to environment changes, with both conditionally rare and rare taxa showing a stronger response than abundant ones. Habitat generalists were detected among abundant, conditionally rare and rare taxa, whereas habitat specialists were only identified among conditionally rare taxa and rare taxa. In addition, we found that vegetation was the key factor driving these patterns. However, our comparative analysis indicated that both environmental selection, and neutral process, significantly contributed to soil bacterial community assembly. These results could improve the understanding of the microbial processes and mechanisms of cordgrass invasion, and offer empirical data of use in the restoration and management of the mangrove wetlands.

  2. Pengelolaan mangrove berbasis masyarakat di Pantai Timur Surabaya

    Directory of Open Access Journals (Sweden)

    Iqbal Ghazali

    2014-12-01

    Full Text Available This aims of the study was to descript and evaluate the mangrove management strategy by local community (local wisdom in East Coast Surabaya.. The survey method was utilized in this study using the stakeholder analysis and AWOT analysis. Primary data were collected through observation on object of study and by in-depth interviews, while secondary data were obtained through the literature review and reports. The results showed there were 50 stakeholders involved in the management of Pamurbaya mangrove, which was divided into three groups i.e. government, private and community. Local wisdom priority was mangrove ecotourism. The strategy for development of mangrove ecotourism was by increasing the institutional capacity and creativity, innovation of eco-tourism workers, and improvement of cooperation with related agencies.

  3. Mangroves protected villages and reduced death toll during Indian super cyclone.

    Science.gov (United States)

    Das, Saudamini; Vincent, Jeffrey R

    2009-05-05

    Protection against coastal disasters has been identified as an important service of mangrove ecosystems. Empirical studies on this service have been criticized, however, for using small samples and inadequately controlling for confounding factors. We used data on several hundred villages to test the impact of mangroves on human deaths during a 1999 super cyclone that struck Orissa, India. We found that villages with wider mangroves between them and the coast experienced significantly fewer deaths than ones with narrower or no mangroves. This finding was robust to the inclusion of a wide range of other variables to our statistical model, including controls for the historical extent of mangroves. Although mangroves evidently saved fewer lives than an early warning issued by the government, the retention of remaining mangroves in Orissa is economically justified even without considering the many benefits they provide to human society besides storm-protection services.

  4. Conservation and restoration of mangroves: Global status, perspectives, and prognosis

    Science.gov (United States)

    Romañach, Stephanie; DeAngelis, Donald L.; Koh, Hock Lye; Li, Yuhong; Teh, Su Yean; Barizan, Raja Sulaiman Raja; Zhai, Lu

    2018-01-01

    Mangrove forests provide critical services around the globe to both human populations and the ecosystems they occupy. However, losses of mangrove habitat of more than 50% have been recorded in some parts of the world, and these losses are largely attributable to human activities. The importance of mangroves and the threats to their persistence have long been recognized, leading to actions taken locally, by national governments, and through international agreements for their protection. In this review, we explore the status of mangrove forests as well as efforts to protect them. We examine threats to the persistence of mangroves, consequences, and potential solutions for effective conservation. We present case studies from disparate regions of the world, showing that the integration of human livelihood needs in a manner that balances conservation goals can present solutions that could lead to long-term sustainability of mangrove forests throughout the world.

  5. Nitrate and Phosphate Contents on Sediments Related to The Density Levels of Mangrove Rhizophora Sp. in Mangrove Park Waters of Pekalongan, Central Java

    Science.gov (United States)

    Supriyantini, E.; Santoso, A.; Soenardjo, N.

    2018-02-01

    Mangrove Park waters area of Pekalongan City, Central Java, used to be an aquaculture field, now turning the function into a restoration-based mangrove area, and now it has undergone rehabilitation. The conditions may affect the distribution of nitrate and phosphate content. The objective of this study was to determine the content of nitrates and phosphates in sediments related to the density levels of mangrove Rhizophora sp. The method used in this research was a descriptive method, and sampling was done by purposive sampling method. Water and sediment sampling were conducted at three stations respectively, representing: no mangrove area but used as a residential and tourist area (station 1); less dense mangrove (station 2); and, the previously aquaculture field - or medium dense mangrove (station 3). The results showed that the content of nitrate and phosphate in the whole sediment showed a low fertility rate. Average nitrate content for station 1, station 2 and station 3 were 0.86 mg/100 g, 0.94 mg/100 g and 0.81 mg/100 g, respectively. The average phosphate content at each station were 1.14 mg/100 g, 0.04 mg/100 g and 0.05 mg/100 g, respectively. Except to the station 1 that was no vegetation anymore, the mangrove density levels at two other stations at study sites were relatively low to medium; at station 2 was 0.8 ind/10 m2 and at station 3 was 1.2 ind/10 m2. The role of nitrate and phosphate were for mangrove growth at the site.

  6. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    Science.gov (United States)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (pmangrove's categories (pmangrove categories showed higher greenness values during winter; which is likely driven by temperature with a lag of -3 to -5 months (r2 > 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  7. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2016-12-24

    As coastal plants that can survive in salt water, mangroves play an essential role in large marine ecosystems (LMEs). The Red Sea, where the growth of mangroves is stunted, is one of the least studied LMEs in the world. Mangroves along the Central Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week-old seedlings of Avicennia marina to identify limiting nutrients and stoichiometric effects. We measured height, number of leaves, number of nodes and root development at different time periods as well as the leaf content of C, N, P, Fe, and Chl a in the experimental seedlings. Height, number of nodes and number of leaves differed significantly among treatments. Iron treatment resulted in significantly taller plants compared with other nutrients, demonstrating that iron is the primary limiting nutrient in the tested mangrove population and confirming Liebig\\'s law of the minimum: iron addition alone yielded results comparable to those using complete fertilizer. This result is consistent with the biogenic nature of the sediments in the Red Sea, which are dominated by carbonates, and the lack of riverine sources of iron.

  8. The degradation level of mangrove at Lhokseumawe, Aceh

    Science.gov (United States)

    Susiloningtyas, D.; Handayani, T.; Amalia, N.; Rachmawati, G. M.

    2017-07-01

    Aceh is one of the 34 provinces in Indonesia that has the highest population with a high level of hazard. This research was conducted in the Lhokseumawe district, East Coast of Aceh. This paper was based on secondary data of the analyzed SPOT-5 satellite imagery. This study examines the relationship between the level of damage to mangrove with the distribution of mangrove forests that have formed various spatial patterns and spread in the administrative area of Lhokseumawe, distribution of school and location of school. The method performed by descriptive and quantitative analysis method by Pearson product moment statistic method. The degradation level of mangrove is divided into 3 classes such as the good condition, moderate condition, and bad condition. The result is 14 % of the good condition of mangrove extent about more than 60,000 m2, 32 % are mangrove in moderate condition with an area of 30,000-60,000 m2 and 54 % of them are in bad condition about can be found within an area of than 30,000 m2.

  9. Hydrologic modeling in a marsh-mangrove ecotone: Predicting wetland surface water and salinity response to restoration in the Ten Thousand Islands region of Florida, USA

    Science.gov (United States)

    Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo

    2017-01-01

    in salinity diminished toward the open water areas where the daily flood tides mix in saline bay water. Partially restoring hydrologic flows to TTINWR will affect hydroperiod and salinity regimes within downslope wetlands, and perhaps serve as a management tool to reduce the speed of future encroachment of mangroves into marsh as sea levels rise.

  10. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mangrove succession enriches the sediment microbial community in South China.

    Science.gov (United States)

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  12. Pengaruh Aktivitas Masyarakat terhadap Kerusakan Hutan Mangrove di Rarowatu Utara, Bombana Sulawesi Tenggara

    Directory of Open Access Journals (Sweden)

    Wa Alimuna

    2016-10-01

    Full Text Available ABSTRAK Hutan mangrove penting keberadaannya karena memberikan fungsi ekologi dan fungsi ekonomis bagi kehidupan masyarakat pesisir. Kerusakan hutan mangrove yang terjadi bersumber dari perilaku masyarakat untuk membuka lahan tambak, budidaya perikanan, dan penebangan liar karena semakin besarnya permintaan terhadap produksi kayu. Penelitian ini bertujuan untuk : 1 mengkaji tingkat kerusakan hutan mangrove; 2 mengkaji aktivitas masyarakat yang mempengaruhi kerusakan hutan mangrove; 3 mengkaji faktor-faktor yang mempengaruhi aktivitas masyarakat terhadap kerusakan hutan mangrove; 4 mengkaji peran serta masyarakat dalam mengelola hutan mangrove. Metode yang digunakan dalam penelitian ini yaitu metode survei melalui wawancara dengan menggunakan kuisioner. Analisis data menggunakan tabel silang, kemudian hasilnya dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa melalui perhitungan INP (Indeks Nilai Penting diketahui bahwa jenis vegetasi mangrove yang mendominasi dan memiliki peranan penting pada hutan mangrove di Desa Watumentade adalah jenis Bruguiera gymnorrhiza (tingkat semai (92,21, tingkat sapihan (87,98, dan tingkat pohon (139,84, dan di Desa Tunas Baru adalah jenis Rhizophora mucronata (tingkat semai (67,52, tingkat sapihan (73,52, dan tingkat pohon (80,88. Aktivitas masyarakat yang mempengaruhi terjadinya kerusakan hutan mangrove meliputi kegiatan pertambakan, dan penebangan liar yang digunakan sebagai kayu bakar dan bahan bangunan. Faktor-faktor kondisi sosial ekonomi yang mempengaruhi ativitas masyarakat meliputi pendidikan formal, pengetahuan, dan pendapatan masyarakat. Faktor tingkat pendidikan, pengetahuan (fungsi dan manfaat hutan mangrove, kerusakan hutan mangrove, dan pencegahan kerusakan hutan mangrove, dan pendapatan berpengaruh terhadap aktivitas masyarakat dalam bentuk penggunaan lahan pertambakan yang menyebabkan kerusakan terhadap hutan mangerove. Peranserta masyarakat dalam pengelolaan hutan mangrove ditujukan

  13. Ecosystem Services and Disservices of Mangrove Forests: Insights from Historical Colonial Observations

    OpenAIRE

    Daniel A. Friess

    2016-01-01

    Ecosystem services are now strongly applied to mangrove forests, though they are not a new way of viewing mangrove-people interactions; the benefits provided by such habitats, and the negative interactions (ecosystem disservices) between mangroves and people have guided perceptions of mangroves for centuries. This study quantified the ecosystem services and disservices of mangroves as written by colonial explorers from 1823–1883 through a literature survey of 96 expedition reports and studies...

  14. Quantitative Review and Distribution Status of Mangrove Forest ...

    African Journals Online (AJOL)

    FIRST LADY

    This paper statistically evaluated the distribution of mangrove forest distributions in Nineteen ... interlinked with highly productive coastal lagoons, tidal estuaries and deltas. Similarly .... (Atlantic–East Pacific red mangroves), ver. 2.1. In: Elevitch ...

  15. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012

    Science.gov (United States)

    Richards, Daniel R.; Friess, Daniel A.

    2016-01-01

    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation. PMID:26712025

  16. Developing community-based mangrove management through eco-tourism in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Bimantara, Y.; Siagian, M.; Wati, R.; Slamet, B.; Sulistiyono, N.; Nuryawan, A.; Leidonad, R.

    2018-03-01

    Mangrove forests in North Sumatera, Indonesia existed in the east coast of Sumatera Island and commonly thrived in Langkat, Deli Serdang, Batubara, Tanjung Balai, Asahan, Labuhanbatu until Serdang Bedagai. The present study describes the developing community-based mangrove management (CBMM) through eco-tourism in two locations, Lubuk Kertang (LK) of Langkat and Sei Nagalawan (SN) of Serdang Bedagai, North Sumatra, Indonesia. Mangrove ecosystem, coastal villagers and visitors, and related stakeholder were analyzed to present the potential of mangrove ecosystem, the ecological suitability, and the carrying capacity then continued with SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis. Results showed that mangrove diversity in LK consist of fifteen species which Rhizophora apiculata and Avicennia lanata dominated the area, where mangroves in SN found seven species dominated by R. apiculata and A. officinalis. Based on the suitability level of mangrove ecosystem for ecotourism development, LK and SN were categorized as suitable and conditionally suitable, respectively. The carrying capacity of mangrove ecotourism for LK and SN were 36 and 36 people/day respectively. SWOT analysis revealed that both locations of eco-tourism have a potential eco-tourism attraction, high mangrove biodiversity, possible human resources, and real people’s perception on the importance of mangrove conservation, and relatively easy access. The study present suggested that mangrove ecotourism is a sustainable form of land use, to contributing the environmental protection and providing socio-economic benefits to the local people through indirect values of the natural resources.

  17. The impact of shrimp farming on mangrove ecosystems

    DEFF Research Database (Denmark)

    Ashton, Elizabeth Clare

    2008-01-01

    . Policy to position shrimp farms behind mangroves can be effective but also requires good institutional capacity and coordination, effective enforcement, incentives, land tenure and participation of all stakeholders for success. Better management practices have been identified which reduce impacts......Farmed shrimp production and value continue to increase with Asia producing the global majority of shrimp and the USA, Japan and Europe being the main importers. Shrimp farming systems are very diverse in their management, size and impacts. There are many causes for mangrove loss but the conversion...... of mangroves to shrimp farms has caused considerable attention. The major issues of shrimp farming include the loss of important ecological and socio-economic functions of mangrove ecosystems, changes in hydrology, salinization, introduction of non-native species and diseases, pollution from effluents...

  18. DIVERSITAS DAN KERAPATAN MANGROVE, GASTROPODA DAN BIVALVIA DI ESTUARI PERANCAK, BALI

    OpenAIRE

    Susiana; Ali, Syamsu Alam; Rukminasari, Nita

    2011-01-01

    Penelitian ini bertujuan membandingkan diversitas dan kerapatan mangrove dengan kepadatan gastropoda dan bivalvia di mangrove alami dan rehabilitasi. Pengukuran ekosistem mangrove menggunakan transek kuadrat 10 m x 10 m. Kelimpahan dan kepadatan gastropoda dan bialvia menggunakan transek kuadrat berukuran 1 m x 1 m. Analisis nMDS, cluster untuk melihat hubungan karekteristik mangrove alami dan rehabilitasi dianalisis secara deskriptif dan analisis regresi untuk mendetermi...

  19. Natural radionuclides in mangrove soils from the State of Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Paiva, J.D.S. de; Sousa, E.E.; Farias, E.E.G. de; Carmo, A.M.; Souza, E.M.; Franca, E.J. De

    2016-01-01

    Mangroves are essential for protecting coastal environments and biodiversity; however few studies encompass the distribution of radionuclides in soils from these ecosystems. By applying high resolution gamma-ray spectrometry, natural radionuclides were quantified in soils from the Chico Science Mangrove and Rio Formoso Mangrove (RFM), areas subjected to different human impacts. The activity concentrations of 226 Ra and 228 Ra were quite similar for the mangroves despite the differences found for 40 K. Moreover, no correlation with the environmental impacts on the mangroves was observed, although RFM soil was 40 K-enriched compared to deep sediments from other estuaries in the world. (author)

  20. Overview of National Thematic Data Integration (An Experience on One Map Mangrove Sulawesi)

    Science.gov (United States)

    Rudiastuti, A. W.; Yuwono, D. M.; Niendyawati; Pramono, G. H.; Rahmanto, B. D.

    2016-11-01

    Playing role as coastal shield with enormous economic value and ecological functions, mangrove forest management is always challenging to be studied. As either the largest archipelagic countryor the largest mangrove forest habitat around the globe, Indonesia needs a national mangrove forest baseline data and its updating for coastal management. Many stakeholders and institutions, including Geospatial Information Agency (BIG), had conducted mangrove mapping and updating. However, in order to achieve one mangrove national data, coordination and synergy among stakeholders and institutions such as: the Ministry of Environment and Forestry as mangrove custodian, Indonesian National Institute of Aeronautics and Space, Ministry of Marine and Fisheries, and BIG aligned with the National Mangrove Working Group is needed. A fundamental step for national mangrove forest management is the establishment of National One Map Mangrove Program by means of coordination, synchronization, and integration of mangrove geospatial data from various stakeholders. This paper will discuss the technical process of data integration and field survey in order to produce One Map Mangrove Sulawesi with the same geo-reference, database, and also standard and specification. The result of One Map Mangrove Sulawesi Program comprises of information about mangrove current status, existing area, and its distribution in Sulawesi.Beside the geospatial data from Ministry of Environment and Forestry and other institutions, the primary data used to map mangrove forest in Sulawesi is SPOT 6 and SPOT 7(year 2014 - 2015) imageries yielded map scale of 1: 25,000. On screen digitation using NIR, Red and Green bands and Normalized Difference Vegetation Index (NDVI)image transformation are applied for the initial canopy density classification. Field survey was doneto obtain field data forvegetation analysis, image classification andre-interpretation. In 2015, the process of producing One Map Mangrove Sulawesi has

  1. Mangrove Study Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Southern Biscayne Bay's shoreline fish community been monitored visually twice a year since 1998 to compare fish use of mangrove prop root habitats along the...

  2. mangrove litter production and seasonality of dominant species

    African Journals Online (AJOL)

    L.A

    storminess, and sea-level rise (Snedaker, 1995; Nigel, 1998). In the last .... mangrove species (three-levels) were entered as fixed factors, with the total litter components ..... Mangroves and climate change in the Florida and Caribbean region:.

  3. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  4. Monitoring mangrove forests: Are we taking full advantage of technology?

    Science.gov (United States)

    Younes Cárdenas, Nicolás; Joyce, Karen E.; Maier, Stefan W.

    2017-12-01

    Mangrove forests grow in the estuaries of 124 tropical countries around the world. Because in-situ monitoring of mangroves is difficult and time-consuming, remote sensing technologies are commonly used to monitor these ecosystems. Landsat satellites have provided regular and systematic images of mangrove ecosystems for over 30 years, yet researchers often cite budget and infrastructure constraints to justify the underuse this resource. Since 2001, over 50 studies have used Landsat or ASTER imagery for mangrove monitoring, and most focus on the spatial extent of mangroves, rarely using more than five images. Even after the Landsat archive was made free for public use, few studies used more than five images, despite the clear advantages of using more images (e.g. lower signal-to-noise ratios). The main argument of this paper is that, with freely available imagery and high performance computing facilities around the world, it is up to researchers to acquire the necessary programming skills to use these resources. Programming skills allow researchers to automate repetitive and time-consuming tasks, such as image acquisition and processing, consequently reducing up to 60% of the time dedicated to these activities. These skills also help scientists to review and re-use algorithms, hence making mangrove research more agile. This paper contributes to the debate on why scientists need to learn to program, not only to challenge prevailing approaches to mangrove research, but also to expand the temporal and spatial extents that are commonly used for mangrove research.

  5. IDENTIFIKASI TINGKAT KERAWANAN DEGRADASI KAWASAN HUTAN MANGROVE DESA MUARA, TANGERANG, BANTEN

    OpenAIRE

    Hadisti Nur Aini; Omo Rusdiana; Sri Mulatsih

    2015-01-01

    This study is intended to estimate the vulnerability of degradation of mangrove forest in Muara Village, Tangerang, Banten. There are five species of mangroves found in mangrove forest of Muara, which are: Avicennia alba, Avicennia officinnalis. Rhizophora apiculata, Rhizophora stylosa, and Rhizophora mucronata. The results showed that the mangrove forest in Muara has a high vulnerability of degradation based on the three vegetation characteristics, such as: density, domination, and biodivers...

  6. Mangrove area development strategy wonorejo as ecotourism in surabaya

    Science.gov (United States)

    Murtini, S.; Kuspriyanto; Kurniawati, A.

    2018-01-01

    Wonorejo mangrove ecotourism is a natural attraction that is increasingly in demand by the community. From year to year, this mangrove ecotourism shows an increase in the number of visitors so it is necessary to know the carrying capacity and development strategy to keep visitors comfortable in the location of tourism. The purpose of this research is to determine development strategies undertaken by the government. The research approach is descriptive quantitative by using survey method. The subject of research is the management of ecotourism area while the object of research includes mangrove, biota object and wide of an area. Sources of data obtained from interviews with parties related to the management of mangrove eco-tourism Wonorejo. Development strategy by using SWOT analysis. The results showed that the collation of the I-EFAS value indicates the position of P (2,35: 2,61) in quadrant I or growth, it’s the right strategy for the development of Wonorejo mangrove eco-tourism area is an aggressive strategy.

  7. The Story of Mangrove Depletion: Using Socioscientific Cases to Promote Ocean Literacy

    Science.gov (United States)

    Luther, Rachel A.; Tippins, Deborah J.; Bilbao, Purita P.; Tan, Andrew; Gelvezon, Ruth L.

    2013-01-01

    The value of mangroves and mangrove ecosystems has not always been recognized. In fact, mangroves were historically regarded largely as wastelands with little or no value. Over time, humans began to recognize the multiple ways in which they could be used, particularly through development, making the mangrove ecosystem vulnerable to destruction and…

  8. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  9. Wetlands and Sustainability

    Directory of Open Access Journals (Sweden)

    Richard Smardon

    2014-11-01

    Full Text Available This editorial provides an overview of the special issue “Wetlands and Sustainability”. In particular, the special issue contains a review of Paul Keddy’s book “Wetland Ecology” with specific reference to wetland sustainability. It also includes papers addressing wetland data acquisition via radar and remote sensing to better understand wetland system dynamics, hydrologic processes linked to wetland stress and restoration, coastal wetlands land use conflict/management, and wetland utilization for water quality treatment.

  10. Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry

    Science.gov (United States)

    Ellison, Aaron M.

    2008-02-01

    This review addresses mangrove management activities in the broader context of the diversity of the mangrove benthos. Goals for mangrove ecosystem management include silviculture, aquaculture, or 'ecosystem services' such as coastal protection. Silvicultural management of mangroves generally neglects the benthos, although benthic invertebrates may affect tree establishment and growth, and community composition of benthic invertebrates may be a reliable indicator of the state of managed mangrove forests. Similarly, mangrove aquaculture focuses on particular species with little attention paid either to impacts on other trophic levels or to feedbacks with the trees. Exploitation of mangrove-associated prawns, crabs, and molluscs has a total economic value > US $4 billion per year. These aquaculture operations still rely on wild-collected stock; world-wide patterns of exploitation fit the well-known process of 'roving banditry', where mobile agents move from location to location, rapidly exploiting and depleting local resources before moving on to other, as-yet unprotected grounds. Collection of brood stock and fishing for other external inputs required by aquaculture (e.g., 'trash fish') removes intermediate trophic levels from marine food webs, may destabilize them, and lead to secondary extinctions of higher-order predators. Increased attention being paid to the role of mangroves in coastal protection following the 2004 Indian Ocean tsunami provides an opportunity to reassess the relative merits of management focused on short-term economic gains. Managing for ecosystem services may ultimately preserve benthic biodiversity in mangrove ecosystems.

  11. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.

    Science.gov (United States)

    Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo

    2018-05-01

    Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.

  12. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: lewis.michael@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)

    2011-10-15

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  13. Characterization of mangrove forest types based on ALOS-PALSAR in overall Indonesian archipelago

    International Nuclear Information System (INIS)

    Darmawan, S; Takeuchi, W; Vetrita, Y; Winarso, G; Wikantika, K; Sari, D K

    2014-01-01

    Indonesia has largest mangrove forest in the world, total area around 3.5 million ha or 17% – 23% from mangrove forest in the world. Mangrove forest provides products and services, such as carbon balance of the coastal zone. Mapping and monitoring biomass of mangrove is very important but field survey of mangrove biomass and productivity in overall Indonesia is very difficult. Global-scale mosaics with HH and HV backscatter of Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) which is 50-m spatial resolution has been generated. This image available for identification and monitoring mangrove forest. The Objective of this research to investigate characterization of mangrove forest types based on ALOS-PALSAR in overall Indonesian archipelago. Methodology consists of collecting ALOS-PALSAR image for overall Indonesian archipelago, preprocessing and mosaicking, collecting region of interest of mangrove forest, plotting, ground survey, characterization and classification. The result of this research has showed characterization of mangrove forest types based on ALOS-PALSAR. Indonesian mangrove forest types has HH value around -10 dB until -7 dB and HV value around -17 dB until -13 dB. Higher of HH and HV backscatters value indicated higher of level biomass. Based on scatter plot of HH and HV, Indonesian mangrove forest can be classified in three level biomass. Generally level biomass of mangrove forest in Indonesia archipelago is moderate

  14. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    Science.gov (United States)

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  15. Establishing a Supervised Classification of Global Blue Carbon Mangrove Ecosystems

    Science.gov (United States)

    Baltezar, P.

    2016-12-01

    Understanding change in mangroves over time will aid forest management systems working to protect them from over exploitation. Mangroves are one of the most carbon dense terrestrial ecosystems on the planet and are therefore a high priority for sustainable forest management. Although they represent 1% of terrestrial cover, they could account for about 10% of global carbon emissions. The foundation of this analysis uses remote sensing to establish a supervised classification of mangrove forests for discrete regions in the Zambezi Delta of Mozambique and the Rufiji Delta of Tanzania. Open-source mapping platforms provided a dynamic space for analyzing satellite imagery in the Google Earth Engine (GEE) coding environment. C-Band Synthetic Aperture Radar data from Sentinel 1 was used in the model as a mask by optimizing SAR parameters. Exclusion metrics identified within Global Land Surface Temperature data from MODIS and the Shuttle Radar Topography Mission were used to accentuate mangrove features. Variance was accounted for in exclusion metrics by statistically calculating thresholds for radar, thermal, and elevation data. Optical imagery from the Landsat 8 archive aided a quality mosaic in extracting the highest spectral index values most appropriate for vegetative mapping. The enhanced radar, thermal, and digital elevation imagery were then incorporated into the quality mosaic. Training sites were selected from Google Earth imagery and used in the classification with a resulting output of four mangrove cover map models for each site. The model was assessed for accuracy by observing the differences between the mangrove classification models to the reference maps. Although the model was over predicting mangroves in non-mangrove regions, it was more accurately classifying mangrove regions established by the references. Future refinements will expand the model with an objective degree of accuracy.

  16. Content of polyphenol compound in mangrove and macroalga extracts

    Science.gov (United States)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  17. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  18. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    Science.gov (United States)

    Atkinson, Scott C; Jupiter, Stacy D; Adams, Vanessa M; Ingram, J Carter; Narayan, Siddharth; Klein, Carissa J; Possingham, Hugh P

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.

  19. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    Directory of Open Access Journals (Sweden)

    Scott C Atkinson

    Full Text Available Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20% for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs, prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.

  20. Mangrove forests: a potent nexus of coastal biogeochemical cycling

    Science.gov (United States)

    Barr, J. G.; Fuentes, J. D.; Shoemaker, B.; O'Halloran, T. L.; Lin, G., Sr.; Engel, V. C.

    2014-12-01

    Mangrove forests cover just 0.1% of the Earth's terrestrial surface, yet they provide a disproportionate source (~10 % globally) of terrestrially derived, refractory dissolved organic carbon to the oceans. Mangrove forests are biogeochemical reactors that convert biomass into dissolved organic and inorganic carbon at unusually high rates, and many studies recognize the value of mangrove ecosystems for the substantial amounts of soil carbon storage they produce. However, questions remain as to how mangrove forest ecosystem services should be valuated and quantified. Therefore, this study addresses several objectives. First, we demonstrate that seasonal and annual net ecosystem carbon exchange in three selected mangrove forests, derived from long-term eddy covariance measurements, represent key quantities in defining the magnitude of biogeochemical cycling and together with other information on carbon cycle parameters serves as a proxy to estimate ecosystem services. Second, we model ecosystem productivity across the mangrove forests of Everglades National Park and southern China by relating net ecosystem exchange values to remote sensing data. Finally, we develop a carbon budget for the mangrove forests in the Everglades National Park for the purposes of demonstrating that these forests and adjacent estuaries are sites of intense biogeochemical cycling. One conclusion from this study is that much of the carbon entering from the atmosphere as net ecosystem exchange (~1000 g C m-2 yr-1) is not retained in the net ecosystem carbon balance. Instead, a substantial fraction of the carbon entering the system as net ecosystem exchange is ultimately exported to the oceans or outgassed as reaction products within the adjacent estuary.

  1. POTENSI EKOSISTEM MANGROVE DI TAMAN WISATA TELUK YOUTEFA KOTA JAYAPURA PAPUA

    Directory of Open Access Journals (Sweden)

    Yunus P Paulangan

    2014-10-01

    Full Text Available Ekosistem mangrove memiliki keanekaragaman hayati baik dari manfaat  ekologi maupun sosialnya. Ekosistem ini berperan dalam siklus ekologi di wilayah pesisir dengan ketergantungan biota perairan dan manusia terhadap keberadaannya. Manfaat ekonomi langsung dari ekosistem mangrove adalah kayu mangrove sebagai bahan bakar maupun sebagai bahan bangunan dan kawasan hutan yang dialih fungsikan sebagai area tambak. Kawasan ekosistem mangrove Taman Wisata Teluk Youtefa yang berada dekat dengan perkotaan, menjadikan kawasan tersebut berkaitan langsung dengan keberagaman aktivitas tersebut, seperti pemanfaatan kayu mangrove sebagai kayu bakar, bahan bangunan dan sebagainya yang mengakibatkan penurunan kualitas ekosistem mangrove. Selain itu terdapat aktivitas, seperti konversi lahan menjadi tambak, pemukiman dan industri, serta tingginya pencemaran dan sedimentasi dari lahan perkotaan. Sebagai upaya pengelolaannya berdasarkan konsep dan prinsip terpadu, maka perlu disusun rencana strategis pengelolaanya agar dapat berkelanjutan. Dari proses penyusunan tersebut, terlihat bahwa peranan stakeholder sangat dibutuhkan dalam setiap langkah penyusunan program. Selain itu, dimensi pengelolaan, yaitu ekologi, sosial ekonomi maupun kelembagaan menjadi pertimbangan utama sebagai satu kesatuan tahapan.Kata Kunci: Mangrove, Pengelolaan terpadu, Teluk YoutefaPOTENTIAL MANGROVE ECOSYSTEM IN YOUTEFA BAY TOURIST PARK, JAYAPURA CITY, PAPUAABSTRACTMangrove ecosystem has biodiversity, either in ecology or social use. This ecosystem plays a role in ecology cycle in coastal area with the reliance of aquatic biota and humans upon its existence. The location of mangrove ecosystem of Youtefa Bay Tourist Park that is near to the city placed it in direct contact with a variety of activities, such as the utilization of mangrove wood as a firewood, building material and others that threat the quality of the mangrove ecosystem to experience a decrease. Besides, there were activities

  2. Identifikasi Dinamika Spasial Sumberdaya Mangrove di Wilayah Pesisir Kabupaten Demak Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Septiana Faturrohmah

    2017-04-01

    Full Text Available Sebagai salah satu sumberdaya pesisir, hutan mangrove memiliki fungsi sosial ekonomi, fungsi ekologis, dan fungsi fisik. Namun demikian, sebagian hutan mangrove di pesisir Kabupaten Demak berada pada kondisi rusak. Menurut data dari Dinas Kelautan dan Perikanan Kabupaten Demak, pada tahun 2011 luas ekosistem mangrove di Kabupaten Demak sekitar 8 % dalam kondisi rusak. Sebagai salah satu upaya perlindungan wilayah pesisir di Kabupaten Demak, maka diperlukan revitalisasi hutan mangrove melalui kegiatan konservasi. Kegiatan konservasi dapat berjalan lebih efektif apabila diawali dengan proses perencanaan berdasarkan data-data, inventarisasi, dan pemantauan. Maksud penelitian ini adalah untuk memberikan kontribusi terkait arahan spasial perencanaan konservasi mangrove di wilayah pesisir Kabupaten Demak melalui identifikasi distribusi dan luas tutupan hutan mangrove serta dinamikanya dalam kurun waktu lima tahun terakhir. Analisis yang digunakan adalah analisis deskriptif kualitatif dan kuantitatif sederhana dengan bantuan data citra penginderaan jauh dan Sistem Informasi Geografis. Hasil penelitian menunjukkan bahwa dalam kurun waktu lima tahun terakhir (2010-2015, distribusi spasial dan luasan hutan mangrove di wilayah pesisir Kabupaten Demak secara umum tidak mengalami perubahan yang besar, yaitu hanya mengalami penurunan seluas 68,17 Ha. Akan tetapi, dalam pengamatan yang lebih detail pada lingkup kecamatan dan desa, perubahan distribusi dan luasan terlihat lebih variatif.   As the one of coastal resource, mangrove has socio-economic, and physical functions. Unfortunately, certain extent of the mangrove forests in coastal area of Demak Regency has been degraded over time. Department of Marine and Fisheries of Demak Regency has been informed that at 2011, about 8 % of mangrove area in Demak Regency is in damaged condition. In order to protect the coastal area of Demak Regency, it necessary to revitalize mangrove forest by conservation programme

  3. The Use of Spot Image for Mangrove Inventory in Cimanuk Delta West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Hartono .

    2013-07-01

    At least two mangrove types of mangrove could be identified from the SPOT image. Dense mangrove was found in Petak 7, Petak 8, Petak 9 and Petak 12. In the other Petaks, mangrove were less than 20% of their surface. Mangrove of Rhizophora in 26 Petaks covered 290 Ha only.

  4. The loss of species: mangrove extinction risk and geographic areas of global concern.

    Science.gov (United States)

    Polidoro, Beth A; Carpenter, Kent E; Collins, Lorna; Duke, Norman C; Ellison, Aaron M; Ellison, Joanna C; Farnsworth, Elizabeth J; Fernando, Edwino S; Kathiresan, Kandasamy; Koedam, Nico E; Livingstone, Suzanne R; Miyagi, Toyohiko; Moore, Gregg E; Ngoc Nam, Vien; Ong, Jin Eong; Primavera, Jurgenne H; Salmo, Severino G; Sanciangco, Jonnell C; Sukardjo, Sukristijono; Wang, Yamin; Yong, Jean Wan Hong

    2010-04-08

    Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

  5. The loss of species: mangrove extinction risk and geographic areas of global concern.

    Directory of Open Access Journals (Sweden)

    Beth A Polidoro

    2010-04-01

    Full Text Available Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16% are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

  6. PENGGUNAAN METODE ANALYTICAL HIERARCHY PROCESS DALAM PEMILIHAN LOKASI MANGROVE PARK

    Directory of Open Access Journals (Sweden)

    Mustika Mustika

    2017-02-01

    Full Text Available Demak district is a district that has quite a lot of mangrove forests, beautiful expanse of mangrove is a natural potential that can be developed as a regional tourism assets. Mangrove Park is one of the utilization of conservation area into tourism areas of education and recreation The Selection of Planning site locations required an appropriate location in the terms of land use, The appropriate land is a land that has a Mangrove area which still leafy, natural (unprocessed and intended as a tourism area, an easy accessibility, the network infrastructure is also needed in the election of location in order to support the available facilities in the building. In addition, the view of the inside and outside of the site that will be a tourism place attraction. Decision Support System can be used as a tool to help the site selection process that involves many criteria. Analytical Hierarchy Process (AHP can be used to analyze which support the decision to choose a location. Phases of AHP used in this research is the identification of causes, preparation of hierarchy, prioritization, consistency, and the priority weight. From the Implementation of the method on the study case successfully find the best location for mangrove park, it is in the village Bedono it has the highest total global priorities 1.2349. Keywords: Site Location, Analytical Hierarchy Process, Mangrove Park Kabupaten Demak adalah kabupaten yang memiliki hutan mangrove yang cukup banyak, hamparan mangrove yang indah merupakan potensi alam yang dapat dikembangkan sebagai aset pariwisata daerah. Mangrove Park adalah salah satu bentuk pemanfaatan kawasan konservasi menjadi kawasan wisata edukasi dan rekreasi. Pemilihan lokasi tapak perencanaan diperlukan sebuah lokasi yang tepat dari segi peruntukan lahan, lahan yang tepat adalah lahan yang memiliki area Mangrove yang masih rimbun, alami (belum diolah dan diperuntukkan sebagai kawasan wisata, aksebilitas yang mudah dijangkau, jaringan

  7. Mangroves of the Pacific Islands: research opportunities

    Science.gov (United States)

    Ariel E. Lugo

    1990-01-01

    The perception of mangroves by people in the Pacific islands and throughout all the world has changed in the past decades. Today, the economic, social, ecologic, and esthetic values of mangroves are well recognized. Past research on these ecosystems is responsible for the change in perception. However, a review of eleven subjects relevant to the management of Pacific...

  8. SYNERGY OF OPTICAL AND SAR DATA FOR MAPPING AND MONITORING MANGROVES

    Directory of Open Access Journals (Sweden)

    A. K. Monzon

    2016-06-01

    Full Text Available Quantitative information on mangrove cover extents is essential in producing relevant resource management plans and conservation strategies. In the Philippines, mangrove rehabilitation was made a priority in relation to disaster risk response and mitigation following the calamities in the coastal communities during typhoon Haiyan/Yolanda; hence, baseline information on the extent of remaining mangrove cover was essential for effective site interventions. Although mangrove cover maps for the country already exists, analysis of mangrove cover changes were limited to the application of fixed annual deforestation rates due to the challenge of acquiring consistent temporal cloud-free optical satellite data over large landscapes. This study presents an initial analysis of SAR and optical imagery combined with field-based observations for detecting mangrove cover extent and changes through a straightforward graphical approach. The analysis is part of a larger study evaluating the synergistic use of time-series L-band SAR and optical data for mapping and monitoring of mangroves. Image segmentation was implemented on the 25-meter ALOS/PALSAR image mosaics, in which the generated objects were subjected to statistical analysis using the software R. In combination with selected Landsat bands, the class statistics from the image bands were used to generate decision trees and thresholds for the hierarchical image classification. The results were compared with global mangrove cover dataset and validated using collected ground truth data. This study developed an integrated replicable approach for analyzing future radar and optical datasets, essential in national level mangrove cover change monitoring and assessment for long-term conservation targets and strategies.

  9. Mangrove cover in the Red Sea (1972-2013), supplement to: Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M; Irigoien, Xabier (2016): Decadal Stability of Red Sea Mangroves. Estuarine, Coastal and Shelf Science, 169, 164-172

    KAUST Repository

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2015-01-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 km**2 along the African shore and 51 km**2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29%/y. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  10. Global controls on carbon storage in mangrove soils

    Science.gov (United States)

    Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.

    2018-06-01

    Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

  11. Mangroves among the most carbon-rich forests in the tropics

    Science.gov (United States)

    Donato, Daniel C.; Kauffman, J. Boone; Murdiyarso, Daniel; Kurnianto, Sofyan; Stidham, Melanie; Kanninen, Markku

    2011-05-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30-50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from mangrove loss are uncertain, owing in part to a lack of broad-scale data on the amount of carbon stored in these ecosystems, particularly below ground. Here, we quantified whole-ecosystem carbon storage by measuring tree and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area of the Indo-Pacific region--spanning 30° of latitude and 73° of longitude--where mangrove area and diversity are greatest. These data indicate that mangroves are among the most carbon-rich forests in the tropics, containing on average 1,023Mg carbon per hectare. Organic-rich soils ranged from 0.5m to more than 3m in depth and accounted for 49-98% of carbon storage in these systems. Combining our data with other published information, we estimate that mangrove deforestation generates emissions of 0.02-0.12Pg carbon per year--as much as around 10% of emissions from deforestation globally, despite accounting for just 0.7% of tropical forest area.

  12. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  13. Mangrove removal in the belize cays: effects on mangrove-associated fish assemblages in the intertidal and subtidal

    Science.gov (United States)

    Taylor, D.S.; Reyier, E.A.; Davis, W.P.; McIvor, C.C.

    2007-01-01

    We investigated the effects of mangrove cutting on fish assemblages in Twin Cays, Belize, in two habitat types. We conducted visual censuses at two sites in adjoining undisturbed/disturbed (30%–70% of shoreline fringe removed) sub-tidal fringing Rhizophora mangle Linnaeus, 1753. Observers recorded significantly more species and individuals in undisturbed sites, especially among smaller, schooling species (e.g., atherinids, clupeids), where densities were up to 200 times greater in undisturbed habitat. Multivariate analyses showed distinct species assemblages between habitats at both sites. In addition, extensive trapping with wire minnow traps within the intertidal zone in both undisturbed and disturbed fringing and transition (landward) mangrove forests was conducted. Catch rates were low: 638 individuals from 24 species over 563 trap-nights. Trap data, however, indicated that mangrove disturbance had minimal effect on species composition in either forest type (fringe/transition). Different results from the two methods (and habitat types) may be explained by two factors: (1) a larger and more detectable species pool in the subtidal habitat, with visual "access" to all species, and (2) the selective nature of trapping. Our data indicate that even partial clearing of shoreline and more landward mangroves can have a significant impact on local fish assemblages.

  14. Mangroves act as a small methane source: an investigation on 5 pathways of methane emissions from mangroves

    Science.gov (United States)

    Chen, H.; Peng, C.; Guan, W.; Liao, B.; Hu, J.

    2017-12-01

    The methane (CH4) source strength of mangroves is not well understood, especially for integrating all CH4 pathways. This study measured CH4 fluxes by five pathways (sediments, pneumatophores, water surface, leaves, and stems) from four typical mangrove forests in Changning River of Hainan Island, China, including Kandelia candel , Sonneratia apetala, Laguncularia racemosa and Bruguiera gymnoihiza-Bruguiera sexangula. The CH4 fluxes (mean ± SE) from sediments were 4.82 ± 1.46 mg CH4 m-2 h-1 for those without pneumatophores and 1.36 ± 0.17 mg CH4 m-2 h-1 for those with pneumatophores. Among the three communities with pneumatophores, S. apetala community had significantly greater emission rate than the other two. Pneumatophores in S. apetala were found to significantly decrease CH4 emission from sediments (P duck farming. Leaves of mangroves except for K. candel were a weak CH4 sink while stems a weak source. As a whole the 72 ha of mangroves in the Changning river basin emitted about 8.10 Gg CH4 yr-1 with a weighted emission rate of about 1.29 mg CH4 m-2 h-1, therefore only a small methane source to the atmosphere compared to other reported ones. Keywords: Greenhouse Gases; Biogeochemistry; Tropical ecosystems; Methane budget

  15. Food sources for the mangrove tree crab aratus pisonii: a carbon isotopic study

    International Nuclear Information System (INIS)

    Lacerda, L.D.; Silva, C.A.R.; Rezende, C.E.; Martinelli, L.A.

    1991-01-01

    Muscle tissues from the mangrove tree crab Aratus pisonii was analysed for carbon isotopic composition, in order to trace its major food sources. Potential food sources: mangrove leaves epi phytic green algae, mangrove sediments and open water and mangrove suspended matter; were also analysed. The results show that A. pisonii is basically omnivorous, with major food sources from marine origin. However, mangrove carbon can contribute with 16% to 42% in the crab's diet. (author)

  16. Production of litter and detritus related to the density of mangrove

    Science.gov (United States)

    Budi Mulya, Miswar; Arlen, HJ

    2018-03-01

    Research about the production of leaf litter and detritus related to the density of mangrove trees has been done. The aims of this research are to know and analyze the amount of litter and detritus produced to the density of mangrove trees. The production and collection of leaf litter were carried out in five stations. Production of detritus and decomposition rate were calculated by measuring its dry weight. The density and level of mangrove trees were determined using transect quadratic method. The relationship between the leaf litter and detritus production ratio related to mangrove density were then analyzed. Results showed that mangrove trees with the density of 766.67 ind ha‑1 ccould produce the amount of litter and detritus to about 28597.33 gha‑1day‑1and 1099.35 gha‑1day‑1 while mangrove trees with the density of 1300 ind ha‑1 could produce the amount of litter and detritus to about 35093.33 g/ha/day and 1216.68 gha‑1day‑1 respectively. Data analysis showed that the increment of mangrove density is linearly related to the production increment of litter and detritus.

  17. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove.

    Science.gov (United States)

    Sousa, Mariana M DE; Colpo, Karine D

    2017-01-01

    It is not unusual to find epiphytic bromeliads in mangroves, but most studies on mangrove vegetation do not record their presence. This study aimed to evaluate the diversity and distribution of epiphytic bromeliads in a subtropical mangrove. The richness, abundance and life form (atmospheric and tank) of bromeliads were recorded and compared among host tree species and waterline proximity. The effects of diameter and height of host trees on the abundance of bromeliads were also assessed. The mangrove was composed of Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. We recorded seven bromeliad species of the genera Tillandsia and Vriesea. The waterline proximity did not affect the abundance or diversity of bromeliads, but atmospheric forms were predominant near the waterline, whereas tank bromeliads were more frequent in the interior of the mangrove. The three mangrove species hosted bromeliads, but L. racemosa was the preferred host. The species composition showed that the distribution of bromeliads is more related to the host species than to the distance from the waterline. Bromeliad abundance increased with tree size. Bromeliads can be biological indicators of ecosystem health; therefore, inventories and host tree preferences are necessary knowledge for an adequate management of sensitive ecosystems as mangroves.

  18. High heterogeneity in soil composition and quality in different mangrove forests of Venezuela.

    Science.gov (United States)

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Meléndez, W; Macías, F

    2017-09-18

    Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh mangroves presented a low Fe Pyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.

  19. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  20. TINGKAT KEBERHASILAN PENANAMAN POHON MANGROVE (KASUS: PESISIR PULAU UNTUNG JAWA KEPULAUAN SERIBU

    Directory of Open Access Journals (Sweden)

    Adi Winata

    2016-03-01

    Full Text Available Increasing land demand for human life tends to lead the most transitional allotment of land conservation in the coastal zone into settlements, ports, aquaculture, and other means of livelihood. Including mangrove ecosystem in coastal region of Kepulauan Seribu. The purpose of study was to measure success rate of mangrove trees planting and growth rate of mangrove trees. The design of the study was exploratory research using a quantitative approach. The population were mangrove trees which was planted at Community Services Program Universitas Terbuka on October 28th 2013. The mangrove species is Rhizophora mucronata. Sample was determained from some land areas with created plot survei (3 x 3 m in 10 locations at Untung Jawa Island. Data yang dikumpulkan pada penelitian ini adalah data primer dan sekunder. Data were collected using survey method, and presented in the form of frequency tables and descriptions, and analyzed descriptively. Data was be primary data including the number of mangrove trees, mangrove tree height, number of leaves, leaf length, and leaf width. The results indicated that the success rate of mangrove tress planting reached 72%. This was indicated that Rhizophora mucronata had fairly wide range of habitats, hence it is easy to live in the research location. Overall, the growth rate of mangrove trees showed good results, in terms of tree height, number of leaves, leaf length and leaf width.

  1. Occurrence of Streptomyces aurantiacus in Mangroves of Bhitarkanika

    Directory of Open Access Journals (Sweden)

    Gupta, N.

    2007-01-01

    Full Text Available Thirteen strains of Streptomyces were isolated from phyllosphere of nine mangrove tree species found in Bhitarkanika mangrove ecosystem of Orissa. According to physiological, biochemical data, all 13 of the isolates were taxonomically identified to the genus Streptomyces as aurantiacus species. All strains are grayish, spirals and forming amorphous colony. Almost all utilized araginose, produced H2S, resistant towards rifampicin and penicillin, urea except few strains. However, they exhibited different extracellular activity like phosphate solubilization, lipase and L asparaginase production. This is a unique report from this mangrove ecosystem as far as Streptomyces occurrence is concerned.

  2. Development of an intertidal mangrove nursery and afforestation techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The development of an intertidal mangrove nursery and afforestation technique for regeneration and restoration of mangroves of Goa is described. Site selection, source of plant material, nursery plantation, season of transplantation, technique...

  3. PEMBANGUNAN DATABASE MANGROVE UNTUK BIODIVERSITY INFORMATICS BIOFARMAKA IPB

    Directory of Open Access Journals (Sweden)

    Yeni Herdiyeni

    2014-12-01

    Full Text Available Mangroves are a source of traditional medicine that can be used as a source of bioactive compounds. With the conversion of mangrove ecosystem into another designation led to the extinction of mangrove ecosystems. Therefore we need a good management of natural resources. In natural resource management, biodiversity information is needed to sustain the species utilization, exploration potential of the species and their biological and ecological monitoring, policy making, and for the development of biotechnology innovation. Research center of IPB Biopharmaca (Institute for Research and Community Services of Bogor Agricultural University has the mandate to conduct research from upstream to downstream in the medicinal field. This study develops Indonesian mangrove biodiversity database for Biodiversity Informatics. Biodiversity informatics (BI is the development of computer-based technologies for the management of biodiversity information. BI can be used to improve the knowledge management (knowledge management, exploration, analysis, synthesis, and interpretation of data ranging from the level of genomic biodiversity, species level to the ecosystem level. From the results of this study are expected data, information and knowledge of natural wealth mangroves can be managed properly so that the preservation of natural resources can be properly maintained and can be used in particular to the field of medicinal studies.

  4. Environmental management of mangrove ecosystems. An approach for the Colombian case

    International Nuclear Information System (INIS)

    Uribe P, Johanna; Urrego G, Ligia E

    2009-01-01

    The aim of the present documental investigation is to analyze the published information on the current state of mangrove ecosystems and its management. A categorical system was established in order to facilitate the analysis of the compiled information. Firstly, the socioeconomic and biological importance of mangrove ecosystems is examined. The causes of environmental degradation of mangroves are analyzed. Four groups of causes were identified: global climate change, urban development, over exploitation of resources and land use changes. Likewise, the effects of the environmental degradation of the mangroves are classified into three groups: biological function deterioration, loss of consumable and not consumable goods and services. Additionally, the environmental management actions carried out in mangroves are analyzed, which implies, on one hand the normativity (both national and international) and on the other, the implemented management strategies. From the categorical analysis tendencies, gaps and ambiguities of the information compiled are identified. Finally, some useful conclusions and recommendations for future management of mangrove ecosystems are presented.

  5. Does ‘You Are What You Eat’ Apply to Mangrove Grapsid Crabs?

    Science.gov (United States)

    Bui, Thi Hong Hanh; Lee, Shing Yip

    2014-01-01

    In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using 13C and 15N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ13C and Δδ15N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ13C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2±1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to

  6. Food web structure in exotic and native mangroves: A Hawaii-Puerto Rico comparison

    Science.gov (United States)

    Demopoulos, A.W.J.; Fry, B.; Smith, C.R.

    2007-01-01

    Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0-1??? for ?? 13C and 2-3??? for ?? 15N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-derived diet. Certain fauna, in particular tubificid oligochaetes, had ?? 13C values consistent with the consumption of mangrove leaves, but they were depleted in 15N, suggesting their primary nitrogen source was low in 15N, and was possibly N 2-fixing bacteria. In introduced mangroves, all feeding groups appeared to rely heavily on non-mangrove sources, especially phytoplankton inputs. Mixing model results and discriminant analysis showed clear separation of introduced and native mangrove sites based on differential food source utilization within feeding groups, with stronger and more diverse use of benthic foods observed in native forests. Observed differences between native and invasive mangrove food webs may be due to Hawaiian detritivores being poorly adapted to utilizing the tannin-rich, nitrogen-poor mangrove detritus. In addition, differential utilization of mangrove detritus between native and introduced mangroves may be a consequence of forest age. We postulate that increasing mangrove forest age may promote diversification of bacterial food webs important in N and S cycling. Our results also suggest a potentially important role for sulfur bacteria in supporting the most abundant infaunal consumers, nematodes, in the most mature systems. ?? 2007 Springer-Verlag.

  7. Asia Pacific Mangrove Information Network (APMIN): A conceptual model

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Jagtap, T.G.; Untawale, A.G.

    Asia Pacific Mangrove Information Network (APMIN), its structure and scope, is discussed in this paper. Establishment of National Mangrove Information Centers (NMIC) in 20 Asia-Pacific countries, would contribute towards development of databases...

  8. Sulphur oxidising bacteria in mangrove ecosystem: A review ...

    African Journals Online (AJOL)

    Sulphur-oxidizing bacteria such as photoautotrophs, chemolithotrophs and heterotrophs play an important role in the mangrove environment for the oxidation of the toxic sulphide produced by sulphur reducing bacteria and act as a key driving force behind all sulphur transformations in the mangrove ecosystem which is ...

  9. Empowerment and Coastal Community Participation on Mangrove Development in Pati Regency

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2015-03-01

    Full Text Available Development of mangrove plants is a very complex effort to implement, because the activity needs accommodative nature of the community around the coastal. This study aims to determine the government's role in the empowerment of coastal communities and public participation in the development of coastal mangrove plant in Pati regency. The research used descriptive approach with primary data was obtained from survey toward 282 respondents whom directly involved in mangrove development, while secondary data were obtained from relevant documents. The data were analyzed using descriptive method. The results of research are: (1 The score of government’s role on coastal community empowerment and mangrove development is 49.94 (categorized as enough. (2 Community empowerment on mangrove development get score 41.81 (categorized as enough.

  10. The Existing Condition of Mangrove Region of Avicenia marina, Its: Distribution and Functional Transformation

    Directory of Open Access Journals (Sweden)

    Ahmad Herison

    2014-04-01

    Full Text Available Mangrove ecosystem existence is important for environment and other organisms because of its ecological and economical values, so that management and preservation of mangrove ecosystem are needed. The purpose of this research was to determine the existing condition of mangrove, both its distribution and its functional transformation in Indah Kapuk Coastal Area. Avicennia marina becomes important as wave attenuation, a form of abrasion antidote. Transect-Square and Spot-Check methods were used to determine the existing condition of A.marina mangrove forests. Autocad program, coordinate converter, Google Earth, Google Map, and Arc View were applied in process of making mangrove distribution map. In western of research location exactly at Station 1 and Station 2, the density value of mangrove was 450 and 825 tree ha-1, respectively with sparse category because they were contaminated by waste and litter. In eastern of research location namely Station 3, Station 4, and Station 5 the mangroves grow well with density value of 650 (sparse, 1,500 (very dense, and 1,200 tree ha-1 (fair, respectively, eventhough the contamination still happened. The mangrove forests around the stations do not function as wave attenuation because there were many waterfront constructions which have replaced the function of mangrove forests to damp the wave. In short, it can be stated that the mangrove's function has changed in a case of wave attenuation. The function of mangrove forests is not determined by mangrove forest density but it is determined by mangrove's free position.

  11. Birds Communities at Mangrove of Batu Ampar, Kubu Raya District, West Kalimantan Province

    Directory of Open Access Journals (Sweden)

    Jarwadi Budi Hernowo

    2016-08-01

    Full Text Available Batu Ampar mangrove is an important bird habitat especially for birds which have relation to mangrove ecosystem in West Kalimantan. The research was conducted in February to March 2007, at mangrove Batu Ampar demo site. Sampling was done to get representative area for bird survey. The 19 transects were chosen as sampling site to collect bird data such as species and number of individual. Bird surveys were carried out using Reconnaissance method and index point of abundance (IPA count method. The length of each transect was approximately 500 m. The results showed that the bird community's structure dominated by insectivorous birds represented approximately 60 % of total bird's species at mangrove Batu Ampar demo site. The abundance numbers of the individual with the bird's species has relation pattern like J opposite. Percentage of dominant bird species was approximately 11%, those are such as stork billed kingfisher, white-collared kingfisher, common iora, chestnuts-rumped babbler, Strip-Tit Babbler, magpie robin, ashy tailorbird, mangrove blue flycatcher, pied fantail, mangrove whistler, Brown-throated Sunbird and Cooper-Throated Sunbird. Vertical structure of mangrove vegetation was used by birds at mangrove Batu Ampar demo site is mainly B stratum, and it used around 60% birds species. Based on dendrogram analysis there were 5 cluster birds species. The mangrove bird specialists found at sampling area were mangrove blue flycatcher and Cooper throated sunbird.

  12. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  13. Saving oiled mangroves using a new non-dispersing shoreline cleaner

    International Nuclear Information System (INIS)

    Teas, H.J.; Lessard, R.R.; Canevari, G.P.; Brown, C.D.; Glenn, R.

    1993-01-01

    Mangroves are ranked as one of the most sensitive marine environments. If mangroves are oiled and no further action is taken, the probability of mortality to the trees is high. One of the ways that viscous spilled oil can kill mangroves is by covering the breathing ports, called lenticels (red mangroves) and pneumatophores (black mangroves), and asphyxiating them by preventing flow of oxygen from the atmosphere into the roots. Mangroves can also be killed by continuous inundation of their prop roots or pneumatophores for a period of ten days to two weeks, but they can survive lenticel covering by water for a few hours at high tide - so there appears to be some grace period during which lenticels can be nonfunctional and the plant can still survive once lenticel function is restored. This suggests that if oil is removed from the breathing ports during the early days after a spill, the lenticels may be able to restore oxygen delivery to the roots and spare the mangroves. Such oils are poorly removed by the washing of tidal waters or by water sprays alone. So a new shoreline cleaner (Corexit 9580), which was specially developed during the cleanup of the Valdez spill in Alaska, was tested to determine its ability to help loosen the oil so it can be washed away with water. Laboratory experiments using excised prop roots of red mangrove (Rhizophora mangle) were initially conducted to determine the feasibility of the approach. Subsequently experiments were carried out using about a hundred potted red mangroves at a test site in Florida. The prop roots, including the lenticels, were coated with a heavy oil (bunker C). After various periods of time, groups of oiled trees were treated with the shoreline cleaner to loosen and remove the oil deposit and then washed with seawater. The results showed that oiled trees could be saved by cleaning within seven days after oiling, indicating that the grace period after oiling extends for about one week

  14. Arsenic enrichment in mangroves, and sediments along Karachi coast, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashida Parveen

    2013-08-01

    Full Text Available Objective: To assess the arsenic (As concentration in different parts of mangroves Avicennia marina and sediments in Karachi coastal area i.e. Korangi Creek , Manora, Kakapir and Sandspit. Methods: Sites are identified for sampling owing to their vicinity to industrial activities. Sandspit is targeted for its being devoid of industries. The hydride generation atomic absorption spectrometry (HG-AAS were used to analyse the concentration of arsenic in mangrove and sediment. Results: The high concentration of As was found in roots and middle aerial part as compared to the upper part of mangroves. The concentrations of As was found higher in sediments as compared to the mangroves. There is a seasonal variation of As enrichment in mangrove and sediments as dry seasons showed higher concentration while in rainy season dilution factors may be attributed to the low level of As. The concentration variation of As in sampling sites of mangroves and sediments following the trend i.e. Korangi Creek >Manora>Kakapir>Sandspit. The statistical analysis (Two way ANOVA of data exhibited no significant difference (P>0.05 for trace metals concentrations in mangrove as well as in sediments. Conclusions: It is obvious to conclude that As should be continuously monitored in different environmental segments. The data must correlate with geographical distribution of As, quantification in different species, their solubility and bioavailability to understand the possible factors responsible for environmental pollution. The present study will be helpful to improve water management resources.

  15. Mangrove reforestation: greening or grabbing coastal zones and ...

    African Journals Online (AJOL)

    Besides their important contribution to global biodiversity, mangroves provide many services. Nevertheless, due to an increase of human activities and to climate change, in less than 20 years these ecosystems have lost one fifth of their global surface area. In response to this decrease, mangrove reforestation incentives ...

  16. Modeling natural wetlands: A new global framework built on wetland observations

    Science.gov (United States)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  17. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR, P. R. China

    Directory of Open Access Journals (Sweden)

    K. Leempoel

    2013-08-01

    Full Text Available Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc. to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively. Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36% was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%, the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements (August–September, 2009 as well as spectral reflectance values (obtained from pansharpened GeoEye-1, both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%. In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e

  18. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove

    Directory of Open Access Journals (Sweden)

    MARIANA M. DE SOUSA

    Full Text Available ABSTRACT It is not unusual to find epiphytic bromeliads in mangroves, but most studies on mangrove vegetation do not record their presence. This study aimed to evaluate the diversity and distribution of epiphytic bromeliads in a subtropical mangrove. The richness, abundance and life form (atmospheric and tank of bromeliads were recorded and compared among host tree species and waterline proximity. The effects of diameter and height of host trees on the abundance of bromeliads were also assessed. The mangrove was composed of Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. We recorded seven bromeliad species of the genera Tillandsia and Vriesea. The waterline proximity did not affect the abundance or diversity of bromeliads, but atmospheric forms were predominant near the waterline, whereas tank bromeliads were more frequent in the interior of the mangrove. The three mangrove species hosted bromeliads, but L. racemosa was the preferred host. The species composition showed that the distribution of bromeliads is more related to the host species than to the distance from the waterline. Bromeliad abundance increased with tree size. Bromeliads can be biological indicators of ecosystem health; therefore, inventories and host tree preferences are necessary knowledge for an adequate management of sensitive ecosystems as mangroves.

  19. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize

    Science.gov (United States)

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    The substrate beneath mangrove forests in the Pelican Cays complex is predominately peat composed mainly of mangrove roots. Leaves and wood account for less than 20% of the peat mass. At Cat Cay, the depth of the peat ranges from 0.2 m along the shoreline to 1.65 m in the island center, indicating that the island has expanded horizontally as well as vertically through below-ground, biogenic processes. Mangrove roots thus play a critical role in the soil formation, vertical accretion, and stability of these mangrove cays. The species composition of fossil roots changes markedly with depth: Rhizophora mangle (red mangrove) was the initial colonizer on a coral base, followed by Avicennia germinans (black mangrove), which increased in abundance and expanded radially from the center of the island. The center of the Avicennia stand ultimately died, leaving an unvegetated, shallow pond. The peat thus retains a record of mangrove development, succession, and deterioration in response to sea-level change and concomitant hydroedaphic conditions controlling dispersal, establishment, growth, and mortality of mangroves on oceanic islands in Belize.

  20. The Opportunity Cost of Labor for Valuing Mangrove Restoration in Mahakam Delta, Indonesia

    Directory of Open Access Journals (Sweden)

    Heru Susilo

    2017-11-01

    Full Text Available Worldwide, damage to mangroves is alarming. Restoration is required to recover mangrove ecosystems, and communities’ involvement is a primary factor to reduce the threat to mangroves. Their participation might be interpreted as the appropriate decision concerning conservation and utilization of mangroves. Using a contingent valuation approach, this study assesses mangroves’ values to local communities through their willingness to contribute labor to obtain monetary value. Results showed that the opportunity cost of time was valued at IDR 398.76 thousand (US$29.99 a month or IDR 4.79 million (US$359.90 per year. A total annual benefit of mangrove restoration using the wage rate of time (WRT is IDR 143 billion (US$10.77 million per year. Accessing such information is crucial to making the appropriate decisions about conservation of mangroves within the context of developing countries that have poor coastal communities and low incomes. Tobit regression determined that five variables affect willingness to provide labor time and WRT significantly for mangrove restoration. These findings can support decision-makers with the relevant information for assessing a mangrove restoration project.

  1. Perancangan Interior Souvenir Shop Berbasis Human Centered Design Di Ekowisata Mangrove Surabaya

    OpenAIRE

    Oka, Melissa

    2015-01-01

    The design of commercial facilities in the form of a souvenir shop in Mangrove Ecotourism Surabaya is designed to support Surabaya city's government and also the Wonorejo Ecotourism institution in developing the facilities at Mangrove ecotourism wonorejo in order to fulfill the tourist's needs of particular handicrafts sale of mangrove ecotourism Surabaya and having the education value of mangrove processed goods. The souvenir shop consists of storage room, cashier area, and display area. The...

  2. Spatial Analysis of Land Adjustment as a Rehabilitation Base of Mangrove in Indramayu Regency

    Science.gov (United States)

    Sodikin; Sitorus, S. R. P.; Prasetyo, L. B.; Kusmana, C.

    2018-02-01

    Indramayu Regency is the area that has the largest mangrove in West Java. According to the environment and forestry ministry of Indramayu district will be targeted to be the central area of mangrove Indonesia. Mangroves in the regency from the 1990s have experienced a significant decline caused by the conversion of mangrove land into ponds and settlements. To stop the mangrove decline that continues to occur, it is necessary to rehabilitate mangroves in the area. The rehabilitation of mangrove should be in the area suitable for mangrove growth and what kind of vegetation analysis is appropriate to plant the area, so the purpose of this research is to analyze the suitability of land for mangrove in Indramayu Regency. This research uses geographic information system with overlay technique, while the data used in this research is tidal map of sea water, salintas map, land ph map, soil texture map, sea level rise map, land use map, community participation level map, and Map of organic soil. Then overlay and adjusted to matrix environmental parameters for mangrove growth. Based on the results of the analysis is known that in Indramayu District there are 5 types of mangroves that fit among others Bruguera, Soneratia, Nypah, Rhizophora, and Avicennia. The area of each area is Bruguera with an area of 6260 ha, 2958 ha, nypah 1756 ha, Rhizophora 936, and Avicennia 433 ha.

  3. VALUASI TOTAL EKONOMI HUTAN MANGROVE DI KAWASAN DELTA MAHAKAM KABUPATEN KUTAI KARTANEGARA KALIMANTAN TIMUR

    Directory of Open Access Journals (Sweden)

    Yuyun Wahyuni

    2014-04-01

    Full Text Available Mangrove forest is a tropical coastal vegetation community. The purpose of this study are: to identify the types and functions of the ecosystem of the area of mangrove forest; calculate the total economic value generated by mangrove forests; examine the factors that affect the economic benefits gained at the Mahakam Delta mangrove forest, Kutai regency. Results of this study indicated that there were four dominant types of forests mangrove: rizhopora, avicennia, sonneratia and nypa. They have decreased due to reduced function of mangrove forest area. This result is supported by the calculation of total economic value (TEV in 2012 which amounted to Rp503.071.398 869,2. Factor affecting the economic benefits of mangrove forests in order to remain sustainable in recreational value of travel cost, student employment, the number of dependent and age, while the factors that affect the existence of the mangrove forest are job and income, while the factor that affect the sustainability endemic bekantan are of the income, origin in the region and outside the region.Keywords: Mahakam delta, mangrove forest, TEV

  4. Nutrient enrichment increases mortality of mangroves.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  5. ANALISIS KEBERLANJUTAN PENGELOLAAN HUTAN LINDUNG MANGROVE DI BATU AMPAR, KABUPATEN KUBU RAYA, PROVINSI KALIMANTAN BARAT

    Directory of Open Access Journals (Sweden)

    Endang Karlina

    2017-02-01

    Full Text Available Hutan lindung mangrove mempunyai fungsi dan manfaat secara ekonomi, ekologi dan sosial. Pengelolaannya memerlukan perencanaan yang dapat menjamin keberlanjutan fungsi dan manfaat tersebut. Penelitian ini bertujuan untuk mengetahui tingkat keberlanjutan pengelolaan hutan lindung mangrove dan menentukan faktor-faktor yang berpengaruh terhadap pengelolaan hutan lindung mangrove yang berkelanjutan. Analisis data menggunakan RAP-Mpforest dengan metode multidimensional scaling (MDS. Hasil penelitian menunjukkan bahwa status keberlanjutan pengelolaan hutan lindung mangrove di Kecamatan Batu Ampar adalah cukup berkelanjutan (54,59% pada kriteria ekologi; dan kurang berkelanjutan pada kriteria ekonomi (34,06% dan kriteria sosial (42,03%. Faktor-faktor yang berpengaruh terhadap keberlanjutan pengelolaan hutan lindung mangrove meliputi: (1 penataan batas kawasan; (2 kesesuaian peruntukan kawasan; (3 ketersediaan bibit tanaman mangrove; (4 perlindungan terhadap flora  dan fauna; (5 pendapatan pemerintah dari pengelolaan dan pemanfaatan hutan lindung mangrove; (6 tingkat pendapatan masyarakat sekitar hutan; (7 mekanisme resolusi konflik lahan yang efektif; dan (8 praktek budaya lokal dalam pelestaria hutan lindung mangrove; (9 ketersediaan organisasi masyarakat dalam pengelolaan hutan lindung mangrove; dan (10 keterlibatan masyarakat dalam pengelolaan hutan lindung mangrove. Perencanaan pengelolaan yang tidak mempertimbangkan kesepuluh faktor tersebut secara seimbang tidak akan menjamin keberlanjutan pengelolaan hutan lindung mangrove di Batu Ampar.

  6. MONITORING MANGROVE AREA IN BENOA BAY USING LANDSAT TM AND ETM + DATA

    Directory of Open Access Journals (Sweden)

    Ni Luh Made Ari Sugianthi

    2012-11-01

    Full Text Available Mangrove ecosystems are crucial for the management of some coastal resources in Indonesia. Thisresearch used Landsat TM 1994, Landsat ETM+ 2002 with the purpose to know mangrove area change foreight years, mangrove density and accuracy of image as source of data to mangrove area in Benoa Bay. Fromimage analysis that using maximum likelihood method, the mangrove is classified into 3 classes i.e.:mangroves with high density, medium density and low density. For the ground check, used single plotmethod by using 6 trees.The extent of mangrove area in Benoa Bay were 447.69 ha in 1994 and 622.08 ha in 2002. Thechange of the extent of mangrove area during 8 years (1994 – 2002 increased by 174.41 ha. The area ofdensities in 1994, high density was 225.15 ha, medium density was 122.48 ha and low density was 130.05ha. In 2002, high density was 262.8 ha, medium density was 265.95 ha, and low density was 133.30 ha.Based on the regression analysis between mangrove density and the value of interpretation, the density ofmangrove in Benoa Bay which the criteria of high density is 364.723 – 466.311 tree/ha, medium density is237.738 - 364.723 tree/ha and low density is 186.944 – 237.738 tree/ha. The determination coefficient (r2was 0.6312. Based on the regression analysis in 2002 used in interpretation of mangrove density in 1994,which the criteria of high density is 357.10 tree/ha –316.47 tree/ha, medium density is 273.29 tree/ha –316.47 tree/ha and low density is 252.98 tree/ha –273.29 tree/ha.The accuracy of the Landsat ETM+ 2002 for mangrove area classification in Benoa Bay was 90%.These values were above the acceptable limit of accuracy stated of 80 %, so that this classification accuracywas acceptable.

  7. Monotoring of mangrove ecosystem in relation with exploration and production activities

    Energy Technology Data Exchange (ETDEWEB)

    Alamsyah, C.; Dwistiadi, D.

    1996-11-01

    From Indonesia`s initial 13 million hectares of mangrove forests, presently only 2.6 million hectares remains which must be certainly protected. Mangrove swamps are of considerable ecological importance not only because of their use as spawning and feeding grounds for a many variety of fish and shrimps but also of economical importance and last but not least as coastal protection. In such a sensitive ecosystem, i.e. in the mangrove swamp area of Mahakam Delta in East Kalimantan, Indonesia, TOTAL Indonesie, an affiliate of the French oil company {open_quotes}TOTAL{close_quotes} and one of the production sharing contractors of PERTAMINA, the Indonesian owned state oil company, has undertaken its E&P operations since 1974. Realizing the sensitivity of the mangrove area, TOTAL Indonesie has undertaken continuous monitoring of the environment as part of its Environmental Management System. This monitoring is very important not only to measure the impact to the mangrove ecosystem in particular due to TOTAL Indonesie activities but also as a feed back for the environmental management. Physicochemical and biological aspects of the environment are monitored and various measurements are taken covering: (1) Hydrology and hydrodynamics of the water streams i.e. the water quality, productivity and flow characteristic of the region (2) Sedimentation and biodegradation (3) The influence of accidental and chronic pollution mangrove ecosystem (3) Sensitivity of the mangroves. The above monitoring has led to the conclusion that after more than 20 years of operation, there has significant adverse impact to the mangrove ecosystem by the exploration and production activities of Indonesie.

  8. Deforestation and reforestation analysis from land-use changes in North Sumatran Mangroves, 1990-2015

    Science.gov (United States)

    Basyuni, M.; Sulistiyono, N.

    2018-02-01

    Mangrove forest plays a critical role in the context of climate change in tropical and subtropical regions. The present study analyzed the deforestation and reforestation from land-use and land-cover changes from 1990, 2000, 2009 and 2015 in North Sumatran mangrove forest, Indonesia. The land-use/land-cover consists of thirteen classes namely, primary mangrove forest, secondary mangrove forest, shrub, swamp shrub, swamp, settlement, paddy field, oil palm plantation, aquaculture, dry land farming, mixed dry land farming, mining, and barren land. Results showed that primary mangrove forests significantly decreased 61.21% from 1990 to 2015, mostly deforestation was derived from 1990 to 2000 to be secondary mangrove forest and swamp shrub. During 25 years observed, no reforestation was noted in the primary mangrove forest. Similarly, secondary mangrove forest had been degraded from 56,128.75 ha in 1990 to only 35,768.48 ha in 2015. Drivers of deforestation found in secondary mangrove forests were aquaculture (43.32%), barren land (32.56%), swamp shrub (10.88%), and oil palm plantation (5.17%). On the other hand, reforested activity was occurred only 701.83 ha from 1990 to 2015, while the nonforest use has been increased. These data are likely to contribute towards coastal management planning, conservation, and rehabilitation of degraded mangrove forests.

  9. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  10. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Science.gov (United States)

    2012-10-16

    ..., consistent with sound principles of fish and wildlife management, conservation, legal mandates, and our... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland Management District, SD; Final Comprehensive Conservation Plan and Finding of No Significant Impact for...

  11. Studies on mangrove swamps of Goa 1. Heterotrophic bacterial flora from mangrove swamps

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P; Mathani, S; Mavinkurve, S

    Heterotrophic bacterial flora from the mangrove swamps of Goa consisted of physiologically active organisms exhibiting cellulolytic, pectinolytic, amylolytic, proteolytic and H2S forming activities, throughout the year. Coryneform and Bacillus were...

  12. Growth Response of Selected Mangrove Species to Domestic ...

    African Journals Online (AJOL)

    The sewage system of Dar es Salaam City, Tanzania, serves only 15% of the population, making sewage one of the leading sources of marine pollution. This study was initiated to assess the potential of peri-urban mangrove forests as filters and phyto-remediators of sewage and the growth of two mangrove species under ...

  13. Commercial capture of the mangrove crab, Ucides cordatus (L., 1763, in the Gargaú mangrove, RJ

    Directory of Open Access Journals (Sweden)

    Ana Paula Madeira Di Beneditto

    2005-05-01

    Full Text Available The purpose of this study was analyze the biometry of the mangrove crab, Ucides cordatus (L., 1763, captured commercially in the Gargaú Mangrove (RJ, comparing common practices with the demands of Law no 52/2003 of IBAM A – Brazilian Agency of Environment and Natural Resources – and making inferences about the fishing community’s perception of the species. From April 2002 to March 2003, 571 specimens were analyzed and the highest frequency of males and females was registered in a carapace width of 6,0 6,5cm. The exploration of the mangrove crab is conducted all year round and the gear known as “redinha” is used in its capture, disrespecting the abovementioned law. However, the capture excludes ovigerous females and small-sized specimens, which reflects the fishing community’s concerns about this resource. The exploitation of this crab population probably interferes in its growth pattern, and managerial action needs to be implemented, considering not only the recommendations of scientific studies, but also the local fishermen’s knowledge of the species.

  14. Analysis and simulation of propagule dispersal and salinity intrusion from storm surge on the movement of a marsh–mangrove ecotone in South Florida

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Anderson, Gordon H.; Smith, Thomas J.

    2014-01-01

    Coastal mangrove–freshwater marsh ecotones of the Everglades represent transitions between marine salt-tolerant halophytic and freshwater salt-intolerant glycophytic communities. It is hypothesized here that a self-reinforcing feedback, termed a “vegetation switch,” between vegetation and soil salinity, helps maintain the sharp mangrove–marsh ecotone. A general theoretical implication of the switch mechanism is that the ecotone will be stable to small disturbances but vulnerable to rapid regime shifts from large disturbances, such as storm surges, which could cause large spatial displacements of the ecotone. We develop a simulation model to describe the vegetation switch mechanism. The model couples vegetation dynamics and hydrologic processes. The key factors in the model are the amount of salt-water intrusion into the freshwater wetland and the passive transport of mangrove (e.g., Rhizophora mangle) viviparous seeds or propagules. Results from the model simulations indicate that a regime shift from freshwater marsh to mangroves is sensitive to the duration of soil salinization through storm surge overwash and to the density of mangrove propagules or seedlings transported into the marsh. We parameterized our model with empirical hydrologic data collected from the period 2000–2010 at one mangrove–marsh ecotone location in southwestern Florida to forecast possible long-term effects of Hurricane Wilma (24 October 2005). The model indicated that the effects of that storm surge were too weak to trigger a regime shift at the sites we studied, 50 km south of the Hurricane Wilma eyewall, but simulations with more severe artificial disturbances were capable of causing substantial regime shifts.

  15. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    Science.gov (United States)

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Volumetric PIV behind mangrove-type root models

    Science.gov (United States)

    Kazemi, Amirkhosro; van de Riet, Keith; Curet, Oscar M.

    2017-11-01

    Mangrove trees form dense networks of prop roots in coastal intertidal zones. The interaction of mangroves with the tidal flow is fundamental in estuaries and shoreline by providing water filtration, protection against erosion and habitat for aquatic animals. In this work, we modeled the mangrove prop roots with a cluster of rigid circular cylinders (patch) to investigate its hydrodynamics. We conducted 2-D PIV and V3V in the near- and far-wake in the recirculating water channel. Two models were considered: (1) a rigid patch, and (2) a flexible patch modeled as rigid cylinders with a flexible hinge. We found that Strouhal number changes with porosity while the patch diameter is constant. Based on the wake signature, we defined an effective diameter length scale. The volumetric flow measurements revealed a regular shedding forming von Kármán vortices for the rigid patch while the flexible patch produced a less uniform wake where vortices were substantially distorted. We compare the wake structure between that 2-D PIV and V3V. This analysis of the hydrodynamics of mangrove-root like models can also be extended to understand other complex flows including bio-inspired coastal infrastructures, damping-wave systems, and energy harvesting devices.

  17. Estimating mangrove in Florida: trials monitoring rare ecosystems

    Science.gov (United States)

    Mark J. Brown

    2015-01-01

    Mangrove species are keystone components in coastal ecosystems and are the interface between forest land and sea. Yet, estimates of their area have varied widely. Forest Inventory and Analysis (FIA) data from ground-based sample plots provide one estimate of the resource. Initial FIA estimates of the mangrove resource in Florida varied dramatically from those compiled...

  18. Mapping Mangrove Density from Rapideye Data in Central America

    Science.gov (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2017-06-01

    Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.

  19. Evaluating shellfish gathering ( Lucina pectinata) in a tropical mangrove system

    Science.gov (United States)

    Rondinelli, S. F.; Barros, F.

    2010-10-01

    Fish resources are important sources of income and protein to traditional inhabitants of coastal zones. In Garapuá village, the shellfish Lucina pectinata is the main resource exploited in mangroves. This study tests whether if in less explored areas (far from the village) L. pectinata individuals have higher densities and greater lengths, and if there was a decrease in cpue's over the last years. Samples were taken monthly in two habitats (mangrove channels and mangrove roots) in six mangrove areas by random squares. The results indicated that closer areas showed significantly lower densities than areas far from the village. Densities were significantly higher in mangrove roots (quizangas) than at channels. There was a significant increase in monthly L. pectinata cpue, from 18.2 dz./shellfish gatherers/day in 2001 to 19.3 in 2007, showing that this stock does not seem to be overexploited. However, (i) a long-term monitoring of Garapuá shellfish gatherers to evaluate if the stock will support an increasing pressure and (ii) several manipulative experiments to better understand ecological processes are suggested.

  20. Mapping discourses using Q methodology in Matang Mangrove Forest, Malaysia.

    Science.gov (United States)

    Hugé, Jean; Vande Velde, Katherine; Benitez-Capistros, Francisco; Japay, Jan Harold; Satyanarayana, Behara; Nazrin Ishak, Mohammad; Quispe-Zuniga, Melissa; Mohd Lokman, Bin Husain; Sulong, Ibrahim; Koedam, Nico; Dahdouh-Guebas, Farid

    2016-12-01

    The sustainable management of natural resources requires the consideration of multiple stakeholders' perspectives and knowledge claims, in order to inform complex and possibly contentious decision-making dilemmas. Hence, a better understanding of why people in particular contexts do manage natural resources in a particular way is needed. Focusing on mangroves, highly productive tropical intertidal forests, this study's first aim is to map the diversity of subjective viewpoints among a range of stakeholders on the management of Matang Mangrove Forest in peninsular Malaysia. Secondly, this study aims to feed the reflection on the possible consequences of the diversity of perspectives for the future management of mangroves in Malaysia and beyond. The use of the semi-quantitative Q methodology allowed us to identify three main discourses on mangrove management: i. the optimization discourse, stressing the need to improve the current overall satisfactory management regime; ii. the 'change for the better' discourse, which focuses on increasingly participatory management and on ecotourism; and iii. the conservative 'business as usual' discourse. The existence of common points of connection between the discourses and their respective supporters provides opportunities for modifications of mangrove management regimes. Acknowledging this diversity of viewpoints, reflecting how different stakeholders see and talk about mangrove management, highlights the need to develop pro-active and resilient natural resource management approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. East African wetland-catchment data base for sustainable wetland management

    Science.gov (United States)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  2. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  3. Contamination by heavy metals and petroleum hydrocarbons: a threat to mangroves

    Directory of Open Access Journals (Sweden)

    Thaís dos Santos Alencar

    2016-12-01

    Full Text Available The mangrove ecosystem is one of the most productive ecosystems on the planet with relevant ecological importance. It offers several services such as protection of the coastal region, immobilization of contaminants, as it is a food source and refuge for various organisms. However, mangroves are threatened by human activities. Oil spills in areas close to mangroves, for example, are potential sources for the entry of contaminants such as heavy metals and hydrocarbons. Among other sources of threat, we list industrial waste and sewage, mining and fertilizer use. When they reach the mangroves, these contaminants may cause several negative effects and affect its balance.

  4. Ecological Variability and Carbon Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2014-01-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Despite their value, world-wide, mangroves are being rapidly degraded and deforested. Madagascar contains approximately 2% of the world’s mangroves, >20% of which has been deforested since 1990 from increased extraction for charcoal and timber and conversion to small to large-scale agriculture and aquaculture. Loss is particularly prominent in the northwestern Ambaro and Ambanja bays. Here, we focus on Ambaro and Ambanja bays, presenting dynamics calculated using United States Geological Survey (USGS national-level mangrove maps and the first localized satellite imagery derived map of dominant land-cover types. The analysis of USGS data indicated a loss of 7659 ha (23.7% and a gain of 995 ha (3.1% from 1990–2010. Contemporary mapping results were 93.4% accurate overall (Kappa 0.9, with producer’s and user’s accuracies ≥85%. Classification results allowed partitioning mangroves in to ecologically meaningful, spectrally distinct strata, wherein field measurements facilitated estimating the first total carbon stocks for mangroves in Madagascar. Estimates suggest that higher stature closed-canopy mangroves have average total vegetation carbon values of 146.8 Mg/ha (±10.2 and soil organic carbon of 446.2 (±36.9, supporting a growing body of studies that mangroves are amongst the most carbon-dense tropical forests.

  5. Predicting Disturbance-driven Impacts on Ecosystem Services in Coastal Wetlands

    Science.gov (United States)

    Rajan, S.; Crawford, P.; Kleinhuizen, A.; Mortazavi, B.; Sobecky, P.

    2017-12-01

    Natural and human-induced disturbances pose significant threats to the health and long-term productivity of Alabama coastal wetlands. As wetlands are a vital state resource, decisions on management, restoration, and remediation require actionable data if socio-economic demands are to be balanced with efforts to sustain these habitats. In 2010, the BP oil spill was a large and severe disturbance that threatened coastal Gulf ecosystem services. The largest marine oil spill to date served to highlight fundamental gaps in our knowledge of oil-induced disturbances and the resiliency and restoration of coastal Alabama wetland functions. To address these gaps, a year-long mesocosm study was conducted to investigate oil-induced effects on (i) plant-microbial interactions, (ii) microbial and plant biodiversity, and, (iii) the contributions of microbial genetic biodiversity to ecosystems services. In this study, Avicennia germinans (black mangrove), a C3 plant that grows from the tropics to warm temperate latitudes, were grown with or without mono- and polyculture mixtures of Spartina alterniflora, a C4 plant. At an interval of 3-months, oil was introduced as a pulse disturbance to achieve a concentration of 4000 ppm. Molecular-based analyses of microbial community biodiversity, genetic diversity, and functional metabolic genes were compared to controls (i.e., no oil disturbance). To assess the oil-induced effects on the nitrogen (N) cycle, measurements of denitrification and N fixation processes were conducted. Our results showed that community diversity and phylogenetic diversity significantly changed and that the oil disturbance contributed to the creation of niches for distinct microbial types. The abundance of N-fixing microbial types increased as the abundance of denitrifying microbial types decreased as a result of the oil disturbance. As denitrification is an ecosystem service that directly contributes to removing nitrate (NO3-) loading to coastal zones, impairment

  6. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability

    International Nuclear Information System (INIS)

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-01-01

    Highlights: • Metal speciation controls bioavailability in mangrove ecosystem. • Bioavailability of Ni was controlled by Fe/Mn-oxyhydroxide and organic phases • Bioavailability of Cu in mangrove roots was controlled by organic phase in the sediments. • Cu interacts more strongly with organic phases than Ni in mangrove sediment. - Abstract: Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system

  7. Importance of Mangroves for Fish.Bases for the conservation and sustainable management of mangrove ecosystems in North Brazil

    OpenAIRE

    Giarrizzo, Tommaso

    2007-01-01

    The purpose of this thesis is to assess the use of the intertidal mangrove habitats by fishes in the northern Brazilian coast in order to support, with biological data, the conservation and sustainable management of this ecosystem. The thesis is a compilation of nine scientific publications included in six main topics: (i) inter-creek variability in fish habitat use in a medium spatial scale; (ii) large-scale comparison of the intertidal mangrove fish fauna cought with similar fishing gear in...

  8. Effectiveness of community-based mangrove management for sustainable resource use and livelihood support

    NARCIS (Netherlands)

    Damastuti, Ekaningrum; Groot, de Dolf

    2017-01-01

    Community-Based Mangrove Management (CBMM) is implemented with different approaches and outcomes. This study examined the effectiveness of various CBMM practices to achieve sustainable management of mangrove resources. We analyzed local mangrove resource management strategies in four coastal

  9. Mangroves as alien species: the case of Hawaii

    Science.gov (United States)

    James A. Allen

    1998-01-01

    Prior to the early 1900s, there were no mangroves in the Hawaiian Archipelago. In 1902, Rhizophora mangle was introduced on the island of Molokai, primarily for the purpose of stabilizing coastal mud flats. This species is now well established in Hawaii, and is found on nearly all of the major islands. At least five other species of mangroves or...

  10. KERUSAKAN EKOSISTEM MANGROVE AKIBAT KONVERSI LAHAN DI KAMPUNG TOBATI DAN KAMPUNG NAFRI, JAYAPURA

    Directory of Open Access Journals (Sweden)

    Meivy Arizona

    2016-10-01

    Full Text Available ABSTRAK Daerah penelitian adalah desa Tobati dan Nafri di Jayapura-Papua. Tujuan dari penelitian ini adalah 1 mengetahui jenis-jenis mangrove yang telah diubah oleh aktivitas manusia, 2 untuk mengetahui kondisi air dan tanah di daerah yang telah diubah oleh konversi lahan, 3 untuk mengetahui tanggapan masyarakat tentang ekosistem mangrove rusak dan mereka memberikan kontribusi dalam pengelolaan ekosistem mangrove. Metode yang digunakan adalah garis transek plot kuadrat di zona mangrove dan daerah distribusi dengan tiga kali pengulangan. Ukuran plot kuadrat adalah 10m x 20m untuk pohon, 1m x 1m untuk tumbuh-tumbuhan, bibit dan rerumputan. Parameter adalah ukuran kerapatan, frekuensi, daerah basal dan nilai-nilai penting mangrove. Langkah-langkah parameter fisika adalah air yang meliputi pH suhu, salinitas, dan kualitas tanah seperti bahan organik, Savailable Pavailable, Caavailable, Mgavailable, Naavailable, Ntotal, pH, suhu dan tekstur tanah. Analisis parameter fisika menggunakan analisis varian. Sosial parameter yang diukur adalah jumlah populasi, pekerjaan, pendidikan, dan pengetahuan tentang ekosistem mangrove. Metode yang digunakan untuk mengidentifikasi budaya masyarakat desa Tobati adalah survied dan diwawancarai dengan 50 responden. Para responden telah dipisahkan dalam 2 kelompok dari 40 repondents yang diambil dari desa Tobati dan sisanya diambil dari desa Nafri. Hasil penelitian menunjukkan bahwa hanya tujuh jenis mangrove (Rhizophora mucronata, Rhizophora apiculata, Rhizophora sfylosa, tagal Csriops, Snnneratia alba, Xylocarpus dan hydrophyllacea mollucensis Scyphiphora di desa Tobati. Spesies mangrove yang menunjukkan di desa Nafri yang sembilan jenis, tujuh spesies yang mirip dengan Tobati kecuali Bruguiera gymnorrhiza dan Aegiceras comiculatum tidak menunjukkan di desa Tobati. Keberadaan vegetasi mangrove yang telah diubah oleh konversi lahan di desa Tobati didominasi oleh Rhizophora spp. Di desa Nafri sebagai daerah kontrol

  11. Determination of carbon and nitrogen in litter fall of mangrove ecosystem in peninsular Malaysia

    International Nuclear Information System (INIS)

    Hemati, Z.; Hossain, M.

    2017-01-01

    Mangroves in Peninsular Malaysia are typical of tropical forest setting. Nevertheless, the state of the mangrove forests has led to various classifications; natural and degraded mangroves. The study aimed to utilize litter fall (production and standing crop) potential as a means of evaluating the degree of productivity of the mangrove types across seasons, in addition to determining the abundance of carbon and nitrogen in the Peninsular mangrove forest. Leaf litter accounted for more than 70% of the total litter production in both natural and degraded mangroves, and the peak month for such production was December; 82.7% and 82.2%, for Sungai Haji Dorani and Kuala Selangor Nature Park, respectively. The degraded mangrove recorded higher concentration of total N (6.16 mg/g) than the natural mangrove forest (5.60 mg/g) at significant level. However, the organic carbon (CO) content across the litter parts varied with the three seasons. The CO of leaf litter was at the peak during the dry season, however, analysis on the branch and fruit revealed that during the intermediate and wet seasons CO level could be higher than the concentration observed at dry season. Though, the study concluded that both mangrove types in Peninsular Malaysia showed high similarity in the degree of litter production, yet the identified differences suggest that counter measures need to be adopted in order to protect mangroves from degradation and possible productivity loss. (author)

  12. The mangrove's contribution to people: Interdisciplinary pilot study of the Can Gio Mangrove Biosphere Reserve in Viet Nam

    Science.gov (United States)

    Cormier-Salem, Marie-Christine; Van Trai, Nguyen; Burgos, Ariadna; Durand, Jean-Dominique; Bettarel, Yvan; Klein, Judith; Duc Huy, Hoang; Panfili, Jacques

    2017-10-01

    The main objective of this pilot study, conducted in June 2015 in the Can Gio Mangrove Biosphere Reserve (Can Gio MBR, Viet Nam), was to develop an interdisciplinary approach to assess some key services provided by reforested mangroves subject to external pressures and varying management policies. We focused on the abundance of viruses, bacteria, endo- and epi- and macrofauna and the diversity of crabs in the mangrove and the exploitation of its resources. The main social finding was that the local inhabitants are aware of the levels of protection of the different zones within the Can Gio MBR and respect them. The core and the buffer zones seem to present a similar ecological status. Genotyping showed a low level of crab diversity although there were many different morphotypes. In the future, we need to understand the stakeholders' general perception of the biodiversity and environment changes by developing an integrated, multi-scale approach.

  13. De novo transcriptome analysis of pneumatophores (modified roots in the true mangrove species Avicennia marina and identification of the genes related to root gas exchange

    Directory of Open Access Journals (Sweden)

    Purushothaman Natarajan

    2017-10-01

    Full Text Available Mangroves plants which grow in estuaries naturally tolerate extreme conditions of high salinity (90 ppt and high light intensity. Avicennia marina is a true mangrove tree species with physiological adaptations like modified root system (pneumatophores and salt excretion glands in leaves as its one of the unique features to consider. The pneumatophores are a special type of roots with negative geotropism that project above the water surface or the level of flooded soils [1]. In contact with air these roots develop lenticels, which improve gas exchange between roots and environment [2]. In swamps and wetlands the presence of pneumatophores facilitates oxygen diffusion through the tissues, maintaining levels adequate for cellular respiration [3]. Objective of this study was to perform the whole transcriptome analysis of pneumatophore tissue of A. marina by Illumina sequencing and to identify putative genes involved in process of root gas exchange. We generated 19.73 million of paired-end reads and assembled into 86,856 unigenes with an average length of 772 bp. Further, annotation, tissue specific gene expression and genes related to root gas exchange will be presented.

  14. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam).

    Science.gov (United States)

    Grellier, Séraphine; Janeau, Jean-Louis; Dang Hoai, Nhon; Nguyen Thi Kim, Cuc; Le Thi Phuong, Quynh; Pham Thi Thu, Thao; Tran-Thi, Nhu-Trang; Marchand, Cyril

    2017-09-01

    Of the blue carbon sinks, mangroves have one of the highest organic matter (OM) storage capacities in their soil due to low mineralization processes resulting from waterlogging. However, mangroves are disappearing worldwide because of demographic increases. In addition to the loss of CO 2 fixation, mangrove clearing can strongly affect soil characteristics and C storage. The objectives of the present study were to quantify the evolution of soil quality, carbon stocks and carbon fluxes after mangrove clearing. Sediment cores to assess physico-chemical properties were collected and in situ CO 2 fluxes were measured at the soil-air interface in a mangrove of Northern Vietnam. We compared a Kandelia candel mangrove forest with a nearby zone that had been cleared two years before the study. Significant decrease of clay content and an increase in bulk density for the upper 35cm in the cleared zone were observed. Soil organic carbon (OC) content in the upper 35cm decreased by >65% two years after clearing. The quantity and the quality of the carbon changed, with lower carbon to nitrogen ratios, indicating a more decomposed OM, a higher content of dissolved organic carbon, and a higher content of inorganic carbon (three times higher). This highlights the efficiency of mineralization processes following clearing. Due to the rapid decrease in the soil carbon content, CO 2 fluxes at sediment interface were >50% lower in the cleared zone. Taking into account carbonate precipitation after OC mineralization, the mangrove soil lost ~10MgOCha -1 yr -1 mostly as CO 2 to the atmosphere and possibly as dissolved forms towards adjacent ecosystems. The impacts on the carbon cycle of mangrove clearing as shown by the switch from a C sink to a C source highlight the importance of maintaining these ecosystems, particularly in a context of climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation

    Science.gov (United States)

    Davis, S. E.; Childers, D.L.; Noe, G.B.

    2006-01-01

    Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems. ?? Springer 2006.

  16. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  17. Mangrove Carbon Stocks and Ecosystem Cover Dynamics in Southwest Madagascar and the Implications for Local Management

    Directory of Open Access Journals (Sweden)

    Lisa Benson

    2017-05-01

    Full Text Available Of the numerous ecosystem services mangroves provide, carbon storage is gaining particular attention for its potential role in climate change mitigation strategies. Madagascar contains 2% of the world’s mangroves, over 20% of which is estimated to have been deforested through charcoal production, timber extraction and agricultural development. This study presents a carbon stock assessment of the mangroves in Helodrano Fagnemotse in southwest Madagascar alongside an analysis of mangrove land-cover change from 2002 to 2014. Similar to other mangrove ecosystems in East Africa, higher stature, closed-canopy mangroves in southwest Madagascar were estimated to contain 454.92 (±26.58 Mg·C·ha−1. Although the mangrove extent in this area is relatively small (1500 ha, these mangroves are of critical importance to local communities and anthropogenic pressures on coastal resources in the area are increasing. This was evident in both field observations and remote sensing analysis, which indicated an overall net loss of 3.18% between 2002 and 2014. Further dynamics analysis highlighted widespread transitions of dense, higher stature mangroves to more sparse mangrove areas indicating extensive degradation. Harnessing the value that the carbon stored within these mangroves holds on the voluntary carbon market could generate revenue to support and incentivise locally-led sustainable mangrove management, improve livelihoods and alleviate anthropogenic pressures.

  18. Water sources in mangroves in four hydrogeomorphic settings in Florida and Mexico

    Science.gov (United States)

    Christina Stringer; Mark. Rains

    2016-01-01

    Mangroves are transitional environments, where fresh water from the terrestrial environments mix with seawater from the marine environment. The relative contributions of these sources vary and play a role in controlling the physical and chemical hydrological characteristics of mangroves and facilitate the exchange of mass, energy, and organisms between mangroves and...

  19. Holocene mangrove swamps of West Africa sedimentology and soils

    Science.gov (United States)

    Marius, C.; Lucas, J.

    The mangrove swamps of West African Coast belong to the Atlantic type which is characterized by a small number of species. They colonize tidal environments which are dissected by numerous meandering tidal channels and are presently subject to a low rate of sediment accumulation. The mangrove vegetation exhibits a characteristic zonation pattern that basically reflects the adaptation of the various species to saline conditions. The typical zonation sequence is: Rhizophora racemosa (or Rh. mangle), Rh. mangle + Avicennia africana, Avicennia, flooded tanne, barren tanne, herbaceous tanne. The tannes are generated by aridic climatic conditions, heavy soil and water salt content, and are, in a way a peculiar feature of mangrove swamps in West Africa. The sediment colonized by the mangroves is relatively homogenous. Mineralogically, they are dominated by quartz and clay to which are associated halite, pyrite and jarosite. The clay suite is mainly composed of smectite and kaolinite. Smectite is predominant in the inlet areas and is replaced inland by kaolinite. Chemically, the sediments contain very low amounts of Ca, bases and trace elements. The mangrove swamp floodwaters have a chemical composition similar to that of seawater. It is dominated by sodium and chloride. Morphologically, the ripening of the soils appears with a chestnut mash colour horizon and buttery consistency in relation with the decomposition of fibrous roots of Rhizophora and also with pale yellow jarosite mottles in the top horizons of the tanne profiles due to the oxidation of pyrine. The two main properties of the mangrove soils of West Africa are acidity and salinity; the first is related to the high content of sulphur and the second to the sea influence. The acidity has to be connected mainly to the Rhizophora vegetation whose the root system is a real trap for catching the pyrites resulting from the reduction of the sulphates of sea water by the sulphate reducing bacteria, in a reduced

  20. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    International Nuclear Information System (INIS)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes

    2013-01-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α ETR ). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  1. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rovai, André Scarlate, E-mail: rovaias@hotmail.com [Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Barufi, José Bonomi, E-mail: jose.bonomi@gmail.com [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Pagliosa, Paulo Roberto, E-mail: paulo.pagliosa@ufsc.br [Universidade Federal de Santa Catarina, Departamento de Geociências, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Scherner, Fernando [Universidade Federal Rural de Pernambuco, Laboratório de Ficologia, Campus Universitário, Dois Irmãos, 52171-900 Recife, PE (Brazil); Torres, Moacir Aluísio, E-mail: moatorres@cav.udesc.br [Universidade do Estado de Santa Catarina, Departamento de Engenharia Ambiental, Centro de Ciências Agroveterinárias, Av Luiz de Camões 2090, Conta Dinheiro, 88520-000 Lages, SC (Brazil); Horta, Paulo Antunes, E-mail: pahorta@ccb.ufsc.br [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); others, and

    2013-10-15

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α{sub ETR}). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination.

  2. The microbiome of Brazilian mangrove sediments as revealed by metagenomics.

    Directory of Open Access Journals (Sweden)

    Fernando Dini Andreote

    Full Text Available Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04 in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.

  3. The microbiome of Brazilian mangrove sediments as revealed by metagenomics.

    Science.gov (United States)

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2)S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.

  4. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia.

    Science.gov (United States)

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta ( Caloglossa ogasawaraensis , Caloglossa adhaerens , Caloglossa stipitata , Bostrychia anomala, and Hypnea sp.), Chlorophyta ( Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta ( Dictyota sp.). The biomass of macroalgae was not influenced ( p >0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm 2 ) and Station 2 (141.72 mg/cm 2 ), while the highest biomass was contributed by B. anomala (185.89 mg/cm 2 ) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.

  5. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-05-01

    Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.

  6. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    Science.gov (United States)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  7. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    Science.gov (United States)

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region.

  8. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    Science.gov (United States)

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across

  9. Status of mangroves along the countries bordering the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Jagtap, T.G.

    Distribution of mangroves in the countries bordering the Arabian Sea, including Gulf of Oman, Persian Gulf, Gulf of Aden and Red Sea, is reviewed and their present status is discussed. The estimated area of mangrove vegetation is 1140 sq. km...

  10. Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data

    Directory of Open Access Journals (Sweden)

    Bambang Trisasongko

    2009-09-01

    Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.

  11. KAJIAN PENGEMBANGAN USAHA SIRUP MANGROVE DI DESA MARGASARI KECAMATAN LABUHAN MARINGGAI KABUPATEN LAMPUNG TIMUR

    Directory of Open Access Journals (Sweden)

    Susni Herwanti

    2017-02-01

    Full Text Available Mangrove syrup is one of the featured product in the Margasari Village. This syrup is made from the flesh pidada famous sour, sweet and fresh. The content of vitamins A, B1, B2 and C is high enough so it is good for health. Although it tastes good and useful enough, but the mangrove syrup has not been widely known, especially in the province of Lampung. Therefore, this study aims to assess the feasibility of mangrove syrup business, analyze marketing strategy and then review the prospect of developing mangrove syrup business. The study was conducted in early 2016 in the village of Margasari. The selecting of the respondent was done purposively to “Cinta Bahari” group. This group is the only group that carries on mangrove syrup business. Financial analysis performed by calculating HPP, NPV, BCR, BEP and the PP while the marketing strategy analysis and prospect of mangrove syrup development is a descriptive qualitative. The results showed that mangrove syrup business financially was feasible. This was indicated by the value of HPP was Rp 4,950 per bottle, while the selling price was Rp8,000 per bottle, NPV> 0, BCR> 1, BEP was Rp 4,950, which means profitable  and PP faster than the life of the project. Furthermore, the group marketing strategies to 4 elements of the marketing mix showed that the place, product and promotion strategy needed improvement, while the pricing strategy had been carried out correctly. Based on this research, mangrove syrup business has good prospects to be developed. Sirup mangrove merupakan salah satu produk unggulan di Desa Margasari. Sirup ini terbuat dari daging buah pidada yang terkenal dengan rasa asam, manis dan segar. Kandungan vitamin A, B1, B2 dan C cukup tinggi sehingga sangat baik buat kesehatan. Meskipun rasanya enak dan manfaatnya cukup banyak, akan tetapi sirup mangrove belum banyak dikenal masyarakat luas, khususnya di Provinsi Lampung. Karena itu, penelitian ini bertujuan untuk mengkaji kelayakan

  12. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8

    Directory of Open Access Journals (Sweden)

    Julio Pastor-Guzman

    2015-11-01

    Full Text Available There is a need to develop indicators of mangrove condition using remotely sensed data. However, remote estimation of leaf and canopy biochemical properties and vegetation condition remains challenging. In this paper, we (i tested the performance of selected hyperspectral and broad band indices to predict chlorophyll concentration (CC on mangrove leaves and (ii showed the potential of Landsat 8 for estimation of mangrove CC at the landscape level. Relative leaf CC and leaf spectral response were measured at 12 Elementary Sampling Units (ESU distributed along the northwest coast of the Yucatan Peninsula, Mexico. Linear regression models and coefficients of determination were computed to measure the association between CC and spectral response. At leaf level, the narrow band indices with the largest correlation with CC were Vogelmann indices and the MTCI (R2 > 0.5. Indices with spectral bands around the red edge (705–753 nm were more sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the green band in its formulation explained most of the variation in CC (R2 > 0.8. Accuracy assessment between estimated CC and observed CC using the leave-one-out cross-validation (LOOCV method yielded a root mean squared error (RMSE = 15 mg·cm−2, and R2 = 0.703. CC maps showing the spatiotemporal variation of CC at landscape scale were created using the linear model. Our results indicate that Landsat 8 NDVI green can be employed to estimate CC in large mangrove areas where ground networks cannot be applied, and mapping techniques based on satellite data, are necessary. Furthermore, using upcoming technologies that will include two bands around the red edge such as Sentinel 2 will improve mangrove monitoring at higher spatial and temporal resolutions.

  13. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    Science.gov (United States)

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical

  14. Multiple sources driving the organic matter dynamics in two contrasting tropical mangroves

    International Nuclear Information System (INIS)

    Ray, R.; Shahraki, M.

    2016-01-01

    In this study, we have selected two different mangroves based on their geological, hydrological and climatological variations to investigate the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of dissolved organic carbon (DOC), particulate organic carbon (POC) in the water column and the sedimentary OC using elemental ratios and stable isotopes. Qeshm Island, representing the Iranian mangroves received no attention before this study in terms of DOC, POC biogeochemistry and their sources unlike the Sundarbans (Indian side), the world's largest mangrove system. Slightly higher DOC concentrations in the Iranian mangroves were recorded in our field campaigns between 2011 and 2014, compared to the Sundarbans (315 ± 25 μM vs. 278 ± 42 μM), owing to the longer water residence times, while 9–10 times greater POC concentration (303 ± 37 μM, n = 82) was linked to both suspended load (345 ± 104 mg L"− "1) and high algal production. Yearlong phytoplankton bloom in the mangrove-lined Persian Gulf was reported to be the perennial source of both POC and DOC contributing 80–86% to the DOC and 90–98% to the POC pool. Whereas in the Sundarbans, riverine input contributed 50–58% to the DOC pool and POC composition was regulated by the seasonal litter fall, river discharge and phytoplankton production. Algal derived organic matter (microphytobenthos) represented the maximum contribution (70–76%) to the sedimentary OC at Qeshm Island, while mangrove leaf litters dominated the OC pool in the Indian Sundarbans. Finally, hydrographical settings (i.e. riverine transport) appeared to be the determinant factor in differentiating OM sources in the water column between the dry and wet mangroves. - Highlights: • Sources of OC have been identified and compared between two contrasting mangroves. • Phytoplankton dominated the DOC and POC pool in the Iranian mangroves. • River input contributed half of the total DOC and part of POC in the Indian

  15. Multiple sources driving the organic matter dynamics in two contrasting tropical mangroves

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R., E-mail: raghab.ray@gmail.com [Institut Universitaire Européen de la Mer, UBO, UMR 6539 LEMAR, rue Dumont dUrville, 29280 Plouzane (France); Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen (Germany); Shahraki, M. [Leibniz Center for Tropical Marine Ecology, Fahrenheitstr. 6, 28359 Bremen (Germany); Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany)

    2016-11-15

    In this study, we have selected two different mangroves based on their geological, hydrological and climatological variations to investigate the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of dissolved organic carbon (DOC), particulate organic carbon (POC) in the water column and the sedimentary OC using elemental ratios and stable isotopes. Qeshm Island, representing the Iranian mangroves received no attention before this study in terms of DOC, POC biogeochemistry and their sources unlike the Sundarbans (Indian side), the world's largest mangrove system. Slightly higher DOC concentrations in the Iranian mangroves were recorded in our field campaigns between 2011 and 2014, compared to the Sundarbans (315 ± 25 μM vs. 278 ± 42 μM), owing to the longer water residence times, while 9–10 times greater POC concentration (303 ± 37 μM, n = 82) was linked to both suspended load (345 ± 104 mg L{sup −} {sup 1}) and high algal production. Yearlong phytoplankton bloom in the mangrove-lined Persian Gulf was reported to be the perennial source of both POC and DOC contributing 80–86% to the DOC and 90–98% to the POC pool. Whereas in the Sundarbans, riverine input contributed 50–58% to the DOC pool and POC composition was regulated by the seasonal litter fall, river discharge and phytoplankton production. Algal derived organic matter (microphytobenthos) represented the maximum contribution (70–76%) to the sedimentary OC at Qeshm Island, while mangrove leaf litters dominated the OC pool in the Indian Sundarbans. Finally, hydrographical settings (i.e. riverine transport) appeared to be the determinant factor in differentiating OM sources in the water column between the dry and wet mangroves. - Highlights: • Sources of OC have been identified and compared between two contrasting mangroves. • Phytoplankton dominated the DOC and POC pool in the Iranian mangroves. • River input contributed half of the total DOC and part of POC in

  16. Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests

    Science.gov (United States)

    Mattone, Carlo; Sheaves, Marcus

    2017-10-01

    Estuarine mangrove forests regulate and facilitate many ecological processes, and provide nursery ground for many commercially important species. However, mangroves grow in sediments with high carbon loading and high respiration rates which can potentially influencing the dissolved oxygen (DO) dynamics of tidal water flowing into mangrove forests, as bacteria strip DO from the incoming water to carry out metabolic functions. In turn this is likely to influence the way nekton and other aquatic organisms utilize mangrove forests. Despite these possibilities, previous work has focused on looking at DO dynamics within mangrove creeks, with little research focusing on understanding DO dynamics within the mangrove forests themselves during tidal inundation or of DO levels of pools within the forest remaining once the tide has ebbed. The present study investigates the pattern in DO at various distances within an estuarine Rhizophora stylosa forest in tropical north Queensland. DO levels were recorded at 5 min interval over 2 days and multiple tidal cycles, data were collected between 2013 and 2014 for a total of 32 tidal cycles encompassing multiples seasons and tidal amplitudes. There were substantial fluctuations in DO, often varying from normoxic to hypoxic within the same tidal cycle. A range of factors influenced DO dynamics, in particular: tidal height, amount of sunlight, tidal phase, and distance from the outer edge of the mangrove forest. In fact, spring tides tend to have high DO saturation, particularly during the flooding phase, however as the tide starts ebbing, DO depletes rapidly especially in areas further inside the forest. Moreover during tidal disconnection the remnant pools within the forest quickly became anoxic. These variations in DO suggest that the use of mangrove forests by animals is likely to be constrained by their ability to withstand low DO levels, and provides a plausible explanation for the apparent paucity of benthic organism observed

  17. Sulphur-oxidising and Sulphate-reducing Communities in Brazilian Mangrove Sediments

    NARCIS (Netherlands)

    Varon-Lopez, Maryeimy; Dias, A.C.F; Fasanella, C.C.; Durrer, A.; Melo, I.S.; Kuramae, E.E.; Andreote, F.D.

    2014-01-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of

  18. Making predictions of mangrove deforestation: a comparison of two methods in Kenya.

    Science.gov (United States)

    Rideout, Alasdair J R; Joshi, Neha P; Viergever, Karin M; Huxham, Mark; Briers, Robert A

    2013-11-01

    Deforestation of mangroves is of global concern given their importance for carbon storage, biogeochemical cycling and the provision of other ecosystem services, but the links between rates of loss and potential drivers or risk factors are rarely evaluated. Here, we identified key drivers of mangrove loss in Kenya and compared two different approaches to predicting risk. Risk factors tested included various possible predictors of anthropogenic deforestation, related to population, suitability for land use change and accessibility. Two approaches were taken to modelling risk; a quantitative statistical approach and a qualitative categorical ranking approach. A quantitative model linking rates of loss to risk factors was constructed based on generalized least squares regression and using mangrove loss data from 1992 to 2000. Population density, soil type and proximity to roads were the most important predictors. In order to validate this model it was used to generate a map of losses of Kenyan mangroves predicted to have occurred between 2000 and 2010. The qualitative categorical model was constructed using data from the same selection of variables, with the coincidence of different risk factors in particular mangrove areas used in an additive manner to create a relative risk index which was then mapped. Quantitative predictions of loss were significantly correlated with the actual loss of mangroves between 2000 and 2010 and the categorical risk index values were also highly correlated with the quantitative predictions. Hence, in this case the relatively simple categorical modelling approach was of similar predictive value to the more complex quantitative model of mangrove deforestation. The advantages and disadvantages of each approach are discussed, and the implications for mangroves are outlined. © 2013 Blackwell Publishing Ltd.

  19. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    Science.gov (United States)

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  20. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  1. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  2. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach

    Directory of Open Access Journals (Sweden)

    Benjamin W. Heumann

    2011-11-01

    Full Text Available Mangroves provide valuable ecosystem goods and services such as carbon sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The use of satellite remote sensing to map mangroves has become widespread as it can provide accurate, efficient, and repeatable assessments. Traditional remote sensing approaches have failed to accurately map fringe mangroves and true mangrove species due to relatively coarse spatial resolution and/or spectral confusion with landward vegetation. This study demonstrates the use of the new Worldview-2 sensor, Object-based image analysis (OBIA, and support vector machine (SVM classification to overcome both of these limitations. An exploratory spectral separability showed that individual mangrove species could not be spectrally separated, but a distinction between true and associate mangrove species could be made. An OBIA classification was used that combined a decision-tree classification with the machine-learning SVM classification. Results showed an overall accuracy greater than 94% (kappa = 0.863 for classifying true mangroves species and other dense coastal vegetation at the object level. There remain serious challenges to accurately mapping fringe mangroves using remote sensing data due to spectral similarity of mangrove and associate species, lack of clear zonation between species, and mixed pixel effects, especially when vegetation is sparse or degraded.

  3. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the Sindh's coastal area

    International Nuclear Information System (INIS)

    Naqvi, S.R.; Inam, Z.

    2005-01-01

    Mangroves the ecological treasure of Sindh, are facing a steady decline due to in active Government policies and lack of interest of local people. Mangroves provide important breeding Zone of to the marine biodiversity because of the reduction of silt flows, the area of active growth of delta, has been reduced from an original estimate of 2600 sq km to about 260 sq km. Similarly, the area of Mangroves from 345,000 hectares, the area is now only 205000 hectares. Pakistani Mangroves rank 6th among the mangroves spread in 92 countries. Mangroves forests act as inter face b/w land and sea. It provides nutrients to marine fisheries and is vital healthy Ecosystem. During past 50 years, nearly 100,000 hectares have been destroyed. The destruction is quite high from 1975 to 1992. It is due to water shortage in the river Indus. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the coastal area. Thus to find root causes of degradation and its effects this study was made. (author)

  4. Mollusks in the Mangrove Rehabilitation Areas in Western Pangasinan, Philippines

    Directory of Open Access Journals (Sweden)

    Rene B. De Vera

    2015-12-01

    Full Text Available Mollusks are predominantly found inmangrove ecosystems. Nowadays, these are declining due to habitat disturbances. This study was conducted in Western, Pangasinan, with mangrove rehabilitation projects under Community Based Forest Management Agreement. Four mangrove rehabilitation areas were looked into: Pilar and Victory, Bolinao; and Awile and Tori-tori, Anda, Pangasinan. Purposive sampling was done in selecting the mangrove rehabilitation areas. Ten percent sampling of the areas using the belt transect quadrat method was employed. Diversity, dominance , richness and evenness indices for mollusks were determined. Mann Whitney test, Student’s t-test and Kruskal Wallis test were used. A total of fourteen kinds of mollusks species were identified. The species were Tectusfenestratus (fenestrate top, Terebraliasulcata (Sulcate swamp perith, Haliotisovinagemelin (oval abalone, Neritaplanospiraanton (flat spired nerite, Clithionoualensis(dubious nerite, Fasciolaria trapezium (trapezium horse conch, Nasarriuspullus (ribbed dog whelk, Trochusmaculatus (maculated top, Rhinoclavisvertagus (Common vertagus , Telescopium telescopium (Telescope Snail, Isognomonephippium (saddle tree oyster Crassostriairedali (slipper oyster, Strombuslabiatus (Plicate conch and Polymesodaexpansa (Yellowish mangrove clam. The highest mollusks species diversity and richness indeces were observed in Victory, Bolinao. Mollusks species dominance and evenness indeces were highest in Pilar, Bolinao and Tori-tori, Anda, respectively. The study revealed a significant difference in the probability of gathering mollusks species in the four mangrove rehabilitation areas. It is recommended that fisherfolkand coastal communities be educated about the need for mollusks conservation and habitat protection. It is expected that this study may provide light to future research on mangrove fauna particularly mollusks in Pangasinan.

  5. A combined effect of polybrominated diphenyl ether and aquaculture effluent on growth and antioxidative response of mangrove plants.

    Science.gov (United States)

    Farzana, Shazia; Tam, Nora Fung Yee

    2018-06-01

    Mangrove wetland receives nutrient-rich aquaculture effluent (AE) from nearby farming activities and polybrominated diphenyl ethers (PBDEs) from the production and usage of flame retardants. The effects of BDE-209 (the most common PBDE congener), AE and their combination on two true mangrove species, namely Kandelia obovata and Avicennia marina, were compared in a 6-month microcosm study. Results showed that K. obovata was more sensitive to these contaminants than A. marina, as reflected by its enhanced production of leaf superoxide (O 2 -∗ ) by BDE-209 and root malondialdehyde (MDA) by the combined BDE-209 and AE treatment. The hormesis model showed that the combined effects of BDE-209 and AE on the production of MDA, O 2 -∗ and catalase (CAT) activity in K. obovata and A. marina were antagonistic except root O 2 -∗ in A. marina, but the effects on leaf superoxide dismutase (SOD) activity in K. obovata, and root SOD and peroxidase (POD) activities in A. marina were synergistic. The defense mechanisms differed between treatment and species. The activities of SOD and POD were the main mechanisms to defend K. obovata and A. marina against BDE-209, but CAT in K. obovata and POD in A. marina were more important in defending the combined BDE-209 and AE treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    Science.gov (United States)

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  7. Numerical Simulation of Tsunami Hazard Mitigation by Mangrove Forest in North Coast Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Putu Harry Gunawan

    2015-06-01

    Full Text Available Mangrove forest or known as bakau forest is important forest as a natural wave barrier or tsunami wave mitigation. Some advantages of mangrove forest to reduce the water waves are already studied. Mangrove forest in north coast of Bali’s island, Buleleng regency, Indonesia is in damaged condition. The aim of this paper is to present the importance of mangrove forest as the water wave mitigation in numerical simulation point of view. Moreover, the results also show the effect of tsunami propagation to the coastal area with and without mangrove resistance. Here, the nonlinear shallow water equations are used to govern the model of numerical simulation.

  8. Numerical Simulation of Tsunami Hazard Mitigation by Mangrove Forest in North Coast Bali, Indonesia

    Directory of Open Access Journals (Sweden)

    Putu Harry Gunawan

    2015-11-01

    Full Text Available Mangrove forest or known as bakau forest is important forest as a natural wave barrier or tsunami wave mitigation. Some advantages of mangrove forest to reduce the water waves are already studied. Mangrove forest in north coast of Bali’s island, Buleleng regency, Indonesia is in damaged condition. The aim of this paper is to present the importance of mangrove forest as the water wave mitigation in numerical simulation point of view. Moreover, the results also show the effect of tsunami propagation to the coastal area with and without mangrove resistance. Here, the nonlinear shallow water equations are used to govern the model of numerical simulation.

  9. Research on the ecology and management of Micronesian mangroves

    Science.gov (United States)

    J.A. Allen

    1999-01-01

    Mangroves are a vitally important natural resource on the high islands of Micronesia. This importance is especially valid in the Federated States of Micronisa (FSM) and the Republic of Palau, where mangroves cover 10-15% of the total land area and are used heavily by islanders as sources of wood, crabs, fish, thatching material, and other products.

  10. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    Science.gov (United States)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  11. Mangroves and sediment dynamics along the coasts of southern Thailand

    NARCIS (Netherlands)

    Thampanya, U.

    2006-01-01

    Mangroves are a specific type of evergreen forest that is found along the coastlines of tropical and subtropical regions, particularly along deltas and bays where rivers discharge freshwater and sediment to the sea. These mangroves provide important ecological and socio-economic functions to coastal

  12. Metals in mangrove ecosystems and associated biota: A global perspective.

    Science.gov (United States)

    Kulkarni, Rasika; Deobagkar, Deepti; Zinjarde, Smita

    2018-05-30

    Mangrove forests prevalent along the intertidal regions of tropical and sub-tropical coastlines are inimitable and dynamic ecosystems. They protect and stabilize coastal areas from deleterious consequences of natural disasters such as hurricanes and tsunamis. Although there are reviews on ecological aspects, industrial uses of mangrove-associated microorganisms and occurrence of pollutants in a region-specific manner, there is no exclusive review detailing the incidence of metals in mangrove sediments and associated biota in these ecosystems on a global level. In this review, mangrove forests have been classified in a continent-wise manner. Most of the investigations detail the distribution of metals such as zinc, chromium, arsenic, copper, cobalt, manganese, nickel, lead and mercury although in some cases levels of vanadium, strontium, zirconium and uranium have also been studied. Seasonal, tidal, marine, riverine, and terrestrial components are seen to influence occurrence, speciation, bioavailability and fate of metals in these ecosystems. In most of the cases, associated plants and animals also accumulate metals to different extents and are of ecotoxicological relevance. Levels of metals vary in a region specific manner and there is disparity in the pollution status of different mangrove areas. Protecting these vulnerable ecosystems from metal pollutants is important from environmental safety point of view. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Shrimp pond effluent dominates foliar nitrogen in disturbed mangroves as mapped using hyperspectral imagery

    NARCIS (Netherlands)

    Fauzi, A.; Skidmore, A.K.; van Gils, H.A.M.J.; Schlerf, M.; Heitkonig, I.M.A.

    2013-01-01

    Conversion of mangroves to shrimp ponds creates fragmentation and eutrophication. Detection of the spatial variation of foliar nitrogen is essential for understanding the effect of eutrophication on mangroves. We aim (i) to estimate nitrogen variability across mangrove landscapes of the Mahakam

  14. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    Science.gov (United States)

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. KAJIAN DEGRADASI LAHAN MANGROVE DI PESISIR DESA LABUHAN SANGORO KECAMATAN MARONGE KABUPATEN SUMBAWA

    Directory of Open Access Journals (Sweden)

    Lalu Samsul Rizal

    2015-06-01

    Full Text Available The aims of the research was to determine the perceptions of stakeholders (Community, Government and Employers, to know the potential of mangrove species and determine the impact of mangrove degradation on fish and non-fish biota, at Labuhan Sangoro coastal village. This study was conducted for three months from April to June 2012. Data were analyzed descriptively using a Likert scale for the perception of stakeholders. Potential mangrove species was examined using transects and to determine the impact of mangrove degradation on species diversity of aquatic fauna associated with mangrove were obtained by observation of nonparticipant method. The results showed that perceptions of stakeholders towards preservation and conservation of mangrove land, the 87% strongly agreed, 66% agreed and 22% disagreed, government and employers 86% strongly agree, 78% agree and disagree 3%, but not yet to the application phase. The potential of mangrove type in the coastal village of Labuan Sangoro at Station 1, 2, 3, and 4 by R. mucronata and R. stylosa, Transect I dominated by Rhizophora mucronata, R. stylosa, R. apiculata, Sonneratia alba, Lumnitzera racemosa and Ceriops tagal, transect II by Avicennia marina, R. mucronata and R. stylosa, Transect III by A. marina and R. mucronata and transect IV by R. mucronata and R. stylosa. Fish eatch on the condition of low and high degradation condition, the dominant fish species caught is Beronang (Siganus sp, non-fish species dominated by Crab (Scylla serrata. The number of catches in the low mangrove land degradation conditions wais 2,609 species of fish and non-fish tail 4678, on the high mangrove degradation conditions, the fish catch was 1,090 and non-fish was 1,114. The diversity, uniformity and the dominance of species, classified in the category of low and moderate levels.

  16. Structure and composition of the mangrove forest along the Goa coast

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    Composition density and wood volume of the common mangroves along the Goa Coast, India has been studied. Factors like topography, geology, soil type, geomorphology, tides influences composition of the mangroves. 27 locations were randomly selected...

  17. The selection exerted by oil contamination on mangrove fungal communities

    NARCIS (Netherlands)

    Fasanella, Cristiane Cipola; Franco Dias, Armando Cavalcante; Rigonato, Janaina; Fiore, Marli de Fatima; Soares, Fabio Lino; Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida; van Elsas, Jan Dirk; Dini Andreote, Fernando

    Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves

  18. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, M.; Laverman, A.M.; Keuskamp, J.A.; Laanbroek, H.J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  19. Rainfall Interception in Mangrove in the Southeastern Coast of Brazil

    Directory of Open Access Journals (Sweden)

    Emerson Galvani

    2016-06-01

    Full Text Available Mangroves are among the ecosystems biologically more productive and important in the world, providing unique goods and services to societies and coastal systems. These areas, however, are increasingly fragmented, contributing to the loss of their services and benefits. The rains have an important influence in this ecosystem is central to the dissolution of sea salts. This study investigated the total rainfall in the mangroves located in the Coastal System Cananeia-Iguape (SP at different time scales (daily, monthly, sea-sonal and annual and its interception by the mangrove canopy. It found an intercept of 8.8%, ranging from 13% to 4% in the annual scale, showing that the annual variation of rainfall, which reflects both its quantity and its intensity contributes to the percentage of that interception by the canopy. It was also found that as the intensity of precipitation increases, trapping the mangrove canopy reduces.

  20. POTENSI PEMBAYARAN JASA LINGKUNGAN HUTAN MANGROVE DI KECAMATAN JAILOLO KABUPATEN HALMAHERA BARAT

    Directory of Open Access Journals (Sweden)

    Sukarmin Idrus

    2016-12-01

    Full Text Available Payment for environmental services (PES to mangrove forest is judged appropriate for applied in Jailolo Sub-district of West Halmahera District as a protection of mangrove ecosystems. This is due to the high utilization of mangrove environment services. If not managed properly can potentially threaten the preservation of mangrove forests. Benefits that have been perceived by the public such as a water source, pond, travel, as well as the protection of coastal areas. These benefits must be preserved for the future availability of environmental services namely through the payment of the services already provided the commonly named as payment for environmental services (PES. PES is also very supported by West Halmahera District Regulation No. 4 of 2012 year and constitution No. 32 of 2009 year about the protection and environmental management. Basically, PES is a scheme that aims to restore and protect the availability of goods and environmental services sustainable. Therefore, PES initiation for mangrove forest economy preservation in Jailolo Sub-district needs to be studied. This research aims to: 1 Identify environmental services of mangrove forest ecosystems that are potential for PES; 2 Examines the perceptions of the public service providers (providers towards the implementation of the plan; and 3 How much willingness to accept (WTA community as a providers of environmental services (providers if PES is applied. The research results showed that the service potentially initiated PES are sea-water intrusion regulating service and the cultural service of mangrove tourism. For perception and public participation, environmental service providers about the mangrove environment services were judged to be sufficient for determining PES plan assignment, where communities want to participate if the maintenance costs were IDR3.350,00/trees/year

  1. Sustainability of Mangrove Harvesting: How do Harvesters' Perceptions Differ from Ecological Analysis?

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    2006-12-01

    Full Text Available To harvest biological resources sustainably, it is first necessary to understand what "sustainability" means in an ecological context, and what it means to the people who use the resources. As a case study, we examined the extractive logging of the mangrove Rhizophora mangle in the Río Limón area of Lake Maracaibo, in western Venezuela. The ecological definition of sustainable harvesting is harvesting that allows population numbers to be maintained or to increase over time. In interviews, the harvesters defined sustainable harvesting as levels permitting the maintenance of the mangrove population over two human generations, about 50 yr. In Río Limón, harvesters extract a combination of small adult and juvenile trees. Harvesting rates ranged from 7-35% of small adult trees. These harvesting levels would be sustainable according to the harvester's definition as long as juvenile harvesting was less than 40%. However, some harvesting levels that would be sustainable according to the harvesters were ecologically unsustainable, i.e., eventually causing declines in mangrove population numbers. It was also determined that the structure of mangrove forests was significantly affected by harvesting; even areas harvested at low, ecologically sustainable intensities had significantly fewer adult trees than undisturbed sites. Western Venezuela has no organized timber industry, so mangrove logs are used in many types of construction. A lagging economy and a lack of alternative construction materials make mangrove harvesting inevitable, and for local people, an economic necessity. This creates a trade-off between preserving the ecological characteristics of the mangrove population and responding to human needs. In order to resolve this situation, we recommended a limited and adaptive mangrove harvesting regime. We also suggest that harvesters could participate in community-based management programs as harvesting monitors.

  2. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    Science.gov (United States)

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our

  3. Status and distribution of mangrove forests of the world using earth observation satellite data

    Science.gov (United States)

    Giri, Chandra; Ochieng, E.; Tieszen, Larry L.; Zhu, Zhi-Liang; Singh, Ashbindu; Loveland, Thomas R.; Masek, Jeffery G.; Duke, Norm

    2011-01-01

    Aim  Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved. Here, we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive. Methods  We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth–sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map ‘true mangroves’. Results  The total area of mangroves in the year 2000 was 137,760 km2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5° N and 5° S latitude. Main conclusions  We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created. We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies.

  4. Assessment and Comparison of salt Content in Mangrove Plants in Sri Lanka

    Directory of Open Access Journals (Sweden)

    N. P. Dissanayake

    2009-09-01

    Full Text Available Due to the predicted threats of global warming and sea level rise, the salt tolerance and salt accumulative abilities of plants have become popular contentious topics. Mangroves are one of the major groups of salt tolerant plants and several mechanisms are known as instrumental in their salt tolerance. Salt excretion through leaf drop is given as one, but its validity is questioned by some recent works compelling the necessity for further studies. Knowledge of the salt contents in different mangrove plants is a pre requisite for such studies. Hence, this study aimed to quantify and compare the salt content in mature leaves of nine mangrove species in Sri Lanka., i.e. Aegiceras corniculatum, Avicennia marina, Avicennia officinalis, Bruguiera gymnorrhiza, Bruguiera sexangula, Ceriops tagal, Excoecaria agallocha, Lumnitzera racemosa, Rhizophora apiculata and Rhizophora mucronata which are growing in the same mangrove system; the Rekawa lagoon in Sri Lanka. Two species of non mangrove plants, Gliricidia sepium and Artocarpus heterophyllus, which were growing in inland areas were also selected for comparison. The concentration of Na+ in leaves was considered as a measure of the salt concentration. The Na+ in leaves was extracted by acid digestion and quantified by flame photometry. The salt content of mangroves was measured under two contrasting hydrological situations: at the highest and lowest water levels of the lagoon. Rekawa lagoon can be considered as a ‘barrier built estuary’, the highest water level occurs when the lagoon mouth is blocked due to the formation of the sand bar and the water level is increased by fresh water inflow, inundating the total mangrove area and decreasing the soil/water salinity. The water level of the lagoon becomes lowest when the lagoon mouth is opened (naturally or by dredging and lagoon water is flushed out to the sea. Then the salinity of lagoon water becomes high due to sea water influx. The results showed

  5. Ecological status and sources of anthropogenic contaminants in mangroves of the Wouri River Estuary (Cameroon)

    KAUST Repository

    Fusi, Marco; Beone, Gian Maria; Suciu, Nicoleta Alina; Sacchi, Angela; Trevisan, Marco; Capri, Ettore; Daffonchio, Daniele; Din, Ndongo; Dahdouh-Guebas, Farid; Cannicci, Stefano

    2016-01-01

    Mangroves are critically threatened by human activities, despite the important ecosystem functions and services they provide. Mangroves in Cameroon represent no exception to the worldwide trend of mangrove destruction, especially around Douala

  6. The Dynamics, Ecological Variability and Estimated Carbon Stocks of Mangroves in Mahajamba Bay, Madagascar

    Directory of Open Access Journals (Sweden)

    Trevor G. Jones

    2015-08-01

    Full Text Available Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011 mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8% lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1. These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation.

  7. Radiocarbon dating and wood density chronologies of mangrove trees in arid Western Australia.

    Directory of Open Access Journals (Sweden)

    Nadia S Santini

    Full Text Available Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA. We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (~10 cm diameter were 48 ± 1 to 89 ± 23 years old (mean ± 1 σ and that their growth rates ranged from 4.08 ± 2.36 to 5.30 ± 3.33 mm/yr (mean ± 1 σ. The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.

  8. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  9. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  10. Mangrove restoration in Vietnam : Key considerations and a practical guide

    NARCIS (Netherlands)

    Marchand, M.

    2008-01-01

    In Vietnam mangrove rehabilitation has a long history and gained momentum after the war that destroyed huge forested areas, especially in the Mekong Delta. In addition, in various places mangrove have been and still are being planted specifically as a way to protect shorelines and sea-dykes from

  11. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems 1

    Science.gov (United States)

    Versteegh, Gerard J. M.; Schefuß, Enno; Dupont, Lydie; Marret, Fabienne; Sinninghe Damsté, Jaap S.; Jansen, J. H. Fred

    2004-02-01

    Angola Basin and Cape Basin (southeast Atlantic) surface sediments and sediment cores show that maxima in the abundance of taraxerol (relative to other land-derived lipids) covary with maxima in the relative abundance of pollen from the mangrove tree genus Rhizophora and that in the surface sediments offshore maxima in the relative abundance of taraxerol occur at latitudes with abundant coastal mangrove forests. Together with the observation that Rhizophora mangle and Rhizophora racemosa leaves are extraordinarily rich in taraxerol, this strongly indicates that taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. The proxy-environment relations for taraxerol and Rhizophora pollen down-core show that increased taraxerol and Rhizophora pollen abundances occur during transgressions and periods with a humid climate. These environmental changes modify the coastal erosion and sedimentation patterns, enhancing the extent of the mangrove ecosystem and/or the transport of mangrove organic matter offshore. Analyses of mid-Pleistocene sediments show that interruption of the pattern of taraxerol maxima during precession minima occurs almost only during periods of low obliquity. This demonstrates the complex environmental response of the interaction between precession-related humidity cycles and obliquity-related sea-level changes on mangrove input.

  12. [Wetlands dominated by palms (Arecaceae), emphasis in those in the New World].

    Science.gov (United States)

    Myers, Ronald L

    2013-09-01

    It is well known that most forests in humid tropical lowlands are species rich, and the popular view is that most species are represented by only a few individuals. Despite this common understanding of high richness and low species dominance, within humid tropical regions there are extensive forested ecosystems composed by only few species. These nearly monospecific forests usually occupy poorly drained soils and, except for the mangroves, are quite understudied. In this paper, I review the literature and my own field notes on more than three years studying the structure of palm swamps in Caribbean Costa Rica and Florida to describe some of the major vegetation associations in wetlands dominated by palm species in the Neotropical Region, although I also include some information about similar systems in the Old World Tropics. I mention the most abundant species that compose those palm dominated swamps and -whenever possible- describe forest structure, known distribution, and uses.

  13. Proposal of actions to recover the mangrove forest in the Guantánamo bay, Cuba

    Directory of Open Access Journals (Sweden)

    Orfelina Rodriguez Leyva

    2018-05-01

    Full Text Available Mangroves in Cuba have a protecting role. Nevertheless, the level of mangrove degradation requires a special attention. In most of the Cuban coastal areas it may be found some damages created by local inhabitants. Through this research work some actions are proposed for recovering the mangrove that surrounds Caimanera bay, Guantánamo. Due to the real Cuban situation and the need of acting, some different parameters were evaluated such as: dasometric, natural regeneration, mortality, as well as. The main problems that affect the mangrove. It was demonstrated that the mangrove vegetation is structurally poor, although they present a good recovery level due to the high natural regeneration. Besides, some problems were identified that impact directly over mangroves for which some actions are proposed to reduce menaces and to reach the recovery.

  14. Principles for a Code of Conduct for the Management and Sustainable Use of Mangrove Ecosystems

    DEFF Research Database (Denmark)

    Macintosh, Donald; Nielsen, Thomas; Zweig, Ronald

    mangrove forest ecosystems worldwide, the World Bank commissioned a study with the title "Mainstreaming conservation of coastal biodiversity through formulation of a generic Code of Conduct for Sustainable Management of Mangrove Forest Ecosystems". Formulation of these Principles for a Code of Conduct...... and the sustainable use of mangrove resources. It recommends key legislation and enforcement mechanisms (e.g. governmental and/or community based) considered necessary to ensure the effective conservation, protection and sustainable use of mangroves. The Principles for a Code of Conduct for mangroves was prepared......, Africa, and Central and South America. These workshops provided an opportunity to seek expert advice regarding practical examples of sound mangrove management, or problems for management, from each region, and to illustrate them in the working document. A peer review workshop was held in Washington...

  15. Economic valuation of Mangroves for comparison with commercial aquaculture in south Sulawesi, Indonesia

    DEFF Research Database (Denmark)

    Malik, Abdul; Fensholt, Rasmus; Mertz, Ole

    2015-01-01

    Mangroves are recognized as a provider of a variety of products and essential ecosystem services that contribute significantly to the livelihood of local communities. However, over the past decades, mangroves in many tropical areas including the Takalar district, South Sulawesi have degraded...... and decreased mainly due to conversion to aquaculture. Currently, little is known about the economic benefits of commercialization of aquaculture as compared to those derived from mangroves in the form of products and services. Here, we estimate the Total Economic Value (TEV) of mangrove benefits in order...... to compare it with the benefit value of commercial aquaculture. Market prices, replacement costs, benefit transfer value and Cost-Benefit Analyses (CBA) have been used for value determination and comparison. The results show that the per year TEV of mangroves in the study area (Takalar district, South...

  16. Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.

    Science.gov (United States)

    Shiau, Yo-Jin; Cai, Yuanfeng; Lin, Yu-Te; Jia, Zhongjun; Chiu, Chih-Yu

    2018-04-01

    Methanotrophs are important microbial communities in coastal ecosystems. They reduce CH 4 emission in situ, which is influenced by soil conditions. This study aimed to understand the differences in active aerobic methanotrophic communities in mangrove forest soils experiencing different inundation frequency, i.e., in soils from tidal mangroves, distributed at lower elevations, and from dwarf mangroves, distributed at higher elevations. Labeling of pmoA gene of active methanotrophs using DNA-based stable isotope probing (DNA-SIP) revealed that methanotrophic activity was higher in the dwarf mangrove soils than in the tidal mangrove soils, possibly because of the more aerobic soil conditions. Methanotrophs affiliated with the cluster deep-sea-5 belonging to type Ib methanotrophs were the most dominant methanotrophs in the fresh mangrove soils, whereas type II methanotrophs also appeared in the fresh dwarf mangrove soils. Furthermore, Methylobacter and Methylosarcina were the most important active methanotrophs in the dwarf mangrove soils, whereas Methylomonas and Methylosarcina were more active in the tidal mangrove soils. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene also confirmed similar differences in methanotrophic communities at the different locations. However, several unclassified methanotrophic bacteria were found by 16S rRNA MiSeq sequencing in both fresh and incubated mangrove soils, implying that methanotrophic communities in mangrove forests may significantly differ from the methanotrophic communities documented in previous studies. Overall, this study showed the feasibility of 13 CH 4 DNA-SIP to study the active methanotrophic communities in mangrove forest soils and revealed differences in the methanotrophic community structure between coastal mangrove forests experiencing different tide frequencies.

  17. Mangrove clearing impacts on macrofaunal assemblages and benthic food webs in a tropical estuary.

    Science.gov (United States)

    Bernardino, Angelo Fraga; Gomes, Luiz Eduardo de Oliveira; Hadlich, Heliatrice Louise; Andrades, Ryan; Correa, Lucas Barreto

    2018-01-01

    Despite over 21,000ha of mangrove forests being removed per year in Brazil, ecological changes following mangrove deforestation have been overlooked. Here we evaluated changes in benthic macrofaunal assemblages and food-webs at a mangrove removal and natural sites in a tropical estuary in Eastern Brazil. The impacted site had coarser sediment particle sizes suggesting significant changes in sedimentation processes after forest clearing. Spatial differences in macrofaunal abundance, biomass and diversity were not directly associated with the removal of mangrove forests, supporting recolonization of impacted areas by estuarine fauna. However, benthic assemblage composition, infaunal δ 13 C signatures and food-web diversity markedly differed at the impacted site being strongly related to sedimentary changes. The loss of infaunal trophic diversity that followed mangrove removal suggests that large-scale forest clearing may impact estuarine food webs, with potential consequences to nearby coastal ecosystems given the high clearing rate of mangrove forests in Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth

    OpenAIRE

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2018-01-01

    ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for th...

  19. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth

    OpenAIRE

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2017-01-01

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their abili...

  20. Atoll mangroves and associated flora from Republic of Maldives, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Untawale, A.G.

    of the north atolls. Male' atoll was totally devoid of mangroves due to their large scale reclamation mainly for urbanisation and tourism. Mangrove flora comprised of 12 species and was dominated by Bruguiera cylindrica followed by Lumnitzera racemosa, Ceriops...