WorldWideScience

Sample records for sun-in flight evaluation

  1. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    Science.gov (United States)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  2. Flight program language requirements. Volume 2: Requirements and evaluations

    Science.gov (United States)

    1972-01-01

    The efforts and results are summarized for a study to establish requirements for a flight programming language for future onboard computer applications. Several different languages were available as potential candidates for future NASA flight programming efforts. The study centered around an evaluation of the four most pertinent existing aerospace languages. Evaluation criteria were established, and selected kernels from the current Saturn 5 and Skylab flight programs were used as benchmark problems for sample coding. An independent review of the language specifications incorporated anticipated future programming requirements into the evaluation. A set of detailed language requirements was synthesized from these activities. The details of program language requirements and of the language evaluations are described.

  3. A benchmark for fault tolerant flight control evaluation

    Science.gov (United States)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-12-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.

  4. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    Science.gov (United States)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center have developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system. AVRADA's NUH-60A STAR (Systems Testbed for Avionics Research) helicopter was specially modified, in house, for the flight evaluation of the CALAHF system. The near terrain trajectory generation algorithm runs on a multiprocessor flight computer. Global Positioning System (GPS) data are integrated with Inertial Navigation Unit (INU) data in the flight computer to provide a precise navigation solution. The near-terrain trajectory and the aircraft state information are passed to a Silicon Graphics computer to provide the graphical 'pilot centered' guidance, presented on a Honeywell Integrated Helmet And Display Sighting System (IHADSS). The system design, piloted simulation, and initial flight test results are presented.

  5. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    Science.gov (United States)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  6. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  7. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    Science.gov (United States)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  8. Vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  9. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  10. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    Science.gov (United States)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  11. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2015-02-01

    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  12. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Institute of Scientific and Technical Information of China (English)

    Liu Fan; Wang Lixin; Tan Xiangsheng

    2015-01-01

    In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM) is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric tur-bulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness com-pliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  13. Piloted Simulator Evaluation Results of New Fault-Tolerant Flight Control Algorithm

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Smaili, M.H.; Stroosma, O.; Chu, Q.P.; Mulder, J.A.; Joosten, D.A.

    2010-01-01

    A high fidelity aircraft simulation model, reconstructed using the Digital Flight Data Recorder (DFDR) of the 1992 Amsterdam Bijlmermeer aircraft accident (Flight 1862), has been used to evaluate a new Fault-Tolerant Flight Control Algorithm in an online piloted evaluation. This paper focuses on the

  14. Evaluation of Standard Gear Metrics in Helicopter Flight Operation

    Science.gov (United States)

    Mosher, M.; Pryor, A. H.; Huff, E. M.

    2002-01-01

    Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the

  15. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  16. Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation

    Science.gov (United States)

    Cook, Anthony M.

    1986-01-01

    In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.

  17. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    Science.gov (United States)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  18. Flight simulator evaluation of a novel flight instrument display to minimize the risks of spatial disorientation.

    Science.gov (United States)

    Braithwaite, M G; Durnford, S J; Groh, S L; Jones, H D; Higdon, A A; Estrada, A; Alvarez, E A

    1998-08-01

    Spatial disorientation (SD) in flight remains a major source of attrition. Many SD accidents would occur regardless of the instrument display in use, since the aircrew are simply not looking at the instruments. However, there are a number of accidents which might be amenable to improved instrument displays. In an attempt to improve maintenance and reattainment of correct orientation with a reduced cognitive workload, a novel instrument display has been developed. This paper describes an assessment of the display in a UH-60 helicopter flight simulator. This study tested the hypothesis that during instrument flight and recovery from unusual attitudes, the novel display permits a more accurate maintenance and reestablishment of flight parameters than the standard flight instruments. There were 16 male aviators who flew a simulated instrument flight profile and recovery from unusual attitudes using both the standard flight instruments and the novel display. The two display formats were tested both with and without a secondary task. When compared with the standard instruments, both control of flight parameters and recovery from unusual attitudes were significantly improved when using the novel display. Analysis of the secondary task scores showed that cognitive workload was reduced when using the novel display compared with the standard instruments. Results from all aspects of the assessment indicated benefits of the new display. Future testing should be carried out during real flight, and the display should be further developed to be used in a head-up or helmet-mounted device.

  19. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  20. Evaluation of Night Route Network on Flight Efficiency in Europe

    Directory of Open Access Journals (Sweden)

    Tomislav Mihetec

    2011-09-01

    Full Text Available There are many different concepts and definitions for the flight efficiency, where every stakeholder involved in air transport has its own perception on flight efficiency. Flight efficiency concept is based on trade-offs between safety, airspace capacity, fuel consumption, flying distance, time distance, time cost, fuel cost etc. Flight time and flying distance which has impact to fuel burn and operation costs to airspace users are mainly generated by deviations from the optimum trajectories. According to the Performance Review Commission (PRC Report in 2009 average en-route extension in Europe was 47.6 km, with the year on year improvement of 1.2 km. The PRC Report emphasized that there is constant increase of medium/long haul flights operated by aircraft operators in Europe while short haul flights are decreasing. One of the issues, concerning flight efficiency in Europe, is that aircraft operators are not using night routes sufficient during flight planning process. This paper is presenting flight efficiency for the traffic demand using night route network and not using it at all. Flight inefficiency is expresses by the agreed performance indicators: distance difference (NM, duration difference (min, fuel combustion difference (kg and CO2 emission (t environmental indicator.

  1. Digital electronic engine control fault detection and accommodation flight evaluation

    Science.gov (United States)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  2. Development of Methods to Evaluate Safer Flight Characteristics

    Science.gov (United States)

    Basciano, Thomas E., Jr.; Erickson, Jon D.

    1997-01-01

    The goal of the proposed research is to begin development of a simulation that models the flight characteristics of the Simplified Aid For EVA Rescue (SAFER) pack. Development of such a simulation was initiated to ultimately study the effect an Orbital Replacement Unit (ORU) has on SAFER dynamics. A major function of this program will be to calculate fuel consumption for many ORUs with different masses and locations. This will ultimately determine the maximum ORU mass an astronaut can carry and still perform a self-rescue without jettisoning the unit. A second primary goal is to eventually simulate relative motion (vibration) between the ORU and astronaut. After relative motion is accurately modeled it will be possible to evaluate the robustness of the control system and optimize performance as needed. The first stage in developing the simulation is the ability to model a standardized, total, self-rescue scenario, making it possible to accurately compare different program runs. In orbit an astronaut has only limited data and will not be able to follow the most fuel efficient trajectory; therefore, it is important to correctly model the procedures an astronaut would use in orbit so that good fuel consumption data can be obtained. Once this part of the program is well tested and verified, the vibration (relative motion) of the ORU with respect to the astronaut can be studied.

  3. Flight Test Evaluation of the ATD-1 Interval Management Application

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.; Roper, Roy D.; Abbott, Terence S.; Levitt, Ian; Scharl, Julien

    2017-01-01

    Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.

  4. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    Science.gov (United States)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  5. Evaluation of in vitro macrophage differentiation during space flight

    Science.gov (United States)

    Ortega, M. Teresa; Lu, Nanyan; Chapes, Stephen K.

    2013-01-01

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells. PMID:23420085

  6. A pilot rating scale for evaluating failure transients in electronic flight control systems

    Science.gov (United States)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  7. A benchmark for fault tolerant flight control evaluation

    NARCIS (Netherlands)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-01-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return − RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the

  8. Day/night ANVIS/HUD-24 (day HUD) flight test and pilot evaluations

    Science.gov (United States)

    Yona, Zvi; Weiser, Ben; Hamburger, Oded

    2004-09-01

    The Day/Night ANVIS/HUD-24 gives pilots the ultimate head-out flight solution: 24-hour operational capability from a single integrated system. The basic integrated system combines the standard Night Vision Goggle (NVG) image with vital aircraft flight and navigation information, currently operational on over 4500 helicopters worldwide. Introducing the new Day HUD add-on module the same flight information is displayed for day use. The Day Head Up Display (HUD) is an add-on, complimentary to the basic night ANVIS/HUD system (AN/AVS-7). A lightweight optical module enhancing the day flight operation is designed to allow utility and reconnaissance helicopter day-mission operation by providing complete daytime head-out flight information. This add-on unit enhances flight safety, maximizes tactical survivability, and increases situational awareness during critical landing and takeoff phases. The Day HUD offers a unique 25° field-of-view, monocular, see-through flight information display. It mounts directly to the standard NVG mounting, incorporating a state of the art AMLCD flat panel display, high brightness solid-state backlight and compact optics resulting in a high contrast, high visibility display. The Day HUD test and evaluation program included extensive man-machine interface tests and numerous flight test aircraft in more than six separate countries. This paper will also address flight training, customer acceptance and expand on these findings and observations.

  9. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    Science.gov (United States)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  10. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    Science.gov (United States)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  11. Flight Test Evaluation of Mission Computer Algorithms for a Modern Trainer Aircraft

    Directory of Open Access Journals (Sweden)

    Gargi Meharu

    2013-03-01

    Full Text Available A low cost integrated avionics system has been realized on a modern trainer aircraft. Without using an expensive inertial navigation system onboard, acceptable level of accuracy for navigation, guidance, and weapon aiming is achieved by extensive data fusion within mission computer. The flight test evaluation of mission computer is carried out by assessing the overall performance under various navigation and guidance modes. In flight simulation is carried out for weapon aiming modes. The mission computer interfaces with various subsystems and implements the functional requirements for flight management and mission management. The aim of this paper is to discuss the algorithms of a data fusion intensive mission computer and flight test evaluation of these algorithms, for a typical modern trainer aircraft. The challenges and innovations involved in the work are also discussed.Defence Science Journal, 2013, 63(2, pp.164-173, DOI:http://dx.doi.org/10.14429/dsj.63.4259

  12. Flight Simulator-Induced Sickness and Visual Displays Evaluation

    Science.gov (United States)

    1993-05-01

    present. SITUATIONS SYWOI9IS AIRCRAFT FLIGHT SI.ULATOR ROLLER COASTER PERRY-GO-ROUND OTHER CARNIVAL DEVICES AUTOMOBILES LONG TRAIN OR BUS TRIPS WVINGS...0. 0 V4 4c v mN 0 wm 0 m W- r~rN w m m rIO - qw 0 1-4 N 0 0 m~ v.1 v4 V.4 v.4 w4 rIO rI 44 N a) 0 N o0 w NO 4 v ) w n m mI w ~ wmm 0 v mn ir- w 4 N .0...4.1 o v -0 o n v-4 NlNr 0 v0v0H cm40 rIO v-I (l i N 4 -H S0000 000000 00000 ~0 M0 .- lWI 04. W1 Kr 4 nI 00 toI 4 0 0 in 0$ O 4 4 NV N Q-I 0- v- .4 0 cc

  13. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    Science.gov (United States)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  14. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian airlines.

    Science.gov (United States)

    Morkŭnas, Gendrutis; Pilkyte, Laima; Ereminas, Darius

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates at altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29/Euratom) on basic radiation safety standards requires that doses of aircrews members be assessed and the appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of aircrews of Lithuanian Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircrafts by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different aircrafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed.

  15. Evaluation of a strapless heart rate monitor during simulated flight tasks.

    Science.gov (United States)

    Wang, Zhen; Fu, Shan

    2016-01-01

    Pilots are under high task demands during flight. Monitoring pilot's physiological status is very important in the evaluation of pilot's workload and flight safety. Recently, physiological status monitor (PSM) has been embedded into a watch that can be used without a conventional chest strap. This makes it possible to unobtrusively monitor, log and transmit pilot's physiological measurements such as heart rate (HR) during flight tasks. The purpose of this study is to validate HR recorded by a strapless heart rate watch against criterion ECG-derived HR. Ten commercial pilots (mean ± SD : age: 39.1 ± 7.8 years; total flight hours 7173.2 ± 5270.9 hr) performed three routinely trained flight tasks in a full flight simulator: wind shear go-around (WG), takeoff and climb (TC), and hydraulic failure (HF). For all tasks combined (overall) and for each task, differences between the heart rate watch measurements and the criterion data were small (mean difference [95% CI]: overall: -0.71 beats/min [-0.85, -0.57]; WG: -0.90 beats/min [-1.15, -0.65]; TC: -0.69 beats/min [-0.98, -0.40]; HF: -0.61 beats/min [-0.80, -0.42]). There were high correlations between the heart rate watch measurements and the ECG-derived HR for all tasks (r ≥ 0.97, SEE simulated flight tasks and could be a useful tool for pilot workload evaluation.

  16. External Vision Systems (XVS) proof-of-concept flight test evaluation

    Science.gov (United States)

    Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence; Bailey, Randall E.

    2014-06-01

    NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.

  17. External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation

    Science.gov (United States)

    Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.

    2014-01-01

    NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.

  18. Evaluation of the Course of the Flight Simulators from the Perspective of Students and University Teachers

    Science.gov (United States)

    Kaysi, Feyzi; Bavli, Bünyamin; Gürol, Aysun

    2016-01-01

    The study evaluates the flight simulators course which was opened to fulfill the intermediate staff need of the sector. To collect data, Qualitative techniques were applied. Within this scope, the case study method was employed in the study. The study group consisted of students and instructors. In-depth and focus group interviews were conducted…

  19. Subject Matter Expert Evaluation of Multi-Flight Common Route Advisories

    Science.gov (United States)

    Bilimoria, Karl; Hayashi, Miwa; Sheth, Kapil S.

    2017-01-01

    Traffic flow management seeks to balance the demand for National Airspace System (NAS) flight resources, such as airspace and airports, with the available supply. When forecasted weather blocks nominal air traffic routes, traffic managers must re-route affected flights for weather avoidance. Depending on the nature and scope of the weather, traffic managers may use pre-coordinated re-routes such as Playbook Routes or Coded Departure Routes, or may design ad hoc local re-routes. The routes of affected flights are modified accordingly. These weather avoidance routes will, of course, be less efficient than the nominal routes due to increased flight time and fuel burn. In current traffic management operations, the transition into a weather avoidance re-routing initiative is typically implemented more aggressively than the transition out of that initiative after the weather has dissipated or moved away. For example, strategic large-scale Playbook re-routes are sometimes left in place (as initially implemented) for many hours before being lifted entirely when the weather dissipates. There is an opportunity to periodically modify the re-routing plan as weather evolves, thereby attenuating its adverse impact on flight time and fuel consumption; this is called delay recovery. Multi-Flight Common Routes (MFCR) is a NASA-developed operational concept and associated decision support tool for delay recovery, designed to assist traffic managers to efficiently update weather avoidance traffic routes after the original re-routes have become stale due to subsequent evolution of the convective weather system. MFCR groups multiple flights to reduce the number of advisories that the traffic manager needs to evaluate, and also merges these flights on a common route segment to provide an orderly flow of re-routed traffic. The advisory is presented to the appropriate traffic manager who evaluates it and has the option to modify it using MFCRs graphical user interface. If the traffic

  20. Evaluation of the seating of Qantas flight deck crew.

    Science.gov (United States)

    Lusted, M; Healey, S; Mandryk, J A

    1994-10-01

    In 1985 Qantas Airways (Australia) requested an ergonomics assessment of three pilots' seats so that one could be selected for fitting in all new aircraft as well replacement in existing aircraft. The Ipeco seat was chosen. In 1991, after all aircraft were fitted with the Ipeco seats, the company then requested a further evaluation of the seat to see if it was acceptable to the pilots and if there were any outstanding problems. A seat feature checklist plus a body chart discomfort rating scale was given to the total crew of 1030 pilots. The results from the 202 respondents indicated that although the pilots found the Ipeco seat an improvement on the Weber seat there were some modifications required. The main problems included insufficient adjustment range of the lumbar support area and the thigh supports, and infrequent replacement of the seat cushion. The body charts supported the checklist results in that the main areas of discomfort indicated were the buttocks and low back. Recommendations for improvements in design of the Ipeco seat, training in use and maintenance are presented. The method used in this study has application for field assessment of seating in a wide range of occupations, particularly bus drivers, truck drivers and train drivers, who spend long hours seated without being able to take breaks.

  1. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  2. Management Process of a Frequency Response Flight Test for Rotorcraft Flying Qualities Evaluation

    Directory of Open Access Journals (Sweden)

    João Otávio Falcão Arantes Filho

    2016-07-01

    Full Text Available This paper applies the frequency response methodology to characterize and analyze the flying qualities of longitudinal and lateral axes of a rotary-wing aircraft, AS355-F2. Using the results, it is possible to check the suitability of the aircraft in accordance with ADS-33E-PRF standard, whose flying qualities specifications criteria are based on parameters in the frequency domain. The key steps addressed in the study involve getting, by means of flight test data, the closed-loop dynamic responses including the design of the instrumentation and specification of the sensors to be used in the flight test campaign, the definition of the appropriate maneuvers characteristics for excitation of the aircraft, the planning and execution of the flight test to collect the data, and the proper data treatment, processing and analysis after the flight. After treatment of the collected data, single input-single output spectral analysis is performed. The results permit the analysis of the flying qualities characteristics, anticipation of the demands to which the pilot will be subjected during closed-loop evaluations and check of compliance with the aforementioned standard, within the range of consistent excitation frequencies for flight tests, setting the agility level of the test aircraft.

  3. Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations

    Science.gov (United States)

    Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick

    2017-01-01

    Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.

  4. Ocular Coherence Tomography in the Evaluation of Anterior Eye Injuries in Space Flight

    Science.gov (United States)

    Fer, Dan M.; Law, Jennifer; Wells, Julia

    2017-01-01

    While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.

  5. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    Science.gov (United States)

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  6. An experimental analysis of situation awareness for cockpit display interface evaluation based on flight simulation

    Institute of Scientific and Technical Information of China (English)

    Wei Hengyang; Zhuang Damin; Wanyan Xiaoru; Wang Qun

    2013-01-01

    Aircraft cockpit display interface (CDI) is one of the most important human-machine interfaces for information perceiving.During the process of aircraft design,situation awareness (SA) is frequently considered to improve the design,as the CDI must provide enough SA for the pilot to maintain the flight safety.In order to study the SA in the pilot-aircraft system,a cockpit flight simulation environment is built up,which includes a virtual instrument panel,a flight visual display and the corresponding control system.Based on the simulation environment,a human-in-the-loop experiment is designed to measure the SA by the situation awareness global assessment technique (SAGAT).Through the experiment,the SA degrees and heart rate (HR) data of the subjects are obtained,and the SA levels under different CDI designs are analyzed.The results show that analyzing the SA can serve as an objective way to evaluate the design of CDI,which could be proved from the consistent HR data.With this method,evaluations of the CDI design are performed in the experimental flight simulation environment,and optimizations could be guided through the analysis.

  7. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  8. FLIGHT SAFETY CONTROL OF THE BASIS OF UNCERTAIN RISK EVALUATION WITH NON-ROUTINE FLIGHT CONDITIONS INVOLVED

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article deals with methods of forecasting the level of aviation safety operation of aircraft systems on the basis of methods of evaluation the risks of negative situations as a consequence of a functional loss of initial properties of the system with critical violations of standard modes of the aircraft. Mathematical Models of Risks as a Danger Measure of Discrete Random Events in Aviation Systems are presented. Technological Schemes and Structure of Risk Control Proce- dures without the Probability are illustrated as Methods of Risk Management System in Civil Aviation. The assessment of the level of safety and quality and management of aircraft, made not only from the standpoint of reliability (quality and consumer properties, but also from the position of ICAO on the basis of a risk-based approach. According to ICAO, the security assessment is performed by comparing the calculated risk with an acceptable level. The approach justifies the use of qualitative evaluation techniques safety in the forms of proactive forecasted and predictive risk management adverse impacts to aviation operations of various kinds, including the space sector and nuclear energy. However, for the events such as accidents and disasters, accidents with the aircraft, fighters in a training flight, during the preparation of the pilots on the training aircraft, etc. there is no required statistics. Density of probability distribution (p. d. f. of these events are only hypothetical, unknown with "hard tails" that completely eliminates the application of methods of confidence intervals in the traditional approaches to the assessment of safety in the form of the probability analysis.

  9. Evaluation Model of Design for Operation and Architecture of Hierarchical Virtual Simulation for Flight Vehicle Design

    Institute of Scientific and Technical Information of China (English)

    LIU Hu; TIAN Yongliang; ZHANG Chaoying; YIN Jiao; SUN Yijie

    2012-01-01

    In order to take requirements for commercial operations or military missions into better consideration in new flight vehicle design,a tri-hierarchical task classification model of "design for operation" is proposed,which takes basic man-object interaction task,complex collaborative operation and large-scale joint operation into account.The corresponding general architecture of evaluation criteria is also depicted.Then a virtual simulation-based approach to implement the evaluations at three hierarchy levels is mainly analyzed with a detailed example,which validates the feasibility and effectiveness of evaluation architecture.Finally,extending the virtual simulation architecture from design to operation training is discussed.

  10. Flight-Test Evaluation of Kinematic Precise Point Positioning of Small UAVs

    Directory of Open Access Journals (Sweden)

    Jason N. Gross

    2016-01-01

    Full Text Available An experimental analysis of Global Positioning System (GPS flight data collected onboard a Small Unmanned Aerial Vehicle (SUAV is conducted in order to demonstrate that postprocessed kinematic Precise Point Positioning (PPP solutions with precisions approximately 6 cm 3D Residual Sum of Squares (RSOS can be obtained on SUAVs that have short duration flights with limited observational periods (i.e., only ~≤5 minutes of data. This is a significant result for the UAV flight testing community because an important and relevant benefit of the PPP technique over traditional Differential GPS (DGPS techniques, such as Real-Time Kinematic (RTK, is that there is no requirement for maintaining a short baseline separation to a differential GNSS reference station. Because SUAVs are an attractive platform for applications such as aerial surveying, precision agriculture, and remote sensing, this paper offers an experimental evaluation of kinematic PPP estimation strategies using SUAV platform data. In particular, an analysis is presented in which the position solutions that are obtained from postprocessing recorded UAV flight data with various PPP software and strategies are compared to solutions that were obtained using traditional double-differenced ambiguity fixed carrier-phase Differential GPS (CP-DGPS. This offers valuable insight to assist designers of SUAV navigation systems whose applications require precise positioning.

  11. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    Science.gov (United States)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  12. Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms

    Science.gov (United States)

    Smith, Scott M.; Gregory, Jesse F.; Zeisel, Steven; Ueland, Per; Gibson, C. R.; Mader, Thomas; Kinchen, Jason; Ploutz-Snyder, Robert; Zwart, Sara R.

    2015-01-01

    Intermediates of the one-carbon metabolic pathway are altered in astronauts who experience vision-related issues during and after space flight. Serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were higher in astronauts with ophthalmic changes than in those without (Zwart et al., J Nutr, 2012). These differences existed before, during, and after flight. Potential confounding factors did not explain the differences. Genetic polymorphisms could contribute to these differences, and could help explain why crewmembers on the same mission do not all have ophthalmic issues, despite the same environmental factors (e.g., microgravity, exercise, diet). A follow-up study was conducted to evaluate 5 polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other ophthalmic changes after flight. Preliminary evaluations of the genetic data indicate that all of the crewmembers with the MTRR GG genotype had vision issues to one degree or another. However, not everyone who had vision issues had this genetic polymorphism, so the situation is more complex than the involvement of this single polymorphism. Metabolomic and further data analyses are underway to clarify these findings, but the preliminary assessments are promising.

  13. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    Science.gov (United States)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  14. Comparative evaluation of Space Transportation System (STS)-3 flight and acoustic test random vibration response of the OSS-1 payload

    Science.gov (United States)

    On, F. J.

    1983-01-01

    A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.

  15. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    Science.gov (United States)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  16. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    Science.gov (United States)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  17. The Quality Evaluation Method of Instrument Flight Procedure Design Scheme Based on Fuzzy Linguistic Assessments

    Directory of Open Access Journals (Sweden)

    Chen Ken

    2013-07-01

    Full Text Available The quality of Instrument Flight Procedure Design Scheme (QIFPDS is directly related to the terminal area airspace capacity, quality, efficiency of air traffic management, and even the safety of aircraft. Hence, the evaluation of QIFPDS has great significance in real life. However, the evaluation of QIFPDS in real work is mainly done by experts through their specific knowledge and experience, which usually leads to a bias result and inevitably contains subjectivity and arbitrary defects. In this paper, a multi-attribute group decision-making method is proposed. This method makes full use of evaluation information; objectively and effectively evaluate QIFPDS. Also in this paper, a mathematical model for this method is introduced and a detailed step to solve this model is listed. At the end of this paper, an example is given to show the effectiveness and feasibility of the method.  

  18. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft

    Science.gov (United States)

    Franklin, J. A.; Innis, R. C.

    1980-01-01

    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  19. Technical Evaluation Report on the Flight Mechanics Panel Symposium on Ground/Flight Test Techniques and Correlation.

    Science.gov (United States)

    1983-06-01

    preferably at the flight test- centre itself and with some on-line output at least for continual programme control and guid, nc. For advanced data analysis...R.A. Wood 9 (AFFTC, US), 1). Jacob 5 (ncrnieroE) F. Mavriplis" (Canadair), J. Czincenheim (MDBA, FR), C. Bore (B.Ae., IK), and E. Obert (Fokker, NE...variation in vehicle centre -of-gravity position. Mutual interference effects between wing-fuselage-nacelle combinations, under both low-speed and hieh

  20. ECMWF MACC-II evaluation of performances with MPLNET Lidar network at NASA Goddard Flight Center

    Science.gov (United States)

    Lolli, Simone; Welton, Ellsworth J.; Benedetti, Angela; Lewis, Jasper

    2016-04-01

    Aerosol vertical distribution is a critical parameter for most of the common aerosol forecast models. In this study are evaluated the performances of the MACC-II ECMWF aerosol model in forecasting aerosol extinction profiles and planetary boundary layer height versus the new V3 measured MPLNET Lidar extinction retrievals taken as reference at continuous operational site Goddard Space Flight Center, MD, USA. The model is evaluated at different assimilation stages: no assimilation, MODIS Aerosol Optical Depth (AOD) assimilation and MODIS AOD plus lidar CALIPSO assimilation. The sensitivity study of the model is also investigated respect to the assimilation process..Assessing the model performances it is the first step for future near-real time lidar data assimilation into MACC-II aerosol model forecast.

  1. Implementation and Evaluation of the WADGPS System in the Taipei Flight Information Region

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2010-03-01

    Full Text Available This paper describes the implementation of the Wide Area Differential Global Positioning System (WADGPS system in order to evaluate the operational performance of a satellite based aviation navigation system within Taipei Flight Information Region (FIR. The main objective of the WADGPS is to provide real time integrity information regarding the use of GPS for civil aviation applications. This paper uses the e-GPS observation stations operated by the Taiwan Ministry of Interior (MOI as the WADGPS reference stations to collect the L1-L2 dual-frequency GPS measurements. A WADGPS master station is also implemented to process all GPS measurements sent from each reference station, and then generate the vector corrections. These vector corrections consist of the satellite ephemeris and clock errors, and a grid of ionospheric delays. The data stream also includes confidence bounds for the corrections and “Use/Do Not Use” messages to provide integrity. These messages are then passed to the WADGPS user through the Internet. This paper discusses the WADGPS system architecture and the system performance analysis. A five-day operation performance in Taipei Flight Information Region (FIR is presented in this paper. The results show that the WADGPS can improve the accuracy performance of GPS positioning and fulfill the integrity performance required by Non-Precision Approach (NPA defined by the International Civil Aviation Organization (ICAO.

  2. Ergonomic Evaluation of Simulation Flight Instruments%仿真飞行仪表的人机工效评价*

    Institute of Scientific and Technical Information of China (English)

    王长元; 樊军

    2015-01-01

    Application software simulation technology ,the research how to evaluate ergonomic simulation of flight in‐struments .By building simulation platform for several flight attitude instrument flight simulation ,collecting flight simulation data and operating data after comparing ,and to test and evaluate ergonomics .Finally it is concluded that the degree of the merits of the two kinds of attitude indicator .Experimental results with real attitude indicator ergonomic evaluation results are similar ,suggesting that the flight simulation instrument for ergonomic evaluation is an effective approach .%应用软件仿真技术,研究如何对仿真的飞行仪表进行人机工效评价。通过搭建仿真飞行平台对几种飞行姿态仪进行仿真,采集模拟飞行数据和操作数据后比对,并进行人机工效学的实验和评价。最后得出了两种姿态仪的优劣度。实验结果与实物姿态仪的人机工效评价结果类似,由此表明对仿真飞行仪表进行人机工效评价是一种有效的研究途径。

  3. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    Science.gov (United States)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  4. Flight evaluation of Loran-C for general aviation area navigation

    Science.gov (United States)

    Hollister, W. M.; Natarajan, K.; Littlefield, J. A.

    1982-01-01

    This paper reports on a flight evaluation of Loran-C which was part of a long range study of area navigation systems for general aviation. Tests involved two different Loran-C receivers, 6 different aircraft, and a variety of antennas. Uncorrected position fixes were typically accurate to one quarter mile. With measured corrections, repeatability was good to within 200 ft. Signal reliability was 99.7%. The receiver was not sensitive to atmospheric noise. The time difference grid demonstrated a long term stability of 0.3 microsecond. Vertical whip and ADF E-field antennas were found suitable for airborne use. Loran-C was found satisfactory for instrument approaches to runways at general aviation airports where published latitude-longitude coordinates were available. Accuracy was further improved by using locally measured Loran-C time difference coordinates.

  5. Objective Error Criterion for Evaluation of Mapping Accuracy Based on Sensor Time-of-Flight Measurements

    Directory of Open Access Journals (Sweden)

    Billur Barshan

    2008-12-01

    Full Text Available An objective error criterion is proposed for evaluating the accuracy of maps of unknown environments acquired by making range measurements with different sensing modalities and processing them with different techniques. The criterion can also be used for the assessment of goodness of fit of curves or shapes fitted to map points. A demonstrative example from ultrasonic mapping is given based on experimentally acquired time-of-flight measurements and compared with a very accurate laser map, considered as absolute reference. The results of the proposed criterion are compared with the Hausdorff metric and the median error criterion results. The error criterion is sufficiently general and flexible that it can be applied to discrete point maps acquired with other mapping techniques and sensing modalities as well.

  6. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  7. Novel SiL evaluation of an optimal H∞ controller on the stability of a MAV in flight simulator

    Science.gov (United States)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    This paper introduces a novel methodology to assist the evaluation of control algorithms for MAVs (Micro Aerial Vehicles) using Software-in-the-Loop (SiL) based flight simulation. The originality of this paper is to use © Microsoft Flight Simulator (MSFS) as the environment to embed both the dynamic and graphic models of © Ascending Technologies Pelican MAV flying robot. The resulting is a reliable model of the Pelican quadrotor. The full duplex communication between the virtual aircraft and the control algorithm is achieved by a custom C++/C software named FVMS (Flight Variables Management System), developed by Aerial Robots Team (ART), which is able to reach (read/write) a great number of flight variables from MSFS. To illustrate the effectiveness of such method, we first completely present FVMS architecture and main features. Later, the synthesis and then the application of the optimal H∞ robust control algorithm and its operation into the FVMS SiL context are explained. Regarding MAVs control evaluation, SiL simulation considerably contributes to save battery time, to ease control synthesis and prototyping and to prevent accidents during tests with the real robot. The final goal is to evaluate the stability of the Pelican platform in hovering tasks in flight simulation focusing on the efficiency of FVMS to properly run the optimal H∞ robust control algorithm. The SiL control of the MAV has proven FVMS capabilities, which may be extended to assist the design of other classes of controllers.

  8. The Integrated Computational Environment for Airbreathing Hypersonic Flight Vehicle Modeling and Design Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated computational environment for multidisciplinary, physics-based simulation and analyses of airbreathing hypersonic flight vehicles will be developed....

  9. Evaluating the Handling Qualities of Flight Control Systems Including Nonlinear Aircraft and System Dynamics

    Science.gov (United States)

    Lin, Raymond Chao

    The handling qualities evaluation of nonlinear aircraft systems is an area of concern in loss-of-control (LOC) prevention. The Get Transfer Function (GetTF) method was demonstrated for evaluating the handling qualities of flight control systems and aircraft containing nonlinearities. NASA's Generic Transport Model (GTM), a nonlinear model of a civilian jet transport aircraft, was evaluated. Using classical techniques, the stability, control, and augmentation (SCAS) systems were designed to control pitch rate, roll rate, and airspeed. Hess's structural pilot model was used to model pilot dynamics in pitch and roll-attitude tracking. The simulated task was simultaneous tracking of, both, pitch and roll attitudes. Eight cases were evaluated: 1) gain increase of pitch-attitude command signal, 2) gain increase of roll-attitude command signal, 3) gain reduction of elevator command signal, 4) backlash in elevator actuator, 5) combination 3 and 4 in elevator actuator, 6) gain reduction of aileron command signal, 7) backlash in aileron actuator, and 8) combination of 6 and 7 in aileron actuator. The GetTF method was used to estimate the transfer function approximating a linear relationship between the proprioceptive signal of the pilot model and the command input. The transfer function was then used to predict the handling qualities ratings (HQR) and pilot-induced oscillation ratings (PIOR). The HQR is based on the Cooper-Harper rating scale. In pitch-attitude tracking, the nominal aircraft is predicted to have Level 2* HQRpitch and 2 control and aircraft systems. A limited human-in-the-loop pitch tracking exercise was also conducted to validate the structural pilot model.

  10. Objective Evaluation of Flight Simulator Motion Cueing Fidelity Through a Cybernetic Approach

    NARCIS (Netherlands)

    Pool, D.M.

    2012-01-01

    Compared to aircraft, flight simulators are severely limited in their motion envelopes. Presenting the true aircraft motion one-to-one on flight simulators is generally impossible and it is therefore common practice that these motion stimuli are only presented in reduced and attenuated form. Because

  11. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    Science.gov (United States)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  12. An evaluation of flight data for the Apollo thermal protection system

    Science.gov (United States)

    Bartlett, E. P.; Curry, D. M.

    1972-01-01

    A study was conducted to correlate Apollo ablation and thermal response flight data using advanced state-of-the-art analytical procedures. The agreement between flight data and predictions is consistently excellent for in-depth temperature distributions, char density profiles, and surface ablation, thus validating the analytical procedures.

  13. An experimental evaluation of the Sternberg task as a workload metric for helicopter Flight Handling Qualities (FHQ) research

    Science.gov (United States)

    Hemingway, J. C.

    1984-01-01

    The objective was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopters engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  14. Flight Simulator Evaluation of Display Media Devices for Synthetic Vision Concepts

    Science.gov (United States)

    Arthur, J. J., III; Williams, Steven P.; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.

    2004-01-01

    The Synthetic Vision Systems (SVS) Project of the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSP) is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft. To accomplish these safety and capacity improvements, the SVS concept is designed to provide a clear view of the world around the aircraft through the display of computer-generated imagery derived from an onboard database of terrain, obstacle, and airport information. Display media devices with which to implement SVS technology that have been evaluated so far within the Project include fixed field of view head up displays and head down Primary Flight Displays with pilot-selectable field of view. A simulation experiment was conducted comparing these display devices to a fixed field of view, unlimited field of regard, full color Helmet-Mounted Display system. Subject pilots flew a visual circling maneuver in IMC at a terrain-challenged airport. The data collected for this experiment is compared to past SVS research studies.

  15. Experimental evaluation of a simple lesion detection task with time-of-flight PET

    Energy Technology Data Exchange (ETDEWEB)

    Surti, S; Karp, J S [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: surti@mail.med.upenn.edu, E-mail: joelkarp@mail.med.upenn.edu

    2009-01-21

    A new generation of high-performance, time-of-flight (TOF) PET scanners have recently been developed. In earlier works, the gain with TOF information was derived as a reduction of noise in the reconstructed image, or essentially a gain in scanner sensitivity. These derivations were applicable to analytical reconstruction techniques and 2D PET imaging. In this work, we evaluate the gain measured in the clinically relevant task of lesion detection with TOF information in fully 3D PET scanners using iterative reconstruction algorithms. We performed measurements in a fully 3D TOF PET scanner using spherical lesions in uniform, cylindrical phantom. Lesion detectability was estimated for 10 mm diameter lesions using a non-prewhitening matched filter signal-to-noise-ratio (NPW SNR) as the metric. Our results show that the use of TOF information leads to increased lesion detectability, which is achieved with less number of iterations of the reconstruction algorithm. These phantom results indicate that clinically, TOF PET will allow reduced scan times and improved lesion detectability, especially in large patients.

  16. Evaluation of NCAR Icing/SLD Forecasts, Tools and Techniques Used During The 1998 NASA SLD Flight Season

    Science.gov (United States)

    Bernstein, Ben C.

    2001-01-01

    Supercooled Large Droplet (SLD) icing conditions were implicated in at least one recent aircraft crash, and have been associated with other aircraft incidents. Inflight encounters with SLD can result in ice accreting on unprotected areas of the wing where it can not be removed. Because this ice can adversely affect flight characteristics of some aircraft, there has been concern about flight safety in these conditions. The FAA held a conference on in-flight icing in 1996 where the state of knowledge concerning SLD was explored. One outcome of these meetings was an identified need to acquire SLD flight research data, particularly in the Great Lakes Region. The flight research data was needed by the FAA to develop a better understanding of the meteorological characteristics associated with SLD and facilitate an assessment of existing aircraft icing certification regulations with respect to SLD. In response to this need, NASA, the Federal Aviation Administration (FAA), and the National Center for Atmospheric Research (NCAR) conducted a cooperative icing flight research program to acquire SLD flight research data. The NASA Glenn Research Center's Twin Otter icing research aircraft was flown throughout the Great Lakes region during the winters of 1996-97 and 1997-98 to acquire SLD icing and meteorological data. The NASA Twin Otter was instrumented to measure cloud microphysical properties (particle size, LWC (Liquid Water Content), temperature, etc.), capture images of wing and tail ice accretion, and then record the resultant effect on aircraft performance due to the ice accretion. A satellite telephone link enabled the researchers onboard the Twin Otter to communicate with NCAR meteorologists. who provided real-time guidance into SLD icing conditions. NCAR meteorologists also provided preflight SLD weather forecasts that were used to plan the research flights, and served as on-board researchers. This document contains an evaluation of the tools and techniques NCAR

  17. Flight Test Evaluation of Endurance-Maximizing Periodic Cruise Trajectories for UAV Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The benefits of periodic cruise operation of flight vehicles have been known for three decades. Although a number of papers and doctoral dissertations have studied...

  18. Pilot performance evaluation of simulated flight approach and landing manoeuvres using quantitative assessment tools

    Indian Academy of Sciences (India)

    P ARCHANA HEBBAR; ABHAY A PASHILKAR

    2017-03-01

    This research work examines the application of different statistical and empirical analysis methods to quantify pilot performance. A realistic approach and landing flight scenario is executed using the reconfigurable flight simulator at National Aerospace Laboratories and both subjective and quantitative measures are applied to the pilot performance data. Simulations were repeated for different difficult landing conditions likelanding with degraded visibility, with crosswinds, with degraded aircraft handling qualities and with emergency conditions. Relative assessment of the different applicable metrics is made and significance of task difficulties on pilot performance is investigated. Changes in the pilot’s control strategy with respect to primary and secondary tasks are also discussed in detail. Results indicate that analysing pilot’s control strategy together with his/her deviations from predetermined flight profile provides a means to quantify pilot performance.

  19. Flight testing techniques for the evaluation of light aircraft stability derivatives: A review and analysis

    Science.gov (United States)

    Smetana, F. O.; Summery, D. C.; Johnson, W. D.

    1972-01-01

    Techniques quoted in the literature for the extraction of stability derivative information from flight test records are reviewed. A recent technique developed at NASA's Langley Research Center was regarded as the most productive yet developed. Results of tests of the sensitivity of this procedure to various types of data noise and to the accuracy of the estimated values of the derivatives are reported. Computer programs for providing these initial estimates are given. The literature review also includes a discussion of flight test measuring techniques, instrumentation, and piloting techniques.

  20. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    Science.gov (United States)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  1. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    Science.gov (United States)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  2. Evaluation of bioimpedance for the measurement of physiologic variables as related to hemodynamic studies in space flight

    Science.gov (United States)

    Taylor, Bruce C.

    1993-01-01

    Orthostatic intolerance, following space flight, has received substantial attention because of the possibility that it compromises astronaut safety and reduces the ability of astronauts to function at peak performance levels upon return to a one-g environment. Many pre- and post-flight studies are performed to evaluate changes in hemodynamic responses to orthostatic challenges after shuttle missions. The purpose of this present project is to validate bioimpedance as a means to acquire stroke volume and other hemodynamic information in these studies. In this study, ten male and ten female subjects were subjected to simultaneous measurements of thoracic bioimpedance and Doppler ultrasonic velocimetry under supine, 10 degree head down and 30 degree head up conditions. Paired measurements were made during six periods of five seconds breath holding, over a two minute period, for each of the three positions. Stroke volume was calculated by three bioimpedance techniques and ultrasonic Doppler.

  3. An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights

    Science.gov (United States)

    David, D.

    1983-01-01

    Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.

  4. Evaluation of Management System Effectiveness in the Preparation of the Aircraft for Flight in Faulty Conditions

    Directory of Open Access Journals (Sweden)

    Bogdane Ruta

    2015-11-01

    Full Text Available Most flight delays in aviation enterprises are related to air traffic management and technical centers. This can happen for various reasons: untimely removal of defects, lack of spare parts, deficiencies in maintenance scheduling, etc. Another reason may be inefficient management in the system of preparing the aircraft for departure. The article suggests a possible option of such an assessment as well as the results obtained from the use of this methodology applied to a specific airline.

  5. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  6. Evaluation and Treatment of Essential Hypertension During Short Duration Space Flight

    Science.gov (United States)

    Rossum, Alfred C.; Baisden, Dennis L.

    2000-01-01

    During the last four decades of manned space flight, two individuals have successfully flown in space with the preflight diagnosis of essential hypertension (HTN). Treatment of this disease process in the astronaut population warrants special consideration particularly when selecting medication for a mission. A retrospective review of data offers two different clinical scenarios involving the treatment, or lack thereof, for essential hypertension during space flight. Case I; A Caucasian quinquagenerian diagnosed with HTN one year prior to the mission obtained flight certification after a negative diagnostic workup. The patient was placed on a diuretic. Preflight isolated blood pressure (BP) measurements averaged 138/102. Inflight, the patient electively declined medication. A 36-hour BP monitor revealed an average value of 124/87. Postflight, BP measurements returned to preflight BP values. Case II: A Caucasian quatrogenerian diagnosed with HTN 6 months prior to launch completed flight training after a negative diagnostic workup. The patient was placed on an ACE inhibiter. Preflight BP measurements averaged 130/80. Inflight, isolated BP measurements were considerably less. Normotensive values were obtained postflight. In both cases, BP values inflight were lower than pre or postflight values. Yelle et al has confirmed similar findings in the normotensive astronaut population. Spaceflight may result in fluid shifting, mild dehydration, electrolyte imbalance, orthostatic hypotension, and increased heart rates. Based on these factors, certain classes of antihypertensive agents such as vasodilators, beta-blockers, and diuretics are excluded from consideration as a primary therapeutic modality. To date, Ace Inhibitors are viewed as the more acceptable drug of choice during spaceflight. Newer classes of drugs may also provide additional choices. Presently, astronauts developing uncomplicated HTN may continue their careers when treated with the appropriate class of

  7. Design and Evaluation of a Dynamic Programming Flight Routing Algorithm Using the Convective Weather Avoidance Model

    Science.gov (United States)

    Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit

    2010-01-01

    The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.

  8. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  9. Evaluation of NASA Foodbars as a Standard Diet for Use in Short-Term Rodent Space Flight Studies

    Science.gov (United States)

    Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles

    2003-01-01

    A standard rodent diet for space flight must meet the unique conditions imposed by the space environment and must be nutritionally adequate since diet can influence the outcome of experiments. This paper evaluates the use of National Aeronautics and Space Administration (NASA) developed Foodbars as a standard space flight diet for rats. The Foodbar's semi-purified formulation permits criteria such as nutrient consistency, high nutrient bioavailability and flexibility of formulation to be met. Extrusion of the semi-purified diet produces Foodbars with the proper texture and a non-crumbing solid form for use in space. Treatment of Foodbar with 0.1% potassium sorbate prevents mold growth. Irradiation (15-25 kGy) prevents bacterial growth and in combination with sorbate-treatment provides added protection against mold for shelf-stability. However, during the development process, nutrient analyses indicated that extrusion and irradiation produced nutrient losses. Nutrients were adjusted accordingly to compensate for processing losses. Nutrient analysis of Foodbars continues to be performed routinely to monitor nutrient levels. It is important that the standard rodent diet provide nutrients that will prevent deficiency but also avoid excess that may mask physiological changes produced by space flight. All vitamins levels in the Foodbars, except for vitamin K conformed to or exceeded the current NRC (1995) recommendations. All indispensable amino acids in Foodbar conformed to or exceeded the NRC nutrient recommendation for mice growth and rat maintenance. However, some indispensable amino acids were slightly below recommendations for rat reproduction/growth. Short-term (18-20 d) animal feeding studies indicated that Foodbars were palatable, supported growth and maintained health in rats. Results indicated that NASA rodent Foodbars meet both the physical and nutritional criteria required to support rodents in the space environment and thus, may be used successfully as a

  10. Flight test evaluation of predicted light aircraft drag, performance, and stability

    Science.gov (United States)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  11. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    Science.gov (United States)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  12. The Evaluation of Factors Influencing Flights Delay at Czech International Airports

    Directory of Open Access Journals (Sweden)

    Martina Zámková

    2015-01-01

    Full Text Available The main goal of this article was examination of factors influencing flights delay at three most important international airports in Czech Republic. Data of selected Airlines operating in Czech Republic, whose flights are mainly oriented to international airports in Prague, Brno and Ostrava, were used for needs of this article. Analysis of contingency tables including Pearson chi-squared test was used for data processing. Dependences were presented in graphical form by correspondence analysis. Results from analysis showed that delay caused by technical reasons and maintenance is the most frequent in Prague as well as delay caused by high concentration of airspace, operational management and crew duty norms. Problems caused by departure delay from previous destination are significantly more frequent in Brno and Ostrava by reason of small number of alternative available aircraft. Delays caused by supplier (handling, catering, … are mostly short, in particular by reason of potential penalty. Delays caused by technical problems and necessary maintenance service last mostly longer time and are more frequently on aircraft of type Boeing. Delays of borrowed aircraft of type Airbus are more frequently caused by rental and control of this aircraft by other companies which causes communication and planning difficulties.

  13. Flight evaluation of the effect of winglets on performance and handling qualities of a single-engine general aviation airplane

    Science.gov (United States)

    Holmes, B. J.; Vandam, C. P.; Brown, P. W.; Deal, P. L.

    1980-01-01

    A flight evaluation was conducted to determine the effects of winglets on the performance and handling qualities of a light, single-engine general aviation airplane. The performance measurements were made with a pace airplane to provide calibrated airspeeds; uncalibrated panel instruments in the test airplane were used to provide additional quantitative performance data. These tests were conducted with winglets on and off during the same day to measure relative performance effects. Handling qualities were evaluated by means of pilot comments. Winglets increased cruise speed 8 knots (5.6 percent) at 3962 m (13,000 ft) density altitude and 51 percent maximum continuous power setting. Maximum speed at 3962 m was virtually unchanged. Rate of climb increased approximately 6 percent, or 0.25 m/sec (50 ft/min), at 1524 m (5000 ft). Stall speed was virtually unchanged. Handling qualities were favorably affected.

  14. Figures of Merit for Indirect Time-of-Flight 3D Cameras: Definition and Experimental Evaluation

    Directory of Open Access Journals (Sweden)

    Matteo Perenzoni

    2011-11-01

    Full Text Available Indirect Time-of-Flight (I-TOF cameras can be implemented in a number of ways, each with specific characteristics and performances. In this paper a comprehensive analysis of the implementation possibilities is developed in order to model the main performances with a high level of abstraction. After the extraction of the main characteristics for the high-level model, several figures of merit (FoM are defined with the purpose of obtaining a common metric: noise equivalent distance, correlated and uncorrelated power responsivity, and background light rejection ratio. The obtained FoMs can be employed for the comparison of different implementations of range cameras based on the I-TOF method: specifically, they are applied for several different sensors developed by the authors in order to compare their performances.

  15. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  16. Stretch Reflex as a Simple Measure to Evaluate the Efficacy of Potential Flight Countermeasures Using the Bed Rest Environment

    Science.gov (United States)

    Cerisano, J. M.; Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Harm, D. L.

    2010-01-01

    INTRODUCTION: Spaceflight is acknowledged to have significant effects on the major postural muscles. However, it has been difficult to separate the effects of ascending somatosensory changes caused by the unloading of these muscles during flight from changes in sensorimotor function caused by a descending vestibulo-cerebellar response to microgravity. It is hypothesized that bed rest is an adequate model to investigate postural muscle unloading given that spaceflight and bed rest may produce similar results in both nerve axon and muscle tissue. METHODS: To investigate this hypothesis, stretch reflexes were measured on 18 subjects who spent 60 to 90 days in continuous 6 head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 deg at a peak velocity of approximately 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender and compared with spaceflight data. RESULTS: Although no gender differences were found, bed rest induced changes in reflex latency and CV similar to the ones observed during spaceflight. Also, a relationship between CV and loss of muscle strength in the lower leg was observed for most bed rest subjects. CONCLUSION: Even though bed rest (limb unloading) alone may not mimic all of the synaptic and muscle tissue loss that is observed as a result of spaceflight, it can serve as a working analog of flight for the evaluation of potential countermeasures that may be beneficial in mitigating unwanted changes in the major postural muscles that are observed post flight.

  17. Evaluation of Two Unique Side Stick Controllers in a Fixed-Base Flight Simulator

    Science.gov (United States)

    Mayer, Jann; Cox, Timothy H.

    2003-01-01

    A handling qualities analysis has been performed on two unique side stick controllers in a fixed-base F-18 flight simulator. Each stick, which uses a larger range of motion than is common for similar controllers, has a moving elbow cup that accommodates movement of the entire arm for control. The sticks are compared to the standard center stick in several typical fighter aircraft tasks. Several trends are visible in the time histories, pilot ratings, and pilot comments. The aggressive pilots preferred the center stick, because the side sticks are underdamped, causing overshoots and oscillations when large motions are executed. The less aggressive pilots preferred the side sticks, because of the smooth motion and low breakout forces. The aggressive pilots collectively gave the worst ratings, probably because of increased sensitivity of the simulator (compared to the actual F-18 aircraft), which can cause pilot-induced oscillations when aggressive inputs are made. Overall, the elbow cup is not a positive feature, because using the entire arm for control inhibits precision. Pilots had difficulty measuring their performance, particularly during the offset landing task, and tended to overestimate.

  18. Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.).

    Science.gov (United States)

    Syromyatnikov, Mikhail Y; Kokina, Anastasia V; Lopatin, Alexey V; Starkov, Anatoly A; Popov, Vasily N

    2017-01-01

    Insects pollinate 75% of crops used for human consumption. Over the last decade, a substantial reduction in the abundance of pollinating insects has been recorded and recognized as a severe matter for food supply security. Many of the important food crops destined for human consumption are grown in greenhouses. A unique feature of greenhouse agriculture is the extensive use of fungicides to curb multiple fungal infections. The most widely used pollinating insects in greenhouses are commercially reared bumblebees. However, there is no data regarding the toxicity of fungicides to bumblebee mitochondria. To fill this gap in knowledge, we examined the effects of 16 widely used fungicides on the energetics of the flight muscles mitochondria of Bombus terrestris. We found that diniconazole and fludioxonil uncoupled the respiration of mitochondria; dithianon and difenoconazole inhibited it. By analyzing the action of these inhibitors on mitochondrial respiration and generation of reactive oxygen species, we concluded that difenoconazole inhibited electron transport at the level of Complex I and glycerol-3-phosphate dehydrogenase. Dithianon strongly inhibited succinate dehydrogenase and glycerol-3-phosphate dehydrogenase. It also strongly inhibited mitochondrial oxidation of NAD-linked substrates or glycerol 3-phosphate, but it had no effect on the enzymatic activity of Complex I. It may be suggested that dithianon inhibits electron transport downstream of Complex I, likely at multiply sites.

  19. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Prototype-Technology Evaluator and Research Aircraft (PTERA) Flight Test Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  1. An Evaluation of Training Interventions and Computed Scoring Techniques for Grading a Level Turn Task and a Straight In Landing Approach on a PC-Based Flight Simulator

    Science.gov (United States)

    Heath, Bruce E.

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was

  2. Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera

    Directory of Open Access Journals (Sweden)

    Fulvio Rinaudo

    2009-12-01

    Full Text Available 3D imaging with Time-of-Flight (ToF cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.

  3. Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.

    Science.gov (United States)

    Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio

    2009-01-01

    3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.

  4. A Method for Evaluating Aircraft Stability Parameters from Flight Test Data

    Science.gov (United States)

    1952-06-01

    solving for the aircraft longitudinal moment of inertia. The transfer function A2 is directly proportional to the moment of inertia. All the remaining...a method for evaluating aircraft longitudinal stability derivatives from frequency response data pro- vided the linear dependency existing between the

  5. Evaluation of the Effects of Light Intensity and Time Interval After the Start of Scotophase on the Female Flight Propensity of Asian Gypsy Moth (Lepidoptera: Erebidae).

    Science.gov (United States)

    Chen, Fang; Shi, Juan; Keena, Melody

    2016-04-01

    Asian gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae), females are capable of flight, but little is known about what causes the variation in flight propensity that has been observed. The female flight propensity and capability of Asian gypsy moth from seven geographic populations (three from China, two from Russia, one from Japan, and one from Korea) were compared under all combinations of three light intensities (0.05, 0.10, and 0.40 lux) and during three time intervals after the start of scotophase. A total of 567 females were flight tested. Female flight propensity, time to initiate walking, fanning, and flying, and duration of fanning differed significantly among geographic populations. Females were less likely to voluntarily fly during the 0-1-h time interval after the start of scotophase than during the later time intervals (1-2 and 2-3 h), suggesting that the light intensity cue has to occur at the correct time after the expected start of scotophase for flight initiation. Light intensity did not significantly affect the proportion of females that voluntarily flew, but did impact the timing of the walking and fanning preflight behaviors. The interaction between light intensity and time interval after the start of scotophase had a significant effect on the proportion of females that fanned. The proportion of females with sustained flight capability varied among the populations evaluated. These results may aid in determining the risk of Asian gypsy moth dispersal, but further work is needed to assess other factors that play a role in flight propensity.

  6. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    Science.gov (United States)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  7. Flight simulator requirements for airline transport pilot training - An evaluation of motion system design alternatives

    Science.gov (United States)

    Lee, A. T.; Bussolari, S. R.

    1986-01-01

    The effect of motion platform systems on pilot behavior is considered with emphasis placed on civil aviation applications. A dynamic model for human spatial orientation based on the physiological structure and function of the human vestibular system is presented. Motion platform alternatives were evaluated on the basis of the following motion platform conditions: motion with six degrees-of-freedom required for Phase II simulators and two limited motion conditions. Consideration was given to engine flameout, airwork, and approach and landing scenarios.

  8. Post-Flight Evaluation of PICA and PICA-X - Comparisons of the Stardust SRC and Space-X Dragon 1 Forebody Heatshield Materials

    Science.gov (United States)

    Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.

    2013-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.

  9. Pilot Evaluation of Adaptive Control in Motion-Based Flight Simulator

    Science.gov (United States)

    Kaneshige, John T.; Campbell, Stefan Forrest

    2009-01-01

    The objective of this work is to assess the strengths, weaknesses, and robustness characteristics of several MRAC (Model-Reference Adaptive Control) based adaptive control technologies garnering interest from the community as a whole. To facilitate this, a control study using piloted and unpiloted simulations to evaluate sensitivities and handling qualities was conducted. The adaptive control technologies under consideration were ALR (Adaptive Loop Recovery), BLS (Bounded Linear Stability), Hybrid Adaptive Control, L1, OCM (Optimal Control Modification), PMRAC (Predictor-based MRAC), and traditional MRAC

  10. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, Oxana

    2011-06-08

    In 2007 a new project has been launched in a cooperation between the RWTH Aachen Physics Department, the University Hospital Aachen and the Philips Research Laboratories. The project aim is to validate and improve GEANT4 nuclear interaction models for use in proton and ion therapy. The method chosen here is the measurement of nuclear reaction cross sections which will not only provide a comparison to the simulation but will also allow to improve some of the parameters in the nuclear models. In the first phase of the project 200 MeV protons are used as a projectile in combination with a thin graphite target. For use in particle therapy the excitation functions of the most frequently produced isotopes need to be measured with an accuracy of 10% or less. For this purpose a dedicated detector system has been designed and implemented in GEANT4. The detection of target fragments produced by protons in graphite is achieved via time-of-flight spectrometry. In the setup presented here the primary beam first hits the Start detector and initiates the time-of-flight measurement before it passes through the apertures of two Veto detectors and impinges on the target. Successively, the secondary particles emanating from the target travel a short distance of 70/80 cm through vacuum (0.1 mbar) before they hit one of the 20 Stop detectors which end the time-of-flight measurement and record the energy deposited by the particle. The dissertation at hand describes the underlying detector concept and presents a detailed GEANT4 simulation of the setup which allows to evaluate the detector performance with respect to target fragment identification at a projectile energy of 200 MeV. At first, correlations of time-of-flight and energy deposition are built from simulated data and are subsequently used to reconstruct mass spectra of the detected fragments. Such influences on the detection performance as the target thickness, the residual pressure within the detector chamber, the Veto system

  11. Growth hormone secretion during space flight and evaluation of the physiological responses of animals held in the research animal holding facility

    Science.gov (United States)

    Fast, Thomas N.; Grindeland, Richard; Mehler, William; Oyama, Jiro

    1987-01-01

    The spaceflight of the Research Animal Holding Facility (RAHF) on the Space Laboratory 3 (SL 3) provided the opportunity to evaluate the suitability of the RAHF for housing and maintaining experimental animals during spaceflight, and to determine changes in the secretion of growth hormone during spaceflight. Using ground-based studies the following were investigated: the optimum conditions for creating gravitational force on space flight animals; neural pathways that may play a role in the space flight syndrome; and the time course of muscle atrophy due to hypodynamia and hypokenesia in hindlimb-suspended animals and the role of growth hormone in these processes.

  12. Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine

    Science.gov (United States)

    Walsh, K. R.; Burcham, F. W.

    1984-01-01

    The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur.

  13. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    Science.gov (United States)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  14. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  15. Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones.

    Science.gov (United States)

    Furusawa, Yuto; Hiryu, Shizuko; Kobayasi, Kohta I; Riquimaroux, Hiroshi

    2012-09-01

    The constant frequency component of the second harmonic (CF(2)) of echolocation sounds in Rhinolophus ferrumequinum nippon were measured using onboard telemetry microphones while the bats exhibited Doppler-shift compensation during flights with conspecifics. (1) The CF(2) frequency of pulses emitted by individual bats at rest (F (rest)) showed a long-term gradual decline by 0.22 kHz on average over a period of 3 months. The mean neighboring F (rest) (interindividual differences in F (rest) between neighboring bats when the bats were arranged in ascending order according to F (rest)) ranged from 0.08 to 0.11 kHz among 18 bats in a laboratory colony. (2) The standard deviation of observed echo CF(2) (reference frequency) for bats during paired flights ranged from 50 to 90 Hz, which was not significantly different from that during single flights. This finding suggests that during paired flights, bats exhibit Doppler-shift compensation with the same accuracy as when they fly alone. (3) In 60% (n = 29) of the cases, the difference in the reference frequency between two bats during paired flights significantly decreased compared to when the bats flew alone. However, only 15% of the cases (n = 7) showed a significant increase during paired flights. The difference in frequency between two bats did not increase even when the reference frequencies of the individuals were not statistically different during single flights.

  16. Evaluation of the Earth Radiation Budget Experiment (ERBE) shortwave channel's stability using in-flight calibration sources

    Science.gov (United States)

    Gibson, Michael A.; Lee, Robert B., III; Thomas, Susan

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) radiometers were designed to make absolute measurements of the incoming solar, earth-reflected solar, and earth-emitted fluxes for investigations of the earth's climate system. Thermistor bolometers were the sensors used for the ERBE scanning radiometric package. Each thermistor bolometer package consisted of three narrow field of view broadband radiometric channels measuring shortwave, longwave, and total (0.2 micron to 50 microns) radiation. The in-flight calibration facilities include Mirror Attenuator Mosaics, shortwave internal calibration source, and internal blackbody sources to monitor the long-term responsivity of the radiometers. This paper describes the in-flight calibration facilities, the calibration data reduction techniques, and the results from the in-flight shortwave channel calibrations. The results indicate that the ERBE shortwave detectors were stable to within +/- 1 percent for up to five years of flight operation.

  17. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  18. Performance Evaluation of Alternative Relative Orientation Procedures for UAV-based Imagery with Prior Flight Trajectory Information

    Science.gov (United States)

    He, F.; Habib, A.

    2016-06-01

    Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost) and software (e.g., automated identification of conjugate points in overlapping images) levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs) of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.

  19. Performance Evaluation of Alternative Relative Orientation Procedures for UAV-based Imagery with Prior Flight Trajectory Information

    Directory of Open Access Journals (Sweden)

    F. He

    2016-06-01

    Full Text Available Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost and software (e.g., automated identification of conjugate points in overlapping images levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.

  20. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Level Flight Performance Evaluation of the UH-60A Helicopter with the Production External Stores Support System and Ferry Tanks Installed

    Science.gov (United States)

    1986-09-01

    conducted to determine power required as a function of aircraft longitudinal cg position. Test flights near the expected forward and aft cg limits for...with the aircraft longitudinal cg location forward of the baseline data obtained during this evaluation. Compensation for changes in air- craft cg...The airspeed boom was used as a speed reference in order to determine the effects of tlirust coefficient and aircraft longitudinal cg on the ship’s

  2. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    Science.gov (United States)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  3. Evaluation of the ID220 single photon avalanche diode for extended spectral range of photon time-of-flight spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann; Dahl, Anders Bjorholm; Anderson-Engels, Stefan

    This paper describe the performance of the ID220 single photon avalanche diode for single photon counting, and investigates its performance for photon time-of-flight (PToF) spectroscopy. At first this report will serve as a summary to the group for PToF spectroscopy at the Department of Physics...

  4. Magnesium and Space Flight.

    Science.gov (United States)

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  5. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2012-08-01

    Full Text Available This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larger motion envelope than the conventional hexapods in order to realize the manoeuvrability matching of aircraft dynamics near and beyond the upset flight envelopes. Finally the paper draws a comparative evaluation of motion capabilities between the proposed motion platform and a conventional hexapod based on Stewart configuration in order to emphasize the significance of the design proposed herein.

  6. Miracle Flights

    Science.gov (United States)

    ... her future. Donate Now Make your donation today Saving Lives One Flight At A ... “To improve access to health care by providing financial assistance to low income children for commercial air ...

  7. Research on Flight Test Method for Evaluating Aircraft Cockpit Design%飞机座舱设计评估的试飞方法研究

    Institute of Scientific and Technical Information of China (English)

    封卫忠

    2014-01-01

    飞行试验是评估飞机座舱设计最好的方法,飞行试验阶段选取的评估方法应能获得全面的、足够的信息和来自用户有价值的反馈。本文在分析国内外用于座舱评估的人机工程标准的基础上,总结了用于座舱设计评估的基本方法和评估内容,介绍了用于座舱评估的工作负荷评价方法。%Flight test is the best method for evaluating aircraft cockpit design.The evaluation method selected during the flight test should obtain comprehensive and adequate information and valuable feedback from user.On the basis of analyzing human engineering standards for cockpit evaluation,the basic method and evaluation content are summarized and the workload evaluation method for cockpit design is introduced.

  8. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions

    Science.gov (United States)

    Henry, M. W.; Wolf, H.; Siemers, Paul M., III

    1988-01-01

    The SEADS pressure data obtained from the Shuttle flight 61-C are analyzed in conjunction with the preflight database. Based on wind tunnel data, the sensitivity of the Shuttle Orbiter stagnation region pressure distribution to angle of attack and Mach number is demonstrated. Comparisons are made between flight and wind tunnel SEADS orifice pressure distributions at several points throughout the re-entry. It is concluded that modified Newtonian theory provides a good tool for the design of a flush air data system, furnishing data for determining orifice locations and transducer sizing. Ground-based wind tunnel facilities are capable of providing the correction factors necessary for the derivation of accurate air data parameters from pressure data.

  9. Redundant Flight-Critical Control System Evaluation: Analog and Digital Systems Failure Analyses and Preflight Test Designs

    Science.gov (United States)

    1975-01-01

    Supplementary Notes L mam m DOT/SST FCD task technical monitors: Messrs. Siu ’’ latt and M.H. Lowe (ARD-500). Abstract The U.S. SST prototype...technology was selected for the HSAS and ECSS hardware primarily because sufficient insight into state-of-the- art digital hardware failure modes and...of the very low confidence level (high risk) in the applicability of digital computers for flight-critical functions. The state of the art of

  10. Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism

    Science.gov (United States)

    Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.

    2016-01-01

    Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (Penzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.

  11. Ultrasonic inspection method for billet using time-of-flight deviation of bottom echo and its performance evaluation in numerical simulations

    Science.gov (United States)

    Miyamoto, Ryusuke; Mizutani, Koichi; Ebihara, Tadashi; Wakatsuki, Naoto

    2017-07-01

    In this study, defect detection and size estimation in a billet by a single transducer using time-of-flight deviation of an ultrasonic bottom echo were carried out, and the validity of the method was evaluated by numerical simulation. As a result, a defect can be detected regardless of the defect position, even when the defect is near the surface of a billet. Defect size can be estimated by our proposed method when the defect is not near the surface of a billet.

  12. Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis.

    Science.gov (United States)

    Quiles-Melero, I; García-Rodríguez, J; Gómez-López, A; Mingorance, J

    2012-01-01

    We have evaluated matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. A total of 103 isolates, including reference strains and clinical isolates, were identified by pyrosequencing of the ITS1 region and then assay by MALDI-TOF mass spectrometry. Concordance between the two methods was 100%, showing that MALDI-TOF may be useful as a rapid and reliable method for discrimination of species within the C. parapsilosis group.

  13. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of KPC-Producing Klebsiella pneumoniae.

    Science.gov (United States)

    Gaibani, Paolo; Galea, Anna; Fagioni, Marco; Ambretti, Simone; Sambri, Vittorio; Landini, Maria Paola

    2016-10-01

    We evaluated a real-time single-peak (11.109-Da) detection assay based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae Our results demonstrated that the 11.109-Da peak was detected in 88.2% of the KPC producers. Analysis of blaKPC-producing K. pneumoniae showed that the gene encoding the 11.109-Da protein was commonly (97.8%) associated with the Tn4401a isoform.

  14. Evaluation of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of KPC-Producing Klebsiella pneumoniae

    Science.gov (United States)

    Galea, Anna; Fagioni, Marco; Ambretti, Simone; Sambri, Vittorio; Landini, Maria Paola

    2016-01-01

    We evaluated a real-time single-peak (11.109-Da) detection assay based on matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for the identification of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. Our results demonstrated that the 11.109-Da peak was detected in 88.2% of the KPC producers. Analysis of blaKPC-producing K. pneumoniae showed that the gene encoding the 11.109-Da protein was commonly (97.8%) associated with the Tn4401a isoform. PMID:27413192

  15. The new Internet tool: the information and evaluation system by flight, of exposure to cosmic radiation in the new air transports S.I.E.V.E.R.T; Un nouvel outil internet: le systeme d'information et d'evaluation par vol, de l'exposition au rayonnement cosmique dans les transports aeriens SIEVERT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    In France, the public authorities put a new Internet tool at air companies disposal, in order they can evaluate the radiations doses received by their flying crews during their flights. This tool called information and evaluation system by flight of exposure to cosmic radiation in air transport (S.I.E.V.E.R.T.). (N.C.)

  16. A Risk Assessment Model for Reduced Aircraft Separation: A Quantitative Method to Evaluate the Safety of Free Flight

    Science.gov (United States)

    Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in

  17. Technical Evaluation Report on the Flight Mechanics Panel Symposium on Piloted Simulation Effectiveness (L’Efficacite de la Simulation Pilotee)

    Science.gov (United States)

    1992-04-01

    d’importance. ,il Flight Mechanics Panel Chairman: ICA J.-M. Duc Deputy Chairman: Prof. L.M.B.da Costa Campos Directeur Pavilhio de Maquinas Affaires...that these programmes benefitted from having two levels of simulation: a simple standard, for preliminary investigations, and a more complete and...8217iISDaV. tocion syste’ rerormance, accuracy or odellinz, ano temporal rieiiCl’ All of tnese issues are complex and cona’z:onai. so -hac simple criteria

  18. Computer program for post-flight evaluation of the control surface response for an attitude controlled missile

    Science.gov (United States)

    Knauber, R. N.

    1982-01-01

    A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.

  19. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.

    Science.gov (United States)

    McEvoy, John F; Hall, Graham P; McDonald, Paul G

    2016-01-01

    The use of unmanned aerial vehicles (UAVs) for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models) or 40m above individuals (multirotor models). Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  20. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition

    Directory of Open Access Journals (Sweden)

    John F. McEvoy

    2016-03-01

    Full Text Available The use of unmanned aerial vehicles (UAVs for ecological research has grown rapidly in recent years, but few studies have assessed the disturbance impacts of these tools on focal subjects, particularly when observing easily disturbed species such as waterfowl. In this study we assessed the level of disturbance that a range of UAV shapes and sizes had on free-living, non-breeding waterfowl surveyed in two sites in eastern Australia between March and May 2015, as well as the capability of airborne digital imaging systems to provide adequate resolution for unambiguous species identification of these taxa. We found little or no obvious disturbance effects on wild, mixed-species flocks of waterfowl when UAVs were flown at least 60m above the water level (fixed wing models or 40m above individuals (multirotor models. Disturbance in the form of swimming away from the UAV through to leaving the water surface and flying away from the UAV was visible at lower altitudes and when fixed-wing UAVs either approached subjects directly or rapidly changed altitude and/or direction near animals. Using tangential approach flight paths that did not cause disturbance, commercially available onboard optical equipment was able to capture images of sufficient quality to identify waterfowl and even much smaller taxa such as swallows. Our results show that with proper planning of take-off and landing sites, flight paths and careful UAV model selection, UAVs can provide an excellent tool for accurately surveying wild waterfowl populations and provide archival data with fewer logistical issues than traditional methods such as manned aerial surveys.

  1. FLIGHT INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on singaporeair.com. This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  2. Flight selection at United Airlines

    Science.gov (United States)

    Traub, W.

    1980-01-01

    Airline pilot selection proceedures are discussed including psychogical and personality tests, psychomotor performance requirements, and flight skills evaluation. Necessary attitude and personality traits are described and an outline of computer selection, testing, and training techniques is given.

  3. Long duration flights management

    Science.gov (United States)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  4. Development of a thermal prediction model and flight data evaluation and comparison for the EOB experiment of the HELIOS solar probe

    Science.gov (United States)

    Kramp, K.; Ley, W.; Schmidt, H. P.

    1975-01-01

    A thermal model for the EOB experiment has been developed, adopted to test data, and used to predict flight temperatures. These predictions are compared to flight data covering the period from launch until the first black-out.

  5. Our experience in the evaluation of the thermal comfort during the space flight and in the simulated space environment

    Science.gov (United States)

    Novák, Ludvik

    The paper presents the results of the mathematical modelling the effects of hypogravity on the heat output by the spontaneous convection. The theoretical considerations were completed by the experiments "HEAT EXCHANGE 1" performed on the biosatellite "KOSMOS 936". In the second experiment "HEAT EXCHANGE 2" acomplished on the board of the space laboratory "SALYUT 6" was studied the effect of the microgravity on the thermal state of a man during the space flight. Direct measurement in weightlessness prowed the capacity of the developed electric dynamic katathermometer to check directly the effect of the microgravity on the heat output by the spontaneous convection. The role of the heat partition impairment's in man as by the microgravity, so by the inadequate forced convection are clearly expressed in changes of the skin temperature and the subjective feeling of the cosmonaut's thermal comfort. The experimental extension of the elaborated methods for the flexible adjustment of the thermal environment to the actual physiological needs of man and suggestions for the further investigation are outlined.

  6. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  7. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    Science.gov (United States)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  8. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography. Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Moenninghoff, C.; Maderwald, S.; Theysohn, J.M.; Kraff, O.; Ladd, S.C.; Ladd, M.E.; Forsting, M.; Quick, H.H.; Wanke, I. [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Duisburg-Essen Univ. (Germany). Erwin-L.-Hahn Inst. fuer Magnetresonanz

    2009-01-15

    Purpose: The purpose of this study was to compare the depiction of intracranial aneurysms by 3D time-of-flight (TOF) magnetic resonance angiography (MRA) at 7 Tesla (T) with the clinical standard TOF MRA at 1.5 T and with digital subtraction angiography (DSA). Materials and Methods: 7 T and 1.5 T TOF MRA images optimized for both field strengths were compared in ten patients with an unruptured intracranial aneurysm. Two blinded neuroradiologists independently rated the image quality of the dome, the neck, and the vessel of origin of all aneurysms in MRA source and maximum intensity projection (MIP) images. DSA was obtained in all subjects and served as reference standard. The mean values of image quality were compared by Wilcoxon signed rank test. In all patients the number and location of the aneurysms was confirmed by DSA. Results: Both readers identified twelve aneurysms in ten patients in 7 T, 1.5 T TOF MRA and DSA. The image quality of the aneurysm dome was rated higher in 8 of 12 aneurysms and the image quality of the aneurysm neck was superior in 9 of 12 aneurysms at 7 T TOF MRA compared to 1.5 T TOF MRA. The depiction of the parent vessel was graded almost equally by both readers. Conclusion: Our initial results indicate that image quality of intracranial aneurysms may benefit from the increased spatial resolution of 7 T TOF MRA compared with 1.5 T TOF MRA. Tailored scan protocols and optimized radiofrequency head coils are needed to further improve the image quality of 7 T TOF MRA. (orig.)

  9. Design of Prototype-Technology Evaluator and Research Aircraft (PTERA) Configuration for Loss of Control Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  10. In-flight Medical Emergencies

    Directory of Open Access Journals (Sweden)

    Amit Chandra

    2013-09-01

    Full Text Available Introduction: Research and data regarding in-flight medical emergencies during commercial air travel are lacking. Although volunteer medical professionals are often called upon to assist, there are no guidelines or best practices to guide their actions. This paper reviews the literature quantifying and categorizing in-flight medical incidents, discusses the unique challenges posed by the in-flight environment, evaluates the legal aspects of volunteering to provide care, and suggests an approach to managing specific conditions at 30,000 feet.Methods: We conducted a MEDLINE search using search terms relevant to aviation medical emergencies and flight physiology. The reference lists of selected articles were reviewed to identify additional studies.Results: While incidence studies were limited by data availability, syncope, gastrointestinal upset, and respiratory complaints were among the most common medical events reported. Chest pain and cardiovascular events were commonly associated with flight diversion.Conclusion: When in-flight medical emergencies occur, volunteer physicians should have knowledge about the most common in-flight medical incidents, know what is available in on-board emergency medical kits, coordinate their therapy with the flight crew and remote resources, and provide care within their scope of practice. [West J Emerg Med. 2013;14(5:499–504.

  11. STUDY AND PRACTICE OF JSBSIM MODEL-BASED PRELIMINARY FLIGHT ABILITY EVALUATION SYSTEM%基于JSBSim模型飞行能力初步评估系统的研究与实践

    Institute of Scientific and Technical Information of China (English)

    岳显; 吉华; 王强; 樊刚; 王佳

    2015-01-01

    A preliminary flight ability evaluation system based on JSBSim model is developed to meet the requirement of the flight ability evaluation in pilot student recruitment and teaching.Firstly,the framework and main modules of this system are analysed.Then the data input and output of the system are depicted,and the JSBSim model and the method of using JSBSim model in the system are introduced as well.Finally,the evaluation rules and the algorithm of flight ability evaluation are detailed.The system realises the preliminary training and preliminary evaluation on the flight ability of the pilot student.It also has the reference value for flight dynamics model study and flight simulator development.%针对飞行学员招收、教学中对飞行学员飞行能力评估的需求,研发基于JSBSim模型的飞行能力初步评估系统。首先分析系统框架和主要模块,然后阐述系统的数据输入输出,介绍JSBSim模型以及调用方法,最后论述飞行能力的评估规则和算法。系统实现了对飞行学员飞行能力的初步锻炼和初步评估,对飞行动力学模型的研究和飞行模拟器的研发也具有参考价值。

  12. Comparison between artificial neural network and multilinear regression models in an evaluation of cognitive workload in a flight simulator.

    Science.gov (United States)

    Hannula, Manne; Huttunen, Kerttu; Koskelo, Jukka; Laitinen, Tomi; Leino, Tuomo

    2008-01-01

    In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography (ECG) measurements and an evaluation of cognitive load that induces psychophysiological stress (PPS), collected from 14 interceptor fighter pilots during complex simulated F/A-18 Hornet air battles. In our data, the mean absolute error of the ANN estimate was 11.4 as a visual analog scale score, being 13-23% better than the mean absolute error of the MLR model in the estimation of cognitive workload.

  13. Preliminary Evaluation of Commercial Off the Shelf (COTS) Packing Materials for Flight Medication Dispenser (FMD) Technology Development

    Science.gov (United States)

    Du, B.; Daniels, V.; Crady, C.; Putcha, L.

    2011-01-01

    This slide presentation reviews preliminary results of the program to evaluate Commercial Off the Shelf (COTS) packaging materials for pharmaceutical stability. The need for improved packaging is due to possible changes in chemical and/or physical properties of the drugs, which cause reported reduced potency and/or altered bioavailability and decreased efficacy.

  14. Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR): In-Flight Performance During AIRTOSS-I/II Research Aircaft Campaigns

    Science.gov (United States)

    Smit, Herman G. J.; Rolf, Christian; Kraemer, Martina; Petzold, Andreas; Spelten, Nicole; Rohs, Susanne; Neis, Patrick; Maser, Rolf; Bucholz, Bernhard; Ebert, Volker; Tatrai, David; Bozoki, Zoltan; Finger, Fanny; Klingebiel, Marcus

    2014-05-01

    Water vapour is one of the most important parameters in weather prediction and climate research. Accurate and reliable airborne measurements of water vapour are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. Presently, no airborne water vapour sensor exists that covers the entire range of water vapour content of more than four order of magnitudes between the surface and the UT/LS region with sufficient accuracy and time resolution, not to speak of the technical requirements for quasi-routine operation. In a joint research activity of the European Facility for Airborne Research (EUFAR) programme, funded by the EC in FP7, we have addressed this deficit by the Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR), including the sampling characteristics of different gas/ice inlets. The new instruments using innovative detecting technics based on tuneable diode laser technology combined with absorption spectroscopy (TDLAS) or photoacoustic spectroscopy (PAS): (i) SEALDH based on novel self-calibrating absorption spectroscopy; (ii) WASUL, based on photoacoustic spectroscopy; (iii) commercial WVSS-II, also a TDLAS hygrometer, but using 2f-detection technics. DENCHAR has followed an unique strategy by facilitating new instrumental developments together with conducting extensive testing, both in the laboratory and during in-flight operation. Here, we will present the evaluation of the in-flight performance of the three new hygrometer instruments, which is based on the results obtained during two dedicated research aircraft campaigns (May and September 2013) as part of the AIRTOSS (AIRcraft Towed Sensor Shuttle) experiments. Aboard the Learjet 35A research aircraft the DENCHAR instruments were operated side by side with the well established Fast In-Situ Hygrometer (FISH), which is based on Lyman (alpha) resonance fluorescence detection technics and calibrated to the reference frost point

  15. Evaluation of a direct high-capacity target screening approach for urine drug testing using liquid chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Saleh, Aljona; Stephanson, Niclas Nikolai; Granelli, Ingrid; Villén, Tomas; Beck, Olof

    2012-11-15

    In this study a rapid liquid chromatography-time-of-flight mass spectrometry method was developed, validated and applied in order to evaluate the potential of this technique for routine urine drug testing. Approximately 800 authentic patient samples were analyzed for amphetamines (amphetamine and methamphetamine), opiates (morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine and codeine-6-glucuronide) and buprenorphines (buprenorphine and buprenorphine-glucuronide) using immunochemical screening assays and mass spectrometry confirmation methods for comparison. The chromatographic application utilized a rapid gradient with high flow and a reversed phase column with 1.8 μm particles. Total analysis time was 4 min. The mass spectrometer operated with an electrospray interface in positive mode with a resolution power of >10,000 at m/z 956. The applied reporting limits were 100 ng/mL for amphetamines and opiates, and 5 ng/mL for buprenorphines, with lower limits of quantification were 2.8-41 ng/mL. Calibration curves showed a linear response with coefficients of correlation of 0.97-0.99. The intra- and interday imprecision in quantification at the reporting limits were amphetamines and opiates; 3.2% for buprenorphines) and negatives (1.8% for amphetamines; 0.6% for opiates; 0% for buprenorphines). The overall agreement between the two screening methods was between 94.2 and 97.4%. Comparison of data with the confirmation (LC-MS) results for all individual 9 analytes showed that most deviating results were produced in samples with low levels of analytes. False negatives were mainly related to failure of detected peak to meet mass accuracy criteria (±20 mDa). False positives was related to presence of interfering peaks meeting mass accuracy and retention time criteria and occurred mainly at low levels. It is concluded that liquid chromatography-time-of-flight mass spectrometry has potential both as a complement and as replacement of immunochemical screening

  16. An Evaluation of the Elbit Canary and DynaSense PocketNIRS In-Flight Physiological Monitoring Systems

    Science.gov (United States)

    2017-01-04

    system. The ear and ear canal experience vasoconstriction in the presence of cold temperatures or G stress just as the vessels in the finger...reflectance pulse oximeter and NIRS sensor integrated into a single headband. The headband also integrates accelerometers in order to evaluate G stress ...blood draws). Female participants were given a urine pregnancy test each visit to rule out pregnancy prior to any exposure. Following the informed

  17. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Science.gov (United States)

    2010-01-01

    ... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight... methods, procedures, and techniques for conducting flight instruction. (4) Proper evaluation of student... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii)...

  18. Evaluation of a simple protein extraction method for species identification of clinically relevant staphylococci by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Matsuda, Naoto; Matsuda, Mari; Notake, Shigeyuki; Yokokawa, Hirohide; Kawamura, Yoshiaki; Hiramatsu, Keiichi; Kikuchi, Ken

    2012-12-01

    In clinical microbiology, bacterial identification is labor-intensive and time-consuming. A solution for this problem is the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In this study, we evaluated a modified protein extraction method of identification performed on target plates (on-plate extraction method) with MALDI-TOF (Bruker Microflex LT with Biotyper version 3.0) and compared it to 2 previously described methods: the direct colony method and a standard protein extraction method (standard extraction method). We evaluated the species of 273 clinical strains and 14 reference strains of staphylococci. All isolates were characterized using the superoxide dismutase A sequence as a reference. For the species identification, the on-plate, standard extraction, and direct colony methods identified 257 isolates (89.5%), 232 isolates (80.8%), and 173 isolates (60.2%), respectively, with statistically significant differences among the three methods (P extraction method is at least as good as standard extraction in identification rate and has the advantage of a shorter processing time.

  19. Combination of quantitative analysis and chemometric analysis for the quality evaluation of three different frankincenses by ultra high performance liquid chromatography and quadrupole time of flight mass spectrometry.

    Science.gov (United States)

    Zhang, Chao; Sun, Lei; Tian, Run-tao; Jin, Hong-yu; Ma, Shuang-Cheng; Gu, Bing-ren

    2015-10-01

    Frankincense has gained increasing attention in the pharmaceutical industry because of its pharmacologically active components such as boswellic acids. However, the identity and overall quality evaluation of three different frankincense species in different Pharmacopeias and the literature have less been reported. In this paper, quantitative analysis and chemometric evaluation were established and applied for the quality control of frankincense. Meanwhile, quantitative and chemometric analysis could be conducted under the same analytical conditions. In total 55 samples from four habitats (three species) of frankincense were collected and six boswellic acids were chosen for quantitative analysis. Chemometric analyses such as similarity analysis, hierarchical cluster analysis, and principal component analysis were used to identify frankincense of three species to reveal the correlation between its components and species. In addition, 12 chromatographic peaks have been tentatively identified explored by reference substances and quadrupole time-of-flight mass spectrometry. The results indicated that the total boswellic acid profiles of three species of frankincense are similar and their fingerprints can be used to differentiate between them.

  20. 民用飞机设计驾驶舱操纵设备的评估%Evaluation on Flight Cockpit Control Equipments of Civil Aircraft Design

    Institute of Scientific and Technical Information of China (English)

    丰立东; 赵京洲; 田金强

    2013-01-01

    人机工效影响着飞行员操纵飞机的感受,因此在民用飞机设计过程中,对人机工效进行及早考虑是非常重要的。在民用飞机设计的各个阶段,都需要适时邀请具有一定资质的飞行员对驾驶舱的人机工效进行评估。对民用飞机设计中飞控驾驶舱飞行员评估方法进行介绍,对评估的要点进行总结分析,供相关工程设计人员参考。%Human factors affect the feeling of pilots operating airplanes. It is necessary to take human factors into account at the beginning of designing civil aircraft. During each phase of designing civil aircraft, it is necessary to invite qualified pilots to evaluate human factors in cockpit when needed. A method of pilot evaluation related with flight cockpit control system in designing civil airplane is introduced and some important issues are summarized and analyzed so as to refer to other relevant engineers and designers when necessary.

  1. Evaluation of image reconstruction algorithms encompassing Time-Of-Flight and Point Spread Function modelling for quantitative cardiac PET: phantom studies.

    Science.gov (United States)

    Presotto, L; Gianolli, L; Gilardi, M C; Bettinardi, V

    2015-04-01

    To perform kinetic modelling quantification, PET dynamic data must be acquired in short frames, where different critical conditions are met. The accuracy of reconstructed images influences quantification. The added value of Time-Of-Flight (TOF) and Point Spread Function (PSF) in cardiac image reconstruction was assessed. A static phantom was used to simulate two extreme conditions: (i) the bolus passage and (ii) the steady uptake. Various count statistics and independent noise realisations were considered. A moving phantom filled with two different radionuclides was used to simulate: (i) a great range of contrasts and (ii) the cardio/respiratory motion. Analytical and iterative reconstruction (IR) algorithms also encompassing TOF and PSF modelling were evaluated. Both analytic and IR algorithms provided good results in all the evaluated conditions. The amount of bias introduced by IR was found to be limited. TOF allowed faster convergence and lower noise levels. PSF achieved near full myocardial activity recovery in static conditions. Motion degraded performances, but the addition of both TOF and PSF maintained the best overall behaviour. IR accounting for TOF and PSF can be recommended for the quantification of dynamic cardiac PET studies as they improve the results compared to analytic and standard IR.

  2. Flight evaluation of highly augmented controls and electronic displays for precision approach and landing of powered-lift aircraft

    Science.gov (United States)

    Franklin, J. A.; Hynes, C. S.

    1985-01-01

    Experiments were conducted on simulators and on the Quiet Short-Haul Research Aircraft to evaluate the effect of highly augmented control modes and electronic displays on the ability of pilots to execute precision approaches and landings on a short runway. It is found that the primary benefits of highly augmented flightpath and airspeed controls and electronic displays are realized when the pilot is required to execute precisely a complex transition and approach under instrument conditions and in the presence of a wide range of wind and turbulence conditions. A flightpath and airspeed command and stabilization system incorporating nonlinear, inverse system concepts produced fully satisfactory flightpath control throughout the aircraft's terminal operating envelope.

  3. Indoor test for thermal performance evaluation of Lenox-Honeywell solar collector. [conducted using Marshall Space Flight Center Solar Simulator

    Science.gov (United States)

    Shih, K.

    1977-01-01

    The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  4. Performability evaluation of the SIFT computer. [Software-Implemented Fault Tolerance computer onboard commercial aircraft during transoceanic flight

    Science.gov (United States)

    Meyer, J. F.; Furchtgott, D. G.; Wu, L. T.

    1980-01-01

    The paper deals with the models, techniques, and evaluation methods that were successfully used to test the performance of the SIFT degradable computing system. The performance of the computer plus its air transport mission environment is modeled as a random variable, taking values in a set of 'accomplishment level'. The levels are defined in terms of four attributes of total system (computer plus environment) behavior, namely safety, no change in mission profile, no operational penalties, and no economic penalties. The base model of the total system is a stochastic process, whose states describe the internal structure of SIFT and the relevant conditions of its computational environment. Base model state trajectories are related to accomplishment levels via a special function, and solution methods are then used to determine the performability of the total system for various parameters of the computer and environment.

  5. Summary of Liquid Oxygen/Hydrogen, Direct Metal Laser Sintering Injector Testing and Evaluation Effort at Marshall Space Flight Center

    Science.gov (United States)

    Barnett, Gregory; Bullard, David B.

    2015-01-01

    The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.

  6. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    Science.gov (United States)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  7. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    Science.gov (United States)

    Lyons, J. T.

    1993-01-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing

  8. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    Science.gov (United States)

    Lyons, J. T.

    1993-04-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing

  9. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  10. An evaluation of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Staphylococcus pseudintermedius isolates from canine infections.

    Science.gov (United States)

    Silva, Marcella Braga; Ferreira, Fabienne Antunes; Garcia, Luize Neli Nunes; Silva-Carvalho, Maria Cícera; Botelho, Larissa Alvarenga Batista; Figueiredo, Agnes Marie Sá; Vieira-da-Motta, Olney

    2015-03-01

    It has been proposed, based on taxonomic and molecular studies, that all canine isolates belonging to Staphylococcus intermedius group (SIG) should be renamed Staphylococcus pseudintermedius. However, isolates of SIG and other coagulase-positive staphylococci share many phenotypic characteristics, which could lead to misidentification. The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying S. pseudintermedius isolates obtained from canine infections was evaluated, using a polymerase chain reaction (PCR)-based identification as the gold standard. In addition, MALDI-TOF MS was compared with conventional biochemical tests. A central problem was the incorrect identification of S. pseudintermedius isolates as S. intermedius by either MALDI-TOF MS or biochemical identification. From the 49 S. pseudintermedius isolates identified by the molecular method, only 21 could be assigned to this species by the biochemical approach and only 12 by MALDI-TOF MS. The 6 S. aureus isolates were correctly identified by all 3 techniques. However, using biochemical tests, 9 S. pseudintermedius were mistakenly classified as S. aureus, indicating a reduced specificity relative to the MALDI-TOF MS system. Analysis with the MALDI-TOF MS platform allowed rapid and accurate identification of the 49 isolates to the S. intermedius group but the approach was very limited in identifying S. pseudintermedius isolates, as only 12 of 49 isolates were correctly identified, a sensitivity of 0.24 (95% confidence interval: 0.13-0.39).

  11. Optimization and evaluation of surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry for protein profiling of cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Gomez-Mancilla Baltazar

    2006-04-01

    Full Text Available Abstract Cerebrospinal fluid (CSF potentially carries an archive of peptides and small proteins relevant to pathological processes in the central nervous system (CNS and surrounding brain tissue. Proteomics is especially well suited for the discovery of biomarkers of diagnostic potential in CSF for early diagnosis and discrimination of several neurodegenerative diseases. ProteinChip surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS is one such approach which offers a unique platform for high throughput profiling of peptides and small proteins in CSF. In this study, we evaluated methodologies for the retention of CSF proteins m/z we found a high degree of overlap between the tested array surfaces. The combination of CM10 and IMAC30 arrays was sufficient to represent between 80–90% of all assigned peaks when using either sinapinic acid or α-Cyano-4-hydroxycinnamic acid as the energy absorbing matrices. Moreover, arrays processed with SPA consistently showed better peak resolution and higher peak number across all surfaces within the measured mass range. We intend to use CM10 and IMAC30 arrays prepared in sinapinic acid as a fast and cost-effective approach to drive decisions on sample selection prior to more in-depth discovery of diagnostic biomarkers in CSF using alternative but complementary proteomic strategies.

  12. Preoperative evaluation of neurovascular relationship by using contrast-enhanced and unenhanced 3D time-of-flight MR angiography in patients with trigeminal neuralgia

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhou; Zhiling, Liu; Chuanfu, Li; Qingshi Zeng (Dept. of Radiology, Qilu Hospital of Shandong Univ., Jinan (China)), email: zengqingshi@yahoo.cn; Chuncheng, Qu (Dept. of Neurosurgery, the Second Hospital of Shandong Univ., Jinan (China)); Shilei, Ni (Dept. of Neurosurgery, Qilu Hospital of Shandong Univ., Jinan (China))

    2011-10-15

    Background Microvascular decompression is an etiological strategy for the therapy of trigeminal neuralgia (TN). Preoperative identification of neurovascular compression, therefore, could have an impact on the determination of appropriate treatment for TN. Purpose To evaluate the value of contrast-enhanced and unenhanced three-dimensional (3D) time-of-flight (TOF) MR angiography in the visualization of neurovascular relationship in patients with TN. Material and Methods Thirty-seven patients with unilateral TN underwent unenhanced and contrast-enhanced 3D TOF MR angiography with a 3.0-T MR system. Images were reviewed by a radiologist blinded to clinical details. Vascular contact with the trigeminal nerve was identified, and the nature of the involved vessels (artery or vein) was determined. All patients underwent microvascular decompression. Results In 37 patients with TN, contrast-enhanced 3D TOF MR angiography identified surgically verified neurovascular contact in 35 of 36 symptomatic nerves, and there was no false-positive. Based on surgical findings, the sensitivity of MR imaging was 97.2% and specificity 100%. The nature of the offending vessel was correctly identified in 94.4% of the patients by using the combination of contrast-enhanced and unenhanced MR angiography. Conclusion Contrast-enhanced 3D TOF MR angiography is useful in the detection of vascular contact with the trigeminal nerve in patients with TN, and this MR imaging in combination with unenhanced MR angiography could help in the identification of the nature of the responsible vessels

  13. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures.

    Science.gov (United States)

    Jung, Jette S; Hamacher, Christina; Gross, Birgit; Sparbier, Katrin; Lange, Christoph; Kostrzewa, Markus; Schubert, Sören

    2016-11-01

    With the increasing prevalence of multidrug-resistant Gram-negative bacteria, rapid identification of the pathogen and its individual antibiotic resistance is crucial to ensure adequate antiinfective treatment at the earliest time point. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for the identification of bacteria directly from the blood culture bottle has been widely established; however, there is still an urgent need for new methods that permit rapid resistance testing. Recently, a semiquantitative MALDI-TOF mass spectrometry-based method for the prediction of antibiotic resistance was described. We evaluated this method for detecting nonsusceptibility against two β-lactam and two non-β-lactam antibiotics. A collection of 30 spiked blood cultures was tested for nonsusceptibility against gentamicin and ciprofloxacin. Furthermore, 99 patient-derived blood cultures were tested for nonsusceptibility against cefotaxime, piperacillin-tazobactam, and ciprofloxacin in parallel with MALDI-TOF mass spectrometry identification from the blood culture fluid. The assay correctly classified all isolates tested for nonsusceptibility against gentamicin and cefotaxime. One misclassification for ciprofloxacin nonsusceptibility and five misclassifications for piperacillin-tazobactam nonsusceptibility occurred. Identification of the bacterium and prediction of nonsusceptibility was possible within approximately 4 h.

  14. Preoperative evaluation of neurovascular relationship by using contrast-enhanced and unenhanced 3D time-of-flight MR angiography in patients with trigeminal neuralgia.

    Science.gov (United States)

    Zhou, Qin; Liu, Zhiling; Li, Chuanfu; Qu, Chuncheng; Ni, Shilei; Zeng, Qingshi

    2011-10-01

    Microvascular decompression is an etiological strategy for the therapy of trigeminal neuralgia (TN). Preoperative identification of neurovascular compression, therefore, could have an impact on the determination of appropriate treatment for TN. To evaluate the value of contrast-enhanced and unenhanced three-dimensional (3D) time-of-flight (TOF) MR angiography in the visualization of neurovascular relationship in patients with TN. Thirty-seven patients with unilateral TN underwent unenhanced and contrast-enhanced 3D TOF MR angiography with a 3.0-T MR system. Images were reviewed by a radiologist blinded to clinical details. Vascular contact with the trigeminal nerve was identified, and the nature of the involved vessels (artery or vein) was determined. All patients underwent microvascular decompression. In 37 patients with TN, contrast-enhanced 3D TOF MR angiography identified surgically verified neurovascular contact in 35 of 36 symptomatic nerves, and there was no false-positive. Based on surgical findings, the sensitivity of MR imaging was 97.2% and specificity 100%. The nature of the offending vessel was correctly identified in 94.4% of the patients by using the combination of contrast-enhanced and unenhanced MR angiography. Contrast-enhanced 3D TOF MR angiography is useful in the detection of vascular contact with the trigeminal nerve in patients with TN, and this MR imaging in combination with unenhanced MR angiography could help in the identification of the nature of the responsible vessels.

  15. The effectiveness of 3T time-of-flight magnetic resonance angiography for follow-up evaluations after the stent-assisted coil embolization of cerebral aneurysms.

    Science.gov (United States)

    Cho, Won-Sang; Kim, Sam Soo; Lee, Seung Jin; Kim, Sung Hun

    2014-06-01

    Artifacts introduced by stents limit the value of magnetic resonance (MR) imaging as a follow-up modality after the stent-assisted coil embolization of cerebral aneurysms. To investigate the usefulness of 3 Tesla (3T) time-of-flight (TOF) MR angiography (MRA) for the follow-up evaluation. Twenty-two aneurysms of 20 patients treated with stent-assisted coil embolization were followed up with 3T TOF MRA and digital subtraction angiography (DSA) with three-dimensional rotational angiography (3DRA). The status of coiled aneurysms was compared with 3T TOF MRA and DSA with 3DRA in terms of complete occlusion, residual neck, and residual aneurysm. TOF MRA at 3T was performed 1 day before DSA with 3DRA, with a mean follow-up period of 20.1 ± 10.8 months. Twenty (90.9%) of 22 cases were concordant between the two modalities. The degree of agreement and correlation between them were high (κ=0.771, Pcoil embolization of cerebral aneurysms. Further study with a larger patient sample is needed to confirm the effectiveness of 3T TOF MRA. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi

    Science.gov (United States)

    McMullen, Allison R.; Wallace, Meghan A.; Pincus, David H.; Wilkey, Kathy

    2016-01-01

    Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may lack resolution. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for identification of bacteria and yeasts, but a paucity of data exists on the performance characteristics of this method for identification of filamentous fungi. The objective of our study was to evaluate the accuracy of the Vitek MS for mold identification. A total of 319 mold isolates representing 43 genera recovered from clinical specimens were evaluated. Of these isolates, 213 (66.8%) were correctly identified using the Vitek MS Knowledge Base, version 3.0 database. When a modified SARAMIS (Spectral Archive and Microbial Identification System) database was used to augment the version 3.0 Knowledge Base, 245 (76.8%) isolates were correctly identified. Unidentified isolates were subcultured for repeat testing; 71/319 (22.3%) remained unidentified. Of the unidentified isolates, 69 were not in the database. Only 3 (0.9%) isolates were misidentified by MALDI-TOF MS (including Aspergillus amoenus [n = 2] and Aspergillus calidoustus [n = 1]) although 10 (3.1%) of the original phenotypic identifications were not correct. In addition, this methodology was able to accurately identify 133/144 (93.6%) Aspergillus sp. isolates to the species level. MALDI-TOF MS has the potential to expedite mold identification, and misidentifications are rare. PMID:27225405

  17. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi.

    Science.gov (United States)

    McMullen, Allison R; Wallace, Meghan A; Pincus, David H; Wilkey, Kathy; Burnham, C A

    2016-08-01

    Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may lack resolution. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for identification of bacteria and yeasts, but a paucity of data exists on the performance characteristics of this method for identification of filamentous fungi. The objective of our study was to evaluate the accuracy of the Vitek MS for mold identification. A total of 319 mold isolates representing 43 genera recovered from clinical specimens were evaluated. Of these isolates, 213 (66.8%) were correctly identified using the Vitek MS Knowledge Base, version 3.0 database. When a modified SARAMIS (Spectral Archive and Microbial Identification System) database was used to augment the version 3.0 Knowledge Base, 245 (76.8%) isolates were correctly identified. Unidentified isolates were subcultured for repeat testing; 71/319 (22.3%) remained unidentified. Of the unidentified isolates, 69 were not in the database. Only 3 (0.9%) isolates were misidentified by MALDI-TOF MS (including Aspergillus amoenus [n = 2] and Aspergillus calidoustus [n = 1]) although 10 (3.1%) of the original phenotypic identifications were not correct. In addition, this methodology was able to accurately identify 133/144 (93.6%) Aspergillus sp. isolates to the species level. MALDI-TOF MS has the potential to expedite mold identification, and misidentifications are rare. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. 飞行人员梅尼埃病的特点及航空医学鉴定%Characteristics and aeromedical evaluation of Meniere's disease in flight aircrew

    Institute of Scientific and Technical Information of China (English)

    熊巍; 徐先荣; 张扬; 郑军; 刘红巾; 徐蜀宣; 付兆君; 刘晶; 崔丽

    2013-01-01

    目的:分析飞行人员梅尼埃病的临床特点,总结其航空医学鉴定原则.方法:收集1966-2011年因梅尼埃病住院的35例飞行人员的临床资料,分析其临床特点、诊疗经过及航空医学鉴定情况.结果:35例患者主诉症状中,34例有眩晕.27例有耳鸣,21例有听力下降.①累及耳蜗及前庭,主要症状表现为梅尼埃病典型三联征或四联征者18例;②症状表现为眩晕、耳鸣,未主诉明显听力下降者7例(其中4例经检查有低频听力下降);③仅累及前庭,表现为眩晕者7例;④仅累及耳蜗,表现为耳鸣、听力下降者2例;表现为听力下降者1例.根据美国听力与平衡委员会诊断标准,限定性梅尼埃病22例,可能性梅尼埃病2例,潜在性梅尼埃病11例.限定性梅尼埃病及可能性梅尼埃病患者分期为:一期日1例,二期7例,三期6例,无四期患者.35例患者均给予飞行不合格结论.症状首次发作到停飞的时间为3个月~11年.结论:飞行人员梅尼埃病的诊断要慎重,对于不典型梅尼埃病患者,需要在完全排除其他可能疾病的情况下做出诊断.一旦确诊,通常应做飞行不合格结论,未来特许放飞标准有待进一步探讨.%Objective: To find out the clinical characteristics of Meniere's disease in flight aircrew and discuss relevant principles of clinical aviation medicine, in order to summarize experience in medical evaluation of aircrew. Method: Collect the date of 35 cases that were diagnosed with Meniere's disease from 1966 to 2011 in our hospital and analyze the clinical characteristics, diagnosis and flight conclusion of them. Result: Among the 35 cases, 34 patients complained of vertigo, 27 patients complained of tinnitus and 21 patients complained of hearing loss. ① 18 cases manifested typical symptoms of Meniere's disease (paroxysmal vertigo, fluctuating neurosensory hearing loss, tinnitus and ear fullness): ②7 patients showed the symptoms of vertigo and

  19. Development, Implementation, and Pilot Evaluation of a Model-Driven Envelope Protection System to Mitigate the Hazard of In-Flight Ice Contamination on a Twin-Engine Commuter Aircraft

    Science.gov (United States)

    Martos, Borja; Ranaudo, Richard; Norton, Billy; Gingras, David; Barnhart, Billy

    2014-01-01

    Fatal loss-of-control accidents have been directly related to in-flight airframe icing. The prototype system presented in this report directly addresses the need for real-time onboard envelope protection in icing conditions. The combination of prior information and real-time aerodynamic parameter estimations are shown to provide sufficient information for determining safe limits of the flight envelope during inflight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system was designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. The utility of the ICEPro system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their awareness of a hazardous aircraft state. The performance of ICEPro system was further evaluated by various levels of sensor noise and atmospheric turbulence.

  20. 加权 SERVQUAL 模型的航班延误服务补救质量评价研究%A Research on Service Recovery Quality Evaluation in Flight Delay Based on Weighted SERVQUAL Model

    Institute of Scientific and Technical Information of China (English)

    孔祥芬; 王晓贝

    2014-01-01

    In flight delay and service recovery , travelers′main concern is how to get the best compensa-tion.Constructive advice is offered for airlines to improve service quality .A questionnaire survey is con-ducted among passengers using the SERVQUAL evaluation model for flight delays ′service recovery issues and a remedial service quality evaluation of flight delays is done .The results show that the tangibles are the most important part of the five attributes .And the overall results indicate that travelers are not satisfied with their services.Finally, according to these results, conclusions are reached with recommendations for airlines to improve service quality after flight delays .%介绍航班延误和服务质量评价,体现航班延误服务补救质量评价的重要性。通过对旅客的问卷调查,将加权SERVQUAL评价模型应用于航班延误服务补救问题,对航班延误进行服务补救质量评价,最后为航空公司更好地提高航班延误后的服务质量提出了较详细的建议。

  1. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    Science.gov (United States)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  2. Post flight accelerometer data evaluation

    Science.gov (United States)

    Trappen, N.; Demond, F. J.

    The reduction and processing techniques employed to analyze accelerometer (AM) data from the FRG Spacelab mission D1 of October-November 1985 are discussed, and sample data are presented graphically. The D1 payload included three-axis AMs for the material-science laboratory and life-science package and five AMs for the material-science double rack MEDEA, giving a total data volume of over 5 x 10 to the 8th measurement points to be analyzed. Consideration is given to computer-supported data selection, the standardized microgravity representation employed, possibilities for exploring the fine structure at increased resolution, and special applications.

  3. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  4. Flight Deck Interval Management Flight Test Final Report

    Science.gov (United States)

    Tulder, Paul V.

    2017-01-01

    This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.

  5. Fused Reality for Enhanced Flight Test Capabilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While modern ground-based flight simulators continue to improve in fidelity and effectiveness, there remains no substitute for flight test evaluations. In addition...

  6. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  7. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    Science.gov (United States)

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-02-23

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATACpatientBone (air and tissue from the atlas with patient bone), and PET with ATACboneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P atlas bone, the overall difference of PET with ATACpatientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. (©) RSNA, 2017 Online supplemental material is available for this article.

  8. Three-dimensional time-of-flight MR angiography for evaluation of intracranial aneurysms after endosaccular packing with Guglielmi detachable coils: comparison with 3D digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Okahara, Mika [Department of Radiology, Nagatomi Neurosurgical Hospital, Oita (Japan); Department of Radiology, Oita University Faculty of Medicine, 1-1 Hasama-machi, 879-5503, Oita (Japan); Kiyosue, Hiro; Mori, Hiromu [Department of Radiology, Oita University Faculty of Medicine, 1-1 Hasama-machi, 879-5503, Oita (Japan); Hori, Yuzo [Department of Radiology, Nagatomi Neurosurgical Hospital, Oita (Japan); Yamashita, Masanori; Nagatomi, Hirofumi [Department of Neurosurgery, Nagatomi Neurosurgical Hospital, Oita (Japan)

    2004-07-01

    The sensitivities and specificities of three-dimensional time-of-flight MR angiography (3D-TOF MRA) and 3D digital subtraction angiography (3D-DSA) were compared for evaluation of cerebral aneurysms after endosaccular packing with Guglielmi detachable coils (GDCs). Thirty-three patients with 33 aneurysms were included in this prospective study. 3D-TOF MRA and 3D-DSA were performed in the same week on all patients. Maximal intensity projection (MIP) and 3D reconstructed MRA images were compared with 3D-DSA images. The diameters of residual/recurrent aneurysms detected on 3D-DSA were calculated on a workstation. In 3 (9%) of 33 aneurysms, 3D-TOF MRA did not provide reliable information due to significant susceptibility artifacts on MRA. The sensitivity and specificity rates of MRA were 72.7 and 90.9%, respectively, for the diagnosis of residual/recurrent aneurysm. The diameters of residual/recurrent aneurysms that could not be detected by MRA were significantly smaller than those of detected aneurysms (mean 1.1 vs mean 2.3 mm). In one aneurysm of the anterior communicating artery (ACoA), the relationship between the residual aneurysm and the ACoA was more evident on MRA than DSA images. MRA can detect the recurrent/residual lumen of aneurysms treated with GDCs of up to at least 1.8 mm in diameter. 3D-TOF MRA is useful for follow-up of intracranial aneurysms treated with GDCs, and could partly replace DSA. (orig.)

  9. Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research.

    Science.gov (United States)

    Riedo, A; Bieler, A; Neuland, M; Tulej, M; Wurz, P

    2013-01-01

    Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility.

  10. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures.

    Science.gov (United States)

    Kishii, K; Kikuchi, K; Matsuda, N; Yoshida, A; Okuzumi, K; Uetera, Y; Yasuhara, H; Moriya, K

    2014-05-01

    The clinical relevance of Acinetobacter species, other than A. baumannii, as human pathogens has not been sufficiently assessed owing to the insufficiency of simple phenotypic clinical diagnostic laboratory tests. Infections caused by these organisms have different impacts on clinical outcome and require different treatment and management approaches. It is therefore important to correctly identify Acinetobacter species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been introduced to identify a wide range of microorganisms in clinical laboratories, but only a few studies have examined its utility for identifying Acinetobacter species, particularly those of the non-Acinetobacter baumannii complex. We therefore evaluated MALDI-TOF MS for identification of Acinetobacter species by comparing it with sequence analysis of rpoB using 123 isolates of Acinetobacter species from blood. Of the isolates examined, we identified 106/123 (86.2%) to species, and 16/123 (13.0%) could only be identified as acinetobacters. The identity of one isolate could not be established. Of the 106 species identified, 89/106 (84.0%) were confirmed by rpoB sequence analysis, and 17/106 (16.0%) were discordant. These data indicate correct identification of 89/123 (72.4%) isolates. Surprisingly, all blood culture isolates were identified as 13 species of Acinetobacter, and the incidence of Acinetobacter pittii was unexpectedly high (42/123; 34.1%) and exceeded that of A. baumannii (22/123; 17.9%). Although the present identification rate using MALDI-TOF MS is not acceptable for species-level identification of Acinetobacter, further expansion of the database should remedy this situation.

  11. Evaluation of a High Resolving Power Time-of-Flight Mass Spectrometer for Drug Analysis in Terms of Resolving Power and Acquisition Rate

    Science.gov (United States)

    Pelander, Anna; Decker, Petra; Baessmann, Carsten; Ojanperä, Ilkka

    2011-02-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) is applied increasingly to various fields of small molecule analysis. The moderate resolving power (RP) of standard TOFMS instruments poses a risk of false negative results when complex biological matrices are to be analyzed. In this study, the performance of a high resolving power TOFMS instrument (maXis by Bruker Daltonik, Bremen, Germany) was evaluated for drug analysis. By flow injection analysis of critical drug mixtures, including a total of 17 compounds with nominal masses of 212-415 Da and with mass differences of 8.8-23.5 mDa, RP varied from 34,400 to 51,900 (FWHM). The effect of acquisition rate on RP, mass accuracy, and isotopic pattern fit was studied by applying 1, 2, 5, 10, and 20 Hz acquisition rates in a 16 min gradient elution LC separation. All three variables were independent of the acquisition rate, with an average mass accuracy and isotopic pattern fit factor (mSigma) of 0.33 ppm and 5.9, respectively. The average relative standard deviation of RP was 1.8%, showing high repeatability. The performance was tested further with authentic urine extracts containing a co-eluting compound pair with a nominal mass of 296 Da and an 11.2 mDa mass difference. The authentic sample components were readily resolved and correctly identified by the automated data analysis. The average RP, mass accuracy, and isotopic pattern fit were 36,600, 0.9 ppm, and 7.3 mSigma, respectively.

  12. Qualitative and Quantitative Evaluation of Blob-Based Time-of-Flight PET Image Reconstruction in Hybrid Brain PET/MR Imaging.

    Science.gov (United States)

    Leemans, Eva L; Kotasidis, Fotis; Wissmeyer, Michael; Garibotto, Valentina; Zaidi, Habib

    2015-10-01

    Many neurological diseases affect small structures in the brain and, as such, reliable visual evaluation and accurate quantification are required. Recent technological developments made the clinical use of hybrid positron emission tomography/magnetic resonance (PET/MR) systems possible, providing both functional and anatomical information in a single imaging session. Nevertheless, there is a trade-off between spatial resolution and image quality (contrast and noise), which is dictated mainly by the chosen acquisition and reconstruction protocols. Image reconstruction algorithms using spherical symmetric basis functions (blobs) for image representation have a number of additional parameters that impact both the qualitative and quantitative image characteristics. Hence, a detailed investigation of the blob-based reconstruction characteristics using different parameters is needed to achieve optimal reconstruction results. This work evaluated the impact of a range of blob parameters on image quality and quantitative accuracy of brain PET images acquired on the Ingenuity Time-of-Flight (TOF) PET/MR system. Two different phantoms were used to simulate brain imaging applications. Image contrast and noise characteristics were assessed using an image quality phantom. Quantitative performance in a clinical setting was investigated using the Hoffman 3D brain phantom at various count levels. Furthermore, the visual quality of four clinical studies was scored blindly by two experienced physicians to qualitatively evaluate the influence of different reconstruction protocols, hereby providing indications on parameters producing the best image quality. Quantitative evaluation using the image quality phantom showed that larger basis function radii result in lower contrast recovery (∼2%) and lower variance levels (∼15%). The brain phantom and clinical studies confirmed these observations since lower contrast was seen between anatomical structures. High and low count statistics

  13. Flight Projects Office Information Systems Testbed (FIST)

    Science.gov (United States)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  14. Re-entry flight clearance

    NARCIS (Netherlands)

    Juliana, S.

    2006-01-01

    The objective of the research was to identify and evaluate promising mathematical techniques for re-entry flight clearance. To fulfil this objective, two mathematical methods were investigated and developed: μ analysis for linear models and interval analysis for both linear and non-linear model

  15. WIMP capture by the Sun in the effective theory of dark matter self-interactions

    CERN Document Server

    Catena, Riccardo

    2016-01-01

    We study the capture of WIMP dark matter by the Sun in the non-relativistic effective theory of dark matter self-interactions. The aim is to assess the impact of self-interactions on the expected neutrino flux from the annihilation of WIMPs trapped in the Sun in a model independent manner. We consider all non-relativistic Galilean invariant self-interaction operators that can arise from the exchange of a heavy particle of spin less than or equal to 1 for WIMPs of spin equal to 0, 1/2 and 1. We show that for interaction operators depending at most linearly on the momentum transfer, the WIMP-induced neutrino flux can be enhanced by several orders of magnitude compared to the same flux in absence of self-interactions. This is true even for standard values of the thermally averaged annihilation cross-section. This conclusion impacts the analysis of present and future observations performed at neutrino telescopes.

  16. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  17. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  18. Ornithopter flight stabilization

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2007-04-01

    The quasi-steady aerodynamics model and the vehicle dynamics model of ornithopter flight are explained, and numerical methods are described to capture limit cycle behavior in ornithopter flight. The Floquet method is used to determine stability in forward flight, and a linear discrete-time state-space model is developed. This is used to calculate stabilizing and disturbance-rejecting controllers.

  19. White flight or flight from poverty?

    CERN Document Server

    Jego, C; Jego, Charles; Roehner, Bertrand M.

    2006-01-01

    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  20. The development and flight test of an electronic integrated propulsion control system

    Science.gov (United States)

    Johnson, H. J.; Painter, W. D.

    1976-01-01

    Advanced technical features of the electronic integrated propulsion control system (IPCS) and flight evaluation tests of IPCS (F-111E with TF30-P-9 engines as test vehicle) are described. Nine baseline flight tests and 15 IPCS flight tests were conducted. Instrumentation, data acquisition and data processing systems, software maintenance procedures, flight test procedures, flight safety criteria, flight test results, and ground and flight testing of the aircraft system are described. Advantages conferred by IPCS include: faster accelerations (both gas generator and afterburner performance), better thrust and flight control, reduced flight idle thrust, reduced engine ground trim, extended service ceiling, automatic stall detection, and stall recovery detection.

  1. 737 Windshear Sensor Flight Tests, Orlando

    Science.gov (United States)

    1992-01-01

    NASA Langley Research Center's Boeing 737 test aircraft on the ramp at Orlando International Airport following a day of flight tests evaluating the performance of radar, lidar, and infrared wind shear detection sensors

  2. The role of the sun in the Pantheon's design and meaning

    CERN Document Server

    Hannah, Robert

    2009-01-01

    Despite being one of the most recognisable buildings from ancient Rome, the Pantheon is poorly understood. While its architecture has been well studied, its function remains uncertain. This paper argues that both the design and the meaning of the Pantheon are in fact dependent upon an understanding of the role of the sun in the building, and of the apotheosised emperor in Roman thought. Supporting evidence is drawn not only from the instruments of time in the form of the roofed spherical sundial, but also from other Imperial monuments, notably Nero's Domus Aurea and Augustus's complex of structures on the Campus Martius: his Ara Pacis, the "Horologium Augusti", and his Mausoleum. Hadrian's Mausoleum and potentially part of his Villa at Tivoli are drawn into this argument as correlatives. Ultimately, it is proposed that sun and time were linked architecturally into cosmological signposts for those Romans who could read such things.

  3. Critical incident stress debriefing: keeping your flight crew healthy.

    Science.gov (United States)

    Troiani, T A; Boland, R T

    1992-10-01

    Most flight team members have experienced some type of a stress reaction in their flight career, but few have been debriefed appropriately. Debriefings are necessary to keep flight personnel mentally healthy. Fatal crashes have always drawn attention, and some teams have been debriefed afterward. Proper debriefing and formal mental health evaluation may be the answer.

  4. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    Science.gov (United States)

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  5. Simulation and Effectiveness Evaluation Modeling of Formation Cooperative Flight-test Based on Multi-Agent System%基于多智能体的编队协同试飞仿真与效能评估

    Institute of Scientific and Technical Information of China (English)

    夏庆军; 张安; 张耀中

    2011-01-01

    In order to debase risk and cost the formation cooperative flight-test, building simulation platform to evaluate effectiveness of flight-test was put forward. Firstly, the frame of formation cooperative flight-test simulation was modeled. Based on the frame, the structure of formation cooperative flight-test simulation was set up used Multi-Agent System (MAS) and the function of each kind of agent was ascertained. Then, the process of command transportation between command control center agent and formation agent was made certain and program flow of fighter agent was set up. Lastly, the model of effectiveness evaluation was built by Lanchester equation. The simulation about the model was carried out and the results prove the model is effective.%为了降低编队协同试飞风险和代价,提出建立编队协同试飞仿真平台对试飞的效果进行评价.首先,建立了编队协同试飞模型的总体框架.在此基础上建立了基于多智能体的编队协同试飞总体结构并明确了各类型Agent的功能.然后,确定了指挥控制中心Agent与编队Agent进行命令交互的过程并建立了编队Agent和战斗机Agent的模型.最后,建立了基于兰彻斯特理论的效能评估模型,并对设定的红蓝编队进行了仿真和分析.

  6. Contamination Control and Evaluation for Manufacturing, Ground Tests, Flight Operation and Post-Retrieval Analyses of the TANPOPO Exposed Panels and Capture Panels

    Science.gov (United States)

    Yano, Hajime; Hashimoto, Hirofumi; Kawaguchi, Yuko; Yokobori, Shin-ichi; Uchihori, Yukio; Tabata, Makoto; Yamagishi, Akihiko; Sasaki, Satoshi; Imai, Eiichi

    The TANPOPO (“dandelion” in Japanese) is Japan’s first astrobiology space experiment to be exposed on and retrieved from the ISS-Kibo Exposed Facility from the 2014-5 timeframe. During its 1-3 years of continuous exposure operation in the low earth orbit (LEO) of the Earth, it aims to test key questions consisted of the “quasi-panspermia” hypothesis, a theory for exogenesis origin of life and their precursor transports among celestial bodies The TANPOPO experiment consists of following six sub-themes (ST): 1) the first intact capture of terrestrial microbial colonies in LEO, 2) survival test of terrestrial microbes long exposed in LEO, 3) alteration tests of artificially composed “astronomical organic analogs” long exposed in LEO, 4) intact capture of organic-bearing micrometeoroids with the lowest peak temperature ever in LEO, 5) space flight verification of the world’s lowest density aerogels for intact capture of microparticles, and 6) meteoroid and orbital debris flux assessment only capable to be measured in-situ in LEO. Each will utilize one or more Capture Panel(CP) and Exposure Panel (EP) samples from various pointing faces onboard the Kibo Exposed Facility, i.e., anti-Earth pointing face(Space), leading face (East) and anti-Pressurized Facility face (North), as the ISS is an Earth gravity gradient three-axis stabilized satellite. In order to both satisfy scientific values and planetary protection policy, contamination control and evaluation protocols are implemented for the whole process of manufacturing, ground tests, flight operation and post-retrieval initial analyses of both CPs and EPs. The CPs employ blocks of 0.01g/ccultra-low dense aerogels on its to intact capture impacting solid microparticles such as organic-bearing micrometeoroids, artificial orbital debris and possible terrestrial aerosols temporally reached to the LEO, for assessing the possibility of interplanetary transport of life and its precursors. By analyzing them

  7. The research of special psychological evaluation technology for the flight personnel after the accident%事故后飞行人员专项心理评估技术的研究

    Institute of Scientific and Technical Information of China (English)

    项瑛; 戚菲; 董淑华; 王煜蕙

    2012-01-01

    目的 通过对事故后飞行人员心理状况进行实证量化研究,形成一套迅速、有效地针对事故后飞行人员的心理评估的专项技术.方法 对580名飞行员实施流行病学调查、创伤后应激反应症状自评以及心理健康评估.结果 通过流行病学调查筛查出事故亲身经历以及自评影响251例;根据心理特将飞行人员聚为三类;PTSD-SS阳性51例,经过临床医师确诊34例,其中有28例属于反应过激型的飞行人员,符合率为82.4%.结论 心理测验评估结果与临床诊断具有较好的一致性,通过三个层次的筛查与验证性研究,形成对事故后飞行人员心理状况的评估的专项技术,对飞行作战训练有着重要的临床意义.%Objective To create a quick and effective psychological evaluation special technology in flight personnel after accident through the quantitative research of accident flight crew psychological situation. Methods The epidemiological survey, post-traumatic stress symptoms self-evaluation and mental health evaluation were performed in 580 pilots. Results Through the epidemiology investigation screening accident experience and self-evaluation affect 251 cases. The pilots were divided into three categories according to the psychological traits. Among 51 cases of positive PTSD-SS, 34 cases were confirmed by clinical physicians. There were 28 cases of overreaction type. The coincidence rate was 82.4% . Conclusion Psychological test evaluation result and clinical diagnosis has good uniformity. Through the three levels screenings and confirmatory study to create a special technology about psychological evaluation for flight personnel after accident has important clinical significance for flight and combat training.

  8. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  9. Research on Human Errors Evaluation Method of Flight Accidents Based on HFACS%基于HFACS的飞行事故人为差错分析方法研究

    Institute of Scientific and Technical Information of China (English)

    魏水先; 孙有朝; 陈迎春

    2014-01-01

    人为差错是飞行事故最主要的致因因素,分析飞行事故中人为差错特点,进一步采取预防措施,对于飞行安全至关重要。分析 HFACS 模型,把 HFACS 模型分解为两部分,包括飞行事故差错模式和差错成因。基于HFACS模型,结合专家主观评分法和灰色系统理论构建了适用于航空飞行事故的人为差错致因分析的综合分析模型。利用专家主观评分法对飞行操纵中的人为差错致因进行分析,利用灰色理论对飞行操纵人为差错的影响要素进行量化排序,并通过实例验证了所提出的方法的有效性。%Human error is the primary cause of the flight accident ,analyzing the characteristics of the hu-man errors in flight accident and take preventive measures is vital for flight safety .Analysis HFACS ,and the HFACS model is decomposed into two parts ,including flight error model and the causes of the error . This article is based on HFACS ,combined with the expert subjective evaluation method and gray system theory to develop a comprehensive analysis model ,which is applicable to analyze the human error in the aviation accident .The effectiveness of the proposed method has been verified by examples .

  10. Research on Flight Fatigue Risk Evaluation Index System Based on AHP Method%基于AHP的飞行疲劳风险评价指标体系研究

    Institute of Scientific and Technical Information of China (English)

    牟海鹰; 吴锋广

    2015-01-01

    飞行员疲劳是现代航空运输中必须关注的问题。建立科学有效的评价指标体系,是准确评定飞行疲劳的基础。层次分析法可有效用于飞行疲劳的评定,运用层次分析法建立的飞行疲劳风险评价指标体系可以划分为社会因素、个人因素和组织因素3个二级指标及相关的21个三级指标,同时可以运用层次分析法计算各指标的权重并进行层次总排序。对中国民航18名飞行员的调查验证了模型的可行性,该模型可以用于飞行疲劳风险量化管理。%The pilot fatigue is must be concerned in modern air transport. It is the basis of accurate evaluation of flight fatigue to establish a scientific and effective evaluation index system. Analytic hierarchy process (AHP) can be effectively used in flight fatigue assessment. The flight fatigue risk evaluation index system, which was established by using the AHP, can be divided into 3 secondary indicators and related 21 tertiary indicators. The secondary indicators consist of social factors, personal factors and organizational factors. As the same time, the AHP can be used to calculate the weight of each index and hierarchy total taxis. The survey of 18 CAAC pilots verifies the feasibility of the model. The model can be used for fatigue risk quantification management.

  11. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  12. Digital flight control research

    Science.gov (United States)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  13. 基于Labview的无人机飞行状态实时监测评估系统设计%UAV flight status real-time monitoring evaluation system based on Labview

    Institute of Scientific and Technical Information of China (English)

    张昆; 张铁民; 廖贻泳; 兰玉彬

    2016-01-01

    UAV (unmanned aerial vehicle) is widely used in modern agriculture because of its various advantages. But it is difficult to detect flight performance and the accuracy of human eye observation is poor. In order to monitor UAV flight status and assess performance of UAV automatically, this paper designed a UAV flight status real-time monitoring and performance evaluation system based on the LabVIEW. The system could be separated to airborne parts and ground parts;airborne parts included information collection module and wireless communication module, and ground parts included wireless communication module and monitoring software. The information collection module used AHRS IG-500N to obtain UAV flight status which consisted of triaxial attitude angle, triaxial acceleration, triaxial angular velocity, triaxial speed, GPS (global positioning system) latitude and longitude, GPS altitude, temperature and barometric pressure. After being preprocessed by MCU STM32F103ZE which converted hexadecimal data to ASCII, these data were sent to the ground computer through a pair of wireless transmission module GE MDS EL 805. The monitoring software based on the LabVIEW extracted these data through serial port for the maximum and minimum filtering. Then it displayed the real-time triaxial attitude angle and flight altitude, and used three-dimensional model created by Solidworks to simulate the real-time attitude of the UAV. In addition, it used Gauss-Kruger projection transformation to transform the latitude and longitude coordinates into the corresponding geodetic coordinates. By accumulating three-dimensional space between adjacent points of real-time trajectory of UAV, the software could calculate air miles. The distribution density of points on the whole original setting route was not uniform, and the software used a setting distance to process the route in order to get a uniformly distributed setting route. It could reduce the computation load and improve the accuracy of

  14. Use of a Time-of-Flight Camera With an Omek Beckon™ Framework to Analyze, Evaluate and Correct in Real Time the Verticality of Multiple Sclerosis Patients during Exercise

    Directory of Open Access Journals (Sweden)

    Gonzalo Eguíluz

    2013-11-01

    Full Text Available Any person with Multiple Sclerosis (MS, regardless of the severity of their disability, needs regular physical activity. Poorly performed exercises could aggravate muscle imbalances and worsen the patient’s health. In this paper, we propose a human body verticality detection system using a time-of-flight camera as a tool to detect incorrect postures and improve them in real time. The prototype uses Omek’s Beckon™ Framework to analyze and evaluate the position of patients during exercise. Preliminary results, based on objective questionnaires, indicate an improvement in patients’ evolution through better positions and performance of the exercises.

  15. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  16. A Study Regarding the Representation of the Sun in Young Children’s Spontaneous Drawings

    Directory of Open Access Journals (Sweden)

    José Domingo Villarroel

    2017-08-01

    Full Text Available Drawing has historically been the preeminent way of portraying the observations of the sun. The study of the early stages of the development of astronomical thought and the examination of human graphic expression indicate this. With that in mind, it is interesting to note that young children very frequently draw the sun in their spontaneous depictions and, also, that there are preliminary indications that this fact might be related to their conceptual development. This study examines 279 pictures that children aged 4 to 8 spontaneously depicted, paying particular attention to their solar representations and the relationship that they have with other pictorial elements. The data is also related to children’s understanding of the inanimate nature of the sun. The results lend weight to the assumption that children do not draw the sun without intent and allow for adding fresh data to the growing body of research showing the importance of considering young children’s graphical expression when it comes to gaining insight into their understanding regarding natural phenomena.

  17. 基于 Opengl 的飞行团队协作能力评价系统开发%System Development for Flight Teamwork Collaboration Evaluation Based on Opengl

    Institute of Scientific and Technical Information of China (English)

    惠铎铎; 马进; 李晓京; 柳平; 胡文东

    2016-01-01

    现代大型飞机控制和操纵十分复杂,可靠性要求高,很难由一个乘员单独完成,需要机组成员之间相互配合共同完成作业任务。飞行团队的合理搭配、科学训练及综合评价是高效安全完成飞行任务的重要保证,也是座舱资源管理中的重要内容。依据飞行团队任务的相关特征,研究影响飞行团队作业高效安全的相关因素,为飞行团队的组建和选拔训练提供一系列的理论和方法。通过 C++编程得到团队协作能力评价系统。对实验结果进行分析,发现该测试工具难度适中,区分度良好,具有较好的一致性和稳定性,符合实验要求。该系统可以作为一种可靠的工具来进行相应的测试,可用于相关飞行团队的协作能力测试。%The functional requirement of modern giant aircraft has become complex increasingly. Most work cannot be performed by one person alone,but need to cooperate with each other between members. Reasonable collocation,scientific training,and comprehensive eval-uation of the flight team is an important guarantee to complete the mission effectively and safely,and is also an important part of CRM. According to the associated characteristics of flight task,the factors affecting the safety of flight crew working efficiently is studied and some theories and methods for the flight team selection and training are provided. Analysis of experimental results,found that the test tools has moderate difficulty,with good degree of differentiation and great consistency and stability,conforming to the requirements of the ex-periments. The system can be used as a reliable tool for the corresponding test,also for cooperation test of related team flight.

  18. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  19. Electromechanical flight control actuator

    Science.gov (United States)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  20. Java for flight software

    Science.gov (United States)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  1. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations.

  2. Flight capacity of Sitophilus zeamais Motschulsky in relation to gender and temperature

    Science.gov (United States)

    The maize weevil, Sitophilus zeamais, is a major pest of stored products worldwide. In this research, we evaluated the flight performance of S. zeamais under various temperatures using a 26-channel computer-monitored flight-mill system to estimate total flight distance (TFD), total flight duration (...

  3. Aerodynamic maneuvering hypersonic flight mechanics

    Science.gov (United States)

    Desautel, Dick

    1988-01-01

    The emergence of current high-interest mission involving aeromaneuvering hypersonic flight has given rise to the corresponding need for preliminary design and performance analyses of such vehicles. This need in turn has motivated efforts to develop simplified analytical and computational methods for parametric analysis of maneuvering hypersonic flight under conditions appropriate to the mission involved. The effort included a review of different formulations of the general equations of motion, their associated coordinate frames, various simplifications of the equations, and previously achieved analytical solutions. This study sought to both extend previous solution methods and to develop new ones. In addition, evaluation of the literature and developing a systematic perspective on the knowledge it represents proved to be a major portion of the effort.

  4. Advanced Thermal Control Flight Experiment.

    Science.gov (United States)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  5. The Symbolism of the Sun in Ghassan Kanafani's Fiction: A Political Critique

    Directory of Open Access Journals (Sweden)

    Shadi S. Neimneh

    2017-07-01

    Full Text Available This article explores the symbolism of the sun in Ghassan Kanafani's fiction, in particular his novella Men in the Sun (originally written and published in Arabic under the title Rijal fi al-Shams. The article argues that the sun is a naturalistic emblem standing for the harsh realities encountered by Palestinian refugees. Hence, it is employed as a political metaphor representing the "hellish" life of exiled Palestinians. In this light, the metaphorical employment of the motif of the sun serves the protest message of Kanafani's postcolonial literature of resistance. It is part of a larger project of employing gritty, harsh realism to depict a wretched world of agony, loneliness, despair, and helplessness. In Kanafani’s fiction, the sun directly figures pain, alienation and suffering, rather than hope, light, and renewal as commonly viewed in literary and mythical depictions. Instead of embodying light and birth, the sun figures loss and death in Kanafani’s fictional world. Therefore, it gives Kanafani’s fiction a mythical dimension when this fiction is viewed in its entirety. At the individual level of singular pieces, the sun underscores the realistic weight of such pieces, adding to their ideological, political and historical value. In Men in the Sun, the sun as a dominant symbol functions contra abstract metaphorical language by making the brutal realities of exile and suffering more concrete, more immediate, and more perceptible for the reader. Thus, it is a pessimistic symbol for Kanafani used to create realistic portraits of Palestinian life rather than an optimistic one as traditionally viewed.

  6. Investigation of compensation effect evaluation and heading flight check on high accuracy aeromagnetic survey%飞机磁补偿质量评价及补后检查验证方法

    Institute of Scientific and Technical Information of China (English)

    孙海仁

    2016-01-01

    对于高精度航空磁测来说,飞机磁干扰必须有效的消除,其方法是补偿飞行。补偿效果的好坏直接影响到物探飞行数据的质量,由于国内目前使用的磁力补偿仪型号比较多,如何统一评价磁补偿质量就非常重要了。在航磁规范里,对航磁软补偿质量给出了具体的指标要求,但没有明确航磁软补偿质量的评价方法。笔者引入改善率和磁通门三分量等参数作为质量评价参考指标,及补偿后的航向飞行检查,以近一步验证补偿效果。%In high accuracy aeromagnetic survey, the magnetic interference of aircraft must be effectively eliminated, and the method is compensation flight. The compensation has a direct influence on the flight data quality of geophysical exploration;nevertheless, because China's magnetometers have different models, so how to perform unified evaluation is very important. According to the specification, the criterion of aeromagnetic survey ( DZ/T 1402⁃2010) provides specific measures for assessing the performance of digital magnetic com⁃pensation;nevertheless,it does not define the method of quality assessment. This paper introduces the parameter of IR and three com⁃ponents as well as different directions of flight so as to verify the effect of compensation.

  7. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  8. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  9. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  10. Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in General Relativity

    CERN Document Server

    Magnan, Christian

    2007-01-01

    Taking up a method devised by Taylor and Wheeler and collecting pieces of their work we offer a self-contained derivation of the formulae giving both the precession of the orbit of a planet around the Sun and the deflection angle of a light pulse passing near the Sun in the framework of General Relativity. The demonstration uses only elementary algebra without resorting to tensor formalism. No prior knowledge in relativity is needed to follow the presentation.

  11. Flight Research Building (Hangar)

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Glenn Flight Research Building is located at the NASA Glenn Research Center with aircraft access to Cleveland Hopkins International Airport. The facility is...

  12. Hypersonic flight testing

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, W.

    1987-01-01

    This presentation is developed for people attending the University of Texas week-long short course in hypersonics. The presentation will be late in the program after the audience has been exposed to computational tehniques and ground test methods. It will attempt to show why we flight test, flight test options, what we learn from flight tests and how we use this information to improve our knowledge of hypersonics. It presupposes that our primary interest is in developing vehicles which will fly in the hypersonic flight region and not in simply developing technology for technology's sake. The material is presented in annotated vugraph form so that the author's comments on each vugraph are on the back of the preceding page. It is hoped that the comments will help reinforce the message on the vugraph.

  13. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  14. 1999 Flight Mechanics Symposium

    Science.gov (United States)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  15. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  16. Interprofessional Flight Camp.

    Science.gov (United States)

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator.

  17. Designing Flight Deck Procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  18. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Science.gov (United States)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  19. Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli.

    Science.gov (United States)

    Farfour, E; Leto, J; Barritault, M; Barberis, C; Meyer, J; Dauphin, B; Le Guern, A-S; Leflèche, A; Badell, E; Guiso, N; Leclercq, A; Le Monnier, A; Lecuit, M; Rodriguez-Nava, V; Bergeron, E; Raymond, J; Vimont, S; Bille, E; Carbonnelle, E; Guet-Revillet, H; Lécuyer, H; Beretti, J-L; Vay, C; Berche, P; Ferroni, A; Nassif, X; Join-Lambert, O

    2012-08-01

    Matrix-associated laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry.

  20. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  1. Monte Carlo transport model comparison with 1A GeV accelerated iron experiment: heavy-ion shielding evaluation of NASA space flight-crew foodstuff

    Science.gov (United States)

    Stephens, D. L.; Townsend, L. W.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71 st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R 2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R 2 respectively.

  2. Evaluation of relevant time-of-flight-MS parameters used in HPLC/MS full-scan screening methods for pesticide residues.

    Science.gov (United States)

    Mezcua, Milagros; Malato, Octavio; Martinez-Uroz, Maria Angeles; Lozano, Ana; Agüera, Ana; Fernández-Alba, Amadeo R

    2011-01-01

    An automatic screening method based on HPLC/time-of-flight (TOF)-MS (full scan) was used for the analysis of 103 non-European fruit and vegetable samples after extraction by the quick, easy, cheap, effective, rugged, and safe method. The screening method uses a database that includes 300 pesticides, their fragments, and isotopical signals (910 ions) that identified 210 pesticides in 78 positive samples, with the highest number of detection being nine pesticides/sample. The concentrations of 97 pesticides were 100 microg/kg. Several parameters of the automatic screening method were carefully studied to avoid false positives and negatives in the studied samples; these included peak filter (number of chromatographic peak counts) and search criteria (retention time and error window). These parameters were affected by differences in mass accuracy and sensitivity of the two HPLC/TOF-MS systems used with different resolution powers (15 000 and 7500), the capabilities of which for resolving the ions included in the database from the matrix ions were studied in four matrixes, viz., pepper, rice, garlic, and cauliflower. Both of these mass resolutions were found to be satisfactory to resolve interferences from the signals of interest in the studied matrixes.

  3. Evaluation of Ultrasonic Time-of-Flight Diffraction Data for Selected Control Rod Drive Nozzles from Davis Besse Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cumblidge, Stephen E.; Cinson, Anthony D.; Anderson, Michael T.

    2011-04-25

    Pacific Northwest National Laboratory (PNNL) examined ultrasonic (UT) time-of-flight diffraction (TOFD) data from ten (10) nozzles in the Davis Besse Nuclear Power Plant reactor closure head. The TOFD data was acquired by AREVA after a bare metal visual examination of the pressure vessel head indicated potential leakage in at least one nozzle. A detailed analysis of the UT data shows that Nozzle 4 has three indications consistent with cracking in the penetration tube. One of the indications starts at the wetted side of the weld and progresses to the annulus. In addition, examination of UT data from the annulus region of Nozzle 4 displays an irregular pattern that could be associated with boric acid deposits and leakage/wastage in the interference fit. The review of TOFD data for the other nine nozzles resulted in several indications being detected in the weld region and near the inner diameter (ID) and outer diameter (OD) surfaces of the penetration tube, but no other indications that are consistent with cracking that may have resulted in leakage were observed. A review of the back-wall reflections in the other nine nozzles also did not show strong indications of leakage, although Nozzle 67 displayed an irregularly-shaped region of high ultrasonic transmission near 180 degrees on the interference fit.

  4. Managing of the sun in the architecture; Manejo del sol en la arquitectura

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Azpeitia, Luis Gabriel [Facultad de Arquitectura y Diseno, Universidad de Colima (Mexico)

    2005-07-01

    The solar energy is the source responsible for most of the climatic processes that occur in the planet. From its magnitude, but mainly from its angle of incidence on the atmosphere and on the surface of the oceans and the Earth, depend the daily and seasonal fluctuations of temperature, and therefore the changes in the atmosphere's humidity content as well as pressure differentials that in their turn generate wind currents as well. The architecture, as an integral part of the earth surface, is interrelated with the sun since the relative position of the sun in respect to the buildings is fundamental to obtain energy efficiency as well as comfort in the inhabitants and adjustment to the surroundings. Hence the requirement that the architects formulate their projects in agreement to the sun path, to the different seasons of the year, either to avoid their radiation or to take advantage of it. In this presentation, it is intended to make a fast review of all the tools of support so that the architects recommend the practical use of some of them and so to demonstrate with a practical example the utility that they have in the process of architectural design. [Spanish] La energia solar es la fuente responsable de la mayor parte de los procesos climaticos que ocurren en el planeta. De su magnitud, pero sobre todo de su angulo de incidencia sobre la atmosfera y sobre la superficie de los oceanos y de la tierra, dependen las fluctuaciones de temperaturas diarias y estacionales, y por lo tanto cambios en el contenido de humedad de la atmosfera asi como diferencias de presion que a su vez generan las corrientes de viento. La arquitectura, como parte integral de la superficie terrestre esta interrelacionada con el sol, ya que la posicion relativa del sol con respecto a los edificios es fundamental para lograr eficiencia energetica, confort en los habitantes y adecuacion al entorno. De ahi la exigencia de que los arquitectos formulen sus proyectos en concordancia a la

  5. Fast convergence ambiguity resolution on-the-fly for dual frequency GPS receivers and the flight evaluation; Nishuha GPS jushinki ni taisuru kosokuka OTF ( On-the-Fly ) arugorizumu to hiko jikken ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tsujii, T.; Murata, M.; Harigae, M. [National Aerospace Laboratory, Tokyo (Japan)

    1997-08-31

    Recently, GPS has been used widely in airlines and space vehicles along with the land and sea as a simple, precise and cheap navigation method and positioning system. Normally, they use observed data of GPS called pseudorange. On the other hand, highly precise positioning by phase interference method using carrier phase data has been used for observing crustal deformation in the field of geodetic survey. This phase interference method can also be applied to the precise positioning (kinematic GPS) of movable body. Ambiguity (integer bias) in the carrier phase has to be solved in order to realize the kinematic GPS. Recently, analysis algorithm called Ambiguity Resolution On-The-Fly (OTF) has been studied rapidly and high speed solution of ambiguity while moving is going to be possible. In this report, firstly, this algorithm is described and secondly, evaluation results using real flight test data are reported. 9 refs., 15 figs., 2 tabs.

  6. SR-71 flight

    Science.gov (United States)

    1990-01-01

    atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of one of the two 'A' models. As microscopic-sized atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air-data collection system was successfully tested at Dryden on an F-l04 testbed. The first of a series of flights using the SR-71 as a science camera platform for the NASA Jet Propulsion Laboratory was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who are investigating the use of charged chlorine atoms to protect and rebuild the ozone layer. The SR-71, operating as a testbed, has been used to assist in the development of a commercial satellite-based instant wireless personal communications network, called the IRIDIUM system, under a NASA commercialization assistance program. In addition, the SR-71 has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this study could eventually lead to aircraft designs that would reduce the 'peak' of sonic booms and minimize the startle affect they produce on the ground. Instruments at precise locations on the ground recorded the sonic booms as the aircraft passed overhead at known altitudes and speeds. An F-16XL aircraft was also used in this study. It was flown behind the SR-71 to 'probe' the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters. The aircraft has also been used most recently to evaluate a new concept

  7. Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study

    Science.gov (United States)

    Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.

    2006-01-01

    A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.

  8. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  9. Orbiter Auxiliary Power Unit Flight Support Plan

    Science.gov (United States)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  10. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  11. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  12. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  13. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  14. Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum

    Science.gov (United States)

    1982-01-01

    Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.

  15. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  16. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  17. Flight Dynamics Laboratory overview

    Science.gov (United States)

    Sandford, Thaddeus

    1986-01-01

    The Flight Dynamics Laboratory (FDL) is one of four Air Force Wright Aeronautical Laboratories (AFWAL) and part of the Aeronautical Systems Division located at Wright-Patterson AFB, Ohio. The FDL is responsible for the planning and execution of research and development programs in the areas of structures and dynamics, flight controls, vehicle equipment/subsystems, and aeromechanics. Some of the areas being researched in the four FDL divisions are as follows: large space structures (LSS) materials and controls; advanced cockpit designs; bird-strike-tolerant windshields; and hypersonic interceptor system studies. Two of the FDL divisions are actively involved in programs that deal directly with LSS control/structures interaction: the Flight Controls Division and the Structures and Dynamics Division.

  18. 2001 Flight Mechanics Symposium

    Science.gov (United States)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  19. Technologies for hypersonic flight

    Science.gov (United States)

    Steinheil, Eckart; Uhse, Wolfgang

    An account is given of the technology readiness requirements of the West German Saenger II air-breathing first-stage, two-stage reusable launcher system. The present, five-year conceptual development phase will give attention to propulsion, aerothermodynamic, materials/structures, and flight guidance technology development requirements. The second, seven-year development phase will involve other West European design establishments and lead to the construction of a demonstration vehicle. Attention is presently given to the air-breathing propulsion system, and to flight-weight structural systems under consideration for both external heating and internal cryogenic tankage requirements.

  20. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    Science.gov (United States)

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  1. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  2. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  3. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  4. Flight Mechanics Symposium 1997

    Science.gov (United States)

    Walls, Donna M. (Editor)

    1997-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium. This symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  5. Overbooking Airline Flights.

    Science.gov (United States)

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  6. Overbooking Airline Flights.

    Science.gov (United States)

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  7. OMV In Flight

    Science.gov (United States)

    1988-01-01

    In this 1988 artist's concept, the Orbital Maneuvering Vehicle (OMV), closes in on a satellite. As envisioned by Marshall Space Flight plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  8. Development Of Maneuvering Autopilot For Flight Tests

    Science.gov (United States)

    Menon, P. K. A.; Walker, R. A.

    1992-01-01

    Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.

  9. Evaluation of a pulsed glow discharge time-of-flight mass spectrometer as a detector for gas chromatography and the influence of the glow discharge source parameters on the information volume in chemical speciation analysis.

    Science.gov (United States)

    Fliegel, Daniel; Fuhrer, Katrin; Gonin, Marc; Günther, Detlef

    2006-09-01

    The figures of merit of a pulsed glow discharge time-of-flight mass spectrometer (GD-TOFMS) as a detector for gas chromatography (GC) analysis were evaluated. The mass resolution for the GD-TOFMS was determined on FWHM in the high mass range (208Pb+) as high as 5,500. Precision of 400 subsequent analyses was calculated on 63Cu+ to be better than 1% RSD with no significant drift over the time of the analysis. Isotope precision based on the 63Cu+/65Cu+ ratio over 400 analyses was 1.5% RSD. The limits of detection for gaseous analytes (toluene in methanol as solvent) were determined to be as low as several hundred ppb or several hundred pg absolute without using any pre-concentration technique. Furthermore, the different GD source parameters like capillary distance, cathode-anode spacing, and GD source pressure with regards to the accessible elemental, structural, and molecular information were evaluated. It was demonstrated that each of these parameters has severe influence on the ratio of elemental, structural, and parent molecular information in chemical speciation analysis.

  10. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods.

    Science.gov (United States)

    Wang, Lu; Tian, Xiaofei; Wei, Wenhao; Chen, Gong; Wu, Zhenqiang

    2016-10-01

    Guava leaves are used in traditional herbal teas as antidiabetic therapies. Flavonoids are the main active of Guava leaves and have many physiological functions. However, the flavonoid compositions and activities of Guava leaves could change due to microbial fermentation. A high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry method was applied to identify the varieties of the flavonoids in Guava leaves before and after fermentation. High-performance liquid chromatography, hierarchical cluster analysis and principal component analysis were used to quantitatively determine the changes in flavonoid compositions and evaluate the consistency and quality of Guava leaves. Monascus anka Saccharomyces cerevisiae fermented Guava leaves contained 2.32- and 4.06-fold more total flavonoids and quercetin, respectively, than natural Guava leaves. The flavonoid compounds of the natural Guava leaves had similarities ranging from 0.837 to 0.927. The flavonoid compounds from the Monascus anka S. cerevisiae fermented Guava leaves had similarities higher than 0.993. This indicated that the quality consistency of the fermented Guava leaves was better than that of the natural Guava leaves. High-performance liquid chromatography fingerprinting and chemometric analysis are promising methods for evaluating the degree of fermentation of Guava leaves based on quality consistency, which could be used in assessing flavonoid compounds for the production of fermented Guava leaves.

  11. Medicinal cannabis: Principal cannabinoids concentration and their stability evaluated by a high performance liquid chromatography coupled to diode array and quadrupole time of flight mass spectrometry method.

    Science.gov (United States)

    Citti, Cinzia; Ciccarella, Giuseppe; Braghiroli, Daniela; Parenti, Carlo; Vandelli, Maria Angela; Cannazza, Giuseppe

    2016-09-05

    In the last few years, there has been a boost in the use of cannabis-based extracts for medicinal purposes, although their preparation procedure has not been standardized but rather decided by the individual pharmacists. The present work describes the development of a simple and rapid high performance liquid chromatography method with UV detection (HPLC-UV) for the qualitative and quantitative determination of the principal cannabinoids (CBD-A, CBD, CBN, THC and THC-A) that could be applied to all cannabis-based medicinal extracts (CMEs) and easily performed by a pharmacist. In order to evaluate the identity and purity of the analytes, a high-resolution mass spectrometry (HPLC-ESI-QTOF) analysis was also carried out. Full method validation has been performed in terms of specificity, selectivity, linearity, recovery, dilution integrity and thermal stability. Moreover, the influence of the solvent (ethyl alcohol and olive oil) was evaluated on cannabinoids degradation rate. An alternative extraction method has then been proposed in order to preserve cannabis monoterpene component in final CMEs.

  12. Minimum Hamiltonian ascent trajectory evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of shuttle and shuttle derived vehicles) users manual

    Science.gov (United States)

    Lyons, J. T.; Borchers, William R.

    1993-01-01

    Documentation for the User Interface Program for the Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) is provided. The User Interface Program is a separate software package designed to ease the user input requirements when using the MASTRE Trajectory Program. This document supplements documentation on the MASTRE Program that consists of the MASTRE Engineering Manual and the MASTRE Programmers Guide. The User Interface Program provides a series of menus and tables using the VAX Screen Management Guideline (SMG) software. These menus and tables allow the user to modify the MASTRE Program input without the need for learning the various program dependent mnemonics. In addition, the User Interface Program allows the user to modify and/or review additional input Namelist and data files, to build and review command files, to formulate and calculate mass properties related data, and to have a plotting capability.

  13. Evaluation of Four Fingerprint Development Methods for Touch Chemistry Using Matrix-Assisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry(.).

    Science.gov (United States)

    Kaplan-Sandquist, Kimberly A; LeBeau, Marc A; Miller, Mark L

    2015-05-01

    Four preparation techniques for MALDI/TOF mass spectrometry were compared to determine the ability to gather intelligence for investigations through the chemical analysis of latent fingerprints, defined as "touch chemistry." Compatible fingerprint development processes used for identification along with new techniques are necessary to evaluate touch chemistry. Ten volunteers deposited fingerprints from solvent residues containing drugs and explosives onto microscope slides. The developers included (A) fingerprint powder, (B) MALDI matrix, (C) fingerprint powder and lifting, and (D) cyanoacrylate fuming with fingerprint powder. Qualitative identification was based on ion images and spectra. The highest average detection rates (88%) were found using methods A and B. Methods C (52%) or D (18%) had limited success. Results demonstrate the importance of imaging coupled to extracted mass spectral data in detecting analytes in deposited fingerprints. Overall, the results suggest continued development of touch chemistry applications could prove useful for gathering intelligence and forensically relevant information.

  14. X-31A Tactical Utility Flight Testing

    Science.gov (United States)

    Friehmelt, Holger; Guetter, Richard; Kim, Quirin

    1997-01-01

    The two X-31A were jointly built by Daimler-Benz Aerospace AG and Rockwell International. These German-American experimental aircraft were designed to explore the new realm of flight far beyond stall by employing advanced technologies like thrust vectoring and sophisticated flight control systems. The X-31A aircraft is equipped with a thrust vectoring system consisting of three aft mounted paddles to deflect the thrust vector in both pitch and yaw axes, thus providing the X-31A in this 'Enhanced Fighter Maneuverability program with an agility and maneuverability never seen before. The tactical utility of the X-31A using post stall technologies has been revealed in an extensive flight test campaign against various current state-of-the-art fighter aircraft in a close-in combat arena. The test philosophy included both simulation and flight test. The tremendous tactical advantage of the X-31A during the tactical utility evaluation flight test phase was accompanied by a deepened insight into post stall tactics its typical maneuvers, impacts on pilot-aircraft interfaces and requirements for future weapons to both engineers and the military community. Some selected aspects of the tactical utility of the X-31A using post stall technologies unveiled by the International Test Organization are presented here.

  15. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the newer exercise

  16. Heart rate and performance during combat missions in a flight simulator.

    Science.gov (United States)

    Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K

    2007-04-01

    The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.

  17. Dynamic flight stability of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2008-01-01

    The longitudinal dynamic flight stability of a bumblebee in forward flight is studied.The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion.The primary findings are as the following.The forward flight of the bumblebee is not dynamically stable due to the existence of one(or two)unstable or approximately neutrally stable natural modes of motion.At hovering to medium flight speed[flight speed ue=(0-3.5)m s-1;advance ratio J=0-0.44],the flight is weakly unstable or approximately neutrally stable;at high speed(ue=4.5 m s-1;J=0.57),the flight becomes strongly unstable(initial disturbance double its value in only 3.5 wingbeats).

  18. Residual Stress Measurements After Proof and Flight: ETP-0403

    Science.gov (United States)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  19. Active fragments-guided drug discovery and design of selective tropane alkaloids using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry coupled with virtual calculation and biological evaluation.

    Science.gov (United States)

    Zhou, Mengge; Ma, Xiaoyao; Sun, Jixue; Ding, Guoyu; Cui, Qingxin; Miao, Yan; Hou, Yuanyuan; Jiang, Min; Bai, Gang

    2017-02-01

    Tropane alkaloids (TAs), rich in the plant of Physochlaina infundibularis Kuang, which is named Huashanshen (HSS) in China, showed good effects on types of spasms. However, no data were collected to explore the relationship between the specificity for muscarinic receptor subtypes and the structures of these TAs. To address this issue, an extracted ion chromatogram (EIC) strategy using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) based on the fragmentation behavior of the TA standards was established to rapidly capture the varied TAs from HSS. Based on the provided structural information of diagnostic ions or neutral loss, 29 TAs were efficiently profiled, especially some trace ingredients. In additional, via virtual validation combined with molecular dynamic simulation, approximately a dozen alkaloids were found with high selectivity for muscarinic receptors. In additional, N-acetyl convolicine was chosen for selectivity evaluation of M2 or M3 receptors through the use of a dual-luciferase reporter assay system at the cellular level and an ACh-induced constricted strip test in vitro. After summarizing the active fragments and the structure-activity relationship (SAR) information, a new modified TA that takes advantage of both the high affinity and high selectivity for M3 receptors was proposed and evaluated successfully. This study provided an effective approach for the discovery and design of natural products based on highly selective drugs by UPLC-Q/TOF-MS coupled with virtual calculation and biological evaluation. Graphical Abstract Active fragments-guided strategy for selective inhibitors from HSS.

  20. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  1. Ordos Takes Flight

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ China's vast hinterland has long conjured up images of rugged mountains and countrysides dotted by villages all but untouched by the hands of time. But after a recent one-hour flight west from Beijing,Anna Chennault,Chair of the Council for International Cooperation (CIC),a Washington,D.C.-based non-profit organization that helps promote development in China,found something altogether different-a city called Ordos.

  2. Spontaneous Flapping Flight

    Science.gov (United States)

    Vandenberghe, Nicolas; Zhang, Jun; Childress, Stephen

    2004-11-01

    As shown in an earlier work [Vandenberghe, et. al. JFM, Vol 506, 147, 2004], a vertically flapping wing can spontaneously move horizontally as a result of symmetry breaking. In the current experimental study, we investigate the dependence of resultant velocity on flapping amplitude. We also describe the forward thrust generation and how the system dynamically selects a Strouhal number by balancing fluid and body forces. We further compare our model system with examples of biological locomotion, such as bird flight and fish swimming.

  3. Simulations of Levy flights

    Energy Technology Data Exchange (ETDEWEB)

    Pantaleo, E; Pascazio, S [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Facchi, P [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy)], E-mail: ester.pantaleo@ba.infn.it

    2009-07-15

    Levy flights, also known as {alpha}-stable Levy processes or heavy-tailed statistics, are becoming a commonly used tool in optics. Nonetheless, the different parametrizations and the absence of any analytic expression for the distribution functions (apart from some exceptions) makes it difficult to efficiently simulate such processes. We review and compare three algorithms for the generation of sequences of symmetric stable Levy random variables.

  4. Fused Reality for Enhanced Flight Test Capabilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests even when considering the fidelity and effectiveness of modern...

  5. Shuttle Abort Flight Management (SAFM) - Application Overview

    Science.gov (United States)

    Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike

    2002-01-01

    One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic

  6. Correlating Computed and Flight Instructor Assessments of Straight-In Landing Approaches by Novice Pilots on a Flight Simulator

    Science.gov (United States)

    Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat

    2005-01-01

    The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.

  7. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. II: Classification of Canadian and Czech ice wines using statistical evaluation of the data.

    Science.gov (United States)

    Setkova, Lucie; Risticevic, Sanja; Pawliszyn, Janusz

    2007-04-20

    The previously developed and optimized headspace solid-phase microextraction (HS-SPME)-GC-time-of-flight (TOF) MS analytical method for the determination of compounds with a wide range of polarities and volatilities was successfully used in this study to characterize and classify a large set of ice wines according to their origin, grape variety and oak or stainless steel fermentation/ageing conditions, based on a statistical evaluation (principal component analysis (PCA)) of the measured data. More than 130 ice wine samples collected directly from Canadian and Czech wine producers were analyzed in this study. The SPME step was beneficially carried out utilizing the new-generation super elastic divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50 microm/30 microm fiber assembly. One fiber was used for the whole sequence of ice wine samples, control and blank experiments, which consisted of more than 600 individual extraction/injection cycles. Utilizing the high-speed TOF analyzer, full spectral information within the range of 35-450 u was collected for the entire GC run (as short as 4.5 min) without compromising in the detection sensitivity, as compared to other scanning mass analyzers operated in selected ion monitoring or MS(n) mode to achieve similar sensitivity. The identification of analytes was performed by a combination of the linear temperature-programmed retention index (LTPRI) approach with the comparison of the obtained spectra with three libraries included in the ChromaTOF software. A total of 201 peaks were tentatively assigned as ice wine aroma components and 58 of those compounds were evaluated in all of the examined samples.

  8. Evaluation of the Bruker Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) System for the Identification of Clinically Important Dermatophyte Species.

    Science.gov (United States)

    Karabıçak, Nilgün; Karatuna, Onur; İlkit, Macit; Akyar, Işın

    2015-10-01

    Dermatophytes can invade the stratum corneum of the skin and other keratinized tissues and are responsible for a broad diversity of diseases of skin, nails and hair. Although the standard identification of dermatophytoses depends on macroscopic and microscopic characterization of the colonies grown on special media, there are a number of limitations owing to intraspecies morphological variability, atypical morphology or interspecies morphological similarity which entails improvement in the identification methods. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a novel method which proved to be effective for rapid and reliable identification of dermatophytes grown in cultures when compared to conventional methods. We evaluated the performance of Bruker MALDI-TOF MS System (Bruker Daltonics, Germany) for identification of clinically relevant dermatophytes. In order to increase the identification capacity of the system, we created supplemental spectral database entries using ten reference dermatophyte strains (ten species in two genera). The utility of the generated database was then challenged using a total of 126 dermatophytes (115 clinical isolates and 11 additional reference strains). The results were evaluated by both manufacturer-recommended and lowered cutoff scores. MALDI-TOF MS provided correct identification in 122 (96.8 %) and 113 (89.7 %) of the isolates with the lowered scores and using the supplemented database, respectively, versus 65 (51.6 %) and 17 (13.5 %) correct identifications obtained by the unmodified database and recommended scores at the genus and species levels, respectively. Our results support the potential utility of MALDI-TOF MS as a routine tool for accurate and reliable identification of dermatophytes.

  9. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  10. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  11. Coalition Warfare Program Tactile Situation Awareness System for Aviation Applications: Simulator Flight Test

    Science.gov (United States)

    2015-12-01

    USAARL Report No. 2016-07 Coalition Warfare Program Tactile Situation Awareness System for Aviation Applications: Simulator Flight Test By...pilot evaluation of The Tactile Situation Awareness System (TSAS) during simulated flight . The objective was to evaluate the ability of TSAS to improve...summarizes recent findings obtained during a simulated helicopter flight employing TSAS. The objective was to evaluate the ability of TSAS to improve a

  12. Flight test evaluations of the head-up display and the inertial reference unit of the NAL QSTOL experimental aircraft (Aska) by the NAL B-65 Queen Air research aircraft. Teisoon STOL jikkenkiyo HUD (head up display) oyobi IRU (kansei kijun sochi) no hiko hyoka shiken

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    A head-up display (HUD) and an inertial reference unit (IRU) were developed by the National Aerospace Laboratory (NAL) for the NAL QSTOL (Quiet Short Take Off and Landing) experimental air craft (Aska). In order to evaluate both the performance of the HUD which provides the pilot with landing aid information, and the accuracy and characteristics of the IRU to be used for flight control and measurements, flight tests were conducted on board the B-65 Queen Air research aircraft. The results indicated that the characteristics of the HUD as an approach and landing aid system were good, and also that the IRU was useful as a sensor for flight control and measurements. Furthermore, it was shown that fundamental methods of evaluating the HUD characteristics and the IRU accuracy in actual flight were established for application of the HUD and the IRU to a new aircraft in the future. In addition, possibility of a new technology with landing aid information by means of the HUD was made clear. 21 refs., 48 figs., 14 tabs.

  13. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  14. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  15. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  16. SSI-ARC Flight Test 3 Data Review

    Science.gov (United States)

    Gong, Chester; Wu, Minghong G.

    2015-01-01

    The "Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS)" Project conducted flight test program, referred to as Flight Test 3, at Armstrong Flight Research Center from June - August 2015. Four flight test days were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as Autoresolver. The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Resulting flight test data and analysis results will be used to evaluate the DAA system performance (e.g., trajectory prediction accuracy, threat detection) and to add fidelity to simulation models used to inform Minimum Operating Performance Standards (MOPS) for integrating UAS into routine NAS operations.

  17. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    Science.gov (United States)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  18. Ares I-X Launch Abort System, Crew Module, and Upper Stage Simulator Vibroacoustic Flight Data Evaluation, Comparison to Predictions, and Recommendations for Adjustments to Prediction Methodology and Assumptions

    Science.gov (United States)

    Smith, Andrew; Harrison, Phil

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the

  19. Flight telerobotic servicer control from the Orbiter

    Science.gov (United States)

    Ward, Texas M.; Harlan, Don L.

    1989-01-01

    The research and work conducted on the development of a testbed for a display and control panel for the Flight Telerobotic Servicer (FTS) are presented. Research was conducted on both software and hardware needed to control the FTS. A breadboard was constructed and placed into a mockup of the aft station of the Orbiter spacecraft. This breadboard concept was then evaluated using a computer graphics representation of the Tinman FTS. Extensive research was conducted on the software requirements and implementation. The hardware selected for the breadboard was 'flight like' and in some cases fit and function evaluated. The breadboard team studied some of the concepts without pursuing in depth their impact on the Orbiter or other missions. Assumptions are made concerning payload integration.

  20. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a) Flight simulators and flight training devices approved by the Administrator may be used in training...

  1. New Theory of Flight

    Science.gov (United States)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  2. In-Flight System Identification

    Science.gov (United States)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  3. F-16XL ship #1 (#849) with Digital Flight Control System (DFCS) in flight over desert

    Science.gov (United States)

    1997-01-01

    An image of the F-16XL #1 during its functional flight check of the Digital Flight Control System (DFCS) on December 16, 1997. The mission was flown by NASA research pilot Dana Purifoy, and lasted 1 hour and 25 minutes. The tests included pilot familiarly, functional check, and handling qualities evaluation maneuvers to a speed of Mach 0.6 and 300 knots. Purifoy completed all the briefed data points with no problems, and reported that the DFCS handled as well, if not better than the analog computer system that it replaced.

  4. Airplane tracking documents the fastest flight speeds recorded for bats.

    Science.gov (United States)

    McCracken, Gary F; Safi, Kamran; Kunz, Thomas H; Dechmann, Dina K N; Swartz, Sharon M; Wikelski, Martin

    2016-11-01

    The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats (Tadarida brasiliensis) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.

  5. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  6. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    Science.gov (United States)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  7. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  8. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  9. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  10. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  11. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  12. X-1 in flight

    Science.gov (United States)

    1947-01-01

    The Bell Aircraft Corporation X-1-1 (#46-062) in flight. The shock wave pattern in the exhaust plume is visible. The X-1 series aircraft were air-launched from a modified Boeing B-29 or a B-50 Superfortress bombers. The X-1-1 was painted a bright orange by Bell Aircraft. It was thought that the aircraft would be more visable to those doing the tracking during a flight. When NACA received the airplanes they were painted white, which was an easier color to find in the skies over Muroc Air Field in California. This particular craft was nicknamed 'Glamorous Glennis' by Chuck Yeager in honor of his wife, and is now on permanent display in the Smithsonian Institution's National Air and Space Museum in Washington, DC. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all

  13. Capital flight and political risk

    NARCIS (Netherlands)

    Lensink, R; Hermes, N; Murinde, [No Value

    This paper provides the first serious attempt to examine the relationship between political risk and capital flight for a large set of developing countries. The outcomes of the analysis show that in most cases political risk variables do have a statistically robust relationship to capital flight

  14. Capital flight and political risk

    NARCIS (Netherlands)

    Lensink, R; Hermes, N; Murinde, [No Value

    2000-01-01

    This paper provides the first serious attempt to examine the relationship between political risk and capital flight for a large set of developing countries. The outcomes of the analysis show that in most cases political risk variables do have a statistically robust relationship to capital flight onc

  15. 49 CFR 1552.3 - Flight training.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Flight training. 1552.3 Section 1552.3..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other Designated Individuals § 1552.3 Flight training. This section describes the procedures a flight school...

  16. Long-term space flights - personal impressions

    Science.gov (United States)

    Polyakov, V. V.

    During a final 4-month stage of a 1-year space flight of cosmonauts Titov and Manarov, a physician, Valery Polyakov was included on a crew for the purpose of evaluating their health, correcting physical status to prepare for the spacecraft reentry and landing operations. The complex program of scientific investigations and experiments performed by the physician included an evaluation of adaptation reactions of the human body at different stages of space mission using clinicophysiological and biochemical methods; testing of alternative regimes of exercise and new countermeasures to prevent an unfavourable effect of long-term weightlessness.

  17. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  18. 高性能战斗机大强度飞行对飞行员生理指标及飞行劳动负荷主观评价的影响%Effects of high intensity flight on physiological indices and subjective evaluation of high performance fighter pilots

    Institute of Scientific and Technical Information of China (English)

    郭华; 周亚军; 郭壁砖; 景百胜; 李全安

    2011-01-01

    Objective To investigate the effects of high intensity flight on physiological indices and subjective evaluation of flight work load of high performance fighter pilot.Methods Five healthy male military pilots executed 22 high intensity flights in one day.Electrocardiograph was recorded during flight,and heart rate and heart rate variability (HRV) were analyzed.Flight work load and subjective fatigue feeling were evaluated by pilots themselves.Results During high intensity flight,heart rate and HRV showed an apparent circadian rhythm.Heart rate,low frequency normalized unit (LFnu) and ratio of low and high frequency (LF/HF)in night time were lower than those in day time,but high frequency normalized unit (HFnu).There was no obvious subjective fatigue feeling commented by pilots.Conclusions High intensity flight of high performance fighter pilots has some effects on physiological indices,but no flight fatigue so far.Rational disposition of flight and adequate aeromedical support could be beneficial to pilot's recovery and the alleviation of flight fatigue.%目的 观察高性能战斗机大强度飞行对飞行员的生理指标及飞行劳动负荷主观评价的影响.方法 5名健康男性高性能战斗机飞行员在1个飞行日内共进行22架次的大强度飞行.记录飞行过程中的心电信号,分析心率及心率变异性(heart rate variability,HRV);飞行后进行飞行劳动负荷和疲劳程度主观评价.结果 飞行员大强度飞行时,随着飞行负荷的降低,心率和HRV频域及时域指标呈现一定的规律性变化.心率在夜间较日间低;夜间校正高频功率(high frequency normalized unit,HFnu)高于日间,校正低频功率(low frequency normalized unit,LFnu)及低频高频比值(LF/HF)则低于日间.飞行员飞行劳动负荷及疲劳程度主观评价分值均较低,没有明显的主观疲劳感.结论 高性能战斗机大强度飞行对飞行员生理指标有一定影响,但尚未引起飞行疲劳.合理的

  19. A comparison of 4D time-resolved MRA with keyhole and 3D time-of-flight MRA at 3.0 T for the evaluation of cerebral aneurysms

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-07-01

    Full Text Available Abstract Background A subarachnoid hemorrhage (SAH due to the rupture of a cerebral aneurysm (CA is a devastating event associated with high rates of mortality. Magnetic resonance angiography (MRA, as a noninvasive technique, is typically used initially. The object of our study is to evaluate the feasibility of 4D time-resolved MRA with keyhole (4D-TRAK for the diagnostic accuracy and reliability of the detection and characterization of cerebral aneurysms (CAs, with a comparison of 3D time-of-flight MRA (3D-TOF-MRA by using DSA as a reference. Methods 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE and CE timing robust angiography (CENTRA k-space sampling techniques at a contrast dose of 10 ml at 3 T. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. Results The overall image quality of 4D-TRAK with a contrast dose of 10 ml was in the diagnostic range but still cannot be compared with that of 3D-TOF-MRA. In 52 patients with suspected CAs, fifty-eight CAs were confirmed on 3D-DSA finally. Fifty-one (with 2 false-positives and 9 false-negatives and 58 (with 1 false-positive and 1 false-negative CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31%, 93.33%, 85.71% and 98.08%, 100%, 85.71%, respectively, and 74.07%, 75.00%, 66.67% and 96.30%, 95.83%, 100% on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter Conclusion 4D-TRAK at a lower contrast dose of 10 ml with a combination of SENSE and CENTRA at 3 T could provide similar diagnostic accuracy rate for CAs with maximal diameter ≥ 3 mm

  20. The flight data monitoring method for the flight simulator

    Directory of Open Access Journals (Sweden)

    I.П. Сердюк

    2005-03-01

    Full Text Available  Submitted the monitoring of the flight data method  for a flight simulator, which is based on the analysis of probability density of distribution characteristics of the transport plane crew activity in tasks of the Capitan minimum  confirming at meteominimum that corresponding to 1-st and to 2-nd  ICAO  categories on a flight simulator in conditions of small volume of the experimental data. Complexitie degree of an density function estimation, i.e. number of the decompose members, depending on volume of sample and select with the help of a risk structural minimization method. 

  1. NASA test flights with increased flight stress indices

    Science.gov (United States)

    Smith, I. S., Jr.

    1991-01-01

    This paper presents the objectives, results, and conclusions stemming from a series of six test flights conducted for the National Aeronautics and Space Administration (NASA) by the National Scientific Balloon Facility (NSBF). Results from the test flights indicate that: (1) the current two U.S. balloon films are capable of being flown at significantly increased flight stress index values; (2) payload weights less than the design minimum payload can be reliably flown without fear of structural failure due to increased circumferential stress; and (3) large and rapid decreases in payload weight can be tolerated by current balloons without structural failure.

  2. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator for the airplane rating. If an applicant uses a flight simulator for training or...

  3. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators, flight training devices..., Aircraft, and Facilities Requirements § 141.41 Flight simulators, flight training devices, and training... that its flight simulators, flight training devices, training aids, and equipment meet the following...

  4. 14 CFR 142.59 - Flight simulators and flight training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or holder of, a training center certificate must show that each flight simulator and flight training device...

  5. The mechanics and behavior of cliff swallows during tandem flights.

    Science.gov (United States)

    Shelton, Ryan M; Jackson, Brandon E; Hedrick, Tyson L

    2014-08-01

    Cliff swallows (Petrochelidon pyrrhonota) are highly maneuverable social birds that often forage and fly in large open spaces. Here we used multi-camera videography to measure the three-dimensional kinematics of their natural flight maneuvers in the field. Specifically, we collected data on tandem flights, defined as two birds maneuvering together. These data permit us to evaluate several hypotheses on the high-speed maneuvering flight performance of birds. We found that high-speed turns are roll-based, but that the magnitude of the centripetal force created in typical maneuvers varied only slightly with flight speed, typically reaching a peak of ~2 body weights. Turning maneuvers typically involved active flapping rather than gliding. In tandem flights the following bird copied the flight path and wingbeat frequency (~12.3 Hz) of the lead bird while maintaining position slightly above the leader. The lead bird turned in a direction away from the lateral position of the following bird 65% of the time on average. Tandem flights vary widely in instantaneous speed (1.0 to 15.6 m s(-1)) and duration (0.72 to 4.71 s), and no single tracking strategy appeared to explain the course taken by the following bird.

  6. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS).

    Science.gov (United States)

    González-Mariño, Iria; Quintana, José Benito; Rodríguez, Isaac; Cela, Rafael

    2011-12-15

    An assessment of the sewage occurrence and biodegradability of seven parabens and three halogenated derivatives of methyl paraben (MeP) is presented. Several wastewater samples were collected at three different wastewater treatment plants (WWTPs) during April and May 2010, concentrated by solid-phase extraction (SPE) and analysed by liquid chromatography-electrospray-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS). The performance of the QTOF system proved to be comparable to triple-quadrupole instruments in terms of quantitative capabilities, with good linearity (R(2) > 0.99 in the 5-500 ng mL(-1) range), repeatability (RSD paraben (n-PrP) were the most frequently detected and the most abundant analytes in raw wastewater (0.3-10 μg L(-1)), in accordance with the data displayed in the bibliography and reflecting their wider use in cosmetic formulations. Samples were also evaluated in search for potential halogenated by-products of parabens, formed as a result of their reaction with residual chlorine contained in tap water. Monochloro- and dichloro-methyl paraben (ClMeP and Cl(2)MeP) were found and quantified in raw wastewater at levels between 0.01 and 0.1 μg L(-1). Halogenated derivatives of n-PrP could not be quantified due to the lack of standards; nevertheless, the monochlorinated species (ClPrP) was identified in several samples from its accurate precursor and product ions mass/charge ratios (m/z). Removal efficiencies of parabens and MeP chlorinated by-products in WWTPs exceeded 90%, with the lowest percentages corresponding to the latter species. This trend was confirmed by an activated sludge biodegradation batch test, where non-halogenated parabens had half-lives lower than 4 days, whereas halogenated derivatives of MeP turned out to be more persistent, with up to 10 days of half-life in the case of dihalogenated derivatives. A further stability test performed with raw wastewater also showed that parabens degrade rapidly in real sewage, with

  7. Space Flight Immunodeficiency

    Science.gov (United States)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  8. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design)

    Science.gov (United States)

    Biezad, Daniel

    1997-01-01

    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  9. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  10. Enclosure enhancement of flight performance

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  11. Bumblebee flight in heavy turbulence

    CERN Document Server

    Engels, T; Schneider, K; Lehmann, F -O; Sesterhenn, J

    2016-01-01

    High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.

  12. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi

    2014-08-19

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  13. Korean Air Excellence in Flight

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Korean Air with a fleet of 119 aircraft, is one of the world's top 20 airlines, and oper-ates almost 400 flights everyday to 90 cities in 33 countries. The airline has about 50 flights per week between the US and Asia from nine US gateways: New York, Los Angeles, Washington,Chicago, Dallas, San Francisco, Atlanta, Anchorage and Honolulu.The carrier is a founding member of SkyTeam, the global airline alliance partnering AeroMexico, Air France, Alitalia, CSA Czech Airlines, Continental Airlines, Delta Air Lines, KLM and Northwest Airlines to provide customers with extensive worldwide destina-tions, flights and services.

  14. Iced Aircraft Flight Data for Flight Simulator Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  15. Time series analysis methods and applications for flight data

    CERN Document Server

    Zhang, Jianye

    2017-01-01

    This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

  16. Pilot control through the TAFCOS automatic flight control system

    Science.gov (United States)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  17. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  18. New Suns in the Cosmos. IV. The Multifractal Nature of Stellar Magnetic Activity in Kepler Cool Stars

    Science.gov (United States)

    de Freitas, D. B.; Nepomuceno, M. M. F.; Gomes de Souza, M.; Leão, I. C.; Das Chagas, M. L.; Costa, A. D.; Canto Martins, B. L.; De Medeiros, J. R.

    2017-07-01

    In the present study, we investigate the multifractal nature of a long-cadence time series observed by the Kepler mission for a sample of 34 M dwarf stars and the Sun in its active phase. Using the Multifractal Detrending Moving Average algorithm, which enables the detection of multifractality in nonstationary time series, we define a set of multifractal indices based on the multifractal spectrum profile as a measure of the level of stellar magnetic activity. This set of indices is given by the (A, {{Δ }}α , C, H)-quartet, where A, {{Δ }}α , and C are related to geometric features from the multifractal spectrum and the global Hurst exponent H describes the global structure and memorability of time series dynamics. As a test, we measure these indices and compare them with a magnetic index defined as S ph and verify the degree of correlation among them. First, we apply the Poincaré plot method and find a strong correlation between the index and one of the descriptors that emerges from this method. As a result, we find that this index is strongly correlated with long-term features of the signal. From the multifractal perspective, the index is also strongly linked to the geometric properties of the multifractal spectrum except for the H index. Furthermore, our results emphasize that the rotation period of stars is scaled by the H index, which is consistent with Skumanich’s relationship. Finally, our approach suggests that the H index may be related to the evolution of stellar angular momentum and a star’s magnetic properties.

  19. Flight Data For Tail 687

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  20. NASA_Airborne_Lidar_Flights

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon beginning in July 1982 and continuing to January 1984. Data in ASCII...

  1. Flight Data For Tail 653

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  2. Flight Data For Tail 658

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  3. Flight Data For Tail 685

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  4. Flight Data For Tail 677

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  5. Flight Data For Tail 676

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  6. Flight Data For Tail 666

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  7. Flight Data For Tail 682

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  8. Flight Data For Tail 664

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  9. Flight Data For Tail 675

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  10. Flight Data For Tail 654

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  11. Flight Data For Tail 669

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  12. Flight Data For Tail 671

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  13. Flight Data For Tail 660

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  14. Flight Data For Tail 661

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  15. Flight Data For Tail 674

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  16. Flight Data For Tail 684

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  17. Flight tracks, Northern California TRACON

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains the records of all the flights in the Northern California TRACON. The data was provided by the aircraft noise abatement office...

  18. Flight Data For Tail 657

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  19. Flight Data For Tail 681

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  20. Flight Data For Tail 672

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  1. Flight Data For Tail 662

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  2. Flight Data For Tail 665

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  3. Flight Data For Tail 678

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  4. Flight Data For Tail 686

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  5. Flight Data For Tail 652

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  6. Flight Data For Tail 655

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  7. Dynamic stall in flapping flight

    Science.gov (United States)

    Hubel, Tatjana; Tropea, Cameron

    2007-11-01

    We report on experiments concerning unsteady effects in flapping flight, conducted in the low-speed wind tunnel of the TU Darmstadt using a mechanical flapping-wing model. Particle Image Velocimetry (PIV) was used for qualitative and quantitative analysis parallel and perpendicular to the flow field. A sensitivity analysis of the main flight parameters has been performed, with specific attention to the flight envelope of 26,500 dynamic stall effect could be verified by the direct force measurement as well as the flow visualization. The observation of the leading-edge vortex for typical bird flight reduced frequencies shows that this flow cannot be approximated as being quasi- steady. This in effect proves that adaptive wings are necessary to fully control these unsteady flow features, such as dynamic stall.

  8. Flight Data For Tail 680

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  9. Flight Data For Tail 659

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  10. Flight Data For Tail 667

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  11. Flight Data For Tail 673

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  12. Flight Data For Tail 668

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  13. Flight Data For Tail 670

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  14. Flight Data For Tail 663

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  15. Flight Data For Tail 656

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  16. Flight Data For Tail 683

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  17. Flight Schedule Recovery under Uncertain Airport Capacity

    Institute of Scientific and Technical Information of China (English)

    Zhu Bo; Zhu Jinfu

    2016-01-01

    Airlines adj ust their flight schedules to satisfy more stringent airport capacity constraints caused by in-clement weather or other unexpected disruptions.The problem will be more important and complicated if uncertain disruptions occur in hub airports.A two-stage stochastic programming model was established to deal with the real-time flight schedule recovery and passenger re-accommodation problem.The first-stage model represents the flight re-timing and re-fleeting decision in current time period when capacity information is deterministic,while the sec-ond-stage recourse model evaluates the passenger delay given the first-stage solutions when one future scenario is realized.Aiming at the large size of the problem and requirement for quick response,an algorithmic framework combining the sample average approximation and heuristic method was proposed.The computational results indi-cated of that the proposed method could obtain solutions with around 5% optimal gaps,and the computing time was linearly positive to the sample size.

  18. АSSESSMENT AND FORECASTING OF FLIGHT SAFETY LEVEL OF AIRLINE

    Directory of Open Access Journals (Sweden)

    E. S. Prozorov

    2015-01-01

    Full Text Available The article presents methods based on probability theory and mathematical statistics for solving a number of basic problems: formation and evaluation of the current flight safety level; forecasting the level of flight safety; ranking the objects (planes, pilots in terms of flight safety; evaluation of the presence (or absence of control actions arising in the context of the organization of corporate safety management system. At the same time as the main source of information are considered forward-looking events received from flight data.

  19. Sensory Coordination of Insect Flight

    Science.gov (United States)

    2010-10-22

    migratory flight in the neotropical moth Urania fulgens. Biology Letters, 6, 406–409. Sane S.P.* and McHenry M.J. (2009) The biomechanics of sensory...organs. Integrative and Comparative Biology , 49(6):i8-i23. Zhao, L., Huang, Q., Deng, X. and Sane, S.P. (2010). Aerodynamic effects of flexibility...and behavioral insights into insect flight Invited Speaker, International Workshop on Nocturnal Pollination , March 24-27, 2009 Indian Institute of

  20. Mission Planning Systems for Tactical Aircraft (Pre-Flight and In- Flight) (Systemes de Planification des Missions pour Avions Tactiques (Avant Vol et en Vol)

    Science.gov (United States)

    1991-05-01

    specifically to meet this requiremnenL 4.2.2. Evaluation of Current Procedures. leelofinterpeability i tues aciebed oreq if an effective Ergonomi , The...include 6.2.6. In-Flight Ergonomi Isue routes, timings, IP, fuel load etc. If a degree of re planning is to be carried out in flight. additional 6-26.1

  1. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  2. Air traffic management evaluation tool

    Science.gov (United States)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  3. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    EVADES output. As mentioned above, GEnEVADOSE makes extensive use of ROOT version 6, the data analysis framework developed at the European Organization for Nuclear Research (CERN), and the code is written to the C++11 standard (as are the other projects). My second project is the Automated Mission Reference Exposure Utility (AMREU).Unlike GEnEVADOSE, AMREU is a combination of three frameworks written in both Python and C++, also making use of ROOT (and PyROOT). Run as a combination of daily and weekly cron jobs, these macros query the SRAG database system to determine the active ISS missions, and query minute-by-minute radiation dose information from ISS-TEPC (Tissue Equivalent Proportional Counter), one of the radiation detectors onboard the ISS. Using this information, AMREU creates a corrected data set of daily radiation doses, addressing situations where TEPC may be offline or locked up by correcting doses for days with less than 95% live time (the total amount time the instrument acquires data) by averaging the past 7 days. As not all errors may be automatically detectable, AMREU also allows for manual corrections, checking an updated plaintext file each time it runs. With the corrected data, AMREU generates cumulative dose plots for each mission, and uses a Python script to generate a flight note file (.docx format) containing these plots, as well as information sections to be filled in and modified by the space weather environment officers with information specific to the week. AMREU is set up to run without requiring any user input, and it automatically archives old flight notes and information files for missions that are no longer active. My other projects involve cleaning up a large data set from the Charged Particle Directional Spectrometer (CPDS), joining together many different data sets in order to clean up information in SRAG SQL databases, and developing other automated utilities for displaying information on active solar regions, that may be used by the

  4. Budgerigar flight in a varying environment: flight at distinct speeds?

    Science.gov (United States)

    Schiffner, Ingo; Srinivasan, Mandyam V

    2016-06-01

    How do flying birds respond to changing environments? The behaviour of budgerigars, Melopsittacus undulatus, was filmed as they flew through a tapered tunnel. Unlike flying insects-which vary their speed progressively and continuously by holding constant the optic flow induced by the walls-the birds showed a tendency to fly at only two distinct, fixed speeds. They switched between a high speed in the wider section of the tunnel, and a low speed in the narrower section. The transition between the two speeds was abrupt, and anticipatory. The high speed was close to the energy-efficient, outdoor cruising speed for these birds, while the low speed was approximately half this value. This is the first observation of the existence of two distinct, preferred flight speeds in birds. A dual-speed flight strategy may be beneficial for birds that fly in varying environments, with the high speed set at an energy-efficient value for flight through open spaces, and the low speed suited to safe manoeuvring in a cluttered environment. The constancy of flight speed within each regime enables the distances of obstacles and landmarks to be directly calibrated in terms of optic flow, thus facilitating simple and efficient guidance of flight through changing environments.

  5. 14 CFR 27.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls....

  6. 14 CFR 61.56 - Flight review.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight review. 61.56 Section 61.56... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.56 Flight review. (a) Except as provided in paragraphs (b) and (f) of this section, a flight review consists of a minimum of 1 hour...

  7. 14 CFR 29.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls....

  8. 14 CFR 415.115 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety...

  9. 14 CFR 91.303 - Aerobatic flight.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of...

  10. 14 CFR 417.107 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... initiate the flight of a launch vehicle only if flight safety analysis performed under paragraph (f) of...) A launch operator may initiate the flight of a launch vehicle only if the risk associated with the... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 417.107 Section 417.107...

  11. Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS

    Directory of Open Access Journals (Sweden)

    Y. J. Li

    2013-02-01

    Full Text Available The chemical characteristics of organic aerosol (OA are still poorly constrained. Here we present observation results of the degree of oxygenation of OA based on high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS measurements made at a coastal site in Hong Kong from late April to the end of May in 2011. Two foggy periods and one hazy period were chosen for detailed analysis to compare the changes in the degree of oxygenation of OA due to different processes. The Extended Aerosol Inorganic Model (E-AIM predicted a fine particle liquid water content (LWCfp up to 85 μg m−3 during the foggy days. Particle concentration as measured by HR-ToF-AMS was up to 60 μg m−3 during the hazy days and up to 30 μg m−3 during the foggy days. The degree of oxygenation of OA, as indicated by several parameters including the fraction of m/z 44 in organic mass spectra (f44, the elemental ratio of oxygen to carbon (O : C, and the carbon oxidation state (OSc, was evaluated against the odd oxygen (Ox concentration, LWCfp, ionic strength (IS, and in-situ pH (pHis. Results suggest that the high concentration of OA (on average 11 μg m−3 and the high degree of oxygenation (f44 = 0.15, O : C = 0.51, and OSc = −0.31 during the hazy period were mainly due to gas-phase oxidation. During the foggy periods with low photochemical activities, the degree of oxygenation of OA was almost as high as that on the hazy days and significantly higher than that during non-foggy/non-hazy days. However, the OA evolved quite differently in the two foggy periods. The first foggy period in late April saw a larger LWCfp and a lower Ox concentration and the OA was made up of ~ 20% semi

  12. A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility

    Science.gov (United States)

    Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland

    2003-01-01

    Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.

  13. Flight Crew Survey Responses from the Interval Management (IM) Avionics Phase 2 Flight Test

    Science.gov (United States)

    Baxley, Brian T.; Swieringa, Kurt A.; Wilson, Sara R.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.

    2017-01-01

    The Interval Management (IM) Avionics Phase 2 flight test used three aircraft over a nineteen day period to operationally evaluate a prototype IM avionics. Quantitative data were collected on aircraft state data and IM spacing algorithm performance, and qualitative data were collected through end-of-scenario and end-of-day flight crew surveys. The majority of the IM operations met the performance goals established for spacing accuracy at the Achieve-by Point and the Planned Termination Point, however there were operations that did not meet goals for a variety of reasons. While the positive spacing accuracy results demonstrate the prototype IM avionics can contribute to the overall air traffic goal, critical issues were also identified that need to be addressed to enhance IM performance. The first category was those issues that impacted the conduct and results of the flight test, but are not part of the IM concept or procedures. These included the design of arrival and approach procedures was not ideal to support speed as the primary control mechanism, the ground-side of the Air Traffic Management Technology Demonstration (ATD-1) integrated concept of operations was not part of the flight test, and the high workload to manually enter the information required to conduct an IM operation. The second category was issues associated with the IM spacing algorithm or flight crew procedures. These issues include the high frequency of IM speed changes and reversals (accelerations), a mismatch between the deceleration rate used by the spacing algorithm and the actual aircraft performance, and some spacing error calculations were sensitive to normal operational variations in aircraft airspeed or altitude which triggered additional IM speed changes. Once the issues in these two categories are addressed, the future IM avionics should have considerable promise supporting the goals of improving system throughput and aircraft efficiency.

  14. Postnatal development under conditions of simulated weightlessness and space flight

    Science.gov (United States)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  15. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2

    Science.gov (United States)

    Benmoussa, A.; Dammasch, I. E.; Hochedez, J.-F.; Schühle, U.; Koller, S.; Stockman, Y.; Scholze, F.; Richter, M.; Kroth, U.; Laubis, C.; Dominique, M.; Kretzschmar, M.; Mekaoui, S.; Gissot, S.; Theissen, A.; Giordanengo, B.; Bolsee, D.; Hermans, C.; Gillotay, D.; Defise, J.-M.; Schmutz, W.

    2009-12-01

    Aims. LYRA, the Large Yield Radiometer, is a vacuum ultraviolet (VUV) solar radiometer, planned to be launched in November 2009 on the European Space Agency PROBA2, the Project for On-Board Autonomy spacecraft. Methods: The instrument was radiometrically calibrated in the radiometry laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the Berlin Electron Storage ring for SYnchroton radiation (BESSY II). The calibration was done using monochromatized synchrotron radiation at PTB's VUV and soft X-ray radiometry beamlines using reference detectors calibrated with the help of an electrical substitution radiometer as the primary detector standard. Results: A total relative uncertainty of the radiometric calibration of the LYRA instrument between 1% and 11% was achieved. LYRA will provide irradiance data of the Sun in four UV passbands and with high temporal resolution down to 10 ms. The present state of the LYRA pre-flight calibration is presented as well as the expected instrument performance.

  16. The mechanical power requirements of avian flight

    OpenAIRE

    Askew, G.N.; Ellerby, D.J

    2007-01-01

    A major goal of flight research has been to establish the relationship between the mechanical power requirements of flight and flight speed. This relationship is central to our understanding of the ecology and evolution of bird flight behaviour. Current approaches to determining flight power have relied on a variety of indirect measurements and led to a controversy over the shape of the power–speed relationship and a lack of quantitative agreement between the different techniques. We have use...

  17. Flight of the dragonflies and damselflies

    OpenAIRE

    Bomphrey, Richard J.; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-01-01

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are s...

  18. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  19. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Science.gov (United States)

    2010-01-01

    ... simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION... GROUND INSTRUCTORS General § 61.4 Qualification and approval of flight simulators and flight training devices. (a) Except as specified in paragraph (b) or (c) of this section, each flight simulator and flight...

  20. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight-free zones and flight corridors. 93... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in...

  1. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  2. 14 CFR 125.373 - Original flight release or amendment of flight release.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Original flight release or amendment of flight release. 125.373 Section 125.373 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Flight Release Rules § 125.373 Original flight release or amendment of flight release. (a) A...

  3. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL...

  4. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls,...

  5. Immune function during space flight

    Science.gov (United States)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  6. Stability in hovering ornithopter flight

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2008-03-01

    The quasi-steady aerodynamics model is coupled to a dynamic model of ornithopter flight. Previously, the combined model has been used to calculate forward flight trajectories, each a limit cycle in the vehicle's states. The limit cycle results from the periodic wing beat, producing a periodic force while on the cycle's trajectory. This was accomplished using a multiple shooting algorithm and numerical integration in MATLAB. An analysis of hover, a crucial element to vertical takeoff and landing in adverse conditions, follows. A method to calculate plausible wing flapping motions and control surface deflections for hover is developed, employing the above flight dynamics model. Once a hovering limit cycle trajectory is found, it can be linearized in discrete time and analyzed for stability (by calculating the trajectory's Floquet multipliers a type of discrete-time eigenvalue) are calculated. The dynamic mode shapes are discussed.

  7. In-flight simulators and fly-by-wirelight demonstrators a historical account of international aeronautical research

    CERN Document Server

    2017-01-01

    This book offers the first complete account of more than sixty years of international research on In-Flight Simulation and related development of electronic and electro-optic flight control system technologies (“Fly-by-Wire” and “Fly-by-Light”). They have provided a versatile and experimental procedure that is of particular importance for verification, optimization, and evaluation of flying qualities and flight safety of manned or unmanned aircraft systems. Extensive coverage is given in the book to both fundamental information related to flight testing and state-of-the-art advances in the design and implementation of electronic and electro-optic flight control systems, which have made In-Flight Simulation possible. Written by experts, the respective chapters clearly show the interdependence between various aeronautical disciplines and in-flight simulation methods. Taken together, they form a truly multidisciplinary book that addresses the needs of not just flight test engineers, but also other aerona...

  8. Panoramic night vision goggle flight test results

    Science.gov (United States)

    Franck, Douglas L.; Geiselman, Eric E.; Craig, Jeffrey L.

    2000-06-01

    The Panoramic Night Vision Goggle (PNVG) has begun operational test and evaluation with its 100-degree horizontal by 40-degree vertical field of view (FOV) on different aircraft and at different locations. Two configurations of the PNVG are being evaluated. The first configuration design (PNVG I) is very low in profile and fits underneath a visor. PNVG I can be retained by the pilot during ejection. This configuration is interchangeable with a day helmet mounted tracker and display through a standard universal connector. The second configuration (PNVG II) resembles the currently fielded 40-degree circular FOV Aviator Night Vision Imaging Systems (ANVIS) and is designed for non-ejection seat aircraft and ground applications. Pilots completed subjective questionnaires after each flight to compare the capability of the 100-degree horizontal by 40-degree vertical PNVG to the 40-degree circular ANVIS across different operational tasks. This paper discusses current findings and pilot feedback from the flight trials objectives of the next phase of the PNVG program are also discussed.

  9. Blowfly flight and optic flow II. Head movements during flight

    NARCIS (Netherlands)

    Van Hateren, JH; Schilstra, C

    The position and orientation of the thorax and head of flying blowflies (Calliphora vicina) were measured using small sensor coils mounted on the thorax and head. During flight, roll movements of the thorax are compensated by counter rolls of the head relative to the thorax, The yaw turns of the

  10. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  11. Blowfly flight and optic flow II. Head movements during flight

    NARCIS (Netherlands)

    Van Hateren, JH; Schilstra, C

    1999-01-01

    The position and orientation of the thorax and head of flying blowflies (Calliphora vicina) were measured using small sensor coils mounted on the thorax and head. During flight, roll movements of the thorax are compensated by counter rolls of the head relative to the thorax, The yaw turns of the tho

  12. Blowfly Flight and Optic Flow. II. Head Movements during Flight

    NARCIS (Netherlands)

    Hateren, J.H. van; Schilstra, C.

    1999-01-01

    The position and orientation of the thorax and head of flying blowflies (Calliphora vicina) were measured using small sensor coils mounted on the thorax and head. During flight, roll movements of the thorax are compensated by counter rolls of the head relative to the thorax. The yaw turns of the tho

  13. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  14. A comparative study of psychophysiological reactions during simulator and real flight

    NARCIS (Netherlands)

    Veltman, J.A.

    2002-01-01

    During selection tests in a flight simulator and a real aircraft, physiological workload measures were evaluated. The selection context guaranteed high motivation in the participant to exert additional effort during difficult flight tasks. The aim of the study was to obtain information about the sen

  15. A comparative study of psychophysiological reactions during simulator and real flight

    NARCIS (Netherlands)

    Veltman, J.A.

    2002-01-01

    During selection tests in a flight simulator and a real aircraft, physiological workload measures were evaluated. The selection context guaranteed high motivation in the participant to exert additional effort during difficult flight tasks. The aim of the study was to obtain information about the sen

  16. Through the eyes of a bird: modelling visually guided obstacle flight.

    Science.gov (United States)

    Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A

    2014-07-01

    Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.

  17. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  18. Laser Altimeter for Flight Simulator

    Science.gov (United States)

    Webster, L. D.

    1986-01-01

    Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.

  19. Bat Flight and Zoonotic Viruses

    Centers for Disease Control (CDC) Podcasts

    2014-05-30

    Reginald Tucker reads an abridged version of the EID perspective Bat Flight and Zoonotic Viruses.  Created: 5/30/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/2/2014.

  20. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  1. Centennial of Flight Educational Outreach

    Science.gov (United States)

    McCarthy, Marianne (Technical Monitor); Miller, Susan (Technical Monitor); Vanderpool, Celia

    2003-01-01

    The Centennial of Flight Education Outreach project worked with community partners to disseminate NASA Education materials and the Centennial of Flight CD-ROM as a vehicle to increase national awareness of NASA's Aerospace Education products, services and programs. The Azimuth Education Foundation and the Ninety Nines, an International Women Pilots Association, Inc. were chartered to conduct education outreach to the formal and informal educational community. The Dryden Education Office supported the development of a training and information distribution program that established a national group of prepared Centennial of Flight Ambassadors, with a mission of community education outreach. These Ambassadors are members of the Ninety Nines and through the Azimuth Foundation, they assisted the AECC on the national level to promote and disseminate Centennial of Flight and other educational products. Our objectives were to explore partnership outreach growth opportunities with consortium efforts between organizations. This project directly responded to the highlights of NASA s Implementation Plan for Education. It was structured to network, involve the community, and provide a solid link to active educators and current students with NASA education information. Licensed female pilots who live and work in local communities across the nation carried the link. This partnership has been extremely gratifying to all of those Ninety-Nines involved, and they eagerly look forward to further work opportunities.

  2. Low Gravity Flight Complement Data

    Science.gov (United States)

    Crews, H. C., Jr.

    1979-01-01

    The structural and mechanical design and performance requirements for a space transportation system carrier which will accommodate essentially self-supporting low-g MEA and MAUS facilities are described. Also included are the mission requirements for the materials processing facility and MEA/MAUS experiment flight implementation reguirements.

  3. STS-70 Post Flight Presentation

    Science.gov (United States)

    Peterson, Glen (Editor)

    1995-01-01

    In this post-flight overview, the flight crew of the STS-70 mission, Tom Henricks (Cmdr.), Kevin Kregel (Pilot), Major Nancy Currie (MS), Dr. Mary Ellen Weber (MS), and Dr. Don Thomas (MS), discuss their mission and accompanying experiments. Pre-flight, launch, and orbital footage is followed by the in-orbit deployment of the Tracking and Data Relay Satellite (TDRS) and a discussion of the following spaceborne experiments: a microgravity bioreactor experiment to grow 3D body-like tissue; pregnant rat muscular changes in microgravity; embryonic development in microgravity; Shuttle Amateur Radio Experiment (SAREX); terrain surface imagery using the HERCULES camera; and a range of other physiological tests, including an eye and vision test. Views of Earth include: tropical storm Chantal; the Nile River and Red Sea; lightning over Brazil. A three planet view (Earth, Mars, and Venus) was taken right before sunrise. The end footage shows shuttle pre-landing checkout, entry, and landing, along with a slide presentation of the flight.

  4. Aerodynamic Simulation of Indoor Flight

    Science.gov (United States)

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  5. Local sampling for indoor flight

    NARCIS (Netherlands)

    De Croon, G.C.H.E.; De Wagter, C.; Remes, B.D.W.; Ruijsink, H.M.

    2009-01-01

    A challenging problem in artificial intelligence is to achieve vision-based autonomous indoor flight with Micro Air Vehicles. Approaches to this problem currently do not make use of image appearance features, because these features generally are computationally expensive. In this article, we deliver

  6. Diverter - Perspectives on the integration and display of flight critical information using an expert system and menu-driven displays

    Science.gov (United States)

    Rudolph, Frederick M.

    1991-01-01

    An expert system prototype, called Diverter, was developed which evaluates, integrates, and displays flight plan recommendations to the pilot during the planning of an inflight diversion. The system integrates information from many sources to provide a comprehensive description of the flight planning alternatives available to the pilot. Diverter evaluates all applicable constraints to arrive at a flight plan to make efficient use of manpower, fuel, and time. The use of an expert system automates much of the integration and evaluation of variables impacting the flight. The use of hierarchical menu-driven displays and direct manipulation interface techniques may reduce workload.

  7. Modern digital flight control system design for VTOL aircraft

    Science.gov (United States)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  8. Characterization of a Recoverable Flight Control Computer System

    Science.gov (United States)

    Malekpour, Mahyar; Torres, Wilfredo

    1999-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.

  9. Pathfinder - flight preparation on lakebed

    Science.gov (United States)

    1995-01-01

    AeroVironment, Inc., crew members prepare the Pathfinder solar-powered aircraft for its first flight on Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, after its configuration was shanged from 8 electric motors to 6. Bob Curtin of AeroVironment is in the foreground of the photo. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  10. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  11. Evaluation

    Institute of Scientific and Technical Information of China (English)

    Fred Genesee

    2005-01-01

    @@ Introduction Evaluation in TESOL settings is a process of collecting,analysing and interpreting information about teaching and learning in order to make informed decisions that enhance student achievement and the success of educational programmes (Rea-Dickins and Germaine 1993; Genesee and Upshur 1996;O'Malley and Valdez-Pierce 1996).Three simple examples help explicate the varied forms evaluation can take in TESOL settings:

  12. Flight Activity and Crew Tracking System -

    Data.gov (United States)

    Department of Transportation — The Flight Activity and Crew Tracking System (FACTS) is a Web-based application that provides an overall management and tracking tool of FAA Airmen performing Flight...

  13. Flight management concepts development for fuel conservation

    Science.gov (United States)

    Sorensen, J. A.; Morello, S. A.

    1983-01-01

    It is pointed out that increased airspace congestion will produce increased flight delay unless advanced flight management concepts are developed to compensate. It has been estimated that a 5 percent reduction in delay is approximately equivalent, in terms of direct operating costs, to a 5 percent reduction in drag. The present investigation regarding the development of the required flight management concepts is organized into three sections, related to background, current research, and future effort. In the background section, a summary is provided of past technical effort concerning flight management. The second section is concerned with on-going efforts to integrate flight management with ground-based flight planning, and with an advanced concepts simulator to test the new developments. In the third section, attention is given to research concerning airborne flight management integration with other flight functions.

  14. Civil helicopter flight research. [for CH-53 helicopter

    Science.gov (United States)

    Snyder, W. J.; Schoultz, M. B.

    1976-01-01

    The paper presents a description of the NASA CH-53 Civil Helicopter Research Aircraft and discusses preliminary results of the aircraft flight research performed to evaluate factors and requirements for future helicopter transport operations. The CH-53 equipped with a 16-seat airline-type cabin and instrumented for flight research studies in noise, vibration, handling qualities, passenger acceptance, fuel utilization, terminal area maneuvers, and gust response. Predicted fuel usage for typical short-haul missions is compared with actual fuel use. Pilot ratings for an IFR handling quality task for three levels of stability augmentation are presented, and the effects of internal noise, vibration, and motion on passenger acceptance are discussed. Future planned CH-53 flight research within the Civil Helicopter Technology Program is discussed.

  15. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    Science.gov (United States)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  16. Croatian Airports as Potential European Flight Crew Training Centres

    Directory of Open Access Journals (Sweden)

    Tomislav Gradišar

    2012-10-01

    Full Text Available The paper deals with the possibilities of offering Croatianailports as potential flight crew training centres on the Europeanmarket of se!Vices. With her available ai1port capacities,mainly those located on the Adriatic coast, Croatia has significantadvantages compared to other countries of Westem andCentral Europe. The most important condition for establishinga specialised training centre for the European market is the harmonisationof the national aviation regulations i.e. the implementationof global and European standards of flight crewtraining, as well as conditions that have to be met by a specialisedtraining centre from the aspect of the necessary infrastructure.The study has evaluated the potential airports of Rijeka,Pula and Losinj, acc01ding to the basic criteria of their geo-Lraffic location, infrastructure resources (technical elements ofrunway, navigation equipment, abport se1vices, availability ofspecial equipment for flight crew training on the ground and inthe ail; as well as climate conditions.

  17. F-8C digital CCV flight control laws

    Science.gov (United States)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  18. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  19. H-infinity based integrated flight/propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle; Ouzts, Peter

    1990-01-01

    This paper presents results from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC design with controller partitioning. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H(infinity) control problem such that it reflects the IFPC design objective. The H(infinity) controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance.

  20. Predicting motion sickness during parabolic flight

    Science.gov (United States)

    Harm, Deborah L.; Schlegel, Todd T.

    2002-01-01

    BACKGROUND: There are large individual differences in susceptibility to motion sickness. Attempts to predict who will become motion sick have had limited success. In the present study, we examined gender differences in resting levels of salivary amylase and total protein, cardiac interbeat intervals (R-R intervals), and a sympathovagal index and evaluated their potential to correctly classify individuals into two motion sickness severity groups. METHODS: Sixteen subjects (10 men and 6 women) flew four sets of 10 parabolas aboard NASA's KC-135 aircraft. Saliva samples for amylase and total protein were collected preflight on the day of the flight and motion sickness symptoms were recorded during each parabola. Cardiovascular parameters were collected in the supine position 1-5 days before the flight. RESULTS: There were no significant gender differences in sickness severity or any of the other variables mentioned above. Discriminant analysis using salivary amylase, R-R intervals and the sympathovagal index produced a significant Wilks' lambda coefficient of 0.36, p=0.006. The analysis correctly classified 87% of the subjects into the none-mild sickness or the moderate-severe sickness group. CONCLUSIONS: The linear combination of resting levels of salivary amylase, high-frequency R-R interval levels, and a sympathovagal index may be useful in predicting motion sickness severity.

  1. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  2. The dynamics of parabolic flight: flight characteristics and passenger percepts

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  3. Pressure effects on the nose by an in-flight oxygen mask during simulated flight conditions.

    Science.gov (United States)

    Schreinemakers, J Rieneke C; Boer, C; van Amerongen, P C G M; Kon, M

    2016-12-01

    Dutch F-16 fighter pilots experience oxygen mask inflicted nasal trauma, including discomfort, pain, skin abrasions, bruises and bone remodelling. Pressure and shear forces on the nose might contribute to causing these adverse effects. In this study, it was evaluated how flight conditions affected the exerted pressure, and whether shear forces were present. The pressure exerted by the oxygen mask was measured in 20 volunteers by placing pressure sensors on the nose and chin underneath the mask. In the human centrifuge, the effects on the exerted pressure during different flight conditions were evaluated (+3Gz, +6Gz, +9Gz, protocolised head movements, mounted visor or night vision goggles, NVG). The runs were recorded to evaluate if the mask's position changed during the run, which would confirm the presence of shear forces. Head movements increased the median pressure on the nose by 50 mm Hg and on the chin by 37 mm Hg. NVG, a visor and accelerative forces also increased the median pressure on the nose. Pressure drops on the nose were also observed, during mounted NVG (-63 mm Hg). The recordings showed the mask slid downwards, especially during the acceleration phase of the centrifuge run, signifying the presence of shear forces. The exerted pressure by the oxygen mask changes during different flight conditions. Exposure to changing pressures and to shear forces probably contributes to mask-inflicted nasal trauma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    Science.gov (United States)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  5. Update of Bisphosphonate Flight Experiment

    Science.gov (United States)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S. M.; Evans, H.; Spector, E.; Snyder, R. P.; Sibonga, J.; Keyak, J.; Nakamura, T.; Kohri, K.; Ohshima, H.; Moralez, G.

    2015-01-01

    Elevated bone resorption is a hallmark of human spaceflight and bed rest indicating that elevated remodeling is a major factor in the etiology of space flight bone loss. In a collaborative effort between the NASA and JAXA space agencies, we are testing whether an antiresorptive drug would provide additional benefit to in-flight exercise to ameliorate bone loss and hypercalciuria during long-duration spaceflight. Measurements of bone loss include DXA, QCT, pQCT, urinary and blood biomarkers. We have completed analysis of R+1year data from 7 crewmembers treated with alendronate during flight, as well as immediate post flight (R+<2wks) data from 6 of 10 concurrent controls without treatment. The treated astronauts used the Advanced Resistive Exercise Device (ARED) during their missions. The purpose of this report is twofold: 1) to report the results of inflight, post flight and one year post flight bone measures compared with available controls with and without the use of ARED; and 2) to discuss preliminary data on concurrent controls. The figure below compares the BMD changes in ISS crewmembers exercising with and without the current ARED protocol and the alendronate treated crewmembers also using the ARED. This shows that the use of ARED prevents about half the bone loss seen in early ISS crewmembers and that the addition of an antiresorptive provides additional benefit. Resorption markers and urinary Ca excretion are not impacted by exercise alone but are significantly reduced with antiresorptive treatment. Bone measures for treated subjects, 1 year after return from space remain at or near baseline. DXA data for the 6 concurrent controls using the ARED device are similar to DXA data shown in the figure below. QCT data for these six indicate that the integral data are consistent with the DXA data, i.e., comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the ARED protocol. Biochemical data of the concurrent

  6. Evaluering

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Andersen, Michael; Wandall, Jakob

    Idéen til denne bog opstod i forbindelse med undervisningen i evaluering af uddannelse på Århus Universitet. Vi oplevede, at der nok fandtes megen litteratur om evaluering, både på dansk og især engelsk, men ikke meget litteratur, der på en overskuelig og dækkende måde kunne bruges som indføring i...... det brede felt, som bogen dækker. En del dansksproget evalueringslitteratur drejer sig om programevaluering på et mere generelt niveau. Meget af denne litteratur har fokus på offentlig virksomhed, men kun i mindre grad på uddannelse. En del litteratur omhandler evaluering af undervisning, en del har...... fokus på elevers læring. Vi har villet skrive en bog, der dækker hele feltet: Evaluering af læring, undervisning og uddannelse. Vi har med bogen villet skabe overblik over dette omfattende felt, som udvikler sig i mange retninger. Dette ud fra den opfattelse, at evaluering får stadig større betydning...

  7. Determining the transferability of flight simulator data

    Science.gov (United States)

    Green, David

    1992-01-01

    This paper presented a method for collecting and graphically correlating subjective ratings and objective flight test data. The method enables flight-simulation engineers to enhance the simulator characterization of rotor craft flight in order to achieve maximum transferability of simulator experience.

  8. Lessons from 30 Years of Flight Software

    Science.gov (United States)

    McComas, David C.

    2015-01-01

    This presentation takes a brief historical look at flight software over the past 30 years, extracts lessons learned and shows how many of the lessons learned are embodied in the Flight Software product line called the core Flight System (cFS). It also captures the lessons learned from developing and applying the cFS.

  9. 14 CFR 437.71 - Flight rules.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight rules. 437.71 Section 437.71... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.71 Flight rules. (a) Before initiating rocket-powered flight, a permittee must confirm that all systems and operations necessary to ensure...

  10. 14 CFR 93.323 - Flight plans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial...

  11. 14 CFR 437.39 - Flight rules.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71....

  12. 14 CFR 23.333 - Flight envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown...

  13. 14 CFR 121.387 - Flight engineer.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No..., having a maximum certificated takeoff weight of more than 80,000 pounds without a flight...

  14. Energetic influence on gull flight strategy selection

    NARCIS (Netherlands)

    Shamoun-Baranes, J.; van Loon, E.E.

    2006-01-01

    During non-migratory flight, gulls (Larids) use a wide variety of flight strategies. We investigate the extent to which the energy balance of a bird explains flight strategy selection. We develop a model based on optimal foraging and aerodynamic theories, to calculate the ground speeds and airspeeds

  15. Interferometric laser imaging for in-flight cloud droplet sizing

    Science.gov (United States)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-12-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications.

  16. In-Flight Injuries Involving Children on Commercial Airline Flights.

    Science.gov (United States)

    Alves, Paulo M; Nerwich, Neil; Rotta, Alexandre T

    2016-12-09

    More than 3 billion passengers are transported every year on commercial airline flights worldwide, many of whom are children. The incidence of in-flight medical events (IFMEs) affecting children is largely unknown. This study seeks to characterize pediatric IFMEs, with particular focus on in-flight injuries (IFIs). We reviewed the records of all IFMEs from January 2009 to January 2014 involving children treated in consultation with a ground-based medical support center providing medical support to commercial airlines. Among 114 222 IFMEs, we identified 12 226 (10.7%) cases involving children. In-flight medical events commonly involved gastrointestinal (35.4%), infectious (20.3%), neurological (12.2%), allergic (8.6%), and respiratory (6.3%) conditions. In addition, 400 cases (3.3%) of IFMEs involved IFIs. Subjects who sustained IFIs were younger than those involved in other medical events (3 [1-8] vs 7 [3-14] y, respectively), and lap infants were overrepresented (35.8% of IFIs vs 15.9% of other medical events). Examples of IFIs included burns, contusions, and lacerations from falls in unrestrained lap infants; fallen objects from the overhead bin; and trauma to extremities by the service cart or aisle traffic. Pediatric IFIs are relatively infrequent given the total passenger traffic but are not negligible. Unrestrained lap children are prone to IFIs, particularly during meal service or turbulence, but not only then. Children occupying aisle seats are vulnerable to injury from fallen objects, aisle traffic, and burns from mishandled hot items. The possible protection from using in-flight child restraints might extend beyond takeoff and landing operations or during turbulence.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used

  17. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an airplane, in a flight simulator, or in a flight training device...

  18. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  19. 14 CFR 125.405 - Disposition of load manifest, flight release, and flight plans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Disposition of load manifest, flight release, and flight plans. 125.405 Section 125.405 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRCRAFT Records and Reports § 125.405 Disposition of load manifest, flight release, and flight plans....

  20. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition...

  1. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations....

  2. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition...

  3. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    Science.gov (United States)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  4. Neuroplasticity changes during space flight

    Science.gov (United States)

    Slenzka, K.

    Neuroplasticity refers to the ability of neurons to alter some functional property in response to alterations in input. Most of the inputs received by the brain and thus the neurons are coming from the overall sensory system. The lack of gravity during space flight or even the reduction of gravity during the planned Mars missions are and will change these inputs. The often observed "loop swimming" of some aquatic species is under discussion to be based on sensory input changes as well as the observed motion sickness of astronauts and cosmonauts. Several reports are published regarding these changes being based on alterations of general neurophysiological parameters. In this paper a summing-up of recent results obtained in the last years during space flight missions will be presented. Beside data obtained from astronauts and cosmonauts, main focus of this paper will be on animal model system data.

  5. Natural Laminar Flow Flight Experiment

    Science.gov (United States)

    Steers, L. L.

    1981-01-01

    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  6. Space Flight Cable Model Development

    Science.gov (United States)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  7. Slow light in flight imaging

    CERN Document Server

    Wilson, Kali; Gariepy, Genevieve; Henderson, Robert; Howell, John; Faccio, Daniele

    2016-01-01

    Slow-light media are of interest in the context of quantum computing and enhanced measurement of quantum effects, with particular emphasis on using slow-light with single photons. We use light-in-flight imaging with a single photon avalanche diode camera-array to image in situ pulse propagation through a slow light medium consisting of heated rubidium vapour. Light-in-flight imaging of slow light propagation enables direct visualisation of a series of physical effects including simultaneous observation of spatial pulse compression and temporal pulse dispersion. Additionally, the single-photon nature of the camera allows for observation of the group velocity of single photons with measured single-photon fractional delays greater than 1 over 1 cm of propagation.

  8. X-1A in flight with flight data superimposed

    Science.gov (United States)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  9. Upper-Stage Flight Experiment

    Science.gov (United States)

    Anderson, W. E.; Boxwell, R.; Crockett, D. V.; Ross, R.; Lewis, T.; McNeal, C.; Verdarame, K.

    1999-01-01

    For propulsion applications that require that the propellants are storable for long periods, have a high density impulse, and are environmentally clean and non-toxic, the best choice is a combination of high-concentration hydrogen peroxide (High Test Peroxide, or HTP) and a liquid hydrocarbon (LHC) fuel. The HTP/LHC combination is suitable for low-cost launch vehicles, space taxi and space maneuvering vehicles, and kick stages. Orbital Sciences Corporation is under contract with the NASA Marshall Space Flight Center in cooperation with the Air Force Research Lab to design, develop and demonstrate a new low-cost liquid upper stage based on HTP and JP-8. The Upper Stage Flight Experiment (USFE) focuses on key technologies necessary to demonstrate the operation of an inherently simple propulsion system with an innovative, state-of-the-art structure. Two key low-cost vehicle elements will be demonstrated - a 10,000 lbf thrust engine and an integrated composite tank structure. The suborbital flight test of the USFE is scheduled for 2001. Preceding the flight tests are two major series of ground tests at NASA Stennis Space Center and a subscale tank development program to identify compatible composite materials and to verify their compatibility over long periods of time. The ground tests include a thrust chamber development test series and an integrated stage test. This paper summarizes the results from the first phase of the thrust chamber development tests and the results to date from the tank material compatibility tests. Engine and tank configurations that meet the goals of the program are described.

  10. Cuckoo Search via Levy Flights

    CERN Document Server

    Yang, Xin-She

    2010-01-01

    In this paper, we intend to formulate a new metaheuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Levy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the results and suggestion for further research.

  11. Levy Flights over Quantum Paths

    CERN Document Server

    Laskin, N

    2005-01-01

    An impact of integration over the paths of the Levy flights on the quantum mechanical kernel has been studied. Analytical expression for a free particle kernel has been obtained in terms of the Fox H-function. A new equation for the kernel of a partical in the box has been found. New general results include the well known quantum formulae for a free particle kernel and particle in box kernel.

  12. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    Science.gov (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  13. Dynamic Flight Simulation of aircraft and its comparison to Flight tests

    Directory of Open Access Journals (Sweden)

    Reza Khaki

    2015-09-01

    Full Text Available Nowadays obtaining data for air vehicles researches and analyses is very expensive and risky through the flight tests. Therefore using flight simulation is usually used for the mentioned researches by aerospace science researchers. In this paper, dynamic flight simulation has been performed by airplane nonlinear equations modelling. In these equations, aerodynamic coefficients and stability derivatives have an important role. Therefore, the stability derivatives for typical aircraft are calculated on various flight conditions by analytical and numerical methods. Flight conditions include of Mach number, altitude, angle of attack, control surfaces and CG position variations. The obtained derivatives are used in the form of look up table for dynamic flight simulation and virtual flight. In order to validate the simulation results, the under investigation maneuvres parameters are recorded during many real flights. The obtained data from flight tests are compared with the outputs of flight simulations. The results indicate that less than 13% differences are found in different parts of the maneuvres.

  14. An integrated approach on free flight mechanisms in insects and birds.

    Science.gov (United States)

    Liu, Hao

    2005-11-01

    To provide an overall understanding of aerodynamic and dynamic mechanisms in flying insects and birds we have succeed in establishing a biology-inspired dynamic flight simulator, which is capable to mimic hovering, forward flight and quick-turn on a basis of modeling of realistic geometry and wing kinematics, and modeling of wing-body flight dynamics. Coupling of an in-house CFD solver and a newly developed flapping flight dynamic solver enables the free flight simulation with consideration of both wing-wing interaction and wing-body interaction, and hence a systematic and quantitative evaluation of aerodynamics and flight stability in realistic flying animals. We carried out a systematic computational study on the hovering-and forward-flight of a wing-body moth model and validated the numerical results by comparing with the force-and moment-measurements based on a robotic moth model. Our results indicate that the leading-edge vortex is a universal high-lift/thrust enhancement mechanism in animal flight; and both aerodynamic force and inertial force are important in lift/thrust generation and power requirement, in particular in flight maneuverability.

  15. Flight performance of Monochamus sartor and Monochamus sutor, potential vectors of the pine wood nematode

    Directory of Open Access Journals (Sweden)

    Putz Jasmin

    2016-12-01

    Full Text Available Flight performance of Monochamus sartor and Monochamus sutor, two potential vectors of the pine wood nematode, Bursaphelenchus xylophilus was evaluated in laboratory flight mill tests. Beetles emerging from logs infested in the laboratory and incubated under outdoor conditions as well as field collected beetles were used. The maximum distance flown by M. sartor in a single flight was 3,136.7 m. Mean distances (per beetle per flight ranged from 694.6 m in females to 872.5 m in males for M. sartor. In 75% of all individual flights M. sartor flew less than 1 km; only 3.7% flew distances longer than 2 km. The mean cumulative distance travelled by M. sartor beetles throughout their lifespan was 7.5 km. The smaller M. sutor beetles flew faster and longer distances. The maximum distance per flight was 5,556.5 m; mean distances ranged from 1,653.6 m in females to 1178.3 m in males. The number of available laboratory reared beetles was too low for quantification of lifetime flight capacity for M. sutor. The findings are compared to published data from Monochamus galloprovincialis recorded on the same type of flight mill as well as to field data from mark-release-recapture studies. The high flight capacity of Monochamus beetles illustrates the importance of considering dispersal of the vectors when planning control measures against the pine wood nematode.

  16. Space flight and oxidative stress

    Science.gov (United States)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  17. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  18. National aero-space plane: Flight mechanics

    Science.gov (United States)

    Mciver, Duncan E.; Morrell, Frederick R.

    1990-01-01

    The current status and plans of the U.S. National Aero-Space Plane (NASP) program are reviewed. The goal of the program is to develop technology for single stage, hypersonic vehicles which use airbreathing propulsion to fly directly to orbit. The program features an X-30 flight research vehicle to explore altitude-speed regimes not amenable to ground testing. The decision to build the X-30 is now scheduled for 1993, with the first flight in the late 1990's. The flight mechanics, controls, flight management, and flight test considerations for the X-30 are discussed.

  19. Analysis of the Quality of Parabolic Flight

    Science.gov (United States)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.

  20. Effect of microgravity on plasma catecholamine responses to stressors during space flight.

    Science.gov (United States)

    Kvetnansky, R; Macho, L; Koska, J; Pacak, K; Hoff, T; Ksinantova, L; Noskov, V B; Kobzev, E; Grigoriev, A I; Vigas, M

    2001-07-01

    The effect of microgravity on the sympathicoadrenal system (SAS) activity in humans and animals has not yet been clarified. Our previous studies suggested that the SAS activity, evaluated by circulating and/or urinary catecholamine (CA) levels in astronauts during space flights, was found to be rather unchanged. However, CA levels were measured in astronauts only at rest conditions. The aim of the present study was to investigate effect of microgravity during space flight and post-flight readaptation on responsiveness of the SAS to somatic and psychic stressors evaluated by levels of catecholamines and their metabolite in the blood of the Slovak cosmonaut during his stay on board the space station Mir.

  1. The laminar separation sensor - An advanced transition measurement method for use in wind tunnels and flight

    Science.gov (United States)

    Manuel, G. S.; Carraway, D. L.; Croom, C. C.

    1987-01-01

    Wind tunnel and flight tests have recently been conducted by the NASA Langley Research Center to explore the ability of laminar separation hot-film sensors to identify the presence of laminar separation as the principal mode of instability amplification leading to transition. This paper describes the different sensor configurations evaluated during the course of testing and presents results from the flight and wind tunnel evaluations. Plans for the next generation of sensors are briefly discussed.

  2. Post-Flight Assessment of Avcoat Thermal Protection System for the Exploration Flight Test-1

    Science.gov (United States)

    Bose, Deepak; Santos, Jose; Rodriguez, Erika; Mahzari, Milad; Remark, Brian; Muppidi, Suman

    2016-01-01

    On December 5, 2014 NASA conducted the first flight test of its next generation human-class Orion spacecraft. The flight was called the Exploration Flight Test -1 (EFT-1) which lasted for 4 hours and culminated into a re-entry trajectory at 9 km/s. This flight test of the 5-meter Orion Crew Module demonstrated various sub-systems including the Avcoat ablative thermal protection system (TPS) on the heat shield. The Avcoat TPS had been developed from the Apollo-era recipe with a few key modifications. The engineering for thermal sizing was supported by modeling, analysis, and ground tests in arc jet facilities. This paper will describe a postlfight analysis plan and present results from post-recovery inspections, data analysis from embedded sensors, TPS sample extraction and characterization in the laboratory. After the recovery of the vehicle, a full photographic survey and surface scans of the TPS were performed. The recovered vehicle showed physical evidence of flow disturbances, varying degrees of surface roughness, and excessive recession downstream of compression pads. The TPS recession was measured at more than 200 locations of interest on the Avcoat surface. The heat shield was then processed for sample extraction prior to TPS removal using the 7-Axis Milling machine at Marshall Space Flight Center. Around 182 rectangular TPS samples were extracted for subsequent analysis and investigation. The final paper will also present results of sample analysis. The planned investigation includes sidewall imaging, followed by image analysis to characterize TPS response by quantifying different layers in the char and pyrolysis zones. A full postmortem of the instrumentation and sensor ports will also be performed to confirm no adverse effects due to the sensors themselves. A subset of the samples will undergo structural testing and perform detailed characterization of any cracks and integrity of gore seams. Finally, the material will be characterized with layer

  3. Effects of boiling duration in processing of White Paeony Root on its overall quality evaluated by ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics analysis and high performance liquid chromatography quantification.

    Science.gov (United States)

    Ming, Kong; Xu, Jun; Liu, Huan-Huan; Xu, Jin-Di; Li, Xiu-Yang; Lu, Min; Wang, Chun-Ru; Chen, Hu-Biao; Li, Song-Lin

    2017-01-01

    Boiling processing is commonly used in post-harvest handling of White Paeony Root (WPR), in order to whiten the herbal materials and preserve the bright color, since such WPR is empirically considered to possess a higher quality. The present study was designed to investigate whether and how the boiling processing affects overall quality of WPR. First, an ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry-based metabolomics approach coupled with multivariate statistical analysis was developed to compare the holistic quality of boiled and un-boiled WPR samples. Second, ten major components in WPR samples boiled for different durations were quantitatively determined using high performance liquid chromatography to further explore the effects of boiling time on the holistic quality of WPR, meanwhile the appearance of the processed herbal materials was observed. The results suggested that the boiling processing conspicuously affected the holistic quality of WPR by simultaneously and inconsistently altering the chemical compositions and that short-time boiling processing between 2 and 10 min could both make the WPR bright-colored and improve the contents of major bioactive components, which were not achieved either without boiling or with prolonged boiling. In conclusion, short-term boiling (2-10 min) is recommended for post-harvest handling of WPR.

  4. Comparative evaluation of matrix-assisted laser desorption ionisation-time of flight mass spectrometry and conventional phenotypic-based methods for identification of clinically important yeasts in a UK-based medical microbiology laboratory.

    Science.gov (United States)

    Fatania, Nita; Fraser, Mark; Savage, Mike; Hart, Jason; Abdolrasouli, Alireza

    2015-12-01

    Performance of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) was compared in a side-by side-analysis with conventional phenotypic methods currently in use in our laboratory for identification of yeasts in a routine diagnostic setting. A diverse collection of 200 clinically important yeasts (19 species, five genera) were identified by both methods using standard protocols. Discordant or unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene. MALDI-TOF and conventional methods were in agreement for 182 isolates (91%) with correct identification to species level. Eighteen discordant results (9%) were due to rarely encountered species, hence the difficulty in their identification using traditional phenotypic methods. MALDI-TOF MS enabled rapid, reliable and accurate identification of clinically important yeasts in a routine diagnostic microbiology laboratory. Isolates with rare, unusual or low probability identifications should be confirmed using robust molecular methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    Science.gov (United States)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  6. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    Science.gov (United States)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  7. Calculating the potential for within-flight transmission of influenza A (H1N1

    Directory of Open Access Journals (Sweden)

    Blower Sally

    2009-12-01

    Full Text Available Abstract Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1. However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one

  8. Integrated flight propulsion control research results using the NASA F-15 HIDEC Flight Research Facility

    Science.gov (United States)

    Stewart, James F.

    1992-01-01

    Over the last two decades, NASA has conducted several flight research experiments in integrated flight propulsion control. Benefits have included increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. These flight programs were flown at NASA Dryden Flight Research Facility. This paper presents the basic concepts for control integration, examples of implementation, and benefits of integrated flight propulsion control systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real time, onboard optimization of engine, inlet, and flight control variables; a self repairing flight control system; and an engines only control concept for emergency control. The flight research programs and the resulting benefits are described for the F-15 research.

  9. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  10. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Science.gov (United States)

    2010-01-01

    ... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes... flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a... certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered...

  11. Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant-fungus interaction in Aquilaria malaccensis.

    Science.gov (United States)

    Wong, Yong Foo; Chin, Sung-Tong; Perlmutter, Patrick; Marriott, Philip J

    2015-03-27

    To explore the possible obligate interactions between the phytopathogenic fungus and Aquilaria malaccensis which result in generation of a complex array of secondary metabolites, we describe a comprehensive two-dimensional gas chromatography (GC × GC) method, coupled to accurate mass time-of-flight mass spectrometry (TOFMS) for the untargeted and comprehensive metabolic profiling of essential oils from naturally infected A. malaccensis trees. A polar/non-polar column configuration was employed, offering an improved separation pattern of components when compared to other column sets. Four different grades of the oils displayed quite different metabolic patterns, suggesting the evolution of a signalling relationship between the host tree (emergence of various phytoalexins) and fungi (activation of biotransformation). In total, ca. 550 peaks/metabolites were detected, of which tentative identification of 155 of these compounds was reported, representing between 20.1% and 53.0% of the total ion count. These are distributed over the chemical families of monoterpenic and sesquiterpenic hydrocarbons, oxygenated monoterpenes and sesquiterpenes (comprised of ketone, aldehyde, oxide, alcohol, lactone, keto-alcohol and diol), norterpenoids, diterpenoids, short chain glycols, carboxylic acids and others. The large number of metabolites detected, combined with the ease with which they are located in the 2D separation space, emphasises the importance of a comprehensive analytical approach for the phytochemical analysis of plant metabolomes. Furthermore, the potential of this methodology in grading agarwood oils by comparing the obtained metabolic profiles (pattern recognition for unique metabolite chemical families) is discussed. The phytocomplexity of the agarwood oils signified the production of a multitude of plant-fungus mediated secondary metabolites as chemical signals for natural ecological communication. To the best of our knowledge, this is the most complete

  12. The mechanical power requirements of avian flight.

    Science.gov (United States)

    Askew, G N; Ellerby, D J

    2007-08-22

    A major goal of flight research has been to establish the relationship between the mechanical power requirements of flight and flight speed. This relationship is central to our understanding of the ecology and evolution of bird flight behaviour. Current approaches to determining flight power have relied on a variety of indirect measurements and led to a controversy over the shape of the power-speed relationship and a lack of quantitative agreement between the different techniques. We have used a new approach to determine flight power at a range of speeds based on the performance of the pectoralis muscles. As such, our measurements provide a unique dataset for comparison with other methods. Here we show that in budgerigars (Melopsittacus undulatus) and zebra finches (Taenopygia guttata) power is modulated with flight speed, resulting in U-shaped power-speed relationship. Our measured muscle powers agreed well with a range of powers predicted using an aerodynamic model. Assessing the accuracy of mechanical power calculated using such models is essential as they are the basis for determining flight efficiency when compared to measurements of flight metabolic rate and for predicting minimum power and maximum range speeds, key determinants of optimal flight behaviour in the field.

  13. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  14. System-level flight test

    Energy Technology Data Exchange (ETDEWEB)

    Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Eardley, D. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Happer, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; LeLevier, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Nierenberg, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Press, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Ruderman, M. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Sullivan, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; York, H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1999-11-23

    System-level flight tests are an important part of the overall effort by the United States to maintain confidence in the reliability, safety, and performance of its nuclear deterrent forces. This study of activities by the Department of Energy in support of operational tests by the Department of Defense was originally suggested by Dr. Rick Wayne, Director, National Security Programs, Sandia National Laboratory/Livermore, and undertaken at the request of the Department of Energy, Defense Programs Division. It follows two 1997 studies by JASON that focused on the Department of Energy's Enhanced Surveillance Program for the physics package — i.e. the nuclear warhead.

  15. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  16. Formation flight astronomical survey telescope

    Science.gov (United States)

    Tsunemi, Hiroshi

    2012-03-01

    Formation Flight Astronomical Survey Telescope (FFAST) is a project for hard X-ray observation. It consists of two small satellites; one (telescope satellite) has a super mirror covering the energy range up to 80 keV while the other (detector satellite) has an scintillator deposited CCD (SDCCD) having good spatial resolution and high efficiency up to 100 keV. Two satellites will be put into individual Kepler orbits forming an X-ray telescope with a focal length of 20 m. They will be not in pointing mode but in survey mode to cover a large sky region.

  17. Digital Flight Control System Validation.

    Science.gov (United States)

    1982-06-01

    Uperioust languages and formal progrmiag Logic (Such was the cae ina the formation of the Radio end design, hag resulted in the accelerated Technical...wee In defined , dM tin Osytm e all as wssLuete Ohe 0esig of these same- Isei to btop ues eM m defined . "UK""t fault coie am ep~es syste prior ft Mo... Softwre Cost etilstift, 131 Computer Society 17. ’Simulator Investigation Plan for Digital 1977, Pages 13-177. Flight Controls Validation Technology

  18. A preliminary investigation of the use of throttles for emergency flight control

    Science.gov (United States)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  19. The effects of expressivity and flight task on cockpit communication and resource management

    Science.gov (United States)

    Jensen, R. S.

    1986-01-01

    The results of an investigation to develop a methodology for evaluating crew communication behavior on the flight deck and a flight simulator experiment to test the effects of crew member expressivity, as measured by the Personal Attributes Questionnarie, and flight task on crew communication and flight performance are discussed. A methodology for coding and assessing flight crew communication behavior as well as a model for predicting that behavior is advanced. Although not enough crews were found to provide valid statistical tests, the results of the study tend to indicate that crews in which the captain has high expressivity perform better than those whose captain is low in expressivity. There appears to be a strong interaction between captains and first officers along the level of command dimension of communication. The PAQ appears to identify those pilots who offer disagreements and inititate new subjects for discussion.

  20. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in