WorldWideScience

Sample records for sun-illuminated topography backscatter

  1. Sea floor maps showing topography, sun-illuminated topography, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts

    Science.gov (United States)

    Valentine, P.C.; Middleton, T.J.; Fuller, S.J.

    2000-01-01

    This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.

  2. Maps Showing Sea Floor Topography, Sun-Illuminated Sea Floor Topography, and Backscatter Intensity of Quadrangles 1 and 2 in the Great South Channel Region, Western Georges Bank

    Science.gov (United States)

    Valentine, Page C.; Middleton, Tammie J.; Malczyk, Jeremy T.; Fuller, Sarah J.

    2002-01-01

    The Great South Channel separates the western part of Georges Bank from Nantucket Shoals and is a major conduit for the exchange of water between the Gulf of Maine to the north and the Atlantic Ocean to the south. Water depths range mostly between 65 and 80 m in the region. A minimum depth of 45 m occurs in the east-central part of the mapped area, and a maximum depth of 100 m occurs in the northwest corner. The channel region is characterized by strong tidal and storm currents that flow dominantly north and south. Major topographic features of the seabed were formed by glacial and postglacial processes. Ice containing rock debris moved from north to south, sculpting the region into a broad shallow depression and depositing sediment to form the irregular depressions and low gravelly mounds and ridges that are visible in parts of the mapped area. Many other smaller glacial featuresprobably have been eroded by waves and currents at worksince the time when the region, formerly exposed bylowered sea level or occupied by ice, was invaded by the sea. The low, irregular and somewhat lumpy fabric formed by the glacial deposits is obscured in places by drifting sand and by the linear, sharp fabric formed by modern sand features. Today, sand transported by the strong north-south-flowing tidal and storm currents has formed large, east-west-trending dunes. These bedforms (ranging between 5 and 20 m in height) contrast strongly with, and partly mask, the subdued topography of the older glacial features.

  3. Image of the 4-m Sun-illuminated Topography of the Sea Floor off Eastern Cape Cod (CAPENORTHSUN_GEO4M_WGS84.TIF, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes sun-illuminated of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping...

  4. Image of the 4-m Sun-illuminated Topography of the Sea Floor off Eastern Cape Cod (CAPESOUTHSUN_GEO4M_WGS84.TIF, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes sun-illuminated of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping...

  5. Image of the 4-m Sun-illuminated Topography of the Sea Floor off Eastern Cape Cod (CAPESOUTHSUN_GEO4M_WGS84.TIF, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes sun-illuminated of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping...

  6. Image of the 4-m Sun-illuminated Topography of the Sea Floor off Eastern Cape Cod (CAPENORTHSUN_GEO4M_WGS84.TIF, Geographic, WGS84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes sun-illuminated of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping...

  7. NOAA TIFF Image - 4m Sun Illuminated Bathymetry for Red Snapper Research Areas in the South Atlantic Bight, 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains unified Sun Illuminated Bathymetry GeoTiffs with 4x4 meter cell resolution describing the topography of 15 areas along the shelf edge off the...

  8. Sea Floor Topography and Backscatter Intensity of the Historic Area Remediation Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes topography and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), located offshore of New York and New...

  9. NOAA TIFF Image- 5m Bathymetry (Sun Illuminated- Azimuth 225) of St. Croix (Buck Island), US Virgin Islands, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This georeferenced image represents 5 meter resolution bathymetry (sun illuminated with azimuth 225 and incline 45) of the north shore of St. Croix, US Virgin...

  10. Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation

    Science.gov (United States)

    Arthern, R. J.; Wingham, D. J.; Ridout, A. L.

    2001-12-01

    We consider the reliability of radar altimeter measurements of ice sheet elevation and snowpack properties in the presence of surface undulations. We demonstrate that over ice sheets the common practice of averaging echoes by aligning the first return from the surface at the origin can result in a redistribution of power to later times in the average echo, mimicking the effects of microwave penetration into the snowpack. Algorithms that assume the topography affects the radar echo shape in the same way that waves affect altimeter echoes over the ocean will therefore lead to biased estimates of elevation. This assumption will also cause errors in the retrieval of echoshape parameters intended to quantify the penetration of the microwave pulse into the snowpack. Using numerical simulations, we estimate the errors in retrievals of extinction coefficient, surface backscatter, and volume backscatter for various undulating topographies. In the flatter portions of the Antarctic plateau, useful estimates of these parameters may be recovered by averaging altimeter echoes recorded by the European Remote Sensing satellite (ERS-1). By numerical deconvolution of the average echoes we resolve the depths in the snowpack at which temporal changes and satellite travel-direction effects occur, both of which have the potential to corrupt measurements of ice sheet elevation change. The temporal changes are isolated in the surface-backscatter cross section, while directional effects are confined to the extinction coefficient and are stable from year to year. This allows the removal of the directional effect from measurement of ice-sheet elevation change.

  11. Seabed photographs, sediment texture analyses, and sun-illuminated sea floor topography in the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts

    Science.gov (United States)

    Valentine, Page C.; Gallea, Leslie B.; Blackwood, Dann S.; Twomey, Erin R.

    2010-01-01

    The U.S. Geological Survey, in collaboration with National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 km (1,100 nmi) in size and was subdivided into 18 quadrangles. An extensive series of sea-floor maps of the region based on multibeam sonar surveys has been published as paper maps and online in digital format (PDF, EPS, PS). In addition, 2,628 seabed-sediment samples were collected and analyzed and are in the usSEABED: Atlantic Coast Offshore Surficial Sediment Data Release. This report presents for viewing and downloading the more than 10,600 still seabed photographs that were acquired during the project. The digital images are provided in thumbnail, medium (1536 x 1024 pixels), and high (3071 x 2048) resolution. The images can be viewed by quadrangle on the U.S. Geological Survey Woods Hole Coastal and Marine Science Center's photograph database. Photograph metadata are embedded in each image in Exchangeable Image File Format and also provided in spreadsheet format. Published digital topographic maps and descriptive text for seabed features are included here for downloading and serve as context for the photographs. An interactive topographic map for each quadrangle shows locations of photograph stations, and each location is linked to the photograph database. This map also shows stations where seabed sediment was collected for texture analysis; the results of grain-size analysis and associated metadata are presented in spreadsheet format.

  12. Seabed maps showing topography, ruggedness, backscatter intensity, sediment mobility, and the distribution of geologic substrates in Quadrangle 6 of the Stellwagen Bank National Marine Sanctuary Region offshore of Boston, Massachusetts

    Science.gov (United States)

    Valentine, Page C.; Gallea, Leslie B.

    2015-11-10

    The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

  13. Topography Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  14. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  15. Dynamic coherent backscattering mirror

    Science.gov (United States)

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  16. GLOBE backscatter - Climatologies and mission results. [Global Backscatter Experiment

    Science.gov (United States)

    Menzies, Robert T.; Post, Madison J.

    1991-01-01

    The Global Backscatter Experiment (GLOBE) goals require intensive study of the global climatology of atmospheric aerosol backscatter at IR wavelengths. Airborne and ground-based lidars have been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. Descriptions of the calibration techniques and selected measurement results are presented.

  17. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  18. Backscatter imagery in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 1x1 meter resolution backscatter mosaic of Jobos Bay, Puerto Rico (in NAD83 UTM 19 North). The backscatter values are in relative 8-bit (0 –...

  19. Collective stimulated Brillouin backscatter

    CERN Document Server

    Lushnikov, Pavel M

    2007-01-01

    We develop the statistical theory of the stimulated Brillouin backscatter (BSBS) instability of a spatially and temporally partially incoherent laser beam for laser fusion relevant plasma. We find a new regime of BSBS which has a much larger threshold than the classical threshold of a coherent beam in long-scale-length laser fusion plasma. Instability is collective because it does not depend on the dynamics of isolated speckles of laser intensity, but rather depends on averaged beam intensity. We identify convective and absolute instability regimes. Well above the incoherent threshold the coherent instability growth rate is recovered. The threshold of convective instability is inside the typical parameter region of National Ignition Facility (NIF) designs although current NIF bandwidth is not large enough to insure dominance of collective instability and suggests lower instability threshold due to speckle contribution. In contrast, we estimate that the bandwidth of KrF-laser-based fusion systems would be larg...

  20. Dynamic Topography Revisited

    Science.gov (United States)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The

  1. Detection of Coaxial Backscattered Electrons in SEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We present a coaxial detection of the backscattered electrons in SEM. The lens-aperture has been used to filter in energy and focus the backscattered electrons. This particular geometry allows us to eliminate the iow energy backscattered electrons and collect the backscattered electrons, which are backscattered close to the incident beam orientation. The main advantage of this geometry is adapted to topographic contrast attenuation and atomic number contrast enhancement. Thus this new SEM is very suitable to analyze the material composition.

  2. Moire topography in odontology

    Science.gov (United States)

    Moreno Yeras, A.

    2001-08-01

    For several decades measurement optical techniques have been used in different branches of Science and Technology and in medicine. One of these techniques is the so-called Moire topography that allows the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moire, with which precision can be reached up to the order of the microns by the phase shift instrumentation in an original way. Advantages and disadvantages of using the Moire topography and its comparison with other techniques used in the optical metrology are presented. Also, some positive and negative aspects of the implementation of this technique are shown in dentistry.

  3. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.

    Science.gov (United States)

    Hoffmeister, Brent K; Mcpherson, Joseph A; Smathers, Morgan R; Spinolo, P Luke; Sellers, Mark E

    2015-12-01

    Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.

  4. 3D Backscatter Imaging System

    Science.gov (United States)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  5. X-ray backscatter imaging

    Science.gov (United States)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  6. Fundamentals of Acoustic Backscatter Imagery

    Science.gov (United States)

    2011-09-20

    41 6.12 Geocoding ...47 7.6 Errors in Geocoding .............................................................................................................. 47...h = z - R cos6 (39a) and x = rt sin6. (39b) 6.12 Geocoding Acoustic backscatter imagery data are collected by recording the across-track signals

  7. Nodule bottom backscattering study using multibeam echosounder

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Raju, Y.S.N.; Nair, R.R.

    A study is carried out to observe the angular dependence of backscattering strength at nodule area where grab sample and photographic data is available. Theoretical study along with the experimentally observed data shows that the backscattering...

  8. Backscatter B [8101]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  9. Backscatter A [8101]--Offshore San Gregorio, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the acoustic-backscatter map (see sheet 3, SIM 3306) of the Offshore of San Gregorio map area, California. Backscatter data...

  10. BackscatterA [8101]--Offshore Pacifica, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids...

  11. Backscatter C [7125]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  12. BackscatterB [7125]--Offshore Pacifica, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids...

  13. Backscatter A [8101]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  14. Backscatter D [Snippets]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  15. BackscatterA [8101]--Offshore Pacifica, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids...

  16. BackscatterB [7125]--Offshore Pacifica, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids...

  17. Backscatter [5m]--Offshore Monterey, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Monterey map area, California. Backscatter data are provided as separate grids...

  18. Backscatter E [Swath]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  19. Backscatter B [7125]--Offshore San Gregorio, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the acoustic-backscatter map (see sheet 3, SIM 3306) of the Offshore of San Gregorio map area, California. Backscatter data...

  20. Backscatter [SWATH]--Offshore Santa Cruz, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Santa Cruz map area, California. Backscatter data are provided as three separate...

  1. Backscatter [SWATH]--Offshore Santa Cruz, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Santa Cruz map area, California. Backscatter data are provided as three separate...

  2. Backscatter [5m]--Offshore Monterey, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Monterey map area, California. Backscatter data are provided as separate grids...

  3. Backscatter C [7125]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  4. Backscatter A [8101]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  5. Backscatter B [8101]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  6. Backscatter D [Snippets]--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids...

  7. Why is topography fractal?

    CERN Document Server

    Pelletier, J D

    1997-01-01

    The power spectrum S of linear transects of the earth's topography is often observed to be a power-law function of wave number k with exponent close to -2: S(k) is proportional to k^-2. In addition, river networks are fractal trees that satisfy many power-law or fractal relationships between their morphologic components. A model equation for the evolution of the earth's topography by erosional processes which produces fractal topography and fractal river networks is presented and its solutions compared in detail to real topography. The model is the diffusion equation for sediment transport on hillslopes and channels with the local diffusivity proportional to the square of the discharge. The dependence of diffusivity on discharge follows from fundamental equations of sediment transport. We study the model in two ways. In the first analysis the diffusivity is parameterized as a function of relief and a Taylor expansion procedure is carried out to obtain a differential equation for the landform elevation which i...

  8. Backscatter measurements for NIF ignition targets (invited).

    Science.gov (United States)

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  9. Hanle effect in coherent backscattering

    CERN Document Server

    Labeyrie, G; Müller, C A; Sigwarth, O; Delande, D; Kaiser, R

    2002-01-01

    We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).

  10. Toward optical coherence topography

    Science.gov (United States)

    Sayegh, Samir; Jiang, Yanshui

    2012-03-01

    Commercial OCT systems provide pachymetry measurements. Full corneal topographic information of anterior and posterior corneal surfaces for use in cataract surgery and refractive procedures is a desirable goal and would add to the usefulness of anterior and posterior segment evaluation. While substantial progress has been made towards obtaining "average" central corneal power (D Huang), power in different meridians and topography are still missing. This is usually reported to be due to eye movement. We analyze the role of centration, eye movements and develop a model that allows for the formulation of criteria for obtaining reliable topographic data within ¼ diopter.

  11. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    Science.gov (United States)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  12. Monte-Carlo simulation of backscattered electrons in Auger electron spectroscopy. Part 1: Backscattering factor calculation

    Energy Technology Data Exchange (ETDEWEB)

    Tholomier, M.; Vicario, E.; Doghmane, N.

    1987-10-01

    The contribution of backscattered electrons to Auger electrons yield was studied with a multiple scattering Monte-Carlo simulation. The Auger backscattering factor has been calculated in the 5 keV-60 keV energy range. The dependence of the Auger backscattering factor on the primary energy and the beam incidence angle were determined. Spatial distributions of backscattered electrons and Auger electrons are presented for a point incident beam. Correlations between these distributions are briefly investigated.

  13. Topography of Io (color)

    Science.gov (United States)

    1997-01-01

    The images used to create this color composite of Io were acquired by Galileo during its ninth orbit (C9) of Jupiter and are part of a sequence of images designed to map the topography or relief on Io and to monitor changes in the surface color due to volcanic activity. Obtaining images at low illumination angles is like taking a picture from a high altitude around sunrise or sunset. Such lighting conditions emphasize the topography of the volcanic satellite. Several mountains up to a few miles high can be seen in this view, especially near the upper right. Some of these mountains appear to be tilted crustal blocks. Most of the dark spots correspond to active volcanic centers.North is to the top of the picture which merges images obtained with the clear, red, green, and violet filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. . The resolution is 8.3 kilometers per picture element. The image was taken on June 27, 1997 at a range of 817,000 kilometers by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Isostasy, flexure, and dynamic topography

    Science.gov (United States)

    Gvirtzman, Zohar; Faccenna, Claudio; Becker, Thorsten W.

    2016-06-01

    A fundamental scientific question is, what controls the Earth's topography? Although the theoretical principles of isostasy, flexure, and dynamic topography are widely discussed, the parameters needed to apply these principles are frequently not available. Isostatic factors controlling lithospheric buoyancy are frequently uncertain and non-isostatic factors, such as lithospheric bending towards subduction zones and dynamic topography, are hard to distinguish. The question discussed here is whether a set of simple rules that relate topography to lithospheric structure in various tectonic environments can be deduced in a way that missing parameters can be approximated; or does each area behave differently, making generalizations problematic. We contribute to this issue analyzing the Asia-Africa-Arabia-Europe domain following a top-down strategy. We compile a new crustal thickness map and remove the contribution of the crust from the observed elevation. Then, the challenge is to interpret the residual topography in terms of mantle lithosphere buoyancy and dynamics. Based on systematic relationships between tectonic environments and factors controlling topography, we argue that crustal buoyancy and mantle lithospheric density can be approximated from available geological data and that regions near mantle upwelling or downwelling are easily identified by their extreme residual topography. Yet, even for other areas, calculating lithospheric thickness from residual topography is problematic, because distinguishing variations in mantle lithosphere thickness from sub-lithospheric dynamics is difficult. Fortunately, the area studied here provides an opportunity to examine this issue. Based on the conjunction between the Afar Plume and the mid-ocean ridge in the nearby Gulf of Aden and southern Red Sea, we constrain the maximal amplitude of dynamic topography to ~ 1 km. This estimate is based on a narrow definition of dynamic topography that only includes sub

  15. Metabolic topography of Parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism.

  16. First Airswot Ka-Band Radar Backscatter Returns over a Complex California Wetland

    Science.gov (United States)

    Baney, O. N.; Smith, L. C.; Pitcher, L. H.; Gleason, C. J.; Chu, V. W.; Bennett, M. M.; Pavelsky, T.; Sadowy, G. A.

    2014-12-01

    In anticipation of the launch of the NASA Surface Water Ocean Topography (SWOT) mission, this project was conducted around the Piute Ponds of Edwards Air Force Base within the Mojave Desert, California to characterize ground conditions simultaneously with two AirSWOT flights collected May 14th, 2014. Both SWOT and AirSWOT employ a Ka-band interferometer to map water surface elevations and extent, but the ability of Ka-band radar to discriminate shorelines and flooded vegetation is not well known. Presumed bright returns from moist soils surrounding surface water bodies have also been speculated to confound interpretation of SWOT/AirSWOT data. The Piute Ponds are a dynamic area of constantly changing water conditions, providing a convenient test site for field studies to assess open water, dry shorelines, vegetation edges, islands, flooded vegetation and soil moisture in conjunction with AirSWOT backscatter and visible/near-infrared camera imagery. Islands were characterized into dry islands and flooded vegetation stands including species such as bulrush (Scripus acutus) and tamarisk (Tammarix ramosissima). Results demonstrate that full water extent can be determined by near-range backscatter returns which are strong for both open water and flooded vegetation. Far-range backscatter returns over open water were unreliable for flooded extent. Comparing near-range and far-range backscatter results to the soil moisture transect shows correlation, however as soil moisture increases, discriminating between wet sediment and water becomes difficult. In sum, first results suggest near-return backscatter results prove most useful in distinguishing open water from non-water, with a strong correlation between soil moisture and backscatter returns.

  17. Averaging of Backscatter Intensities in Compounds

    Science.gov (United States)

    Donovan, John J.; Pingitore, Nicholas E.; Westphal, Andrew J.

    2002-01-01

    Low uncertainty measurements on pure element stable isotope pairs demonstrate that mass has no influence on the backscattering of electrons at typical electron microprobe energies. The traditional prediction of average backscatter intensities in compounds using elemental mass fractions is improperly grounded in mass and thus has no physical basis. We propose an alternative model to mass fraction averaging, based of the number of electrons or protons, termed “electron fraction,” which predicts backscatter yield better than mass fraction averaging. PMID:27446752

  18. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A.; Jovanovic, M.

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  19. Spectral variability of the particulate backscattering ratio

    Science.gov (United States)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  20. Reducing parametric backscattering by polarization rotation

    Science.gov (United States)

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Although the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  1. SAR backscatter from coniferous forest gaps

    Science.gov (United States)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture

  2. Parameterizing turbulence over abrupt topography

    Science.gov (United States)

    Klymak, Jody

    2016-11-01

    Stratified flow over abrupt topography generates a spectrum of propagating internal waves at large scales, and non-linear overturning breaking waves at small scales. For oscillating flows, the large scale waves propagate away as internal tides, for steady flows the large-scale waves propagate away as standing "columnar modes". At small-scales, the breaking waves appear to be similar for either oscillating or steady flows, so long as in the oscillating case the topography is significantly steeper than the internal tide angle of propagation. The size and energy lost to the breaking waves can be predicted relatively well from assuming that internal modes that propagate horizontally more slowly than the barotropic internal tide speed are arrested and their energy goes to turbulence. This leads to a recipe for dissipation of internal tides at abrupt topography that is quite robust for both the local internal tide generation problem (barotropic forcing) and for the scattering problem (internal tides incident on abrupt topography). Limitations arise when linear generation models break down, an example of which is interference between two ridges. A single "super-critical" ridge is well-modeled by a single knife-edge topography, regardless of its actual shape, but two supercritical ridges in close proximity demonstrate interference of the high modes that makes knife-edfe approximations invalid. Future direction of this research will be to use more complicated linear models to estimate the local dissipation. Of course, despite the large local dissipation, many ridges radiate most of their energy into the deep ocean, so tracking this low-mode radiated energy is very important, particularly as it means dissipation parameterizations in the open ocean due to these sinks from the surface tide cannot be parameterized locally to where they are lost from the surface tide, but instead lead to non-local parameterizations. US Office of Naval Research; Canadian National Science and

  3. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  4. Computer simulation of backscattering spectra from paint

    Science.gov (United States)

    Mayer, M.; Silva, T. F.

    2017-09-01

    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  5. Backscatter nephelometer to calibrate scanning lidar

    Science.gov (United States)

    Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao

    2008-01-01

    The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...

  6. Backscatter A [8101]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  7. Backscatter C [Swath]--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate...

  8. BackscatterA [8101]--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate...

  9. Preliminary backscatter results from the hydrosweep multibeam system

    Digital Repository Service at National Institute of Oceanography (India)

    Hagen, R.A.; Chakraborty, B.; Schenke, H.W.

    of Oceanography to convert the measured electrical energy into acoustic backscatter energy. This conversion includes corrections for the position, slope, and area of the scattering surface. In this paper we present backscatter data from several areas surveyed...

  10. Backscatter A [8101]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  11. Backscatter C [8101]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  12. BackscatterA [8101]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  13. BackscatterB [7125]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  14. BackscatterB [EM300]--Offshore Aptos, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids...

  15. BackscatterB [7125]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  16. Backscatter A [8101]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids...

  17. Backscatter A [8101]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  18. BackscatterB [EM300]--Offshore Aptos, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids...

  19. Backscatter A [8101]--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate...

  20. Backscatter C [8101]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  1. Backscatter D [USGS]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  2. Backscatter C [Swath]--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate...

  3. BackscatterC [SWATH]--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate...

  4. Backscatter C [Swath]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  5. Backscatter B [7125]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  6. BackscatterA [SWATH]--Offshore Aptos, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids...

  7. Backscatter A [8101]--Drakes Bay and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids...

  8. BackscatterB [7125]--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate...

  9. Backscatter A [8101]--Offshore Half Moon Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Half Moon Bay map area, California. Backscatter data are provided as two...

  10. Backscatter B [8101]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  11. Backscatter A [8101]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  12. BackscatterC [7125]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  13. Backscatter D [7125]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  14. BackscatterC [SWATH]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  15. Backscatter B [7125]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids...

  16. Backscatter C [Swath]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids...

  17. Backscatter B [7125]--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate...

  18. Backscatter B [Swath]--Drakes Bay and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids...

  19. Backscatter A [8101]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids...

  20. Method for analysis of low energy backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslavika). Dept. of Microelectronics); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia))

    1982-04-15

    An analytical formula is proposed describing the shape of the energy spectra of particles backscattered from samples implanted with heavy impurities. The method is suitable for quantitative evaluation of backscattering spectra measured with low energy ions.

  1. BackscatterA [8101]--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate...

  2. BackscatterB [7125]--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate...

  3. BackscatterB [EM300]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  4. Backscatter B [7125]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate...

  5. Backscatter C [Swath]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate...

  6. Backscatter A [8101]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate...

  7. Backscatter C [Swath]--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids...

  8. Backscatter C [7125]--Drakes Bay and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids...

  9. BackscatterC [SWATH]--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate...

  10. Backscatter B [8101]--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate...

  11. Backscatter A [8101]--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate...

  12. Backscatter B [7125]--Offshore Half Moon Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Half Moon Bay map area, California. Backscatter data are provided as two...

  13. BackscatterA [8101]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  14. BackscatterC [SWATH]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  15. BackscatterA [SWATH]--Offshore Aptos, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids...

  16. BackscatterC [7125]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  17. BackscatterB [EM300]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  18. Backscatter B [7125]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  19. Backscatter A [8101]--Drakes Bay and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids...

  20. Backscatter C [Swath]--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate...

  1. Backscatter C [7125]--Drakes Bay and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids...

  2. Backscatter B [7125]--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate...

  3. Mapping Bedrock Topography using Electromagnetic Profiling ...

    African Journals Online (AJOL)

    Mapping Bedrock Topography using Electromagnetic Profiling. ... Journal of Applied Sciences and Environmental Management ... within the Abakaliki Urban, to map the bedrock topography which also aids us to determine the position of the ...

  4. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  5. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    Science.gov (United States)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  6. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model

    Institute of Scientific and Technical Information of China (English)

    谢涛; William Perrie; 赵尚卓; 方贺; 于文金; 何宜军

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface.

  7. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    of the mechanisms controlling topography replication. Surface micro topography replication in injection moulding depends on the main elements of  Process conditions  Plastic material  Mould topography In this work, the process conditions is the main factor considered, but the impact of plastic material...

  8. Mapping of sea bottom topography

    Science.gov (United States)

    Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.

    1992-01-01

    Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.

  9. Earth rotation and core topography

    Science.gov (United States)

    Hager, Bradford H.; Clayton, Robert W.; Spieth, Mary Ann

    1988-01-01

    The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report.

  10. Spectra of Particulate Backscattering in Natural Waters

    Science.gov (United States)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  11. Radar Backscatter Study of Sea Ice.

    Science.gov (United States)

    1980-02-01

    in controlling the "state" of the ice ( temperatura and salinity) are shown in Figure 4.3-79. The salinity profile is a typical irregular c-shaped...the University of Kansas to provide well- controlled systematic studies to relate radar backscatter return to sea ice and to pin down some of the...34..,. : . - " ... ,. -.. .... .. .. ... ,,, ... ... _ ., ’.. . . , 72. Profiles of the parameters most important in controlling the "state" of the ice (temperature and salinity

  12. Low-Frequency Electromagnetic Backscattering from Tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Casey, K; Pao, H

    2007-01-16

    Low-frequency electromagnetic scattering from one or more tunnels in a lossy dielectric half-space is considered. The tunnel radii are assumed small compared to the wavelength of the electromagnetic field in the surrounding medium; a tunnel can thus be modeled as a thin scatterer, described by an equivalent impedance per unit length. We examine the normalized backscattering width for cases in which the air-ground interface is either smooth or rough.

  13. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2015-09-01

    Full Text Available Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1 and duration (T2 of the backscatter signal of interest (SOI were varied, and the apparent integrated backscatter (AIB, frequency slope of apparent backscatter (FSAB, zero frequency intercept of apparent backscatter (FIAB, and spectral centroid shift (SCS were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P10 µs. Moderate positive correlations (|R| up to 0.45, P10 µs. The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.

  14. Carbon Dioxide Exchange in Complex Topography

    Science.gov (United States)

    Reif, Matthias; Rotach, Mathias; Wohlfahrt, Georg; Gohm, Alexander

    2015-04-01

    On a global scale the budget of carbon dioxide (CO_2) bears a quite substantial uncertainty, which is commonly understood to be mainly due to land-surface exchange processes. In this project we investigate to what extent complex topography can amplify these land-surface exchange processes. The hypothesis is that, on the meso-scale, topography adds additional atmospheric mechanisms that drive the exchange of CO2 at the surface. This sensitivity model study investigates an idealized sine shaped valley with the atmospheric numerical model Weather Research and Forecasting (WRF) coupled to the community land model (CLM) to study the effect of complex topography on the CO2 budget compared to flat terrain. The experiment is designed to estimate the effect of the topography during maximum ecosystem exchange in summer using meteorological and ecosystem conditions at solstice, the 21. of June. Systematic variation of meteorological initial conditions, plant functional types and the topography creates an ensemble that unveils the fundamental factors that dominate the differences of CO2 between simulations with topography compared to plain surfaces in the model. The sign and magnitude of the difference between the CO2 exchange over topography and over a plain simulation are strongly dependent on the CLM plant functional type, the initial temperature, the initial relative humidity, the latitude and the area height distribution of the topography. However, in this model experiment the topography is, in the mean, a sink to the CO2 budget in the order of 5% per day.

  15. Elementary polarization properties in the backscattering configuration.

    Science.gov (United States)

    Arteaga, Oriol; Garcia-Caurel, Enric; Ossikovski, Razvigor

    2014-10-15

    In the normal incidence backscattering configuration, a polarimetric measurement always preserves the reciprocal symmetry. For a reciprocal Jones matrix, the number of elementary polarization properties is reduced from six to four. In this work, the physical interpretation of these properties is examined and they are compared with the equivalent polarization properties in transmission. It is found that, with the exception of natural optical activity, a polarimetric backreflection experiment can essentially provide the same type of information about the anisotropy of a medium as a transmission analysis, although transmission and backreflection information comes in a completely different form. Experimental examples are provided to illustrate the discussion.

  16. Backscattering Differential Ghost Imaging in Turbid Media

    CERN Document Server

    Bina, M; Molteni, M; Gatti, A; Lugiato, L A; Ferri, F

    2012-01-01

    In this Letter we present experimental results concerning the retrieval of images of absorbing objects immersed in turbid media via differential ghost imaging (DGI) in a backscattering configuration. The method has been applied, for the first time to our knowledge, to the imaging of small thin black objects located at different depths inside a turbid solution of polystyrene nanospheres and its performances assessed via comparison with standard imaging techniques. A simple theoretical model capable of describing the basic optics of DGI in turbid media is proposed.

  17. Simulation of ultrasound backscatter images from fish

    DEFF Research Database (Denmark)

    Pham, An Hoai; Stage, Bjarne; Hemmsen, Martin Christian

    2011-01-01

    The objective of this work is to investigate ultrasound (US) backscatter in the MHz range from fis to develop a realistic and reliable simulation model. The long term objective of the work is to develop the needed signal processing for fis species differentiation using US. In in-vitro experiments...... is 10 MHz and the Full Width at Half Maximum (FWHM) at the focus point is 0.54 mm in the lateral direction. The transducer model in Field II was calibrated using a wire phantom to validate the simulated point spread function. The inputs to the simulation were the CT image data of the fis converted...

  18. High-resolution land topography

    Science.gov (United States)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  19. Demonstration of zero optical backscattering from single nanoparticles

    CERN Document Server

    Person, Steven; Lapin, Zachary; Saenz, Juan Jose; Wicks, Gary; Novotny, Lukas

    2012-01-01

    We present the first experimental demonstration of zero backscattering from nanoparticles at op- tical frequencies as originally discussed by Kerker et. al. [M. Kerker, D. Wang, and C. Giles, J. Opt. Soc. A 73, 765 (1983)]. GaAs pillars were fabricated on a fused silica substrate and the spectrum of the backscattered radiation was measured in the wavelength range 600-1000 nm. Suppression of backscattering occurred at ~725 nm, agreeing with calculations based on the discrete dipole approximation. Particles with zero backscattering provide new functionality for metamaterials and optical antennas.

  20. CRED Acoustic Backscatter Guam 2003, Imagery Extracted from Gridded Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter extracted from gridded bathymetry of the banktops and shelf environments of Guam, of the Mariana Islands Archipelago.

  1. Sea Floor Analyses Based On Multibeam Backscatter Strength

    Science.gov (United States)

    Beyer, A.

    Measurements of acoustic backscatter strength can be applied to analyse sea floor coverage on a spatial extent. They provide consistent coverage compared to analy- ses based on only a few surface samples. In particular the spatial validity of surface samples can be determined by analyses based on acoustic backscatter strength and sampling locations representative for the surrounding area can be determined. Dur- ing the cruise ANTXVII/4 of the German RV "Polarstern", a high precision swath bathymetry survey was performed along the European continental margin in the Por- cupine Seabight off southwest Ireland. Within the Porcupine Seabight a number of mound structures have been discovered earlier, most of them being carbonate mounds. The structure and genesis of these mounds are the main objective of recent investiga- tions. The cruise and the subsequent investigations are part of the EU project GEO- MOUND. They focus on the Belgica mound province. Besides the depth measure- ments, the acoustic intensities of the received echos have been recorded. Taking into account the transmitted and received sound level, acoustic beam patterns, and acous- tic attenuation in the water column, the backscatter strength of the ensonified area was calculated. This backscatter information is used to analyse the sea floor cover- age. Based on the data of the systematic survey the spatial variation of the backscatter strength was derived. Regions of equal backscatter characteristic can be combined and functions showing the dependency between backscatter strength and incidence angle of the acoustic wave can be determined. These functions help interpreting sea floor coverage. The mapping of the backscatter strength of the mound area indicates clear changes in backscatter strength. Small and shallow channels show a lower backscat- ter strength than their surroundings. That means the surface coverage of the channels is smooth with respect to the surroundings. One interpretation of this

  2. The aCORN backscatter-suppressed beta spectrometer

    Science.gov (United States)

    Hassan, M. T.; Bateman, F.; Collett, B.; Darius, G.; DeAngelis, C.; Dewey, M. S.; Jones, G. L.; Komives, A.; Laptev, A.; Mendenhall, M. P.; Nico, J. S.; Noid, G.; Stephenson, E. J.; Stern, I.; Trull, C.; Wietfeldt, F. E.

    2017-09-01

    Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron-antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. The design, construction, calibration, and performance of the spectrometer are discussed.

  3. Measurements of NO{sub 2} using MAX-DOAS observations of sun-illuminated targets

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Umar; Kirk, Henning; Richter, Andreas; Schoenhardt, Anja; Wittrock, Folkard; Burrows, John P. [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2009-07-01

    Nitrogen oxide radicals (NO+NO{sub 2}) are important trace gases in the atmosphere. They originate from combustion processes, lightning and soil emissions and largely control the tropospheric ozone production Since several decades it is possible to measure NO{sub 2} with different techniques. However, for the spatial distribution in the troposphere considerable uncertainty exists. Here we present measurements of NO{sub 2} on and close to the campus of the University of Bremen applying a novel technique: Topographic Target Light scattering Differential Optical Absorption Spectroscopy (ToTaL-DOAS, Frins et al.). The basic idea is to collect scattered sunlight reflected from natural and artificial targets (e.g. high buildings) at different distances from the measuring device. Then recorded spectra are analyzed for NO{sub 2} applying the DOAS method. Simple geometric treatments of the light-path reveal NO{sub 2} concentrations in the boundary layer as a final data set. This study presents NO{sub 2} data in 2008 in the surrounding of the University of Bremen. In addition for some days the ZARM Drop Tower has been used as illuminated target to investigate the vertical distribution of NO{sub 2}. Selected data sets have been compared to complementary measurements of the regular iup Bremen MAX-DOAS setup and to the Bremian BLUES air pollution network.

  4. Radar backscatter properties of milo and soybeans

    Science.gov (United States)

    Bush, T. F.; Ulaby, F. T.; Metzler, T.

    1975-01-01

    The radar backscatter from fields of milo and soybeans was measured with a ground based radar as a function of frequency (8-18 GHz), polarization (HH and VV) and angle of incidence (0 deg-70 deg) during the summer of 1974. Supporting ground truth was gathered contemporaneously with the backscatter data. At nadir sigma deg of milo correlated highly, r = 0.96, with soil moisture in the milo field at 8.6 GHz but decreased to a value of r = 0.78 at a frequency of 17.0 GHz. Correlation studies of the variations of sigma deg with soil moisture in the soybean fields were not possible due to a lack of a meaningful soil moisture dynamic range. At the larger angles of incidence, however, sigma deg of soybeans did appear to be dependent on precipitation. It is suggested this phenomenon was caused by the rain altering plant geometry. In general sigma deg of both milo and soybeans had a relatively small dynamic range at the higher angles of incidence and showed no significant dependence on the measured crop parameters.

  5. Backscatter coefficient estimation using tapers with gaps.

    Science.gov (United States)

    Luchies, Adam C; Oelze, Michael L

    2015-04-01

    When using the backscatter coefficient (BSC) to estimate quantitative ultrasound parameters such as the effective scatterer diameter (ESD) and the effective acoustic concentration (EAC), it is necessary to assume that the interrogated medium contains diffuse scatterers. Structures that invalidate this assumption can affect the estimated BSC parameters in terms of increased bias and variance and decrease performance when classifying disease. In this work, a method was developed to mitigate the effects of echoes from structures that invalidate the assumption of diffuse scattering, while preserving as much signal as possible for obtaining diffuse scatterer property estimates. Backscattered signal sections that contained nondiffuse signals were identified and a windowing technique was used to provide BSC estimates for diffuse echoes only. Experiments from physical phantoms were used to evaluate the effectiveness of the proposed BSC estimation methods. Tradeoffs associated with effective mitigation of specular scatterers and bias and variance introduced into the estimates were quantified. Analysis of the results suggested that discrete prolate spheroidal (PR) tapers with gaps provided the best performance for minimizing BSC error. Specifically, the mean square error for BSC between measured and theoretical had an average value of approximately 1.0 and 0.2 when using a Hanning taper and PR taper respectively, with six gaps. The BSC error due to amplitude bias was smallest for PR (Nω = 1) tapers. The BSC error due to shape bias was smallest for PR (Nω = 4) tapers. These results suggest using different taper types for estimating ESD versus EAC. © The Author(s) 2014.

  6. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...

  7. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilomet...

  8. Topography and Landforms of Ecuador

    Science.gov (United States)

    Chirico, Peter G.; Warner, Michael B.

    2005-01-01

    EXPLANATION The digital elevation model of Ecuador represented in this data set was produced from over 40 individual tiles of elevation data from the Shuttle Radar Topography Mission (SRTM). Each tile was downloaded, converted from its native Height file format (.hgt), and imported into a geographic information system (GIS) for additional processing. Processing of the data included data gap filling, mosaicking, and re-projection of the tiles to form one single seamless digital elevation model. For 11 days in February of 2000, NASA, the National Geospatial-Intelligence Agency (NGA), the German Aerospace Center (DLR), and the Italian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed SRTM DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Ecuador DEM was gap-filling areas where the SRTM data contained a data void. These void areas are a result of radar shadow, layover, standing water, and other effects of terrain, as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:50,000 - scale topographic maps which date from the mid-late 1980's (Souris, 2001). Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and remote sensing image-processing techniques

  9. Strong Localization in Disordered Media: Analysis of the Backscattering Cone

    KAUST Repository

    Delgado, Edgar

    2012-06-01

    A very interesting effect in light propagation through a disordered system is Anderson localization of light, this phenomenon emerges as the result of multiple scattering of waves by electric inhomogeneities like spatial variations of index of refraction; as the amount of scattering is increased, light propagation is converted from quasi-diffusive to exponentially localized, with photons confined in a limited spatial region characterized by a fundamental quantity known as localization length. Light localization is strongly related to another interference phenomenon emerged from the multiple scattering effect: the coherent backscattering effect. In multiple scattering of waves, in fact, coherence is preserved in the backscattering direction and produces a reinforcement of the field flux originating an observable peak in the backscattered intensity, known as backscattering cone. The study of this peak provide quantitative information about the transport properties of light in the material. In this thesis we report a complete FDTD ab-initio study of light localization and coherent backscattering. In particular, we consider a supercontinuum pulse impinging on a sample composed of randomly positioned scatterers. We study coherent backscattering by averaging over several realizations of the sample properties. We study then the coherent backscattering cone properties as the relative permittivity of the sample is changed, relating the latter with the light localization inside the sample. We demonstrate important relationships between the width of the backscattering cone and the localization length, which shows a linear proportionality in the strong localization regime.

  10. Rutherford backscattering analysis of contaminants in PET

    Science.gov (United States)

    Pierce, D. E.; Pfeffer, R. L.; Sadler, G. D.

    1997-05-01

    Rutherford Backscattering Spectrometry (RBS) was used to understand the sorption and desorption of organic contaminants in the polymer Poly(ethylene terephthalate), or PET. Samples were exposed to a range of organics to simulate contamination of PET that can take place in the post-consumer waste stream. From RBS analysis, concentration depth profiles were shown to vary from a monolayer regime surface layer to a saturation level, depending on the contaminant. Heat treatments were also applied to contaminated polymer to simulate thermal processing steps in the recycling of PET. Heating caused a dramatic decrease in contaminants and in some cases a complete removal of contamination was achieved to the limit of RBS detectability.

  11. Coherent Backscattering of Ultra-cold Atoms

    CERN Document Server

    Jendrzejewski, Fred; Richard, Jérémie; Date, Aditya; Plisson, Thomas; Bouyer, Philippe; Aspect, Alain; Josse, Vincent

    2012-01-01

    We report on the direct observation of coherent backscattering (CBS) of ultra-cold atoms, in a quasi two dimensional configuration. Launching atoms with a well defined momentum in a laser speckle disordered potential, we follow the progressive build up of the momentum scattering pattern, consisting of a ring associated with multiple elastic scattering, and the CBS peak in the backward direction. Monitoring the depletion of the initial momentum component and the formation of the angular ring profile allow us to determine microscopic transport quantities. The time resolved evolution of the CBS peak is studied and is found a fair agreement with predictions, at long times as well as at short times. The observation of CBS can be considered a direct signature of coherence in quantum transport of particles in disordered media. It is responsible for the so called weak localization phenomenon, which is the precursor of Anderson localization.

  12. Electron Backscatter Diffraction in Low Vacuum Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Dasher, B S; Torres, S G

    2008-07-17

    Most current scanning electron microscopes (SEMs) have the ability to analyze samples in a low vacuum mode, whereby a partial pressure of water vapor is introduced into the SEM chamber, allowing the characterization of nonconductive samples without any special preparation. Although the presence of water vapor in the chamber degrades electron backscatter diffraction (EBSD) patterns, the potential of this setup for EBSD characterization of nonconductive samples is immense. In this chapter we discuss the requirements, advantages and limitations of low vacuum EBSD (LV-EBSD), and present how this technique can be applied to a two-phase ceramic composite as well as hydrated biominerals as specific examples of when LV-EBSD can be invaluable.

  13. Electron backscatter diffraction in materials characterization

    Directory of Open Access Journals (Sweden)

    Dejan Stojakovic

    2012-03-01

    Full Text Available Electron Back-Scatter Diffraction (EBSD is a powerful technique that captures electron diffraction patterns from crystals, constituents of material. Captured patterns can then be used to determine grain morphology, crystallographic orientation and chemistry of present phases, which provide complete characterization of microstructure and strong correlation to both properties and performance of materials. Key milestones related to technological developments of EBSD technique have been outlined along with possible applications using modern EBSD system. Principles of crystal diffraction with description of crystallographic orientation, orientation determination and phase identification have been described. Image quality, resolution and speed, and system calibration have also been discussed. Sample preparation methods were reviewed and EBSD application in conjunction with other characterization techniques on a variety of materials has been presented for several case studies. In summary, an outlook for EBSD technique was provided.

  14. CHANGES OF BACKSCATTERING PARAMETERS DURING CHILLING INJURY IN BANANAS

    Directory of Open Access Journals (Sweden)

    NORHASHILA HASHIM

    2014-06-01

    Full Text Available The change in backscattering parameters during the appearance of chilling injury in bananas was investigated. Bananas were stored at a chilling temperature for two days and the degrees of the chilling injuries that appeared were measured before, during and after storage using backscattering imaging and visual assessment. Laser lights at 660 nm and 785 nm wavelengths were shot consecutively onto the samples in a dark room and a camera was used to capture the backscattered lights that appeared on the samples. The captured images were analysed and the changes of intensity against pixel count were plotted into graphs. The plotted graph provides useful information of backscattering parameters such as inflection point (IP, slope after inflection point (SA, and full width at half maximum (FWHM and saturation radius (RSAT. Results of statistical analysis indicated that there were significant changes of these backscattering parameters as chilling injury developed.

  15. Sensory properties of menthol and smoking topography

    Directory of Open Access Journals (Sweden)

    Hoffman Allison C

    2011-05-01

    Full Text Available Abstract Although there is a great deal known about menthol as a flavoring agent in foods and confections, less is known about the particular sensory properties of menthol cigarette smoke. Similarly, although smoking topography (the unique way an individual smokes a cigarette has been well studied using non-menthol cigarettes, there is relatively less known about how menthol affects smoking behavior. The objective of this review is to assess the sensory properties of menthol tobacco smoke, and smoking topography associated with menthol cigarettes. The cooling, analgesic, taste, and respiratory effects of menthol are well established, and studies have indicated that menthol’s sensory attributes can have an influence on the positive, or rewarding, properties associated smoking, including ratings of satisfaction, taste, perceived smoothness, and perceived irritation. Despite these sensory properties, the data regarding menthol’s effect on smoking topography are inconsistent. Many of the topography studies have limitations due to various methodological issues.

  16. Enhanced Characterization of Niobium Surface Topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xu, Hui Tian, Charles Reece, Michael Kelley

    2011-12-01

    Surface topography characterization is a continuing issue for the Superconducting Radio Frequency (SRF) particle accelerator community. Efforts are underway to both to improve surface topography, and its characterization and analysis using various techniques. In measurement of topography, Power Spectral Density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how chemical processes modifiesy the roughnesstopography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, polycrystalline surfaces with different process histories are sampled with AFM and stylus/white light interferometer profilometryers and analyzed to indicate trace topography evolution at different scales. evolving during etching or polishing. Moreover, Aan optimized PSD analysis protocol will be offered to serve the SRF surface characterization needs is presented.

  17. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry...... representing some average property of the surface under examination. Measurement methods, as well as their application and limitations, are briefly reviewed, including standardisation and traceability issues....

  18. Dynamic Topography of the Bering Sea

    Science.gov (United States)

    2011-01-01

    Bering Sea. Comparisons also indicate that MDT estimates derived from the latest Gravity Recovery and Climate Experiment geoid model have more in common...with the presented sea surface topography than with the MDTs based on earlier versions of the geoid . The presented MDT will increase the accuracy of...estimating the geoid in the Bering Sea. 15. SUBJECT TERMS dynamic topography, sea surface height, Bering Sea, 4DVar 16. SECURITY CLASSIFICATION OF: a

  19. Corneal topography measurements for biometric applications

    Science.gov (United States)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  20. X-ray backscatter imaging of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  1. Portable fluorescence meter with reference backscattering channel

    Science.gov (United States)

    Kornilin, Dmitriy V.; Grishanov, Vladimir N.; Zakharov, Valery P.; Burkov, Dmitriy S.

    2016-09-01

    Methods based on fluorescence and backscattering are intensively used for determination of the advanced glycation end products (AGE) concentration in the biological tissues. There are strong correlation between the AGE concentration and the severity of such diseases like diabetes, coronary heart disease and renal failure. This fact can be used for diagnostic purposes in medical applications. Only few investigations in this area can be useful for development of portable and affordable in vivo AGE meter because the most of them are oriented on using spectrometers. In this study we describe the design and the results of tests on volunteers of portable fluorescence meter based on two photodiodes. One channel of such fluorimeter is used for measurement of the autofluorescence (AF) intensity, another one - for the intensity of elastically scattered radiation, which can be used as a reference. This reference channel is proposed for normalization of the skin autofluorescence signal to the human skin photo type. The fluorimeter, that was developed is relatively compact and does not contain any expensive optical and electronic components. The experimental results prove that proposed tool can be used for the AGE estimation in human skin.

  2. Aerosol measurement program strategy for global aerosol backscatter model development

    Science.gov (United States)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  3. Backscatter B [USGS]--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3281) of the Offshore of Santa Barbara map area, California. The...

  4. Backscatter B [USGS]--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3254) of the Offshore Ventura map area, California. The raster data...

  5. Backscatter [7125]-- Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents 2-m-resolution Reson 7125 data for the acoustic-backscatter map of Offshore of Monterey map area, California. These metadata describe...

  6. Backscatter [Swath]-- Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents 2-m-resolution SWATHPlus data for the acoustic-backscatter map of Offshore of Monterey map area, California. These metadata describe...

  7. Detection of buried landmine with X-ray backscatter technique

    Energy Technology Data Exchange (ETDEWEB)

    Yuk, Sunwoo [Department of Electronics and Information Engineering, Korea University, Seoul (Korea, Republic of)]. E-mail: sunwoo@korea.ac.kr; Kim, Kwang Hyun [Chosun University, 375, Seosuk-Dong, Dong-Gu, Gwangju (Korea, Republic of); Yi, Yun [Department of Electronics and Information Engineering, Korea University, Seoul (Korea, Republic of)

    2006-11-30

    We describe a continuously operating scanning X-ray imaging system developed for landmine detection based on a backscatter X-ray principle, thus detection is done from the same side as the source. The source operates at 120 kV p and 3 mA. To study the physics of Compton X-ray backscattering, the photon transport factor, backscatter factor (BSF) and backscatter probability (BSP) were simulated using Monte-Carlo calculations using the generalized particle transport program MCNP. Based on the Monte-Carlo analyses results, a mine detecting system has been designed. It potentially has a low false alarm rate and a high detection probability, and a direct imaging facility.

  8. An algorithm to determine backscattering ratio and single scattering albedo

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.

    Algorithms to determine the inherent optical properties of water, backscattering probability and single scattering albedo at 490 and 676 nm from the apparent optical property, remote sensing reflectance are presented here. The measured scattering...

  9. Reson 8101 Backscatter imagery of Penguin Bank, Molokai, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter imagery extracted from gridded bathymetry of Penguin Bank, Molokai, Hawaii, USA. These data provide almost complete coverage between 0 and 100 meters....

  10. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This report presents bathymetry and acoustic backscatter data collected in July 2008 in the northern Santa Barbara Channel, California, using a bathymetric sidescan...

  11. Backscatter [8101]--Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents 2-m-resolution Reson 8101 data for the acoustic-backscatter map of the Offshore of Monterey map area, California. These metadata...

  12. LIDAR for atmospheric backscatter and temperature measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this effort are to measure atmospheric backscatter profiles and temperature using a zenith looking lidar, designed for a small lander.The lidar...

  13. Backscatter B [USGS]--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3281) of the Offshore of Santa Barbara map area, California. The...

  14. Backscatter A [CSUMB]--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3261) of the Offshore of Carpinteria map area, California. The raster...

  15. Backscatter B [USGS]--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3254) of the Offshore Ventura map area, California. The raster data...

  16. Backscatter A [CSUMB]--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3281) of the Offshore of Santa Barbara map area, California. The...

  17. Backscatter [Swath]-- Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents 2-m-resolution SWATHPlus data for the acoustic-backscatter map of Offshore of Monterey map area, California. These metadata describe...

  18. Backscatter B [USGS]--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3261) of the Offshore of Carpinteria map area, California. The raster...

  19. Backscatter A [CSUMB]--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3254) of the Offshore of Ventura map area, California. The raster...

  20. Backscatter A [CSUMB]--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3261) of the Offshore of Carpinteria map area, California. The raster...

  1. Impact of carrier heating on backscattering in inversion layers

    Science.gov (United States)

    Clerc, R.; Palestri, P.; Selmi, L.; Ghibaudo, G.

    2011-11-01

    In this work, Monte Carlo simulations and analytical modeling are used to investigate quasi-ballistic transport in nanometric metal oxide semiconductor field effect transistors (MOSFETs). In particular, we examine how the thermal nature of the distribution functions, which is implicitly assumed in the most common expression for the backscattering coefficient, leads to an underestimation of the backscattering coefficient in high field conditions and erroneous velocity distribution along the channel. An improved analytical model is proposed, which better captures the nonequilibrium nature of the distribution function and its impact on backscattering and by allowing velocity profiles to exceed the thermal limit. The improved model provides additional insights on the impact of several assumptions on backscattering and could serve as the basis for the development of physically based compact models of quasi-ballistic MOSFETs.

  2. Reson 8101 multibeam backscatter data from Galvez Bank.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multibeam backscatter imagery extracted from gridded bathymetry of the Mariana archipelago between the U.S. Territory of Guam and Farallon De Pajaros Island in the...

  3. Moessbauer backscatter spectrometer with full data processing capability

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, T.; Hartzell, R.; Liebermann, M.

    1976-01-01

    The design and operation of a Moessbauer backscatter spectrometer with full data processing capability is described, and the investigation of the applicability of this technique to a variety of practical metallurgical problems is discussed. (WHK)

  4. Backscatter--Offshore of Refugio Beach Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3319 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3319) of Offshore Refugio Beach map area, California. The raster data...

  5. Backscatter [7125]-- Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents 2-m-resolution Reson 7125 data for the acoustic-backscatter map of Offshore of Monterey map area, California. These metadata describe...

  6. Backscatter A [CSUMB]--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3281) of the Offshore of Santa Barbara map area, California. The...

  7. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This report presents bathymetry and acoustic backscatter data collected in July 2008 in the northern Santa Barbara Channel, California, using a bathymetric sidescan...

  8. Aerosol measurement program strategy for global aerosol backscatter model development

    Science.gov (United States)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  9. Backscatter B [USGS]--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3261) of the Offshore of Carpinteria map area, California. The raster...

  10. Backscatter [8101]--Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents 2-m-resolution Reson 8101 data for the acoustic-backscatter map of the Offshore of Monterey map area, California. These metadata...

  11. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    Science.gov (United States)

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  12. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    Science.gov (United States)

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  13. A Laboratory Investigation into Microwave Backscattering from Sea Ice

    Science.gov (United States)

    1989-08-01

    froze to form saline slush ice. Continued freezing of * the salty water directly beneath the slush ice led to the formation of columnar-textured...significant influence on backscatter from extremely smooth saline ice at C band. We determined that backscatter at C band from moderately smooth desalinated ...that volume scatter from desalinated ice is important at X band and that it is dominant at Ku band at angles of 100 or more from nadir Conclusions

  14. Analysis of forest backscattering characteristics based on polarization coherence tomography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is difficult to make an inventory of vertical profiles of forest structure parameters in field measurements.However,analysis and understanding of forest backscattering characteristics contribute to estimation and detection of forest vertical structure because of the close relationships between backscattering characteristics and structure parameters.The vertical structure function in the complex interferometric coherence definition,which represents the vertical variation of microwave scattering with the penetration depth at a point in the 2-D radar image and can be used to analyze the forest backscattering characteristics,can be reconstructed from polarization coherence tomography(PCT).Based on PCT,the paper analyzes the forest backscattering characteristics and explores the inherent relationship between the result of PCT and the forest structure parameters from numerical simulation of Random Volume over Ground model(RVoG),Polarimetric SAR interferometry(PolInSAR)simulation of forest scene and PolInSAR data at L-band of the test site Traunstein.Firstly,the effects of the extinction coefficient and surface-to-volume scattering ratio in RVoG model on vertical backscattering characteristics are analyzed by means of numerical simulation.Secondly,by applying PCT to L-band POLInSAR simulations of forest scene,different variations of vertical backscattering due to different extinction coefficients and the ratios of surface-to-volume scattering resulting from different polarizations,forest types and densities are displayed and analyzed.Then a concept of relative average backscattering intensity is presented,and the factors which affect its vertical distribution are also discussed.Preliminary results show that there is high sensitivity of the vertical distribution of forest relative average backscattering intensity to the polarization,forest type and density.Finally,based on repeat pass DLR E-SAR L-band airborne POLInSAR data,the capability of PCT technology for detection

  15. Electronic Cigarette Topography in the Natural Environment.

    Directory of Open Access Journals (Sweden)

    R J Robinson

    Full Text Available This paper presents the results of a clinical, observational, descriptive study to quantify the use patterns of electronic cigarette users in their natural environment. Previously published work regarding puff topography has been widely indirect in nature, and qualitative rather than quantitative, with the exception of three studies conducted in a laboratory environment for limited amounts of time. The current study quantifies the variation in puffing behaviors among users as well as the variation for a given user throughout the course of a day. Puff topography characteristics computed for each puffing session by each subject include the number of subject puffs per puffing session, the mean puff duration per session, the mean puff flow rate per session, the mean puff volume per session, and the cumulative puff volume per session. The same puff topography characteristics are computed across all puffing sessions by each single subject and across all subjects in the study cohort. Results indicate significant inter-subject variability with regard to puffing topography, suggesting that a range of representative puffing topography patterns should be used to drive machine-puffed electronic cigarette aerosol evaluation systems.

  16. TCR backscattering characterization for microwave remote sensing

    Science.gov (United States)

    Riccio, Giovanni; Gennarelli, Claudio

    2014-05-01

    A Trihedral Corner Reflector (TCR) is formed by three mutually orthogonal metal plates of various shapes and is a very important scattering structure since it exhibits a high monostatic Radar Cross Section (RCS) over a wide angular range. Moreover it is a handy passive device with low manufacturing costs and robust geometric construction, the maintenance of its efficiency is not difficult and expensive, and it can be used in all weather conditions (i.e., fog, rain, smoke, and dusty environment). These characteristics make it suitable as reference target and radar enhancement device for satellite- and ground-based microwave remote sensing techniques. For instance, TCRs have been recently employed to improve the signal-to-noise ratio of the backscattered signal in the case of urban ground deformation monitoring [1] and dynamic survey of civil infrastructures without natural corners as the Musmeci bridge in Basilicata, Italy [2]. The region of interest for the calculation of TCR's monostatic RCS is here confined to the first quadrant containing the boresight direction. The backscattering term is presented in closed form by evaluating the far-field scattering integral involving the contributions related to the direct illumination and the internal bouncing mechanisms. The Geometrical Optics (GO) laws allow one to determine the field incident on each TCR plate and the patch (integration domain) illuminated by it, thus enabling the use of a Physical Optics (PO) approximation for the corresponding surface current densities to consider for integration on each patch. Accordingly, five contributions are associated to each TCR plate: one contribution is due to the direct illumination of the whole internal surface; two contributions originate by the impinging rays that are simply reflected by the other two internal surfaces; and two contributions are related to the impinging rays that undergo two internal reflections. It is useful to note that the six contributions due to the

  17. The backscatter electron signal as an additional tool for phase segmentation in electron backscatter diffraction.

    Science.gov (United States)

    Payton, E J; Nolze, G

    2013-08-01

    The advent of simultaneous energy dispersive X-ray spectroscopy (EDS) data collection has vastly improved the phase separation capabilities for electron backscatter diffraction (EBSD) mapping. A major problem remains, however, in distinguishing between multiple cubic phases in a specimen, especially when the compositions of the phases are similar or their particle sizes are small, because the EDS interaction volume is much larger than that of EBSD and the EDS spectra collected during spatial mapping are generally noisy due to time limitations and the need to minimize sample drift. The backscatter electron (BSE) signal is very sensitive to the local composition due to its atomic number (Z) dependence. BSE imaging is investigated as a complimentary tool to EDS to assist phase segmentation and identification in EBSD through examination of specimens of meteorite, Cu dross, and steel oxidation layers. The results demonstrate that the simultaneous acquisition of EBSD patterns, EDS spectra, and the BSE signal can provide new potential for advancing multiphase material characterization in the scanning electron microscope.

  18. Moiré topography in odontology

    Science.gov (United States)

    Moreno Yeras, A.

    2003-07-01

    For several decades, measurement of optical techniques has been used in different branches of science and technology. One of these techniques is the so-called moiré topography (MT) that enables the accurate measurement of different parts of the human body topography. This investigation presents the measurement of topographies of teeth and gums using an automated system of shadow moiré and the phase shift method in an original way. The fringe patterns used to compute the shape and the shape matrix itself are presented in the article. The phase shift method ensures precisions up to the order of microns. Advantages and disadvantages of using the MT are included. Besides, some positive and negative aspects concerned with the implementation of this technique in odontology are shown in the article.

  19. Effects of patterned topography on biofilm formation

    Science.gov (United States)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  20. Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study.

    Science.gov (United States)

    Hoffmeister, Brent K; Spinolo, P Luke; Sellers, Mark E; Marshall, Peyton L; Viano, Ann M; Lee, Sang-Rok

    2015-10-01

    Ultrasonic backscatter techniques are being developed to diagnose osteoporosis. Tissues that lie between the transducer and the ultrasonically interrogated region of bone may produce errors in backscatter measurements. The goal of this study is to investigate the effects of intervening tissues on ultrasonic backscatter measurements of bone. Measurements were performed on 24 cube shaped specimens of human cancellous bone using a 5 MHz transducer. Measurements were repeated after adding a 1 mm thick plate of cortical bone to simulate the bone cortex and a 3 cm thick phantom to simulate soft tissue at the hip. Signals were analyzed to determine three apparent backscatter parameters (apparent integrated backscatter, frequency slope of apparent backscatter, and frequency intercept of apparent backscatter) and three backscatter difference parameters [normalized mean backscatter difference (nMBD), normalized slope of the backscatter difference, and normalized intercept of the backscatter difference]. The apparent backscatter parameters were impacted significantly by the presence of intervening tissues. In contrast, the backscatter difference parameters were not affected by intervening tissues. However, only one backscatter difference parameter, nMBD, demonstrated a strong correlation with bone mineral density. Thus, among the six parameters tested, nMBD may be the best choice for in vivo backscatter measurements of bone when intervening tissues are present.

  1. Criteria of backscattering in chiral one-way photonic crystals

    Science.gov (United States)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  2. Mountains: Geology, Topography and Environmental Concerns

    OpenAIRE

    Martin F. Price

    2016-01-01

    Reviewed: Mountains: Geology, Topography and Environmental Concerns. Edited by António José, Bento Gonçalves, and António Avelino Batista Vieria. New York, NY: Nova Science Publishers, 2014. ix + 371 pp. US$ 175.00. ISBN 978-1-63117-288-5.

  3. Mountains: Geology, Topography and Environmental Concerns

    OpenAIRE

    Price, Martin F.

    2016-01-01

    Reviewed: Mountains: Geology, Topography and Environmental Concerns. Edited by António José, Bento Gonçalves, and António Avelino Batista Vieria. New York, NY: Nova Science Publishers, 2014. ix + 371 pp. US$ 175.00. ISBN 978-1-63117-288-5.

  4. Mountains: Geology, Topography and Environmental Concerns

    Directory of Open Access Journals (Sweden)

    Martin F. Price

    2016-05-01

    Full Text Available Reviewed: Mountains: Geology, Topography and Environmental Concerns. Edited by António José, Bento Gonçalves, and António Avelino Batista Vieria. New York, NY: Nova Science Publishers, 2014. ix + 371 pp. US$ 175.00. ISBN 978-1-63117-288-5.

  5. Geostatistical modeling of topography using auxiliary maps

    NARCIS (Netherlands)

    Hengl, T.; Bajat, B.; Blagojević, D.; Reuter, H.I.

    2008-01-01

    This paper recommends computational procedures for employing auxiliary maps, such as maps of drainage patterns, land cover and remote-sensing-based indices, directly in the geostatistical modeling of topography. The methodology is based on the regression-kriging technique, as implemented in the R pa

  6. Influence of mesoscale topography on vortex intensity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of mesoscale topography on multi-vortex self-organization is investigated numerically in this paper using a barotropic primitive equation model with topographic term. In the initial field there are one DeMaria major vortex with the maximum wind radius rm of 80 km at the center of the computational domain, and four meso-β vortices in the vicinity of rm to the east of the major vortex center.When there is no topography present, the initial vortices self-organize into a quasi-final state flow pattern, I.e. A quasi-axisymmetric vortex whose intensity is close to that of the initial major vortex. However, when a mesoscale topography is incorporated, the spatial scale of the quasi-final state vortex reduces, and the relative vorticity at the center of the vortex and the local maximum wind speed remarkably increase. The possible mechanism for the enhancement of the quasi-final state vortex might be that the negative relative vorticity lump,generated above the mesoscale topography because of the constraint of absolute vorticity conservation, squeezes the center of positive vorticity towards the mountain slope area, and thus reduces the spatial range of the major vortex. Meanwhile, because the total kinetic energy is basically conservative, the squeezing directly leads to the concentration of the energy in a smaller area, I.e. The strengthening of the vortex.

  7. Modeling multi-frequency diurnal backscatter from a walnut orchard

    Science.gov (United States)

    Mcdonald, Kyle C.; Dobson, Myron C.; Ulaby, Fawwaz T.

    1991-01-01

    The Michigan Microwave Canopy Scattering Model (MIMICS) is used to model scatterometer data that were obtained during the August 1987 EOS (Earth Observing System) synergism study. During this experiment, truck-based scatterometers were used to measure radar backscatter from a walnut orchard in Fresno County, California. Multipolarized L- and X-band data were recorded for orchard plots for which dielectric and evapotranspiration characteristics were monitored. MIMICS is used to model a multiangle data set in which a single orchard plot was observed at varying impedance angles and a series of diurnal measurements in which backscatter from this same plot was measured continuously over several 24-h periods. MIMICS accounts for variations in canopy backscatter driven by changes in canopy state that occur diurnally as well as on longer time scales. L-band backscatter is dependent not only on properties of the vegetation but also on properties of the underlying soil surface. The behavior of the X-band backscatter is dominated by properties of the tree crowns.

  8. Exploring scaling laws in surface topography

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, M.J. [Dept. of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada)], E-mail: abedini@shirazu.ac.ir; Shaghaghian, M.R. [Dept. of Civil and Environmental Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-11-30

    Surface topography affects many soil properties and processes, particularly surface water storage and runoff. Application of fractal analysis helps understand the scaling laws inherent in surface topography at a wide range of spatial scales and climatic regimes. In this research, a high resolution digital elevation model with a 3 mm resolution on one side of the spectrum and large scale DEMs, with a 500 m spatial resolution on the other side were used to explore scaling laws in surface topography. With appropriate exploratory spatial data analysis of both types of data sets, two conventional computational procedures - variogram and Box Counting Methods (BCM) - address scaling laws in surface topography. The results respect scaling laws in surface topography to some extent as neither the plot treatment nor the direction treatment has a significant impact on fractal dimension variability. While in the variogram method, the change in slope in Richardson's plots appears to be the norm rather than the exception; Richardson's plots resulting from box counting implementation lack such mathematical behavior. These breaks in slope might have useful implications for delineating homogeneous hydrologic units and detecting change in trend in hydrologic time series. Furthermore, it is shown that fractal dimension cannot be used to capture anisotropic variabilities both within and among micro-plots. In addition, its numerical value remains insignificant at the 5% level in moving from one direction to another and also from one spatial scale to another while the ordinate intercept could discriminate the surface roughness variability from one spatial scale to another.

  9. Measurement of backscatter factor for diagnostic radiology: methodology and uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, P.H.G.; Nogueira, M.D.S.; Squair, P.L.; Da Silva, T.A. [Centro de Desenvolvimento da Tecnoogia Nuclear (CDTN/CNEN) 30123-970, Minas Gerais (Brazil)]. e-mail: phgr@cdtn.br

    2007-07-01

    Full text: Backscatter factors were experimentally determined for the diagnostic X-ray qualities recommended by the International Electrotechnical Commission (IEC) for primary beams (RQR). Harshaw LiF-1 100H thermoluminescent dosemeters used for determining the backscatter were calibrated against an ionization chamber traceable to the National Metrology Laboratory. A 300mm x 300mm x 150mm PMMA slab phantom was used for deep-doses measurements. To perform the in-phantom measurements, the dosemeters were placed in the central axis of the x-ray beam at five different depths d in the phantom (5, 10, 15, 25 and 35 mm) upstream the beam direction. The typical combined standard uncertainty of the backscatter factor value was 6%. The main sources of uncertainties were the calibration procedure, the TLD dosimetry and the use of deep-dose curves. (Author)

  10. Backscatter signatures of biological aerosols in the infrared.

    Science.gov (United States)

    Thrush, Evan; Salciccioli, Nicolas; Brown, David M; Siegrist, Karen; Brown, Andrea M; Thomas, Michael E; Boggs, Nathan; Carter, Christopher C

    2012-04-20

    To develop a deeper understanding of the optical signatures of both biological aerosols and potential interferents, we made field measurements of optical cross sections and compared them to model-based predictions. We measured aerosol cross sections by conducting a hard-target calibration of a light detection and ranging system (LIDAR) based on the Frequency Agile Laser (FAL). The elastic backscatter cross sections are estimated at 19 long-wave infrared (LWIR) wavelengths spanning the range from 9.23 to 10.696 μm. The theoretical modeling of the elastic backscatter cross sections is based on the measured refractive index and size distribution of the aerosols, which are used as inputs into Mie calculations. Both model calculations and experimental measurements show good agreement and also indicate the presence of spectral features based on single particle absorption in the backscatter cross sections that can be used as a basis for discrimination for both standoff and point sensors.

  11. Effects of optical backscattering on silicon photonic hybrid laser performance

    Science.gov (United States)

    Pacradouni, V.; Klein, J.; Pond, J.

    2016-04-01

    We present numerical results on the effect of backscattering at the junctions of double bus ring resonators in a Vernier ring hybrid laser design. The structure is comprised off a pair of III-V gain media evanescently coupled to a silicon on insulator racetrack comprised of a pair of double bus ring resonators coupled together through straight and flared waveguide sections. We show how the small backscattering at the ring resonator junctions has the effect of splitting and shifting the resonances off the clockwise and counter clockwise propagating modes thereby modifying the feedback spectrum from the ideal case. We then simulate results such as light current (LI) curves, relative intensity noise (RIN) and laser spectrum, and compare the laser performance including backscattering effects with the ideal case.

  12. Laser light backscatter from intermediate and high Z plasmas

    Science.gov (United States)

    Berger, R. L.; Constantin, C.; Divol, L.; Meezan, N.; Froula, D. H.; Glenzer, S. H.; Suter, L. J.; Niemann, C.

    2006-09-01

    In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO2-filled gasbags with similar electron densities. The SBS backscatter was a 1%-5% for both 527 and 351nm interaction beams at an intensity of ˜1015W /cm2. The SRS backscatter was less than 1%. The 351nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO2. The 527nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast waves.

  13. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  14. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    Science.gov (United States)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  15. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  16. Topography data from the Elwha River delta, Washington, September 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents topography data from the Elwha River delta collected in September 2014. Topography data were collected on foot with global...

  17. Recovering an electromagnetic obstacle by a few phaseless backscattering measurements

    Science.gov (United States)

    Li, Jingzhi; Liu, Hongyu; Wang, Yuliang

    2017-03-01

    We consider the electromagnetic scattering from a convex polyhedral PEC or PMC obstacle due to a time-harmonic incident plane wave. It is shown that the modulus of the far-field pattern in the backscattering aperture possesses a certain local maximum behavior. Using the local maximum indicating phenomena, one can determine the exterior unit normal directions, as well as the face areas, of the front faces of the obstacle. Then we propose a recovery scheme of reconstructing the obstacle by phaseless backscattering measurements. This work significantly extends our recent study in Li and Liu (2014 preprint) from two dimensions and acoustic scattering to the more challenging three dimensions and electromagnetic scattering.

  18. Optical backscattering properties of the "clearest" natural waters

    Directory of Open Access Journals (Sweden)

    M. S. Twardowski

    2007-07-01

    Full Text Available During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°, was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10−5, 5×10−6, and 2×10−6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results:

    bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature;
    – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels;
    – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters; the pure water scattering values determined by Buiteveld et al. (1994 with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974 appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and
    – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007 within instrument precisions, a useful factor in validating the backscattering measurements.

    This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy:

    – The clearest waters sampled were found at

  19. Optical backscattering properties of the "clearest" natural waters

    Directory of Open Access Journals (Sweden)

    M. S. Twardowski

    2007-11-01

    Full Text Available During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over 8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°, was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the volume scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results:

    – distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature;
    – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels;
    – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters; the pure water scattering values determined by Buiteveld et al. (1994 with a [1+0.3S/37] adjustment for salinity based on Morel (1974 appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and
    – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007 within instrument precisions, a useful factor in validating the backscattering measurements.

    This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy:

    –The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S

  20. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    , the topography itself, and other factors were also investigated. The experimental work is based on a multi-purpose experimental injection mould with a collection of test surface inserts manufactured by EDM (electrical discharge machining). Experimental production took place with an injection moulding machine......Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... in a clean room environment. The mould and the injection moulding machine were fitted with transducers for subsequent process analysis. A total of 13 different plastic material grades were applied. Topographical characterisation was performed with an optical laser focus detection instrument. Replication...

  1. Impact of watershed topography on hyporheic exchange

    Science.gov (United States)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-08-01

    Among the interactions between surface water bodies and aquifers, hyporheic exchange has been recognized as a key process for nutrient cycling and contaminant transport. Even though hyporheic exchange is strongly controlled by groundwater discharge, our understanding of the impact of the regional groundwater flow on hyporheic fluxes is still limited because of the complexity arising from the multi-scale nature of these interactions. In this work, we investigate the role of watershed topography on river-aquifer interactions by way of a semi-analytical model, in which the landscape topography is used to approximate the groundwater head distribution. The analysis of a case study shows how the complex topographic structure is the direct cause of a substantial spatial variability of the aquifer-river exchange. Groundwater upwelling along the river corridor is estimated and its influence on the hyporheic zone is discussed. In particular, the fragmentation of the hyporeic corridor induced by groundwater discharge at the basin scale is highlighted.

  2. New null screen design for corneal topography

    Science.gov (United States)

    Campos-García, Manuel; Estrada-Molina, Amilcar; Díaz-Uribe, Rufino

    2011-09-01

    In this work we report the design of a null screen for corneal topography. Here we assume that the corneal surface is an ellipsoid with a diameter of 12 mm and a curvature radius of 7.8 mm. To avoid the difficulties in the alignment of the test system due to the face contour (eyebrows, nose, or eyelids), we design a conical null-screen with spots (similar to ellipses) drawn on it in such a way that its image, which is formed by reflection on the test surface, becomes an exact radial array of circular spots if the surface is perfect. Additionally, we performed a numerical simulation introducing Gaussian random errors in the coordinates of the centroids of the spots on the image plane, and in the coordinates of the sources (spots on the null-screen) in order to obtain the conical null-screen that reduces the error in the evaluation of the topography.

  3. Scholte waves generated by seafloor topography

    CERN Document Server

    Zheng, Yingcai; Liu, Jing; Fehler, Michael C

    2013-01-01

    Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear wave velocity structure that is important information for multi-component P-S seismic imaging. Three different approaches are taken to understand excitation of Scholte waves and numerical aspects of modeling Scholte waves, including analytical Cagniard-de Hoop analysis, the boundary integral method and a staggered grid finite difference method. For simple media for which the Green's function can be easily computed, the boundary element method produces accurate results. The finite difference method shows strong numerical artifacts and stagnant artificial waves can be seen in the vicinity of topography at the fluid-solid interface even when using fine computational grids. However, the amplitude of these artificial waves decays away from the seafloor. It is sensible to place receivers away fr...

  4. Topography over South America from ERS altimetry

    Science.gov (United States)

    Brenner, Anita; Frey, Herb; DiMarzio, John; Tsaoussi, Lucia

    1997-01-01

    The results of the surface topography mapping of South America during the ERS-1 geodetic mission are presented. The altimeter waveforms, the range measurement, and the internal and Doppler range corrections were obtained. The atmospheric corrections and solid tides were calculated. Comparisons between Shuttle laser altimetry and ERS-1 altimetry grid showed good agreement. Satellite radar altimetry data can be used to improve the topographic knowledge of regions for which only poor elevation data currently exist.

  5. ATM Coastal Topography-Alabama 2001

    Science.gov (United States)

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that

  6. ATM Coastal Topography-Mississippi, 2001

    Science.gov (United States)

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS

  7. Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye

    Science.gov (United States)

    Gruppetta, Steve; Koechlin, Laurent; Lacombe, François; Puget, Pascal

    2005-10-01

    A system to measure the topography of the first optical surface of the human eye noninvasively by using a curvature sensor is described. The static corneal topography and the dynamic topography of the tear film can both be measured, and the topographies obtained are presented. The system makes possible the study of the dynamic aberrations introduced by the tear film to determine their contribution to the overall ocular aberrations in healthy eyes, eyes with corneal pathologies, and eyes wearing contact lenses.

  8. Influence of Contractility on Myocardial Ultrasonic Integrated Backscatter and Cyclic Variation in Integrated Backscatter

    Institute of Scientific and Technical Information of China (English)

    毕小军; 邓又斌; 潘敏; 杨好意; 向慧娟; 常青; 黎春雷

    2002-01-01

    Summary: To evaluate the effects of left ventricular contractility on the changes of average image intensity (AII) of the myocardial integrated backscatter (IB) and cyclic variation in IB (CVIB), 7 adult mongrel dogs were studied. The magnitude of AII and CVIB were measured from myocardial IB carves before and after dobutamine or propranolol infusion. Dobutamine or propranolol did not affect the magnitude of AII (13.8±0. 7 vs 14.7±0. 5, P>0. 05 or 14.3±0.5 vs 14.2±0. 4, P>0. 05). However, dobutamine produced a significant increase in the magnitude of CVIB (6.8±0.3 vs 9.5 ± 0. 6, P<0. 001) and propranolol induced significant decrease in the magnitude of CVIB (7.1±0. 2 vs 5.2±0. 3, P<0. 001). The changes of the magnitude of AII and CVIB in the myocardium have been demonstrated to reflect different myocardial physiological and pathological changes respectively. The alteration of contractility did not affect the magnitude of AII but induced significant change in CVIB. The increase of left ventricular contractility resulted in a significant rise of the magnitude of CVIB and the decrease of left ventricular contractility resulted in a significant fall of the magnitude of CVIB.

  9. On the maximum backscattering cross section of passive linear arrays

    DEFF Research Database (Denmark)

    Solymar, L.; Appel-Hansen, Jørgen

    1974-01-01

    The maximum backscattering cross section of an equispaced linear array connected to a reactive network and consisting of isotropic radiators is calculated forn = 2, 3, and 4 elements as a function of the incident angle and of the distance between the elements. On the basis of the results obtained...

  10. Backscatter B [USGS]--Offshore of Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The...

  11. Backscatter C [Fugro]--Offshore of Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The...

  12. Lattice constant measurement from electron backscatter diffraction patterns

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2017-01-01

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local ...

  13. Using Back-Scattering to Enhance Efficiency in Neutron Detectors

    CERN Document Server

    Kittelmann, Thomas; Cai, Xiao Xiao; Kanaki, Kalliopi; Cooper-Jensen, Carsten P; Hall-Wilton, Richard

    2015-01-01

    The principle of using strongly scattering materials to recover efficiency in neutron detectors, via back-scattering of unconverted thermal neutrons, is discussed in general. Feasibility of the method is illustrated through Geant4-based simulations of a specific setup involving a moderator-like material placed behind a single layered boron-10 thin film gaseous detector.

  14. Backscatter C [Fugro]--Offshore of Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The...

  15. The Growth and Decay of Equatorial Backscatter Plumes.

    Science.gov (United States)

    1980-02-01

    spatially connected to bottomside backscatter, a feature noted in Jica - marca radar observations that led Woodman and La Hoz (1976) to speculate that...described in Section Ill-B, this pattern of plume growth resembles the "C-shaped" and "fishtail" patterns found in Jica - marca radar RTI displays of 50-MHz

  16. Backscatter B [USGS]--Offshore of Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The...

  17. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  18. Backscatter gauge description for inspection of neutron absorber content

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R. A.; Gibbs, K. M.; Couture, A. H.

    2013-01-19

    This paper describes design, calibration, and testing of a dual He-3 detector neutron backscatter gauge for use in the Savannah River Site Mixed Oxide Fuel project. The gauge is demonstrated to measure boron content and uniformity in concrete slabs used in the facility construction.

  19. Backscatter A [CSUMB]--Offshore Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The...

  20. Backscatter A [CSUMB]--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3254) of the Offshore of Ventura map area, California. The raster data...

  1. Transport properties and superconductivity in presence of backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Mattis, D. (Utah Univ., Salt Lake City, UT (United States). Dept. of Physics); Rudin, S. (Army Electronics Technology and Devices Lab., Fort Monmouth, NJ (United States))

    1992-04-20

    In this paper, the authors achieve an exact evaluation of the Kubo formula for electrical resistivity, with a model in which random impurity scattering is parametrized by random back-scattering matrix elements. If the alloy is a superconductor, our theory allows us to correlate T{sub c} with the normal-phase resistivity. The results are in nice agreement with experiment.

  2. Ultrasonic Characterization of Tissues via Backscatter Frequency Dependence

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.

    1997-01-01

    , significantly lower mean frequency of ultrasound backscattered from cirrhotic, compared to normal, liver tissue was noted, Studies of benign and malignant liver tumors (hemangiomas and metastases, respectively) indicated differences in frequency content of these tumors, compared to the adjacent normal liver...

  3. Tracking California seafloor seeps with bathymetry, backscatter and ROVs

    Science.gov (United States)

    Orange, Daniel L.; Yun, Janet; Maher, Norman; Barry, James; Greene, Gary

    2002-11-01

    The California (USA) margin includes two different tectonic regimes: subduction north of the Mendocino Triple Junction and translation south. Both margins include seeps, and their distribution can be inferred using seafloor bathymetry and backscatter as well as subsurface seismic data. Anomalous bathymetric and backscatter features related to fluid expulsion include headless submarine canyons, fault zones, anticlines, pockmarks, and mud volcanoes. Anomalous backscatter may be caused by authigenic carbonate (related to the bacterial oxidation of methane) or cold seep clams—both have an impedance and roughness that may be higher than the surrounding seafloor. Remote-operated vehicle (ROV) dives to such suspect seep sites document the presence of extensive authigenic carbonate, areally restricted cold seep communities, carpets of chemoautotrophic bacteria, and bubbling gas. Our operations in the Monterey Bay, on the translational California margin, and the Eel River basin, on the convergent margin, indicate that bathymetric and backscatter maps of the seafloor, if sufficiently high resolution, can be used to map seep sites, and that the distribution of such seeps can be used to constrain subsurface conduits of fluid flow. ROVs, due to their combination of visualization, propulsion, manipulation, sonar, and navigation, provide an excellent platform for ground-truthing, mapping, and sampling seafloor seeps.

  4. Source point calibration from an arbitrary electron backscattering pattern

    DEFF Research Database (Denmark)

    Lassen, Niels Christian Krieger

    1999-01-01

    Precise knowledge of the position of the source point is a requirement if electron backscattering patterns (EBSPs) are to be used for crystal orientation measurements or other types of measurements which demand a geometrical analysis of the patterns. Today, possibly the most popular method...

  5. Simulation of multistatic and backscattering cross sections for airborne radar

    Science.gov (United States)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  6. BackscatterB [Swath]--Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate...

  7. BackscatterC [7125]--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate...

  8. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.

    backscattering in delineating seafloor parameters characteristic of nodule-rich sediments. In this paper, processed Hydrosweep multi-beam backscatter data from 45 spot locations in the CIOB (where nodule samples are available) were analysed to estimate seafloor...

  9. BackscatterA [8210]--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate...

  10. BackscatterA [8101]--Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate...

  11. BackscatterC [7125]--Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate...

  12. BackscatterB [Swath]--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate...

  13. BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  14. BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  15. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Dunne, S.C.; Judge, J.; van de Giesen, N.C.

    2014-01-01

    Microwave backscatter from vegetated surfaces is influenced by vegetation structure and vegetation water content (VWC), which varies with meteorological conditions and moisture in the root zone. Radar backscatter observations are used for many vegetation and soil moisture monitoring applications und

  16. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  17. Multibeam Backscatter Data for Selected U.S. Locations in the Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multibeam backscatter imagery extracted from gridded bathymetry for selected U.S. locations in the Pacific. The backscatter datasets include data collected using the...

  18. BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  19. BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate...

  20. BackscatterB [Swath]--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate...

  1. BackscatterC [7125]--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate...

  2. BackscatterC [7125]--Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate...

  3. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics ranging from earthquake hazards to hillslope processes. Lidar data provide a digital representation of the earth's surface at a resolution sufficient to appropriately capture the processes that contribute to landscape evolution. The U.S. National Science Foundation-funded OpenTopography Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OpenTopography provides free, online access to lidar data in a number of forms, including the raw point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OpenTopography system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise level, to access these massive lidar datasets and derived products for use in research and teaching. OpenTopography hosts over 500 billion lidar returns covering 85,000 km2. These data are all in the public domain and are provided by a variety of partners under joint agreements and memoranda of understanding with OpenTopography. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OpenTopography has become a hub for high-resolution topography

  4. Interferometer for measuring dynamic corneal topography

    Science.gov (United States)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  5. Generation of Solitary Rossby Waves by Unstable Topography

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-Wei; YIN Bao-Shu; DONG Huan-He

    2012-01-01

    The effect of topography on generation of the solitary Rossby waves is researched. Here, the topography, as a forcing for waves generation, is taken as a function of longitude variable x and time variable t, which is called unstable topography. With the help of a perturbation expansion method, a forced mKdv equation governing the evolution of amplitude of the solitary Rossby waves is derived from quasi-geostrophic vortieity equation and is solved by the pseudo-spectral method. Basing on the waterfall plots, the generational features of the solitary Rossby waves under the influence of unstable topography and stable topography are compared and some conclusions are obtained.

  6. A comparative study of RADAR Ka-band backscatter

    Science.gov (United States)

    Mapelli, D.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, Paolo; Calleja, Eduardo; Rommen, B.; Giudici, D.; Monti Guarnieri, A.

    2014-10-01

    Ka-band RADAR frequency range has not yet been used for Synthetic Aperture Radar (SAR) from space so far, although this technology may lead to important applications for the next generation of SAR space sensors. Therefore, feasibility studies regarding a Ka-band SAR instrument have been started [1][2], for the next generation of SAR space sensors. In spite of this, the lack of trusted references on backscatter at Ka-band revealed to be the main limitation for the investigation of the potentialities of this technology. In the framework of the ESA project "Ka-band SAR backscatter analysis in support of future applications", this paper is aimed at the study of wave interaction at Ka-band for a wide range of targets in order to define a set of well calibrated and reliable Ka-band backscatter coefficients for different kinds of targets. We propose several examples of backscatter data resulting from a critical survey of available datasets at Ka-band, focusing on the most interesting cases and addressing both correspondences and differences. The reliability of the results will be assessed via a preliminary comparison with ElectroMagnetic (EM) theoretical models. Furthermore, in support of future technological applications, we have designed a prototypal software acting as a "library" of earth surface radar response. In our intention, the output of the study shall contribute to answer to the need of a trustworthy Ka-Band backscatter reference. It will be of great value for future technological applications, such as support to instrument analysis, design and requirements' definition (e.g.: Signal to Noise Ratio, Noise Equivalent Sigma Zero).

  7. 3D Visualization of Radar Backscattering Diagrams Based on OpenGL

    Science.gov (United States)

    Zhulina, Yulia V.

    2004-12-01

    A digital method of calculating the radar backscattering diagrams is presented. The method uses a digital model of an arbitrary scattering object in the 3D graphics package "OpenGL" and calculates the backscattered signal in the physical optics approximation. The backscattering diagram is constructed by means of rotating the object model around the radar-target line.

  8. Drivers of ASCAT C band backscatter variability in the dry snow zone of Antarctica

    NARCIS (Netherlands)

    Fraser, Alexander D.; Nigro, Melissa A.; Ligtenberg, Stefan R. M.; Legresy, Benoit; Inoue, Mana; Cassano, John J.; Munneke, Peter Kuipers; Lenaerts, Jan T. M.; Young, Neal W.; Treverrow, Adam; Van Den Broeke, Michiel; Enomot, Hiroyuki

    2016-01-01

    C band backscatter parameters contain information about the upper snowpack/firn in the dry snow zone. The wide incidence angle diversity of the Advanced Scatterometer (ASCAT) gives unprecedented characterisation of backscatter anisotropy, revealing the backscatter response to climatic forcing. The A

  9. Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography

    Science.gov (United States)

    James, Peter B.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.

    2015-02-01

    To explore the mechanisms of support of surface topography on Mercury, we have determined the admittances and correlations of topography and gravity in Mercury's northern hemisphere from measurements obtained by NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. These admittances and correlations can be interpreted in the context of a number of theoretical scenarios, including flexural loading and dynamic flow. We find that long-wavelength (spherical harmonic degree l shallow crustal compensation and are weakly correlated with positive mass anomalies in the mantle. The center of the Caloris basin features some of the thinnest crust on the planet, and the basin is underlain by a large negative mass anomaly. We also explore models of dynamic flow in the presence of compositional stratification above the liquid core. If there is substantial compositional stratification in Mercury's solid outer shell, relaxation of perturbed compositional interfaces may be capable of creating and sustaining long-wavelength topography.

  10. Corneal topography and soft contact lens fit.

    Science.gov (United States)

    Young, Graeme; Schnider, Cristina; Hunt, Chris; Efron, Suzanne

    2010-05-01

    To determine which ocular topography variables affect soft contact lens fit. Fifty subjects each wore three pairs of soft lenses in random succession (Vistakon Acuvue 2, Vistakon Acuvue Advance, Ciba Vision Night & Day), and various aspects of lens fit were evaluated. The steeper base curves of each type were worn in one eye and the flatter base curves in the other eye. Corneal topography data were collected using a Medmont E300 corneal topographer (Camberwell, Australia). Corneal curvature, shape factor (SF), and corneal height were measured over a 10 mm chord and also over the maximum measurable diameter. These were measured in the horizontal, vertical, steepest, and flattest meridians. With each lens type, the steeper base curve provided the best fit on the greatest proportion of eyes and the significant differences in various aspects of fit were noted between base curves. For each lens type, there was no significant difference in mean K-reading between those eyes best fit with the steeper base curve and those eyes best fit with the flatter base curve. Two of the lenses showed a positive correlation between centration and horizontal corneal height (maximum), whereas one lens showed a negative correlation between centration and horizontal SF (SF = e). Several lenses showed a positive correlation between post-blink movement and horizontal or vertical corneal SF. The measurement of corneal topography using current Placido disc instrumentation allows a better prediction of soft lens fit than by keratometry, but it is not reliable enough to enable accurate selection of the best fitting base curve. Some correlations are evident between corneal measurements; however, trial fitting remains the method of choice for selection of soft lens base curve.

  11. Macromolecular Topography Leaps into the Digital Age

    Science.gov (United States)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    A low-cost, real-time digital topography system is under development which will replace x-ray film and nuclear emulsion plates. The imaging system is based on an inexpensive surveillance camera that offers a 1000x1000 array of 8 im square pixels, anti-blooming circuitry, and very quick read out. Currently, the system directly converts x-rays to an image with no phosphor. The system is small and light and can be easily adapted to work with other crystallographic equipment. Preliminary images have been acquired of cubic insulin at the NSLS x26c beam line. NSLS x26c was configured for unfocused monochromatic radiation. Six reflections were collected with stills spaced from 0.002 to 0.001 degrees apart across the entire oscillation range that the reflections were in diffracting condition. All of the reflections were rotated to the vertical to reduce Lorentz and beam related effects. This particular CCD is designed for short exposure applications (much less than 1 sec) and so has a relatively high dark current leading to noisy raw images. The images are processed to remove background and other system noise with a multi-step approach including the use of wavelets, histogram, and mean window filtering. After processing, animations were constructed with the corresponding reflection profile to show the diffraction of the crystal volume vs. the oscillation angle as well as composite images showing the parts of the crystal with the strongest diffraction for each reflection. The final goal is to correlate features seen in reflection profiles captured with fine phi slicing to those seen in the topography images. With this development macromolecular topography finally comes into the digital age.

  12. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  13. EAARL Coastal Topography - Sandy Hook 2007

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Gateway National Recreation Area's Sandy Hook Unit in New Jersey, acquired on May 16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  14. Bessel Function Model for Corneal Topography

    CERN Document Server

    Okrasiński, Wojciech

    2011-01-01

    In this paper we consider a new nonlinear mathematical model for corneal topography formulated as two-point boudary value problem. We derive it from first physical principles and provide some mathematical analysis. The existence and uniqeness theorems are proved as well as various estimates on exact solution. At the end we fit the simplified model based on Modified Bessel Function of the First Kind with the real corneal data consisting of matrix of 123x123 points and obtain an error of order of 1%.

  15. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements.

    Science.gov (United States)

    Lu, Xiaomei; Hu, Yongxiang; Pelon, Jacques; Trepte, Charles; Liu, Katie; Rodier, Sharon; Zeng, Shan; Lucker, Patricia; Verhappen, Ron; Wilson, Jamie; Audouy, Claude; Ferrier, Christophe; Haouchine, Said; Hunt, Bill; Getzewich, Brian

    2016-12-12

    A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30° off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180° scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.

  16. Theoretical Analysis of Rayleigh Backscattering Noise in Fiber Raman Amplifiers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, a new theoretical model for Rayleigh backscattering (RB) analysis of fiber Raman amplifiers is proposed. The model includes all the interactions among the pumps, signals, and all orders of RB. The results show that the higher order RB has a negligible influence on the performance of the amplifier. The co-propagating and counterpropagating RB power of the signal grow quadratically with the net-gain of the amplifier. The signal to double Rayleigh backscattering noise ratio (OSNRDRB ) of backward-pumped FRAs is better than that of the forward-pumped ones at high net-gain level (> 13 dB), while at low net-gain level the OSNRDrb of the forward-pumped FRAs is slightly better than that of the backward-pumped ones.

  17. Control of coherent backscattering by breaking optical reciprocity

    CERN Document Server

    Bromberg, Y; Popoff, S M; Cao, H

    2015-01-01

    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we show that by breaking reciprocity in a controlled manner, we can tune, rather than simply suppress, these phenomena. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a non-reciprocal magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, and realize a continuous transition from the well-known peak to a dip in the backscattered intensity. Our results may open new possibilities fo...

  18. Lidar extinction-to-backscatter ratio of the ocean.

    Science.gov (United States)

    Churnside, James H; Sullivan, James M; Twardowski, Michael S

    2014-07-28

    Bio-optical models are used to develop a model of the lidar extinction-to-backscatter ratio applicable to oceanographic lidar. The model is based on chlorophyll concentration, and is expected to be valid for Case 1 waters. The limiting cases of narrow- and wide-beam lidars are presented and compared with estimates based on in situ optical measurements. Lidar measurements are also compared with the model using in situ or satellite estimates of chlorophyll concentration. A modified lidar ratio is defined, in which the properties of pure sea water are removed. This modified ratio is shown to be nearly constant for wide-beam lidar operating in low-chlorophyll waters, so accurate inversion to derive extinction and backscattering is possible under these conditions. This ratio can also be used for lidar calibration.

  19. Validation Test of Geant4 Simulation of Electron Backscattering

    CERN Document Server

    Kim, Sung Hun; Basaglia, Tullio; Han, Min Cheol; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo

    2015-01-01

    Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the range of Geant4 versions, not always in the direction of better compatibility with experiment. Goodness-of-fit tests complemented by categorical analysis tests identify a configuration based on Geant4 Urban multiple scattering model in Geant4 vers...

  20. RFID tag modification for full depth backscatter modulation

    Science.gov (United States)

    Scott, Jeffrey Wayne [Pasco, WA; Pratt, Richard M [Richland, WA

    2010-07-20

    A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes. Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.

  1. Present State of Electron Backscatter Diffraction and Prospective Developments

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzer, R A; Field, D P; Adams, B L; Kumar, M; Schwartz, A J

    2008-10-24

    Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystals. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade (Schwartz et al. 2000) due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data acquisition, and the access to complementary information about the microstructure on a submicron scale. From the same specimen area, surface structure and morphology of the microstructure are characterized in great detail by the relief and orientation contrast in secondary and backscatter electron images, element distributions are accessed by energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), or cathodoluminescence analysis, and the orientations of single grains and phases can now be determined, as a complement, by EBSD.

  2. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    Science.gov (United States)

    Dartnell, Pete; Finlayson, David; Conrad, Jamie; Cochrane, Guy; Johnson, Samuel

    2010-01-01

    In the summer of 2008, as part of the California Seafloor Mapping Program (CSMP) the U.S. Geological Survey, Coastal and Marine Geology mapped a nearshore region of the northern Santa Barbara Channel in Southern California (fig 1). The CSMP is a cooperative partnership between Federal and State agencies, Universities, and Industry to create a comprehensive coastal/marine geologic and habitat basemap series to support the Marine Life Protection Act (MLPA) inititive. The program is supported by the California Ocean Protection Council and the California Coastal Conservancy. The 2008 mapping collected high resolution bathymetry and acoustic backscatter data using a bathymetric side scan system within State waters from about the 10-m isobath out over 3-nautical miles. This Open-File Report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and FGDC metadata.

  3. Coherent inelastic backscattering of laser light from three isotropic atoms

    CERN Document Server

    Ketterer, Andreas; Shatokhin, Vyacheslav N

    2014-01-01

    We study the impact of double and triple scattering contributions on coherent backscattering of laser light from saturated isotropic atoms, in the helicity preserving polarization channel. Using the recently proposed diagrammatic pump-probe approach, we analytically derive single-atom spectral responses to a classical polychromatic driving field, combine them self-consistently to double and triple scattering processes, and numerically deduce the corresponding elastic and inelastic spectra, as well as the total backscattered intensities. We find that account of the triple scattering contribution leads to a faster decay of phase-coherence with increasing saturation of the atomic transition as compared to double scattering alone, and to a better agreement with the experiment on strontium atoms.

  4. Measurement of the topography of human cadaver lenses using the PAR corneal topography system

    Science.gov (United States)

    Fernandez, Viviana; Manns, Fabrice; Zipper, Stanley; Sandadi, Samith; Hamaoui, Marie; Tahi, Hassan; Ho, Arthur; Parel, Jean-Marie A.

    2001-06-01

    To measure the radius of curvature and asphericity of the anterior and posterior surfaces of crystalline lenses of human Eye-Bank eyes using the PAR Corneal Topography System. The measured values will be used in an optical model of the eye for lens refilling procedures.

  5. Analysis Of Scoliosis By Back Shape Topography

    Science.gov (United States)

    Turner-Smith, Alan R.; Harris, John D.

    1983-07-01

    The use of surface topography for the assessment of scoliotic deformity in the clinic depends firstly on the quality of measures which reliably characterise deformity of the back, and secondly on the ease and speed with which these measures can be applied. A method of analysis of back shape measurements is presented which can be applied to any topographic measurement system. Measures presented are substantially independent of minor changes in the patient's posture in rotation and flexion from one clinic to the next, and yet sensitive enough to indicate significant improvement or degeneration of the disease. The presentation shows (1) horizontal cross-sections at ten levels up the back from sacrum to vertebra prominens, (2) angles of rotation of the surface over a small region about the spine, (3) three vertical profiles following the line of the spine, and (4) measures of maximum kyphosis and lordosis. Dependence on the operator has been reduced to a minimum. Extreme care in positioning the patient is unnecessary and those spinous processes which are easily palpable, the vertebra prominens and the two dimples over the posterior superior iliac spines are marked. Analysis proceeds entirely automatically once the basic shape data have been supplied. Applications of the technique to indirect moire topography and a television topographic measurement system are described.

  6. Topography Influences Adherent Cell Regulation of Osteoclastogenesis.

    Science.gov (United States)

    Nagasawa, M; Cooper, L F; Ogino, Y; Mendonca, D; Liang, R; Yang, S; Mendonca, G; Uoshima, K

    2016-03-01

    The importance of osteoclast-mediated bone resorption in the process of osseointegration has not been widely considered. In this study, cell culture was used to investigate the hypothesis that the function of implant-adherent bone marrow stromal cells (BMSCs) in osteoclastogenesis is influenced by surface topography. BMSCs isolated from femur and tibia of Sprague-Dawley rats were seeded onto 3 types of titanium surfaces (smooth, micro, and nano) and a control surface (tissue culture plastic) with or without osteogenic supplements. After 3 to 14 d, conditioned medium (CM) was collected. Subsequently, rat bone marrow-derived macrophages (BMMs) were cultured in media supplemented with soluble receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) as well as BMSC CM from each of the 4 surfaces. Gene expression levels of soluble RANKL, osteoprotegerin, tumor necrosis factor α, and M-CSF in cultured BMSCs at different time points were measured by real-time polymerase chain reaction. The number of differentiated osteoclastic cells was determined after tartrate-resistant acid phosphatase staining. Analysis of variance and t test were used for statistical analysis. The expression of prominent osteoclast-promoting factors tumor necrosis factor α and M-CSF was increased by BMSCs cultured on both micro- and nanoscale titanium topographies (P cells at the implant-bone interface may indirectly control osteoclastogenesis and bone accrual around endosseous implants. © International & American Associations for Dental Research 2015.

  7. Surface effects on the microwave backscatter and emission of snow

    Science.gov (United States)

    Fung, A. K.; Stiles, W. H.; Ulaby, F. T.

    1980-01-01

    Measurements were performed with active and passive microwave sensors for both dry and wet snow conditions. A layer of Rayleigh scatterers with irregular surface boundaries is found to be a reasonable model for interpreting passive and active measurements in X- and Ku-bands. It was found that roughness had a significant effect on both backscatter and emission from wet snow; however, only a small effect was noted for dry snow.

  8. Observation of transverse coherent backscattering in disordered photonic structures

    CERN Document Server

    Brake, Sebastian; Leykam, Daniel; Desyatnikov, Anton; Denz, Cornelia

    2015-01-01

    We report on the experimental observation of weak localization in an optically induced disordered (2+1)-dimensional photonic structure. Our flexible method of optical induction is applied with a nondiffracting random intensity distribution. We focus on the analysis of a statistical output spectrum for many probe events with variance of the incoming beam's transverse spatial frequency. For particular spatial frequencies we find considerable signatures of transverse coherent backscattering.

  9. Valley-protected backscattering suppression in silicon photonic graphene

    CERN Document Server

    Chen, Xiao-Dong

    2016-01-01

    In this paper, we study valley degree of freedom in all dielectric silicon photonic graphene. Photonic band gap opening physics under inversion symmetry breaking is revisited by the viewpoint of nonzero valley Chern number. Bulk valley modes with opposite orbital angular momentum are unveiled by inspecting time-varying electric fields. Topological transition is well illustrated through photonic Dirac Hamiltonian. Valley dependent edge states and the associated valley-protected backscattering suppression around Z-shape bend waveguide have been demonstrated.

  10. Pattern matching approach to pseudosymmetry problems in electron backscatter diffraction.

    Science.gov (United States)

    Nolze, Gert; Winkelmann, Aimo; Boyle, Alan P

    2016-01-01

    We demonstrate an approach to overcome Kikuchi pattern misindexing problems caused by crystallographic pseudosymmetry in electron backscatter diffraction (EBSD) measurements. Based on the quantitative comparison of experimentally measured Kikuchi patterns with dynamical electron diffraction simulations, the algorithm identifies the best-fit orientation from a set of pseudosymmetric candidates. Using measurements on framboidal pyrite (FeS2) as an example, we also show the improvement of the orientation precision using this approach.

  11. Reduced Brillouin backscatter in CO2 laser-target interaction

    Science.gov (United States)

    Ng, A.; Offenberger, A. A.; Karttunen, S. J.

    1981-02-01

    A substantially reduced Brillouin reflection has been found for CO2 laser-irradiated high-density gas targets. In contrast to the high reflectivity (60%) previously observed for underdense hydrogen plasma, total backscatter (stimulated plus specular) is found to peak at 30% for incident intensity 5 times 10 to the twelfth W per square centimeter and decrease thereafter to 18% at 10 to the thirteenth W per square centimeter. The ponderomotive effects are postulated to account for these observations.

  12. EAARL Coastal Topography - Northern Gulf of Mexico

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Sallenger, Abby; Wright, C. Wayne; Travers, Laurinda J.; Lebonitte, James

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived coastal topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. One objective of this research is to create techniques to survey areas for the purposes of geomorphic change studies following major storm events. The USGS Coastal and Marine Geology Program's National Assessment of Coastal Change Hazards project is a multi-year undertaking to identify and quantify the vulnerability of U.S. shorelines to coastal change hazards such as effects of severe storms, sea-level rise, and shoreline erosion and retreat. Airborne Lidar surveys conducted during periods of calm weather are compared to surveys collected following extreme storms in order to quantify the resulting coastal change. Other applications of high-resolution topography include habitat mapping, ecological monitoring, volumetric change detection, and event assessment. The purpose of this project is to provide highly detailed and accurate datasets of the northern Gulf of Mexico coastal areas, acquired on September 19, 2004, immediately following Hurricane Ivan. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Airborne Advanced Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532 nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking RGB (red-green-blue) digital camera, a high-resolution multi

  13. Backscatter LIDAR signal simulation applied to spacecraft LIDAR instrument design

    Science.gov (United States)

    Fochesatto, J.; Ristori, P.; Flamant, P.; Machado, M. E.; Singh, U.; Quel, E.

    2004-01-01

    In the framework of the scientific cooperation between the CEILAP laboratory (Argentina) and IPSL Institut Pierre Simon Laplace (France), devoted to the development of LIDAR techniques for Atmospheric sciences, a new area of scientific research, involving LIDARs, is starting in Argentine space technology. This new research area is under consideration at CEILAP in a joint effort with CONAE, the Argentine space agency, responsible for the development of future space missions. The LIDAR technique is necessary to improve our knowledge of meteorological, dynamic, and radiative processes in the South American region, for the whole troposphere and the lower stratosphere. To study this future mission, a simple model for the prediction of backscatter LIDAR signal from a spacecraft platform has been used to determine dimensions and detection characteristics of the space borne LIDAR instrument. The backscatter signal was retrieved from a modeled atmosphere considering its molecular density profile and taking into account different aerosols and clouds conditions. Signal-to-noise consideration, within the interval of possible dimension of the instrument parameters, allows us to constrain the telescope receiving area and to derive maximum range achievable, integration time and the final spatial and temporal resolutions of backscatter profiles.

  14. Simulation Studies of the Backscattering Signal in HSRL Technique

    CERN Document Server

    Georgakopoulou, Angelika

    2012-01-01

    The technique of High Spectral Resolution Lidar (HSRL) for atmospheric monitoring allows the determination of the aerosol to molecular ratio and can be used in UHECR Observatories using air fluorescence telescopes. By this technique a more accurate estimate of the Cherenkov radiation superimposed to the fluorescence signal can be achieved. A laboratory setup was developed to determine the backscattering coefficients using microparticles diluted in water and diffusion interfaces. In this setup we used a CW SLM laser at 532 nm and a 250 mm Newtonian telescope. Simulations of the above experimental configuration have been made using Scatlab\\c{opyright}, FINESSE\\c{opyright} 0.99.8 and MATLAB\\c{opyright} and are presented in this work. We compare the simulated 2-dimensional Fabry-Perot fringe images of the backscattering signal recorded in the CCD sensor with that of experimental ones. Additionally, we simulated the backscattering of the laser beam by the atmosphere at a height of 2000 m and we have studied the in...

  15. Investigation of phonon coherence and backscattering using silicon nanomeshes

    Science.gov (United States)

    Lee, Jaeho; Lee, Woochul; Wehmeyer, Geoff; Dhuey, Scott; Olynick, Deirdre L.; Cabrini, Stefano; Dames, Chris; Urban, Jeffrey J.; Yang, Peidong

    2017-01-01

    Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes with smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction. PMID:28051081

  16. Corneal Topography Analysis of Stromal Corneal Dystrophies

    OpenAIRE

    Kocluk, Yusuf; Yalniz-Akkaya, Zuleyha; Burcu, Ayse; Ornek, Firdevs

    2015-01-01

    Objective: The aim was to compare the corneal topography and tomography parameters of macular corneal dystrophy (MCD), granular corneal dystrophy (GCD) and lattice corneal dystrophy (LCD) patients obtained by Scheimpflug imaging system. Methods: The charts, photographs and topography images of patients were reviewed retrospectively. This study included 73 eyes of 73 patients (28 MCD, 20 GCG and 25 LCD patients). Topography images were obtained by Pentacam (Oculus Optikgerate, Wetzlar, Germany...

  17. Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited)

    Science.gov (United States)

    Lithgow-Bertelloni, C. R.; Silver, P. G.

    2009-12-01

    Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.

  18. Gravity Terrain Effect of the Seafloor Topography in Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong Tai-Rong Guo

    2007-01-01

    Full Text Available Gravity terrain correction is used to compensate for the gravitational effects of the topography residual to the Bouguer plate. The seafloor topography off the eastern offshore of Taiwan is extremely rugged, and the depth of the sea bottom could be greater than 5000 m. In order to evaluate the terrain effect caused by the seafloor topography, a modern computer algorithm is used to calculate the terrain correction based on the digital elevation model (DEM.

  19. Origin of bending in uncoated microcantilever - Surface topography?

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  20. Sun Illuminated Color Image of the 150 meter grid of the Puerto Rico Trench (SUNILLUM.TIF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geologic features in the Puerto Rico trench are remotely sensed, monitored, collected, studied, and analyzed. This data set was colorized by depth and converted to...

  1. Sun Illuminated Color Image of the 150 meter grid of the Puerto Rico Trench (SUNILLUM.TIF)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Geologic features in the Puerto Rico trench are remotely sensed, monitored, collected, studied, and analyzed. This data set was colorized by depth and converted to...

  2. Australian topography from Seasat overland altimetry

    Science.gov (United States)

    Frey, Herbert; Brenner, Anita C.

    1990-01-01

    Retracking of overland returns from the Seasat altimeter using algorithms originally developed for recovering elevations over ice has led to the successful recovery of high quality continental topography over Australia and other continents. Cross-over analysis both before and after orbit adjustment shows the altimetric data over land to have a 2-3 m quality. Direct comparison of gridded Seasat data with surface data re-averaged in the same way shows excellent agreement except where Seasat data are sparse, due either to poor track spacing or to dropouts caused by loss of tracker lock over steeply sloping ground. These results suggest that useful topographic data can be derived from Seasat and the more recent Geosat altimeters for parts of the world where surface data are few or of poor quality.

  3. EAARL topography: Dry Tortugas National Park

    Science.gov (United States)

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd

    2008-01-01

    This lidar-derived submarine topography map was produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs for the purposes of habitat mapping, ecological monitoring, change detection, ad event assessment (for example: bleaching, hurricanes, disease outbreaks). As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring water depth and conducting cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to managers of coastal tropical habitats.

  4. Mean Dynamic Topography of the Arctic Ocean

    Science.gov (United States)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  5. Gravity and topography. [of planet Mars

    Science.gov (United States)

    Esposito, P. B.; Banerdt, W. B.; Lindal, G. F.; Sjogren, W. L.; Slade, M. A.; Bills, B. G.; Smith, D. E.; Balmino, G.

    1992-01-01

    The paper summarizes the fundamental gravity field constants for Mars and a brief historical review of early determinations and current-day accurate estimates. These include the planetary gravitational constant, global figure, dynamical oblateness, mean density, and rotational period. Topographic results from data acquired from the 1967 opposition to the most recent, 1988, opposition are presented. Both global and selected local topographic variations and features are discussed. The inertia tensor and the nonhydrostatic component of Mars are examined in detail. The dimensionless moment of inertia about the rotational axis is 0.4 for a body of uniform density and 0.37621 if Mars were in hydrostatic equilibrium. By comparing models of both gravity and topography, inferences are made about the degree and depth of compensation in the interior and stresses in the lithosphere.

  6. Corneal topography matching by iterative registration.

    Science.gov (United States)

    Wang, Junjie; Elsheikh, Ahmed; Davey, Pinakin G; Wang, Weizhuo; Bao, Fangjun; Mottershead, John E

    2014-11-01

    Videokeratography is used for the measurement of corneal topography in overlapping portions (or maps) which must later be joined together to form the overall topography of the cornea. The separate portions are measured from different viewpoints and therefore must be brought together by registration of measurement points in the regions of overlap. The central map is generally the most accurate, but all maps are measured with uncertainty that increases towards the periphery. It becomes the reference (or static) map, and the peripheral (or dynamic) maps must then be transformed by rotation and translation so that the overlapping portions are matched. The process known as registration, of determining the necessary transformation, is a well-understood procedure in image analysis and has been applied in several areas of science and engineering. In this article, direct search optimisation using the Nelder-Mead algorithm and several variants of the iterative closest/corresponding point routine are explained and applied to simulated and real clinical data. The measurement points on the static and dynamic maps are generally different so that it becomes necessary to interpolate, which is done using a truncated series of Zernike polynomials. The point-to-plane iterative closest/corresponding point variant has the advantage of releasing certain optimisation constraints that lead to persistent registration and alignment errors when other approaches are used. The point-to-plane iterative closest/corresponding point routine is found to be robust to measurement noise, insensitive to starting values of the transformation parameters and produces high-quality results when using real clinical data.

  7. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  8. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  9. Effect of Surface Topography on Stress Concentration Factor

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhengkun; LIAO Ridong

    2015-01-01

    Neuber rule and Arola-Ramulu model are widely used to predict the stress concentration factor of rough specimens. However, the height parameters and effective valley radius used in these two models depend strongly on the resolution of the roughness-measuring instruments and are easily introduce measuring errors. Besides, it is difficult to find a suitable parameter to characterize surface topography to quantitatively describe its effect on stress concentration factor. In order to overcome these disadvantages, profile moments are carried out to characterize surface topography, surface topography is simulated by superposing series of cosine components, the stress concentration factors of different micro cosine-shaped surface topographies are investigated by finite element analysis. In terms of micro cosine-shaped surface topography, an equation using the second profile moment to estimate the stress concentration factor is proposed, predictions for the stress concentration factor using the proposed expression are within 10% error compared with the results of finite element analysis, which are more accurate than other models. Moreover, the proposed equation is applied to the real surface topography machined by turning. Predictions for the stress concentration factor using the proposed expression are within 10% of the maximum stress concentration factors and about 5% of the effective stress concentration factors estimated from the finite element analysis for three levels of turning surface topographies under different simulated scales. The proposed model is feasible in predicting the stress concentration factors of real machined surface topographies.

  10. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    Science.gov (United States)

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  11. Coherent Backscatter Opposition Effect from Scratches on Solid Surfaces

    Science.gov (United States)

    Hapke, B. W.; Piatek, J. L.; Nelson, R. M.; Smythe, W. D.; Hale, A. S.

    2003-05-01

    Shepard and Arvidson [1] discovered that the solid surfaces of rocks exhibit an opposition effect. We have measured the phase curve of a natural surface of a piece of solid basalt between 0.05 and 5 degrees in circularly polarized light using the JPL long arm goniometer and confirmed that it has an opposition effect. The circular polarization ratio (CPR) increased with decreasing phase angle, consistent with a coherent backscatter opposition effect (CBOE) Recent laboratory investigations of the CBOE in planetary regolith analogs [2,3,4] have revealed that the width of the peak is remarkably insensitive to particle size, in strong contrast to theoretical expectations. We have hypothesized that one of the reasons for this might be that multiple scattering between irregularities, such as scratches, on the surfaces of a particle could cause coherent backscatter, in addition to scattering between particles. To test this hypothesis we ground the surface of a piece of plate glass with 5 micrometer abrasive and measured its phase curve. As the phase angle decreases, the intensity increases and the CPR decreases, consistent with specular reflection. However, near zero phase there is a nonlinear rise about 2 degrees wide superimposed on the linear specular peak accompanied by an increase in CPR, showing that coherent backscatter is occuring. A piece of commercial diffusing glass exhibited the same phenomena. These results support our hypothesis and also provide a possible explanation for the observations of opposition effects from the solid surfaces of rocks. This research was supported by a grant from NASA's PGG Program References cited: [1] Shepard and Arvidson, Icarus, 141, 172-178 (1999). [2] Nelson et al, Icarus, 147, 545-558 (2000). [3] Nelson et al, Planet. Space Sci., 50, 849-856 (2002). [4] Piatek et al, Abstract, DPS Conference (2003).

  12. Evaluation of a compact sensor for backscattering and absorption.

    Science.gov (United States)

    Bogdan, Alina Gainusa; Boss, Emmanuel S

    2011-07-20

    Seawater inherent optical properties (IOPs) are key parameters in a wide range of applications in environmental studies and oceanographic research. In particular, the absorption coefficient (a) is the typical IOP used to obtain the concentration of chlorophyll-a in the water-a critical parameter in biological oceanography studies and the backscattering coefficient (b(b)) is used as a measure of turbidity. In this study, we test a novel instrument concept designed to obtain both the absorption and backscattering coefficients. The instrument would emit a collimated monochromatic light beam into the water retrieving the backscattered light intensity as a function of distance from the center of illumination. We use Monte Carlo modeling of light propagation to create an inversion algorithm that translates the signal from such an instrument into values of a and b(b). Our results, based on simulations spanning the bulk of natural values of seawater IOP combinations, indicate that a 6.2 cm diameter instrument with a radial resolution of 1 cm would be capable of predicting b(b) within less than 13.4% relative difference and a within less than 57% relative difference (for 90% of the inverted a values, the relative errors fall below 29.7%). Additionally, these errors could be further reduced by constraining the inversion algorithm with information from concurrent measurements of other IOPs. Such a compact and relatively simple device could have multiple applications for in situ optical measurements, including a and b(b) retrievals from instrumentation mounted on autonomous underwater vehicles. Furthermore, the same methodology could possibly be used for an out-of-water sensor. © 2011 Optical Society of America

  13. Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model

    Science.gov (United States)

    Manik, Henry M.

    2016-08-01

    Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.

  14. Silk film topography directs collective epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Brian D Lawrence

    Full Text Available The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.

  15. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  16. A Backscatter-Suppressed Beta Spectrometer for Neutron Decay Studies

    CERN Document Server

    Wietfeldt, F E; Anderman, R; Bateman, F B; Dewey, M S; Komives, A; Thompson, A K; Balashov, S; Mostovoy, Y; Mostovoy, Yu.

    2004-01-01

    We describe a beta electron spectrometer for use in an upcoming experiment that will measure the beta-antineutrino correlation coefficient (a-coefficient) in neutron beta decay. Electron energy is measured by a thick plastic scintillator detector. A conical array of plastic scintillator veto detectors is used to suppress events where the electron backscattered. A Monte Carlo simulation of this device in the configuration of the a-coefficient experiment is presented. The design, construction, and testing of a full-scale prototype device is described. We discuss the performance of this spectrometer with respect to its suitability for the experiment.

  17. DUNBID, the Delft University neutron backscattering imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Bom, V.R. [Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)]. E-mail: vb@iri.tudelft.nl; Eijk, C.W.E. van [Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Ali, M.A. [Atomic Energy Authority, Nuclear Research Center, Reactor and Neutron Physics Department, P.O. Box 13759, Abu Zabal, Cairo (Egypt)

    2005-12-01

    In the search for low-metallic land mines, the neutron backscattering technique may be applied if the soil is sufficiently dry. An advantage of this method is the speed of detection: the scanning speed may be made comparable to that of a metal detector. A two-dimensional position sensitive detector is tested to obtain an image of the back scattered thermal neutron radiation. Results of experiments using a radionuclide neutron source are presented. The on-mine to no-mine signal ratio can be improved by the application of a window on the neutron time-of-flight. Results using a pulsed neutron generator are also presented.

  18. Combined backscatter and transmission method for nuclear density gauge

    Directory of Open Access Journals (Sweden)

    Golgoun Seyed Mohammad

    2015-01-01

    Full Text Available Nowadays, the use of nuclear density gauges, due to the ability to work in harsh industrial environments, is very common. In this study, to reduce error related to the ρ of continuous measuring density, the combination of backscatter and transmission are used simultaneously. For this reason, a 137Cs source for Compton scattering dominance and two detectors are simulated by MCNP4C code for measuring the density of 3 materials. Important advantages of this combined radiometric gauge are diminished influence of μ and therefore improving linear regression.

  19. Bulk media assay using backscattered Pu-Be neutrons

    CERN Document Server

    Csikai, J

    1999-01-01

    Spectral yields of elastically backscattered Pu-Be neutrons measured for graphite, water, polyethylene, liquid nitrogen, paraffin oil, SiO sub 2 , Al, Fe, and Pb slabs show a definite correlation with the energy dependence of the elastic scattering cross sections, sigma sub E sub L (E sub n). The C, N and O can be identified by the different structures in their sigma sub E sub L (E sub n) functions. The integrated spectral yields versus thickness exhibit saturation for each sample. The interrogated volume is limited by the presence of hydrogen in the sample. (author)

  20. High resolution backscattering studies of nanostructured magnetic and semiconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal)]. E-mail: afonseca@itn.pt; Franco, N. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Alves, E. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Barradas, N.P. [Instituto Tecnologico e Nuclear, Dept. Fisica, Estrada Nac. 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Leitao, J.P. [Departamento de Fisica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Sobolev, N.A. [Departamento de Fisica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Banhart, D.F. [Z. E. Elektronenmikroskopie, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); Presting, H. [Daimler-Chrysler Forschungszentrum, 89081 Ulm (Germany); Ulyanov, V.V. [Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Nikiforov, A.I. [Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation)

    2005-12-15

    Low dimension structures raises inevitably new technological challenges in materials science. The new structures must fulfill stringent requirements in composition, crystalline quality and interface sharpness among others. We present and discuss the results of Si/Ge quantum structures and FePt/C multilayer structures deposited at different temperatures by ion beam sputtering. Evidence for the presence of FePt nanoparticles embedded in the C matrix and Ge islands in Ge/Si multilayers structures was found. Size and stoichiometry of the nanoparticles and the multilayer periodicity was obtained using Rutherford backscattering at grazing angles of incidence. The strain state of the single crystalline layers was determined by tilt axis channelling.

  1. Photoneutron production with the Laser-Compton backscattered photons

    Energy Technology Data Exchange (ETDEWEB)

    Toyokawa, Hiroyuki; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa; Yamada, Kawakatsu; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Sei, Norihiro; Chiwaki, Mitsukuni [Electrotechnical Laboratory, Tsukuba, Ibaraki (Japan)

    1999-03-01

    A method to produce quasi-monoenergetic photoneutrons for detector calibration was examined. The photoneutrons were produced with a photo-induced neutron emission of a {sup 9}Be using the Laser-Compton backscattered photons. Because the photon energy is continuously tunable, neutrons with various energies are obtained. Yield of the neutrons was measured with a liquid scintillation detector at the photon energies from 1651 keV to 3019 keV. Neutron yield at around the threshold energy for the {sup 9}Be ({gamma}, n) reaction was measured by changing the photon energy in a 10 keV step. (author)

  2. HAB detection based on absorption and backscattering properties of phytoplankton

    Science.gov (United States)

    Lei, Hui; Pan, Delu; Bai, Yan; Chen, Xiaoyan; Zhou, Yan; Zhu, Qiankun

    2011-11-01

    The coastal area of East China Sea (ECS) suffers from the harmful algal blooms (HAB) frequently every year in the warm season. The most common causative phytoplankton algal species of HAB in the ECS in recent years are Prorocentrum donghaiense (dinoflagellates), Karenia mikimotoi (dinoflagellates which could produce hemolytic and ichthyotoxins) and Skeletonema costatum (diatom). The discrimination between the dinoflagellates and diatom HAB through ocean color remote sensing approach can add the knowledge of HAB events in ECS and help to the precaution. A series of in-situ measurement consisted of absorption coefficient, total scattering and particulate backscattering coefficient was conducted in the southern coast of Zhejiang Province in May 2009, and the estuary of Changjiang River in August 2009 and December 2010, which encountered two HAB events and a moderate bloom. The Inherent Optical Properties (IOPs) of the bloom waters have significant difference between phytoplankton species in absorption and backscattering properties. The chlorophyll a specific absorption coefficient (a*phy(λ)) for the bloom patches (chlorophyll a concentration >6mg m-3) differ greatly from the adjacent normal seawater, with the a*phy(λ) of bloom water lower than 0.03 m2 mg-1 while the a*phy(λ) of the adjacent normal seawater is much higher (even up to 0.06 m2 mg-1). Meanwhile, the backscattering coefficients at 6 wavebands (420, 442, 470, 510, 590 and 700nm) are also remarkably lower for bloom waters ( 0.02 m-1). The backscattering coefficient ratio (Rbp(λ)) is much lower for diatom bloom waters than for dinoflagellates types (0.01079 vs. 0.01227). A discrimination model based on IOPs is established, and several typical dinoflagellates and diatom bloom events including Prorocentrum donghaiense, Karenia mikimotoi and Skeletonema costatum in the ECS are picked out for testing with the MODIS-L2 and L3 ocean color remote sensing products from NASA website. The result proves that the

  3. 3D Visualization of Radar Backscattering Diagrams Based on OpenGL

    Directory of Open Access Journals (Sweden)

    Yulia V. Zhulina

    2004-03-01

    Full Text Available A digital method of calculating the radar backscattering diagrams is presented. The method uses a digital model of an arbitrary scattering object in the 3D graphics package “OpenGL” and calculates the backscattered signal in the physical optics approximation. The backscattering diagram is constructed by means of rotating the object model around the radar-target line.

  4. Monte Carlo Simulation of the Coaxial Electrons Backscattering from Thin Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the Monte Carlo method, we simulated the trajectories of coaxial backscattering electrons corresponding to a new type of scanning electron microscope. From the calculated results, we obtain a universal expression, which describes with good accuracy the backscattering coefficient versus film thickness under all conditions used. By measuring the coaxial backscattering coefficient and using this universal formula, the thickness of thin films can be determined if the composition is known.

  5. The effect of wind-generated bubbles on sea-surface backscatter

    OpenAIRE

    Vossen, R.; Ainslie, M.A.

    2009-01-01

    Predictions of sea-surface back-scattering strength are needed for sonar performance modelling. Such predictions are hampered by two problems. First, measurements of surface back-scattering are not available at small grazing angles. These are of special interest to low-frequency active sonar since they mainly contribute to long range propagation. Second, existing theoretical models based on a bubble-free interface underestimate the surface back-scattering strength at larger grazing angles. We...

  6. New Global Bathymetry and Topography Model Grids

    Science.gov (United States)

    Smith, W. H.; Sandwell, D. T.; Marks, K. M.

    2008-12-01

    A new version of the "Smith and Sandwell" global marine topography model is available in two formats. A one-arc-minute Mercator projected grid covering latitudes to +/- 80.738 degrees is available in the "img" file format. Also available is a 30-arc-second version in latitude and longitude coordinates from pole to pole, supplied as tiles covering the same areas as the SRTM30 land topography data set. The new effort follows the Smith and Sandwell recipe, using publicly available and quality controlled single- and multi-beam echo soundings where possible and filling the gaps in the oceans with estimates derived from marine gravity anomalies observed by satellite altimetry. The altimeter data have been reprocessed to reduce the noise level and improve the spatial resolution [see Sandwell and Smith, this meeting]. The echo soundings database has grown enormously with new infusions of data from the U.S. Naval Oceanographic Office (NAVO), the National Geospatial-intelligence Agency (NGA), hydrographic offices around the world volunteering through the International Hydrographic Organization (IHO), and many other agencies and academic sources worldwide. These new data contributions have filled many holes: 50% of ocean grid points are within 8 km of a sounding point, 75% are within 24 km, and 90% are within 57 km. However, in the remote ocean basins some gaps still remain: 5% of the ocean grid points are more than 85 km from the nearest sounding control, and 1% are more than 173 km away. Both versions of the grid include a companion grid of source file numbers, so that control points may be mapped and traced to sources. We have compared the new model to multi-beam data not used in the compilation and find that 50% of differences are less than 25 m, 95% of differences are less than 130 m, but a few large differences remain in areas of poor sounding control and large-amplitude gravity anomalies. Land values in the solution are taken from SRTM30v2, GTOPO30 and ICESAT data

  7. Sputtering and surface topography modification of bismuth thin films under swift {sup 84}Kr{sup 15+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S., E-mail: souchaoui@gmail.com [Universite des Sciences et de la Technologie H. Boumediene (USTHB), Faculte de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Dib, A. [Centre de Recherche Nucleaire d' Alger, CRNA, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Msimanga, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa)

    2012-12-01

    The sputtering and surface topography modification of bismuth thin films deposited onto Si substrates and irradiated by 27.5 MeV {sup 84}Kr{sup 15+} ions over the fluence range 10{sup 12}-10{sup 14} cm{sup -2} have been studied using three complementary techniques: Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM) and X-ray diffraction (XRD). The RBS analysis reveals a linear reduction of the initial thickness of the irradiated bismuth samples by {approx}4% up to 7% with increasing ion fluence corresponding to a mean sputtering yield of {approx}2.9 Multiplication-Sign 10{sup 2} at/ion. Besides, significant sample surface topography changes occur upon ion irradiation consisting in grain growth and surface roughening clearly pointed out by performed AFM and XRD analyses. Moreover, a close correlation is observed between the variations versus ion fluence of the measured sputtering yield and the determined Bi surface grain size and compressive strain. These moderate Bi surface effects are similar to those pointed out previously for thin films irradiated by MeV heavy ions. They can be mainly caused by inelastic electronic collision mechanisms taking place within the Bi material electronic stopping power regime below the threshold for latent track formation.

  8. Observations of 2D Doppler backscattering on MAST

    CERN Document Server

    Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L

    2015-01-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...

  9. Investigation of sheared liquids by neutron backscattering and reflectivity

    CERN Document Server

    Wolff, M; Hock, R; Frick, B; Zabel, H

    2002-01-01

    We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)

  10. Study of sporadic-E clouds by backscatter radar

    Directory of Open Access Journals (Sweden)

    Z. Houminer

    Full Text Available It is shown that swept-frequency backscatter ionograms covering a range of azimuths can be used to study the dynamics of sporadic-E clouds. A simple technique based on analytic ray tracing can be used to simulate the observed narrow traces associated with Es patches. This enables the location and extent of the sporadic-E clouds to be determined. The motion of clouds can then be determined from a time sequence of records. In order to demonstrate the method, results are presented from an initial study of 5 days of backscatter ionograms from the Jindalee Stage B data base obtained during March-April 1990. Usually 2–3 clouds were observed each day, mainly during the evening and up to midnight. The clouds lasted from 1–4 h and extended between 30°–80° in azimuth and 150-800 km in range. The clouds were mostly stationary or drifted generally westward with velocities of up to 80 m s–1. Only one cloud was observed moving eastward.

  11. Dynamical electron backscatter diffraction patterns. Part I: pattern simulations.

    Science.gov (United States)

    Callahan, Patrick G; De Graef, Marc

    2013-10-01

    A new approach for the simulation of dynamic electron backscatter diffraction (EBSD) patterns is introduced. The computational approach merges deterministic dynamic electron-scattering computations based on Bloch waves with a stochastic Monte Carlo (MC) simulation of the energy, depth, and directional distributions of the backscattered electrons (BSEs). An efficient numerical scheme is introduced, based on a modified Lambert projection, for the computation of the scintillator electron count as a function of the position and orientation of the EBSD detector; the approach allows for the rapid computation of an individual EBSD pattern by bi-linear interpolation of a master EBSD pattern. The master pattern stores the BSE yield as a function of the electron exit direction and exit energy and is used along with weight factors extracted from the MC simulation to obtain energy-weighted simulated EBSD patterns. Example simulations for nickel yield realistic patterns and energy-dependent trends in pattern blurring versus filter window energies are in agreement with experimental energy-filtered EBSD observations reported in the literature.

  12. Control of collective FSBS and backscatter SRS through plasma composition

    Science.gov (United States)

    Rose, Harvey; Lushnikov, Pavel

    2005-10-01

    Nominal NIF parameters are near the collective forward SBS (FSBS) threshold (P. M. Lushnikov and H. A. Rose, Phys. Rev. Lett. 92, 255003 (2004), ``L&R''). It will be shown that being on this instability edge can be used as a control lever: a small amount of high Z dopant may lead to qualitative change in FSBS regime at fixed laser intensity, possibly reducing backscatter instability losses (Such results have already been observed, but absent SSD, a key aspect of our theory: R. M. Stevenson et al., Phys. Plasmas 11, 2709 (2004); L. J. Suter et al., 2738, ib.). Ponderomotive FSBS regimes are determined by the parameter I=F^2( vosc / vosc ve . - ve )^2( ne / ne nc . - nc ) / ( ne / ne nc . - nc ) ν . - ν, with ν the dimensionless ion acoustic damping coefficient and F the optic f/#. Analytical results will be presented which show a decrease of I1pt's threshold value through the addition of high Z dopant to low Z plasma, owing to increased thermal contribution to FSBS. Alternatively, one may raise the threshold by managing the value of νby, e.g., adding He to SiO2. For nominal NIF parameters, a range of He fraction in SiO2 plasma is predicted to suppress backscatter SRS while maintaining control of forward SBS.

  13. Variation of backscatter as an indicator of boundary layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M. [UMIST, Dept. of Chemical Engineering, Manchester (United Kingdom); Hunter, G.C. [National Power, Swindon (United Kingdom)

    1997-10-01

    In this work we have developed software to display cross-sections of the variance of backscatter over a given sampling period in addition to its absolute mean. We have analyzed a series of Lidar cross-sections of elevated plumes dispersing into a convective BL and have then derived profiles both of the mean backscatter, , as a function of height and of its relative, shot-to-shot, variation, {radical} /. The latter is a measure of the homogeneity of the aerosol. There is no cheap device for measuring BL depths so we were interested in comparing depths estimated using our Lidar with those predicted by the current ADMS atmospheric dispersion model. This is based on integrating an energy budget to predict the BL development and as such relies on values for the initial lapse rate and for the surface sensible heat flux. A major shortcoming of the model appears to be that, in the absence of measurements, it must assume a default value for the former; the latter may be estimated from surface measurements but is very sensitive to the assumed availability of surface moisture. (LN)

  14. Observations of HF backscatter decay rates from HAARP generated FAI

    Science.gov (United States)

    Bristow, W. A.; Hysell, D. L.

    2016-12-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  15. Backscattering measuring system for optimization of intravenous laser irradiation dose

    Science.gov (United States)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  16. Discriminant classification of different fish-species backscattering

    Science.gov (United States)

    Zhang, Qiao; Xu, Feng; Liu, Yin; Zhang, Chun

    2012-11-01

    The complex structure of fish and multispecies composition complicate the analysis of acoustic data. Consequently, it is difficult to obtain a highly accurate rate of classification by using current approaches. This paper introduces two discriminating methods: the adaptive segmentation temporal centroid method and the wavelet packet multi-scale information entropy method. To verify and compare these two methods, an ex situ experiment has been performed with three kinds of fish: Crucian carp (Carassius auratus), Yellow-headed catfish (Pelteobagrus fulvidraco) and Bluntnose black bream (Megalobrama amblycephale). The backscattering signals of these fishes are obtained. Then the temporal centroid in the divided sub-segmentation of the backscattering envelope is calculated, and the multi-scale information entropy of the wavelet packet decomposition in different frequency bands is extracted. Finally, three kinds of fish are successfully classified by using a BP neural network. The result shows that the adaptive segmentation temporal centroid method is 4% more accurate than the wavelet packet multi-scale information entropy method.

  17. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  18. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  19. Observations of HF backscatter decay rates from HAARP generated FAI

    Science.gov (United States)

    Bristow, William; Hysell, David

    2016-07-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  20. Subgrid-scale backscatter after the shock-turbulence interaction

    Science.gov (United States)

    Livescu, Daniel; Li, Zhaorui

    2017-01-01

    The statistics of the subgrid scales (SGS) are studied in the context of Large Eddy Simulations (LES) of turbulence after the interaction with a nominally normal shock wave. In general, in practical applications, the shock wave width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J. Fluid Mech., 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). By using LIA to alleviate the need to resolve the shock wave, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number ≈ 180 are used for an analysis of the SGS backscatter properties. In particular, it is shown that the interaction with the shock wave decreases the asymmetry of the SGS dissipation Probability Density Function (PDF) as the shock Mach number increases, with a significant enhancement in size of the regions and magnitude of backscatter.

  1. Topography Simulation for Nanometer Semiconductor Process

    Science.gov (United States)

    Lee, Jun‑Gu; Yoon, Sukin; Won, Taeyoung

    2006-04-01

    In this paper, we propose a novel scheme for simulating the topography of nanometer semiconductor processes. Since the proposed scheme considers only the surface cells moving forward and backward during etching or deposition, the simulator does not suffer from an increased memory requirement due to the complexity of the high aspect-ratio structure built on the wafer. This method consists of steps for calculating the front surface moving forward and backward and converting the cell structure into a tetrahedral mesh structure for subsequent numerical simulation. This method mitigates the excessive memory requirement through a dynamic allocating scheme wherein only topographical data at the surface cell are taken into account. A spillover algorithm is also implemented in the simulator so that any excessive etching or deposition which is more than the rate acceptable at the exposed cell during a single time step is reconsidered in the adjacent cells. Our proposed scheme was verified for structures with complex geometry, such as a thin film transistor-liquid crystal display (TFT-LCD) structure, a read only memory (ROM) or a dynamic random access memory (DRAM) cell.

  2. Quantum Loop Topography for Machine Learning

    Science.gov (United States)

    Zhang, Yi; Kim, Eun-Ah

    2017-05-01

    Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a multidimensional image from the "sample" Hamiltonian or wave function by evaluating two-point operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a topological quantum phase transition with machine learning, the perspective of bridging traditional condensed matter theory with machine learning will be broadly valuable.

  3. Topography of cerebellar deficits in humans.

    Science.gov (United States)

    Grimaldi, Giuliana; Manto, Mario

    2012-06-01

    The cerebellum is a key-piece for information processing and is involved in numerous motor and nonmotor activities, thanks to the anatomical characteristics of the circuitry, the enormous computational capabilities and the high connectivity to other brain areas. Despite its uniform cytoarchitecture, cerebellar circuitry is segregated into functional zones. This functional parcellation is driven by the connectivity and the anatomo-functional heterogeneity of the numerous extra-cerebellar structures linked to the cerebellum, principally brain cortices, precerebellar nuclei and spinal cord. Major insights into cerebellar functions have been gained with a detailed analysis of the cerebellar outputs, with the evidence that fundamental aspects of cerebrocerebellar operations are the closed-loop circuit and the predictions of future states. Cerebellar diseases result in disturbances of accuracy of movements and lack of coordination. The cerebellar syndrome includes combinations of oculomotor disturbances, dysarthria and other speech deficits, ataxia of limbs, ataxia of stance and gait, as well as often more subtle cognitive/behavioral impairments. Our understanding of the corresponding anatomo-functional maps for the human cerebellum is continuously improving. We summarize the topography of the clinical deficits observed in cerebellar patients and the growing evidence of a regional subdivision into motor, sensory, sensorimotor, cognitive and affective domains. The recently described topographic dichotomy motor versus nonmotor cerebellum based upon anatomical, functional and neuropsychological studies is also discussed.

  4. Epithelial topography for repetitive tooth formation

    Directory of Open Access Journals (Sweden)

    Marcia Gaete

    2015-12-01

    Full Text Available During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells.

  5. Global dynamic topography: geoscience communities requirements

    Science.gov (United States)

    Dewez, T.; Costeraste, J.

    2012-04-01

    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. This is because they first revealed the relief of previously unavailable earth landscapes, enabled quantitative geomorphometric analyses across entire landscapes and improved the resolution of measurements. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel, which is amazing seeing where we come from, they are now regarded as mostly obsolete given the sub-meter imagery coming through web services like Google Earth. Geoscientists now appear to desire two additional features: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and dispose of regularly updated topography to retrieve earth surface changes, while retaining the key for success: data availability at no charge. A new satellite instrument is currently under phase 0 study at CNES, the French space agency, to fulfil these aims. The scientific community backing this demand is that of natural hazards, glaciology and to a lesser extent the biomass community. The system under study combines a native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Data generated through this system, designed for revisit time better than a year, is intended to produce not only single acquisition digital surface models, colour orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverages, but also time series of them. This enables 3D change detection with centimetre-scale planimetric precision and metric vertical precision, in complement of classical spectral change appoaches. The purpose of this contribution, on behalf of the science team, is to present the mission concepts and philosophy and the scientific needs for such instrument including

  6. Kinematics of Compton backscattering x-ray source for angiography

    Energy Technology Data Exchange (ETDEWEB)

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  7. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to discrim

  8. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping

    Science.gov (United States)

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie

    2012-01-01

    Backscatter information from multibeam echosounders (MBES) have been shown to contain useful information for the characterisation of benthic habitats. Compared to backscatter imagery, angular response of backscatter has shown advantages for feature discrimination. However its low spatial resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response was combined with image segmentation of backscatter imagery to characterise benthic biological habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video observations for constructing training data. To produce benthic habitat maps, decision tree supervised classification results were combined with mean shift image segmentation for class assignment. The results from mean angular response characteristics show effects of incidence angle at the outer angle for invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence angle. Automatic segmentation processing produce over segmented results but showed good discrimination between heterogeneous regions. Accuracy assessment from habitat maps produced overall accuracies of 79.6% (Kappa coefficient = 0.66) and 80.2% (Kappa coefficient = 0.67) for biota and substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the highest. The ability to combine angular response and backscatter imagery provides an alternative approach for investigating biological information from acoustic backscatter data.

  9. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES.

    Science.gov (United States)

    Wuttke, Joachim; Zamponi, Michaela

    2013-11-01

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  10. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  11. A Multivariate Correlation Analysis of High- Frequency Bottom Backscattering Strength Measurements With Geotechnical Parameters

    NARCIS (Netherlands)

    Simons, D.G.; Snellen, M.; Ainslie, M.A.

    2007-01-01

    Sound backscattered from the seabed has been measured in a 10x10-nmi2 region of the North Sea, characterized by a variety of bottom types, including mud, sand, and gravel. The backscattering strength measurements are made by a forward- looking sonar, operating at 100 kHz and tilted at an angle of 30

  12. A multivariate correlation analysis of high-frequency bottom backscattering strength measurements with geotechnical parameters

    NARCIS (Netherlands)

    Simons, D.G.; Snellen, M.; Ainslie, M.A.

    2007-01-01

    Sound backscattered from the seabed has been measured in a 10 × 10-nmi2 region of the North Sea, characterized by a variety of bottom types, including mud, sand, and gravel. The backscattering strength measurements are made by a forward-looking sonar, operating at 100 kHz and tilted at an angle of 3

  13. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Brent K; Holt, Andrew P [Department of Physics, Rhodes College, Memphis, TN (United States); Kaste, Sue C, E-mail: hoffmeister@rhodes.edu [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN (United States)

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  14. Identification of major backscattering sources in trees and shrubs at 10 GHz

    Science.gov (United States)

    Zoughi, R.; Wu, L. K.; Moore, R. K.

    1986-01-01

    A short-range very-fine-resolution FM-CW radar scatterometer has been used to identify the primary contributors to 10-GHz radar backscatter from pine, pin oak, American sycamore and sugar maple trees, and from creeping juniper shrubs. This system provided a range resolution of 11 cm and gave a 16-cm diameter illumination area at the target range of about 4 m. For a pine tree, the needles caused the strongest backscatter as well as the strongest attenuation in the radar signal. Cones, although insignificant contributors to the total backscatter, were more important for backscattering than for attenuation. For the rest of the trees, leaves were the strongest cause of backscattering and attenuation. However, in the absence of leaves, the petioles, small twigs, and branches gave relatively strong backscatter. For American sycamore and sugar maple trees, the fruits did not affect the total backscatter unless they were packed in clusters. For creeping juniper the backscattered energy and attenuation in the radar signal were mainly due to the top two layers of the evergreen scales. The contribution of the tree trunks was not determined.

  15. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz

    NARCIS (Netherlands)

    Vossen, R. van; Ainslie, M.A.

    2011-01-01

    Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoreti

  16. The effect of wind-generated bubbles on sea-surface backscatter

    NARCIS (Netherlands)

    Vossen, R. van; Ainslie, M.A.

    2009-01-01

    Predictions of sea-surface back-scattering strength are needed for sonar performance modelling. Such predictions are hampered by two problems. First, measurements of surface back-scattering are not available at small grazing angles. These are of special interest to low-frequency active sonar since t

  17. Rossby waves with linear topography in barotropic fluids

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.

  18. Coastal Topography—Anegada, British Virgin Islands, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was...

  19. Surface topography evolvement of galvanized steels in sheet metal forming

    Institute of Scientific and Technical Information of China (English)

    HOU Ying-ke; YU Zhong-qi; ZHANG Wei-gang; JIANG Hao-min; LIN Zhong-qin

    2009-01-01

    U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming, i.e., the surface topographies of galvanized steels are roughened in SMF. Moreover, GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However, the hardness should not be too high.

  20. Tectonic control on the persistence of glacially sculpted topography.

    Science.gov (United States)

    Prasicek, Günther; Larsen, Isaac J; Montgomery, David R

    2015-08-14

    One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 10(4) years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain.

  1. Engineering microscale topographies to control the cell–substrate interface

    Science.gov (United States)

    Nikkhah, Mehdi; Edalat, Faramarz; Manoucheri, Sam; Khademhosseini, Ali

    2013-01-01

    Cells in their in vivo microenvironment constantly encounter and respond to a multitude of signals. While the role of biochemical signals has long been appreciated, the importance of biophysical signals has only recently been investigated. Biophysical cues are presented in different forms including topography and mechanical stiffness imparted by the extracellular matrix and adjoining cells. Microfabrication technologies have allowed for the generation of biomaterials with microscale topographies to study the effect of biophysical cues on cellular function at the cell–substrate interface. Topographies of different geometries and with varying microscale dimensions have been used to better understand cell adhesion, migration, and differentiation at the cellular and sub-cellular scales. Furthermore, quantification of cell-generated forces has been illustrated with micropillar topographies to shed light on the process of mechanotransduction. In this review, we highlight recent advances made in these areas and how they have been utilized for neural, cardiac, and musculoskeletal tissue engineering application. PMID:22521491

  2. EAARL Submerged Topography-U.S. Virgin Islands 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A submerged topography elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the U.S. Virgin Islands was produced from remotely sensed,...

  3. EAARL Submerged Topography-U.S. Virgin Islands 2003

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A submerged topography elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the U.S. Virgin Islands was produced from remotely sensed,...

  4. Application of SAR Imagery in Submarine Topography Surveys

    Institute of Scientific and Technical Information of China (English)

    张宁川; 梁开龙; 桂力民

    2004-01-01

    An important research area in oceanographic surveying and mapping is to obtain submarine topography by remote sensing technique, especially by SAR imagery. In this article, problems related to SAR imagery are analyzed to provide references for the further research.

  5. Influence of Parent Material and Topography on some Soil ...

    African Journals Online (AJOL)

    Influence of Parent Material and Topography on some Soil Properties in Southwestern Nigeria. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... on soils formed on banded gneiss and quartzite schist parent materials.

  6. Coastal Topography—Anegada, British Virgin Islands, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was...

  7. Geoid height versus topography for oceanic plateaus and swells

    Science.gov (United States)

    Sandwell, David T.; Mackenzie, Kevin R.

    1989-01-01

    Gridded geoid height data (Marsh et al.l, 1986) and gridded bathymetry data (Van Wykhouse, 1973) are used to estimate the average compensation depths of 53 oceanic swells and plateaus. The relationship between geoid height and topography is examined using Airy and thermal compensation models. It is shown that geoid height is linearly related to topography between wavelengths of 400 and 4000 m as predicted by isostatic compensation models. The geoid/topography ratio is dependent on the average depth of compensation. The intermediate geoid/topography ratios of most thermal swells are interpreted as a linear combination of the decaying thermal swell signature and that of the persisting Airy-compensated volcanic edifice.

  8. Mapping Indigenous Settlement Topography in the Caribbean Using Drones

    National Research Council Canada - National Science Library

    Sonnemann, Till; Ulloa Hung, Jorge; Hofman, Corinne

    2016-01-01

    ...; predominantly conglomerations of shells, ceramics and lithics. While archaeological material may not always be visible on the surface, particular settlement patterns may be identifiable by a topography created through cultural action...

  9. Polarized Rayleigh back-scattering from individual semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Duming; Wu Jian; Lu Qiujie; Gutierrez, Humberto R; Eklund, Peter C, E-mail: hur3@psu.edu [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-06

    A complete understanding of the interaction between electromagnetic radiation and semiconductor nanowires (NWs) is required in order to further develop a new generation of opto-electronic and photonic devices based on these nanosystems. The reduced dimensionality and high aspect ratio of nanofilaments can induce strong polarization dependence of the light absorption, emission and scattering, leading in some cases to the observation of optical antenna effects. In this work we present the first systematic study of polarized Rayleigh back-scattering from individual crystalline semiconductor NWs with known crystalline structure, orientation and diameters. To explain our experimental Rayleigh polar patterns, we propose a simple theory that relies on a secondary calculation of the volume-averaged internal electromagnetic fields inside the NW. These results revealed that the internal and emitted field can be enhanced depending on the polarization with respect to the NW axis; we also show that this effect strongly depends on the NW diameter.

  10. Results from the Daresbury Compton backscattering X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Laundy, D. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Priebe, G. [Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, DE (Germany); Jamison, S.P. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Graham, D.M. [The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Phillips, P.J. [STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Smith, S.L.; Saveliev, Y. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD (United Kingdom); Vassilev, S. [The University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Seddon, E.A., E-mail: elaine.seddon@stfc.ac.uk [The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-10-11

    The Daresbury Compton Backscattering X-ray Source uses a high power Ti Sapphire laser interacting in head on geometry with electron bunches in the ALICE energy recovery linear accelerator. X-ray photons with peak energy of 21 keV were generated with the accelerator operating at an energy of 29.6 MeV. The spatial profile of the X-rays emitted near the electron beam axis was measured. The characteristics of the X-ray yield measured as a function of relative timing between the laser pulse and the interacting electron bunch was found to be consistent with the modelled intensity behaviour using measured electron and laser beam parameters.

  11. Many-beam dynamical simulation of electron backscatter diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, Aimo [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)], E-mail: winkelm@mpi-halle.mpg.de; Trager-Cowan, Carol; Sweeney, Francis [Department of Physics, University of Strathclyde, Glasgow G4 ONG, Scotland (United Kingdom); Day, Austin P. [Aunt Daisy Scientific Ltd., Dixton Rd., Monmouth, Gwent, NP25 3PP (United Kingdom); Parbrook, Peter [EPSRC National Centre for III-V Technologies, University of Sheffield (United Kingdom)

    2007-04-15

    We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{l_brace}0001{r_brace} at 20 kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.

  12. Remote identification of a shipwreck site from MBES backscatter.

    Science.gov (United States)

    Masetti, Giuseppe; Calder, Brian

    2012-11-30

    The method described attempts to remotely identify the shape of an anthropogenic object, such as a wreck of a modern vessel, using reflectivity data from Multi-Beam Echosounder (MBES) systems. In the beam domain, the backscatter strength values - geometrically and radiometrically corrected - are used to extract a large number of Gray Level Co-occurrence Matrix (GLCM) features with different input parameters. Principal Component Analysis (PCA) is applied in order to achieve dimensionality reduction whilst a K-means algorithm clusters as "shipwreck site" a large number of beams for each line. After the geo-referencing process, a K-nearest-neighbors (K-NN) technique is applied as a filter for possible misclassifications. Finally, the shape of the shipwreck site is defined from the georeferenced beams using the α-shape method, constructing an output compatible with Geographic Information Systems (GIS).

  13. Monte Carlo simulations of landmine detection using neutron backscattering imaging

    Energy Technology Data Exchange (ETDEWEB)

    Datema, Cor P. E-mail: c.datema@iri.tudelft.nl; Bom, Victor R.; Eijk, Carel W.E. van

    2003-11-01

    Neutron backscattering is a technique that has successfully been applied to the detection of non-metallic landmines. Most of the effort in this field has concentrated on single detectors that are scanned across the soil. Here, two new approaches are presented in which a two-dimensional image of the hydrogen distribution in the soil is made. The first method uses an array of position-sensitive {sup 3}He-tubes that is placed in close proximity of the soil. The second method is based on coded aperture imaging. Here, thermal neutrons from the soil are projected onto a detector which is typically placed one to several meters above the soil. Both methods use a pulsed D/D neutron source. The Monte Carlo simulation package GEANT 4 was used to investigate the performance of both imaging systems.

  14. Spectral characteristics of Compton backscattering sources. Linear and nonlinear modes

    Energy Technology Data Exchange (ETDEWEB)

    Potylitsyn, A.P., E-mail: potylitsyn@tpu.ru [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Nuclear University MEPhI, 115409 Moscow (Russian Federation); Kolchuzhkin, A.M. [Moscow State University of Technology “STANKIN”, 127994 Moscow (Russian Federation)

    2015-07-15

    Compton backscattering (CBS) of laser photons by relativistic electrons is widely used to design X-ray and gamma sources with a bandwidth better than 1% using a tight collimation. In order to obtain a reasonable intensity of the resulting beam one has to increase power of a laser pulse simultaneously with narrowing of the waist in the interaction point. It can lead to nonlinearity of CBS process which is affected on spectral characteristics of the collimated gamma beam (so-called “red-shift” of the spectral line, emission of “soft” photons with energy much less than the spectral line energy). In this paper we have analyzed such an influence using Monte-Carlo technique and have shown that even weak nonlinearity should be taken into account if the gamma beam is formed by a narrow aperture.

  15. Diffuse Backscattering Mueller Matrices Patterns from Turbid Media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lian-Shun; ZHU Chen; WANG Zhi-Ping; ZHANG Jing

    2006-01-01

    We present experimental measurements and theory of the diffusely backscattered Mueller matrix patterns that arise from illuminating a turbid medium with a polarized laser beam. Our technique employs polarized light from a He-Ne laser (λ= 632.8 nm) focused onto the surface of the scattering medium. A surface area of approximately 2×2 cm2 centred on the light input point is imaged through polarization analysis optics onto a CCD camera. The Mueller matrix is reconstructed by 49 intensity measurements with various orientations of polarizer and analyser. The measured Mueller matrix of polystyrene spheres is compared with the theory result of incoherent scattering of light by spheres. It shows that the azimuthal patterns of the Mueller matrix are determined by the symmetry of the turbid media and the shape of scattering particles. The result is further proved by experiments with polystyrene spheres of different concentrations in de-ionized water.

  16. Ray-based calculations of laser backscatter in ICF targets

    CERN Document Server

    Strozzi, D J; Hinkel, D E; Froula, D H; London, R A; Callahan, D A

    2008-01-01

    A steady-state model for Brillouin and Raman backscatter along a laser ray path is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code Deplete, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as ``plane-wave'' simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the Omega Laser Facility show that laser speckles greatly enhance the reflectivity over the Deplete results. An approximate upper bound on this enhancement is given by doubling the Deplete coupling coefficient. Analysis with Deplete of an ignition design for the National Ignition Facility (NIF), with a peak radiation temperature of 285 eV, shows enco...

  17. Backscattering reduction of corner reflectors using SCS technique

    Science.gov (United States)

    Ajaikumar, V.; Jose, K. A.; Aanandan, C. K.; Mohanan, P.; Nair, K. G.

    1992-10-01

    The paper reports the use of a simulated corrugated surface (SCS) to reduce radar cross section of dihedral corner reflectors. The focus is on 90-deg corner reflectors, since they are involved in many targets and normally show an enhancement in RCS. The backscattering cross section of the dihedral corner reflector, which is large due to the mutual perpendicularity of the two flat surfaces, is found to be greatly reduced for TE polarization. This simple method is determined to be very effective in reducing the RCS of corner reflectors for any corner angle by suitably selecting the parameters of SCS. This may find potential use in strategic RCS reduction of targets in defense and space applications.

  18. Substrate-mediated zero backscattering from dielectric metasurfaces

    CERN Document Server

    Petrov, Mihail; Baryshnikova, Kseniia; Belov, Pavel

    2015-01-01

    In this work, we study optical properties of all-dielectric metasurfaces on top of the high-index substrate. We show that matching the magnitudes and setting the {\\pi}-phase difference of the electric and magnetic dipole moments in nanoparticles, one can obtain a suppression of reflection from the substrate coated with metasurface. In contrast to homogeneous environment, where zero backscattering, or Kerker effect, is observed when electric and magnetic moments are in-phase, the blooming of the substrate occurs when the out-of-phase condition is satisfied, i.e. for the wavelength between the resonances of electric and magnetic dipole moments. We perform numerical simulations of spherical and disk nanoparticle arrays for different permittivities of the substrate, and confirm our model by numerically separating the contributions into the total reflection from nanoparticle arrays and bare substrate. The influence of high-index substrate is crucial for designing optical metasurfaces and photovoltaic elements with...

  19. Control of light backscattering in blood during intravenous laser irradiation

    Science.gov (United States)

    Melnik, Ivan S.; Popov, V. D.; Rusina, Tatyana V.; Dets, Sergiy M.

    1997-02-01

    One of the most important problems in modern laser medicine is the determination of system response on laser treatment. Reaction of living system is significant during many kinds of laser procedures like surgery, therapy and biostimulation. Our study was aimed to optimize laser exposure using feed-back fiber system for intravenous laser irradiation of blood (ILIB). This system consisted of helium-neon laser (633 nm, 5 mW) with coupled fiber unit, photodetector and PC interface. Photodetector signals produced due to light backscattering were storaged and processed during all blood irradiation procedure. Significant time-dependent variations were observed within 9-15 min after beginning of treatment procedure and were correlated with number of trials, stage and character of disease. The designed feed-back system allows us to register a human blood response on laser irradiation to achieve better cure effect.

  20. Determination of RF source power in WPSN using modulated backscattering

    CERN Document Server

    Sreedhar, K

    2012-01-01

    A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations. During RF transmission energy consumed by critically energy-constrained sensor nodes in a WSN is related to the life time system, but the life time of the system is inversely proportional to the energy consumed by sensor nodes. In that regard, modulated backscattering (MB) is a promising design choice, in which sensor nodes send their data just by switching their antenna impedance and reflecting the incident signal coming from an RF source. Hence wireless passive sensor networks (WPSN) designed to operate using MB do not have the lifetime constraints. In this we are going to investigate the system analytically. To obtain interference-free communication connectivity with the WPSN nodes number of RF sources is determined and analyzed i...

  1. Contrast Reversal of Topography Artifacts in a Transmission SNOM

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; WANG Shu-Feng; ZHANG Jia-Sen; GONG Qi-Huang

    2005-01-01

    @@ We demonstrate the contrast reversal behaviour of topography artifacts by changing the diameter of the collection diaphragm in a transmission scanning near-field optical microscopy (SNOM). This originates from the change of the approach curves. Such contrast reversal phenomenon is used to distinguish the artifact signal from the true optical signal of the SNOM image. We also show that continuously changing the diaphragm to a proper diameter can greatly reduce topography artifacts.

  2. 3D surface topography formation in ultra-precision turning

    Institute of Scientific and Technical Information of China (English)

    李丽伟; 董申; 程凯

    2004-01-01

    The generation process of 3 D surface topography in ultra-precision turning is analyzed, as the result of superimposing between actual roughness surface, waviness surface and geometrical form texture surface. From the viewpoints of machine technical system and manufacturing process, factors influencing on roughness surface,waviness surface and geometrical form texture surface in ultra-precision turning are discussed further. The 3D topography of ideal roughness surface and actual surface affected by cutting vibration are simulated respectively.

  3. Lower mantle heterogeneity, dynamic topography and the geoid

    Science.gov (United States)

    Hager, B. H.; Clayton, R. W.; Richards, M. A.; Comer, R. P.; Dziewonski, A. M.

    1985-01-01

    Density contrasts in the lower mantle, recently imaged using seismic tomography, drive convective flow which results in kilometers of dynamically maintained topography at the core-mantle boundary and at the earth's surface. The total gravity field due to interior density constrasts and boundary topography predicts the largest wavelength components of the geoid remarkably well. Neglecting dynamic surface deformation leads to geoid anomalies of opposite sign than are observed.

  4. Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK.

    Science.gov (United States)

    Kanellopoulos, Anastasios John

    2016-01-01

    To evaluate the safety, efficacy, and contralateral eye comparison of topography-guided myopic LASIK with two different refraction treatment strategies. Private clinical ophthalmology practice. A total of 100 eyes (50 patients) in consecutive cases of myopic topography-guided LASIK procedures with the same refractive platform (FS200 femtosecond and EX500 excimer lasers) were randomized for treatment as follows: one eye with the standard clinical refraction (group A) and the contralateral eye with the topographic astigmatic power and axis (topography-modified treatment refraction; group B). All cases were evaluated pre- and post-operatively for the following parameters: refractive error, best corrected distance visual acuity (CDVA), uncorrected distance visual acuity (UDVA), topography (Placido-disk based) and tomography (Scheimpflug-image based), wavefront analysis, pupillometry, and contrast sensitivity. Follow-up visits were conducted for at least 12 months. Mean refractive error was -5.5 D of myopia and -1.75 D of astigmatism. In group A versus group B, respectively, the average UDVA improved from 20/200 to 20/20 versus 20/16; post-operative CDVA was 20/20 and 20/13.5; 1 line of vision gained was 27.8% and 55.6%; and 2 lines of vision gained was 5.6% and 11.1%. In group A, 27.8% of eyes had over -0.50 diopters of residual refractive astigmatism, in comparison to 11.7% in group B (Prefractive astigmatism of more than -0.5 diopters. Topography-modified refraction (TMR): topographic adjustment of the amount and axis of astigmatism treated, when different from the clinical refraction, may offer superior outcomes in topography-guided myopic LASIK. These findings may change the current clinical paradigm of the optimal subjective refraction utilized in laser vision correction.

  5. THE LOW BACKSCATTERING TARGETS CLASSIFICATION IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    L. Shi

    2012-07-01

    Full Text Available The Polarimetric and Interferometric Synthetic Aperture Radar (POLINSAR is widely used in urban area nowadays. Because of the physical and geometric sensitivity, the POLINSAR is suitable for the city classification, power-lines detection, building extraction, etc. As the new X-band POLINSAR radar, the china prototype airborne system, XSAR works with high spatial resolution in azimuth (0.1 m and slant range (0.4 m. In land applications, SAR image classification is a useful tool to distinguish the interesting area and obtain the target information. The bare soil, the cement road, the water and the building shadow are common scenes in the urban area. As it always exists low backscattering sign objects (LBO with the similar scattering mechanism (all odd bounce except for shadow in the XSAR images, classes are usually confused in Wishart-H-Alpha and Freeman-Durden methods. It is very hard to distinguish those targets only using the general information. To overcome the shortage, this paper explores an improved algorithm for LBO refined classification based on the Pre-Classification in urban areas. Firstly, the Pre-Classification is applied in the polarimetric datum and the mixture class is marked which contains LBO. Then, the polarimetric covariance matrix C3 is re-estimated on the Pre-Classification results to get more reliable results. Finally, the occurrence space which combining the entropy and the phase-diff standard deviation between HH and VV channel is used to refine the Pre-Classification results. The XSAR airborne experiments show the improved method is potential to distinguish the mixture classes in the low backscattering objects.

  6. Statistics of vertical backscatter profile of cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Veglio

    2011-09-01

    Full Text Available A nearly global statistical analysis of vertical backscatter and extinction profiles of cirrus clouds collected by the CALIOP lidar, on-board of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, is presented.

    Statistics on frequency of occurrence and distributions of bulk properties of cirrus clouds in general and, for the first time, of horizontally homogeneous (on a 5-km field of view cirrus clouds only are provided. Annual and seasonal backscatter profiles (BSP are computed for the horizontally homogeneous cirri. Differences found in the day/night cases and for midlatitudes and tropics are studied in terms of the mean physical parameters of the clouds from which they are derived.

    The relation between cloud physical parameters (optical depth, geometrical thickness and temperature and the shape of the BSP is investigated. It is found that cloud geometrical thickness is the main parameter affecting the shape of the mean CALIOP BSP. Specifically, cirrus clouds with small geometrical thicknesses show a maximum in mean BSP curve placed near cloud top. As the cloud geometrical thickness increases the BSP maximum shifts towards cloud base. Cloud optical depth and temperature have smaller effect on the shape of the CALIOP BSPs. In general a slight increase in the BSP maximum is observed as cloud temperature and optical depth increase.

    In order to fit mean BSPs, as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. The impact on satellite radiative transfer simulations in the infrared spectrum when using either a constant ice-content (IWC along the cloud vertical dimension or an IWC profile derived from the BSP fitting functions is evaluated. It is, in fact, demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile.

  7. Feasibility of using backscattered muons for archeological imaging

    Science.gov (United States)

    Bonal, N.; Preston, L. A.

    2013-12-01

    Use of nondestructive methods to accurately locate and characterize underground objects such as rooms and tools found at archeological sites is ideal to preserve these historic sites. High-energy cosmic ray muons are very sensitive to density variation and have been used to image volcanoes and archeological sites such as the Egyptian and Mayan pyramids. Muons are subatomic particles produced in the upper atmosphere that penetrate the earth's crust up to few kilometers. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale making it useful for this type of work. However, the muon detector must be placed below the target of interest. For imaging volcanoes, the upper portion is imaged when the detector is placed on the earth's surface at the volcano's base. For sites of interest beneath the ground surface, the muon detector would need to be placed below the site in a tunnel or borehole. Placing the detector underground can be costly and may disturb the historical site. We will assess the feasibility of imaging the subsurface using upward traveling muons, to eliminate the current constraint of positioning the detector below the target. This work consists of three parts 1) determine the backscattered flux rate from theory, 2) distinguish backscattered from forward scattered muons at the detector, and 3) validate the theoretical results with field experimentation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Statistics of vertical backscatter profiles of cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Veglio

    2011-12-01

    Full Text Available A nearly global statistical analysis of vertical backscatter and extinction profiles of cirrus clouds collected by the CALIOP lidar, on-board of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, is presented.

    Statistics on frequency of occurrence and distribution of bulk properties of cirrus clouds in general and, for the first time, of horizontally homogeneous (on a 5-km field of view cirrus clouds only are provided. Annual and seasonal backscatter profiles (BSP are computed for the horizontally homogeneous cirri. Differences found in the day/night cases and for midlatitudes and tropics are studied in terms of the mean physical parameters of the clouds from which they are derived.

    The relationship between cloud physical parameters (optical depth, geometrical thickness and temperature and the shape of the BSP is investigated. It is found that cloud geometrical thickness is the main parameter affecting the shape of the mean CALIOP BSP. Specifically, cirrus clouds with small geometrical thicknesses show a maximum in mean BSP curve located near cloud top. As the cloud geometrical thickness increases the BSP maximum shifts towards cloud base. Cloud optical depth and temperature have smaller effects on the shape of the CALIOP BSPs. In general a slight increase in the BSP maximum is observed as cloud temperature and optical depth increase.

    In order to fit mean BSPs, as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. The impact on satellite radiative transfer simulations in the infrared spectrum when using either a constant ice-content (IWC along the cloud vertical dimension or an IWC profile derived from the BSP fitting functions is evaluated. It is, in fact, demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile.

  9. Cognitive “Boy stories”: urban folklore and urban topographies

    Directory of Open Access Journals (Sweden)

    Bojan Žikić

    2016-02-01

    Full Text Available The culturally cognitive perception of Belgrade’s topographies is considered through its deployment, symbolic use and narrative foundation. As the explanatory material-one football-media incident, the use of certain areas of the city in a spectacleceremonial manner, knowledge and lore of certain elements of the Belgrade topographies and the organization of «the football Belgrade»-were considered. The attitude is taken that the topography of a city is a multifaceted cultural constituent, whose structure of particular meaning, as a part of cultural communication, is determined by the very fact it is an urban space. Physical aspects of spatial-ness are reduced to relationism, i.e. it has a meaning for the cultural communication only when the elements of urban topographies are brought into correlation. Other characteristics of physical spatial-ness are irrelevant for such communication. Meaning relations in which elements of urban topographies exist are formed on the very fact of them being urban, that is, the afore mentioned denotation that is ascribed to space, stems from those cultural features and artifacts that are associated in a given milieu with certain concrete elements of urban topographies.

  10. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  11. Retinal ganglion cell topography in elasmobranchs.

    Science.gov (United States)

    Bozzano, A; Collin, S P

    2000-04-01

    Retinal wholemounts are used to examine the topographic distribution of retinal cells within the ganglion cell layer in a range of elasmobranchs from different depths. The retina is examined for regional specializations for acute vision in six species of selachians, Galeocerdo cuvieri, Hemiscyllium ocellatum, Scyliorhinus canicula, Galeus melastomus, Etmopterus spinax, Isistius brasiliensis, one species of batoid, Raja bigelowi and one species of chimaera, Hydrolagus mirabilis. These species represent a range of lifestyles including pelagic, mesopelagic and benthic habitats, living from shallow water to the sea bottom at a depth of more than 3000 m. The topography of cells within the ganglion cell layer is non-uniform and changes markedly across the retina. Most species possess an increased density of cells across the horizontal (dorsal) meridian or visual streak, with a density range of 500 to 2,500 cells per mm(2) with one or more regional increases in density lying within this specialized horizontal area. It is proposed that the higher spatial resolving power provided by the horizontal streak in these species mediates panoramic vision in the lower frontal visual field. Only I. brasiliensis possesses a concentric arrangement of retinal iso-density contours in temporal retina or an area centralis, thereby increasing spatial resolving power in a more specialized part of the visual field, an adaptation for its unusual feeding behavior. In Nissl-stained material, amacrine and ganglion cell populations could be distinguished on the criteria of soma size, soma shape and nuclear staining. Quantitative analyses show that the proportion of amacrine cells lying within the ganglion cell layer is non-uniform and ranges between 0.4 and 12.3% in specialized retinal areas and between 8.2 and 48.1% in the peripheral non-specialized regions. Analyses of soma area of the total population of cells in the ganglion cell layer also show that the pelagic species possess significantly

  12. Crust rheology, slab detachment and topography

    Science.gov (United States)

    Duretz, T.; Gerya, T. V.

    2012-04-01

    The collision between continents following the closure of an ocean can lead to the subduction of continental crust. The introduction of buoyant crust within subduction zones triggers the development of extensional stresses in slabs which eventually result in their detachment. The dynamic consequences of slab detachment affects the development of topography, the exhumation of high-pressure rocks and the geodynamic evolution of collision zones. We employ two-dimensional thermo-mechanical modelling in order to study the importance of crustal rheology on the evolution of spontaneous subduction-collision systems and the occurrence of slab detachment. The modelling results indicate that varying the rheological structure of the crust can results in a broad range of collisional evolutions involving slab detachment, delamination (associated to slab rollback), or the combination of both mechanisms. By enhancing mechanical coupling at the Moho, a strong crust leads to the deep subduction of the crust (180 km). These collisions are subjected to slab detachment and subsequent coherent exhumation of the crust accommodated by eduction (inversion of subduction sense) and thrusting. In these conditions, slab detachment promotes the development of a high (> 4.5 km) and narrow (delamination of the lithosphere, preventing slab detachment to occur. Further shortening leads to buckling and thickening of the crust resulting in the development of topographic bulging on the lower plate. Collisions involving rheologically layered crust are characterised by a decoupling level at mid-crustal depths. These initial condition favours the delamination of the upper crust as well as the deep subduction of the lower crust. These collisions are thus successively affected by delamination and slab detachment and both processes contribute to the exhumation of the subducted crust. A wide (> 200 km) topographic plateau develops as the results of the buoyant extrusion of the upper crust onto the foreland

  13. Topography-modified refraction (TMR: adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2016-11-01

    Full Text Available Anastasios John Kanellopoulos1,2 1LaserVision Clinical and Research Institute, Athens, Greece; 2Department of Ophthalmology, NYU Medical School, New York, NY, USA Purpose: To evaluate the safety, efficacy, and contralateral eye comparison of topography-guided myopic LASIK with two different refraction treatment strategies. Setting: Private clinical ophthalmology practice. Patients and methods: A total of 100 eyes (50 patients in consecutive cases of myopic topography-guided LASIK procedures with the same refractive platform (FS200 femtosecond and EX500 excimer lasers were randomized for treatment as follows: one eye with the standard clinical refraction (group A and the contralateral eye with the topographic astigmatic power and axis (topography-modified treatment refraction; group B. All cases were evaluated pre- and post-operatively for the following parameters: refractive error, best corrected distance visual acuity (CDVA, uncorrected distance visual acuity (UDVA, topography (Placido-disk based and tomography (Scheimpflug-image based, wavefront analysis, pupillometry, and contrast sensitivity. Follow-up visits were conducted for at least 12 months. Results: Mean refractive error was -5.5 D of myopia and -1.75 D of astigmatism. In group A versus group B, respectively, the average UDVA improved from 20/200 to 20/20 versus 20/16; post-operative CDVA was 20/20 and 20/13.5; 1 line of vision gained was 27.8% and 55.6%; and 2 lines of vision gained was 5.6% and 11.1%. In group A, 27.8% of eyes had over -0.50 diopters of residual refractive astigmatism, in comparison to 11.7% in group B (P<0.01. The residual percentages in both groups were measured with refractive astigmatism of more than –0.5 diopters. Conclusion: Topography-modified refraction (TMR: topographic adjustment of the amount and axis of astigmatism treated, when different from the clinical refraction, may offer superior outcomes in topography-guided myopic LASIK. These findings

  14. Topography and functional information of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasts from winter wheat mesophyll cells were observed, and compared with dead protoplasts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasts was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasts were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased. The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40―60 nm, and a range of 1.8―5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12―40 nm for their diameter and 0.7―2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplast. Distribution density of them at plasmalemma was about 16 pits per 15 μm2. According to their

  15. Topography and functional information of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    SUN DeLan; CHEN JianMin; SONG YanMei; ZHU ChuanFeng; PAN GeBo; WAN LiJun

    2008-01-01

    By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasta from winter wheat mesophyll cells were observed, and compared with dead protoplssts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasta was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasta were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased.The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40-60 nm,and a range of 1.8-5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12-40 nm for their diameter and 0.7-2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplsst. Distributlon density of them at plasmalemma was about 16 pits per 15 μm2. According to their size, we

  16. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand

    Science.gov (United States)

    Hillman, Jess I. T.; Lamarche, Geoffroy; Pallentin, Arne; Pecher, Ingo A.; Gorman, Andrew R.; Schneider von Deimling, Jens

    2017-01-01

    Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.

  17. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  18. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  19. Intercomparisons of Lidar Backscatter Measurements and In-situ Data from GLOBE

    Science.gov (United States)

    Chudamani, S.; Spinhirne, James D.

    1992-01-01

    The Global Backscatter Experiment (GLOBE) took place during Nov. 1989 and May - Jun. 1990 and involved flight surveys of the Pacific region by the NASA DC-8 aircraft. The experimental instruments were lidars operating at wavelengths ranging from the visible to the thermal infrared and various optical particle counters for in-situ measurements. The primary motivation for GLOBE was the development of spaceborne wind sensing lidar. This paper will concern a comparison of direct backscatter measurements and backscatter calculated from particle counter data. Of special interest is that the particle measurements provided data on composition, and thus refractive index variation may be included in the analysis.

  20. Backscattering factor measurements of gamma rays of the different thickness of pure concrete

    OpenAIRE

    B.A. Almayahi

    2015-01-01

    Backscattering peak is one of the main features of the pulse height spectrum from a gamma ray detector. This arises mainly from materials outside like source baking, photomultiplier tube housing, shielding etc. The effect of source backing on the relative importance of the backscattered peak for gamma ray using a NaI (Tl) scintillation detector is measured. Gamma energies in the range from 0.088 MeV to 1.253 MeV are used. Backscattering factor (Fb) measurements have been carried out (2 > Fb ≥...

  1. A Multivariate Correlation Analysis of High- Frequency Bottom Backscattering Strength Measurements With Geotechnical Parameters

    OpenAIRE

    2007-01-01

    Sound backscattered from the seabed has been measured in a 10x10-nmi2 region of the North Sea, characterized by a variety of bottom types, including mud, sand, and gravel. The backscattering strength measurements are made by a forward- looking sonar, operating at 100 kHz and tilted at an angle of 30 from the horizontal. Fifty bottom-grab samples, representative of the uppermost 20 cm, were taken and analyzed for gravel content, shell content, and grain-size distribution. The backscatter measu...

  2. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    Science.gov (United States)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  3. Present-day dynamic and residual topography in Central Anatolia

    Science.gov (United States)

    Şengül Uluocak, Ebru; Pysklywec, Russell; Göǧüş, Oǧuz H.

    2016-09-01

    The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of `dynamic topography'. 2-D thermomechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along an N-S directional profile through the region (e.g. northern/Pontides, interior and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity and high surface heat flow/widespread geothermal activity. Model results suggest that there is ˜1 km of mantle flow induced dynamic topography associated with the sublithospheric flow driven by the seismically inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myr. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.

  4. Smoking topography and abstinence in adult female smokers.

    Science.gov (United States)

    McClure, Erin A; Saladin, Michael E; Baker, Nathaniel L; Carpenter, Matthew J; Gray, Kevin M

    2013-12-01

    Preliminary evidence, within both adults and adolescents, suggests that the intensity with which cigarettes are smoked (i.e., smoking topography) is predictive of success during a cessation attempt. These reports have also shown topography to be superior compared to other variables, such as cigarettes per day, in the prediction of abstinence. The possibility that gender may influence this predictive relationship has not been evaluated but may be clinically useful in tailoring gender-specific interventions. Within the context of a clinical trial for smoking cessation among women, adult daily smokers completed a laboratory session that included a 1-hour ad libitum smoking period in which measures of topography were collected (N=135). Participants were then randomized to active medication (nicotine patch vs. varenicline) and abstinence was monitored for 4weeks. Among all smoking topography measures and all abstinence outcomes, a moderate association was found between longer puff duration and greater puff volume and continued smoking during the active 4-week treatment phase, but only within the nicotine patch group. Based on the weak topography-abstinence relationship among female smokers found in the current study, future studies should focus on explicit gender comparisons to examine if these associations are specific to or more robust in male smokers. © 2013 Elsevier Ltd. All rights reserved.

  5. Present-day dynamic and residual topography in Central Anatolia

    Science.gov (United States)

    Şengül Uluocak, Ebru; Pysklywec, Russell; Göǧüş, Oǧuz H.

    2016-09-01

    The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of `dynamic topography'. 2-D thermomechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along an N-S directional profile through the region (e.g. northern/Pontides, interior and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity and high surface heat flow/widespread geothermal activity. Model results suggest that there is ˜1 km of mantle flow induced dynamic topography associated with the sublithospheric flow driven by the seismically inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myr. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.

  6. Smoking topography and abstinence in adult female smokers

    Science.gov (United States)

    McClure, Erin A.; Saladin, Michael E.; Baker, Nathaniel L.; Carpenter, Matthew J.; Gray, Kevin M.

    2013-01-01

    Preliminary evidence, within both adults and adolescents, suggests that the intensity with which cigarettes are smoked (i.e. smoking topography) is predictive of success during a cessation attempt. These reports have also shown topography to be superior compared to other variables, such as cigarettes per day, in the prediction of abstinence. The possibility that gender may influence this predictive relationship has not been evaluated, but may be clinically useful in tailoring gender-specific interventions. Within the context of a clinical trial for smoking cessation among women, adult daily smokers completed a laboratory session that included a 1-hour ad-libitum smoking period in which measures of topography were collected (N=135). Participants were then randomized to active medication (nicotine patch vs. varenicline) and abstinence was monitored for 4 weeks. Among all smoking topography measures and all abstinence outcomes, a moderate association was found between longer puff duration and greater puff volume and continued smoking during the active 4-week treatment phase, but only within the nicotine patch group. Based on the weak topography-abstinence relationship among female smokers found in the current study, future studies should focus on explicit gender comparisons to examine if these associations are specific to or more robust in male smokers. PMID:24018226

  7. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    Science.gov (United States)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  8. Electron backscattering in a cavity: Ballistic and coherent effects

    Science.gov (United States)

    Kozikov, A. A.; Weinmann, D.; Rössler, C.; Ihn, T.; Ensslin, K.; Reichl, C.; Wegscheider, W.

    2016-11-01

    Numerous experimental and theoretical studies have focused on low-dimensional systems locally perturbed by the biased tip of a scanning force microscope. In all cases either open or closed weakly gate-tunable nanostructures have been investigated, such as quantum point contacts, open or closed quantum dots, etc. We study the behavior of the conductance of a quantum point contact with a gradually forming adjacent cavity in series under the influence of a scanning gate. Here, an initially open quantum point contact system gradually turns into a closed cavity system. We observe branches and interference fringes known from quantum point contacts coexisting with irregular conductance fluctuations. Unlike the branches, the fluctuations cover the entire area of the cavity. In contrast to previous studies, we observe and investigate branches under the influence of the confining stadium potential, which is gradually built up. We find that the branches exist only in the area surrounded by cavity top gates. As the stadium shrinks, regular fringes originate from tip-induced constrictions leading to quantized conduction. In addition, we observe arclike areas reminiscent of classical electron trajectories in a chaotic cavity. We also argue that electrons emanating from the quantum point contact spread out like a fan leaving branchlike regions of enhanced backscattering.

  9. Crystallographic Orientation of Cuttlebone Shield Determined by Electron Backscatter Diffraction

    Science.gov (United States)

    Cusack, Maggie; Chung, Peter

    2014-01-01

    In common with many cephalopod mollusks, cuttlefish produce an internal biomineral buoyancy device. This cuttlebone is analogous to a surf board in shape and structure, providing rigidity and a means of controlling buoyancy. The cuttlebone is composed of calcium carbonate in the form of aragonite and comprises an upper dorsal shield and a lower lamellar matrix. The lamellar matrix comprises layers of chambers with highly corrugated walls. The dorsal shield comprises bundles of aragonite needles stacked on top of each other. Electron backscatter diffraction analyses of the dorsal shield reveal that the c-axis of aragonite is parallel with the long axis of the needles in the bundles such that any spread in crystallographic orientation is consistent with the spread in orientation of the fibers as they radiate to form the overall structure of the dorsal shield. This arrangement of c-axis coincident with the long axis of the biomineral structure is similar to the arrangement in corals and in contrast to the situation in the molluskan aragonite nacre of brachiopod calcite where the c-axis is perpendicular to the aragonite tablet or calcite fiber, respectively.

  10. Lattice constant measurement from electron backscatter diffraction patterns.

    Science.gov (United States)

    Saowadee, N; Agersted, K; Bowen, J R

    2017-02-20

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local analysis. In this study, lattice constants of cubic STN and cubic YSZ in the pure materials and in co-sintered composites were measured from their EBSPs acquired at 10 kV using a silicon single crystal as a calibration reference. The EBSP distortion was corrected by spherical back projection and Kikuchi band analysis was made using in-house software. The error of the lattice constant measurement was determined to be in the range of 0.09-1.12% compared to values determined by XRD and from literature. The confidence level of the method is indicated by the standard deviation of the measurement, which is approximately 0.04 Å. Studying Kikuchi band size dependence of the measurement precision shows that the measurement error decays with increasing band size (i.e. decreasing lattice constant). However, in practice, the sharpness of wide bands tends to be low due to their low intensity, thus limiting the measurement precision. Possible methods to improve measurement precision are suggested.

  11. Automated twin identification technique for use with electron backscatter diffraction.

    Energy Technology Data Exchange (ETDEWEB)

    Henrie, B. L. (Benjamin Lyman); Mason, T. A. (Thomas A.); Bingert, J. F. (John F.)

    2004-01-01

    Historically, twinning information has been obtained by optical microscopy, TEM, and neutron diffraction. Recent research has shown that automated electron backscatter diffraction (EBSD) can be used to extract reliable twinning statistics. An automated twin identification technique for use with EBSD has facilitated a greater understanding of deformation twinning in materials. The key features of this automated framework are the use of the crystallographic definition of twin relationships, the inclination of the common K, plane at a twin boundary, and the correct identification of the parent orientation in a parent/twin pair. The complex nature of the parent/twin interactions required the use of a voting scheme to correctly identify parent orientations. In those few cases were the voting scheme was unable to determine parent orientation (< 2 pct) the algorithm allows for manual selection. Twin area fractions are categorized by operative twin systems along with secondary and tertiary twinning. These statistics are reported for {alpha}-zirconium and 316L stainless steel. These improved twin statistics can help quantify deformation processes as well as provide validation of plasticity models for materials that exhibit deformation twinning.

  12. Ray-Based Calculations of Backscatter in Laser Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Strozzi, D J; Williams, E A; Hinkel, D E; Froula, D H; London, R A; Callahan, D A

    2008-02-26

    A steady-state model for Brillouin and Raman backscatter along a laser ray path is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code deplete, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as 'plane-wave' simulations with the paraxial propagation code pf3d. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the deplete results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the deplete coupling coefficient. Analysis with deplete of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Doubling the coupling to bound the speckle enhancement suggests a less optimistic picture. Re-absorption of Raman light is seen to be significant in this design.

  13. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  14. Mercury's Thermal Evolution, Dynamical Topography and Geoid

    Science.gov (United States)

    Ziethe, Ruth; Benkhoff, Johannes

    stagnant lid comprises roughly half the mantle after only 0.5Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through the lithosphere by thermal conduction. This is a significantly less effective mechanism of heat transport than convection and hence the lithosphere forms an insulating layer. As a result, the interior is kept relatively warm.Because the mantle is relatively shallow compared to the planet's radius, and additionally the thick stagnant lid is formed relatively rapid, the convection is confined to a layer of only about 200km to 300km. Convection structures are therefore relatively small structured. The flow patterns in the early evolution show that mantle convection is characterized by numerous upwelling plumes, which are fed by the heat flow from the cooling core. These upwellings are relatively stable regarding their spatial position. As the core cools down the temperature anomalies become colder and less pronounced but not less numerous. In our calculations, a region of partial melt in the mantle forms immediately after the start of the model at a depths of roughly 220km. While in the entire lower mantle the temperature exceeds the solidus, the highest melt degrees can be found in the upwelling plumes. The partial molten region persists a significant time (up to 2.5Ga). How long the partial molten zone actually survives depends strongly on the initial conditions of the model. For instance, an outer layer with a reduced thermal conductivity would keep the lower mantle significantly warmer and a molten layer survives longer. The hot upwellings cause a surface deformation (dynamical topography) which itself causes a gravity anomaly. Due to the weak constraints of important parameters (e.g. sulfur content of the core, mantle rheology, amount and distribution of radiogenic heat sources, planetary contraction, thermal conductivity, etc

  15. Crystal quality analysis and improvement using x-ray topography

    Science.gov (United States)

    Maj, J. A.; Goetze, K.; Macrander, A. T.; Zhong, Y. C.; Huang, X. R.; Maj, L.

    2008-08-01

    The Topography X-ray Laboratory of the Advanced Photon Source (APS) at Argonne National Laboratory operates as a collaborative effort with APS users to produce high performance crystals for APS X-ray beamline experiments. For many years the topography laboratory has worked closely with an on-site optics shop to help ensure the production of crystals with the highest quality, most stress-free surface finish possible. It has been instrumental in evaluating and refining methods used to produce high quality crystals. Topographical analysis has shown to be an effective method to quantify and determine the distribution of stresses, to help identify methods that would mitigate the stresses and improve the Rocking curve, and to create CCD images of the crystal. This paper describes the topography process and offers methods for reducing crystal stresses in order to substantially improve the crystal optics.

  16. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  17. Crystal quality analysis and improvement using x-ray topography.

    Energy Technology Data Exchange (ETDEWEB)

    Maj, J.; Goetze, K.; Macrander, A.; Zhong, Y.; Huang, X.; Maj, L.; Univ. of Chicago

    2008-01-01

    The Topography X-ray Laboratory of the Advanced Photon Source (APS) at Argonne National Laboratory operates as a collaborative effort with APS users to produce high performance crystals for APS X-ray beamline experiments. For many years the topography laboratory has worked closely with an on-site optics shop to help ensure the production of crystals with the highest quality, most stress-free surface finish possible. It has been instrumental in evaluating and refining methods used to produce high quality crystals. Topographical analysis has shown to be an effective method to quantify and determine the distribution of stresses, to help identify methods that would mitigate the stresses and improve the Rocking curve, and to create CCD images of the crystal. This paper describes the topography process and offers methods for reducing crystal stresses in order to substantially improve the crystal optics.

  18. The Effects of Micro- and Nano-Topography on Cells

    DEFF Research Database (Denmark)

    Kolind, Kristian

    2013-01-01

    Cells continuously make decisions on what proteins to express, and when to divide, differentiate and commit suicide, through a complex network of intracellular processes. The signals that determine the cellular processes reside within the extracellular matrix. They involve soluble signaling...... the effect of topography on cells has received much attention understanding how important this is for the rational design of bio-interfaces. Nevertheless, there is still a limited understanding of the effect of topography on cells making it impossible to tailor a biomaterial with specific cellular activity...... at the substrate surface. The major aim of this PhD thesis has been to understand the effect of micro- and nano-topography on focal adhesion assembly and cell spreading, as well as its effect on proliferation and differentiation of cells. Such knowledge will provide a more rational approach to optimize...

  19. Spray-coatable negative photoresist for high topography MEMS applications

    Science.gov (United States)

    Arnold, Markus; Voigt, Anja; Haas, Sven; Schwenzer, Falk; Schwenzer, Gunther; Reuter, Danny; Gruetzner, Gabi; Geßner, Thomas

    2017-03-01

    In microsystem technology, the lithographical processing of substrates with a topography is very important. Interconnecting lines, which are routed over sloped topography sidewalls from the top of the protecting wafer to the contact pads of the device wafer, are one example of patterning over a topography. For structuring such circuit paths, a photolithography process, and therefore a process for homogeneous photoresist coating, is required. The most flexible and advantageous way of depositing a homogeneous photoresist film over structures with high topography steps is spray-coating. As a pattern transfer process for circuit paths in cavities, the lift-off process is widely used. A negative resist, like ma-N (MRT) or AZnLOF (AZ) is favoured for lift-off processes due to the existing negative angle of the sidewalls. Only a few sprayable negative photoresists are commercially available. In this paper, the development of a novel negative resist spray-coating based on a commercially available single-layer lift-off resist for spin-coating, especially for the patterning of structures inside the cavity and on the cavity wall, is presented. A variety of parameters influences the spray-coating process, and therefore the patterning results. Besides the spray-coating tool and the parameters, the composition of the resist solution itself also influences the coating results. For homogeneous resist coverage over the topography of the substrate, different solvent combinations for diluting the resist solution, different chuck temperatures during the coating process, and also the softbake conditions, are all investigated. The solvent formulations and the process conditions are optimized with respect to the homogeneity of the resist coverage on the top edge of the cavities. Finally, the developed spray-coating process, the resist material and the process stability are demonstrated by the following applications: (i) lift-off, (ii) electroplating, (iii) the wet and (iv) the dry

  20. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    Science.gov (United States)

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %.

  1. Signatures of molecular recognition from the topography of electrostatic potential

    Indian Academy of Sciences (India)

    Dhimoy K Roy; P Balanarayan; Shridhar R Gadre

    2009-09-01

    The recognition of interaction between two molecules is analysed via the topography of their molecular electrostatic potentials (MESP). The point of recognition between two species is proposed to be the geometry at which there is a change in the nature of the set of MESP critical points of one of the molecules vis-a-vis with its MESP topography at infinite separation. These results are presented for certain model systems such as pyridine and benzene dimers, cytosine-guanine and adenine-thymine base pairs in various orientations of approach of the two species.

  2. Mulitple Origins of Sand Dune-Topography Interactions on Titan

    Science.gov (United States)

    Goggin, H.; Ewing, R. C.; Hayes, A.; Cisneros, J.; Epps, J. C.

    2015-12-01

    The interaction between sand dune patterns and topographic obstacles is a primary signal of sand transport direction in the equatorial region of Saturn's moon, Titan. The streamlined, tear drop appearance of the sand-dune patterns as they wrap around obstacles and a dune-free zone on the east side of many obstacles gives the impression that sand transport is from the west to east at equatorial latitudes. However, the physical mechanism behind the dune-obstacle interaction is not well explained, leaving a gap in our understanding of the equatorial sand transport and implied wind directions and magnitudes on Titan. In order to better understand this interaction and evaluate wind and sand transport direction, we use morphometric analysis of optical images on Earth and Cassini SAR images on Titan combined with analog wind tunnel experiments to study dune-topography interactions. Image analysis is performed in a GIS environment to map spatial variations in dune crestline orientations proximal to obstacles. We also use digital elevation models to and analyze the three-dimensional geometry - height, length, width and slope of the dune-topography relationships on Earth. Preliminary results show that dune patterns are deflected similarly around positive, neutral, or negative topography, where positive topography is greater than the surrounding dune height, neutral topography is at dune height and negative topography is lower than dune heights. In the latter case these are typically intra-dune field playas. The obstacle height, width, slope and wind variability appear to play a primary role in determining if a lee-dune, rather than a dune-free lee-zone, develops. In many cases a dune-free playa with evaporite and mud desiccation polygons forms lee-ward of the obstacle. To support and elaborate on the mapping and spatial characterization of dune-topography interactions, a series of experiments using a wind tunnel were conducted. Wind tunnel experiments examine the formation

  3. A model for Faraday pilot-waves over variable topography

    Science.gov (United States)

    Faria, Luiz

    2016-11-01

    In 2005 Yves Couder and co-workers discovered that droplets walking on a vibrating bath posses certain features previously thought to be exclusive to quantum systems. These millimetric droplets synchronize with their Faraday wavefield, creating a macroscopic pilot-wave system. In this talk we exploit the fact that the waves generated are nearly monochromatic and propose a hydrodynamic model capable of capturing the interaction between bouncing drops and a variable topography. We show that our model is able to reproduce some important experiments involving the drop-topography interaction, such as non-specular reflection and single-slit diffraction.

  4. A model for Faraday pilot waves over variable topography

    Science.gov (United States)

    Faria, Luiz M.

    2017-01-01

    Couder and Fort discovered that droplets walking on a vibrating bath possess certain features previously thought to be exclusive to quantum systems. These millimetric droplets synchronize with their Faraday wavefield, creating a macroscopic pilot-wave system. In this paper we exploit the fact that the waves generated are nearly monochromatic and propose a hydrodynamic model capable of quantitatively capturing the interaction between bouncing drops and a variable topography. We show that our reduced model is able to reproduce some important experiments involving the drop-topography interaction, such as non-specular reflection and single-slit diffraction.

  5. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.

    Science.gov (United States)

    Ramnarine, K V; Hoskins, P R; Routh, H F; Davidson, F

    1999-01-01

    The Doppler backscatter properties of a blood-mimickig fluid (BMF) were studied to evaluate its suitability for use in a Doppler flow test object. Measurements were performed using a flow rig with C-flex tubing and BMF flow produced by a roller pump or a gear pump. A SciMed Doppler system was used to measure the backscattered Doppler power with a root-mean-square power meter connected to the audio output. Studies investigated the dependence of the backscattered Doppler power of the BMF with: circulation time; batch and operator preparations; storage; sieve size; flow speed; and pump type. A comparison was made with human red blood cells resuspended in saline. The backscatter properties are stable and within International Electrotechnical Commission requirements. The BMF is suitable for use in a test object for Doppler performance assessment.

  6. Characterizing biogenous sediments using multibeam echosounder backscatter data - Estimating power law parameter utilizing various models

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.

    In this paper, Helmholtz-Kirchhoff (H-K) roughness model is employed to characterize seafloor sediment and roughness parameters from the eastern sector of the Southern Oceans The multibeam- Hydroswcep system's angular-backscatter data, which...

  7. Landmine detection method combined with backscattering neutrons and capture {gamma}-rays from hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yoshiyuki, E-mail: ytaka@rri.kyoto-u.ac.j [Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Misawa, Tsuyoshi; Pyeon, Cheol Ho; Shiroya, Seiji [Research Reactor Institute, Kyoto University, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Yoshikawa, Kiyoshi [Institute of Advanced Energy, Kyoto University, Gokashou, Uji-shi, Kyoto 611-0011 (Japan)

    2011-07-15

    The usefulness of the measurements of the backscattering neutron and 2.22 MeV capture {gamma}-ray from hydrogen in the landmine detection method is described in this paper. When the soil moisture content is increased, the reaction rates of both the neutron scattering reaction and capture reaction are increased. However, the backscattering neutrons are more influenced than the capture {gamma}-rays by the soil moisture before the reaction with the detector. The facts that the backscattering neutron method is useful in the dry soil case and that the capture {gamma}-ray method is effective in well-wet soil case are confirmed by the experiments and the calculations. The landmine detection efficiency is improved in various soil moisture conditions by combining the backscattering neutron method together with the capture {gamma}-ray method. The effectiveness of the pulse mode operation was confirmed numerically.

  8. Landmine detection method combined with backscattering neutrons and capture γ-rays from hydrogen.

    Science.gov (United States)

    Takahashi, Yoshiyuki; Misawa, Tsuyoshi; Pyeon, Cheol Ho; Shiroya, Seiji; Yoshikawa, Kiyoshi

    2011-07-01

    The usefulness of the measurements of the backscattering neutron and 2.22MeV capture γ-ray from hydrogen in the landmine detection method is described in this paper. When the soil moisture content is increased, the reaction rates of both the neutron scattering reaction and capture reaction are increased. However, the backscattering neutrons are more influenced than the capture γ-rays by the soil moisture before the reaction with the detector. The facts that the backscattering neutron method is useful in the dry soil case and that the capture γ-ray method is effective in well-wet soil case are confirmed by the experiments and the calculations. The landmine detection efficiency is improved in various soil moisture conditions by combining the backscattering neutron method together with the capture γ-ray method. The effectiveness of the pulse mode operation was confirmed numerically.

  9. Seabottom characterization using multibeam echosounder angular backscatter: An application of the composite roughness theory

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.; Kodagali, V.N.; Hagen, R.

    Composite roughness theory is used to characterize Southern Ocean bottom backscatter (multibeam) data. Spectral parameters based on Helmholtz-Kirchhof's theory (1) are determined from measured near-normal incidence values. A splicing technique using...

  10. Simrad em3002d Backscatter imagery of Penguin Bank, Molokai, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter imagery extracted from gridded bathymetry of Penguin Bank, Molokai, Hawaii, USA. These data provide almost complete coverage between 0 and 100 meters....

  11. CRED Reson 8101 multibeam backscatter data from the islands and banks in the Mariana archipelago, 2007.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multibeam backscatter imagery extracted from gridded bathymetry of the Mariana archipelago between the U.S. Territory of Guam and Uracas Island in the Commonwealth...

  12. CRED 1 meter resolution Reson 8101 multibeam backscatter data of Wake Island, West Central Pacific, 2007.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multibeam backscatter imagery extracted from gridded bathymetry of Wake Island, West Central Pacific.These data provide coverage between 0 and 200m meters. The...

  13. Backscatter 0.5m TIFF Mosaic of St. Croix (Buck Island), US Virgin Islands, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 0.5 meter resolution backscatter mosaic of the north shore of Buck Island, St. Croix, US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography...

  14. Backscatter 0.5m TIFF Mosaic of St. Thomas, US Virgin Islands, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 0.5 meter resolution backscatter mosaic of the south shore of St. Thomas, US Virgin Islands. NOAA's NOS/NCCOS/CCMA Biogeography Team and...

  15. High-resolution multibeam backscatter data - northern Channel Islands region, southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release presents data for 5-m resolution acoustic-backscatter data of the northern Channel Islands region, southern California. The raster data files are...

  16. Simulation of positron backscattering and implantation profiles using Geant4 code

    Institute of Scientific and Technical Information of China (English)

    黄世娟; 潘子文; 刘建党; 韩荣典; 叶邦角

    2015-01-01

    For the proper interpretation of the experimental data produced in slow positron beam technique, the positron im-plantation properties are studied carefully using the latest Geant4 code. The simulated backscattering coefficients, the implantation profiles, and the median implantation depths for mono-energetic positrons with energy range from 1 keV to 50 keV normally incident on different crystals are reported. Compared with the previous experimental results, our simula-tion backscattering coefficients are in reasonable agreement, and we think that the accuracy may be related to the structures of the host materials in the Geant4 code. Based on the reasonable simulated backscattering coefficients, the adjustable parameters of the implantation profiles which are dependent on materials and implantation energies are obtained. The most important point is that we calculate the positron backscattering coefficients and median implantation depths in amorphous polymers for the first time and our simulations are in fairly good agreement with the previous experimental results.

  17. Backscattering Light Model of Seawater for Modulated Lidar Based on the Stationarity of Light Field

    Institute of Scientific and Technical Information of China (English)

    JI Hang; MA Yong; LIANG Kun; WANG Hong-yuan

    2007-01-01

    The backscattering signal, which arises from the pulsed laser traveling through water, has limited the lidar system sensitivity and underwater target contrast. The transmitted optical carrier is modulated to be ultrashort pulsed laser and i t is effective to suppress the backscattering to adopt the coherent detection technology by identifying the modulation envelope. A nonstationary light field is formed in seawater by the ultrashort pulsed laser. The inherent relationship between the nonstationary light field formed by modulated lidar and the stationary light field formed by conventional lidar was discussed and the backscattering light model of the stationary light field for the ultrashort pulsed laser was proposed. The backscattering signal in modulated lidar system was processed and analyzed in the frequency domain on the basis of the model.

  18. Brillouin backscattering from a double-pulse CO/sub 2/ laser incident on planar targets

    Energy Technology Data Exchange (ETDEWEB)

    Decoste, R.; Lavigne, P.; Pepin, H.; Mitchel, G.R.; Kieffer, J.

    1982-05-01

    The Brillouin backscattering instability is studied for a range of preformed plasma conditions and using a CO/sub 2/ laser in the 10/sup 12/--10/sup 13/ W/cm/sup 2/ regime. A short prepulse is incident on a planar target ahead of the main-pulse to produce the preformed plasma. The instability appears in a short burst of back-reflected light. Saturation of the backscatter level is observed for an individual increase of the prepulse energy, main-pulse intensity, and prepulse-to-main-pulse delay. Ion Landau damping is strong and average back-reflected intensities are limited to less than 30% of incident. Backscattered light spectra suggest that the critical surface is involved in the backscatter process when the laser beam is at best focus onto the target surface. Otherwise, the spectral signature is similar to those obtained from underdense plasmas.

  19. Atmospheric aerosol load morphological classification and retrieved visibility based on lidar backscatter measurements

    CSIR Research Space (South Africa)

    Tesfaye, M

    2010-01-01

    Full Text Available In this paper, the tropospheric aerosol load morphological classification and its impact on temporal variation of visibility are investigated using a continuous 23-hour single channel CSIR-NLC mobile LIDAR backscatter measurement. The trajectory...

  20. A Compact In Situ Sensor for Measurement of Absorption and Backscattering in Natural Waters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an active sensor for in situ measurement of the inherent optical properties (IOPs) absorption and backscattering at multiple wavelengths....

  1. Influence of lithium coating on the optics of Doppler backscatter system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. H.; Liu, A. D., E-mail: lad@ustc.edu.cn; Zhou, C.; Hu, J. Q.; Wang, M. Y.; Yu, C. X.; Liu, W. D.; Li, H.; Lan, T.; Xie, J. L. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    This paper presents the first investigation of the effect of lithium coating on the optics of Doppler backscattering. A liquid lithium limiter has been applied in the Experimental Advanced Superconducting Tokamak (EAST), and a Doppler backscattering has been installed in the EAST. A parabolic mirror and a flat mirror located in the vacuum vessel are polluted by lithium. An identical optical system of the Doppler backscattering is set up in laboratory. The power distributions of the emission beam after the two mirrors with and without lithium coating (cleaned before and after), are measured at three different distances under four incident frequencies. The results demonstrate that the influence of the lithium coating on the power distributions are very slight, and the Doppler backscattering can work normally under the dosage of lithium during the 2014 EAST campaign.

  2. High-resolution multibeam backscatter data - northern Channel Islands region, southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release presents data for 5-m resolution acoustic-backscatter data of the northern Channel Islands region, southern California. The raster data files are...

  3. Fine scale analyses of a coralline bank mapped using multi-beam backscatter data

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, A.A.A.; Naik, M.; Fernandes, W.A.; Haris, K.; Chakraborty, B.; Estiberio, S.; Lohani, R.B.

    unsupervised self-organizing maps (SOM) architecture is used to determine the existence of six classes. Thereafter, 55 segments were identified for data segmentation, employing six profiles selected from the backscatter maps, using the fuzzy c-means (FCM...

  4. NOAA TIFF Graphic- 0.5m Backscatter Mosaic of St. Thomas, US Virgin Islands, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 0.5 meter resolution backscatter mosaic of the south shore of St. Thomas, US Virgin Islands.NOAA's NOS/NCCOS/CCMA Biogeography Team and...

  5. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    Science.gov (United States)

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  6. Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics

    Science.gov (United States)

    Kaganovich, D.; Hafizi, B.; Palastro, J. P.; Ting, A.; Helle, M. H.; Chen, Y.-H.; Jones, T. G.; Gordon, D. F.

    2016-12-01

    Raman backscattered radiation of intense laser pulses in plasmas is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.

  7. Nonlinear Frequency Shift in Raman Backscattering and its Implications for Plasma Diagnostics

    CERN Document Server

    Kaganovich, D; Palastro, J P; Ting, A; Helle, M H; Chen, Y -H; Jones, T G; Gordon, D F

    2016-01-01

    Raman backscattered radiation of intense laser pulses in plasma is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.

  8. MEASURING THE PARTICULATE BACKSCATTERING OF INLAND WATERS: A COMPARISON OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. Campbell

    2012-07-01

    Full Text Available The objective of this work was to examine whether the standard particulate backscattering IOP (Inherent Optical Properties measurement method could be simplified. IOP measurements are essential for parameterising several forms of algorithms used to estimate water quality parameters from airborne and satellite images. Field measurements of the backscattering IOPs are more difficult to make than absorption measurements as correction of the raw Hydroscat-6 backscattering sensor observations is required to allow for the systematic errors associated with the water and water quality parameter absorption. The standard approach involves making simultaneous measurement of the absorption and attenuation of the water with an absorption and attenuation meter (ac-9 or making assumptions about the particulate backscattering probability. Recently, a number of papers have been published that use an alternative method to retrieve the particulate backscattering spectrum by using laboratory measured absorption values and in situ spectroradiometric observations. The alternative method inverts a model of reflectance iteratively using non-linear least squares fitting to solve for the particulate backscattering at 532 nm (bbp0(532 and the particulate backscattering spectral slope (γ. In this paper, eleven observations made at Burdekin Falls Dam, Australia are used to compare the alternative reflectance method to the conventional corrected Hydroscat-6 observations. Assessment of the alternative reflectance method showed that the result of the inversions were highly dependent on the starting conditions. To overcome this limitation, Particle Swarm Optimisation, a stochastic search technique which includes a random element in the search approach, was used. It was found that when compared to the conventionally corrected Hydroscat-6 observations, the alternative reflectance method underestimated bbp0(532 by approximately 50% and overestimated γ by approximately 40

  9. Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping.

    Directory of Open Access Journals (Sweden)

    Rozaimi Che Hasan

    Full Text Available Multibeam echosounders (MBES are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with

  10. Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping.

    Science.gov (United States)

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre

    2014-01-01

    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives

  11. Multi-beam backscatter image data processing techniques employed to EM 1002 system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.

    algorithm applies to raw backscatter intensities during normalization process. More detail study of the software is demonstrated using a flow diagram flowed by the stage by stage discussion in subsequent sections (Figure 1). III. DATA EXTRACTION... contribution no.xxxx. - 9 - REFERENCES: [1] Hughes Clarke JE (1993) The potential for seabed classification using backscatter from shallow water multibeam sonars. Proc Inst Acoustics 15(part2):381–387. [2] Chakraborty B and Kodagali, V Baracho J...

  12. Modeling the effects of laser-beam smoothing on filamentation and stimulated Brillouin backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R.L.; Kaiser, T.B.; Lasinski, B.F. [and others

    1996-06-01

    Using the three-dimensional code (F3D), the authors compute the filamentation and backscattering of laser light. The results show that filamentation can be controlled and stimulated Brillouin backscattering (SBBS) can be reduced by using random phase plates (RPP) and small f-numbers or smoothing by spectral dispersion (SSD) with large bandwidth. An interesting result is that, for uniform plasmas, the SBBS amplification takes place over several laser axial coherence lengths (coherence length = speckle length).

  13. NONINVASIVE MEASUREMENT OF LOCAL THERMAL DIFFUSIVITY USING BACKSCATTERED ULTRASOUND AND FOCUSED ULTRASOUND HEATING

    OpenAIRE

    2008-01-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create...

  14. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Science.gov (United States)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  15. Combination of multibeam backscatter and bathymetry: A method to characterize the sea floor

    Science.gov (United States)

    Beyer, A.; Chakraborty, B.; Schenke, H. W.

    2003-04-01

    A high resolution multibeam survey was conducted by the RV "Polarstern" in order to identify and map locations of carbonate mounds in the Porcupine Seabight west of Ireland utilizing the multibeam echo sounder Hydrosweep DS-2. The scientific interest of that area rose due to an expected link between the carbonate mounds and subsurface hydrocarbon resources. In addition to the depths measurements the acoustic intensity of the received echo was recorded for individual measurements. After processing of the echo amplitudes by employing NRGCOR software the backscatter strength of the ensonified seafloor is used to identify areas of similar physical properties. Normalization was applied to the backscatter data to obtain acoustic response information which is independent from the incidence angle of the sonar beam. The mapped grey scale variation of the acoustic response is used to separate different types of seafloor. Four distinct types of seafloor have been depicted which are mounds, buried mounds, channel seafloor and inter channel areas. A semi-empirical method was applied to determine shape aspects of the angular backscatter strength. Three parameters, i.e. predicted 20° angular response, slope and coefficient of variation of the angular backscatter responses were computed to understand varying seafloor characteristics. The combination of backscatter and bathymetric data is another significant aspect of this contribution. Applying 3D visualisation techniques enables the user to link acoustic backscatter response to the seafloor morphology.

  16. Pixelated VLC-Backscattering for Self-Charging Indoor IoT Devices

    Science.gov (United States)

    Shao, Sihua; Khreishah, Abdallah; Elgala, Hany

    2017-01-01

    Visible light communication (VLC) backscatter has been proposed as a wireless access option for Internet of Things (IoT). However, the throughput of the state-of-the-art VLC backscatter is limited by simple single-carrier pulsed modulation scheme, such as on-off keying (OOK). In this paper, a novel pixelated VLC backscatter is proposed and implemented to overcome the channel capacity limitation. In particular, multiple smaller VLC backscatters, switching on or off, are integrated to generate multi-level signals, which enables the usage of more advanced modulation schemes than OOK. Based on experimental results, rate adaptation at different communication distances can be employed to enhance the achievable data rate. Compared to OOK, the data rate can be tripled when 8-PAM is used at 2 meters. In general, $n$-fold throughput enhancement is realized by utilizing $n$ smaller VLC backscatters while incurring negligible additional energy using the same device space as that of a single large backscatter.

  17. Improvement of a 3D radar backscattering model using matrix-doubling method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Radiative transfer models have been widely used to simulate the radar backscattering from forested areas. A three-dimensional radar backscatter model of forest canopy developed in previous studies takes full account of spatial position of trees in a forest stand, and the interactions among crown, trunk and ground surface. The model predicted well for the co-polarized backscatter measurements, but underestimated the backscattering for cross-polarization, primarily because only the first-order scattering within tree crowns was considered in the model. The backscattering at cross-polarization depends strongly on multiple scatter- ing within tree crowns. To produce good estimations for cross-polarized component, the matrix-doubling method is employed here to compute multiple-scattering within the crown. The modified model is compared with the original model, and the field forest measurements and AIRSAR data are used for validation of the modified model. The cross-polarization backscattering is improved in different degrees for different crown structures and at different bands.

  18. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.

    Science.gov (United States)

    Anderson, Janelle J; Herd, Maria-Teresa; King, Michael R; Haak, Alexander; Hafez, Zachary T; Song, Jun; Oelze, Michael L; Madsen, Ernest L; Zagzebski, James A; O'Brien, William D; Hall, Timothy J

    2010-01-01

    Ultrasonic backscatter is useful for characterizing tissues and several groups have reported methods for estimating backscattering properties. Previous interlaboratory comparisons have been made to test the ability to accurately estimate the backscatter coefficient (BSC) by different laboratories around the world. Results of these comparisons showed variability in BSC estimates but were acquired only for a relatively narrow frequency range, and, most importantly, lacked reference to any independent predictions from scattering theory. The goal of this study was to compare Faran-scattering-theory predictions with cooperatively-measured backscatter coefficients for low-attenuating and tissue-like attenuating phantoms containing glass sphere scatterers of different sizes for which BSCs can independently be predicted. Ultrasonic backscatter measurementswere made for frequencies from 1 to 12 MHz. Backscatter coefficients were estimated using two different planar-reflector techniques at two laboratories for two groups of phantoms. Excellent agreement was observed between BSC estimates from both laboratories. In addition, good agreement with the predictions of Faran's theory was obtained, with average fractional (bias) errors ranging from 8-14%. This interlaboratory comparison demonstrates the ability to accurately estimate parameters derived from the BSC, including an effective scatterer size and the acoustic concentration, both of which may prove useful for diagnostic applications of ultrasound tissue characterization.

  19. Waterfall notch-filtering for restoration of acoustic backscatter records from Admiralty Bay, Antarctica

    Science.gov (United States)

    Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes

    2017-08-01

    A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.

  20. Predicting seabed properties from acoustic backscatter on the UK continental shelf (Invited)

    Science.gov (United States)

    McGonigle, C.; Collier, J.

    2010-12-01

    The relationship between backscatter imagery, sediment grain size and measures of biological community diversity are investigated using a quantitative approach at an aggregate extraction site in the Southern North Sea, UK. Previous work conducted at Oban in Scotland (Collier and Brown, 2005) showed the potential for estimating sediment grain size from first order backscatter statistics. In particular this study reported r2 correlation values of 0.531 between mean backscatter and mean sediment grain size, with r2=0.351 between standard deviation backscatter and sediment grain size sorting (n=19). Here we test these simple linear relationships in a different environment where the sediments are coarser and the degree of sorting is lower. We present the analysis of a dataset collected in 2008 off the coast of East Anglia, UK. Beam-time series backscatter imagery was acquired from a 300 kHz source MBES (Kongsberg Simard EM3000D), and ground-truth data obtained from a series of 100 Hamon and 16 Clamshell grabs processed for particle size analysis. Pixels were extracted from 32-bit backscatter imagery at 50 m2 window based on the ground-truth data locations. So far 19 of the 100 Hamon samples have been processed. These show a significant correlation between mean backscatter intensity and mean sediment grain size (r2=0.427). The level of agreement between standard deviation backscatter and grain size distribution however, was lower at r2=0.078. Correlation of univariate measures of biological diversity and mean backscatter were low for the 19 samples; the maximum observed value was r2=0.074 (Fisher’s diversity index). Relative to the standard deviation backscatter, the strongest correlation was r2=0.192 (Brillion’s). The analysis of the Clamshell samples is completed. In this case, the MBES backscatter imagery established a stronger positive correlation (r2=0.628) between the means. The level of agreement observed between the standard deviation of the backscatter and

  1. A HYBRID THINNING ALGORITHM FOR BINARY TOPOGRAPHY MAP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A hybrid thinning algorithm for binary topography maps is proposed on the basis of parallel thinning templates in this paper.The algorithm has a high processing speed and the strong ability of noise immunity and preservation of connectivity and skeleton symmetry. Experimental results show that the algorithm can solve t he thinning problem of binary maps effectively.

  2. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Weinell, Claus E.; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  3. The effect of asteroid topography on surface ablation deflection

    Science.gov (United States)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  4. Short wavelength topography on the inner-core boundary.

    Science.gov (United States)

    Cao, Aimin; Masson, Yder; Romanowicz, Barbara

    2007-01-02

    Constraining the topography of the inner-core boundary is important for studies of core-mantle coupling and the generation of the geodynamo. We present evidence for significant temporal variability in the amplitude of the inner core reflected phase PKiKP for an exceptionally high-quality earthquake doublet, observed postcritically at the short-period Yellowknife seismic array (YK), which occurred in the South Sandwich Islands within a 10-year interval (1993/2003). This observation, complemented by data from several other doublets, indicates the presence of topography at the inner-core boundary, with a horizontal wavelength on the order of 10 km. Such topography could be sustained by small-scale convection at the top of the inner core and is compatible with a rate of super rotation of the inner core of approximately 0.1-0.15 degrees per year. In the absence of inner-core rotation, decadal scale temporal changes in the inner-core boundary topography would provide an upper bound on the viscosity at the top of the inner core.

  5. Topographie en tomographie en coherence optique (OCT) des ...

    African Journals Online (AJOL)

    Ceci permettrait de reconsidérer le glaucome comme un problème de santé publique afin de ... English Title: OCT topography of large cup-disc ratio in Lome ... The reference for the disc topogramm for comparison in this study is data from 19th ...

  6. Water balance and topography predict fire and forest structure patterns

    Science.gov (United States)

    Van R. Kane; James A. Lutz; C. Alina Cansler; Nicholas A. Povak; Derek J. Churchill; Douglas F. Smith; Jonathan T. Kane; Malcolm P. North

    2015-01-01

    Mountainous topography creates fine-scale environmental mosaics that vary in precipitation, temperature, insolation, and slope position. This mosaic in turn influences fuel accumulation and moisture and forest structure. We studied these the effects of varying environmental conditions across a 27,104 ha landscape within Yosemite National Park, California, USA, on the...

  7. Ocean and laboratory observations on waves over topography

    NARCIS (Netherlands)

    Lam, F.P. A.

    2007-01-01

    This thesis addresses the observation, analysis and dynamics of waves as being trapped, generated and focused by sloping topography. ---Shelf waves with diurnal tidal frequency off Greenland--- Tidal analysis has been carried out on current measurements at a “cross-shelf” transect off Greenland at 7

  8. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  9. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  10. An anatomical and functional topography of human auditory cortical areas.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that-whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis-the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  11. A Mathematical Approach for Evaluation of Surface Topography Parameters

    Directory of Open Access Journals (Sweden)

    A. K. Haghi

    2002-01-01

    Full Text Available The probability characteristics of surface topography parameters described by the composition of the deterministic component and the homogeneous random normal field were analysed. Formulae for the calculation of the mathematical expectation of the Ras parameter and the evaluation of its variance are given.

  12. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Cardoso Pita

    2015-01-01

    Full Text Available The establishment of the subgingival microbiota is dependent on successive colonization of the implant surface by bacterial species. Different implant surface topographies could influence the bacterial adsorption and therefore jeopardize the implant survival. This study evaluated the biofilm formation capacity of five oral streptococci species on two titanium surface topographies. In vitro biofilm formation was induced on 30 titanium discs divided in two groups: sandblasted acid-etched (SAE- n=15 and as-machined (M- n=15 surface. The specimens were immersed in sterilized whole human unstimulated saliva and then in fresh bacterial culture with five oral streptococci species: Streptococcus sanguinis, Streptococcus salivarius, Streptococcus mutans, Streptococcus sobrinus, and Streptococcus cricetus. The specimens were fixed and stained and the adsorbed dye was measured. Surface characterization was performed by atomic force and scanning electron microscopy. Surface and microbiologic data were analyzed by Student’s t-test and two-way ANOVA, respectively (P0.05. S. sanguinis exhibited similar behavior to form biofilm on both implant surface topographies, while S. salivarius showed the lowest ability to form biofilm. It was concluded that biofilm formation on titanium surfaces depends on surface topography and species involved.

  13. The subthalamic nucleus : Part I: Development, cytology, topography and connections

    NARCIS (Netherlands)

    Marani, Enrico; Heida, Tjitske; Lakke, Egbert A.J.F.; Usunoff, Kamen G.

    2008-01-01

    This monograph on the subthalamic nucleus accentuates in Part I the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections. The light and electron microscopical cytology concerns the open nucleus concept and the neuronal types p

  14. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...

  15. Geoid-to-topography ratios on Venus: A global perspective

    Science.gov (United States)

    Simons, Mark; Solomon, Sean C.

    1993-01-01

    Recently available spherical harmonic solutions for the geoid and topography of Venus are sufficiently high resolution that they can be used to address questions concerning the relationship between geoid and topography on a regional scale. We have approached this question by mapping the geoid-to-topography ratio (GTR) on a systematic global basis. For a given point on the surface, we consider the geoid and elevation values at all points on a gridded representation of those fields located within a specified distance of the reference point. From the set of paired values, we determine the correlation coefficient and the best-fitting straight line. The latter is the GTR at that position, and the former is a measure of the significance of the derived ratio. This procedure is then repeated for all points on the global grid, yielding maps of the GTR and the correlation coefficient. Unlike previous studies of the GRT on Venus, this apprach permits us to make an objective and systematic search for regions with anomalous GTR's as well as areas that do not demonstrate any strong correlation between geoid and topography. These maps can be updated regularly as new harmonic models of the Venus geoid are produced from new Magellan tracking data. This procedure permits the development of a global perspective on the relationship between GTR and venusian surface tectonics.

  16. Recent advances in engineering topography mediated antibacterial surfaces

    Science.gov (United States)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  17. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  18. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, S.; Escalante, M.; Groenendijk, M.N.W.; Papenburg, B.J.; Rivron, N.C.; Unadkat, H.V.; Saile, V.; Subramaniam, V.; Blitterswijk, van C.A.; Wessling, M.; Boer, de J.; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  19. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 2. Backscatter structure

    Energy Technology Data Exchange (ETDEWEB)

    Bowdle, D.A. (Univ. of Alabama, Huntsville (USA)); Rothermel, J. (NASA Marshall Space Flight Center, Huntsville, AL (USA)); Vaughan, J.M. (Royal Signals and Radar Establishment, Worcestershire (England)); Post, M.J. (National Oceanic and Atmospheric Administration, Boulder, CO (USA))

    1991-03-20

    Measurements of tropospheric aerosol volume backscatter coefficients at 10.6-{mu}m wavelength were obtained with airborne continuous wave and ground-based pulsed CO{sub 2} Doppler lidars over the Colorado High Plains during a 20-day period in summer 1982. A persistent 'background' layer was found between 6- and 10-km altitude, with a generally uniform backscatter mixing ratio of {approximately}10{sup {minus}10} m{sup 2} kg{sup {minus}1} sr{sup {minus}1}. The upper boundary of this background layer varied with the tropopause height; the lower boundary varied with the strength and diurnal cycle of convective mixing in the planetary boundary layer (PBL). For quiescent meteorological conditions the transition from the PBL to the background layer was usually very sharp, with backscatter decreases sometimes as large as 3 decades in {approximately}70 m. Sharp gradients were also found at the boundaries of shallow (tens of meters) subvisible cirrus clouds. For less stable conditions, associated with vertical aerosol transport by deep comuliform clouds, backscatter tended to decrease exponentially with altitude.

  20. Climate dominated topography in a tectonically active mountain range

    Science.gov (United States)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  1. Upper-Mantle Flow Driven Dynamic Topography in Eastern Anatolia

    Science.gov (United States)

    Sengul Uluocak, Ebru; Pysklywec, Russell; Eken, Tuna; Hakan Gogus, Oguz

    2016-04-01

    Eastern Anatolia is characterized by 2 km plateau uplift -in the last 10 Myrs-, high surface heat flow distribution, shallow Curie-point depth, anomalous gravity field. Seismological observations indicate relatively high Pn and Sn attenuation and significant low seismic velocity anomalies in the region. Moreover, the surface geology is associated predominantly with volcanic rocks in which melt production through mantle upwelling (following lithospheric delamination) has been suggested. It has been long known that the topographic loading in the region cannot be supported by crustal thickness (~45 km) based on the principle of Airy isostasy. Recent global geodynamic studies carried out for evaluating the post-collisional processes imply that there is an explicit dynamic uplift in Eastern Anatolia and its adjacent regions. In this study we investigate the instantaneous dynamic topography driven by 3-D upper-mantle flow in Eastern Anatolia. For this purpose we conducted numerous thermo-mechanical models using a 2-D Arbitrary Lagrangian Eulerian (ALE) finite element method. The available P-wave tomography data extracted along 10 profiles were used to obtain depth-dependent density anomalies in the region. We present resulting dynamic topography maps and estimated 3D mantle flow velocity vectors along these 2-D cross sections for each profile. The residual topography based on crustal thickness and observed topography was calculated and compared with other independent datasets concerning geological deformation and dynamic topography predictions. The results indicate an upper mantle driven dynamic uplift correlated with the under-compensated characteristic in Eastern Anatolia. We discuss our results combined with 3D mantle flow by considering seismic anisotropy studies in the region. Initial results indicate that high dynamic uplift and the localized low Pn velocities in concurrence with Pn anisotropy structures show nearly spatial coherence in Eastern Anatolia.

  2. Shape and topography corrections for planetary nuclear spectroscopy

    Science.gov (United States)

    Prettyman, Thomas H.; Hendricks, John S.

    2015-11-01

    The elemental composition of planetary surfaces can be determined using gamma ray and neutron spectroscopy. Most planetary bodies for which nuclear spectroscopy data have been acquired are round, and simple, analytic corrections for measurement geometry can be applied; however, recent measurements of the irregular asteroid 4 Vesta by Dawn required more detailed corrections using a shape model (Prettyman et al., Science 2012). In addition, subtle artifacts of topography have been observed in low altitude measurements of lunar craters, with potential implications for polar hydrogen content (Eke et al., JGR 2015). To explore shape and topography effects, we have updated the general-purpose Monte Carlo radiation transport code MCNPX to include a polygonal shape model (Prettyman and Hendricks, LPSC 2015). The shape model is fully integrated with the code’s 3D combinatorial geometry modules. A voxel-based acceleration algorithm enables fast ray-intersection calculations needed for Monte Carlo. As modified, MCNPX can model neutron and gamma ray transport within natural surfaces using global and/or regional shape/topography data (e.g. from photogrammetry and laser altimetry). We are using MCNPX to explore the effect of small-scale roughness, regional-, and global-topography for asteroids, comets and close-up measurements of high-relief features on larger bodies, such as the lunar surface. MCNPX can characterize basic effects on measurements by an orbiting spectrometer such as 1) the angular distribution of emitted particles, 2) shielding of galactic cosmic rays by surrounding terrain and 3) re-entrant scattering. In some cases, re-entrant scattering can be ignored, leading to a fast ray-tracing model that treats effects 1 and 2. The algorithm is applied to forward modeling and spatial deconvolution of epithermal neutron data acquired at Vesta. Analyses of shape/topography effects and correction strategies are presented for Vesta, selected small bodies and cratered

  3. A comparison of optical and coherent HF radar backscatter observations of a post-midnight aurora

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available A poleward-progressing 630 nm optical feature is observed between approximately 0100 UT and 0230 UT (0400 MLT to 0530 MLT by a meridian-scanning photometer (MSP located at Ny Ålesund, Svalbard. Simultaneous coherent HF radar measurements indicate a region of poleward-expanding backscatter with rapid sunward plasma flow velocity along the MSP meridian. Spatial maps of the backscatter indicate a stationary backscatter feature aligned obliquely with respect to the MSP meridian, which produces an impression of poleward-expansion as the MSP progresses to later MLT. Two interpretations of the observations are possible, depending on whether the arc system is considered to move (time-dependent or to be stationary in time and apparent motion is produced as the MSP meridian rotates underneath it (time-independent. The first interpretation is as a poleward motion of an east-west aligned auroral arc. In this case the appearance of the region of backscatter is not associated with the optical feature, though the velocities within it are enhanced when the two are co-located. The second interpretation is as a polar arc or theta aurora, common features of the polar cap under the prevailing IMF northwards conditions. In this case the backscatter appears as an approximately 150 km wide region adjacent to the optical arc. In both interpretations the luminosity of the optical feature appears related to the magnitude of the plasma flow velocity. The optical features presented here do not generate appreciable HF coherent backscatter, and are only identifiable in the backscatter data as a modification of the flow by the arc electrodynamics.

  4. Solar Backscatter UV (SBUV total ozone and profile algorithm

    Directory of Open Access Journals (Sweden)

    P. K. Bhartia

    2013-10-01

    Full Text Available We describe the algorithm that has been applied to develop a 42 yr record of total ozone and ozone profiles from eight Solar Backscatter UV (SBUV instruments launched on NASA and NOAA satellites since April 1970. The Version 8 (V8 algorithm was released more than a decade ago and has been in use since then at NOAA to produce their operational ozone products. The current algorithm (V8.6 is basically the same as V8, except for updates to instrument calibration, incorporation of new ozone absorption cross-sections, and new ozone and cloud height climatologies. Since the V8 algorithm has been optimized for deriving monthly zonal mean (MZM anomalies for ozone assessment and model comparisons, our emphasis in this paper is primarily on characterizing the sources of errors that are relevant for such studies. When data are analyzed this way the effect of some errors, such as vertical smoothing of short-term variability, and noise due to clouds and aerosols diminish in importance, while the importance of others, such as errors due to vertical smoothing of the quasi-biennial oscillation (QBO and other periodic and aperiodic variations, become more important. With V8.6 zonal mean data we now provide smoothing kernels that can be used to compare anomalies in SBUV profile and partial ozone columns with models. In this paper we show how to use these kernels to compare SBUV data with Microwave Limb Sounder (MLS ozone profiles. These kernels are particularly useful for comparisons in the lower stratosphere where SBUV profiles have poor vertical resolution but partial column ozone values have high accuracy. We also provide our best estimate of the smoothing errors associated with SBUV MZM profiles. Since smoothing errors are the largest source of uncertainty in these profiles, they can be treated as error bars in deriving interannual variability and trends using SBUV data and for comparing with other measurements. In the V8 and V8.6 algorithms we derive total

  5. Relating Soil Moisture to TRMMPR Backscatter in Southern United States

    Science.gov (United States)

    Puri, S.; Stephen, H.; Ahmad, S.

    2009-12-01

    Soil Moisture is an important variable in hydrological cycle. It plays a vital role in agronomy, meteorology, and hydrology. In spite of being an important variable, soil moisture measuring stations are sparse. This is due to high cost involved in the installation of dense network of measuring stations required to map a comprehensive spatio-temporal behavior of soil moisture. Hence, there is a need to develop an alternate method to measure soil moisture. This research relates soil moisture (SM) to backscatter (σ°) obtained from Tropical Rainfall Measuring Mission Precipitation Radar (TRMMPR) and Normalized Difference Vegetation Index (NDVI) obtained from Advanced Very High Resolution Radiometer. SM data is obtained from Soil Climate Analysis Network (SCAN). σ° measurements are normalized at an incidence angle of 10° at which it has the highest sensitivity to SM. An empirical model that relates SM to normalized σ° and NDVI is developed. NDVI takes into account the different vegetation densities. The relationship between model variables is approximated to be linear. The model is applied to data from 1998 to 2008 where 75% of the data is used for calibration and the remaining 25% for validation. Figure 1 shows the comparison of observed and modeled soil moisture for a site with low vegetation. Even though the model underestimates the soil moisture content, it captures the signal well and produces peaks similar to the observed soil moisture. The model performs well with a correlation of 0.71 and root mean square error of 4.0%. The accuracy of the model depends on vegetation density. Table 1 summarizes the model performance for different vegetation densities. The model performance decreases with the increase in vegetation as the leaves in the vegetation canopy attenuate the incident microwaves which reduces the penetration depth and subsequently the sensitivity to soil moisture. This research provides a new insight into the microwave remote sensing of soil

  6. Polarized gamma-rays with laser-Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Ohgaki, H.; Noguchi, T.; Sugiyama, S. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  7. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang

    2013-09-22

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  8. Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction

    Science.gov (United States)

    Harcuba, Petr; Veselý, Jozef; Lesnik, Andreas; Bauer, Guenther; Springholz, Gunther; Holý, Václav

    2017-01-01

    The twin distribution in topological insulators Bi2Te3 and Bi2Se3 was imaged by electron backscatter diffraction (EBSD) and scanning X-ray diffraction microscopy (SXRM). The crystal orientation at the surface, determined by EBSD, is correlated with the surface topography, which shows triangular pyramidal features with edges oriented in two different orientations rotated in the surface plane by 60°. The bulk crystal orientation is mapped out using SXRM by measuring the diffracted X-ray intensity of an asymmetric Bragg peak using a nano-focused X-ray beam scanned over the sample. By comparing bulk- and surface-sensitive measurements of the same area, buried twin domains not visible on the surface are identified. The lateral twin domain size is found to increase with the film thickness.

  9. User expectations for multibeam echo sounders backscatter strength data-looking back into the future

    Science.gov (United States)

    Lucieer, Vanessa; Roche, Marc; Degrendele, Koen; Malik, Mashkoor; Dolan, Margaret; Lamarche, Geoffroy

    2017-05-01

    With the ability of multibeam echo sounders (MBES) to measure backscatter strength (BS) as a function of true angle of insonification across the seafloor, came a new recognition of the potential of backscatter measurements to remotely characterize the properties of the seafloor. Advances in transducer design, digital electronics, signal processing capabilities, navigation, and graphic display devices, have improved the resolution and particularly the dynamic range available to sonar and processing software manufacturers. Alongside these improvements the expectations of what the data can deliver has also grown. In this paper, we identify these user-expectations and explore how MBES backscatter is utilized by different communities involved in marine seabed research at present, and the aspirations that these communities have for the data in the future. The results presented here are based on a user survey conducted by the GeoHab (Marine Geological and Biological Habitat Mapping) association. This paper summarises the different processing procedures employed to extract useful information from MBES backscatter data and the various intentions for which the user community collect the data. We show how a range of backscatter output products are generated from the different processing procedures, and how these results are taken up by different scientific disciplines, and also identify common constraints in handling MBES BS data. Finally, we outline our expectations for the future of this unique and important data source for seafloor mapping and characterisation.

  10. First observations of SPEAR-induced artificial backscatter from CUTLASS and the EISCAT Svalbard radars

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    2006-03-01

    Full Text Available Results are presented from the first two active experimental campaigns undertaken by the new SPEAR (Space Plasma Exploration by Active Radar high-power system that has recently become operational on Spitzbergen, in the Svalbard archipelago. SPEAR's high-power beam was used to excite artificial enhancements in the backscatter detected by the ESR (EISCAT Svalbard Radar parallel to the geomagnetic field, as well as coherent backscatter detected by both of the CUTLASS (Co-operative UK Twin Located Auroral Sounding System coherent radars, in directions orthogonal to the geomagnetic field. The ESR detected both enhanced ion-lines as well as enhanced plasma-lines, that were sustained for the whole period when SPEAR was transmitting ordinary mode radio waves, at frequencies below the maximum F-region plasma frequency. On a number of occasions, coherent backscatter was also observed in one or in both of the CUTLASS radars, in beams that intersected the heated volume. Although the levels of enhanced backscatter varied considerably in time, it appeared that ion-line, plasma-line and coherent backscatter were all excited simultaneously, in contrast to what has typically been reported at Tromsø, during EISCAT heater operations. A description of the technical and operational aspects of the new SPEAR system is also included.

  11. Coherent Backscattering and Opposition Effects Observed in Some Atmosphereless Bodies of the Solar System

    Science.gov (United States)

    Dlugach, Zh. M.; Mishchenko, M. I.

    2013-01-01

    The results of photometric and polarimetric observations carried out for some bright atmosphere-less bodies of the Solar system near the zero phase angle reveal the simultaneous existence of two spectacular optical phenomena, the so-called brightness and polarization opposition effects. In a number of studies, these phenomena were explained by the influence of coherent backscattering. However, in general, the interference concept of coherent backscattering can be used only in the case where the particles are in the far-field zones of each other, i.e., when the scattering medium is rather rarefied. Because of this, it is important to prove rigorously and to demonstrate that the coherent backscattering effect may also exist in densely packed scattering media like regolith surface layers of celestial bodies. From the results of the computer modeling performed with the use of numerically exact solutions of the macroscopic Maxwell equations for discrete random media with different packing densities of particles, we studied the origin and evolution of all the opposition phenomena predicted by the coherent backscattering theory for low-packing-density media. It has been shown that the predictions of this theory remain valid for rather high-packing densities of particles that are typical, in particular, of regolith surfaces of the Solar system bodies. The results allow us to conclude that both opposition effects observed simultaneously in some high-albedo atmosphereless bodies of the Solar system are caused precisely by coherent backscattering of solar light in the regolith layers composed of microscopic particles.

  12. SIMULATION OF EDDIES AFFECTED BY TOPOGRAPHY IN A BAROTROPICAL QUASI-GEOSTROPHIC FLUID

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based upon the quasi-geostrophic barotropic equation, taking into account the effect of seabed topography, analytical solutions and simulated eddies associated with different topographies are obtained. Through exhibiting the shape of various eddies we have found some interesting phenomena and had a better understanding of the importance of seabed topography to the eddy shape.

  13. Three-dimensional measurement and characterization of grinding tool topography

    Science.gov (United States)

    Cui, Changcai; Blunt, Liam; Jiang, Xiangqian; Xu, Xipeng; Huang, Hui; Ye, Ruifang

    2013-01-01

    A comprehensive 3-dimensional measurement and characterization method for grinding tool topography was developed. A stylus instrument (SOMICRONIC, France) was used to measure the surface of a metal-bonded diamond grinding tool. The sampled data was input the software SurfStand developed by Centre for Precision Technology (CPT) for reconstruction and further characterization of the surface. Roughness parameters pertaining to the general surface and specific feature parameters relating to the grinding grits, such as height and angle peak curvature have been calculated. The methodology of measurement has been compared with that using an optical microscope. The comparison shows that the three-dimensional characterization has distinct advantages for grinding tool topography assessment. It is precise, convenient and comprehensive so it is suitable for precision measurement and analysis where an understanding of the grinding tool and its cutting ability are required.

  14. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  15. Ice sheet topography from retracked ERS-1 altimetry

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; Dimarzio, John; Seiss, Timothy

    1994-01-01

    An objective of the ERS-1 radar altimeter is to measure the surface topography of the polar ice sheets to a precision on the order of a meter. ERS-1 Waveform Altimeter Product (WAP) data was corrected for several processing errors. A range correction from the WAP waveforms, using the multiparameter retracking algorithm to account for range tracking limitations inherent to radar altimetry, was derived. From crossover analysis, the resulting precision is shown to be about 2.1 m in ocean mode and 2.2 m in ice mode. A topography map, produced with 23 days of corrected data, shows details of the western part of west Antarctic ice sheet and part of the Ross ice shelf including ice divides, ice stream boundaries, and ice shelf grounding lines.

  16. Keratometry and corneal topography using multiple delay element OCT

    Science.gov (United States)

    Plesea, Lucian; Podoleanu, Adrian G.

    2008-02-01

    We have presented previously a novel method for the evaluation of the surface shape of an object, with immediate application to measurement of cornea shape. This method uses single shot C-scans obtained by using a multiple delay element (MDE) in the reference path of an OCT system. A calibrated MDE-OCT system can be used to measure the elevation of points on the cornea, in contrast to existing methods which are based on measurement of the cornea slope. The associated algorithm for extracting corneal topography data points from the MDE-OCT C-Scan image will be presented, data points which can then be used to calculate the Zernike coefficients for the cornea shape. The differences between the existing systems and the MDE-OCT method for keratometry and corneal topography are discussed.

  17. Advances in corneal topography measurements with conical null-screens

    Science.gov (United States)

    Campos-García, Manuel; Cossio-Guerrero, Cesar; Huerta-Carranza, Oliver; Moreno-Oliva, Víctor I.

    2015-09-01

    In this work we report the design of a null-screen for corneal topography. To avoid the difficulties in the alignment of the test system due to the face contour (eyebrows, nose, or eyelids), we design a conical null-screen with a novel radial points distribution drawn on it in such a way that its image, which is formed by reflection on the test surface, becomes an exact array of circular spots if the surface is perfect. Additionally, an algorithm to compute the sagittal and meridional radii of curvature for the corneal surface is presented. The sagittal radius is obtained from the surface normal, and the meridional radius is calculated from a function fitted to the derivative of the sagittal curvature by using the surfacenormals raw data. Experimental results for the testing a calibration spherical surface are shown. Also, we perform some corneal topography measurements.

  18. Synchronous interferometric demodulation of Placido mires applied to corneal topography

    CERN Document Server

    Servin, Manuel

    2012-01-01

    This paper presents a novel digital interferometric method to demodulate Placido fringe patterns. This is a synchronous method which uses a computer-stored conic-wavefront as demodulating reference. Here we focuses on the experimental aspects to phase-demodulate Placido mires applied to corneal topography. This synchronous method is applied to two topographic Placido images and their de-modulated corneal-slope deformation is estimated. This conic-interferometric method is highly robust against typical "noisy" signals in Placido topography such as: reflected eyelashes and iris structures. That is because the eyelashes and the iris structure are high frequency "noisy" signals corrupting the reflected Placido mire, so they are filtered-out by this method. Digital synchronous interferometry is here applied for the first time to demodulate corneal topographic concentric-rings images (Patent pending at the USPTO).

  19. Topography measurement of micro structure by modulation-based method

    Science.gov (United States)

    Zhou, Yi; Tang, Yan; Liu, Junbo; Deng, Qinyuan; Cheng, Yiguang; Hu, Song

    2016-10-01

    Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. Different from the traditional white-light interferometry approach, the modulation-based method is expected to measure topography of micro structure by the obtained modulation of each interferometry image. Through seeking the maximum modulation of every pixel respectively in Z direction, the method could obtain the corresponding height of individual pixel and finally get topography of the structure. Owing to the characteristic of modulation, the proposed method which is not influenced by the change of background light intensity caused by instable light source and different reflection index of the structure could be widely applied with high stability. The paper both illustrates the principle of this novel method and conducts the experiment to verify the feasibility.

  20. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.