WorldWideScience

Sample records for sun temperature profiles

  1. On the Temperature of the Photosphere: Energy Partition in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available In this note, energy partition within the Sun is briefly addressed. It is argued that the laws of thermal emission cannot be directly applied to the Sun, as the continuous solar spectrum ( T app 6 ; 000K reveals but a small fraction of the true solar energy profile. Without considering the energy linked to fusion itself, it is hypothesized that most of the photospheric energy remains trapped in the Sun’s translational degrees of freedom and associated convection currents. The Sun is known to support both convective granules and differential rotation on its surface. The emission of X-rays in association with eruptive flares and the elevated temperatures of the corona might provide some measure of these energies. At the same time, it is expected that a fraction of the solar energy remains tied to the filling of conduction bands by electrons especially within sunspots. This constitutes a degree of freedom whose importance cannot be easily assessed. The discussion highlights how little is truly understood about energy partition in the Sun.

  2. Sun Protection Motivational Stages and Behavior: Skin Cancer Risk Profiles

    Science.gov (United States)

    Pagoto, Sherry L.; McChargue, Dennis E.; Schneider, Kristin; Cook, Jessica Werth

    2004-01-01

    Objective: To create skin cancer risk profiles that could be used to predict sun protection among Midwest beachgoers. Method: Cluster analysis was used with study participants (N=239), who provided information about sun protection motivation and behavior, perceived risk, burn potential, and tan importance. Participants were clustered according to…

  3. The quiet Sun brightness temperature at 408 MHz

    International Nuclear Information System (INIS)

    Avignon, Y.; Lantos, P.; Palagi, F.; Patriarchi, P.

    1975-01-01

    The flux of the radio quiet Sun and the brightness temperature at 408 MHz (73cm) are derived from measurements with the E-W Nancay interferometer and the E-W arm of the Medicina North Cross. It is shown that the lowest envelopes, which defined the radio quiet Sun, correspond to transits of extended coronal holes across the disk of the Sun. (Auth.)

  4. The Toboggan Sun

    NARCIS (Netherlands)

    Davidson, WPS; van der Werf, SY

    2005-01-01

    Special variants of the Novaya Zemlya effect may arise from localized temperature inversions that follow the height profile of hills or mountains. Rather than following its natural path, the rising or setting Sun may, under such circumstances, appear to slide along a distant mountain slope. We found

  5. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  6. Thermal stresses calculations in near-surface layers of sphere bodies, falling to the Sun

    International Nuclear Information System (INIS)

    Demchenko, B.I.; Shestakova, L.I.

    2005-01-01

    Profiles of temperature and temperature stresses in surface layers of silicate and icy spheric bodies, falling to the Sun along parabolic orbits were obtained on the base of the analytical solution of the linear heat diffusion equation. Results may be useful for thermal evolution analysis of meteor and comet bodies in the Sun system. (author)

  7. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    Science.gov (United States)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  8. Stokes profile analysis and vector magnetic fields. III. Extended temperature minima of sunspot umbrae as inferred from Stokes profiles of Mg I 4571 A

    International Nuclear Information System (INIS)

    Lites, B.W.; Skumanich, A.; Rees, D.E.; Murphy, G.A.; Carlsson, M.; Sydney Univ., Australia; Oslo Universitetet, Norway)

    1987-01-01

    Observed Stokes profiles of Mg I 4571 A are analyzed as a diagnostic of the magnetic field and thermal structure at the temperature minimum of sunspot umbrae. Multilevel non-LTE transfer calculations of the Mg I-II-III excitation and ionization balance in model umbral atmospheres show: (1) Mg I to be far less ionized in sunspot umbrae than in the quiet sun, leading to greatly enhanced opacity in 4571 A, and (2) LTE excitation of 4571 A. Existing umbral models predict emission cores of the Stokes I profile due to the chromospheric temperature rise. This feature is not present in observed umbral profiles. Moreover, such an emission reversal causes similar anomalous features in the Stokes Q, U, V profiles, which are also not observed. Umbral atmospheres with extended temperature minima are suggested. Implications for chromospheric heating mechanisms and the utility of this line for solar vector magnetic field measurements are discussed. 35 references

  9. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose.

    Science.gov (United States)

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hatanaka, Haruyo; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-01-10

    Production of ethanol from xylose at high temperature would be an economical approach since it reduces risk of contamination and allows both the saccharification and fermentation steps in SSF to be running at elevated temperature. Eight recombinant xylose-utilizing Saccharomyces cerevisiae strains developed from industrial strains were constructed and subjected to high-temperature fermentation at 38 °C. The best performing strain was sun049T, which produced up to 15.2 g/L ethanol (63% of the theoretical production), followed by sun048T and sun588T, both with 14.1 g/L ethanol produced. Via transcriptomic analysis, expression profiling of the top three best ethanol producing strains compared to a negative control strain, sun473T, led to the discovery of genes in common that were regulated in the same direction. Identification of the 20 most highly up-regulated and the 20 most highly down-regulated genes indicated that the cells regulate their central metabolism and maintain the integrity of the cell walls in response to high temperature. We also speculate that cross-protection in the cells occurs, allowing them to maintain ethanol production at higher concentration under heat stress than the negative controls. This report provides further transcriptomics information in the interest of producing a robust microorganism for high-temperature ethanol production utilizing xylose. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    Directory of Open Access Journals (Sweden)

    Li Dongmei

    2009-05-01

    Full Text Available Abstract Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7, anthesis-stage flowers (floral landmark 10 and fruit landmark 1, and 5 days post anthesis fruit (fruit landmark 3. To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in

  11. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  12. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    2001-01-01

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  13. Brightness temperature of the ''quiet'' Sun in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Pelyushenko, S.A.

    1982-01-01

    Results are presented of recalibration of the data available for measurements of the solar brightness temperature Tsub(s) made by comparison with the lunar radio emission. A spectrum has been obtained of the ''quiet'' Sun radio emission in the range of 1-20 mm. The mean square spread of data does not exceed +-(from 3 to 4)%. The ''quiet'' Sun spectrum has a form of: Tsub(c)=(6150+-70)lambdasup(01+-0.01)[mm]K in the wavelength interval of lambda=(1-6) mm and Tsub(c)=(3470+-80)lambdasup(0.42+-0.01) [mm]K in the wavelength interval of lambda=(7-20) mm on approximation of recalibrated values of Tsub(c) with a linear dependence using the mean-square-root method. The obtained spectral characteristics of the ''quiet'' Sun radio frequency emission in the mullimeter wavelength range testify on the spectrum flatteming in the (1-6) mm wavelength range

  14. The Sun on Trial

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2014-03-01

    For 150 years, the Sun has been seen as a gaseous object devoid of a surface, as required by the Standard Solar Model (SSM). Yet, not one line of observational evidence supports a gaseous Sun. In contrast, overwhelming evidence exists that the Sun is comprised of condensed matter. Recently, 40 proofs have been compiled in conjunction with the Liquid Metallic Hydrogen Solar Model (LMHSM). This model advances that the Sun has a true surface. Photospheric structures, such as sunspots, granules, and faculae, are not optical illusions, as in the SSM, but real objects with a condensed nature. The LMHSM accounts for the thermal spectrum by invoking true inter-atomic structure on the photosphere in the form of the graphite-like layered hexagonal metallic hydrogen lattice first proposed by Wigner and Huntington. Within the convection zone, layered metallic hydrogen, insulated by intercalate atoms, enables the generation of the solar dynamo. Electrons located in conduction bands provide a proper means of generating magnetic fields. Metallic hydrogen ejected from the photosphere also thinly populates the corona, as reflected by the continuous K-coronal spectrum. This coronal matter harvests electrons, resulting in the production of highly ionized atoms. Electron affinity, not temperature, governs the ion profile. The chromosphere is a site of hydrogen and proton capture. Line emission in this region, strongly supports the idea that exothermic condensation reactions are occurring in the chromosphere. In the LMHSM, solar activity and solar winds are regulated by exfoliation reactions occurring in the Sun itself, as the metallic hydrogen lattice excludes non-hydrogen elements from the solar body.

  15. CORRECTION OF THE TEMPERATURE EFFECT IN 1020 NM BAND OF SUN-SKY RADIOMETER

    Directory of Open Access Journals (Sweden)

    K. Li

    2018-04-01

    Full Text Available Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  16. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    Science.gov (United States)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  17. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.

  18. Heat transfer coefficient: Medivance Arctic Sun Temperature Management System vs. water immersion.

    Science.gov (United States)

    English, M J; Hemmerling, T M

    2008-07-01

    To improve heat transfer, the Medivance Arctic Sun Temperature Management System (Medivance, Inc., Louisville, CO, USA) features an adhesive, water-conditioned, highly conductive hydrogel pad for intimate skin contact. This study measured and compared the heat transfer coefficient (h), i.e. heat transfer efficiency, of this pad (hPAD), in a heated model and in nine volunteers' thighs; and of 10 degrees C water (hWATER) in 33 head-out immersions by 11 volunteers. Volunteer studies had ethical approval and written informed consent. Calibrated heat flux transducers measured heat flux (W m-2). Temperature gradient (DeltaT) was measured between skin and pad or water temperatures. Temperature gradient was changed through the pad's water temperature controller or by skin cooling on immersion. The heat transfer coefficient is the slope of W m-2/DeltaT: its unit is W m-2 degrees C-1. Average with (95% CI) was: model, hPAD = 110.4 (107.8-113.1), R2 = 0.99, n = 45; volunteers, hPAD = 109.8 (95.5-124.1), R2 = 0.83, n = 51; and water immersion, hWATER = 107.1 (98.1-116), R2 = 0.86, n = 94. The heat transfer coefficient for the pad was the same in the model and volunteers, and equivalent to hWATER. Therefore, for the same DeltaT and heat transfer area, the Arctic Sun's heat transfer rate would equal water immersion. This has important implications for body cooling/rewarming rates.

  19. Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2018-01-01

    Full Text Available Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.

  20. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    Science.gov (United States)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  1. Temperature profiles in the Harwell boreholes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1983-03-01

    Heat flow at Harwell is estimated at 45 mWm -2 (milli Watt per metre squared is the unit of heat flow). Thermal conductivity values for the formations penetrated range from 1.0 to 4.6 Wm -1 K -1 . The temperature profiles recorded in the boreholes enable the vertical groundwater flow patterns within two poorly permeable mudrock units to be evaluated. The two mudrock units act as leaky barriers each separating a pair of aquifer units which induce a vertical hydraulic gradient across the mudrocks. The flow velocity results for the upper mudrock units derived from the temperature profile are compatible with values for groundwater potential derived from hydraulic data (10 -9 ms -1 from the temperature profile and 10 -12 ms -1 from the hydraulic observations). The results from the lower mudrock sequence are incompatible and this may be due to some other overiding influence upon the temperature profile. (author)

  2. A temperature profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.; Desa, E.

    An instrument developed for measuring temperature profiles at sea in depth or time scales is described. PC-based programming offers flexibility in setting up the instrument for the mode of operation prior to each cast. A real time clock built...

  3. Temperature profiles from Salt Valley, Utah

    Science.gov (United States)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  4. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  5. Effect of temperature on water diffusion during rehydration of sun-dried red pepper ( Capsicum annuum L.)

    Science.gov (United States)

    Demiray, Engin; Tulek, Yahya

    2017-05-01

    Rehydration, which is a complex process aimed at the restoration of raw material properties when dried material comes in contact with water. In the present research, studies were conducted to probe the kinetics of rehydration of sun-dried red peppers. The kinetics associated with rehydrating sun-dried red peppers was studied at three different temperatures (25, 35 and 45 °C). To describe the rehydration kinetics, four different models, Peleg's, Weibull, first order and exponential association, were considered. Between these four models proposed Weibull model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of red peppers increased as water rehydration temperature increased. The values of the effective moisture diffusivity of red peppers were in the range 1.37 × 10-9-1.48 × 10-9 m2 s-1. On the other hand, the activation energy for rehydration kinetic was also calculated using Arrhenius equation and found as 3.17 kJ mol-1.

  6. Heating the Chromosphere in the Quiet Sun

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    The best-studied star the Sun still harbors mysteries for scientists to puzzle over. A new study has now explored the role of tiny magnetic-field hiccups in an effort to explain the strangely high temperatures of the Suns upper atmosphere.Schematic illustrating the temperatures in different layers of the Sun. [ESA]Strange Temperature RiseSince the Suns energy is produced in its core, the temperature is hottest here. As expected, the temperature decreases further from the Suns core up until just above its surface, where it oddly begins to rise again. While the Suns surface is 6,000 K, the temperature is higher above this: 10,000 K in the outer chromosphere.So how is the chromosphere of the Sun heated? Its possible that the explanation can be found not amid high solar activity, but in quiet-Sun regions.In a new study led by Milan Goi (Lockheed Martin Solar and Astrophysics Laboratory, Bay Area Environmental Research Institute), a team of scientists has examined a process that quietly happens in the background: the cancellation of magnetic field lines in the quiet Sun.Activity in a SupergranuleTop left: SDO AIA image of part of the solar disk. The next three panels are a zoom of the particular quiet-Sun region that the authors studied, all taken with IRIS at varying wavelengths: 1400 (top right), 2796 (bottom left), and 2832 (bottom right). [Goi et al. 2018]The Sun is threaded by strong magnetic field lines that divide it into supergranules measuring 30 million meters across (more than double the diameter of Earth!). Supergranules may seem quiet inside, but looks can be deceiving: the interiors of supergranules contain smaller, transient internetwork fields that move about, often resulting in magnetic elements of opposite polarity encountering and canceling each other.For those internetwork flux cancellations that occur above the Suns surface, a small amount of energy could be released that locally heats the chromosphere. But though each individual event has a small

  7. IRIS Burst Spectra Co-spatial to a Quiet-Sun Ellerman-like Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. J.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Freij, N.; Oliver, R. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Reid, A.; Mathioudakis, M., E-mail: c.j.nelson@sheffield.ac.uk [Astrophysics Research Centre (ARC), School of Mathematics and Physics, Queens University, Belfast, BT7 1NN (United Kingdom)

    2017-08-10

    Ellerman bombs (EBs) have been widely studied over the past two decades; however, only recently have the counterparts of these events been observed in the quiet-Sun. The aim of this article is to further understand small-scale quiet-Sun Ellerman-like brightenings (QSEBs) through research into their spectral signatures, including investigating whether the hot signatures associated with some EBs are also visible co-spatial to any QSEBs. We combine H α and Ca ii 8542 Å line scans at the solar limb with spectral and imaging data sampled by the Interface Region Imaging Spectrograph ( IRIS ). Twenty-one QSEBs were identified with average lifetimes, lengths, and widths measured to be around 120 s, 0.″63, and 0.″35, respectively. Three of these QSEBs displayed clear repetitive flaring through their lifetimes, comparable to the behavior of EBs in active regions. Two QSEBs in this sample occurred co-spatial to increased emission in SDO /AIA 1600 Å and IRIS slit-jaw imager 1400 Å data; however, these intensity increases were smaller than those reported co-spatially with EBs. One QSEB was also sampled by the IRIS slit during its lifetime, displaying increases in intensity in the Si iv 1393 Å and Si iv 1403 Å cores, as well as the C ii and Mg ii line wings, analogous to IRIS bursts (IBs). Using RADYN simulations, we are unable to reproduce the observed QSEB H α and Ca ii 8542 Å line profiles, leaving the question of the temperature stratification of QSEBs open. Our results imply that some QSEBs could be heated to transition region temperatures, suggesting that IB profiles should be observed throughout the quiet-Sun.

  8. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  9. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... influence of profile width and super-Gaussian exponent of the profile on temperature distribution are investigated. Consequently, the profile width turns out to have a greater influence on the temperature compared to the type of the profile. Keywords. Side-pumped laser rod; pump cavity; absorbed pump ...

  10. BioSunMS: a plug-in-based software for the management of patients information and the analysis of peptide profiles from mass spectrometry

    Directory of Open Access Journals (Sweden)

    Zhang Xuemin

    2009-02-01

    Full Text Available Abstract Background With wide applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, statistical comparison of serum peptide profiles and management of patients information play an important role in clinical studies, such as early diagnosis, personalized medicine and biomarker discovery. However, current available software tools mainly focused on data analysis rather than providing a flexible platform for both the management of patients information and mass spectrometry (MS data analysis. Results Here we presented a plug-in-based software, BioSunMS, for both the management of patients information and serum peptide profiles-based statistical analysis. By integrating all functions into a user-friendly desktop application, BioSunMS provided a comprehensive solution for clinical researchers without any knowledge in programming, as well as a plug-in architecture platform with the possibility for developers to add or modify functions without need to recompile the entire application. Conclusion BioSunMS provides a plug-in-based solution for managing, analyzing, and sharing high volumes of MALDI-TOF or SELDI-TOF MS data. The software is freely distributed under GNU General Public License (GPL and can be downloaded from http://sourceforge.net/projects/biosunms/.

  11. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  12. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  13. Effect of sun radiation on the thermal behavior of distribution transformer

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim; Mohamadianfard, Mohamad

    2010-01-01

    Performance and life of oil-immersed distribution transformers are strongly dependent on the oil temperature. Transformers, working in regions with high temperature and high solar radiation, usually suffer from excessive heat in summers which results in their early failures. In this paper, the effect of sun radiation on the transformer was investigated by using experimental and analytical methods. Transformer oil temperature was measured in two different modes, with and without sun shield. Effects of different parameters such as direct and indirect solar radiation on the thermal behavior of the transformer were mathematically modeled and the results were compared with experimental findings. Agreements between the experimental and numerical results show that the model can reasonably predict thermal behavior of the transformer. It was found that a sun shield has an important effect on the oil temperature reduction in summer which could be as high as 7 deg. C depending on the load ratio. The amount of temperature reduction by sun shield reduces as the load ratio of transformer increases. By installing a sun shield and reducing oil temperature, transformer life could be increased up to 24% in average.

  14. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  15. Self-Powered Sun Sensor Microsystems

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; Graaf, G. de; Leijtens, J.A.P.; Wolffenbuttel, R.F.

    2009-01-01

    An analog sun sensor has been designed based on shade profile proportional to the angle of incidence of incoming light projected onto a 2×2 array of photodiodes. This concept enables an autonomous self-powered optical system with two the main functions (electrical power generation for the amplifier

  16. Ion temperature profiles in JET

    International Nuclear Information System (INIS)

    Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

    1989-01-01

    The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

  17. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  18. The Microwave Temperature Profiler (PERF)

    Science.gov (United States)

    Lim, Boon; Mahoney, Michael; Haggerty, Julie; Denning, Richard

    2013-01-01

    The JPL developed Microwave Temperature Profiler (MTP) has recently participated in GloPac, HIPPO (I to V) and TORERO, and the ongoing ATTREX campaigns. The MTP is now capable of supporting the NASA Global Hawk and a new canister version supports the NCAR G-V. The primary product from the MTP is remote measurements of the atmospheric temperature at, above and below the flight path, providing for the vertical state of the atmosphere. The NCAR-MTP has demonstrated unprecedented instrument performance and calibration with plus or minus 0.2 degrees Kelvin flight level temperature error. Derived products include curtain plots, isentropes, lapse rate, cold point height and tropopause height.

  19. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  20. Thermalization time scales for WIMP capture by the Sun in effective theories

    Energy Technology Data Exchange (ETDEWEB)

    Widmark, A., E-mail: axel.widmark@fysik.su.se [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden)

    2017-05-01

    I study the process of dark matter capture by the Sun, under the assumption of a Weakly Interacting Massive Particle (WIMP), in the framework of non-relativistic effective field theory. Hypothetically, WIMPs from the galactic halo can scatter against atomic nuclei in the solar interior, settle to thermal equilibrium with the solar core and annihilate to produce an observable flux of neutrinos. In particular, I examine the thermalization process using Monte-Carlo integration of WIMP trajectories. I consider WIMPs in a mass range of 10–1000 GeV and WIMP-nucleon interaction operators with different dependence on spin and transferred momentum. I find that the density profiles of captured WIMPs are in accordance with a thermal profile described by the Sun's gravitational potential and core temperature. Depending on the operator that governs the interaction, the majority of the thermalization time is spent in either the solar interior or exterior. If normalizing the WIMP-nuclei interaction strength to a specific capture rate, I find that the thermalization time differs at most by 3 orders of magnitude between operators. In most cases of interest, the thermalization time is many orders of magnitude shorter than the age of the solar system.

  1. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  2. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    Science.gov (United States)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar class="text">PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the class="text">PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman

  3. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  4. PROPERTIES OF NEAR-SUN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2013-05-15

    Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. We conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.

  5. Data on the association of the nuclear envelope protein Sun1 with nucleoli.

    Science.gov (United States)

    Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula

    2017-08-01

    SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.

  6. Comparison of RASS temperature profiles with other tropospheric soundings

    International Nuclear Information System (INIS)

    Bonino, G.; Lombardini, P.P.; Trivero, P.

    1980-01-01

    The vertical temperature profile of the lower troposphere can be measured with a radio-acoustic sounding system (RASS). A comparison of the thermal profiles measured with the RASS and with traditional methods shows a) RASS ability to produce vertical thermal profiles at an altitude range of 170 to 1000 m with temperature accuracy and height discrimination comparable with conventional soundings, b) advantages of remote sensing as offered by new sounder, c) applicability of RASS both in assessing evolution of thermodynamic conditions in PBL and in sensing conditions conducive to high concentrations of air pollutants at the ground level. (author)

  7. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  8. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds?

    International Nuclear Information System (INIS)

    Thune, P.

    1991-01-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab

  9. Sun Exposure, Sun-Related Symptoms, and Sun Protection Practices in an African Informal Traditional Medicines Market.

    Science.gov (United States)

    Wright, Caradee Y; Reddy, Tarylee; Mathee, Angela; Street, Renée A

    2017-09-28

    Informal workers in African market trade have little formal protection against sun exposure. We aimed to examine sun exposure, sun-related symptoms, and sun protection practices in an informal occupational setting. Trained fieldworkers asked 236 workers in the Warwick Junction market about their workplace, skin and eye sensitivity and skin colour, symptoms faced at work during the summer due to heat, and preventive measures. Data were analyzed using univariate logistic regression to assess the effect of gender and the risk of experiencing symptoms to sun exposure in relation to pre-existing diseases and perception of sun exposure as a hazard. Of the 236 participants, 234 were Black African and 141 (59.7%) were female. Portable shade was the most commonly used form of sun protection (69.9%). Glare from the sun (59.7%) and excessive sweating (57.6%) were commonly reported sun-related health symptoms. The use of protective clothing was more prevalent among those who perceived sun exposure as a hazard ( p = 0.003). In an informal occupational setting, sun exposure was high. Protective clothing and portable shade to eliminate heat and bright light were self-implemented. Action by local authorities to protect informal workers should consider sun exposure to support workers in their efforts to cope in hot weather.

  10. Sun Exposure, Sun-Related Symptoms, and Sun Protection Practices in an African Informal Traditional Medicines Market

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2017-09-01

    Full Text Available Informal workers in African market trade have little formal protection against sun exposure. We aimed to examine sun exposure, sun-related symptoms, and sun protection practices in an informal occupational setting. Trained fieldworkers asked 236 workers in the Warwick Junction market about their workplace, skin and eye sensitivity and skin colour, symptoms faced at work during the summer due to heat, and preventive measures. Data were analyzed using univariate logistic regression to assess the effect of gender and the risk of experiencing symptoms to sun exposure in relation to pre-existing diseases and perception of sun exposure as a hazard. Of the 236 participants, 234 were Black African and 141 (59.7% were female. Portable shade was the most commonly used form of sun protection (69.9%. Glare from the sun (59.7% and excessive sweating (57.6% were commonly reported sun-related health symptoms. The use of protective clothing was more prevalent among those who perceived sun exposure as a hazard (p = 0.003. In an informal occupational setting, sun exposure was high. Protective clothing and portable shade to eliminate heat and bright light were self-implemented. Action by local authorities to protect informal workers should consider sun exposure to support workers in their efforts to cope in hot weather.

  11. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NARCIS (Netherlands)

    Bense, Victor F.; Kurylyk, Barret L.; Daal, van Jonathan; Ploeg, van der Martine J.; Carey, Sean K.

    2017-01-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state

  12. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  13. Stellar model chromospheres. IV - The formation of the H-epsilon feature in the sun /G2 V/ and Arcturus /K2 III/

    Science.gov (United States)

    Ayres, T. R.; Linsky, J. L.

    1975-01-01

    The formation of the Balmer-series member H-epsilon in the near-red wing of the Ca II H line is discussed for two cases: the sun (H-epsilon absorption profile) and Arcturus (H-epsilon emission profile). It is shown that although the H-epsilon source functions in both stars are dominated by the Balmer-continuum radiation field through photoionizations, the line-formation problems in the two stars are quantitatively different, owing to a substantial difference in the relative importance of the stellar chromosphere temperature inversion as compared with the stellar photosphere.

  14. Design, construction and operation of spherical solar cooker with automatic sun tracking system

    International Nuclear Information System (INIS)

    Abu-Malouh, Riyad; Abdallah, Salah; Muslih, Iyad M.

    2011-01-01

    In this work, the effect of two axes tracking on a solar cooking system was studied. A dish was built to concentrate solar radiation on a pan that is fixed at the focus of the dish. The dish tracks the sun using a two axes sun tracking system. This system was built and tested. Experimental results obtained show that the temperature inside the pan reached more than 93 o C in a day where the maximum ambient temperature was 32 o C. This temperature is suitable for cooking purposes and this was achieved by using the two axes sun tracking system.

  15. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  16. SU(N,1) inflation

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.; Srednicki, M.

    1985-01-01

    We present a simple model for primordial inflation in the context of SU(N, 1) no-scale n=1 supergravity. Because the model at zero temperature very closely resembles global supersymmetry, minima with negative cosmological constants do not exist, and it is easy to have a long inflationary epoch while keeping density perturbations of the right magnitude and satisfying other cosmological constraints. We pay specific attention to satisfying the thermal constraint for inflation, i.e. the existence of a high temperature minimum at the origin. (orig.)

  17. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  18. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  19. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  20. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  1. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  2. Sun and Sun Worship in Different Cultures

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2014-10-01

    The Sun symbol is found in many cultures throughout history, it has played an important role in shaping our life on Earth since the dawn of time. Since the beginning of human existence, civilisations have established religious beliefs that involved the Sun's significance to some extent. As new civilisations and religions developed, many spiritual beliefs were based on those from the past so that there has been an evolution of the Sun's significance throughout cultural development. For comparing and finding the origin of the Sun we made a table of 66 languages and compared the roots of the words. For finding out from where these roots came from, we also made a table of 21 Sun Gods and Goddesses and proved the direct crossing of language and mythology.

  3. Skin Tone Dissatisfaction, Sun Exposure, and Sun Protection in Australian Adolescents.

    Science.gov (United States)

    Hutchinson, Amanda D; Prichard, Ivanka; Ettridge, Kerry; Wilson, Carlene

    2015-08-01

    This study aimed to assess the adoption of sun protection and sun exposure behaviors, the extent to which these behaviors group together, and the relationship between skin tone dissatisfaction and sun-related behaviors in South Australian adolescents (aged 12-17). A total of 2,875 secondary school students (1,461 male and 1,414 female) completed a questionnaire including questions about sun protection and sun exposure behaviors and skin tone dissatisfaction. Regular adoption of sun protection behaviors was low and ranged from 20% (wearing protective clothing) to 44% (sunscreen use). A principal components analysis identified four subgroups of sun-related behaviors: sun protection, appearance enhancement, sun avoidance, and sun exposure. Females had significantly higher skin tone dissatisfaction than males. Skin tone dissatisfaction was associated with decreased sun protection and avoidance and increased appearance enhancement and sun exposure in both males and females. Skin tone dissatisfaction plays an important role in Australian adolescents' sun-related behavior. Appearance-based interventions may be effective in reducing skin cancer risk through reduced sun exposure.

  4. Algorithm Development for Multi-Energy SXR based Electron Temperature Profile Reconstruction

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Finkenthal, M.; Kumar, D.; Stutman, D.

    2012-10-01

    New techniques utilizing computational tools such as neural networks and genetic algorithms are being developed to infer plasma electron temperature profiles on fast time scales (> 10 kHz) from multi-energy soft-x-ray (ME-SXR) diagnostics. Traditionally, a two-foil SXR technique, using the ratio of filtered continuum emission measured by two SXR detectors, has been employed on fusion devices as an indirect method of measuring electron temperature. However, these measurements can be susceptible to large errors due to uncertainties in time-evolving impurity density profiles, leading to unreliable temperature measurements. To correct this problem, measurements using ME-SXR diagnostics, which use three or more filtered SXR arrays to distinguish line and continuum emission from various impurities, in conjunction with constraints from spectroscopic diagnostics, can be used to account for unknown or time evolving impurity profiles [K. Tritz et al, Bull. Am. Phys. Soc. Vol. 56, No. 12 (2011), PP9.00067]. On NSTX, ME-SXR diagnostics can be used for fast (10-100 kHz) temperature profile measurements, using a Thomson scattering diagnostic (60 Hz) for periodic normalization. The use of more advanced algorithms, such as neural network processing, can decouple the reconstruction of the temperature profile from spectral modeling.

  5. Variation of the quiet sun at 21 cm - 1981-1987

    International Nuclear Information System (INIS)

    Bastian, T.S.; Dulk, G.A.

    1988-01-01

    The sun was imaged at a wavelength of about 21 cm during 1981-1987 using the VLA, the Green Bank 91-m telescope, the Arecibo 305 m telescope, and powerful maximum entropy image reconstruction techniques. There was a systematic decrease in the quiet sun's brightness temperature at 21 cm as the sun declined from sunspot maximum to sunspot minimum; this was accompanied by a systematic decrease in the sun's radius. The two-fold decrease in the electron number density in the solar transition region and low corona could have been the cause of these variations. 7 references

  6. Optical model and calibration of a sun tracker

    International Nuclear Information System (INIS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-01-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker. - Highlights: • We present an optimal optical sun tracker model for atmospheric spectroscopy. • The problem of loss of stability of tracker pointing at the Sun has been solved. • We propose an optimal method for tracker calibration at a measurement site. • Test results demonstrate the efficiency of the proposed optimization methods.

  7. Temperature profile data from profiling drifter in the Indian, Southern, and Pacific Ocean (NODC Accession 9700028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using the ALACE (Autonomous LAgrangian Circulation Explorer), which is a profiling drifter in the Indian, Southern, and...

  8. An optical fiber expendable seawater temperature/depth profile sensor

    Science.gov (United States)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  9. Water level sensor and temperature profile detector

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  10. Water-level sensor and temperature-profile detector

    Science.gov (United States)

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  11. Water level sensor and temperature profile detector

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows

  12. NEWLY DISCOVERED GLOBAL TEMPERATURE STRUCTURES IN THE QUIET SUN AT SOLAR MINIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhenguang; Frazin, Richard A.; Landi, Enrico; Manchester, Ward B.; Gombosi, Tamas I. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, Alberto M. [Instituto de Astronomia y Fisica del Espacio, CONICET-University of Buenos Aires, Ciudad de Buenos Aires, CC 67-Suc 28 (Argentina)

    2012-08-20

    Magnetic loops are building blocks of the closed-field corona. While active region loops are readily seen in images taken at EUV and X-ray wavelengths, quiet-Sun (QS) loops are seldom identifiable and are therefore difficult to study on an individual basis. The first analysis of solar minimum (Carrington Rotation 2077) QS coronal loops utilizing a novel technique called the Michigan Loop Diagnostic Technique (MLDT) is presented. This technique combines Differential Emission Measure Tomography and a potential field source surface (PFSS) model, and consists of tracing PFSS field lines through the tomographic grid on which the local differential emission measure is determined. As a result, the electron temperature T{sub e} and density N{sub e} at each point along each individual field line can be obtained. Using data from STEREO/EUVI and SOHO/MDI, the MLDT identifies two types of QS loops in the corona: so-called up loops in which the temperature increases with height and so-called down loops in which the temperature decreases with height. Up loops are expected, however, down loops are a surprise, and furthermore, they are ubiquitous in the low-latitude corona. Up loops dominate the QS at higher latitudes. The MLDT allows independent determination of the empirical pressure and density scale heights, and the differences between the two remain to be explained. The down loops appear to be a newly discovered property of the solar minimum corona that may shed light on the physics of coronal heating. The results are shown to be robust to the calibration uncertainties of the EUVI instrument.

  13. Thermal evaluation of a sun tracking solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    El-Tous, Yousif; Al-Mofleh, Anwar [Department of Electrical Engineering, Faculty of Engineering Technology, Al-Balqa' Applied University, P.O. Box 15008, Amman (Jordan); Badran, Omar. O. [Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Appllied University, P.O. Box 15008, Amman (Jordan)

    2012-07-01

    Solar energy is one of many important types of renewable energy. Jordan is of great needs for renewable energy systems applications since it depends totally in generation of its required energy on imported oil. This study is an experimental work of tracking system developed for enhancing the solar heating using solar cooker. An electronic sun tracking device was used for rotating the solar heater with the movement of the sun. A comparison between fixed and sun tracked cooker showed that the use of sun tracking increased the heating temperature by 36% due to the increase in radiation concentration and using internal mirror reflectors. The programming method used for tracking control works efficiently in all weather conditions regardless of the presence of clouds. It can be used as backup control circuit in which relays are the essential control devices.

  14. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  15. Sun Allergy

    Science.gov (United States)

    Sun allergy Overview Sun allergy is a term often used to describe a number of conditions in which an itchy red rash occurs on skin that has been exposed to sunlight. The most common form of sun allergy is ...

  16. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  17. MODELING THE CHROMOSPHERE OF A SUNSPOT AND THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Avrett, E.; Tian, H. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Curdt, W. [Max Planck Institut für Sonnensystemfoschung, Goettingen (Germany); Wülser, J.-P. [Lockheed Martin Advanced Techonology Center (United States)

    2015-10-01

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.

  18. Thermal heliotrope - A passive sun-tracker

    Science.gov (United States)

    Byxbee, R. C.

    1971-01-01

    Continuous sun tracking device consists of helical bimetallic coil and control mechanism. Coil produces torque and angular displacement with temperature change, and acts as device's driving element. Control mechanism, concentric shading mechanism containing bimetallic sensor coil, controls tracking rate and provides for reset cycle.

  19. Environmental variables associated with vacationers' sun protection at warm weather resorts in North America

    International Nuclear Information System (INIS)

    Andersen, Peter A.; Buller, David B.; Walkosz, Barbara J.; Scott, Michael D.; Beck, Larry; Liu, Xia; Abbott, Allison; Eye, Rachel

    2016-01-01

    Background: Vacationing at sunny, warm weather locations is a risk factor for excessive solar ultraviolet (UV) radiation exposure and skin cancer. Objectives: This study examined the association of environmental variables related to UV levels with vacationers' sun protection. Methods: Vacationers at 41 summer resorts in 17 states and 1 Canadian Province were interviewed (n=3531) and observed (N=4347) during 2012 and 2013. Clothing coverage, sunglasses, and shade use were observed. Use of sunscreen and sunburns were self-reported. Environmental information was recorded by research staff or acquired from ground stations and the weather service. Results: Temperature was positively associated with sun protection behaviors; however clothing coverage was negatively associated with temperature. Cloud cover was negatively associated with sun protection, with the exception of clothing coverage which was positively associated with it. Elevation showed a mixed pattern of associations with vacationer's sun protection. Latitude of a resort was negatively associated with most sun protection behaviors, such that sun protection increased at more southerly resorts. Similarly, the farther south a vacationer traveled to the resort, the less sun protection they employed. The UV index showed a weak, positive relationship with some sun protection behaviors even when controlling for temperature. Conclusions: Vacationers appeared aware that UV is higher at southern latitudes and may learn UV is intense when living in southern regions. However, many used temperature, an unreliable cue, to judge UV intensity and seemed to adjust clothing for warmth not UV protection. Efforts are needed to help individuals make more accurate sun safety decisions. - Highlights: • Vacationers poorly monitor and protect against environmental ultraviolet radiation (UVR). • On cloudy days vacationers fail to protect against UVR. • Temperature is erroneously used by vacationers as a marker for UVR

  20. Environmental variables associated with vacationers' sun protection at warm weather resorts in North America

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Peter A., E-mail: westone47@gmail.com [School of Communication, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Buller, David B.; Walkosz, Barbara J. [Klein Buendel, Inc., 1667 Cole Boulevard, Suite 225, Golden, CO 80401 (United States); Scott, Michael D. [Mikonics, Inc., 40 B Old Road South, Santa Fe, NM 87540 (United States); Beck, Larry [L. Robert Payne School of Hospitality and Tourism Management, San Diego State University, Room PSFA 445, San Diego, CA 92182 (United States); Liu, Xia [Klein Buendel, Inc., 1667 Cole Boulevard, Suite 225, Golden, CO 80401 (United States); Abbott, Allison [School of Communication, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Eye, Rachel [Klein Buendel, Inc., 1667 Cole Boulevard, Suite 225, Golden, CO 80401 (United States)

    2016-04-15

    Background: Vacationing at sunny, warm weather locations is a risk factor for excessive solar ultraviolet (UV) radiation exposure and skin cancer. Objectives: This study examined the association of environmental variables related to UV levels with vacationers' sun protection. Methods: Vacationers at 41 summer resorts in 17 states and 1 Canadian Province were interviewed (n=3531) and observed (N=4347) during 2012 and 2013. Clothing coverage, sunglasses, and shade use were observed. Use of sunscreen and sunburns were self-reported. Environmental information was recorded by research staff or acquired from ground stations and the weather service. Results: Temperature was positively associated with sun protection behaviors; however clothing coverage was negatively associated with temperature. Cloud cover was negatively associated with sun protection, with the exception of clothing coverage which was positively associated with it. Elevation showed a mixed pattern of associations with vacationer's sun protection. Latitude of a resort was negatively associated with most sun protection behaviors, such that sun protection increased at more southerly resorts. Similarly, the farther south a vacationer traveled to the resort, the less sun protection they employed. The UV index showed a weak, positive relationship with some sun protection behaviors even when controlling for temperature. Conclusions: Vacationers appeared aware that UV is higher at southern latitudes and may learn UV is intense when living in southern regions. However, many used temperature, an unreliable cue, to judge UV intensity and seemed to adjust clothing for warmth not UV protection. Efforts are needed to help individuals make more accurate sun safety decisions. - Highlights: • Vacationers poorly monitor and protect against environmental ultraviolet radiation (UVR). • On cloudy days vacationers fail to protect against UVR. • Temperature is erroneously used by vacationers as a marker for UVR

  1. Sun protection

    Science.gov (United States)

    ... sun exposure. The start of summer is when UV rays can cause the most skin damage. Use sun protection, even on cloudy days. Clouds and haze don't protect you from the sun. Avoid surfaces that reflect light, such as water, sand, concrete, snow, and areas ...

  2. Optimization of the temperature profiles due to a nitrogen jet impinging on a TLD detector

    International Nuclear Information System (INIS)

    Cohen, I.; Bar-Kohany, T.; German, U.; Ziskind, G.

    2014-01-01

    A study was conducted to simulate the temperature profiles during readout in a typical, commercial thermo-luminescence dosimeter (TLD) chip and to optimize the readout conditions. The study makes use of a previously developed numerical model which calculates the crystal's temperature profile evolution inside a TLD crystal compound. The calculated profiles were implemented in the Randall-Wilkins equation to obtain the estimated glow curve. A number of jet temperature profiles were investigated in order to optimize the readout process. - Highlights: • The temperature profiles in a TLD chip compound were simulated. • Some non-routine heating profiles are proposed. • A better efficiency and shorter time can be obtained with these profiles. • The resulting glow curves were evaluated as well

  3. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Skin chronically exposed to sun results in phenotypic changes referred as photoaging. This aspect of aging has been studied extensively through genomic and proteomic tools. Metabolites, the end product are generated as a result of biochemical reactions are often studied as a culmination of complex interplay of gene and protein expression. In this study, we focused exclusively on the metabolome to study effects from sun-exposed and sun-protected skin sites from 25 human subjects. We generated a highly accurate metabolomic signature for the skin that is exposed to sun. Biochemical pathway analysis from this data set showed that sun-exposed skin resides under high oxidative stress and the chains of reactions to produce these metabolites are inclined toward catabolism rather than anabolism. These catabolic activities persuade the skin cells to generate metabolites through the salvage pathway instead of de novo synthesis pathways. Metabolomic profile suggests catabolic pathways and reactive oxygen species operate in a feed forward fashion to alter the biology of sun exposed skin.

  4. Influence of cookies composition on temperature profiles and qualitative parameters during baking

    Directory of Open Access Journals (Sweden)

    Ž. Kožul

    2014-01-01

    Full Text Available During baking of bakery products temperature of baking, temperature profiles, moisture content, volume and colour changes are strongly coupled. The objective of this paper was to study the influence of the cookies composition on temperature profiles and quality parameters (width and thickness, colour formation and textural properties: hardness, fracturability and work of breaking force during baking process. Composition of cookies differs due to flour type and initial moisture content. Cookies were baked at 205 °C and temperature was measured in the centre of samples which were 7 mm thick with a 60 mm diameter. The results of temperature profiles of the cookies during baking have shown the same trend for all of the 18 samples. Samples with the higher initial water content have lower values of total colour difference and also significantly affect textural properties.

  5. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  6. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  7. Population and age-group trends in weekend sun protection and sunburn over two decades of the SunSmart programme in Melbourne, Australia.

    Science.gov (United States)

    Makin, J K; Warne, C D; Dobbinson, S J; Wakefield, M A; Hill, D J

    2013-01-01

    In response to the high skin cancer burden in Australia, the multicomponent, community-wide SunSmart programme has worked since 1988 to reduce excessive sun exposure.  To examine trends in key sun-protection behaviours and sunburn for the Melbourne population from 1987 to 2007, and examine for the first time patterns of change among age groups.   Representative cross-sectional weekly telephone surveys of weekend sun protection and sunburn were conducted over 11 of the summers in the period 1987-88 to 2006-07. Trends were analysed for the population and for age groups, adjusting for ambient temperature and ultraviolet radiation, which are environmental determinants of sun-related behaviour and sunburn.   The general pattern of trends suggests two distinct periods, one with rapid improvement in behaviours (more sunscreen use, less unprotected body exposure and less sunburn) from 1987-88 to 1994-95, and the second from 1997-98 to 2006-07 with fewer changes in behaviours noted. The age-group analyses showed a similar pattern of change over time across groups, with a few notable exceptions.  The similarity of the pattern of trends among age groups suggests that external influences including the SunSmart programme's activity had a relatively similar impact across the population. Sun-related behaviours continue to be amenable to change. More recent relative stability with some declines in sun protection suggests further intensive campaigns and other strategies may be needed to maintain previous successes and to achieve more universal use of sun protection. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  8. Ion temperature profiles along a hydrogen diagnostic beam in a TORE SUPRA tokamak plasma

    International Nuclear Information System (INIS)

    Romannikov, A.; Petrov, Yu.; Platts, P.; Khess, V.; Khutter, T.; Farzhon, Zh.; Moro, F.

    2002-01-01

    By means of corpuscular diagnostics one studies temperature of ions along a diagnostic hydrogen beam. Paper presents comparison of temperature of plasma (deuterium) basic ions measures by means of the active corpuscular diagnostics with temperature of C + carbon ions along a beam. One studies behavior peculiarities of T i ion temperature profiles for TORE-SUPRA different modes, such as: formation of plane and even hollow T i profiles for ohmic modes, variation of T i profiles under operation of an ergodic diverter, difference of temperature of basic ions measured by means of the active corpuscular diagnostics from C +5 temperature. Paper offers clear explanation of these peculiarities [ru

  9. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  10. Suns-VOC characteristics of high performance kesterite solar cells

    Science.gov (United States)

    Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.

    2014-08-01

    Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.

  11. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  12. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  13. The Sun

    CERN Document Server

    Golub, Leon

    2017-01-01

    Essential for life on earth and a major influence on our environment, the Sun is also the most fascinating object in the daytime sky. Every day we feel the effect of its coming and going – literally the difference between day and night. But figuring out what the Sun is, what it’s made of, why it glows so brightly, how old it is, how long it will last – all of these take thought and observation. Leon Golub and Jay M. Pasachoff offer an engaging and informative account of what scientists know about the Sun, and the history of these discoveries. Solar astronomers have studied the Sun over the centuries both for its intrinsic interest and in order to use it as a laboratory to reveal the secrets of other stars. The authors discuss the surface of the Sun, including sunspots and their eleven-year cycle, as well as the magnetism that causes them; the Sun’s insides, as studied mainly from seismic waves that astronomers record on its surface; the outer layers of the Sun that we see from Earth only at eclipses ...

  14. Temperature-controlled depth profiling in polymeric materials using cluster secondary ion mass spectrometry (SIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States)]. E-mail: christine.mahoney@nist.gov; Fahey, Albert J. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Gillen, Greg [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Xu Chang [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Batteas, James D. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States)

    2006-07-30

    Secondary ion mass spectrometry (SIMS) employing an SF{sub 5} {sup +} polyatomic primary ion source was used to depth profile through poly(methylmethacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) thin films at a series of temperatures from -125 deg. C to 150 deg. C. It was found that for PMMA, reduced temperature analysis produced depth profiles with increased secondary ion stability and reduced interfacial widths as compared to analysis at ambient temperature. Atomic force microscopy (AFM) images indicated that this improvement in interfacial width may be related to a decrease in sputter-induced topography. Depth profiling at higher temperatures was typically correlated with increased sputter rates. However, the improvements in interfacial widths and overall secondary ion stability were not as prevalent as was observed at low temperature. For PLA, improvements in signal intensities were observed at low temperatures, yet there was no significant change in secondary ion stability, interface widths or sputter rates. High temperatures yielded a significant decrease in secondary ion stability of the resulting profiles. PS films showed rapid degradation of characteristic secondary ion signals under all temperatures examined.

  15. SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration

    OpenAIRE

    Nishioka, Yu; Imaizumi, Hiromasa; Imada, Junko; Katahira, Jun; Matsuura, Nariaki; Hieda, Miki

    2016-01-01

    The LINC complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, such as nuclear migration, mechanotransduction and chromatin tethering in the meiotic phase. However, it remains unknown how these functions are regulated in different cell contexts. An inner nuclear membrane component of the LINC complex, SUN1, is ubiquitously expressed. The human SUN1 gene produces over 10 variants by alternative splicing. Although functions of SUN1 are relat...

  16. Phosphoproteome profiling for cold temperature perception.

    Science.gov (United States)

    Park, Seyeon; Jang, Mi

    2011-02-01

    Temperature sensation initiates from the activation of cellular receptors when the cell is exposed to a decrease in temperature. Here, we applied a phosphoproteome profiling approach to the human lung epithelial cell line BEAS-2B to elucidate cellular cold-responsive processes. The primary aim of this study was to determine which intracellular changes of phosphorylation are accompanied by cold sensation. Eighteen protein spots that exhibited differentially phosphorylated changes in cells were identified. Most of the proteins that were phosphorylated after 5 or 10 min were returned to control levels after 30 or 60 min. Identified proteins were mainly RNA-related (i.e., they were involved in RNA binding and splicing). Temperature (18 and 10°C) stimuli showed homologies that were detected for time course changes in phosphoproteome. The data indicated a time-shift between two temperatures. The phosphorylation of putative cold responsive markers, such as ribosomal protein large P0 and heterochromatin-associated proteins 1, were verified by Western blotting in cells transfected with TRPM8 or TRPA1. Copyright © 2010 Wiley-Liss, Inc.

  17. SO(2N) and SU(N) gauge theories

    OpenAIRE

    Lau, Richard; Teper, Michael

    2013-01-01

    We present our preliminary results of SO(2N) gauge theories, approaching the large-N limit. SO(2N) theories may help us to understand QCD at finite chemical potential since there is an orbifold equivalence between SO(2N) and SU(N) gauge theories at large-N and SO(2N) theories do not have the sign problem present in QCD. We consider the string tensions, mass spectra, and deconfinement temperatures in the SO(2N) pure gauge theories in 2+1 dimensions, comparing them to their corresponding SU(N) ...

  18. DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.; Hartlep, Thomas [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Duvall, T. L. Jr. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-10

    Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics. After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s{sup -1} extends in depth from the photosphere to about 0.91 R{sub Sun }. An equatorward flow of a speed of 10 m s{sup -1} is found between 0.82 and 0.91 R{sub Sun} in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R{sub Sun }, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.

  19. Sun behaviour in Canadian children: results of the 2006 National Sun Survey.

    Science.gov (United States)

    Pichora, Erin C; Marrett, Loraine D

    2010-01-01

    Childhood sun exposure is a particularly important determinant of skin cancer, yet little data are available for children. This paper describes sun behaviour among Canadian children for the summer of 2006. As part of the Second National Sun Survey (NSS2), 1,437 parents reported on the time spent in the sun, and the frequency of sun protection behaviours and sunburning for one of their children aged 1 to 12 years. Analysis was carried out using complex survey procedures in SAS and STATA. The majority of children (94%) spend at least 30 minutes in the sun on a typical summer day; however, regular sun protection is only commonly reported for young children (1 to 5 years) and involves covering their heads and wearing sunscreen (85%). The frequency of other protective behaviours is much lower, and sun protection decreases with age. Older children are also twice as likely to spend extended time in the sun and to get a sunburn. Among older children, boys are more likely to cover their heads and girls are more likely to wear sunscreen. Regular sun protection among Canadian children is low, given their sun exposure. Heavy reliance on sunscreen is consistent with previous reports and indicates that other measures, such as seeking shade and wearing protective clothing, need to be promoted. Riskier sun behaviour among older children may reflect decreased parental control, as well as changing attitudes and peer pressure, and highlights the importance of adult role models and targeted interventions for this age group.

  20. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  1. Vitamin D Beliefs and Associations with Sunburns, Sun Exposure, and Sun Protection

    Science.gov (United States)

    Kim, Bang Hyun; Glanz, Karen; Nehl, Eric J.

    2012-01-01

    The main objective of this study was to examine certain beliefs about vitamin D and associations with sun exposure, sun protection behaviors, and sunburns. A total of 3,922 lifeguards, pool managers, and parents completed a survey in 2006 about beliefs regarding vitamin D and sun-related behaviors. Multivariate ordinal regression analyses and linear regression analysis were used to examine associations of beliefs and other variables. Results revealed that Non-Caucasian lifeguards and pool managers were less likely to agree that they needed to go out in the sun to get enough vitamin D. Lifeguards and parents who were non-Caucasian were less likely to report that sunlight helped the body to produce vitamin D. A stronger belief about the need to go out in the sun to get enough vitamin D predicted more sun exposure for lifeguards. For parents, a stronger belief that they can get enough vitamin D from foods predicted greater sun protection and a stronger belief that sunlight helps the body produce vitamin D predicted lower sun exposure. This study provides information regarding vitamin D beliefs and their association with certain sun related behaviors across different demographic groups that can inform education efforts about vitamin D and sun protection. PMID:22851950

  2. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  3. Sun exposure, sun protection and sunburn among Canadian adults.

    Science.gov (United States)

    Pinault, Lauren; Fioletov, Vitali

    2017-05-17

    Ultraviolet radiation (UVR) exposure and a history of sunburn are important risk factors for skin cancer. Sunburn is more common among men, younger age groups, and people in higher income households. Sun protection measures also vary by sex, age, and socioeconomic characteristics. Associations between ambient UVR and sunburn and sun safety measures have not been quantified. A total of 53,130 respondents aged 18 or older answered a Canadian Community Health Survey (CCHS) module on sun safety, which was administered in six provinces from 2005 to 2014. The module contained questions about sunburn, time in the sun, and sun protection. These respondents were linked to an ambient erythemal UVR dataset representing the June-to-August mean. Descriptive statistics and logistic regression were used to examine associations between population characteristics, sunburn, sun safety, time in the sun, and ambient UVR. Sunburn was reported by 33% of respondents and was more common among men, younger age groups, people who were not members of visible minorities, residents of higher income households, and individuals who were employed. On a typical summer day, a larger percentage of women than men sought shade and wore sunscreen, whereas a larger percentage of men wore a hat or long pants. As ambient summer UVR increased, women were more likely to apply sunscreen to their face, seek shade, or wear a hat (OR~1.02 to 1.09 per increase of 187 J/m² of erythemally-weighted UVR, or 5.4% of the mean); these associations were not observed among men. Findings related to sunburn and sun protection were similar to those of previous studies. The association between ambient UVR and women's precautionary measures suggests that information about UVR may influence their decision to protect their skin.

  4. Our turbulent sun

    International Nuclear Information System (INIS)

    Frazier, K.

    1982-01-01

    The quest for a new understanding of the sun and its surprising irregularities, variations, and effects is described. Attention is given to the sun's impact on life on earth, the weather and geomagnetic storms, sunspots, solar oscillations, the missing neutrinos in the sun, the 'shrinking sun', the 'dance' of the orbits, and the search for the 'climate connection'. It is noted that the 1980s promise to be the decade of the sun: not only because solar power may be a crucial ingredient in efforts to solve the energy crisis, but also because there will be brilliant auroras over North America, because sunspot activity will be the second highest since the 17th century, and because an unmanned spacecraft (i.e., the solar polar mission) will leave the plane of the solar system and observe the sun from above and below

  5. Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

    1993-02-01

    Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation

  6. The star ''Sun''

    International Nuclear Information System (INIS)

    Pecker, J.-C.

    1982-01-01

    The author gives a resume of our knowledge of the Sun. In particular, he discusses the mass, luminosity and chemical composition of the Sun, and then asks what an observer from Sirius would think about the Sun. (G.T.H.)

  7. Temperature profiles of time dependent tokamak plasmas from the parallel Ohm's law

    International Nuclear Information System (INIS)

    Micozzi, P.; Roccella, M.

    1993-01-01

    Profile consistency based on the parallel component of Ohm's law has been used to obtain electron temperature profiles. A resistive neoclassical term and a term that accounts for the bootstrap current contributions have been considered in Ohm's law. A numerical code has been developed to find solutions according to the MHD equilibrium equations. For stationary plasmas, the temperature profiles, obtained by a procedure in which a pseudo-parabolic shape of (J φ /R) is assumed and the peak temperature known from experiments is used, are close to the experimental data for several very different machines (JET, TFTR, ASDEX, ALCATOR-C and FT). The main feature of the model is its capability to provide an easy parametrization of Ohm's law also in non-stationary cases, without going through the complication of a detailed solution of the magnetic field diffusion equation. A rule for estimating a maximum value of the current diffusion time inside the plasma volume in such situations is given. This rule accounts for both the temperature profiles and the stabilization times in some non-stationary pulses observed in JET. (author). 28 refs, 12 figs

  8. The structure and evolution of the Sun

    CERN Document Server

    Severino, Giuseppe

    2017-01-01

    This book equips the reader with a coherent understanding of the structure of the Sun and its evolution and provides all the knowledge required to construct a simplified model of the Sun. The early chapters cover key aspects of basic physics and describe the Sun’s size, mass, luminosity, and temperature. Using a semi-empirical approach, the structure of the present Sun is then modeled in detail, layer by layer, proceeding from the photosphere to the convection zone, radiation zone, and core. Finally, all stages of the Sun’s evolution, from its formation to the end of its life, are carefully explained. The book is primarily intended for university students taking the initial steps in moving from physics to astrophysics. It includes worked exercises and problems to illustrate the concepts discussed, as well as additional problems for independent study. With the aim of helping the reader as much as possible, most of the mathematics required to use the book are provided in the text.

  9. Iridoid and phenylethanoid glycosides in the New Zealand sun hebes (Veronica; Plantaginaceae)

    DEFF Research Database (Denmark)

    Taskova, Rilka M.; Kokubun, Tetsuo; Garnock-Jones, Phil J.

    2012-01-01

    The sun hebes are a small clade of New Zealand Veronica formerly classified as Heliohebe. The water-soluble compounds of Veronica pentasepala, Veronica raoulii and Veronica hulkeana were studied and 30 compounds including 15 iridoid glucosides, 12 phenylethanoid glycosides, the acetophenone...... and F, all derivatives of aragoside. The esters of cinnamic acid derivatives with iridoid and phenylethanoid glycosides and an unusually high concentration of verminoside were found to be the most distinctive chemotaxonomic characters of the sun hebes. The chemical profiles of the species were compared...

  10. BepiColombo fine sun sensor

    Science.gov (United States)

    Boslooper, Erik; van der Heiden, Nico; Naron, Daniël.; Schmits, Ruud; van der Velde, Jacob Jan; van Wakeren, Jorrit

    2017-11-01

    Design, development and verification of the passive Fine Sun Sensor (FSS) for the BepiColombo spacecraft is described. Major challenge in the design is to keep the detector at acceptable temperature levels while exposed to a solar flux intensity exceeding 10 times what is experienced in Earth orbit. A mesh type Heat Rejection Filter has been developed. The overall sensor design and its performance verification program is described.

  11. Coherent states related with SU(N) and SU(N,1) groups

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shelepin, A.L.

    1990-01-01

    The basis of coherent state (CS) for symmetric presentations of groups SU(N) and SU(N,1) is plotted, its properties being investigated. Evolution of CS is considered. Relation between CS of groups SU(N) and Glauber is ascertained

  12. A Crystallization-Temperature Profile Through Paleo-Oceanic Crust (Wadi Gideah Transect, Oman Ophiolite): Application of the REE-in-Plagioclase-Clinopyroxene Partitioning Thermometer

    Science.gov (United States)

    Mueller, S.; Hasenclever, J.; Garbe-Schönberg, D.; Koepke, J.; Hoernle, K.

    2017-12-01

    The accretion mechanisms forming oceanic crust at fast spreading ridges are still under controversial discussion. Thermal, petrological, and geochemical observations predict different end-member models, i.e., the gabbro glacier and the sheeted sill model. They all bear implications for heat transport, temperature distribution, mode of crystallization and hydrothermal heat removal over crustal depth. In a typical MOR setting, temperature is the key factor driving partitioning of incompatible elements during crystallization. LA-ICP-MS data for co-genetic plagioclase and clinopyroxene in gabbros along a transect through the plutonic section of paleo-oceanic crust (Wadi Gideah Transect, Oman ophiolite) reveal that REE partitioning coefficients are relatively constant in the layered gabbro section but increase for the overlying foliated gabbros, with an enhanced offset towards HREEs. Along with a systematic enrichment of REE's with crustal height, these trends are consistent with a system dominated by in-situ crystallization for the lower gabbros and a change in crystallization mode for the upper gabbros. Sun and Liang (2017) used experimental REE partitioning data for calibrating a new REE-in-plagioclase-clinopyroxene thermometer that we used here for establishing the first crystallization-temperature depth profile through oceanic crust that facilitates a direct comparison with thermal models of crustal accretion. Our results indicate crystallization temperatures of about 1220±8°C for the layered gabbros and lower temperatures of 1175±8°C for the foliated gabbros and a thermal minimum above the layered-to-foliated gabbro transition. Our findings are consistent with a hybrid accretion model for the oceanic crust. The thermal minimum is assumed to represent a zone where the descending crystal mushes originating from the axial melt lens meet with mushes that have crystallized in situ. These results can be used to verify and test thermal models (e.g., Maclennan et al

  13. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor Pilot Plant

    International Nuclear Information System (INIS)

    Garn, Troy G.; Meikrantz, Dave H.; Greenhalgh, Mitchell R.; Law, Jack D.

    2008-01-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50 C were tested. Ambient temperature testing shows that a small

  14. Integrated modeling of temperature profiles in L-mode tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Tangri, V. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Voitsekhovitch, I. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-12-15

    Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.

  15. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  16. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  17. A parabolic solar cooker with automatic two axes sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Al-Soud, Mohammed S.; Akayleh, Ali; Hrayshat, Eyad S. [Electrical Engineering Department, Faculty of Engineering, Tafila Technical University, P.O. Box 66, Tafila 66110 (Jordan); Abdallah, Essam [Mechanical Engineering Department, FET, AL-Balqa Applied University, Amman (Jordan); Abdallah, Salah [Mechanical and Industrial Engineering Department, Applied Science University (Jordan)

    2010-02-15

    A parabolic solar cooker with automatic two axes sun tracking system was designed, constructed, operated and tested to overcome the need for frequent tracking and standing in the sun, facing all concentrating solar cookers with manual tracking, and a programmable logic controller was used to control the motion of the solar cooker. The results of the continuous test - performed for three days from 8:30 h to 16:30 h in the year 2008 - showed that the water temperature inside the cooker's tube reached 90 C in typical summer days, when the maximum registered ambient temperature was 36 C. It was also noticed that the water temperature increases when the ambient temperature gets higher or when the solar intensity is abundant. This is in favor of utilizing this cooker in many developing countries, which are characterized by high solar insulations and high temperatures. Besides cooking, the proposed cooker could be utilized for warming food, drinks as well as to pasteurize water or milk. (author)

  18. Sun exposure and sun protection practices of children and their parents.

    LENUS (Irish Health Repository)

    Kiely, A D

    2009-05-01

    The primary aims of this study were: to estimate sun exposure in hours of children in Cork during the summer months; to examine sun protection measures used by children and their parents and to explore parental knowledge of sun exposure and protection. A cross-sectional study, using a semi-structured questionnaire, was conducted in June 2006 in primary schools, pre-schools and creches throughout Cork City and County. Parents of 250 children aged less than 12 years were sampled. Mean sun exposure of Cork children was 40.9 hours per week in the summer months, with 77 (46.1%) children developing sunburn. 59.3% of the studied children were of skin type 1 or 2. 95 (57%) children on weekdays and 137 (82%) children at weekends were exposed to the sun between 11 am and 3 pm. Sunscreen and hats\\/caps were the most common protection measures used. A minority used protective clothing, sunglasses or sought shade. Thirty one (30.5%) children had sunscreen reapplied every 2 hours. Knowledge of sun protection was considerable among Irish parents. However the frequency of sunburn among Irish children suggests we are not providing them with adequate sun protection.

  19. The Sun as a sub-GeV dark matter accelerator

    DEFF Research Database (Denmark)

    Emken, Timon; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2018-01-01

    Sub-GeV halo dark matter that enters the Sun can potentially scatter off hot solar nuclei and be ejected much faster than its incoming velocity. We derive an expression for the rate and velocity distribution of these reflected particles, taking into account the Sun's temperature and opacity. We...... further demonstrate that future direct-detection experiments could use these energetic reflected particles to probe light dark matter in parameter space that cannot be accessed via ordinary halo dark matter....

  20. Sun Safety

    Science.gov (United States)

    ... Children from the Sun? Are There Benefits to Spending Time Outdoors? The Surgeon General’s Call to Action to Prevent Skin Cancer Related Resources Sun Safety Tips for Men Tips for Families Tips for Schools Tips for Employers Tips for ...

  1. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  2. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  3. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  4. Experimental analysis of temperature profiles in ceramic brickwork elements subjected to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-12-01

    Full Text Available This article discusses heat transfer through a brick element in order to know the thermal behavior of onedimensional brickwork masonry samples exposed to high temperatures. The object of the tests is to build time-temperature curves according to different thermal steps in transient to experimentally determine the temperature profiles in the interior of a wall. Through this study, it is possible to demonstrate absolute moisture of a factory item from 300 °C (variation of temperatures in the interior of the element, avoid the associated phenomenon of evaporation of water during the thermal process as well as to obtain profiles of temperatures that help calculate the cross section of a factory element subjected to high temperatures.En este artículo se analiza la transferencia de calor a través de un elemento de fábrica de ladrillo con el fin de conocer el comportamiento térmico de secciones de fábrica unidimensionales expuestas a altas temperaturas. El objeto de los ensayos es construir curvas tiempo-temperatura en función de diversos escalones térmicos en régimen transitorio para determinar experimentalmente los perfiles de temperatura en el interior de un muro. A través de este estudio es posible evidenciar el contenido de humedad absoluta de un elemento de fábrica a partir de los 300 ºC (variación de las temperaturas en el interior del elemento, evitar el fenómeno asociado de la evaporación del agua durante el proceso térmico así como obtener perfiles de temperaturas que ayuden a calcular la sección eficaz de un elemento de fábrica sometido a altas temperaturas.

  5. Sun safety knowledge and practice in UK postal delivery workers.

    Science.gov (United States)

    Houdmont, J; Davis, S; Griffiths, A

    2016-06-01

    Postal delivery workers spend a large proportion of their work time outdoors, placing them at increased risk of skin cancer. To date, no studies have examined occupational sun safety knowledge and practice within this group in the UK. To describe the occupational sun safety knowledge and practice of UK postal delivery workers and to investigate the association of demographic, personal and occupational factors with knowledge and practice in order to identify potential strategies for improving sun safety in this occupational group. Postal delivery workers completed a questionnaire that collected data on occupational sun safety knowledge and practice in addition to demographic, personal and workplace characteristics. One-way analysis of variances were applied to assess differences in knowledge and practice by these characteristics. A total of 1153 postal delivery workers completed the questionnaire, a 60% response rate. Thirty-three per cent reported receiving sun safety training within the previous 12 months. The majority of respondents reported correct knowledge on three of the six domains and good practice on four of the six behavioural domains. However, only one-fifth of respondents reported wearing sunglasses and ensuring a plentiful intake of water. Knowledge and practice differed significantly according to demographic, personal and workplace characteristics. There is a need to raise the profile of occupational skin cancer in this occupational group and to increase the priority given to occupational sun safety policies alongside targeted and tailored interventions, the effect of which can be evaluated. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine.

  6. WHAT IS THE SOURCE OF QUIET SUN TRANSITION REGION EMISSION?

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. J.; De Pontieu, Bart [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2016-11-10

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph ( IRIS ) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  7. Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law

    Science.gov (United States)

    Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.

    2012-09-01

    Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 high-z sample with intermediate clusters at 0.1 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org

  8. CONCEPTUAL STEPS TOWARDS EXPLORING THE FUNDAMENTAL NATURE OF OUR SUN

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2004-06-01

    Full Text Available One of the basic questions of solar research is the nature of the Sun. We show here how the plasma nature of the Sun leads to the self-generation of solar activity. The release of magnetic, rotational, gravitational, nuclear energies and that of the gravity mode oscillations deviate from uniformity and spherical symmetry. Through instabilities they lead to the emergence of sporadic and localized regions like flux tubes, electric filaments, magnetic elements and high temperature regions. A systematic approach exploring the solar collective degrees of freedom, extending to ordering phenomena of the magnetic features related to Higgs fields, is presented. Handling solar activity as transformations of energies from one form to another one presents a picture on the network of the energy levels of the Sun, showing that the Sun is neither a mere "ball of gas" nor a "quiescent steady-state fusion-reactor machine", but a complex self-organizing system. Since complex self-organizing systems are similar to living systems (and, by some opinion, identical with them, we also consider what arguments indicate the living nature of the Sun. Thermodynamic characteristics of the inequilibrium Sun are found important in this respect and numerical estimations of free energy rate densities and specific exergies are derived.

  9. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  10. Sun Protection Practices and Sun Exposure among Children with a Parental History of Melanoma

    Science.gov (United States)

    Glenn, Beth A.; Lin, Tiffany; Chang, L. Cindy; Okada, Ashley; Wong, Weng Kee; Glanz, Karen; Bastani, Roshan

    2014-01-01

    Background First-degree relatives of melanoma survivors have a substantially higher lifetime risk for melanoma than individuals with no family history. Exposure to ultraviolet radiation is the primary modifiable risk factor for the disease. Reducing UV exposure through sun protection may be particularly important for children with a parental history of melanoma. Nonetheless, limited prior research has investigated sun protection practices and sun exposure among these children. Methods The California Cancer Registry was used to identify melanoma survivors eligible to participate in a survey to assess their children's sun protection practices and sun exposure. The survey was administered by mail, telephone, or web to Latino and non-Latino white melanoma survivors with at least one child (0–17 years; N = 324). Results Sun exposure was high and the rate of sunburn was equivalent to or higher than estimates from average risk populations. Use of sun protection was suboptimal. Latino children were less likely to wear sunscreen and hats and more likely to wear sunglasses, although these differences disappeared in adjusted analyses. Increasing age of the child was associated with lower sun protection and higher risk for sunburn whereas higher objective risk for melanoma predicted improved sun protection and a higher risk for sunburns. Perception of high barriers to sun protection was the strongest modifiable correlate of sun protection. Conclusions Interventions to improve sun protection and reduce sun exposure and sunburns in high risk children are needed. Impact Intervening in high risk populations may help reduce the burden of melanoma in the U.S. PMID:25587110

  11. Mass loss from the proto-sun: Formation and evolution of the solar nebula

    International Nuclear Information System (INIS)

    Trivedi, B.M.P.

    1984-01-01

    We consider the formation and evolution of the solar nebula in the light of observations of T Tauri stars, oxygen-isotopic anomalies in meteorites, and the mass and angular momentum distribution in the present solar system. It is argued that the solar nebula formed from the mass lost by the proto-Sun. The outflow of initially partially ionized material in the presence of a strong proto-solar magnetic field would lead to the transfer of angular momentum from the central Sun to the outflowing matter. This explains the present angular momentum distribution between the Sun and the planetary system. When the outflowing matter cooled sufficiently, to less than 2000 K, approx. l0 12 cm from the Sun, the material would neutralize, and the magnetic field would then decouple from the outflowing matter. Further motion would be governed by the gravitational field of the proto-Sun, the gas pressure, and the centrifugal force. When these forces balance, the radial flow would stop, and a rotating solar nebula would form. Chemical condensation would occur in the outflowing matter when suitable pressure-temperature conditions would develop. The condensation of the refractory mineral Al 2 O 3 would start at a distance of approx.2 x l0 12 cm from the Sun, where the pressure would be approx. 3 x l0 8 atm, and temperature approx. l450 K. The condensation sequence of other lower temperature minerals would follow this. All the refractory minerals and iron would condense within the orbit of the planet Mercury. All the volatiles would condense before the outflowing matter crossed the asteroid region. The grains would move to the outer part of the nebula along with the outflowing gas

  12. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  13. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    Science.gov (United States)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  14. Correction of sun glint effect on MIVIS data of the Sicily campaign in July 2000

    Directory of Open Access Journals (Sweden)

    E. Zappitelli

    2006-06-01

    Full Text Available To assess the suspended and dissolved matter in water in the visible and near infrared spectral regions it is necessary to estimate with adequate accuracy the water leaving radiance. Consequently radiance measured by a remote sensor has to be corrected from the atmospheric and the sea surface effects consisting in the path radiance and the sun and sky glitter radiance contributions. This paper describes the application of the sun glint correction scheme on to airborne hyperspectral MIVIS measurements acquired on the area of the Straits of Messina during the campaign in July 2000. In the Messina case study data have been corrected for the atmospheric effects and for the sun-glitter contribution evaluated following the method proposed by Cox and Munk (1954, 1956. Comparison between glitter contaminated and glitter free data has been made taking into account the radiance profiles relevant to selected scan lines and the spectra of different pixels belonging to the same scan line and located out and inside the sun glitter area. The results show that spectra after correction have the same profile as the contaminated ones, although, at this stage, free glint data have not yet been used in water constituent retrieval and consequently the reliability of such correction cannot be completely evaluated.

  15. baonan sun

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. BAONAN SUN. Articles written in Pramana – Journal of Physics. Volume 90 Issue 2 February 2018 pp 23 Research Article. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger–Boussinesq system · BAONAN SUN ZHAN LIAN.

  16. Fengrui Sun

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Fengrui Sun. Articles written in Sadhana. Volume 34 Issue 5 October 2009 pp 851-864. Profit rate performance optimization for a generalized irreversible combined refrigeration cycle · Kang Ma Lingen Chen Fengrui Sun · More Details Abstract Fulltext PDF. Finite-time exergoeconomic ...

  17. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  18. Sunburn, sun exposure, and sun sensitivity in the Study of Nevi in Children.

    Science.gov (United States)

    Satagopan, Jaya M; Oliveria, Susan A; Arora, Arshi; Marchetti, Michael A; Orlow, Irene; Dusza, Stephen W; Weinstock, Martin A; Scope, Alon; Geller, Alan C; Marghoob, Ashfaq A; Halpern, Allan C

    2015-11-01

    To examine the joint effect of sun exposure and sunburn on nevus counts (on the natural logarithm scale; log nevi) and the role of sun sensitivity. We describe an analysis of cross-sectional data from 443 children enrolled in the prospective Study of Nevi in Children. To evaluate the joint effect, we partitioned the sum of squares because of interaction between sunburn and sun exposure into orthogonal components representing (1) monotonic increase in log nevi with increasing sun exposure (rate of increase of log nevi depends on sunburn), and (2) nonmonotonic pattern. In unadjusted analyses, there was a marginally significant monotonic pattern of interaction (P = .08). In adjusted analyses, sun exposure was associated with higher log nevi among those without sunburn (P sunburn (P = .14). Sunburn was independently associated with log nevi (P = .02), even though sun sensitivity explained 29% (95% confidence interval: 2%-56%, P = .04) of its effect. Children with high sun sensitivity and sunburn had more nevi, regardless of sun exposure. A program of increasing sun protection in early childhood as a strategy for reducing nevi, when applied to the general population, may not equally benefit everyone. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Computed temperature profile in materials exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin; Choong, Yap Siew; Seon, Chan Kam

    1987-06-01

    Computed temperature profiles are presented for the materials of lead, steel, concrete and water in curved shells, when they are exposed to gamma radiation. The results are based on the usual simplified theory of thermal conduction with an exponential heat source.

  20. Creating a Sun-Safe Camp.

    Science.gov (United States)

    Landrey, Ann

    1996-01-01

    Strategies for minimizing sun exposure of campers and staff include educating campers about the sun's effect on their skin, scheduling activities when the sun is less intense, creating shade at the camp site, incorporating sun protection into camp dress code, and training staff regarding sun protection. Addresses OSHA and liability issues. (LP)

  1. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  2. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  3. SunBlock '99: Young Scientists Investigate the Sun

    Science.gov (United States)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  4. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  5. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  6. Air-cooling mathematical analysis as inferred from the air-temperature observation during the 1st total occultation of the Sun of the 21st century at Lusaka, Zambia

    Science.gov (United States)

    Peñaloza-Murillo, Marcos A.; Pasachoff, Jay M.

    2015-04-01

    We analyze mathematically air temperature measurements made near the ground by the Williams College expedition to observe the first total occultation of the Sun [TOS (commonly known as a total solar eclipse)] of the 21st century in Lusaka, Zambia, in the afternoon of June 21, 2001. To do so, we have revisited some earlier and contemporary methods to test their usefulness for this analysis. Two of these methods, based on a radiative scheme for solar radiation modeling and that has been originally applied to a morning occultation, have successfully been combined to obtain the delay function for an afternoon occultation, via derivation of the so-called instantaneous temperature profiles. For this purpose, we have followed the suggestion given by the third of these previously applied methods to calculate this function, although by itself it failed to do so at least for this occultation. The analysis has taken into account the limb-darkening, occultation and obscuration functions. The delay function obtained describes quite fairly the lag between the solar radiation variation and the delayed air temperature measured. Also, in this investigation, a statistical study has been carried out to get information on the convection activity produced during this event. For that purpose, the fluctuations generated by turbulence has been studied by analyzing variance and residuals. The results, indicating an irreversible steady decrease of this activity, are consistent with those published by other studies. Finally, the air temperature drop due to this event is well estimated by applying the empirical scheme given by the fourth of the previously applied methods, based on the daily temperature amplitude and the standardized middle time of the occultation. It is demonstrated then that by using a simple set of air temperature measurements obtained during solar occultations, along with some supplementary data, a simple mathematical analysis can be achieved by applying of the four

  7. The temperature profile of an apple supply chain: A case study of the Ceres district

    Directory of Open Access Journals (Sweden)

    A.G. Du Toit Valentine

    2017-01-01

    Full Text Available Background: There is a logistical gap in the first section of the apple supply chain that affects the temperature profiles of apples further downstream in the supply chain. Objectives: This article’s main objective is to confirm whether the logistics processes, in terms of the temperature profile of apples for the first 48 hours post-harvest, have an influence on the yield and/or quality of the fruit. Method: Observations were made and informal interviews were conducted on three different farms to ascertain their perspective of the first section of the supply chain. Temperature trials were conducted to analyse the temperature profile of two apple varieties, namely Golden Delicious and Granny Smith on three different farms. These trials were conducted by placing an iButton® device on the inside and outside of an apple to measure the temperature readings every minute for the first 48 hours after picking. Results: The research identified that it is not only at what time the apples are being harvested, but also at what time the apples are placed under cooling conditions to remove the field heat to obtain the recommended temperature profile within 48 hours. In addition, it was determined that effective and efficient picking at the right time (especially between 07:00 and 09:00 and the transportation of the apples directly, or as soon as possible after the apples came out of the orchard to the centralised cold storage facility, are key in ensuring the quality of the fruit and the temperature profile necessary for export. Conclusion: This article identifies the need to improve operational procedures along the cold chain. From this research, it is clear that there are problem areas that affect the temperature profile of apples.

  8. Fecal steroid analysis for monitoring reproduction in the sun bear (Helarctos malayanus)

    NARCIS (Netherlands)

    Schwarzenberger, F.; Schaller, K.; Kolter, L.; Fredriksson, G.M.

    2004-01-01

    Fecal steroid analyses were conducted on captive (n 1/4 10) and free-ranging (n 1/4 2) sun bears (Helarctos malayanus) in order to establish a noninvasive technique for monitoring endocrine profiles during the estrous cycle and pregnancy. Secondly, the effect of the contraceptive porcine zona

  9. A new algorithm predicts pressure and temperature profiles of gas/gas-condensate transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mokhatab, Saied [OIEC - Oil Industries' Engineering and Construction Group, Tehran (Iran, Islamic Republic of); Vatani, Ali [University of Tehran (Iran, Islamic Republic of)

    2003-07-01

    The main objective of the present study has been the development of a relatively simple analytical algorithm for predicting flow temperature and pressure profiles along the two-phase, gas/gas-condensate transmission pipelines. Results demonstrate the ability of the method to predict reasonably accurate pressure gradient and temperature gradient profiles under operating conditions. (author)

  10. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    Science.gov (United States)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  11. On-sun concentrator performance of GaInP/GaAs tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J.; Kurtz, S.R.; Sinha, K.; McMahon, W.E.; Olson, J.M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The GaInP/GaAs concentrator device has been adapted for and tested in a prototype {open_quotes}real-world{close_quotes} concentrator power system. The device achieved an on-sun efficiency of 28% {+-} 1% in the range of approximately 200-260 suns with device operating temperatures of 38{degrees}C to 42{degrees}C. The authors discuss ways of further improving this performance for future devices.

  12. SU(N) Irreducible Schwinger Bosons

    OpenAIRE

    Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh

    2010-01-01

    We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of $(N-1)$ types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus all SU(N) representations are made as simple as SU(2).

  13. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O{sub 2} airglow temperatures measurements

    Energy Technology Data Exchange (ETDEWEB)

    Taori, A.; Jayaraman, A.; Raghunath, K. [National Atmospheric Research Laboratory, Gadanki (India); Kamalakar, V. [S.V. Univ., Tirupati (India). Dept. of Physics

    2012-07-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O{sub 2} temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation. (orig.)

  14. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  15. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  16. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    Influence of absorbed pump profile on the temperature distribution within a diode side-pumped laser rod ... Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Institute of Optics and Laser, Malek-ashtar University of Technology, Shahin Shahr, Postal Code: 83145/115, Iran; Department of ...

  17. Temperature profiles of Agaricus bisporus in composting stages and ...

    African Journals Online (AJOL)

    Three compost formulas using different activator materials were prepared for Agaricus bisporus cultivation. A locally available casing material known as peat of Bolu district and its different combinations with perlite were used. Temperature profiles of all mixtures during composting were measured at every composting stages ...

  18. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  19. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds. Livsstil, soling og bruning - hva med UV-A solarier

    Energy Technology Data Exchange (ETDEWEB)

    Thune, P [Ullevaal Sykehus, Oslo (Norway)

    1991-06-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab.

  20. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds. Livsstil, soling og bruning - hva med UV-A solarier

    Energy Technology Data Exchange (ETDEWEB)

    Thune, P. (Ullevaal Sykehus, Oslo (Norway))

    1991-06-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab.

  1. Sun protection counseling by pediatricians has little effect on parent and child sun protection behavior.

    Science.gov (United States)

    Cohen, Liza; Brown, Judith; Haukness, Heather; Walsh, Lori; Robinson, June K

    2013-02-01

    To compare counseling concerning sun protection and outdoor exercise with the parent's report of the behavior of a child aged 9-16 years old. Structured interviews of medical personnel in 3 Chicago area practices elicited information about counseling methods and recommendations. In each practice, a convenience sample of parents completed a self-reported survey of their and their child's behavior. Sun protection counseling occurred more frequently than exercise counseling in all practices (P = .014). Sun protection counseling was associated with parental prompting (P = .004), performing a summer camp physical (P = .002), and the child having a sunburn (P = .003). After controlling for the child's age, sex, and skin tone, sun protection counseling was not associated with the child's use of sun protection. In multivariate analysis of the child's sun protection behavior, parental sunburns, indoor tanning in the last 12 months, perception of skin cancer risk, and sun protection self-efficacy were significant (P = .02). Children who pursued outdoor sports were twice as likely to use inadequate sun protection and sustain sunburns (CI 1.3-1.7). The child's sun protection behavior was influenced by parental sun protection, parental perception of skin cancer risk, and parental sun protection self-efficacy; therefore, sun protection for children needs to be aimed at parents as well as children. Communication with parents in a way that incorporates the principles of motivational interviewing may be more effective in promoting behavioral change than admonitions to use sunscreen. Copyright © 2013 Mosby, Inc. All rights reserved.

  2. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Lo Monte, F. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Wyrzykowski, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Weber, B. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Sahmenko, G. [Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Vontobel, P. [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Felicetti, R. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Lura, P. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); ETH Zürich, Institute for Building Materials (IfB), Zürich (Switzerland)

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressure sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.

  3. Work-time sun behaviours among Canadian outdoor workers: results from the 2006 National Sun Survey.

    Science.gov (United States)

    Marrett, Loraine D; Pichora, Erin C; Costa, Michelle L

    2010-01-01

    The objective of the study was to describe summer work-related sun behaviours among Canadian outdoor workers. Information on time in the sun and sun protection practices at work during the summer of 2006 were collected from 1,337 outdoor workers aged 16-64 years as part of the Second National Sun Survey. Proportions (and 95% confidence intervals) were estimated using procedures appropriate for complex survey designs. Twenty-six percent of all Canadians, 39% of males and 33% of those aged 16-24 years work outdoors during the summer. Although 41% spend four or more hours daily in the sun at work, just over half always or often protect themselves by covering their heads (58%), wearing protective clothing (56%) or wearing sunglasses (54%), and only 29% use sunscreen. Males and those aged 16-24 spend the most work time in the sun but are the least likely to use protection. The prevalence of outdoor work and sun behaviours varies among regions. Study findings confirm the need for strategies to reduce time in the sun and increase the use of sun protection among outdoor workers. In order to be effective, these strategies must include both enhanced workplace policies and practice, and increased individual use of sun protection.

  4. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  5. Sun exposure and sun protection behaviours among young adult sport competitors.

    Science.gov (United States)

    Lawler, Sheleigh; Spathonis, Kym; Eakin, Elizabeth; Gallois, Cindy; Leslie, Eva; Owen, Neville

    2007-06-01

    To explore the relationship between sun protection and physical activity in young adults (18-30 years) involved in four organised sports. Participants (n=237) in field hockey, soccer, tennis and surf sports completed a self-administered survey on demographic and sun-protective behaviours while playing sport. Differences in sun-protective behaviour were explored by sport and by gender. Sunburn during the previous sporting season was high (69%). There were differences between sports for sunburn, sunscreen use and reapplication of sunscreen. Lifesaving had the highest rates compared with the other three sports. Hats and sunglasses worn by participants varied significantly by sports. A greater proportion of soccer and hockey players indicated they were not allowed to wear a hat or sunglasses during competition. For all sports, competition was played mainly in the open with no shade provision for competitors while they were playing. There were some gender differences within each of the sports. Female soccer and tennis players were more likely to wear sunscreen compared with males. Female hockey players were more likely to wear a hat compared with males. Our findings highlight that there is still room for improvement in sun-protective behaviours among young adult sport competitors. There is a need for a systematic approach to sun protection in the sporting environments of young adults. Health promotion efforts to increase physical activity need to be paired with sun protection messages.

  6. MedSun Reports

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medical Product Safety Network (MedSun) is an adverse event reporting program launched in 2002. The primary goal for MedSun is to work collaboratively with the...

  7. Confinement properties of JET plasmas with different temperature and density profiles

    International Nuclear Information System (INIS)

    Watkins, M.L.; Balet, B.; Bhatnagar, V.P.

    1989-01-01

    The confinement properties of plasmas with substantially different temperature and density profiles have been analysed. The effects of fast particles and energy pedestals on the overall confinement of plasma energy in limiter (L-mode) and X-point (L- and H-modes) discharges heated by NBI or ICRF or both are determined. The importance of the bootstrap current when such energy pedestals are formed is noted. Using sets of consistent experimental data, including ion temperature profile measurements, the local transport properties are compared in the L- and H-phases of a single null X-point medium density NBI heated discharge, the ''enhanced'' confinement phase of a limiter high density pellet-fuelled and ICRF heated discharge, the hot-ion phase of a double null X-point low density NBI heated discharge and the hot-ion and H-phases of a double null X-point low density high temperature NBI heated discharge. (author)

  8. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    International Nuclear Information System (INIS)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; Auburn University, AL; Hansen, C.

    2017-01-01

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge (> 200 eV) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with density after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.

  9. Here comes the sun...; Here comes the sun...

    Energy Technology Data Exchange (ETDEWEB)

    Best, Robert [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    It sounds a bit strange that you can use solar energy to maintain or refrigerate products or spaces below the ambient temperature, because we know that something that makes the sun is heating; but yes indeed, the sun can produce cold, and in addition without polluting, and without consuming conventional energy. In this document are mentioned the various research projects on solar cooling that have been made in the Energy Research Center at the Universidad Nacional Autonoma de Mexico such as the thermo-chemical intermittent refrigerator, the geothermal cooling demonstration system in Mexicali, B.C., the GAX system for air conditioning, the ice producer intermittent solar refrigerator, the continuous solar refrigerator, the refrigeration by ejection-compression. It also mentions the functioning of heat pumps and the process of solar drying applications in agricultural products. [Spanish] Suena un poco extrano que se pueda utilizar la energia solar para mantener o refrigerar productos o espacios por debajo de la temperatura ambiente, ya que sabemos que algo que hace el sol es calentar; pero si, el sol puede producir frio, y ademas sin contaminar y sin consumir energia convencional. En este documento se mencionan las diferentes investigaciones sobre refrigeracion solar que se han realizado en el Centro de Investigacion en Energia de la Universidad Nacional Autonoma de Mexico como el refrigerador termoquimico intermitente, el sistema demostrativo de refrigeracion geotermico en Mexicali, B.C., el sistema GAX para aire acondicionado, el refrigerador solar intermitente productor de hielo, el refrigerador continuo solar, la refrigeracion por eyecto-compresion. Tambien se menciona el funcionamiento de las bombas de calor y el proceso de secado solar de aplicacion en productos agropecuarios.

  10. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2002-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bar e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  11. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2003-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bars e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  12. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    Science.gov (United States)

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days

  13. Numerical simulation of cometary nuclei. III. Internal temperatures of cometary nuclei

    International Nuclear Information System (INIS)

    Herman, G.; Weissman, P.R.

    1987-01-01

    The thermal diffusion equation for the internal temperature of cometary nuclei is exactly solved by means of a one-dimensional numerical model in order to shed light on the complex behavior of these temperatures with varying orbital and thermal parameters and in order to consider possible cometary nucleus thermal evolution targets for comet rendezvous and/or sample-return missions. The concept of new and old comets, classified in terms of how many passages around the sun have been made, may take on new meaning in view of the present demonstration that differences in eccentricity between two comets having the same period and number of apparitions may yield significantly different internal temperature profiles. 19 references

  14. Seasons by the Sun

    Science.gov (United States)

    Stark, Meri-Lyn

    2005-01-01

    Understanding the Sun has challenged people since ancient times. Mythology from the Greek, Inuit, and Inca cultures attempted to explain the daily appearance and nightly disappearance of the Sun by relating it to a chariot being chased across the sky. While people no longer believe the Sun is a chariot racing across the sky, teachers are still…

  15. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  16. Thermal comfort in sun spaces: To what extend can energy collectors and seasonal energy storages provide thermal comfort in sun space?

    Directory of Open Access Journals (Sweden)

    Christian Wiegel

    2017-10-01

    Full Text Available Preparation for fossil fuel substitution in the building sector persists as an essential subject in architectural engineering. Since the building sector still remains as one of the three major global end energy consumer – climate change is closely related to construction and design. We have developed the archetype sun space to what it is today : a simple but effective predominant naturally ventilated sun trap and as well as living space enlargement. With the invention of industrial glass orangery’s more and more changed from frost protecting envelopes to living spaces from which we meantime expect thermal comfort in high quality. But what level of thermal comfort provide sun spaces? And to what extend may sun spaces manage autarkic operation profiting from passive solar gains and, beyond that, surplus energy generation for energy neutral conditioning of aligned spaces? We deliver detailed information for this detected gap of knowledge. We know about limited thermal comfort in sun spaces winter times. This reasons the inspection of manifold collector technologies, which enable to be embedded in facades and specifically in sun space envelopes. Nonetheless, effective façade integrated collectors are ineffective in seasons with poor irradiation. Hence, the mismatch of offer and demand we have experienced with renewable energies ignites thinking about appropriate seasonal energy storages, which enlarges the research scope of this work. This PhD thesis project investigates on both, a yearly empirical test set up analysis and a virtual simulation of different oriented and located sun spaces abroad Germany. Both empirical and theoretical evaluation result in a holistic research focusing on a preferred occupation time in terms of cumulative frequencies of operational temperature and decided local discomfort, of potential autarkic sun space operation and prospective surplus exergy for alternative heating of aligned buildings. The results are mapped

  17. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  18. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  19. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  20. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  1. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  2. Detection of uranium extraction zone by axial temperature profiles in a pulsed column for Purex process

    International Nuclear Information System (INIS)

    Tsukada, T.; Takahashi, K.

    1991-01-01

    A new method was presented for detecting uranium extraction zone in a pulsed column by means of measuring axial temperature profile originated from reaction heat during uranium extraction. Key parameters of the temperature profiles were estimated with a code developed for calculating temperature profiles in a direct-contact heat exchanger such as a pulsed column, and were verified using data from a small pulsed column simulating reaction heat with injecting hot water. Finally, the results were compared with those from an actual uranium extraction tests, indicating that the method presented was promising for detecting uranium extraction zone in a pulsed column. (author)

  3. Keeping Cool Close to the Sun

    International Nuclear Information System (INIS)

    Hazi, A

    2006-01-01

    The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. The spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was

  4. A practical equation of state for the sun and sun-like stars

    International Nuclear Information System (INIS)

    Lin, H.H.; Daeppen, W.

    2012-01-01

    For models of the Sun and Sun-like stars, a high-quality equation of state is crucial. Conversely, helio- and asteroseismological observations put constraints on the physical formalisms. They effectively turn the Sun and stars into laboratories for dense plasmas. For models of the Sun and Sun-like stars, the most accurate equation of state so far has been the one developed as part of OPAL opacity project of Livermore. However, the OPAL equation of state is limited in two important respects. First, it is only available in the form of pre-computed tables that are provided from Lawrence Livermore National Laboratory. Applications to stellar modeling require therefore interpolation, with unavoidable loss of accuracy. Second, the OPAL equation of state is proprietary and not freely available. Varying its underlying physical parameters is therefore no option for the community. We report on the most recent progress with the development of a high-precision emulation of the OPAL equation of state that will lead to an in-line tool for modelers (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Child sun protection: sun-related attitudes mediate the association between children's knowledge and behaviours.

    Science.gov (United States)

    Wright, Caradee; Reeder, Anthony I; Gray, Andrew; Cox, Brian

    2008-12-01

    To describe and investigate the relationship among the sun-related knowledge, attitudes and behaviours of New Zealand primary schoolchildren and consider the roles of sex and school year level. A randomly selected, two-stage cluster sample of 488 children from 27 primary schools in five regions of New Zealand was surveyed regarding their sun-related knowledge, attitudes and behaviours. A scoring system was used to assign a knowledge, attitude and behaviour score to each child. Although knowledge increased with school year level, there was a decline in sun protective attitudes and behaviours. There was little variation in knowledge, attitudes and behaviour between boys and girls, but sex-year level interactions were found for knowledge and behaviour. When considering children's knowledge, attitudes and behaviours simultaneously, knowledge was only significantly associated with behaviours when mediated by attitudes. When targeting child sun protection and skin cancer prevention programmes, a focus on attitudes towards sun exposure and a suntan may prove beneficial in influencing sun-related behaviours.

  6. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  7. Totality eclipses of the Sun

    CERN Document Server

    Littmann, Mark; Willcox, Ken

    2008-01-01

    A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. - ;A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. Totality: Eclipses of the Sun is the best guide and reference book on solar eclipses ever written. It explains: how to observe them; how to photograph and videotape them; why they occur; their history and mythology; and future eclipses - when and where to see them. Totality also tells the remarkable story of how eclipses shocked scientists, revealed the workings of the Sun, and made Einstein famous. And the book shares the experiences and advice of many veteran eclipse observers. Totality: Eclipses of the Sun is profusely ill...

  8. Sun's dynamics and nucleosynthesis

    International Nuclear Information System (INIS)

    Gavanescu, Adela; Rusu, Mircea V.

    2005-01-01

    Nucleosynthesis processes in the sun are one of the main results related to the evolution of the Sun. Dynamics and energetics of the Sun could be studied indirectly by their elements products in produced by nucleosynthesis. Also solar atmosphere and its characteristics reveled in its full development is observed during the solar eclipses. We try to correlate these facts in order to obtained data to be used in solar models. (authors)

  9. Kug Sun Hong

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Kug Sun Hong. Articles written in Bulletin of Materials Science. Volume 33 Issue 1 February 2010 pp 43-47 Composites. Microstructure and mechanical properties of Mg–HAP composites · Asit Kumar Khanra Hwa Chul Jung Seung Hoon Yu Kug Sun Hong Kwang Seon Shin.

  10. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    B P PANDA and N C MOHAPATRA*. Department of Physics, Chikiti Mahavidyalaya, Chikiti 761 010, India. £Department of Physics, Berhampur University, Berhampur 760 007, India. Email: ncmphy123@hotmail.com. MS received 18 January 2003; accepted 21 June 2003. Abstract. Room temperature Compton profiles of ...

  11. Determining of electron temperature profile on the cross section of a Tokamak, using ECE technique

    Directory of Open Access Journals (Sweden)

    M. Hosseinpour

    2007-06-01

    Full Text Available  In this paper we have used plasma electron cyclotron emissions at the second harmonic frequency of extraordinary mode to determine the temperature profile of the plasma produced in IR-T1 Tokamak. The emissions obtained at different frequencies by a 5-channel heterodyne receiver, have been analyzed to determine the spatial variation of the electron temperature on the plasma cross section. The results have been also used to show the three-dimensional time evolution of the temperature profile during the period of confinement.

  12. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  13. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate

    Science.gov (United States)

    Igono, M. O.; Bjotvedt, G.; Sanford-Crane, H. T.

    1992-06-01

    The environmental profile of central Arizona is quantitatively described using meteorological data between 1971 and 1986. Utilizing ambient temperature criteria of hours per day less than 21° C, between 21 and 27° C, and more than 27° C, the environmental profile of central Arizona consists of varying levels of thermoneutral and heat stress periods. Milk production data from two commercial dairy farms from March 1990 to February 1991 were used to evaluate the seasonal effects identified in the environmental profile. Overall, milk production is lower during heat stress compared to thermoneutral periods. During heat stress, the cool period of hours per day with temperature less than 21° C provides a margin of safety to reduce the effects of heat stress on decreased milk production. Using minimum, mean and maximum ambient temperatures, the upper critical temperatures for milk production are 21, 27 and 32° C, respectively. Using the temperature-humidity index as the thermal environment indicator, the critical values for minimum, mean and maximum THI are 64, 72 and 76, respectively.

  14. Autonomous Sun-Direction Estimation Using Partially Underdetermined Coarse Sun Sensor Configurations

    Science.gov (United States)

    O'Keefe, Stephen A.

    In recent years there has been a significant increase in interest in smaller satellites as lower cost alternatives to traditional satellites, particularly with the rise in popularity of the CubeSat. Due to stringent mass, size, and often budget constraints, these small satellites rely on making the most of inexpensive hardware components and sensors, such as coarse sun sensors (CSS) and magnetometers. More expensive high-accuracy sun sensors often combine multiple measurements, and use specialized electronics, to deterministically solve for the direction of the Sun. Alternatively, cosine-type CSS output a voltage relative to the input light and are attractive due to their very low cost, simplicity to manufacture, small size, and minimal power consumption. This research investigates using coarse sun sensors for performing robust attitude estimation in order to point a spacecraft at the Sun after deployment from a launch vehicle, or following a system fault. As an alternative to using a large number of sensors, this thesis explores sun-direction estimation techniques with low computational costs that function well with underdetermined sets of CSS. Single-point estimators are coupled with simultaneous nonlinear control to achieve sun-pointing within a small percentage of a single orbit despite the partially underdetermined nature of the sensor suite. Leveraging an extensive analysis of the sensor models involved, sequential filtering techniques are shown to be capable of estimating the sun-direction to within a few degrees, with no a priori attitude information and using only CSS, despite the significant noise and biases present in the system. Detailed numerical simulations are used to compare and contrast the performance of the five different estimation techniques, with and without rate gyro measurements, their sensitivity to rate gyro accuracy, and their computation time. One of the key concerns with reducing the number of CSS is sensor degradation and failure. In

  15. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  16. Temperature Map of Tempel 1

    Science.gov (United States)

    2005-01-01

    A temperature map of the nucleus with different spatial resolutions. The context image (in black and white) is a HRIVIS image taken just before impact. The color bar in the middle gives temperature in Kelvins. The sun is to the right in all images. These data were acquired with the IR spectrometer using signal between 1.8 and 2.2 um and modeled to contain both a reflected and an emitted component. After this model is applied, the resulting number is a temperature which is represented by different colors with red being the highest and purple the coldest. The derived temperature varies from 260 +/- 6K to 329 +/- 8K. Shadows are the coolest temperatures, and the point directly below the sun is hottest. These temperatures indicate that the thermal inertia of the surface (the quality of the surface describing the ability to conduct and store heat) is low. In other words, on Tempel 1, it is hot in the sun and cold in the shadows. A value for thermal inertia is estimated at 2/s1/2.

  17. F F Sun

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F F Sun. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 71-76. Study of electroless copper plating on ABS resin surface modified by heterocyclic organosilane self-assembled film · H N Zhang J Wang F F Sun D Liu H Y Wang F Wang.

  18. Skin Cancer-Sun Knowledge and Sun Protection Behaviors of Liver Transplant Recipients in Turkey.

    Science.gov (United States)

    Haney, Meryem Ozturk; Ordin, Yaprak Sarigol; Arkan, Gulcihan

    2017-09-08

    The aim of this study was to compare liver transplant recipients (LTRs) with the general population regarding their knowledge of skin cancer, sun health, sun protection behaviors, and affecting factors. This cross-sectional study was conducted in Turkey between March 2016 and September 2016 with 104 LTRs and 100 participants from the general population group (GPG). The mean age of the LTRs was 53.2 ± 11.8 and that of the GPG was 42.7 ± 14.5. The LTRs' skin cancer and sun knowledge were significantly lower than in the GPG, but there was no difference between the two groups in terms of their sun protection behavior scores. The most commonly used sun protection behaviors of LTRs were not being outside and not sunbathing between 10 a.m. and 4 p.m., wearing clothing that covers the skin, and avoiding the solarium. Behaviors commonly practiced by the GPG were wearing sunglasses, wearing sunscreen with a sun protection factor of 15 or higher before going outside, wearing sunscreen at the beach, while swimming or doing physical activity outside, and reapplying it every 2 h. Results of our study will contribute to the development of education and training programs for LTRs on skin cancer. The results also demonstrated the importance of practicing adequate sun protection behaviors which will certainly impact their future health.

  19. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes

    International Nuclear Information System (INIS)

    Kameda, Yutaka; Kimura, Kumiko; Miyazaki, Motonobu

    2011-01-01

    Sun-blocking agents including eight UV filters (UVF) and 10 UV light stabilizers (UVLS) were measured in water and sediment collected from 22 rivers, four sewage treatment plant effluents (STPE) and three lakes in Japan. Total sun blocking agents levels ranged from N.D. to 4928 ng/L and from 2.0 to 3422 μg/kg dry wt in surface water and in sediment, respectively. Benzyl salicylate, benzophenone-3, 2-ethyl hexyl-4-methoxycinnamte (EHMC) and octyl salicylate were dominant in surface water receiving wastewater effluents and STPE, although UV-328, benzophenone and EHMC were dominant in other surface water except background sites. Three UVF and nine UVLS were observed from all sediment and their compositions showed similar patterns with UV-328 and UV-234 as the most prevalent compounds. Homosalate, octocrylene, UV-326, UV-327, UV-328 and UV-234 were significantly correlated with Galaxolide in sediments. Concentrations of UV-327 and UV-328 also had strong correlation between those of UV-326 in sediment. - Highlights: → Total sun-blocking agents levels ranged from N.D. to 4928 ng/L in surface water from 29 sampling sites. → The maximum concentration of total sun-blocking agents was 3422 μg/kg dry wt. in sediment. → Residential wastewaters and STPE were considered to be potential sources of UVLS in river and lakes. → Most of sun-blocking agents in sediment were significantly correlated with HHCB. → UV-326 had a strong linear correlation between UV-327 as well as UV-328 in all sediment. - Occurrence of eight UV filters and 10 UV light stabilizers in surface water and sediment were investigated and characterized their compositions in water and sediment.

  20. Flare plasma density determination using observed temperature profiles

    International Nuclear Information System (INIS)

    Garcia, H.A.

    1986-01-01

    Observed electron temperature variations derived from flux intensity ratios of whole-disk continuum soft X-ray spectra recorded by GOES satellites are presently subjected to an analysis that is based on the nonequilibrium energy balance equation in order to obtain the physical properties of a large solar flare from onset through the gradual phase. A self-similar formalism which reduces the nonlinear, second-order PDE in length and time to a more tractable, nonlinear, first-order Ricatti equation is invoked. Plasma density is the principal unknown variable contained in the Ricatti equation, which also contains first-order time derivatives and first- and second-order spatial derivatives of temperature. This methodology is presently applied to the moderate size flare of January 28, 1982, for which a density profile is deduced under various parametric conditions. 37 references

  1. SunShot Initiative Portfolio Book 2014

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2014-05-01

    The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.

  2. School Sun-Protection Policies--Does Being SunSmart Make a Difference?

    Science.gov (United States)

    Turner, Denise; Harrison, Simone L.; Buettner, Petra; Nowak, Madeleine

    2014-01-01

    Evaluate the comprehensiveness of primary school sun-protection policies in tropical North Queensland, Australia. Pre-determined criteria were used to assess publicly available sun-protection policies from primary schools in Townsville (latitude 19.3°S; n = 43), Cairns (16.9°S; n = 46) and the Atherton Tablelands (17.3°S; n = 23) during 2009-2012.…

  3. Developing a Data Record of Lower Troposphere Temperature Profiles for Diurnal Land-Atmosphere Coupling Investigations

    Science.gov (United States)

    Lin, Z.; Li, D.

    2017-12-01

    The lower troposphere, including the planetary boundary layer, is strongly influenced by the land surface at diurnal scales. However, investigations of diurnal land-atmosphere coupling are significantly hindered by the lack of profile measurements that resolve the diurnal cycle. This study aims to bridge this gap by developing a decade-long (from 2007 to 2016) data record of diurnal temperature profiles in the lower troposphere (from the surface to about 4 km above the surface), which is based on the Aircrafts Communications Addressing and Reporting System (ACARS) meteorological observations. We first identify the number of profiles within an hour for each airport over the CONUS. At each airport, only data that passed at least level-1 quality check are retained. 40 airports out of 275 are then selected, which have data for more than 12 hours per day. These selected airports are mainly located along the east and west coasts, as expected. Because the data are recorded at irregular heights, we resample each profile in the lowest 4 km or so to pre-defined vertical coordinates. These temperature profiles are further bias-corrected by comparing to collocated radiosonde observations. This consistent data record of diurnal temperature profiles in the lower troposphere can be also used for regional climatology research, short-term weather forecasts, and numerical model evaluation.

  4. Sun-Direction Estimation Using a Partially Underdetermined Set of Coarse Sun Sensors

    Science.gov (United States)

    O'Keefe, Stephen A.; Schaub, Hanspeter

    2015-09-01

    A comparison of different methods to estimate the sun-direction vector using a partially underdetermined set of cosine-type coarse sun sensors (CSS), while simultaneously controlling the attitude towards a power-positive orientation, is presented. CSS are commonly used in performing power-positive sun-pointing and are attractive due to their relative inexpensiveness, small size, and reduced power consumption. For this study only CSS and rate gyro measurements are available, and the sensor configuration does not provide global triple coverage required for a unique sun-direction calculation. The methods investigated include a vector average method, a combination of least squares and minimum norm criteria, and an extended Kalman filter approach. All cases are formulated such that precise ground calibration of the CSS is not required. Despite significant biases in the state dynamics and measurement models, Monte Carlo simulations show that an extended Kalman filter approach, despite the underdetermined sensor coverage, can provide degree-level accuracy of the sun-direction vector both with and without a control algorithm running simultaneously. If no rate gyro measurements are available, and rates are partially estimated from CSS, the EKF performance degrades as expected, but is still able to achieve better than 10∘ accuracy using only CSS measurements.

  5. The flight over the sun

    International Nuclear Information System (INIS)

    Ducrocq, A.

    1985-01-01

    With the ''Ulysse'' mission, a satellite is going for the first time to leave the ecliptic plane to observe the sun poles. The ISPM (International Solar Polar Mission) probe will go and visit the sun in passing Jupiter way. Sun pole regions are surmised to play a major role in solar wind production [fr

  6. A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells

    Directory of Open Access Journals (Sweden)

    Langfeng Mu

    2018-02-01

    Full Text Available Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence the temperature distribution inside the tubing and that the mass flow rate of oil is the main factor affecting temperature distribution in the annulus. Finally, the new model was tested in three various wells and compared with other models. The results showed that the new model is more accurate and provides significant references for temperature prediction in gas lift well.

  7. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  8. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  9. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations. AERIPROF Value-Added Product Technical Description

    Energy Technology Data Exchange (ETDEWEB)

    Feltz, W. F. [Univ. of Wisconsin, Madison, WI (United States); Howell, H. B. [Univ. of Wisconsin, Madison, WI (United; Knuteson, R. O. [Univ. of Wisconsin, Madison, WI (United States); Comstock, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahon, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Smith, W. L. [NASA Langley Research Center, Hampton, VA (United States); Woolf, H. M. [Univ. of Wisconsin, Madison, WI (United; Sivaraman, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halter, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-04-01

    One of the goals of the Atmospheric Radiation Measurement (ARM) Program is to collect a long-term series of radiative and atmospheric state observations to improve the parameterization of these processes in global climate models. The ARM Program intended to move away from the traditional approach of directly measuring profiles of temperature and moisture using radiosondes, which is expensive in terms of expendables and manpower, and develop methods to retrieve these profiles with ground-based remote sensors. The atmospheric emitted radiance interferometer (AERI), whose radiance data contains information on the vertical distribution of water vapor and temperature, is an integral part of the ARM profiling plan.

  10. Temperature profile retrievals with extended Kalman-Bucy filters

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1979-01-01

    The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.

  11. Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

    KAUST Repository

    Taroni, M.

    2013-03-12

    In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature. The models derived predict many of the qualitative features observed in real industrial processes, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information about the dependencies of the solution on the parameters and the dominant heat-transport mechanism. © 2013 Springer Science+Business Media Dordrecht.

  12. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    Science.gov (United States)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  13. The Sun Sense Study: An Intervention to Improve Sun Protection in Children

    Science.gov (United States)

    Glasser, Alice; Shaheen, Magda; Glenn, Beth A.; Bastani, Roshan

    2010-01-01

    Objectives: To assess the effect of a multicomponent intervention on parental knowledge, sun avoidance behaviors, and sun protection practices in children 3-10 years. Methods: A randomized trial at a pediatric clinic recruited 197 caregiver-child pairs (90% parents). Intervention included a brief presentation and brochure for the parent and…

  14. Little sun

    DEFF Research Database (Denmark)

    Ebbesen, Toke Riis

    2017-01-01

    the ideas of Alfred Gell’s anthropology of art and the indicative framework derived from Argentinian semiotician Juan Pablo Bonta and Jørn Guldberg. The toy-like solar lamp Little Sun by Olafur Eliasson and Frederik Ottesen is used as case that blends the registers of social design and art......, and as an example of how designers attempt to determine meaning potentials through design in a complex interplay of different strategies. In the final analysis, what characterise objects like Little Sun is seldom that they communicate their meanings in themselves, but instead rely on forceful mediations to gain...

  15. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  16. Electron beam irradiation of sun-dried apricots for quality maintenance

    International Nuclear Information System (INIS)

    Wei, Ming; Zhou, Linyan; Song, Hongbo; Yi, Jianyong; Wu, Bin; Li, Yaru; Zhang, Le; Che, Fengbin; Wang, Zhidong; Gao, Meixu

    2014-01-01

    The chemical, sensory, and microbial quality parameters of electron beam (EB)-irradiated and non-irradiated sun-dried apricots were periodically evaluated to optimize the EB irradiation of sun-dried apricots for quality maintenance. The sun-dried apricots were treated with 1.0, 2.0, 3.0, 4.0, and 5.0 kGy of EB and subsequently stored at ambient temperature. EB treatment at 1.0–3.0 kGy proved to be beneficial for retaining high levels of β-carotene, ascorbic acid, titratable acidity, total sugars, and color without any significant effect on sensory properties. Doses of 1.0–3.0 kGy retained the β-carotene content of sun-dried apricots to 8.21%, 9.27%, and 10.43% compared with 6.09% in control samples after 10 months of storage. After 10 months of storage, the maximum losses of ascorbic acid were 37.8% in control samples and 35.5% in 3.0 kGy-irradiated samples. Titratable acidity and total sugars were significantly enhanced immediately after 1.0–3.0 kGy irradiation treatment, and both parameters showed no significant change after 10 months of storage. Samples subjected to EB treatment at 3.0 kGy maintained a high overall acceptability of sun-dried apricots. Decreased number of viable microorganisms to below detection limits were observed after 3.0 kGy irradiation, and compared with the control, the logarithmic reductions after 10 months of storage were 0.98 for yeast and mold count, as well as 1.71 for bacterial count. - Highlights: • Electron beam irradiation was used for sun-dried apricots quality maintenance. • The chemical, sensory, and microbial quality parameters of apricots were evaluated. • 1.0–3.0 kGy proved to be beneficial for retaining high levels of apricots quality. • 3.0 kGy of irradiation maintained a high overall acceptability of sun-dried apricots. • 3.0 kGy of irradiation reduced the viable microorganisms to below detection limits

  17. 77 FR 34122 - Application of Sun Air Express, LLC, d/b/a Sun Air International for Commuter Authority

    Science.gov (United States)

    2012-06-08

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary [Docket DOT-OST-2011-0169] Application of Sun Air Express, LLC, d/b/a Sun Air International for Commuter Authority AGENCY: Department of... order finding Sun Air Express, LLC d/b/a Sun Air International fit, willing, and able, and awarding it...

  18. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  19. A 1290 MHZ profiler with RASS for monitoring wind and temperature in the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Engelbart, D. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Steinhagen, H. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Goersdorf, U. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Lippmann, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.

    1996-02-01

    A boundary layer wind profiler with RASS is described operating at 1290 MHz in a quasi-operational mode at the Meteorological Observatory Lindenberg of the German Weather Service (DWD). It provides vertical profiles of wind and temperature from the lower atmosphere with a height resolution of 50 m to 400 m and a time resolution of about 1 to 60 minutes. For an estimation of the system reliability, the availability of the measurements for all different height levels is analyzed. With regard to the data quality, a comparison of wind profiler/RASS and rawinsonde data is presented based on 856 wind and 451 temperature profiles. It reveals reasonable conformity of both sounding systems. Finally, case studies are shown, demonstrating the system ability to analyze some characteristic phenomena in the lower troposphere, which are unresolved temporally and spatially by the routine rawinsonde network. (orig.)

  20. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  1. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  2. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  3. Sun burn incidence and knowledge of greek elementary and high school children about sun protection.

    Science.gov (United States)

    Saridi, Maria Ioannis; Toska, Aikaterini George; Rekleiti, Maria Dimitrios; Tsironi, Maria; Geitona, Maria; Souliotis, Kyriakos

    2015-01-01

    Overexposure to sun radiation and particularly its accumulation during childhood and adolescence is a significant risk factor for skin cancer development. The sun burn is particularly important. To estimate sun burn incidence in young pupils in a coastal area of Greece. Two surveys were conducted in a school population in the same district in Greece, over different periods of time, in young people 9 to 18 years old (n=2 977). Anonymous questionnaires were completed. Levels of significance were two- tailed and statistical significance was set at p=0.05. SPSS 17.0 software was used for statistical analysis. From the individual characteristics of the participants it was shown that the majority of them had dark hair and fair skin, whereas a significant percentage reported the existence of moles on face and their body (83.4% vs 68.1%). The sun burn incidence was high in adolescents and the younger pupils (41.9% vs 55.6%). The younger aged children who were living in an urban area had significantly higher rates of sun burn than those living in semi-urban areas (33.8% vs 24.8%, p=0.020). As far as the knowledge of pupils about the risks of sun radiation it was shown that the elementary school pupils had better knowledge than those at high school. Finally, those with better knowledge had the fewer sun burns (Mean 2.83 SD 0.87, pknowledge to the decrease of sun burn incidence is important as long as this is continuous. Therefore, the education should concern not only children but also teachers and parents in the context of continuous and systematic programs of health education.

  4. The temperature profile of an apple supply chain: A case study of the Ceres district

    OpenAIRE

    A.G. Du Toit Valentine; Leila L. Goedhals-Gerber

    2017-01-01

    Background: There is a logistical gap in the first section of the apple supply chain that affects the temperature profiles of apples further downstream in the supply chain. Objectives: This article’s main objective is to confirm whether the logistics processes, in terms of the temperature profile of apples for the first 48 hours post-harvest, have an influence on the yield and/or quality of the fruit. Method: Observations were made and informal interviews were conducted on three diffe...

  5. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2015-01-01

    temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  6. Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The synoptic gridded Global Temperature and Salinity Profile Programme (SG-GTSPP) provides world ocean 3D gridded temperature and salinity data in monthly increment...

  7. Microclimate influence on mineral and metabolic profiles of grape berries.

    Science.gov (United States)

    Pereira, G E; Gaudillere, J-P; Pieri, P; Hilbert, G; Maucourt, M; Deborde, C; Moing, A; Rolin, D

    2006-09-06

    The grape berry microclimate is known to influence berry quality. The effects of the light exposure of grape berry clusters on the composition of berry tissues were studied on the "Merlot" variety grown in a vineyard in Bordeaux, France. The light exposure of the fruiting zone was modified using different intensities of leaf removal, cluster position relative to azimuth, and berry position in the cluster. Light exposures were identified and classified by in situ measurements of berry temperatures. Berries were sampled at maturity (>19 Brix) for determination of skin and/or pulp chemical and metabolic profiles based on (1) chemical and physicochemical measurement of minerals (N, P, K, Ca, Mg), (2) untargeted 1H NMR metabolic fingerprints, and HPLC targeted analyses of (3) amino acids and (4) phenolics. Each profile defined by partial least-square discriminant analysis allowed us to discriminate berries from different light exposure. Discriminant compounds between shaded and light-exposed berries were quercetin-3-glucoside, kaempferol-3-glucoside, myricetin-3-glucoside, and isorhamnetin-3-glucoside for the phenolics, histidine, valine, GABA, alanine, and arginine for the amino acids, and malate for the organic acids. Capacities of the different profiling techniques to discriminate berries were compared. Although the proportion of explained variance from the 1H NMR fingerprint was lower compared to that of chemical measurements, NMR spectroscopy allowed us to identify lit and shaded berries. Light exposure of berries increased the skin and pulp flavonols, histidine and valine contents, and reduced the organic acids, GABA, and alanine contents. All the targeted and nontargeted analytical data sets used made it possible to discriminate sun-exposed and shaded berries. The skin phenolics pattern was the most discriminating and allowed us to sort sun from shade berries. These metabolite classes can be used to qualify berries collected in an undetermined environment. The

  8. Cheap two axis sun following device

    International Nuclear Information System (INIS)

    Roth, P.; Georgiev, A.; Boudinov, H.

    2005-01-01

    A sun following system was constructed and tested. The tracker gives the possibility for automatic measuring of direct solar radiation with a phetylureum. The mechanism is operated by a digital program in the control system, situated separately from the mechanical part. The position of the sun is calculated, and the pointing errors appearing during its daily work are stored for later analysis. Additionally, in the active operation mode, the tracker uses the signal of a sun detecting linear sensor to control the pointing. Two stepper motors move the instrument platform, keeping the sun's beam at the center of the sensor. The mechanism was created at the Laboratory 'Evaluation Solar' of the Technical University Faradaic Santa Maria (UTFSM) in Valparaiso, Chile. The experiments show good results. The described sun tracker gives similar results as the Swiss sun tracker INTRA at a very much lower price

  9. Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers

    International Nuclear Information System (INIS)

    Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

    2000-01-01

    Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design

  10. Theory-based transport simulations of TFTR L-mode temperature profiles

    International Nuclear Information System (INIS)

    Bateman, G.

    1991-01-01

    The temperature profiles from a selection of TFTR L-mode discharges are simulated with the 1-1/2-D BALDUR transport code using a combination of theoretically derived transport models, called the Multi-Mode Model. The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient (η i ) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the η i and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes. 24 refs., 16 figs., 3 tabs

  11. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Science.gov (United States)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  12. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nano composites

    International Nuclear Information System (INIS)

    Li, X.; He, X.; Lv, J.; Wu, Y.; Luo, Y.; Chen, H.

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nano composites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased along the direction of microwave transmission when the unilateral microwave heating was applied, and the temperature difference along the thickness direction of wood was very significant; The temperature with wood firstly increased and then gradually decreased from the wood surface to interior when the bilateral microwave heating was applied. Compared with the unilateral microwave heating, bilateral microwave heating is a better microwave heating method for the more uniform wood microwave pretreatment.

  13. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    International Nuclear Information System (INIS)

    Pooja,; Ahluwalia, P. K.; Pathania, Y.

    2015-01-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow

  14. Clustering of Sun Exposure Measurements

    OpenAIRE

    Have, Anna Szynkowiak; Larsen, Jan; Hansen, Lars Kai; Philipsen, Peter Alshede; Thieden, Elisabeth; Wulf, Hans Christian

    2002-01-01

    In a medically motivated Sun-exposure study, questionnaires concerning Sun-habits were collected from a number of subjects together with UV radiation measurements. This paper focuses on identifying clusters in the heterogeneous set of data for the purpose of understanding possible relations between Sun-habits exposure and eventually assessing the risk of skin cancer. A general probabilistic framework originally developed for text and Web mining is demonstrated to be useful for clustering of b...

  15. NEW SUNS IN THE COSMOS?

    Energy Technology Data Exchange (ETDEWEB)

    De Freitas, D. B.; Leao, I. C.; Lopes, C. E. Ferreira; Paz-Chinchon, F.; Canto Martins, B. L.; Alves, S.; De Medeiros, J. R. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Catelan, M. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago (Chile)

    2013-08-20

    The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission's Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period-T{sub eff} diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with a similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these ''New Sun'' candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of 14 CoRoT stars with sub- and super-solar rotational periods, and for the Sun itself in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties as far as the latter's imprints on light curve behavior are concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.

  16. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    Science.gov (United States)

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Associations between authoritative parenting and the sun exposure and sun protective behaviours of adolescents and their friends.

    Science.gov (United States)

    Mewse, Avril J; Lea, Stephen E G; Ntala, Eleni; Eiser, J Richard

    2011-05-01

    Associations between the sun exposure and sun protective behaviours of adolescents and their friends were examined along with the role played by authoritative parenting and other family and peer socialisation factors. Four hundred and two adolescents (198 males, 204 females) participated in the research. It was found that these adolescents and their friends shared similar sun exposure and sun protective behaviours and had similar parenting backgrounds. Parental authoritativeness was positively associated with the use of sun protection, even after the effects of other familial and peer variables were controlled, but not with the time spent sunbathing which was associated with friends' behaviours. The theoretical and practical implications of these findings are discussed.

  18. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  19. Integrable multi parametric SU(N) chain

    International Nuclear Information System (INIS)

    Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.

    1996-03-01

    We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs

  20. Evidence of redshifts in the average solar line profiles of C IV and Si IV from OSO-8 observations

    Science.gov (United States)

    Roussel-Dupre, D.; Shine, R. A.

    1982-01-01

    Line profiles of C IV and Si V obtained by the Colorado spectrometer on OSO-8 are presented. It is shown that the mean profiles are redshifted with a magnitude varying from 6-20 km/s, and with a mean of 12 km/s. An apparent average downflow of material in the 50,000-100,000 K temperature range is measured. The redshifts are observed in the line center positions of spatially and temporally averaged profiles and are measured either relative to chromospheric Si I lines or from a comparison of sun center and limb profiles. The observations of 6-20 km/s redshifts place constraints on the mechanisms that dominate EUV line emission since it requires a strong weighting of the emission in regions of downward moving material, and since there is little evidence for corresponding upward moving materials in these lines.

  1. Kinetic theory of neutrals in a bounded plasma slab with inhomogeneous temperature and density profile

    International Nuclear Information System (INIS)

    Tendler, M.B.; Agren, O.

    1982-01-01

    The transport of neutral hydrogen atoms in a hydrogen plasma slab is considered. The influence of the inhomogeneous ion temperature profile on the neutral density and distribution is discussed as well as the influence of the neutral edge energy, charge exchange, and ionization rates. The analytical solutions for the neutral density and distribution function are obtained and compared with the numerical results. The effects due to the inhomogeneous temperature profile are discussed. The recommen-dations from the viewpoint of the effects mentioned previously for the purposes of the cold-gas mantle system have been given

  2. Temperature Profile of the Upper Mantle

    International Nuclear Information System (INIS)

    Anderson, O.L.

    1980-01-01

    Following the procedure outlined by Magnitsky [1971], thermal profiles of the upper mantle are computed by deriving the thermal gradient from the seismic data given as dv/sub s//drho used along with the values of (dv/sub s//dT9/sub p/ and (dv/sub s//dP)/sub T/ of selected minerals, measured at high temperature. The resulting values of dT/dZ are integrated from 380 km upward toward the surface, where the integrating constant is taken from Akagi and Akimoto's work, T=1400 0 C at 380 km. The resulting geotherms for minerals are used to derive geotherms for an eclogite mantle and a lherzolite mantle, with and without partial melting in the low-velocity zone. The geotherms are all subadiabatic, and some are virtually isothermal in the upper mantle. Some are characterized by a large thermal hump at the lithosphere boundary

  3. Trends in sunburns, sun protection practices, and attitudes toward sun exposure protection and tanning among US adolescents, 1998-2004.

    Science.gov (United States)

    Cokkinides, Vilma; Weinstock, Martin; Glanz, Karen; Albano, Jessica; Ward, Elizabeth; Thun, Michael

    2006-09-01

    Sun exposure in childhood is an important risk factor for developing skin cancer as an adult. Despite extensive efforts to reduce sun exposure among the young, there are no population-based data on trends in sunburns and sun protection practices in the young. The aim of this study was to describe nationally representative trend data on sunburns, sun protection, and attitudes related to sun exposure among US youth. Cross-sectional telephone surveys of youth aged 11 to 18 years in 1998 (N = 1196) and in 2004 (N = 1613) were conducted using a 2-stage sampling process to draw population-based samples. The surveys asked identical questions about sun protection, number of sunburns experienced, and attitudes toward sun exposure. Time trends were evaluated using pooled logistic regression analysis. In 2004, 69% of subjects reported having been sunburned during the summer, not significantly less than in 1998 (72%). There was a significant decrease in the percentage of those aged 11 to 15 years who reported sunburns and a nonsignificant increase among the 16- to 18-year-olds. The proportion of youth who reported regular sunscreen use increased significantly from 31% to 39%. Little change occurred in other recommended sun protection practices. A small reduction in sunburn frequency and modest increases in sun protection practices were observed among youth between 1998 and 2004, despite widespread sun protection campaigns. Nevertheless, the decrease in sunburns among younger teens may be cause for optimism regarding future trends. Overall, there was rather limited progress in improving sun protection practices and reducing sunburns among US youth between 1998 and 2004.

  4. After the Bell: Developing Sun Sense--Learning about Protection from the Sun's Rays

    Science.gov (United States)

    Farenga, Stephen J.; Ness, Daniel

    2008-01-01

    The American Academy of Dermatology (2008) reports that our students will experience 80% of their lifetime exposure to the Sun by the time they are 18. Further, research has demonstrated that continued exposure to the Sun's ultraviolet rays can lead to skin aging, sunburn, immune suppression, ocular melanoma, cataracts, corneal burns, and even…

  5. Comment on "Clouds and the Faint Young Sun Paradox" by Goldblatt and Zahnle (2011

    Directory of Open Access Journals (Sweden)

    R. Rondanelli

    2012-03-01

    Full Text Available Goldblatt and Zahnle (2011 raise a number of issues related to the possibility that cirrus clouds can provide a solution to the faint young sun paradox. Here, we argue that: (1 climates having a lower than present mean surface temperature cannot be discarded as solutions to the faint young sun paradox, (2 the detrainment from deep convective clouds in the tropics is a well-established physical mechanism for the formation of high clouds that have a positive radiative forcing (even if the possible role of these clouds as a negative climate feedback remains controversial and (3 even if some cloud properties are not mutually consistent with observations in radiative transfer parameterizations, the most relevant consistency (for the purpose of hypothesis testing is with observations of the cloud radiative forcing. Therefore, we maintain that cirrus clouds, as observed in the current climate and covering a large region of the tropics, can provide a solution to the faint young sun paradox, or at least ease the amount of CO2 or other greenhouse substances needed to provide temperatures above freezing during the Archean.

  6. THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Benson, B. A.; Vikhlinin, A.; Aird, K. A.; Allen, S. W.; Bautz, M.; Bayliss, M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Miller, E. D.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.; Zenteno, A.

    2014-09-24

    We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg(2) South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R (500), which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (~30%) cooler both in the inner (r < 0.1R (500)) and outer (r > R (500)) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R (500) of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r lsim 0.7R (500)—this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r gsim R (500) in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3×) rate at which group-mass (~2

  7. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  8. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  9. As reliable as the sun

    Science.gov (United States)

    Leijtens, J. A. P.

    2017-11-01

    Fortunately there is almost nothing as reliable as the sun which can consequently be utilized as a very reliable source of spacecraft power. In order to harvest this power, the solar panels have to be pointed towards the sun as accurately and reliably as possible. To this extend, sunsensors are available on almost every satellite to support vital sun-pointing capability throughout the mission, even in the deployment and save mode phases of the satellites life. Given the criticality of the application one would expect that after more than 50 years of sun sensor utilisation, such sensors would be fully matured and optimised. In actual fact though, the majority of sunsensors employed are still coarse sunsensors which have a proven extreme reliability but present major issues regarding albedo sensitivity and pointing accuracy.

  10. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    Directory of Open Access Journals (Sweden)

    S. Noll

    2016-04-01

    Full Text Available Rotational temperatures Trot derived from lines of the same OH band are an important method to study the dynamics and long-term trends in the mesopause region near 87 km. To measure realistic temperatures, the rotational level populations have to be in local thermodynamic equilibrium (LTE. However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-LTE contributions to the OH Trot as a function of the upper vibrational level v′, we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1, which peaks at about 94 to 95 km, and O2a(0-0 with an emission peak at about 90 km. The latter altitude is reached in the second half of the night after a rise of several km because of the decay of a daytime population of excited O2. Since the radiative lifetimes for the upper levels of the two O2 bands are relatively long, the derived Trot are not significantly affected by non-LTE contributions. These bands are well suited for a comparison with OH if the differences in the emission profiles are corrected. For different sample averages, we made these corrections by using OH emission, O2a(0-0 emission, and CO2-based temperature profile data from the multi-channel radiometer SABER on the TIMED satellite. The procedure relies on differences of profile-weighted SABER temperatures. For an O2a(0-0-based reference profile at 90 km, we found a good agreement of the O2 with the SABER-related temperatures, whereas the OH temperatures, especially for the high and even v′, showed significant excesses with a maximum of more than 10 K for v′ = 8. The exact value depends on the selected lines and molecular parameters. We could also find a nocturnal trend towards higher non-LTE effects, particularly for high v′. The amplitude

  11. Profile modifications in laser-driven temperature fronts using flux-limiters and delocalization models

    Science.gov (United States)

    Colombant, Denis; Manheimer, Wallace; Busquet, Michel

    2004-11-01

    A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)

  12. How to Observe the Sun Safely

    CERN Document Server

    Macdonald, Lee

    2012-01-01

    How to Observe the Sun Safely, Second Edition gives all the basic information and advice the amateur astronomer needs to get started in observing our own ever-fascinating star. Unlike many other astronomical objects, you do not need a large telescope or expensive equipment to observe the Sun. And it is possible to take excellent pictures of the Sun with today's low-cost digital cameras! This book surveys what is visible on the Sun and then describes how to record solar features and measure solar activity levels. There is also an account of how to use H-alpha and Calcium-K filters to observe and record prominences and other features of the solar chromosphere, the Sun's inner atmosphere. Because we are just entering a period of high activity on the Sun, following a long, quiet period, this is a great time to get involved with solar observing. Still emphasizing safety first, this Second Edition reflects recent and exciting advances in solar observing equipment. Chapters 6 through 8 have been completely revised ...

  13. Experimental constraints on pulsed and steady state models of the solar wind near the Sun

    International Nuclear Information System (INIS)

    Feldman, W.C.; Habbal, S.R.; Hoogeveen, G.; Wang, Y.

    1997-01-01

    Ulysses observations of the high-latitude solar wind were combined with Spartan 201 observations of the corona to investigate the nature and extent of uncertainties in our knowledge of solar wind structure near the Sun. In addition to uncertainties stemming from the propagation of errors in density profiles inferred from coronagraph observations [see, e.g., Lallement et al., 1986], an assessment of the consequences of choosing different analysis assumptions reveals very large, fundamental uncertainties in our knowledge of even the basics of coronal structure near the Sun. In the spirit of demonstrating the nature and extent of these uncertainties we develop just one of a generic class of explicitly time-dependent and filamentary models of the corona that is consistent with the Ulysses and Spartan 201 data. This model provides a natural explanation for the radial profiles of both the axial ratios and apparent radial speeds of density irregularities measured at radial distances less than 10R S using the interplanetary scintillation technique. copyright 1997 American Geophysical Union

  14. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Guangul, F M; Sulaiman, S A; Ramli, A

    2013-01-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  15. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  16. Clustering of Sun Exposure Measurements

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Larsen, Jan; Hansen, Lars Kai

    2002-01-01

    In a medically motivated Sun-exposure study, questionnaires concerning Sun-habits were collected from a number of subjects together with UV radiation measurements. This paper focuses on identifying clusters in the heterogeneous set of data for the purpose of understanding possible relations between...... Sun-habits exposure and eventually assessing the risk of skin cancer. A general probabilistic framework originally developed for text and Web mining is demonstrated to be useful for clustering of behavioral data. The framework combines principal component subspace projection with probabilistic...

  17. 'My child did not like using sun protection': practices and perceptions of child sun protection among rural black African mothers.

    Science.gov (United States)

    Kunene, Zamantimande; Albers, Patricia N; Lucas, Robyn M; Banwell, Cathy; Mathee, Angela; Wright, Caradee Y

    2017-08-25

    Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child's 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade). Most mothers (97%) liked the sun protection equipment. However, many (78 of 86) reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans.

  18. DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN

    International Nuclear Information System (INIS)

    Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.; Hartlep, Thomas; Duvall, T. L. Jr.

    2013-01-01

    Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics. After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s –1 extends in depth from the photosphere to about 0.91 R ☉ . An equatorward flow of a speed of 10 m s –1 is found between 0.82 and 0.91 R ☉ in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R ☉ , indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun

  19. Caddo Sun Accounts across Time and Place

    Science.gov (United States)

    Gerona, Carla

    2012-01-01

    Billy Day, a Tunica/Biloxi, recently described the significance of the sun for Caddoan people. Day quoted an "old Caddo relative" of his who said: "I used to go outside and hold my hands up and bless myself with the sun--'a'hat.' Well, I can't do that anymore because they say we are sun worshipers. We didn't worship the sun. We worshiped what was…

  20. SunPy—Python for solar physics

    International Nuclear Information System (INIS)

    Community, The SunPy; Mumford, Stuart J; Freij, Nabil; Bennett, Samuel M; Christe, Steven; Ireland, Jack; Shih, Albert Y; Inglis, Andrew R; Pérez-Suárez, David; Liedtke, Simon; Hewett, Russell J; Mayer, Florian; Hughitt, Keith; Meszaros, Tomas; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J; Robitaille, Thomas P; Mampaey, Benjamin

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy. (paper)

  1. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  2. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R.; Sos, M.

    2016-01-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  3. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Stefanikova, E. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm (Sweden); Peterka, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); MFF Charles University, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Bohm, P., E-mail: bohm@ipp.cas.cz; Bilkova, P.; Aftanas, M.; Urban, J.; Hron, M.; Panek, R. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Sos, M. [Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 180 00 Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic)

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  4. Mediation analysis of decisional balance, sun avoidance and sunscreen use in the precontemplation and preparation stages for sun protection.

    Science.gov (United States)

    Santiago-Rivas, Marimer; Velicer, Wayne F; Redding, Colleen

    2015-01-01

    Mediation analyses of sun protection were conducted testing structural equation models using longitudinal data with three waves. An effect was said to be mediated if the standardised path between processes of change, decisional balance and sun protection outcomes was significant. Longitudinal models of sun protection using data from individuals in the precontemplation (N = 964) and preparation (N = 463) stages who participated of an expert system intervention. Nine processes of change for sun protection, decisional balance constructs of sun protection (pros and cons), sun avoidance behaviour and sunscreen use. With the exception of two processes in the preparation stage, processes of change predicted the pros (r = .126-.614), and the pros predicted the outcomes (r = .181-.272). Three models with the cons as mediator in the preparation stage, and none in the precontemplation stage, showed a mediated relationship between processes and outcomes. In general, mediation analyses found both the process of change-to-pros and pros-to-behaviour paths significant for both precontemplation and preparation stages, and for both sun avoidance and sunscreen use outcomes. Findings provide support for the importance of assessing the role of underlying risk cognitions in improving sun protection adherence.

  5. The Sun in Time

    Science.gov (United States)

    Adams, Mitzi L.; Bero, Elizabeth; Sever, Thomas L.

    1999-01-01

    Leveraging funds from NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, we combined the expertise of an archaeoastronomer, a solar scientist, and a teacher to trace humankind's view of the Sun and how that has changed, from the time of Stonehenge in about 1800 B.C.E., to the time of the Maya in 700 C.E., up to the modem era. Our program was aimed at middle-school students in an attempt to explain not only how science is done today, but how science has evolved from the observations of ancient societies. From these varied cultures, we touched on methods of observing the Sun, ideas of the composition of the Sun, and the relationship of the Sun to everyday life. Further, using the von Braun Astronomical Society's Planetarium in Huntsville, Alabama as a test-bed for the program, we illustrated concepts such as solstices, equinoxes, and local noon with approximately 800 eighth grade students from the local area. Our presentation to SEPA will include a description of NASA's IDEAS program and how to go about partnering with a NASA astronomer, some slides from our planetarium program and web-site, and some hands-on activities.

  6. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Sun-care product advertising in parenting magazines: what information does it provide about sun protection?

    Science.gov (United States)

    Kang, Hannah; Walsh-Childers, Kim

    2014-01-01

    This study analyzed the content of sun-care product advertisements in five major U.S. parenting magazines with high circulation: Family Circle, Parents, Family Fun, Parenting (Early Years), and Parenting (School Years). The study examined what information sun-care product advertisements tell parents about skin cancer prevention and about sunscreen use for themselves or for their children based on the Health Belief Model concepts of perceived benefits and perceived barriers. Results showed that the most commonly mentioned benefit of the product was that it blocks ultraviolet A (UVA) and ultraviolet B (UVB) rays. One-third of the ads promoted the product's effectiveness in overcoming four of the barriers that prevent people from using sunscreens: eye irritation, skin irritation, an unpleasant smell, and the need to reapply sunscreen too often or after physical activity. However, only a few of the ads provided information about the consequences of unprotected sun exposure or mentioned methods of sun protection or skin cancer prevention other than sunscreen use. We discuss the implications of these messages for parents' ability to understand correctly how to protect their children from damaging sun exposure.

  8. Thermal aspects of open sun drying of various crops

    Energy Technology Data Exchange (ETDEWEB)

    Jain, D.; Tiwari, G.N. [Indian Inst. of Technology, Center for Energy Studies, New Delhi (India)

    2003-01-01

    Open sun drying (OSD) is the most common method of crop drying in developing countries. Despite several disadvantages, it is widely practiced because it is a simple way of drying. Crop temperature, temperature around the crop, solar temperature, and rate of moisture evaporation are the important parameters in OSD. The thermal behavior of OSD of green chillies, green pea, white gram (kabuli chana), onions, potatoes, and cauliflower was studied. The heat transfer analysis which is mainly dependent on the rate of moisture transfer has also been extended during drying process. A mathematical model has been developed to predict the crop temperature, rate of moisture removal, and solar temperature for a steady state condition. The rate of moisture transfer for potato slices and cauliflower was significantly higher than that in other crops. A fair agreement was observed between predicted and experimental results with coefficient of correlations ranging from 0.8936 to 0.7520, 0.9792-0.4172, and 0.9986-0.9942 for crop temperature, temperature above the crop surface, and rate of the moisture removal during drying, respectively except potato slices. (Author)

  9. Sun Protection for Children: A Review

    Directory of Open Access Journals (Sweden)

    Nazanin Shafie Pour

    2015-01-01

    Full Text Available Chronic ultraviolet exposure results in premature skin aging (photoaging, dyspigmentation, sallow color, textural changes, loss of elasticity, and premalignant actinic keratoses. UVB radiation is mainly responsible for acute damages such as sunburn, and long-term damage including melanoma. Today the sun's ultraviolet radiation (UVR induced skin cancer is a major issue worldwide. History of sun exposure and sunburns are the most important behavioral risks. Childhood sun exposure is considered as a substantial risk because a child’s skin has a thinner stratum corneum, lower levels of protective melanin, and a higher surface area to body-mass-ratio. Thus, protection against UVR in childhood is essential. Research has shown that people who have had a sunburn in childhood or were in the sun unprotected are more likely to have skin cancer. In this article, we review the literature to address the protection of children against sun and skin cancer.

  10. The Sun and How to Observe It

    CERN Document Server

    Jenkins, Jamey L

    2009-01-01

    Without the Sun, all life on Earth would perish. But what exactly do we know about this star that lights, heats, and powers Earth? Actually, we know quite a lot, thanks mainly to a host of eager solar observers. Looking directly at the Sun is EXTREMELY hazardous. But many astronomers, both professional and amateur, have found ways to view the Sun safely to learn about it. You, too, can view the Sun in all of its glorious detail. Some of the newest, most exciting telescopes on the market are affordable to amateur astronomers or even just curious sky watchers, and with this guide to what the Sun has to offer, including sunspots, prominences, and flares, plus reviews of the latest instruments for seeing and capturing images of the Sun, you can contribute to humankind’s knowledge of this immense ball of glowing gases that gives us all life. For a complete guide to Sun viewing, see also Total Solar Eclipses and How to Observe Them (2007) by Martin Mobberley in this same series.

  11. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  12. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-10-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory.

  13. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-01-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory. (author)

  14. A new picture for the internal rotation of the sun

    International Nuclear Information System (INIS)

    Morrow, C.A.

    1988-01-01

    This thesis describes a helioseismic quest to determine the angular velocity inside the Sun as a function of depth and latitude. The author analyzes rotational frequency splittings extracted from 15 days of full-disk observations of the solar acoustic oscillations (1 = 15-99) obtained with the Fourier Tachometer (a Doppler analyzing instrument design by Tim Brown). She has compared the observed frequency splittings to those generated by several different physically-motivated models for the solar internal angular velocity. She also introduces convenient preliminary analysis techniques, which require no formal computations and which guide the choices of rotation models. He analysis suggests that the differential rotation in latitude observed at the solar surface pervades the convection zone and perhaps even deeper layers. Thus, the convection zone appears to contain little or no radial gradient of angular velocity. The analysis further indicates that the angular velocity of the outer portion of the radiative interior is constant, or nearly so, at a value that is intermediate between the relatively fast equatorial rate and the slower polar rate of the surface profile. This new picture of the Sun's internal rotation implies that a significant radial gradient exists only in a transitional layer between the convection zone and the radiative interior. This model has intriguing implications for the solar dynamo, for the current distribution and transport of angular momentum, and for the current distribution and transport of angular momentum, and for the rotational and evolutionary history of the Sun

  15. ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    Directory of Open Access Journals (Sweden)

    Zamantimande Kunene

    2017-08-01

    Full Text Available Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Results Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade. Most mothers (97% liked the sun protection equipment. However, many (78 of 86 reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Conclusions Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans.

  16. Sun meter

    Science.gov (United States)

    Younskevicius, Robert E.

    1978-01-01

    A simple, inexpensive device for measuring the radiation energy of the sun impinging on the device. The measurement of the energy over an extended period of time is accomplished without moving parts or tracking mechanisms.

  17. A CMOS image sensor with row and column profiling means

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Wang, X.; Leijtens, J.A.P.; Hakkesteegt, H.; Jansen, H.

    2008-01-01

    This paper describes the implementation and firstmeasurement results of a new way that obtains row and column profile data from a CMOS Image Sensor, which is developed for a micro-Digital Sun Sensor (μDSS).The basic profiling action is achieved by the pixels with p-type MOS transistors which realize

  18. Sun Safe Mode Controller Design for LADEE

    Science.gov (United States)

    Fusco, Jesse C.; Swei, Sean S. M.; Nakamura, Robert H.

    2015-01-01

    This paper presents the development of sun safe controllers which are designed to keep the spacecraft power positive and thermally balanced in the event an anomaly is detected. Employed by NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), the controllers utilize the measured sun vector and the spacecraft body rates for feedback control. To improve the accuracy of sun vector estimation, the least square minimization approach is applied to process the sensor data, which is proven to be effective and accurate. To validate the controllers, the LADEE spacecraft model engaging the sun safe mode was first simulated and then compared with the actual LADEE orbital fight data. The results demonstrated the applicability of the proposed sun safe controllers.

  19. Sun tracker for clear or cloudy weather

    Science.gov (United States)

    Scott, D. R.; White, P. R.

    1979-01-01

    Sun tracker orients solar collector so that they absorb maximum possible sunlight without being fooled by bright clouds, holes in cloud cover, or other atmospheric conditions. Tracker follows sun within 0.25 deg arc and is accurate within + or - 5 deg when sun is hidden.

  20. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  1. Prototype of sun projector device

    Science.gov (United States)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  2. The Award Winning Black Suns

    Science.gov (United States)

    Holbrook, Jarita

    2018-01-01

    Black Suns: An Astrophysics Adventure is a documentary film focusing on the annular and total solar eclipses of 2012. We made a different kind of astronomy documentary showing the human aspects rather than just focusing on pretty astronomy pictures. The film combines personal stories with science. Our heroes are Hakeem Oluseyi and Alphonse Sterling, who valiantly travel to study the solar corona during total solar eclipses. The goals of the film included presenting three dimensional scientists, to show their paths to becoming astrophysicists, and to show them as they collect data and work as scientists. Drama and tension surround taking data during the small window of time during totality. The Black Suns was filmed in Tokyo, Cairns, Tucson, and Melbourne Florida. Uniquely, the film began through a Kickstarter campaign to fund travel and filming in Tokyo. Many American Astronomical Society members donated to the film! Black Suns won the Jury Prize at the 2017 Art of Brooklyn Film Festival. Black Suns will be screening in full on ???.

  3. Measurement of temperature profiles in process-applications using fibre-optical methods; Prozessgeeignete Temperaturprofilmessungen mit faseroptischen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Seefeld, P. [Endress und Hauser Wetzer GmbH und Co.KG, Nesselwang (Germany)

    2008-07-01

    Fibre-optical temperature measuring methods are offering an approach to detect temperature profiles. According to the NAMUR-Technology-Roadmap the detection of temperature profiles is representing an increased benefit. Intrinsic fibre-optical temperature measuring techniques are presented, known as OTDRmethod (Optical tine domain reflectometry) facilitating a distributed temperature measurement method that allows a resolution in the range of decimetres. For the purpose of such applications a suitable photoncounting device comprises mechanical robust fibre-optical components, 3 db Coupler, referenced Laser- Diode, Y-Coupler with integrated band-filter and APD (Avalanche Diode) used in a detection module. A VHDL-coded FBGA-board provides a basic control-device for - a Laser-Driver to generate adjustable exiting-pulses in the range of nanoseconds at rates up to 100 kHz. - a Photon-Counting module with a minimum opening width in the range of one nanosecond - that permits the co-addition of the photon-counts derived from the spectral resolved Stokes and Anti-Stokes band. (orig.)

  4. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  5. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  6. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    International Nuclear Information System (INIS)

    Sellitto, P.; Del Frate, F.

    2014-01-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320–325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet. - Highlights: • A sensitivity analysis and an inversion scheme to retrieve temperature profiles from satellite UV observations (320–325 nm). • The exploitation of the temperature dependence of the absorption cross section of ozone in the Huggins band is proposed. • First demonstration of the feasibility of temperature profiles retrieval from satellite UV observations. • RMSEs and biases comparable with more established techniques involving TIR and MW observations

  7. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  8. The shivering sun opens its heart

    International Nuclear Information System (INIS)

    Gough, D.

    1976-01-01

    Recent discoveries, by various workers, of global oscillations of the Sun are summarised. The two major ways in which the Sun can vibrate, as a standing acoustic wave and as a standing gravity wave, are discussed. The recently discovered oscillations provide a new rich class of data with which to test theoretical models of the internal structure of the Sun. The implications of these new data with reference to solar models are considered. (U.K.)

  9. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    Science.gov (United States)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  10. Tribute to Sun Kwok

    International Nuclear Information System (INIS)

    Leung, Kam Ching

    2016-01-01

    Sun Kwok was bom in Hong Kong in 1949. He did all his early schooling in Hong Kong and went to the same high school, Pui Ching Middle School, as I did but he was more than a decade later. There are two Education Systems in Hong Kong; the Chinese Language Schools and English Language School. Pui Ching was started by Christian missionaries in China and has a long history of providing quality education. Pui Ching is a Chinese Language School, and during colonial times, school entrance was difficult for students as we were not eligible to apply for admission to the University of Hong Kong, nor were we able to join the civil service. In spite of these handicaps, the school still managed to produce many excellent academics, including one Nobel Prize winner in physics and one Field's medalist in mathematics. Most of its graduates who sought further education went to the U.S. Or Canada as Sun Kwok did. Sun graduated from McMaster University and then went to the University of Minnesota for graduate studies. In the early 1970s, the University of Minnesota had just built one of the world's first infrared bolometers and the astronomers there (Nick Woolf and Ed Ney) were able to make some of the first infrared observations in the mid-infrared region. Through these observations, circumstellar dust was discovered, leading to the realization the evolved stars are losing mass. Sun wrote his PhD thesis on the mass loss mechanism of red giant stars, proposing that the stellar winds are driven by the mechanism of radiation pressure on grains. His 1975 paper is still widely cited to this date. In the same thesis, he showed that OH maser emission is a manifestation of the mass loss process and OH/IR stars are the most heavily mass-losing stars known. He went back to Canada for postdoctoral studies, first at UBC and then at York University. While at York, he applied his knowledge of mass loss to the problem of formation of planetary nebulae, leading to now well-established interacting

  11. Power Management Strategy by Enhancing the Mission Profile Configuration of Solar-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Parvathy Rajendran

    2016-01-01

    Full Text Available Solar energy offers solar-powered unmanned aerial vehicle (UAV the possibility of unlimited endurance. Some researchers have developed techniques to achieve perpetual flight by maximizing the power from the sun and by flying in accordance with its azimuth angles. However, flying in a path that follows the sun consumes more energy to sustain level flight. This study optimizes the overall power ratio by adopting the mission profile configuration of optimal solar energy exploitation. Extensive simulation is conducted to optimize and restructure the mission profile phases of UAV and to determine the optimal phase definition of the start, ascent, and descent periods, thereby maximizing the energy from the sun. In addition, a vertical cylindrical flight trajectory instead of maximizing the solar inclination angle has been adopted. This approach improves the net power ratio by 30.84% compared with other techniques. As a result, the battery weight may be massively reduced by 75.23%. In conclusion, the proposed mission profile configuration with the optimal power ratio of the trajectory of the path planning effectively prolongs UAV operation.

  12. Observation of the skin-like profiles of electron temperature and density of turbulently heated plasmas in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Hiraki, Naoji; Nakamura, Kazuo; Toi, Kazuo; Itoh, Satoshi

    1980-01-01

    The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region. (author)

  13. Observation of the skin-like profiles of electron temperature and density of turbulently heated plasmas in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    The time evolution of electron temperature and density profiles are measured on the turbulent heating experiment in the TRIAM-1 tokamak. The skin-like profiles of electron temperature and density are observed just after the application of the pulsed electric field for turbulent heating. The width of the skin layer of the electron temperature profile is about 1 cm, and agrees well with the theoretical value. The above mentioned skin heating of electrons just after the heating pulse is also spectroscopically confirmed by the remarkable decrease of the volume emission of visible lines which is localized at the outer plasma region.

  14. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  15. The Presence of the Chromosphere: Evidence for a Liquid Model of the Sun

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2006-04-01

    Critical Opalescence occurs at the critical point. It is that point in the phase diagram where the transition between liquid and gas is no longer discernable. In the laboratory, critical opalescence occurs as the meniscus disappears. There is often strong scattering of light and a transparent solution becomes cloudy. In approaching the critical point gases slowly begin to gain order as they prepare to enter the condensed state. In this presentation, it will be advanced that the Chromosphere of the Sun represents matter at the critical point. As such, the Chromosphere experiences a unique combination of temperature, pressure and gravity wherein the gaseous matter in the corona is preparing to condense onto a liquid photosphere. It is consequently stated that the very existence of the Chromosphere, constitutes a powerful piece of evidence in favor of condensed models of the Sun (http://www.arxiv.org/html/astro-ph/0410075 [1]). Additional evidence for a liquid plasma model of the Sun will also be presented.

  16. Measurements of electron density and temperature profiles in a gas blanket experiment

    International Nuclear Information System (INIS)

    Kuthy, A.

    1979-02-01

    Radial profiles of electron density, temperature and H sub(β) intensity are presented for the rotating plasma device F-1. The hydrogen filling pressure, the average magnetic field strength at the midplane, and the power input to the discharge have been varied in the ranges 10-100 mTorr, 0.25-0.5 Tesla, and 0.1 to 1.5 MW, respectively. These experiments have been performed with the main purpose of studying the gas blanket (cold-mantle) state of the plasma. It is shown, that a simple spectroscopic method can be used to derive the radial distribution of the electron temperature in such plasmas. The observed peak temperatures and densities are in agreement with earlier theoretical estimates. (author)

  17. Profile vertical of temperature in an atmosphere semi-gray with a layer of clouds

    International Nuclear Information System (INIS)

    Pelkowski, Joaquin; Anduckia Avila, Juan Carlos

    2000-01-01

    We extend earlier models of planetary layers in radioactive equilibrium by including scattering within a homogeneous cloud layer in a single direction. The atmospheric layers above and below the cloud layer are taken to be in radioactive equilibrium, whose temperature profiles may be calculated. Though the resulting profile, being discontinuous, is unrealistic, the model adds to the effects of the earlier models a cloud albedo, resulting from the scattering of short-wave radiation

  18. Use of the inverse temperature profile in microwave processing of advanced ceramics

    International Nuclear Information System (INIS)

    Binner, J.G.P.; Al-Dawery, I.A.; Aneziris, C.; Cross, T.E.

    1992-01-01

    Attempts are being made to exploit the inverse temperature profile which can be developed with microwave heating with respect to the processing of certain advanced ceramics. This paper discusses the results obtained to date during the microwave sintering of YBCO high-T c superconductors and the microwave reaction bonding of silicon nitride

  19. Experiments on electron temperature profile resilience in FTU tokamak with continuous and modulated ECRH

    International Nuclear Information System (INIS)

    Cirant, S.

    2002-01-01

    Experiments performed on FTU tokamak, aiming at validation of physics-based transport models of the electron temperature profile resilience, are presented. ECRH is used to probe transport features, both in steady-state and in response to perturbations, while ECCD and LHCD are used for current density profile shaping. Observed confinement behaviour shows agreement with a critical temperature gradient length modelling. Central, low gradient plasma is characterized by low stiffness and low electron thermal diffusivity. Strong stiffness and high conduction are found in the confinement region. Resilience is experimentally characterized by an index of the resistance of the profile to adapt its shape to localized ECRH, while the diffusivity and its low-high transition are measured both by power balance and heat pulse propagation analysis. A particular attention is given to the investigation of the transition layer between low-high diffusivity and low-high stiffness regions. A dependence of LTc on magnetic shear, similar to what found in Tore Supra, and consistent with ETG based anomalous transport, is found. (author)

  20. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function.

    Directory of Open Access Journals (Sweden)

    Jana Link

    2014-02-01

    Full Text Available LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84 and KASH (Klarsicht/ANC-1/Syne/homology domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun1(-/- meiocytes attached telomeres retained the capacity to form bouquet-like clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun1(-/- mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional.

  1. Tanel Padar & The Sun veab õhukitarri

    Index Scriptorium Estoniae

    2008-01-01

    Õhukitarri Eesti meistrivõistlustest 19. apr. Tallinnas Rock Cafés (võistluste eestvedajaks on ansambel Tanel Padar & The Sun, kes samas esitleb oma esimest ingliskeelset albumit "Here Comes The Sun")

  2. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    Science.gov (United States)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  3. COMPARISON OF KEPLER PHOTOMETRIC VARIABILITY WITH THE SUN ON DIFFERENT TIMESCALES

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Reiners, Ansgar

    2013-01-01

    We utilize Kepler data to study the precision differential photometric variability of solar-type and cooler stars at different timescales, ranging from half an hour to three months. We define a diagnostic that characterizes the median differential intensity change between data bins of a given timescale. We apply the same diagnostics to Solar and Heliospheric Observatory data that has been rendered comparable to Kepler. The Sun exhibits similar photometric variability on all timescales as comparable solar-type stars in the Kepler field. The previously defined photometric ''range'' serves as our activity proxy (driven by starspot coverage). We revisit the fraction of comparable stars in the Kepler field that are more active than the Sun. The exact active fraction depends on what is meant by ''more active than the Sun'' and on the magnitude limit of the sample of stars considered. This active fraction is between a quarter and a third (depending on the timescale). We argue that a reliable result requires timescales of half a day or longer and stars brighter than M Kep of 14, otherwise non-stellar noise distorts it. We also analyze main sequence stars grouped by temperature from 6500 to 3500 K. As one moves to cooler stars, the active fraction of stars becomes steadily larger (greater than 90% for early M dwarfs). The Sun is a good photometric model at all timescales for those cooler stars that have long-term variability within the span of solar variability.

  4. SOHO starts a revolution in the science of the Sun

    Science.gov (United States)

    1996-07-01

    Point No. 1 where the gravity of the Sun and the Earth are in balance. The spacecraft's engineering has proved to be excellent and no difficulty is anticipated in keeping it operational for at least six years. Early SOHO results were summarized in ESA's Information Note Nr 07-96, 2 May 1996. Here follow notes and comments on some further conclusions by SOHO's scientists. Fast action in the Sun's atmosphere The ultraviolet spectrometers aboard SOHO, called SUMER and CDS, were designed to analyse events in the solar atmosphere and discover temperatures, densities and speeds of motion in the gas. Their detailed results come in the spectra, which analyse the intensities at different wavelengths with high sensitivity, but the spectrometers also generate images by scanning selected regions of the Sun. When the SUMER instrument scans the whole Sun by the ultraviolet light of strongly ionized sulphur atoms (S VI at 933 angstroms) it picks out gas at 200,000 degrees C and reveals a vast number of bright regions created by magnetic field lines looping through the atmosphere. The brightness can change by a factor of ten in a distance of a few thousand kilometres or in a few seconds of time. SUMER has also shown that thick streaks called polar plumes, which climb far into space from the Sun's polar regions, are anchored in bright regions near the Sun's visible surface. The spectrometer CDS has observed fast action in the Sun's atmosphere. It can measure velocities along the line of sight by shifts in the wavelength of emissions from selected atoms, and contrary motions (turbulence) appear in a spreading of the wavelengths. In one high-velocity event, corresponding with a small streak of brightness in the scanned image, CDS detected vertical motions differing by 450 kilometres per second, and an overall motion of 65 kilometres per second downwards. "By taking the Sun's atmosphere to pieces we begin to understand how it influences our lives," says Richard Harrison of the UK

  5. Mass flow and the validity of ionization equilibrium on the sun

    International Nuclear Information System (INIS)

    Joselyn, J.; Munro, R.H.; Holzer, T.E.

    1979-01-01

    Ionization equilibrium is a useful assumption which allows temperatures and other plasma properties to be deduced from spectral observations. Inherent to this assumption is the premise that the ion stage densities are determined solely by atomic processes which are local functions of the plasma temperature and electron density. However, if the time scale of plasma flow through a temperature gradient is less than the characteristic time scale for an important atomic process, deviations from the ionization stage densities expected for equilibrium will occur which could introduce serious errors into subsequent analyses. In the past few years, significant flow velocities in the upper solar atmosphere have been inferred from observations of emission lines originating in the transition region (about 10 4 -10 6 K) and corona. In this paper, 3 models of the solar atmosphere (quiet Sun, coronal hole, and a network model) are examined to determine if the emission expected from these model atmospheres could be produced from equilibrium ion populations when steady flows of several kilometers per second are assumed. If the flows are quasi-periodic instead of steady, spatial and temporal averaging inherent in the observations may allow for the construction of satisfactory models based on the assumption of ionization equilibrium. Representative emission lines are analysed for the following ions: C III, IV, O IV, V, VI, Ne VII, VIII, Mg IX, X, Si XII, Fe IX-XIV. Two principle conclusions are drawn. First, only the iron ions are generally in equilibrium for steady flows of 20 kms -1 . For carbon and oxygen, ionization equilibrium is not a valid assumption for steady flows as small as 1 kms -1 . Second, the 3 models representing different solar conditions behave in a qualitatively similar manner, implying that these results are not particularly model dependent over the range of temperature gradients and electron densities thus far inferred for the Sun. In view of the flow velocities

  6. Sun protection attitudes and behaviours among first generation Australians with darker skin types: results from focus groups.

    Science.gov (United States)

    Bryant, Jamie; Zucca, Alison; Brozek, Irena; Rock, Vanessa; Bonevski, Billie

    2015-02-01

    Despite residing in a country that has the highest rates of skin cancer in the world, little is known about the knowledge, attitudes and sun protection practices of first generation Australian-born individuals with olive and darker skin types. Six focus groups with first generation Australian-born individuals of Asian, Mediterranean, Middle Eastern and Indian background were conducted. Participants had good knowledge of the dangers of skin cancer. Most correctly perceived darker skin types as protective and believed they were at low risk of skin cancer. Most participants could recall high profile mass media sun protection campaigns. Several participants suggested that greater representation of ethnic minorities and/or individuals with darker skin types would increase the personal relevance of campaigns. Beliefs that sun protection is not necessary on the basis of skin type highlights the need for further studies to explore fundamental differences in attitudes and practices between those with olive and darker skin and the general Australian population.

  7. Evaluation of knowledge, attitude, and behavior about harmful effects of the sun and sun protection among patients attending an outpatient clinic

    Directory of Open Access Journals (Sweden)

    Sevim Terzi

    2017-03-01

    Full Text Available Background and Design: The aim of the study was to evaluate harmful effects of sun exposure and knowledge, attitude and behaviors related to sun protection among patients attending our outpatient clinic. Materials and Methods: A total of 400 patients (171 male and 229 female aged between 16 and 89 years were included in this study. Subjects were requested to fill out a questionnaire composed of 52 questions. In the first part of the questionnaire, patients’ socio-demographic characteristics, history of sunburn, first-degree relatives with a history of skin cancer; in the second part, knowledge about harmful effects of sun and sun protection were inquired. In the third part, patient attitude and behaviors related to sun protection was evaluated. Results: Our results revealed that 69.25% of patients had satisfactory level of knowledge. While the level of knowledge was not affected by economic status, place of residence, skin type and presence of skin cancer in participants or their first-degree relatives, it was found to be increased with increasing educational level. The patients were found to prefer avoiding mid-day sun (75.5% and staying in the shade (64.8% chiefly as sun protection methods and 45.3% of patients were found to use sunscreens. Most frequently preferred sources of information about harmful effects of the sun and sun protection methods were found to be television, magazines and newspapers (76.3%, doctor’s advice and internet, respectively. Conclusion: Although a satisfactory level of knowledge about harmful effects of the sun and protection methods was found, it was observed that individuals could not convert their knowledge into the sun protection behavior

  8. Profile modification and hot electron temperature from resonant absorption at modest intensity

    International Nuclear Information System (INIS)

    Albritton, J.R.; Langdon, A.B.

    1980-01-01

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented

  9. Derivation of the radial profile of ion temperature from the measured energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S

    1980-01-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The measured ion temperature obtained from the only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The actual ion temperature profile is derived from all observed energy spectra by the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. The reflection coefficient is adjusted so that the calculated ion temperature profile should be the best fit for the ion temperatures measured by the Doppler broadening of the visible lines He II 4686 A and H-alpha at the relevant radial positions.

  10. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    International Nuclear Information System (INIS)

    Simmons, D.F.; Fortgang, C.M.; Holtkamp, D.B.

    2001-01-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm 2 at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes

  11. Sun behaviour after cutaneous malignant melanoma

    DEFF Research Database (Denmark)

    Idorn, L W; Datta, P; Heydenreich, J

    2013-01-01

    Background  It has been reported that patients with cutaneous malignant melanoma (CMM) can lower their risk of a second primary melanoma by limiting recreational sun exposure. Previous studies based on questionnaires and objective surrogate measurements indicate that before their diagnosis......, patients with CMM are exposed to higher ultraviolet radiation (UVR) doses than controls, followed by a reduction after diagnosis. Objectives  In a prospective, observational case-control study, we aimed to assess sun exposure after diagnosis of CMM by objective measurements to substantiate advice about sun...... months and 6 years before the start of the study. During a summer season participants filled in sun exposure diaries daily and wore personal electronic UVR dosimeters in a wristwatch that continuously measured time-stamped UVR doses in standard erythema dose. Results  The UVR dose of recently diagnosed...

  12. Fly me to the Sun! ESA inaugurates the European Project on the Sun

    Science.gov (United States)

    2000-11-01

    In an initiative mounted by ECSITE (European Collaborative for Science, Industry and Technology Exhibitions) with funding from the European Commission and under the supervision, coordination and co-sponsorship of ESA, five teams of youngsters (16-18 years old) from Belgium, France, Germany, Italy and the Netherlands were selected and coordinated by European science museums from each of their countries (Musée des Sciences et des Techniques - Parentville, B; Cité de l'Espace - Toulouse, F; Deutsches Museum - Munich, D; Fondazione IDIS - Naples, I; Foundation Noordwijk Space Expo - Noordwijk, NL). The teams each focused on a theme related to solar research: "How does the Sun work?" (I), "The Sun as a star" (F), "Solar activity" (NL), "Observing the Sun" (D), "Humans and the Sun" (B), and built exhibition "modules" that they will present at the inauguration, in the context of European Science and Technology Week 2000 (6-10 November), promoted by the European Commission. During the two-day event, a jury of representatives of other European science and technology museums, ESA scientists, a science journalist, and two ESA astronauts (Frank de Winne and Andre Kuipers) will judge the youngsters' exhibition modules on the basis of their scientific correctness, their museological value and the commitment shown by the young "communication experts". The winning team will be officially announced on 9 November. The prize is a weekend at the Space Camp in Redu, Belgium. The objective of the European Project on the Sun is educational. It aims, through the direct and "fresh" involvement of youngsters, to heighten European citizens' awareness of space research in general and the Sun's influence on our daily lives in particular. The role of the European Space Agency as reference point in Europe for solar research has been fundamental to the project. From ESA's perspective, EPOS is part of this autumn's wider communication initiative called the Solar Season, which is highlighting ESA

  13. Prominence modelling: from observed emission measures to temperature profiles

    Czech Academy of Sciences Publication Activity Database

    Anzer, U.; Heinzel, Petr

    2008-01-01

    Roč. 480, č. 2 (2008), s. 537-542 ISSN 0004-6361 Grant - others:EU(XE) ESA-PECS Project No. 98030 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun * prominences * transition region Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.153, year: 2008

  14. Influence of age, gender, educational level and self-estimation of skin type on sun exposure habits and readiness to increase sun protection.

    Science.gov (United States)

    Falk, M; Anderson, C D

    2013-04-01

    Sun exposure habits and the propensity to undertake sun protection differ between individuals. Not least in primary prevention of skin cancer, aiming at reducing ultraviolet (UV) exposure, knowledge about these factors may be of importance. The aim of the present study was to investigate, in a primary health care (PHC) population, the relationship between sun exposure habits/sun protection behaviour/readiness to increase sun protection and gender, age, educational level and skin UV-sensitivity. The baseline data from a previously performed RCT on skin cancer prevention was used. 415 patients, aged > 18 years, visiting a PHC centre in southern Sweden, filled-out a questionnaire mapping sun exposure, readiness to increase sun protection according to the Transtheoretical Model of Behaviour Change (TTM), and the above mentioned factors. Female gender was associated with more frequent suntanning (p protection. Subjects with low educational level reported less frequent sunscreen use than those with higher educational level, and also chose lower SPF (p skin UV-sensitivity was associated with markedly lower sun exposure (p protection. Females and subjects with high educational level reported higher readiness to increase sunscreen use than males and subjects with lower educational level (p skin type appear to be important factors affecting sun exposure habits and sun protection behaviour, which supports the idea of appropriate mapping of these factors in patients in order to individualise sun protection advice according to the individual patient situation and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Observing the Sun with NuSTAR

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in

  16. First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun

    Science.gov (United States)

    Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.

    2018-05-01

    Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond

  17. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  18. Sun Tracker Operates a Year Between Calibrations

    Science.gov (United States)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  19. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  20. Sun Proof

    Centers for Disease Control (CDC) Podcasts

    2012-10-23

    In this podcast for kids, the Kidtastics talk about the harmful effects of the sun and how to protect yourself from it.  Created: 10/23/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 10/23/2012.

  1. Measurements of Sheath Temperature Profiles in Bruce LVRF Bundles Under Post-Dryout Heat Transfer Conditions in Freon

    International Nuclear Information System (INIS)

    Guo, Y.; Bullock, D.E.; Pioro, I.L.; Martin, J.

    2006-01-01

    An experimental program has been completed to study the behaviour of sheath wall temperatures in the Bruce Power Station Low Void Reactivity Fuel (shortened hereafter to Bruce LVRF) bundles under post-dryout (PDO) heat-transfer conditions. The experiment was conducted with an electrically heated simulator of a string of nine Bruce LVRF bundles, installed in the MR-3 Freon heat transfer loop at the Chalk River Laboratories (CRL), Atomic Energy of Canada Limited (AECL). The loop used Freon R-134a as a coolant to simulate typical flow conditions in CANDU R nuclear power stations. The simulator had an axially uniform heat flux profile. Two radial heat flux profiles were tested: a fresh Bruce LVRF profile and a fresh natural uranium (NU) profile. For a given set of flow conditions, the channel power was set above the critical power to achieve dryout, while heater-element wall temperatures were recorded at various overpower levels using sliding thermocouples. The maximum experimental overpower achieved was 64%. For the conditions tested, the results showed that initial dryout occurred at an inner-ring element at low flows and an outer-ring element facing internal subchannels at high flows. Dry-patches (regions of dryout) spread with increasing channel power; maximum wall temperatures were observed at the downstream end of the simulator, and immediately upstream of the mid-bundle spacer plane. In general, maximum wall temperatures were observed at the outer-ring elements facing the internal subchannels. The maximum water-equivalent temperature obtained in the test, at an overpower level of 64%, was significantly below the acceptable maximum temperature, indicating that the integrity of the Bruce LVRF will be maintained at PDO conditions. Therefore, the Bruce LVRF exhibits good PDO heat transfer performance. (authors)

  2. Revelation of the Sun Self-Similarity Skeletal Structures

    International Nuclear Information System (INIS)

    Rantsev-Kartinov, V.A.

    2005-01-01

    The analysis of databases of photographic images of a surface of the Sun, its atmosphere and the closest its space environment taken at various spatial resolutions and for various types of radiation of a surface of the Sun by means of a method multilevel dynamic contrasting, has revealed presence skeletal structures as on the Sun directly such and in its environment. It is demonstrated the revealed a global structures of the Sun and powerful ejections of mass of its corona, as well as the structures of its atmosphere, protuberances, sun-spots and a globular structures of its photosphere

  3. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  4. Temperature profiles for laser-induced heating of nanocrystals embedded in glass matrices

    Science.gov (United States)

    Bhatnagar, Promod K.; Nagpal, Swati

    2001-05-01

    Quantum confined nanostructures are very important because of their application towards optoelectronic devices. Commercial colored glass filters, which have large semiconductor particles, are being used to manufacture nanocrystals by suitable heat treatments. The progress in this area has been hampered by high size dispersion of these dots in the glass matrix which leads to reduction in higher order susceptibility thereby reducing non-linearity. In the present paper attempt has been made to theoretically model the temperature profiles of a laser irradiated CdS doped Borosilicate sample. Laser being used has a beam diameter of 1.5 mm and energy for 10 nsec pulse is 10 mJ. Two different particle radii of 5 nm and 10 nm have been considered. It is found that larger particles reach higher temperatures for the same pulse characteristics. This is because smaller particles have larger surface to volume ratio and hence dissipates out heat faster to the surrounding. Hence bigger particles will reach dissolution temperature faster than smaller particle and particle beyond a certain size should dissolve in the glass matrix when a sample is heat treated by laser. This could lead to a reduction in size dispersion of the nanocrystals. Also photodarkening effect found in semiconductor doped glasses is a big handicap for practical application of these materials in fast optical switching and non-linear optical devices. Photodarkening effect has been established to be a photochemical effect and it is important to study the temperature profiles around a particle since it will effect the impurity migration.

  5. Sun and Skin: The Dark Side of Sun Exposure

    Science.gov (United States)

    ... a toll on your skin and its underlying connective tissue. As a result, your skin may develop more wrinkles and lines. Too much sun exposure can also raise your risk for skin cancer, the most common type of cancer in the ...

  6. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: El ... Aug. 28, 2014 Keep an Eye on Ultraviolet (UV) Safety Eye medical doctors (ophthalmologists) caution us that ...

  7. Sun Exposure and Psychotic Experiences

    Directory of Open Access Journals (Sweden)

    Izabela Pilecka

    2017-06-01

    Full Text Available ObjectiveSun exposure is considered the single most important source of vitamin D. Vitamin D deficiency has been suggested to play a role in the etiology of psychotic disorders. The aim of the present study was to evaluate the association between sun exposure and psychotic experiences (PEs in a general population sample of Swedish women.MethodsThe study population included participants from The Swedish Women’s Lifestyle and Health cohort study. The 20-item community assessment of psychic experiences (CAPEs was administered between ages 30 and 50 to establish PEs. Sun exposure as measured by (1 sunbathing holidays and (2 history of sunburn was measured between ages 10 and 39. The association between sun exposure and PEs was evaluated by quantile regression models.Results34,297 women were included in the analysis. Women who reported no sunbathing holidays and 2 or more weeks of sunbathing holidays scored higher on the CAPE scale than women exposed to 1 week of sunbathing holidays across the entire distribution, when adjusting for age and education. Similarly, compared with women who reported a history of one sunburn, the women with none or two or more sunburns showed higher scores on the CAPE scale.ConclusionThe results of the present study suggest that, in a population-based cohort of middle aged women, both low and high sun exposure is associated with increased level of positive PEs.

  8. The sun in time

    International Nuclear Information System (INIS)

    Sonett, C.P.; Giampapa, M.S.; Matthews, M.S.

    1991-01-01

    Various papers on solar science are presented. The topics considered include: variability of solar irradiance, sunspot number, solar diameter, and solar wind properties; theory of luminosity and radius variations; standard solar models; the sun and the IMF; variations of cosmic-ray flux with time; accelerated particles in solar flares; solar cosmic ray fluxes during the last 10 million yrs; solar neutrinos and solar history; time variations of Be-10 and solar activity; solar and terrestrial components of the atmospheric C-14 variation spectrum; solar flare heavy-ion tracks in extraterrestrial objects. Also addressed are: the faint young sun problem; atmospheric responses to solar irradiation; quaternary glaciations; solar-terrestrial relationships in recent sea sediments; magnetic history of the sun; pre- and main-sequence evolution of solar activity; magnetic activity in pre-main-sequence stars; classical T Tauri stars; relict magnetism of meteorites; luminosity variability of solar-type stars; evolution of angular momentum in solar-mass stars; time evolution of magnetic fields on solarlike stars

  9. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  10. Nuclear astrophysics of the sun

    International Nuclear Information System (INIS)

    Kocharov, G.E.

    1980-01-01

    In the first chapter we will discuss the problem of nuclear reactions in the interior of the sun and consider the modern aspects of the neutrino astrophysics of the Sun. The second chapter is devoted to the high energy interactions in the solar atmosphere during the flares. Among a great number of events during the solar flares we shall consider mainly the nuclear reactions. Special attention will be paid to the genetic connection between the different components of solar electromagnetic and corpuscular radiation. The idea of the unity of processes in different parts of the Sun, from hot and dense interior up to the rare plasma of the solar corona will be the main line of the book. (orig./WL) 891 WL/orig.- 892 HIS

  11. Derivation of the radial profile of ion temperature from the 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1980-01-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The ''measured'' ion temperature obtained from only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The ''actual'' ion temperature profile is derived from all observed energy spectra by using the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. In this numerical analysis, the reflection coefficient is adjusted so that the above calculated ion temperature profile should be best fit for the ion temperatures measured by the Doppler broadening of the visible lines HeII 4686 A and H sub(α) at the relevant radial positions. (author)

  12. Derivation of the radial profile of ion temperature from the 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The ''measured'' ion temperature obtained from only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The ''actual'' ion temperature profile is derived from all observed energy spectra by using the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. In this numerical analysis, the reflection coefficient is adjusted so that the above calculated ion temperature profile should be best fit for the ion temperatures measured by the Doppler broadening of the visible lines HeII 4686 A and H sub(..cap alpha..) at the relevant radial positions.

  13. Pre-main-sequence evolution of the sun

    International Nuclear Information System (INIS)

    Gough, D.

    1980-01-01

    The phase of solar evolution after the dynamical collapse is considered. The physics of the Kelvin-Helmholtz phase of gravitational collapse is described, attention being given to the early stages of the star when it was completely convective. It is noted that subsequently, a radiative core developed and evolution was controlled by the rate at which heat can diffuse through it by radiative transfer. Since the study of the Kelvin-Helmholtz contraction alone does not give enough information regarding the state of the sun when it first settled down to approximate hydrostatic equilibrium, other stars are studied, and information on the sun is obtained by analogy. Many young solar-type stars, such as the T Tauri stars, are not in the completely convective Hayashi (1961) phase hence it is proposed that the sun was completely mixed soon after its formation, which has some bearing on the sun's chemical structure. It is suggested that the surface of the sun was very nonuniform compared with the photosphere of today. The simple solar evolution model presented gives a good guide to the general way in which the sun contracted to the main sequence

  14. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  15. Precise nuclear physics for the sun

    International Nuclear Information System (INIS)

    Bemmerer, Daniel

    2012-01-01

    For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth's atmosphere in space, have succeeded in observing astronomical objects that are billions of light-years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun's inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth's climate may strongly affect the living conditions in a number of densely populated areas

  16. Precise nuclear physics for the sun

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel

    2012-07-01

    For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth's atmosphere in space, have succeeded in observing astronomical objects that are billions of light-years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun's inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth's climate may strongly affect the living conditions in a number of densely

  17. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...

  18. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  19. jianhua sun

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences. JIANHUA SUN. Articles written in Journal of Biosciences. Volume 42 Issue 4 December 2017 pp 575-584 Article. MicroRNA-486-5p suppresses TGF-b2-induced proliferation, invasion and epithelial–mesenchymal transition of lens epithelial cells by targeting Smad2.

  20. On the stability of critical state in hard superconductors with nonhomogeneous temperature profile

    CERN Document Server

    Tajlanov, N A

    2002-01-01

    One studied the problem on thermal and magnetic breaking of critical state in hard superconductors. One assumes that initial distribution of temperature and of electrical field is very nonhomogeneous one. In quasi-stationary approximation one determined the limit of occurrence of thermal and magnetic instability in a superconductor. The derived integral criterion is shown to take account of the effect of each segment of a superconductor on the threshold of occurrence of critical state instability on contrast to similar criterion for homogeneous temperature profile

  1. The sun and the neutrinos

    International Nuclear Information System (INIS)

    Forgacsne Dajka, E.

    2000-01-01

    A review of the solar neutrino puzzle is given. The main processes in the sun, the pp-chain and the CNO cycle are described. The solar neutrino puzzle, i.e. the fact that the detected amount of neutrinos coming from the sun is less than the amount predicted by the solar model is discussed. The first generation solar neutrino experiments are presented. (K.A.)

  2. Measurement of surface temperature profiles on liquid uranium metal during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Surface temperature distributions of liquid uranium in a water-cooled copper crucible during electron beam evaporation were measured. Evaporation surface was imaged by a lens through a band-path filter (650{+-}5 nm) and a double mirror system on a charge coupled device (CCD) camera. The video signals of the recorded image were connected to an image processor and converted to two-dimensional spectral radiance profiles. The surface temperatures were obtained from the spectral radiation intensity ratio of the evaporation surface and a freezing point of uranium and/or a reference light source using Planck`s law of radiation. The maximum temperature exceeded 3000 K and had saturation tendency with increasing electron beam input. The measured surface temperatures agreed with those estimated from deposition rates and data of saturated vapor pressure of uranium. (author)

  3. SunPy: Python for Solar Physics

    Science.gov (United States)

    Bobra, M.; Inglis, A. R.; Mumford, S.; Christe, S.; Freij, N.; Hewett, R.; Ireland, J.; Martinez Oliveros, J. C.; Reardon, K.; Savage, S. L.; Shih, A. Y.; Pérez-Suárez, D.

    2017-12-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community. SunPy aims to provide the software for obtaining and analyzing solar and heliospheric data. This poster introduces a new major release, SunPy version 0.8. The first major new feature introduced is Fido, the new primary interface to download data. It provides a consistent and powerful search interface to all major data providers including the VSO and the JSOC, as well as individual data sources such as GOES XRS time series. It is also easy to add new data sources as they become available, i.e. DKIST. The second major new feature is the SunPy coordinate framework. This provides a powerful way of representing coordinates, allowing simple and intuitive conversion between coordinate systems and viewpoints of different instruments (i.e., Solar Orbiter and the Parker Solar Probe), including transformation to astrophysical frames like ICRS. Other new features including new timeseries capabilities with better support for concatenation and metadata, updated documentation and example gallery. SunPy is distributed through pip and conda and all of its code is publicly available (sunpy.org).

  4. Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks

    International Nuclear Information System (INIS)

    Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.

    1988-01-01

    Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron temperature, the Be filter thickness, and the electronic parameters of the acquisition system are known. PG 1810,1812 ID 131801CON N X-ray diagnostics TT Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks AU S. Sesnic, M. Diesso, K. Hill, and A. Holland LO Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 AU F. Pohl LO Max-Planck Institut fuer Plasmaphysik, 8046-Garching, Federal Republic of Germany SD (Presented on 16 March 1988) AB Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron tempe

  5. Generalized saddle point condition for ignition in a tokamak reactor with temperature and density profiles

    International Nuclear Information System (INIS)

    Mitari, O.; Hirose, A.; Skarsgard, H.M.

    1989-01-01

    In this paper, the concept of a generalized ignition contour map, is extended to the realistic case of a plasma with temperature and density profiles in order to study access to ignition in a tokamak reactor. The generalized saddle point is found to lie between the Lawson and ignition conditions. If the height of the operation path with Goldston L-mode scaling is higher than the generalized saddle point, a reactor can reach ignition with this scaling for the case with no confinement degradation effect due to alpha-particle heating. In this sense, the saddle point given in a general form is a new criterion for reaching ignition. Peaking the profiles for the plasma temperature and density can lower the height of the generalized saddle point and help a reactor to reach ignition. With this in mind, the authors can judge whether next-generation tokamaks, such as Compact Ignition Tokamak, Tokamak Ignition/Burn Experimental Reactor, Next European Torus, Fusion Experimental Reactor, International Tokamak Reactor, and AC Tokamak Reactor, can reach ignition with realistic profile parameters and an L-mode scaling law

  6. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  7. Blanching, salting and sun drying of different pumpkin fruit slices.

    Science.gov (United States)

    Workneh, T S; Zinash, A; Woldetsadik, K

    2014-11-01

    The study was aimed at assessing the quality of pumpkin (Cucuribita Spp.) slices that were subjected to pre-drying treatments and drying using two drying methods (uncontrolled sun and oven) fruit accessions. Pre-drying had significant (P ≤ 0.05) effect on the quality of dried pumpkin slices. 10 % salt solution dipped pumpkin fruit slices had good chemical quality. The two-way interaction between drying methods and pre-drying treatments had significant (P ≤ 0.05) effect on chemical qualities. Pumpkin subjected to salt solution dipping treatment and oven dried had higher chemical concentrations. Among the pumpkin fruit accessions, pumpkin accession 8007 had the superior TSS, total sugar and sugar to acid ratio after drying. Among the three pre-drying treatment, salt solution dipping treatment had significant (P ≤ 0.05) effect and the most efficient pre-drying treatment to retain the quality of dried pumpkin fruits without significant chemical quality deterioration. Salt dipping treatment combined with low temperature (60 °C) oven air circulation drying is recommended to maintain quality of dried pumpkin slices. However, since direct sun drying needs extended drying time due to fluctuation in temperature, it is recommended to develop or select best successful solar dryer for use in combination with pre-drying salt dipping or blanching treatments.

  8. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    Science.gov (United States)

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  9. NODC Standard Product: Global ocean temperature and salinity profiles (2 disc set) (NODC Accession 0098058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs contains global ocean temperature and salinity profiles derived from NODC archive data files. It includes oceanographic station (bottle) data,...

  10. The depth of the honeybee's backup sun-compass systems.

    Science.gov (United States)

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  11. Flexibl Pavement Analysis Considering Temperature Profile and Anisotropy Behavior in Hot Mix Asphalt Layer

    Directory of Open Access Journals (Sweden)

    Choi Joonho

    2011-12-01

    Full Text Available A three Dimensional finite element model (FEM incorporating the anisotropic properties and temperature profile of hot mix asphalt (HMA pavement was developed to predict the structural responses of HMA pavement subject to heavy loads typically encountered in the field. In this study, ABAQUS was adopted to model the stress and strain relationships within the pavement structure. The results of the model were verified using data collected from the Korean Highway Corporation Test Road (KHCTR. The results demonstrated that both the base course and surface course layers follow the anisotropic behavior and the incorporation of the temperature profile throughout the pavement has a substantial effect on the pavement response predictions that impact pavement design. The results also showed that the anisotropy level of HMA and base material can be reduced to as low as 80% and 15% as a result of repeated loading, respectively.

  12. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  13. THE SUN WAS NOT BORN IN M67

    International Nuclear Information System (INIS)

    Pichardo, Bárbara; Moreno, Edmundo; Allen, Christine; Bedin, Luigi R.; Bellini, Andrea; Pasquini, Luca

    2012-01-01

    Using the most recent proper-motion determination of the old, solar-metallicity, Galactic open cluster M67 in orbital computations in a non-axisymmetric model of the Milky Way, including a bar and three-dimensional spiral arms, we explore the possibility that the Sun once belonged to this cluster. We have performed Monte Carlo numerical simulations to generate the present-day orbital conditions of the Sun and M67, and all the parameters in the Galactic model. We compute 3.5 × 10 5 pairs of orbits Sun-M67 looking for close encounters in the past with a minimum distance approach within the tidal radius of M67. In these encounters we find that the relative velocity between the Sun and M67 is larger than 20 km s –1 . If the Sun had been ejected from M67 with this high velocity by means of a three-body encounter, this interaction would have either destroyed an initial circumstellar disk around the Sun or dispersed its already formed planets. We also find a very low probability, much lower than 10 –7 , that the Sun was ejected from M67 by an encounter of this cluster with a giant molecular cloud. This study also excludes the possibility that the Sun and M67 were born in the same molecular cloud. Our dynamical results convincingly demonstrate that M67 could not have been the birth cluster of our solar system.

  14. CRUQS: A Miniature Fine Sun Sensor for Nanosatellites

    Science.gov (United States)

    Heatwole, Scott; Snow, Carl; Santos, Luis

    2013-01-01

    A new miniature fine Sun sensor has been developed that uses a quadrant photodiode and housing to determine the Sun vector. Its size, mass, and power make it especially suited to small satellite applications, especially nanosatellites. Its accuracy is on the order of one arcminute, and it will enable new science in the area of nanosatellites. The motivation for this innovation was the need for high-performance Sun sensors in the nanosatellite category. The design idea comes out of the LISS (Lockheed Intermediate Sun Sensor) used by the sounding rocket program on their solar pointing ACS (Attitude Control System). This system uses photodiodes and a wall between them. The shadow cast by the Sun is used to determine the Sun angle. The new sensor takes this concept and miniaturizes it. A cruciform shaped housing and a surface-mount quadrant photodiode package allow for a two-axis fine Sun sensor to be packaged into a space approx.1.25xl x0.25 in. (approx.3.2x2.5x0.6 cm). The circuitry to read the photodiodes is a simple trans-impedance operational amplifier. This is much less complex than current small Sun sensors for nanosatellites that rely on photo-arrays and processing of images to determine the Sun center. The simplicity of the circuit allows for a low power draw as well. The sensor consists of housing with a cruciform machined in it. The cruciform walls are 0.5-mm thick and the center of the cruciform is situated over the center of the quadrant photodiode sensor. This allows for shadows to be cast on each of the four photodiodes based on the angle of the Sun. A simple operational amplifier circuit is used to read the output of the photodiodes as a voltage. The voltage output of each photodiode is summed based on rows and columns, and then the values of both rows or both columns are differenced and divided by the sum of the voltages for all four photodiodes. The value of both difference over sums for the rows and columns is compared to a table or a polynomial fit

  15. yimin sun

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YIMIN SUN. Articles written in Journal of Genetics. Volume 96 Issue 4 September 2017 pp 687-693 RESEARCH NOTE. The association study of nonsyndromic cleft lip with or without cleft palate identified risk variants of the GLI3 gene in a Chinese population · YIRUI WANG YIMIN SUN ...

  16. The Sun as a sub-GeV dark matter accelerator

    OpenAIRE

    Emken, Timon; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2018-01-01

    Sub-GeV halo dark matter that enters the Sun can potentially scatter off hot solar nuclei and be ejected much faster than its incoming velocity. We derive an expression for the rate and velocity distribution of these reflected particles, taking into account the Sun’s temperature and opacity. We further demonstrate that future direct-detection experiments could use these energetic reflected particles to probe light dark matter in parameter space that cannot be accessed via ordinary halo dark m...

  17. Occupational sun protection: workplace culture, equipment provision and outdoor workers' characteristics.

    Science.gov (United States)

    Reeder, Anthony I; Gray, Andrew; McCool, Judith P

    2013-01-01

    The aim of this study was to describe outdoor workers' sun-protective practices, workplace sun-safety culture and sun-protective equipment provision; investigate the association of demographic, personal and occupational factors with sun-protective practices; and identify potential strategies for improving workers' sun protection. The present study used a clustered survey design with randomly identified employers in nine occupations. Employees provided questionnaire measures of demographics, personal characteristics (skin type, skin cancer risk perceptions, tanning attitudes, sun-exposure knowledge), personal occupational sun protection practices (exposure reduction, use of sun-protective clothing, sunscreen and shade), workplace sun-protective equipment provision and perceived workplace sun-safety culture. Summative scores were calculated for attitudes, knowledge, workplace provision and culture. A multivariable model was built with worker and workplace variables as plausible predictors of personal sun protection. In this study, 1,061 workers (69% participation) from 112 workplaces provided sufficient information for analysis. Sex, age, prioritized ethnicity, education and risk perception differed significantly between occupational groups (pworkplace sun-protection equipment provision and supportive culture. After adjustment, each one-point increase in Workplace Sun-safety Culture 2013Score (range 12 points) was associated with a 0.16 higher Personal Sun-Protection Score (pWorkplace Provision Score (range 4 points) was associated with a 0.14 higher score (pworkplace culture are promising components for the development of comprehensive programmes to improve outdoor workers' sun-protective practices.

  18. Piece of the sun

    CERN Document Server

    Wayne, Teddy

    2015-01-01

    Our rapidly industrialising world has an insatiable hunger for energy, and conventional sources are struggling to meet demand. Oil is running out, coal is damaging our climate, many nations are abandoning nuclear, yet solar, wind and water will never be a complete replacement. The solution, says Daniel Clery in this deeply researched and revelatory book, is to be found in the original energy source: the Sun itself. There, at its centre, the fusion of 630 million tonnes of hydrogen every second generates an unfathomable amount of energy. By replicating even a tiny piece of the Sun's power

  19. The validated sun exposure questionnaire

    DEFF Research Database (Denmark)

    Køster, B; Søndergaard, J; Nielsen, J B

    2017-01-01

    Few questionnaires used in monitoring sun-related behavior have been tested for validity. We established criteria validity of a developed questionnaire for monitoring population sun-related behavior. During May-August 2013, 664 Danes wore a personal electronic UV-dosimeter for one week...... that measured the outdoor time and dose of erythemal UVR exposure. In the following week, they answered a questionnaire on their sun-related behavior in the measurement week. Outdoor time measured by dosimetry correlated strongly with both outdoor time and the developed exposure scale measured...... in the questionnaire. Exposure measured in SED by dosimetry correlated strongly with the exposure scale. In a linear regression model of UVR (SED) received, 41 percent of the variation was explained by skin type, age, week of participation and the exposure scale, with the exposure scale as the main contributor...

  20. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  1. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H; Ide, S; Sakamoto, Y; Fujita, T [Japan Atomic Energy Agency, Naka Ibaraki 311-0193 (Japan)], E-mail: takenaga.hidenobu@jaea.go.jp

    2008-07-15

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  2. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    Science.gov (United States)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  3. The sun and space weather Second Edition

    CERN Document Server

    Hanslmeier, Arnold

    2007-01-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exis...

  4. Aerosol profiles determined with lidar and sun-photometer over the Pearl River Delta, China.

    Science.gov (United States)

    Heese, B.; Althausen, D.; Bauditz, M.; Deng, R.; Bao, R.; Li, Z.

    2012-04-01

    The priority program "Megacities-Megachallenge - Informal Dynamics of Global Change" is a large interdisciplinary project funded by the German Research Foundation (DFG). One of the subproject deals with mega-urbanisation in the Pearl River Delta, South-China, with special respect to particulate air pollution and public health. In the frame of this subproject the vertical distribution of aerosol optical properties are investigated by measurements with the multiwavelength-Raman-polarization lidar PollyXT of the IfT. The instrument can measure the particle backscatter coefficient at 355 nm, 532 nm, and 1064 nm, the particle extinction coefficients at 355 nm and 532 nm, and the particle linear depolarization ratio at 532 nm. These measurements are supported by a dual-polar sun photometer that provides height integrated data as the aerosol optical depth and the degree of linear depolarization. These instruments are placed at the East campus of the Sun Yat-sen University in Guangzhou, China. Guangzhou and the Pearl River Delta is a developing area with currently around 11 Million inhabitants. The measurements started in November 2011 and are supposed to continue for at least half a year covering the late autumn and winter season and parts of the spring season. Extensions of the measurements towards a whole seasonal cycle are planned. Thus, different meteorological conditions will lead to particle transport from several source regions. Different aerosol types are expected to be observed during the measurement period: urban particles from local and regional sources as well as dust from the deserts in Central Asia. The observed particles can be distinguished by analyzing their optical properties at several wavelengths. In particular, the depolarization measurements from both instruments promise a better determination of the particle shape.

  5. Sun exposure and protection behavior of Danish farm children

    DEFF Research Database (Denmark)

    Bodekær, Mette; Øager Petersen, Bibi; Philipsen, Peter Alshede

    2014-01-01

    families) kept daily sun behavior diaries (sun exposure, sunscreen use, sunburns) over a 4-month summer period (15,985 diary days). The Pigment Protection Factor (PPF), an objective measure of sun exposure, was measured at two body sites, before and after summer. All participants presented data from...... the same 115 days. Risk behavior (sun exposure of upper body) took place on 9.5 days (boys) and 15.6 days (girls). Sunburn and sunscreen use were infrequent. Boys' sun exposure resulted in an increased photo protection over the study period of 1.7 SED (upper arm) and 0.8 SED (shoulder) to elicit erythema...

  6. Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection.

    Science.gov (United States)

    Schaller, Torsten; Bulli, Lorenzo; Pollpeter, Darja; Betancor, Gilberto; Kutzner, Juliane; Apolonia, Luis; Herold, Nikolas; Burk, Robin; Malim, Michael H

    2017-10-01

    Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1 NL4.3 and HIV-1 IIIB ) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro -assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1 -/- and SUN2 -/- cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes

  7. Temperature profile data collected from 03 May 1962 to 15 September 1990 (NODC Accession 0000049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bottle casts in a world wide distribution from 03 May 1962 to 15 September 1990. Data were collected and submitted by...

  8. SOLAR NEUTRINO PHYSICS OSCILLATIONS: SENSITIVITY TO THE ELECTRONIC DENSITY IN THE SUN'S CORE

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chieze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)

    2013-03-01

    Solar neutrinos coming from different nuclear reactions are now detected with high statistics. Consequently, an accurate spectroscopic analysis of the neutrino fluxes arriving on Earth's detectors becomes available, in the context of neutrino oscillations. In this work, we explore the possibility of using this information to infer the radial profile of the electronic density in the solar core. So, we discuss the constraints on the Sun's density and chemical composition that can be determined from solar neutrino observations. This approach constitutes an independent and alternative diagnostic to the helioseismic investigations already done. The direct inversion method, which we propose to obtain the radial solar electronic density profile, is almost independent of the solar model.

  9. The Sun in Time: Activity and Environment

    Directory of Open Access Journals (Sweden)

    Güdel Manuel

    2007-12-01

    Full Text Available The Sun's magnetic activity has steadily declined during its main-sequence life. While the solar photospheric luminosity was about 30% lower 4.6 Gyr ago when the Sun arrived on the main sequence compared to present-day levels, its faster rotation generated enhanced magnetic activity; magnetic heating processes in the chromosphere, the transition region, and the corona induced ultraviolet, extreme-ultraviolet, and X-ray emission about 10, 100, and 1000 times, respectively, the present-day levels, as inferred from young solar-analog stars. Also, the production rate of accelerated, high-energy particles was orders of magnitude higher than in present-day solar flares, and a much stronger wind escaped from the Sun, permeating the entire solar system. The consequences of the enhanced radiation and particle fluxes from the young Sun were potentially severe for the evolution of solar-system planets and moons. Interactions of high-energy radiation and the solar wind with upper planetary atmospheres may have led to the escape of important amounts of atmospheric constituents. The present dry atmosphere of Venus and the thin atmosphere of Mars may be a product of early irradiation and heating by solar high-energy radiation. High levels of magnetic activity are also inferred for the pre-main sequence Sun. At those stages, interactions of high-energy radiation and particles with the circumsolar disk in which planets eventually formed were important. Traces left in meteorites by energetic particles and anomalous isotopic abundance ratios in meteoritic inclusions may provide evidence for a highly active pre-main sequence Sun. The present article reviews these various issues related to the magnetic activity of the young Sun and the consequent interactions with its environment. The emphasis is on the phenomenology related to the production of high-energy photons and particles. Apart from the activity on the young Sun, systematic trends applicable to the entire

  10. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Weekend Warriors expand/collapse Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are ... skiing! Be Mindful of Time Spent in the Sun, Regardless of the Season If possible, ski early ...

  11. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    Science.gov (United States)

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  12. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-01-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, Σ, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, Σ r and Σ b , exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, Σ K , is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of Σ r and Σ K . We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  13. Reconstruction and analysis of temperature and density spatial profiles inertial confinement fusion implosion cores

    International Nuclear Information System (INIS)

    Mancini, R. C.

    2007-01-01

    We discuss several methods for the extraction of temperature and density spatial profiles in inertial confinement fusion implosion cores based on the analysis of the x-ray emission from spectroscopic tracers added to the deuterium fuel. The ideas rely on (1) detailed spectral models that take into account collisional-radiative atomic kinetics, Stark broadened line shapes, and radiation transport calculations, (2) the availability of narrow-band, gated pinhole and slit x-ray images, and space-resolved line spectra of the core, and (3) several data analysis and reconstruction methods that include a multi-objective search and optimization technique based on a novel application of Pareto genetic algorithms to plasma spectroscopy. The spectroscopic analysis yields the spatial profiles of temperature and density in the core at the collapse of the implosion, and also the extent of shell material mixing into the core. Results are illustrated with data recorded in implosion experiments driven by the OMEGA and Z facilities

  14. NURSING STUDENTSPERCEPTIONS ABOUTRELATIONSHIP BETWEEN SUN EXPOSURE AND SKIN CANCER

    Directory of Open Access Journals (Sweden)

    Andréa de Azevedo Morégula

    2016-02-01

    Full Text Available The aim of this study was to determine the behavioral profile and the level of knowledge that nursing students have about sun exposure and protective measures that prevent skin cancer and damage due to R-UV. A descriptive quantitative study was conducted from the answers of a questionnaire applied to 72 students, undergraduate nursing course of the State University of Santa Cruz. The issues considered include the perception of students about a tanned body, the use of sunscreen and use of other protective measures and knowledge about UVIndex. Most reported using sunscreen (94.3% with SPF higher than 15 (87.5%, however, do not use correctly these protectors. As for other protective measures, the most adopted by these students was sunglasses (43.1%. Regarding the perception of the appearance of a tanned body, 55.6% considered it beautiful and 26.4% considered it beautiful and healthy, about the know l edge about UV Index, 51.4% declared to know the meaning, however, there is no information about the level of know l edge. Therefore, this study reveals that the level of knowledge and the adoption of protective measures against skin cancer and other the harmful effects of the sun are still low. It shows the necessity to include this issue in courses of undergraduate nursing programs.

  15. No smoking guns under the Sun

    CERN Document Server

    CERN. Geneva

    2000-01-01

    The Sun is a typical main sequence star that generates its energy via the fusion of hydrogen into helium in two chains of nuclear reactions: the so-called pp chain and the CNO chain. If the nucleon number, electric charge, lepton flavour and energy are conserved and the Sun is in a steady state, then the total solar neutrino flux is fixed, to a good approximation, by the solar luminosity (approximately 65 billion neutrinos/cm2/s at Earth), independent of the specific nuclear reactions that power the Sun and produce neutrinos by beta decay or the electron capture of reaction products. The neutrinos from the dominant pp chain are produced by the beta decay of proton pairs (pp), boron-8 and lithium-4, and by electron capture by pp pairs and beryllium-7. Their spectra can be measured directly in the laboratory or calculated from the standard theory of electroweak interactions. To a very good approximation, they are independent of the conditions in the Sun. Only their relative contributions depend on the detailed ...

  16. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    Science.gov (United States)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  17. Structural insights into SUN-KASH complexes across the nuclear envelope

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wang; Zhaocai Zhou; Zhubing Shi; Shi Jiao; Cuicui Chen; Huizhen Wang; Guoguang Liu; Qiang Wang; Yun Zhao; Mark I Greene

    2012-01-01

    Linker of the nucleoskeleton and the cytoskeleton (LINC) complexes are composed of SUN and KASH domaincontaining proteins and bridge the inner and outer membranes of the nuclear envelope.LINC complexes play critical roles in nuclear positioning,cell polarization and cellular stiffness.Previously,we reported the homotrimeric structure of human SUN2.We have now determined the crystal structure of the human SUN2-KASH complex.In the complex structure,the SUN domain homotrimer binds to three independent "hook"-like KASH peptides.The overall conformation of the SUN domain in the complex closely resembles the SUN domain in its apo state.A major conformational change involves the AA'-loop of KASH-bound SUN domain,which rearranges to form a mini β-sheet that interacts with the KASH peptide.The PPPT motif of the KASH domain fits tightly into a hydrophobic pocket on the homotrimeric interface of the SUN domain,which we termed the BI-pocket.Moreover,two adjacent protomers of the SUN domain homotrimer sandwich the KASH domain by hydrophobic interaction and hydrogen bonding.Mutations of these binding sites disrupt or reduce the association between the SUN and KASH domains in vitro.In addition,transfection of wild-type,but not mutant,SUN2 promotes cell migration in Ovcar-3 cells.These results provide a structural model of the LINC complex,which is essential for additional study of the physical and functional coupling between the cytoplasm and the nucleoplasm.

  18. SOHO reveals violent action on the quiet Sun

    Science.gov (United States)

    1996-05-01

    SOHO's scientists are impressed by the vigorous action that they see going on every day, because the Sun is in the very quietest phase of its eleven-year cycle of activity. To ground-based observatories it appears extremely calm just now. The early indications of SOHO's performance amply justify the creation of a sungazing spacecraft capable of observing ultraviolet emissions that are blotted out by the Earth's atmosphere. Apart from the imager, two ultraviolet spectrometers and an ultraviolet coronagraph (an imager for the outer atmosphere) are busy analysing the violent processes at a wide range of wavelengths. Between them, these instruments should cure long-lasting ignorance concerning the Sun, especially about why the atmosphere is so hot and what drives the solar wind that blows non-stop into the Solar System. Scientists from other experimental teams use SOHO to explore the Sun from its deep interior to the far reaches of the solar wind. They have watched the supposedly quiet Sun belching huge masses of gas into space. They have mapped a hole burnt by the solar wind in a breeze of gas coming from the stars. And they have detected currents of gas flowing just below the visible surface. SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO on 2 December 1995, and also provides the ground stations and an operations centre near Washington. The first results are the more remarkable because SOHO arrived at its vantage point 1,500,000 kilometres out in space only in February, and formally completed its commissioning on 16 April. It has a long life ahead of it. All scientific instruments are working well. The luminosity oscillation imager belonging to the VIRGO experiment had trouble with its lens cover. When opened, the cover rebounded on its hinges and closed again. Commands were devised that gave a shorter impulse

  19. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  20. Vortices in the SU(N) x SU(N) spin systems in two dimensions

    International Nuclear Information System (INIS)

    Kares, R.J.D.

    1982-01-01

    The SU(N) x SU(N) or chiral spin systems in two dimensions with spin variables in both the fundamental and the adjoint representations of SU(N) are considered. In the adjoint representation the chiral models are found to possess topologically stable, classical vortex solutions which carry a Z(N) topological charge. A relationship is established between the chiral models and massive Yang-Mills theory in two dimensions. This relationship is exploited to prove the asymptotic freedom of the chiral models and to find their weak coupling mass gap. The connection between the vortices of the chiral models and those of the massive Yang-Mills theory is discussed. The behavior of a gas of vortices in the SU(2) chiral model is considered. This gas is converted to an equivalent field theory and studied using the renormalization group. It is shown that the SU(2) vortex gas does not undergo a Kosterlitz-Thouless phase transition. This behavior probably persists for the higher SU(N) groups as well. Finally, using the massive Yang-Mills theory the effect of the coupling of vortices to spin wave fluctuations is investigated. It is argued that as a result of the vortex-spin wave interaction the vortices acquire a mass scale dynamically. A self consistency condition is derived for the vortex scale and used to compute the mass gap for the chiral models in the presence of vortices. The mass gap obtained in this way is found to be in agreement with the weak coupling result suggesting that vortices may be responsible for generating the mass gap in the chiral models near T = 0

  1. Grand Minima: Is The Sun Going To Sleep?

    Science.gov (United States)

    Mcintosh, S. W.; Leamon, R. J.

    2014-12-01

    We explore recent observational work which indicate that the energetics of the sun's outer atmosphere have been on a steady decline for the past decade and perhaps longer. Futher, we show that new investigations into evolution of the Sun's global magnetic activity appear to demonstrate a path through which the Sun can go into, and exit from, a grand activity minimum without great difficulty while retaining an activity cycle - only losing sunspots. Are we at the begining of a new grand(-ish) minimum? Naturally, only time will tell, but the observational evidence hint that one may not be far off to what impact on the Sun-Earth Connection.

  2. Knowledge and Practice of Sun Protection in Schools in South Africa Where No National Sun Protection Programme Exists

    Science.gov (United States)

    Wright, Caradee Y.; Reeder, Anthony I.; Albers, Patricia N.

    2016-01-01

    Interventions in primary schools that increase sun-protective behaviours and decrease ultraviolet radiation exposure, sunburn incidence and skin cancer risk can be effective. SunSmart School Accreditation Programmes (SSAP) are recommended. Prior to SSAP implementation in South Africa, we explored the feasibility of obtaining national baseline…

  3. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  4. Global distribution of temperature and salinity profiles from profiling floats as part of the World Ocean Circulation Experiment (WOCE) project, from 1994-11-07 to 2002-01-19 (NCEI Accession 0000936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-Salinity profile and pressure data were collected by using profiling floats in a world-wide distribution from 07 November 1994 to 19 January 2002. Data...

  5. Seven-year trends in sun protection and sunburn among Australian adolescents and adults.

    Science.gov (United States)

    Volkov, Angela; Dobbinson, Suzanne; Wakefield, Melanie; Slevin, Terry

    2013-02-01

    To examine the change in sun protective behaviours and sunburn of Australians over a seven-year period, in the context of sustained skin cancer prevention campaigns and programs. Weekly cross-sectional telephone interviews of Australians were conducted throughout summer in 2010/11 for comparison with 2003/04 and 2006/07. In 2010/11, n=1,367 adolescents (12-17 years) and n=5,412 adults (18-69 years) were interviewed about their sun-related attitudes, weekend sun protection and sunburn. Multivariate analyses adjusted for key demographics, temperature, cloud, wind and ultraviolet radiation (UVR) to assess change in outcomes over time. There were consistent improvements in adolescents' and adults' attitudes, intentional tanning and incidence of sunburn over time. Behavioural changes were variable. Adults spent less time outdoors during peak UVR compared to past surveys, while adolescents were less likely to be outdoors compared with 2006/07. Sunscreen use and wearing of long sleeves increased among adults, but hat wearing decreased for both age groups, as did leg cover by adolescents since 2003/04. There has been a sustained decrease in weekend sunburn among adolescents and adults. The findings suggest improvements in skin cancer prevention attitudes of Australians over time. Australians' compliance with sun protection during summer has improved in some areas, but is still far from ideal. The sustained decrease in weekend sunburn among adolescents and adults is encouraging, but further improvements are required. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.

  6. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    International Nuclear Information System (INIS)

    Chaudhari, V.A.; Solanki, C.S.

    2009-01-01

    Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of un optimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated

  7. Ineffectiveness of sun awareness posters in dermatology clinics.

    Science.gov (United States)

    Jung, G W; Senthilselvan, A; Salopek, T G

    2010-06-01

    Although sun awareness posters have been used in doctors' offices and clinics for decades to promote sun protective behaviour, there is no evidence of their usefulness. To investigate whether sun awareness posters lead to inquiry of skin cancer and sun protection measures. Patients considered at risk for skin cancer seen at a dermatology clinic were randomly asked to complete a questionnaire designed to assess the effectiveness of three different sun awareness posters placed in patient rooms. The posters were selected on the basis of their catchy slogan and eye-appealing images, and included those featuring parental interest, sex appeal and informative advice. Only half of the patients noticed the posters (50.6%). The poster with sex appeal garnered the most attention (67.8%), followed by the informative poster (49.2%) and the parental interest poster (35.8%) (P poster inquired about cutaneous cancers and sun protection practices twice as often as those who did not notice the poster, only one-tenth of such inquiries were attributed to the poster ( approximately 5% of the target population). As reported in the questionnaire, the posters themselves were less effective than the advice of physicians in influencing patient attitudes towards sun protection measures. Organizations that produce and disseminate posters should consider beyond focus groups when they design their posters and should consider field testing their products to ensure that they are reaching the targeted audience and are having the expected beneficial effect, otherwise their posters are simply decorative.

  8. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  9. Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Jingfei Chen

    2010-01-01

    Full Text Available TiO2 nanotube arrays with uniform diameter from top to bottom were fabricated. The synthesizing approach is based on the investigation of the influence of electrolyte temperature on the tube diameter. We found that the inner diameter of the tubes increased with the electrolyte temperature. Accordingly, we improved the tube profile from the general V shape to U shape by raising the electrolyte temperature gradually. This is a simple and fast approach to fabricate uniform TiO2 nanotubes in diameter. The improved TiO2 nanotube arrays may show better properties and have broad potential applications.

  10. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    Science.gov (United States)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  11. Australian primary school communities' understandings of SunSmart: a qualitative study.

    Science.gov (United States)

    Winslade, Matthew; Wright, Bradley; Dudley, Dean; Cotton, Wayne; Brown, Alexandra

    2017-10-01

    Skin cancer represents a major health issue for Australia. Childhood sun exposure is an important risk factor and evidence suggests the use of sun protection measures by Australian school children could be improved. This study examines how the SunSmart Program, a school-based skin cancer prevention resource, can be supported to further increase sun protection behaviours to assist in lowering skin cancer incidence. The Health Promoting Schools (HPS) framework was adopted to select key stakeholders from a convenience sample of five school communities. Students, teaching staff and parents participated in semi-structured focus group and individual interviews. A thematic analysis was used to extract key themes from the data. Although these school communities were aware of sun protection practices and the risks associated with sun exposure, their understandings of the SunSmart Program were limited. Sun protection policy implementation was inconsistent and students were unlikely to engage in sun protection practices beyond the school setting. School communities require additional support and engagement to holistically enforce the principles of the SunSmart Program. © 2017 The Authors.

  12. Impacts of temperature and lunar day on gene expression profiles during a monthly reproductive cycle in the brooding coral Pocillopora damicornis.

    Science.gov (United States)

    Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M

    2017-08-01

    Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.

  13. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  14. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast

    Science.gov (United States)

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  15. Sun protection policies of Australian primary schools in a region of high sun exposure.

    Science.gov (United States)

    Harrison, S L; Garzón-Chavez, D R; Nikles, C J

    2016-06-01

    Queensland, Australia has the highest rates of skin cancer globally. Predetermined criteria were used to score the comprehensiveness of sun protection policies (SPP) of primary schools across Queensland. SPP were sought for schools in 10 regions (latitude range 16.3°S-28.1°S) from 2011 to 2014. Of the 723 schools sampled, 90.9% had a written SPP available publicly. Total SPP scores were low {mean 3.6 [95% CI: 3.4-3.9]; median 2 [interquartile range (IQR) 2, 4]}, with only 3.2% of schools achieving the maximum score of 12. Median SPP scores were higher in Northern and Central Queensland [both 2 (IQR 2, 6) and (IQR 2, 5), respectively] than in Southern Queensland [2 (IQR 2, 3); P = 0.004]. Clothing and hat-wearing were addressed in most policies (96% and 89%) while few schools used their SPP to plan outdoor events (5.2%) or reschedule activities to minimize sun exposure (11.7%). The SunSmart Schools program has been operating in Queensland for 17 years, and while most primary schools now have a written SPP, most are not comprehensive. Incentive-based approaches (5-star-rating award scheme and grants) may assist in addressing this issue, to reduce sun exposure of students and teachers. These data provide a baseline from which improvements in the comprehensiveness of school SPPs can be evaluated. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Linear wide angle sun sensor for spinning satellites

    Science.gov (United States)

    Philip, M. P.; Kalakrishnan, B.; Jain, Y. K.

    1983-08-01

    A concept is developed which overcomes the defects of the nonlinearity of response and limitation in range exhibited by the V-slit, N-slit, and crossed slit sun sensors normally used for sun elevation angle measurements on spinning spacecraft. Two versions of sensors based on this concept which give a linear output and have a range of nearly + or - 90 deg of elevation angle are examined. Results are presented for the application of the twin slit version of the sun sensor in the three Indian satellites, Rohini, Apple, and Bhaskara II, which was successfully used for spin rate control and spin axis orientation control corrections as well as for sun elevation angle and spin period measurements.

  17. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  18. Intelligent Sun Tracking for a CPV Power Plant

    International Nuclear Information System (INIS)

    Maqsood, Ishtiaq; Emziane, Mahieddine

    2010-01-01

    The output of a solar panel is strongly dependent on the amount of perpendicular light flux falling on its surface, and a tracking system tries to parallel the vector area of the solar panel surface to the incident solar flux. We present a tracking technique based on a two-axis sun sensor which can be used to increase the power output from a number of CPV arrays connected together in a solar power plant. The outdoor testing procedure of the developed two-axis sun sensor is discussed. The detail of the algorithm used together with the related sun tracking equipment is also presented and discussed for the new two axes sun tracking system.

  19. Performance of a high-work low aspect ration turbine tested with a realistic inlet radial temperature profile

    Science.gov (United States)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases.

  20. The retrieval of profile and chemical information from ground-based UV-visible spectroscopic measurements

    International Nuclear Information System (INIS)

    Schofield, R.; Connor, B.J.; Kreher, K.; Johnston, P.V.; Rodgers, C.D.

    2004-01-01

    An algorithm has been developed to retrieve altitude information at different diurnal stages for trace gas species by combining direct-sun and zenith-sky UV-visible differential slant column density (DSCD) measurements. DSCDs are derived here using differential optical absorption spectroscopy. Combining the complementary zenith-sky measurements (sensitive to the stratosphere) with direct-sun measurements (sensitive to the troposphere) allows this vertical distinction. Trace gas species such as BrO and NO 2 have vertical profiles with strong diurnal dependence. Information about the diurnal variation is simultaneously retrieved with the altitude distribution of the trace gas. The retrieval is a formal optimal estimation profile retrieval, allowing a complete assessment of information content and errors

  1. Electrical conductivity of pyroxene which contains trivalent cations: Laboratory measurements and the lunar temperature profile

    International Nuclear Information System (INIS)

    Huebner, J.S.; Duba, A.; Wiggins, L.B.

    1979-01-01

    Three natural orthopyroxene single crystals, measured in the laboratory over the temperature range 850 0 --1200 0 C, are more than 1/2 order of magnitude more electrically conducting than previously measured crystals. Small concentrations (1--2%) of Al 2 O 3 and Cr 2 O 3 present in these crystals may be responsible for their relatively high conductivity. Such pyroxenes, which contain trivalent elements, are more representative of pyroxenes expected to be present in the lunar mantle than those which have been measured by other investigators. The new conductivity values for pyroxene are responsible for a relatively large bulk conductivity calculated for (polymineralic) lunar mantle assemblages. The results permit a somewhat cooler lunar temperature profile than previously proposed. Such lower profiles, several hundred degrees Celsius below the solidus, are quite consistent with low seismic attenuation and deep moonquakes observed in the lunar mantle

  2. Temperature Performance Evaluation of Parabolic Dishes Covered ...

    African Journals Online (AJOL)

    Aweda

    The parabolic dish with glass material gave the highest temperature of .... 3: Second day variation temperature and time using different materials. 8. 10 .... the sun rays at that particular time. ... especially between 11:00 am and 3:00 pm when.

  3. Predictors of sun protection behaviours and sunburn among Australian adolescents.

    Science.gov (United States)

    Pettigrew, Simone; Jongenelis, Michelle; Strickland, Mark; Minto, Carolyn; Slevin, Terry; Jalleh, Geoffrey; Lin, Chad

    2016-07-13

    Excessive sun exposure and sunburn increase individuals' risk of skin cancer. It is especially important to prevent sunburn in childhood due to the higher relative risk of skin cancer across the life span compared to risk associated with sunburn episodes experienced later in life. This study examined demographic and attitudinal factors associated with engagement in a range of sun protection behaviours (wearing a hat, wearing protective clothing, staying in the shade, and staying indoors during the middle of the day) and the frequency of sunburn among Western Australian adolescents to provide insights of relevance for future sun protection campaigns. Cross-sectional telephone surveys were conducted annually with Western Australians between 2005/06 and 2014/15. The results from 4150 adolescents aged 14-17 years were used to conduct a path analysis of factors predicting various sun protection behaviours and sunburn. Significant primary predictors of the sun protection behaviours included in the study were skin type (sun sensitivity), gender, tanning-related attitudes and behaviours, and perceived relevance of public service advertisements that advocate sun protection. Of the four sun protection behaviours investigated, staying in the shade and staying indoors during the middle of the day were associated with a lower frequency of sunburn. There is a particular need to target sun protection messages at adolescent males who are less likely to engage in the most effective sun protection behaviours and demonstrate an increased propensity to experience sunburn. The results suggest that such future sun protection messages should include a focus on the importance of staying in the shade or indoors during periods of high UV radiation to increase awareness of the efficacy of these methods of avoiding skin cancer.

  4. ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    OpenAIRE

    Zamantimande Kunene; Patricia N. Albers; Robyn M. Lucas; Cathy Banwell; Angela Mathee; Caradee Y. Wright

    2017-01-01

    Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. ...

  5. The Sun murrab Baltimaadesse ja Soome

    Index Scriptorium Estoniae

    2008-01-01

    Aprillis andis ansambel Tanel Padar & The Sun Soomes, Lätis, Leedus ja Eestis üksteist kontserti. Heliplaadi "Here Gomes The Sun" lugu "Hopelessness You" on Soome raadiote tipp 300s neljakümnendal kohal, lugu "Learn the game" on Leedu FM99 raadios 33 enim mängitava loo seas, laul "One of those days" saavutas Läti raadio SWH rokkmuusika edetabelis teise koha.

  6. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    Science.gov (United States)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  7. The evolution of low-mass close binary systems. IV. 0.80 M/sub sun/+0.40 M/sub sun/: Catastrophic mass loss

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1977-01-01

    The evolution of both components of a 0.80 M/sub sun/+0.40 M/sub sun/ binary with initial separation 1.60 R/sub sun/ is presented. This system reaches mass transfer during core hydrogen burning in the primary. The primary has such a deep convective envelope that mass transfer proceeds on a dynamical time scale. Mass exchange is followed through the first 6.25 x 10 -3 M/sub sun/, by which time the transfer rate has reached 8.33 x 10 -4 M/sub sun/ yr -1 .It is shown that mass transfer on a dynamical time scale leads to supercritical accretion by the secondary component, and hence is presumably accompanied by extensive mass and angular momentum losses. Stability against such rapid mass transfer may impose severe limitations on the masses and mass ratios of cataclysmic variables

  8. Temperature profile data from BATHYTHERMOGRAPH (XBT) in the Pacific Ocean: 19860927 to 19870201 (NODC Accession 8700086)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from the MONTE SARMIENTO and PACPRINCESS in the Pacific Ocean. Data were collected from 27 September 1986 to...

  9. Mathematical model to predict temperature profile and air–fuel equivalence ratio of a downdraft gasification process

    International Nuclear Information System (INIS)

    Jaojaruek, Kitipong

    2014-01-01

    Highlights: • A mathematical model based on finite computation analysis was developed. • Model covers all zones of gasification process which will be useful to improve gasifier design. • Model can predict temperature profile, feedstock consumption rate and reaction equivalent ratio (ϕ). • Model-predicted parameters fitted well with experimental values. - Abstract: A mathematical model for the entire length of a downdraft gasifier was developed using thermochemical principles to derive energy and mass conversion equations. Analysis of heat transfer (conduction, convection and radiation) and chemical kinetic technique were applied to predict the temperature profile, feedstock consumption rate (FCR) and reaction equivalence ratio (RER). The model will be useful for designing gasifiers, estimating output gas composition and gas production rate (GPR). Implicit finite difference method solved the equations on the considered reactor length (50 cm) and diameter (20 cm). Conversion criteria for calculation of temperature and feedstock consumption rate were 1 × 10 −6 °C and 1 × 10 −6 kg/h, respectively. Experimental validation showed that model outputs fitted well with experimental data. Maximum deviation between model and experimental data of temperature, FCR and RER were 52 °C at combustion temperature 663 °C, 0.7 kg/h at the rate 8.1 kg/h and 0.03 at the RER 0.42, respectively. Experimental uncertainty of temperature, FCR and RER were 24.4 °C, 0.71 kg/h and 0.04, respectively, on confidence level of 95%

  10. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  11. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    Directory of Open Access Journals (Sweden)

    Nathan J. Downs

    2017-11-01

    Full Text Available Exposure to natural sunlight, specifically solar ultraviolet (UV radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall, or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations, to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones. The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies.

  12. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  13. The moon as a high temperature condensate.

    Science.gov (United States)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  14. Pre-main sequence sun: a dynamic approach

    International Nuclear Information System (INIS)

    Newman, M.J.; Winkler, K.H.A.

    1979-01-01

    The classical pre-main sequence evolutionary behavior found by Hayashi and his coworkers for the Sun depends crucially on the choice of initial conditions. The Hayashi picture results from beginning the calculation with an already centrally condensed, highly Jeans unstable object not terribly far removed from the stellar state initially. The present calculation follows the work of Larson in investigating the hydrodynamic collapse and self-gravitational accretion of an initially uniform, just Jeans unstable interstellar gas-dust cloud. The resulting picture for the early history of the Sun is quite different from that found by Hayashi. A rather small (R approx. = 2 R/sub sun/), low-luminosity (L greater than or equal to L/sub sun/) protostellar core develops. A fully convective stellar core, characteristic of Hayashi's work, is not found during the accretion process, and can only develop, if at all, in the subsequent pre-main sequence Kelvin-Helmholtz contraction of the core. 3 figures, 1 table

  15. Quantitative explanation of some electron temperature profiles measured in situ in the high latitude ionospheric E-region

    International Nuclear Information System (INIS)

    Schlegel, K.; Oyama, Koh-ichiro; Hirao, Kunio

    1983-01-01

    E region electron temperature profiles obtained with a rocket experiment in the Antarctica are compared to theoretical electron temperatures calculated from a model. The main heat source in this model is the heating of the electron gas by unstable plasma waves. Very good agreement between both temperatures is obtained between 105 and 115 km altitude, where this heating mechanism is effective. The agreement is also good below this altitude range, after a refinement of the data analysis procedure for the measured temperatures. Several important consequences of the good agreement are pointed out. (author)

  16. Unintended Sunburn: A Potential Target for Sun Protection Messages

    Directory of Open Access Journals (Sweden)

    Geraldine F. H. McLeod

    2017-01-01

    Full Text Available New Zealand (NZ has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents’ experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents’ outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade and reducing potential barriers to sun protection.

  17. Unintended Sunburn: A Potential Target for Sun Protection Messages.

    Science.gov (United States)

    McLeod, Geraldine F H; Reeder, Anthony I; Gray, Andrew R; McGee, Rob

    2017-01-01

    New Zealand (NZ) has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR) remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents' experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents' outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade) and reducing potential barriers to sun protection.

  18. Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Rathgeber, S K; Barrera, L; Eich, T; Fischer, R; Suttrop, W; Wolfrum, E; Nold, B; Willensdorfer, M

    2013-01-01

    We present a method to obtain reliable edge profiles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption profiles and radiation transport processes. This is carried out in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different interdependent and complementary diagnostics. By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the ‘shine-through’ peak—the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-off layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. (paper)

  19. Impact of water temperature on the growth and fatty acid profiles of juvenile sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Zhang, Cheng; Gao, Qinfeng; Dong, Shuanglin; Ye, Zhi; Tian, Xiangli

    2016-08-01

    The present study determined the changes in the fatty acid (FA) profiles of juvenile sea cucumber Apostichopus japonicus in response to the varied water temperature. Sea cucumbers with similar size (4.02±0.11g) were cultured for 8 weeks at 14°C, 18°C, 22°C and 26°C, respectively. At the end of the experiment, the specific growth rate (SGR) and the profiles of FAs in neutral lipids and phospholipids of the juvenile sea cucumbers cultured at different temperatures were determined. The SGRs of the sea cucumbers cultured at 26°C significantly decreased 46.3% compared to thos cultured at 18°C. Regression analysis showed that the SGR-temperature (T) relationship can be expressed as SGR=-0.0073T(2)+0.255T -1.0231 (R(2)=0.9936) and the highest SGR was predicted at 17.5°C. For the neutral lipids, the sum of saturated FAs (SFAs), monounsaturated FAs (MUFAs) or polyunsaturated FAs (PUFAs) of the sea cucumbers that were cultured at the water temperature from 18°C-26°C did not change significantly, indicating the insensitivity of FA profiles for the neutral lipids of sea cucumbers in response to increasing water temperature. For phospholipids, the sum of PUFAs in the sea cucumbers dramatically decreased with the gradually increased water temperature. The sum of SFAs and MUFAs of sea cucumbers, however, increased with the gradually elevated water temperature. In particular, the contents of highly unsaturated fatty acids (HUFAs), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA), in the phospholipids of the sea cucumbers decreased 37.2% and 26.1%, respectively, when the water temperature increased from 14°C to 26°C. In summary, the sea cucumbers A. japonicus can regulate the FA compositions, especially the contents of EPA and DHA, in the phospholipids so as to adapt to varied water temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    Science.gov (United States)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun

  1. Predictors of sun protection behaviours and sunburn among Australian adolescents

    Directory of Open Access Journals (Sweden)

    Simone Pettigrew

    2016-07-01

    Full Text Available Abstract Background Excessive sun exposure and sunburn increase individuals’ risk of skin cancer. It is especially important to prevent sunburn in childhood due to the higher relative risk of skin cancer across the life span compared to risk associated with sunburn episodes experienced later in life. This study examined demographic and attitudinal factors associated with engagement in a range of sun protection behaviours (wearing a hat, wearing protective clothing, staying in the shade, and staying indoors during the middle of the day and the frequency of sunburn among Western Australian adolescents to provide insights of relevance for future sun protection campaigns. Methods Cross-sectional telephone surveys were conducted annually with Western Australians between 2005/06 and 2014/15. The results from 4150 adolescents aged 14–17 years were used to conduct a path analysis of factors predicting various sun protection behaviours and sunburn. Results Significant primary predictors of the sun protection behaviours included in the study were skin type (sun sensitivity, gender, tanning-related attitudes and behaviours, and perceived relevance of public service advertisements that advocate sun protection. Of the four sun protection behaviours investigated, staying in the shade and staying indoors during the middle of the day were associated with a lower frequency of sunburn. Conclusion There is a particular need to target sun protection messages at adolescent males who are less likely to engage in the most effective sun protection behaviours and demonstrate an increased propensity to experience sunburn. The results suggest that such future sun protection messages should include a focus on the importance of staying in the shade or indoors during periods of high UV radiation to increase awareness of the efficacy of these methods of avoiding skin cancer.

  2. YUAN-BO SUN

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YUAN-BO SUN. Articles written in Journal of Genetics. Volume 97 Issue 1 March 2018 pp 173-178 RESEARCH ARTICLE. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network · XIAN-DONG SONG XIAN-XU SONG GUI-BO LIU ...

  3. Sun protection among Spanish beachgoers: knowledge, attitude and behaviour.

    Science.gov (United States)

    Cercato, M C; Ramazzotti, V; Sperduti, I; Asensio-Pascual, A; Ribes, I; Guillén, C; Nagore, E

    2015-03-01

    This study aims to investigate the level of awareness on the risks related to sun exposure, attitude towards sun protection and sun protection behaviour in Spanish beachgoers. During the summer of 2009, trained assistants conducted a structured interview with 630 sunbathers at the beaches of Valencia, Spain, via administrating a questionnaire including the following: (a) general data (age, gender, education, profession), (b) "knowledge" and "attitude" items and (c) self-assessed sun sensitivity, sun exposure and sun protection characteristics. The health belief model was used to evaluate factors that may influence on engaging healthy behaviour. The median age was 30 (2-82) years; the M/F ratio was 0.60. Despite the widespread regular ("often" or "always", 80%) use of high (>15) sun-protective factor sunscreens, current recommendations on sun protection were not regularly followed, and a history of sunburns is very common (70%). At multivariate analysis, female gender, age, fair hair, freckles, all-day use of sunscreens and wearing sunglasses were independent factors associated with having sunburn history. A high knowledge and a fairly good attitude emerged (median scores, 6/7 and 22/30, respectively). Age class (p = 0.032), educational level (p < 0.0001), sunscreen use (p = 0.048) and adequate timing of the first application of sunscreens (p = 0.015) were predictors of awareness, while factors associated with a more favourable attitude were educational level (p < 0.0001) and regular use of hats (p = 0.001). Wrong beliefs mainly concern sunscreens (false safety); the attractiveness of a tanned look is the main unfavourable attitude. Physical and motivational barriers are common (80%). The findings by highlighting constitutional and psychosocial factors involved in unhealthy behaviour provide useful information to promote sun-safe interventions in this population.

  4. The Sun A User's Manual

    CERN Document Server

    Vita-Finzi, Claudio

    2008-01-01

    The Sun is an account of the many ways in which our nearest star affects our planet, how its influence has changed over the last few centuries and millennia, and the extent to which we can predict its future impact. The Sun's rays foster the formation of Vitamin D by our bodies, but it can also promote skin cancer, cataracts, and mutations in our DNA. Besides providing the warmth and light essential to most animal and plant life, solar energy contributes substantially to global warming. Although the charged particles of the solar wind shield us from harmful cosmic rays, solar storms may damage artificial satellites and cripple communication systems and computer networks. The Sun is the ideal renewable energy source, but its exploitation is still bedevilled by the problems of storage and distribution. Our nearest star, in short, is a complex machine which needs to be treated with caution, and this book will equip every reader with the knowledge that is required to understand the benefits and dangers it can bri...

  5. Ra: The Sun for Science and Humanity

    Science.gov (United States)

    1996-01-01

    To guide the development of the Ra Strategic Framework, we defined scientific and applications objectives. For our primary areas of scientific interest, we choose the corona, the solar wind, the Sun's effect on the Earth, and solar theory and model development. For secondary areas of scientific interest, we selected sunspots, the solar constant, the Sun's gravitational field, helioseismology and the galactic cosmic rays. We stress the importance of stereoscopic imaging, observations at high spatial, spectral, and temporal resolutions, as well as of long duration measurements. Further exploration of the Sun's polar regions is also important, as shown already by the Ulysses mission. From an applications perspective, we adopted three broad objectives that would derive complementary inputs for the Strategic Framework. These were to identify and investigate: possible application spin-offs from science missions, possible solar-terrestrial missions dedicated to a particular application, and possible future applications that require technology development. The Sun can be viewed as both a source of resources and of threats. Our principal applications focus was that of threat mitigation, by examining ways to improve solar threat monitoring and early warning systems. We compared these objectives to the mission objectives of past, current, and planned international solar missions. Past missions (1962-1980) seem to have been focused on improvement of scientific knowledge, using multiple instrument spacecraft. A ten year gap followed this period, during which the results from previous missions were analyzed and solar study programmes were prepared in international organizations. Current missions (1990-1996) focus on particular topics such as the corona, solar flares, and coronal mass ejections. In planned missions, Sun/Earth interactions and environmental effects of solar activity are becoming more important. The corona is the centre of interest of almost all planned missions

  6. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  7. Proximate composition and mineral profile of eight different ...

    African Journals Online (AJOL)

    ... eight different sun dried date varieties; (1) Daki, (2) Aseel, (3) Coconut, (4) Khuzravi, (5) Halavi, (6) Zahidi, (7) Deglet Noor and (8) Barkavi were examined to determine their proximate composition and mineral profile. All the date varieties were found to be rich in proteins, fiber, carbohydrates and net gross energy (352.329 ...

  8. Sun Ultra 5

    CERN Multimedia

    1998-01-01

    The Sun Ultra 5 is a 64-bit personal computer based on the UltraSPARC microprocessor line at a low price. The Ultra 5 has been declined in several variants: thus, some models have a processor with less cache memory to further decrease the price of the computer.

  9. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Science.gov (United States)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  10. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile

    Science.gov (United States)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases. Previously announced in STAR as N84-24589

  11. Structure and expression of the maize (Zea mays L. SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants

    Directory of Open Access Journals (Sweden)

    Simmons Carl R

    2010-12-01

    Full Text Available Abstract Background The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84 domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. Results We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5, which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses. The first (ZmSUN1, 2, here designated canonical C-terminal SUN-domain (CCSD, includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5, here designated plant-prevalent mid-SUN 3 transmembrane (PM3, includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. Conclusions The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3

  12. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    Science.gov (United States)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  13. The Sun was Not Born in M67

    Science.gov (United States)

    Pichardo, Bárbara; Moreno, Edmundo; Allen, Christine; Bedin, Luigi R.; Bellini, Andrea; Pasquini, Luca

    2012-03-01

    Using the most recent proper-motion determination of the old, solar-metallicity, Galactic open cluster M67 in orbital computations in a non-axisymmetric model of the Milky Way, including a bar and three-dimensional spiral arms, we explore the possibility that the Sun once belonged to this cluster. We have performed Monte Carlo numerical simulations to generate the present-day orbital conditions of the Sun and M67, and all the parameters in the Galactic model. We compute 3.5 × 105 pairs of orbits Sun-M67 looking for close encounters in the past with a minimum distance approach within the tidal radius of M67. In these encounters we find that the relative velocity between the Sun and M67 is larger than 20 km s-1. If the Sun had been ejected from M67 with this high velocity by means of a three-body encounter, this interaction would have either destroyed an initial circumstellar disk around the Sun or dispersed its already formed planets. We also find a very low probability, much lower than 10-7, that the Sun was ejected from M67 by an encounter of this cluster with a giant molecular cloud. This study also excludes the possibility that the Sun and M67 were born in the same molecular cloud. Our dynamical results convincingly demonstrate that M67 could not have been the birth cluster of our solar system. This work relies partly on observations of the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are The Ohio State University; The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  14. Parental use of sun protection for their children-does skin color matter?

    Science.gov (United States)

    Tan, Marcus G; Nag, Shudeshna; Weinstein, Miriam

    2018-03-01

    Excessive sun exposure during childhood is a risk factor for skin cancer. This study aimed to compare the frequency of ideal sun protection use between parents with lighter- and darker-skinned children and explore their attitudes and beliefs on sun safety and their choice of sun protection. Parents of children aged 6 months to 6 years completed self-administered questionnaires about sun protection practices for their children. Parents assessed their child's Fitzpatrick phototype and were divided into lighter- (Fitzpatrick phototype I-III) and darker-skinned (Fitzpatrick phototype IV-VI) groups. Sun safety guidelines from the Canadian Dermatology Association were used to qualify ideal sun protection. A total of 183 parents were included. Overall, 31 parents (17%) used ideal sun protection for their children. As their children grew older, parents were less likely to use ideal sun protection (odds ratio = 0.69, 95% confidence interval = 0.53-0.90). Parents in the lighter-skinned group were more likely to use ideal sun protection for their children (odds ratio = 7.4, 95% confidence interval = 2.7-20.1), believe that sun exposure was harmful (odds ratio = 17.2, 95% confidence interval = 4.0-74.9), and perceive value in sun protection (odds ratio = 11.4, 95% confidence interval = 3.3-39.0); the darker-skinned group believed that darker skin tones provided more sun protection (odds ratio = 12.4, 95% confidence interval = 6.1-25.4). Ideal parental sun protection efforts are overall low, particularly in parents of darker-skinned children. The identified attitudes toward and beliefs about sun safety may aid in delivery of future sun protection interventions, especially in multiracial populations. © 2018 Wiley Periodicals, Inc.

  15. Sun-view angle effects on reflectance factors of corn canopies

    Science.gov (United States)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  16. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  17. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  18. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  19. Metabolic rate and body temperature of an African sun bird ...

    African Journals Online (AJOL)

    The oxygen consumption (VO2) of the lesser double-collared sunbird, Nectarinia chalybea, was measured at ambient temperatures (Ta) from 7 to 35°C. The diel variation in body temperature (Tb) and wet thermal conductance (C) was also determined. The sunbirds (mean mass 8.36 g ± S.E. 0.21 g) showed a pronounced ...

  20. Sun and Sjogren's Syndrome

    Science.gov (United States)

    Patient Education Sheet The Sun and Sjögren’s Syndrome The SSF thanks Mona Z. Mofid, MD, FAAD, Diplomate, American Board of Dermatology, and Medical Director, American Melanoma Foundation, San Diego, California, ...

  1. Licensing the Sun

    Science.gov (United States)

    Demski, Jennifer

    2013-01-01

    The University of San Diego (USD) and Point Loma Nazarene University (PLNU) are licensing the sun. Both California schools are generating solar power on campus without having to sink large amounts of capital into equipment and installation. By negotiating power purchasing agreements (PPAs) with Amsolar and Perpetual Energy Systems, respectively,…

  2. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  3. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  4. Nutritional and fatty acid profiles of sun-dried edible black ants (Polyrhachis vicina Roger

    Directory of Open Access Journals (Sweden)

    Duo Li

    2010-03-01

    Full Text Available Determination of the nutritional composition of sun-dried edible black ants (Polyrhachis vicina Roger cultivated in Zhejiang and Guizhou Provinces, China, was carried out. The Zhejiang and Guizhou ants contained 31.5% and 41.5% protein, 15.7% and 15.9% lipid, and 25.4% and 26.4% fibre respectively. Monounsaturated fatty acids were the most predominant fatty acids (71.472.7% of total fatty acids found in both ant samples, followed by saturated fatty acids (23.825.5% and polyunsaturated fatty acids (3.13.7%. A significant amount of n-3 fatty acids was detected: 87.4 mg/100g and 145.6 mg/100g in Zhejiang and Guizhou ants respectively. Phosphorus, iron and calcium were the main minerals found in the ant samples. A small amount of selenium was also found.

  5. The Sun as a system of elementary particles

    International Nuclear Information System (INIS)

    Kleczek, J.

    1986-01-01

    The paper based on known facts of solar physics-is an attempt to interpret the Sun as a selfgravitating system of about 10/sup 57/ nucleons and electrons. These elementary particles are endowed with strong, electromagnetic, weak and gravitational interactions. Origin of the Sun, its evolution, structure and physiology are consequences of the four interactions. Each structural property, every evolutionary process, any activity phenomenon or event on the Sun can be traced backwards to the four fundamental forces of nature, viz. to interactions of elementary particles

  6. MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km (MYD07_L2). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing...

  7. Outdoor Workers' Use of Sun Protection at Work and Leisure

    Directory of Open Access Journals (Sweden)

    Cheryl E. Peters

    2016-09-01

    Conclusion: This high-participation rate cohort helps characterize sun protection behaviors among outdoor workers. Workers practiced better sun protection at work than on weekends, suggesting that workplace policies supportive of sun protection could be useful for skin cancer prevention in the construction industry.

  8. Developing a multipurpose sun tracking system using fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Alata, Mohanad [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)]. E-mail: alata@just.edu.jo; Al-Nimr, M.A. [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan); Qaroush, Yousef [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)

    2005-05-01

    The present work demonstrates the design and simulation of time controlled step sun tracking systems that include: one axis sun tracking with the tilted aperture equal to the latitude angle, equatorial two axis sun tracking and azimuth/elevation sun tracking. The first order Sugeno fuzzy inference system is utilized for modeling and controller design. In addition, an estimation of the insolation incident on a two axis sun tracking system is determined by fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm, along with least square estimation (LSE), generates the fuzzy rules that describe the relationship between the input/output data of solar angles that change with time. The fuzzy rules are tuned by an adaptive neuro-fuzzy inference system (ANFIS). Finally, an open loop control system is designed for each of the previous types of sun tracking systems. The results are shown using simulation and virtual reality. The site of application is chosen at Amman, Jordan (32 deg. North, 36 deg. East), and the period of controlling and simulating each type of tracking system is the year 2003.

  9. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  10. A discussion of non-linear temperature profiles at six closely spaced heat flow sites, southern Sohm Abyssal Plain, northwest Atlantic Ocean

    Science.gov (United States)

    Burgess, M. M.

    1986-09-01

    Six heat flow measurement sites were occupied in June 1980 in a 10 x 10 km 2 flat area of the southern Sohm Abyssal Plain, western North Atlantic Ocean. Non-linear sediment temperature profiles, measured to depths of 5 m, indicate perturbations in the temperature field in sediments overlying 90 Ma ocean floor. Temperature gradients average 59.0 mK m -1 in the lower half of the profile and decrease by 25% to an average of 44.24 mK m -1 in the upper half. Thermal conductivities of sediment cores down to 12 m ranged from 0.74 to 2.12 W m -1 K -1 and averaged 1.06 W m -1K -1. The non-linearity of sediment temperature profiles cannot be accounted for by the variations in thermal conductivity. Vertical fluid convection in the sediments, with a predominantly downward migration on the order of 5 x 10 -8 ms -1 in the upper 3 m, could explain the perturbations. However, in this study area of high abyssal kinetic energy and abyssal storms, bottom-water temperature fluctuations are the likely source of observed sediment temperature perturbations. A bottom-water temperature change of 50 mK occurring 3 months prior to the cruise could produce sediment temperature perturbations similar to those observed. Heat flow determined from the lower gradient (3-5 m sediment depth interval), assuming the non-linearity in the upper sensors to be principally due to bottom-water temperature fluctuations, averages 59.2 mW m -2, a slightly higher value than that predicted for 90 Ma crust.

  11. Analysis of temperature profiles and the mechanism of silicon substrate plastic deformation under epitaxial growth

    International Nuclear Information System (INIS)

    Mirkurbanov, H.A.; Sazhnev, S.V.; Timofeev, V.N.

    2004-01-01

    Full text: Thermal treatment of silicon wafers holds one of the major place in the manufacturing of semi-conductor devices. Thermal treatment includes wafer annealing, thermal oxidation, epitaxial growing etc. Quality of wafers in the high-temperature processes (900-1200 deg C) is estimated by the density of structural defects, including areas of plastic deformation, which are shown as the slip lines appearance. Such areas amount to 50-60 % of total wafer surface. The plastic deformation is caused by the thermal stresses. Experimental and theoretical researches allowed to determine thermal balance and to construct a temperature profiles throughout the plate surface. Thermal stresses are caused by temperature drop along the radius of a wafer and at the basic peripheral ring. The threshold temperature drop between center f a wafer and its peripherals (ΔT) for slip lines appearance, amounts to 15-17 deg. C. At the operating temperature of 900-1200 deg. C and ΔT>20 deg. C, the stresses reach the silicon yield point. According to the results of the researches of structure and stress profiles in a wafer, the mechanism of slip lines formation has been constructed. A source of dislocations is the rear broken layer of thickness 8-10 microns, formed after polishing. The micro-fissures with a density 10 5 -10 6 cm -2 are the sources of dislocations. Dislocations move on a surface of a wafer into a slip plane (111). On a wafer surface with orientation (111) it is possible to allocate zones where the tangential stress vector is most favorably directed with respect to a slip plane leaving on a surface, i.e. the shift stresses are maximal in the slip plane. The way to eliminate plastic deformation is to lower the temperature drop to a level of <15 deg. C and elimination of the broken layer in wafer

  12. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  13. The Sun as you never saw it before

    Science.gov (United States)

    1997-02-01

    The remarkable images come from SOHO's visible-light coronagraph LASCO. It masks the intense rays from the Sun's surface in order to reveal the much fainter glow of the solar atmosphere, or corona. Operated with its widest field of view, in its C3 instrument, LASCO's unprecedented sensitivity enables it to see the thin ionized gas of the solar wind out to the edges of the picture, 22 million kilometres from the Sun's surface. Many stars are brighter than the gas, and they create the background scene. The results alter human perceptions of the Sun. Nearly 30 years ago, Apollo photographs of the Earth persuaded everyone of what until then they knew only in theory, that we live on a small planet. Similarly the new imagery shows our motion in orbit around the Sun, and depicts it as one star among - yet close enough to fill the sky emanations that engulf us. For many centuries even astrologers knew that the Sun was in Sagittarius in December and drifting towards the next zodiacal constellation, Capricornus. This was a matter of calculation only, because the Sun's own brightness prevented a direct view of the starfield. The SOHO-LASCO movie makes this elementary point of astronomy a matter of direct observation for the first time. The images are achievable only from a vantage point in space, because the blue glow of the Earth's atmosphere hides the stars during the day. A spacial allocation of observing time, and of data tranmission from the SOHO spacecraft, enabled the LASCO team to obtain large numbers of images over the period 22-28 December 1996. Since then, a sustained effort in image processing, frame by frame, has achieved a result of high technical and aesthetic quality. Only now is the leader of the LASCO team, Guenter Brueckner of the US Naval Research Laboratory, satisfied with the product and ready to authorize its release. "I spend my life examining the Sun," Brueckner says, "but this movie is a special thrill. For a moment I forget the years of effort that

  14. Correlation study of actual temperature profile and in-line metrology measurements for within-wafer uniformity improvement and wafer edge yield enhancement (Conference Presentation)

    Science.gov (United States)

    Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou

    2018-03-01

    It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up

  15. Blinded by the light the secret life of the sun

    CERN Document Server

    Gribbin, John

    1991-01-01

    An investigation into the secrets and the new scientific developments which are changing our perceptions of the sun. The book tackles such questions as: does the sun breathe?; can it make sound?; is its centre ice-cold? The new research in sun science will alter our perception not only of the sun, but of the whole universe and add to the understanding of how the world works. The author has also written "Hothouse Earth" and "The Hole in the Sky".

  16. Spatial-temporal analysis of building surface temperatures in Hung Hom

    Science.gov (United States)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  17. Documentation and Nutritional profile of some selected food plants ...

    African Journals Online (AJOL)

    Documentation and Nutritional profile of some selected food plants of Otwal and Ngai sun counties Oyam District, Northern Uganda. ... However, it should be noted that there is a general decline in the consumption of wild plants, despite the apparent high nutritional values. The conservation of wild food plants is not taking ...

  18. CHANDRA observations of the NGC 1550 galaxy group: Implication for the temperature and entropy profiles of 1 keV galaxy groups

    DEFF Research Database (Denmark)

    Sun, M.; Forman, W.; Vikhlinin, A.

    2003-01-01

    is remarkably similar to those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07r(vir) - 0.1r(vir), while in hot clusters the decline begins at or beyond 0.2rvir. Thus, there are at least some 1 keV groups that have temperature profiles significantly...... different from those of hot clusters, which may reflect the role of nongravitational processes in intracluster medium/intergalactic medium evolution. NGC 1550 has no isentropic core in its entropy pro. le, in contrast to the predictions of "entropy floor'' simulations. We compare the scaled entropy profiles...

  19. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Directory of Open Access Journals (Sweden)

    Hauchecorne Alain

    2016-01-01

    Full Text Available A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  20. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  1. Social influences on the estrous cycle of the captive sun bear (Helarctos Malayanus).

    Science.gov (United States)

    Frederick, Cheryl; Hunt, Kathleen; Kyes, Randall; Collins, Darin; Durrant, Barbara; Ha, James; Wasser, Samuel K

    2013-01-01

    We examined the potential influences of existing social housing arrangements on captive sun bear female reproductive cycling. Three social conditions were studied: 1.2, 1.1, and 0.2. Fecal hormone metabolites of total estrogens, progestins and glucocorticoids were compared between the three social conditions and were analyzed along with vaginal cytology data in individuals that experienced a change in social condition. Behavioral data were collected on females in each of the social conditions and summarized into agonistic, affiliative and sexual categories. Results indicated that sun bears are spontaneous ovulators, but that the presence of a male does influence hormone metabolite concentrations and cytological profiles. Male presence was also associated with a greater proportion of females cycling. In most female pairs, only one female cycled, typically the younger, subordinate female. The presence of a second female appeared to have a suppressive influence on both cycling and mating behavior. Agonistic behavior and associated stress may be a mechanism for lowering progesterone. In contrast, high estrogen levels were associated with low levels of agonistic interactions; thus, reproductive cycle monitoring could facilitate social introductions with either sex. Females in 1.2 social groupings had significantly higher GC metabolite concentrations and agonistic behavior, suggesting that 1.2 social groupings may not be advisable for captive breeding programs. Data from the North American historical captive population indicate that at most 32% of all sun bear pairs and only 18.5% of females have successfully reproduced. Implications of these social and reproductive patterns for captive management are discussed. © 2013 Wiley Periodicals, Inc.

  2. Sun exposure patterns of urban, suburban, and rural children

    DEFF Research Database (Denmark)

    Bodekær, Mette; Petersen, Bibi; Philipsen, Peter Alshede

    2015-01-01

    BACKGROUND: Sun exposure is the main etiology of skin cancer. Differences in skin cancer incidence have been observed between rural and urban populations. OBJECTIVES: As sun exposure begins in childhood, we examined summer UVR exposure doses and sun behavior in children resident in urban, suburban......, and rural areas. METHODS: Personal, electronic UVR dosimeters and sun behavior diaries were used during a summer (3.5 months) by 150 children (4-19 years of age) resident in urban, suburban, and rural areas. RESULTS: On school/kindergarten days rural children spent more time outdoors and received higher UVR...... doses than urban and suburban children (rural: median 2.3 h per day, median 0.9 SED per day, urban: median 1.3 h per day, median 0.3 SED per day, suburban: median 1.5 h per day, median 0.4 SED per day) (p ≤ 0.007). Urban and suburban children exhibited a more intermittent sun exposure pattern than rural...

  3. [Sun exposure at school: Evaluation of risk (erythema dose), benefits (vitamin-D synthesis) and behaviour among children in France].

    Science.gov (United States)

    Mahé, E; de Paula Corrêa, M; Vouldoukis, I; Godin-Beekmann, S; Sigal, M-L; Beauchet, A

    2016-01-01

    To better understand the potential risk associated with sun exposure during the school year, we decided to evaluate behaviour, risk [UV index (UVI), minimal erythema dose (MED)] and benefits (vitamin-D synthesis) of sun exposure in primary schoolchildren in France, as well as the various sun protection methods used for children. We performed the study on a sunny day (July 24) in a school in Antony (France). Evaluation of UVI (with calculation of MED) and the amount of vitamin D synthesized according to exposed body surface area and phototype were performed every 15minutes from 9 a.m. to 5 p.m. The effects of albedo and shade on UVI were assessed in 8 different locations at the school. The sun-protection measures used by the children were systematically evaluated. Fifty-seven children were evaluated; the maximum UVI was 7.2 and the maximum temperature was 30.7°C. Irrespective of phototype and clothing, 1 MED was reached and an adequate level of vitamin D was synthesized in the skin before midday. Albedo had little impact on irradiation. The amount of protection afforded by shadow varied greatly, with the highest level occurring in the covered courtyard (99.5% reduction of UVI) and the lowest in the shadow of buildings (53.7% reduction of UVI). With strict sun protection measures concerning dress, children reached 1 MED before synthesizing 1000IU of vitamin D, but with clothing "suited to high temperatures", 1000IU of vitamin D were synthetized before 1 MED was reached. Compliance with photoprotection measures was poor. Regardless of duration of exposure during the day (minimal model: two play breaks+lunchtime break) and of skin phototype, at least 1.5 MED was reached during the day. This was an experimental study ignoring children's actual behaviour (movement, sweating, application of sun protection products, etc.). Moreover, due to weather conditions, the study was performed at a recreation centre in July and not during the "standard" school year. Sun

  4. A New Way that Planets can Affect the Sun

    Science.gov (United States)

    Wolff, Charles; Patrone, Paul

    2010-01-01

    As planets orbit the Sun, the Sun also has to move to keep the total momentum of the solar system constant. The Sun's small orbital motion plus its 25 day rotation about its axis combine to invigorate some solar instabilities. Occasional convection cells at the proper phase in their short life can be strengthened by factors of two or more. This local burst of extra kinetic energy eventually reaches the surface where it can increase the intensity of solar activity. It might explain some reports in the last century of how planetary positions correlate with solar activity. This is the first effect of planets that is large enough to cause a significant response on the Sun.

  5. Solar flare leaves sun quaking

    Science.gov (United States)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  6. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    Science.gov (United States)

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  7. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  8. Protective clothing in the sun | Tamas | Nigerian Journal of Clinical ...

    African Journals Online (AJOL)

    Sun protecting clothing is clothing designed for sun protection and is producted from the fabric rated for its level ultraviolet (UV) protection. Some textiles and fabrics emloyed in the use of sun protective clothing may be pre-treated with UV inhibiting ingredients during manufacture to enhance their UV blocking capacitiy.

  9. Ancient cults of the sun (German Title: Antike Sonnenkulte)

    Science.gov (United States)

    Hansen, Rahlf

    In ancient astronomy, the heliocentric system of Aristarchus of Samos did not meet universal approval. Contrary to that, the cult of the sun gained immense importance in the Roman Empire. Relics of this significance we still find e.g. in the meaning of the Sunday in the week and in the date of Christmas. The rise of the sun cults is characterised by the merging of different gods from various cultures. Already in classical Greece the god of the sun, Helios, almagated with the god of light, Apollo. The resulting entity was regarded as the harmonic guide of the visible universe, symbolized by Apoll. As well as he plays the lyre, he conducts the cosmos harmonically as the sun. Plato recommends to politicians to study musical harmonics and astronomy in order to get a feeling of the right way to rule the state. In consequence to the conquests of Alexander the Great, the Babylonian star religion was mingled with Greek cosmology and the concept of transmigration of souls. The astrology resulting therefrom spread out over the whole Hellenistic world and was very common in the Roman Empire. The calendar with its religious division of time as the days of the week, following the principle of the gods of the planets governing the hour, was well known. The god of the sun was graded up by the adoption of the calendar of the sun from Egypt by Caesar. Augustus chose Apoll as his guardian god and built with “his” sundial a symbol of the god of the sun, which was visible from a long distance. Augustus used more astral symbols as propaganda of leadership. During the competition with the Parthians, another large empire, for world domination the focus fell on an Iranian god: the Iranian god of light and contract - Mithras. Shortly before 100 A.D., a new cult of mysteries arose in the Roman Empire, called cult of Mithras, and spread quickly. It combined the attributes of a classical sun-god with a religion of salvation, guaranteed by baptism, communion and seven degrees to be passed

  10. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity.

    Science.gov (United States)

    Musiał, Witold; Kokol, Vanja; Voncina, Bojana

    2010-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethacrylate crosslinker respectively, due to theirs thermosensitivity exhibit increase in protecting activity against UV radiation when heated to 45 degrees C. The MX microspheres have higher increase in terms of UV absorbance, comparing to DX microspheres, when heated in the 25 degrees C to 45 degrees C range. Studied microspheres have high potential for application as components of sun-screens used in elevated temperatures.

  11. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  12. Our Explosive Sun

    Science.gov (United States)

    Brown, D. S.

    2009-01-01

    The Sun's atmosphere is a highly structured but dynamic place, dominated by the solar magnetic field. Hot charged gas (plasma) is trapped on lines of magnetic force that can snap like an elastic band, propelling giant clouds of material out into space. A range of ground-based and space-based solar telescopes observe these eruptions, particularly…

  13. Surya Namaskar (Sun Salutation): A Path to Good Health

    OpenAIRE

    Amit Vaibhav; Swati Shukla; Om Prakash Singh

    2016-01-01

    Surya Namaskar (Sun Salutation) is an ancient and sacred yogic technique of India for expressing gratitude to the Sun. Surya Namaskar is a set of 12 Asanas (postures), It is done preferably in the morning while facing the rising sun. There are numerous health benefits of Surya Namaskar for different system of the body specially musculoskeletal, cardiovascular, gastrointestinal, nervous system, respiratory and endocrinal. The heart, liver, intestine, stomach, chest, throat, legs and backbone a...

  14. Correlates of Sun Protection and Sunburn in Children of Melanoma Survivors.

    Science.gov (United States)

    Tripp, Mary K; Peterson, Susan K; Prokhorov, Alexander V; Shete, Sanjay S; Lee, Jeffrey E; Gershenwald, Jeffrey E; Gritz, Ellen R

    2016-09-01

    Sunburns during childhood increase melanoma risk. Children of melanoma survivors are at higher risk, but little is known about their sunburn and sun protection. One study showed that almost half of melanoma survivors' children experienced sunburn in the past year. This study evaluated sunburn and sun protection in melanoma survivors' children, and relevant survivor characteristics from Social Cognitive Theory and the Health Belief Model. Melanoma survivors (N=340) were recruited from a comprehensive cancer center. Survivors completed a baseline questionnaire administered by telephone to report on the behavior of their children (N=340) as part of an RCT of a sun protection intervention. Data were collected in 2008 and analyzed in 2015. In the prior 6 months, 28% of children experienced sunburn. "Always" or "frequent" sun protection varied by behavior: sunscreen, 69%; lip balm, 15%; wide-brimmed hats, 9%; sleeved shirts, 28%; pants, 48%; sunglasses, 10%; shade, 33%; and limiting time outdoors, 45%. Survivors' sunburn and sun protection were positively associated with these outcomes in children. Correlates of sunburn also included older child age and higher risk perceptions. Correlates of sun protection behaviors included younger child age; stronger intentions, higher self-efficacy, and more positive outcome expectations about sun protection; and greater number of melanomas in survivors. Melanoma survivors may have a heightened awareness of the importance of their children's sun protection, but their children are not routinely protected. Correlates of children's sunburn and sun protection suggest subgroups of survivors to target with interventions to improve sun protection. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Preferred solar wind emitting longitudes on the sun

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1977-01-01

    During the 11 1/2-year period from July 1964 through December 1975, high- and low-speed solar wind flows originated from preferred solar longitudes. The preferred longitude effect was most pronounced from 1970 onward but was also evident in the years preceding 1970. The most pronounced modulation in average solar wind speed with longitude (approximately 20%) was obtained when it was assumed that the synodic rotation period of the sun is 27.025 days. Some deep internal structure in the sun must ultmately be responsible for these long-lived longitudinal effects, which appear to rotate rigidly with the sun

  16. Estimating the Soil Temperature Profile from a single Depth Observation: A simple Empirical Heatflow Solution

    NARCIS (Netherlands)

    Holmes, T.R.H.; Owe, M.; de Jeu, R.A.M.; Kooi, H.

    2008-01-01

    Two field data sets are used to model near-surface soil temperature profiles in a bare soil. It is shown that the commonly used solutions to the heat flow equations by Van Wijk perform well when applied at deeper soil layers, but result in large errors when applied to near surface layers, where more

  17. Sun Protection Among New Zealand Primary School Children.

    Science.gov (United States)

    Gage, Ryan; Leung, William; Stanley, James; Reeder, Anthony; Mackay, Christina; Smith, Moira; Barr, Michelle; Chambers, Tim; Signal, Louise

    2017-12-01

    Schools are an important setting for raising skin cancer prevention awareness and encouraging sun protection. We assessed the clothes worn and shade used by 1,278 children in eight schools in the Wellington region of New Zealand. These children were photographed for the Kids'Cam project between September 2014 and March 2015 during school lunch breaks. Children's mean clothing coverage (expressed as a percentage of body area covered) was calculated. Data on school sun-safety policies were obtained via telephone. Mean total body clothing coverage was 70.3% (95% confidence interval = 66.3%, 73.8%). Body regions with the lowest mean coverage were the head (15.4% coverage), neck (36.1% coverage), lower arms (46.1% coverage), hands (5.3% coverage), and calves (30.1% coverage). Children from schools with hats as part of the school uniform were significantly more likely to wear a hat (52.2%) than children from schools without a school hat (2.7%). Most children (78.4%) were not under the cover of shade. Our findings suggest that New Zealand children are not sufficiently protected from the sun at school. Schools should consider comprehensive approaches to improve sun protection, such as the provision of school hats, sun-protective uniforms, and the construction of effective shade.

  18. An autonomous low power high resolution micro-digital sun sensor

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.

    2011-01-01

    Micro-Digital Sun Sensor (?DSS) is a sun detector which senses the respective angle between a satellite and the sun. It is composed of a solar cell power supply, a RF communication block and a CMOS Image Sensor (CIS) chip, which is called APS+. The paper describes the implementation of a prototype

  19. Temperature profile and other data collected using microstructure profiler (JMSP) from the HAKUHO-MARU as part of the Coupled Ocean-Atmosphere Response Experiment (COARE), from 01 November 1992 - 30 November 1992 (NODC Accession 9600028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using microstructure profiler (JMSP) from the HAKUHO-MARU in the TOGA Area - Pacific Ocean (30 N to 30 S) from...

  20. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  1. Sun Safety Practices Among Schools in the United States.

    Science.gov (United States)

    Everett Jones, Sherry; Guy, Gery P

    2017-05-01

    Exposure to the sun's UV radiation is a leading cause of skin cancer. Positive attitudes and beliefs about sun safety behavior, which would make sun protective behavior more likely, could be promoted and supported by school policies and practices. To identify school characteristics associated with having adopted practices that promote sun safety. School-level data from the February 3 to July 23, 2014, School Health Policies and Practices Study's Healthy and Safe School Environment questionnaire were analyzed. The School Health Policies and Practices Study uses a 2-stage sampling design to select a nationally representative sample of schools. All public, state-administered, Catholic, and non-Catholic private schools with any of the grades from kindergarten through 12 were eligible for inclusion. All analyses were conducted using weighted data. Prevalence of sun safety practices. In a nationally representative sample of 828 US schools, representatives of 577 schools (69.7%) responded. Overall, sun safety practices were not common among schools. The most frequent practice was having teachers allow time for students to apply sunscreen at school (47.6%; 95% CI, 42.4%-52.9%). Few schools made sunscreen available for students to use (13.3%; 95% CI, 10.2%-17.0%), almost always or always scheduled outdoor activities to avoid times when the sun was at peak intensity (15.0%; 95% CI, 11.4%-19.6%), or asked parents to ensure that students applied sunscreen before school (16.4%; 95% CI, 12.9%-20.6%). High schools were less likely than elementary schools and middle schools to adopt several practices: for instance, 37.5% of high schools (95% CI, 29.7%-46.0%), 51.6% of middle schools (95% CI, 43.3%-59.7%), and 49.5% of elementary schools (95% CI, 42.0%-57.0%) had teachers allow time for students to apply sunscreen at school, and 11.8% of high schools (95% CI, 7.7%-17.5%), 18.2% of middle schools (95% CI, 13.3%-24.4%), and 14.7% of elementary schools (95% CI, 9.6%-21.8%) almost

  2. The evolution of protostellar envelopes of masses 3 Msub(sun) and 10 Msub(sun)

    International Nuclear Information System (INIS)

    Yorke, H.W.

    1979-10-01

    The results of numerical calculations solving the coupled equations of hydrodynamics and radiation transfer are presented in a sequence of papers describing the structure, evolution and appearance of protostellar clouds of intermediate mass (3 Msub(sun) 10 Msub(sun). These numerical calculations begin at the time of initial gravitational collapse and continue through the birth of a central protostar, until the infall of material onto the central object has been reversed. For the 10 M case the formation and evolution of a compact HII region is crudely followed after the gas density in the envelope had decreased sufficiently to allow an ionization front to propagate outwards. For all cases calculated spherical symmetry was assumed. Solar abundances were used. (orig.) 891 WL/orig. 892 RDG

  3. Traditions of the Sun, One Model for Expanding Audience Access

    Science.gov (United States)

    Hawkins, I.; Paglierani, R.

    2006-12-01

    The Internet is a powerful tool with which to expand audience access, bringing students, teachers and the public to places and resources they might not otherwise visit or make use of. We will present Traditions of the Sun, an experiential Web site that invites exploration of the world's ancient observatories with special emphasis on Chaco Culture National Historic Park in the Four Corners region of the US and several sites in the Yucatan Peninsula in Mexico. Traditions of the Sun includes resources in English and Spanish along with a unique trilingual on-line book, "Traditions of the Sun, A Photographic Journal," containing explanatory text in Yucatec Maya as well. Traditions of the Sun offers rich opportunities for virtual visits to ancient sites used for solar observing while learning about current NASA research on the Sun and indigenous solar practices within a larger historical and cultural context. The site contains hundreds of photographs, historic images and rich multimedia to help tell the story of the Sun-Earth Connection. Visitors to the site can zoom in on the great Mayan cities of Chichen Itza, Uxmal, Dzibilchaltun, and Mayapan to learn about Mayan astronomy, history, culture, and science. They can also visit Chaco Canyon to watch sunrise over Pueblo Bonito on the summer solstice, take a virtual reality tour of the great kiva at Casa Rinconada or see panoramic vistas from Fajada Butte, an area which, for preservation purposes, is restricted to the public. Traditions of the Sun provides one model of how exploration and discovery can come to life for both formal and informal audiences via the Internet. Traditions of the Sun is a collaborative project between NASA's Sun-Earth Connection Education Forum, the National Park Service, Instituto National de Antropologia e Historia, Universidad Nacional Autonoma de Mexico, and Ideum.

  4. Spectra and gross features of vertical temperature and salinity profiles off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Nagarajan, R.

    Continuous vertical profiles of temperature and salinity recorded by a CTD-system from the continental slope and the continental rise off Goa, west coast of India, were used for delineating the gross statistical features of the fine structure...

  5. The sun as a star: Solar phenomena and stellar applications

    International Nuclear Information System (INIS)

    Noyes, R.W.

    1981-01-01

    Our Sun is a run-of-the-mill star, having no obvious extremes of stellar properties. For this reason it is perhaps more, rather than less, interesting as an astrophysical object, for its sameness to other stars suggests that in studying the Sun, we are studying at close hand common, rather than unusual stellar phenomena. Conversely, comparative study of the Sun and other solar-type stars is an invaluable tool for solar physics, for two reasons: First, it allows us to explore how solar properties and phenomena depend on parameters we cannot vary on the Sun - most fundamentally, rotation rate and mass. Second, study of solar-like stars of different ages allows us to see how stellar and solar phenomena depend on age; study of other stars may be one of the best ways to infer the earlier history of the Sun, as well as its future history. In this review we shall concentrate on phenomena common to the Sun and solar-type (main sequence) stars with different fundamental properties such as mass, age, and rotation. (orig.)

  6. The relationship between sun protection policies and practices in schools with primary-age students: the role of school demographics, policy comprehensiveness and SunSmart membership.

    Science.gov (United States)

    Dono, J; Ettridge, K A; Sharplin, G R; Wilson, C J

    2014-02-01

    Schools can implement evidence-based sun protection policies that guide practices to help protect children from harmful sun exposure. This national study assessed the relationship between the existence and comprehensiveness of written policies and the comprehensiveness of sun protection practices. The impact of school demographics on the strength of the relationship was also examined, as was the possibility that 'SunSmart' membership would have an additional impact on practices, beyond having any formal policy. In 2011-12, staff members of 1573 schools catering to primary-age students completed a self-administered survey about sun protection policies and practices (response rate of 57%). Results showed that schools with a written policy had more comprehensive practices than schools without a written policy. The relationship between having a written policy and sun protection practices was stronger for remote schools compared with metropolitan and regional schools, and for schools catering to both primary and secondary students compared with primary students only. In addition, policy comprehensiveness was associated with practice comprehensiveness, and SunSmart membership was indirectly related to practice comprehensiveness via policy comprehensiveness. These results indicate that written policies relate to practice comprehensiveness, but the strength of the association can vary according to the characteristics of the organization.

  7. Eruptions from the Sun

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  8. BPS Center Vortices in Nonrelativistic SU(N) Gauge Models with Adjoint Higgs Fields

    International Nuclear Information System (INIS)

    Oxman, L. E.

    2015-01-01

    We propose a class of SU(N) Yang-Mills models, with adjoint Higgs fields, that accept BPS center vortex equations. The lack of a local magnetic flux that could serve as an energy bound is circumvented by including a new term in the energy functional. This term tends to align, in the Lie algebra, the magnetic field and one of the adjoint Higgs fields. Finally, a reduced set of equations for the center vortex profile functions is obtained (for N=2,3). In particular, Z(3) BPS vortices come in three colours and three anticolours, obtained from an ansatz based on the defining representation and its conjugate.

  9. Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D

    International Nuclear Information System (INIS)

    Casper, T A; Burrell, K H; Doyle, E J; Gohil, P; Lasnier, C J; Leonard, A W; Moller, J M; Osborne, T H; Snyder, P B; Thomas, D M; Weiland, J; West, W P

    2006-01-01

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes. Our initial experiments and modelling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters, namely ion temperature and rotation, electron density and impurity concentration. At onset and termination of the EC pulse, dynamically changing conditions are induced that provide a rapid evolution of T e /T i profiles accessible with 0.3 e /T i ) axis e /T i ratio as the ion temperature and density profiles flatten with this change in transport. The change in transport is consistent with a destabilization of ITG turbulence as inferred from the reduction of the stability threshold due to the change in T e /T i

  10. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  11. Global Warming Blame the Sun

    CERN Document Server

    Calder, N

    1997-01-01

    Concern about climate change reaches a political peak at a UN conference in Kyoto, 1-10 December, but behind the scenes the science is in turmoil. A challenge to the hypothesis that greenhouse gases are responsible for global warming comes from the discovery that cosmic rays from the Galaxy are involved in making clouds (Svensmark and Friis-Christensen, 1997). During the 20th Century the wind from the Sun has grown stronger and the count of cosmic rays has diminished. With fewer clouds, the EarthÕs surface has warmed up. This surprising mechanism explains the link between the Sun and climate change that astronomers and geophysicists have suspected for 200 years.

  12. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    Science.gov (United States)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Analysis of coronal H I Lyman alpha measurements from a rocket flight on 1979 April 13

    International Nuclear Information System (INIS)

    Withbroe, G.L.; Kohl, J.L.; Weiser, H.; Noci, G.; Munro, R.H.

    1982-01-01

    Measurements of the profiles of resonantly scattered hydrogen Lyman-α coronal radiation have been used to determine hydrogen kinetic temperatures from 1.5 to 4 R/sub sun/ from Sun center in a quiet region of the corona. Proton temperatures derived from the line widths decrease with height from 2.6 x 10 6 K at r = 1.5 R/sub sun/ to 1.2 x 10 6 K at r = 4 R/sub sun/. These measurements combined with temperatures for lower heights determined from earlier Skylab and eclipse data suggest that there is a maximum in the quiet coronal proton temperature at about 1.5 R/sub sun/. Comparison of measured Lyman-α intensities with those calculated using a representative model for the radial variation of the coronal electron density provides information on the magnitude of the electron temperature gradient and suggests that the solar wind flow was subsonic for r<4 R/sub sun/ in the observed region. Comparison of the measured kinetic temperatures to the predictions of a simple two fluid model suggests that there is a small amount of proton heating and/or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 R/sub sun/

  14. Ultraviolet radiation, sun damage and preventing

    International Nuclear Information System (INIS)

    Johnsen, B.; Christensen, T.; Nilsen, L.T.; Hannevik, M.

    2013-01-01

    The report focuses on the large impact of health damages due to excessive UV exposure from natural sun. The first part of the report gives background information on factors significantly affecting the intensity of UV radiation. The second part gives an overview of health effects related to UV exposure, with recommendations on how to avoid excessive UV exposure and still enjoy the positive sides of outdoor activity. The report is intended to contribute to informational activities about sun exposure as recommended by the World Health Organisation and the World Meteorology Organisation. (Author)

  15. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    Science.gov (United States)

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Sun safety in construction: a U.K. intervention study.

    Science.gov (United States)

    Houdmont, J; Madgwick, P; Randall, R

    2016-01-01

    Interventions to promote sun safety in the U.K. construction sector are warranted given the high incidence of skin cancer attributable to sun exposure relative to other occupational groups. To evaluate change in sun safety knowledge and practices among construction workers in response to an educational intervention. A baseline questionnaire was administered, followed by a bespoke sector-specific DVD-based intervention. At 12-month follow-up, participants completed a further questionnaire. Analyses were conducted on a sample of 120 workers (intervention group, n = 70; comparison group, n = 50). At follow-up, the proportion of intervention group participants that reported correct sun safety knowledge was not significantly greater than at baseline. However, the intervention group demonstrated significant positive change on 9 out of 10 behavioural measures, the greatest change being use of a shade/cover when working in the sun followed by regularly checking skin for moles or unusual changes. Exposure to this intervention was linked to some specific positive changes in construction workers' self-reported sun safety practices. These findings highlight the potential for educational interventions to contribute to tackling skin cancer in the UK construction sector. The findings support the development of bespoke educational interventions for other high-risk outdoor worker groups. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  18. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  19. Validity and Stability of the Decisional Balance for Sun Protection Inventory

    OpenAIRE

    Hui-Qing Yin; Joseph S. Rossi; Colleen A. Redding; Andrea L. Paiva; Steven F. Babbin; Wayne F. Velicer

    2014-01-01

    The 8-item Decisional Balance for sun protection inventory (SunDB) assesses the relative importance of the perceived advantages (Pros) and disadvantages (Cons) of sun protective behaviors. This study examined the psychometric properties of the SunDB measure, including invariance of the measurement model, in a population-based sample of N = 1336 adults. Confirmatory factor analyses supported the theoretically based 2-factor (Pros, Cons) model, with high internal consistencies for each subscale...

  20. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere