WorldWideScience

Sample records for sun sensor modeling

  1. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... an Earth albedo model, based on reflectivity data from NASA's Total Ozone Mapping Spectrometer project, has been published. In this paper the proposed model is presented, and the model is sought validated by comparing simulated data with telemetry from the Danish Ørsted satellite. A novel method...... for modeling Sun sensor output by incorporating the Earth albedo model is presented. This model utilizes the directional information of in the Earth albedo model, which is achieved by Earth surface partitioning. This allows accurate simulation of the Sun sensor output and the results are consistent with Ørsted...

  2. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    Science.gov (United States)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  3. Autonomous Sun-Direction Estimation Using Partially Underdetermined Coarse Sun Sensor Configurations

    Science.gov (United States)

    O'Keefe, Stephen A.

    In recent years there has been a significant increase in interest in smaller satellites as lower cost alternatives to traditional satellites, particularly with the rise in popularity of the CubeSat. Due to stringent mass, size, and often budget constraints, these small satellites rely on making the most of inexpensive hardware components and sensors, such as coarse sun sensors (CSS) and magnetometers. More expensive high-accuracy sun sensors often combine multiple measurements, and use specialized electronics, to deterministically solve for the direction of the Sun. Alternatively, cosine-type CSS output a voltage relative to the input light and are attractive due to their very low cost, simplicity to manufacture, small size, and minimal power consumption. This research investigates using coarse sun sensors for performing robust attitude estimation in order to point a spacecraft at the Sun after deployment from a launch vehicle, or following a system fault. As an alternative to using a large number of sensors, this thesis explores sun-direction estimation techniques with low computational costs that function well with underdetermined sets of CSS. Single-point estimators are coupled with simultaneous nonlinear control to achieve sun-pointing within a small percentage of a single orbit despite the partially underdetermined nature of the sensor suite. Leveraging an extensive analysis of the sensor models involved, sequential filtering techniques are shown to be capable of estimating the sun-direction to within a few degrees, with no a priori attitude information and using only CSS, despite the significant noise and biases present in the system. Detailed numerical simulations are used to compare and contrast the performance of the five different estimation techniques, with and without rate gyro measurements, their sensitivity to rate gyro accuracy, and their computation time. One of the key concerns with reducing the number of CSS is sensor degradation and failure. In

  4. Sun-Direction Estimation Using a Partially Underdetermined Set of Coarse Sun Sensors

    Science.gov (United States)

    O'Keefe, Stephen A.; Schaub, Hanspeter

    2015-09-01

    A comparison of different methods to estimate the sun-direction vector using a partially underdetermined set of cosine-type coarse sun sensors (CSS), while simultaneously controlling the attitude towards a power-positive orientation, is presented. CSS are commonly used in performing power-positive sun-pointing and are attractive due to their relative inexpensiveness, small size, and reduced power consumption. For this study only CSS and rate gyro measurements are available, and the sensor configuration does not provide global triple coverage required for a unique sun-direction calculation. The methods investigated include a vector average method, a combination of least squares and minimum norm criteria, and an extended Kalman filter approach. All cases are formulated such that precise ground calibration of the CSS is not required. Despite significant biases in the state dynamics and measurement models, Monte Carlo simulations show that an extended Kalman filter approach, despite the underdetermined sensor coverage, can provide degree-level accuracy of the sun-direction vector both with and without a control algorithm running simultaneously. If no rate gyro measurements are available, and rates are partially estimated from CSS, the EKF performance degrades as expected, but is still able to achieve better than 10∘ accuracy using only CSS measurements.

  5. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    -Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  6. Normalization of time-series satellite reflectance data to a standard sun-target-sensor geometry using a semi-empirical model

    Science.gov (United States)

    Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang

    2017-10-01

    Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.

  7. Micro-digital sun sensor: an imaging sensor for space applications

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Büttgen, B.; Hakkesteegt, H.C.; Jasen, H.; Leijtens, J.A.P.

    2010-01-01

    Micro-Digital Sun Sensor is an attitude sensor which senses relative position of micro-satellites to the sun in space. It is composed of a solar cell power supply, a RF communication block and an imaging chip which is called APS+. The APS+ integrates a CMOS Active Pixel Sensor (APS) of 512×512

  8. Development of a low-cost sun sensor for nanosatellites

    Science.gov (United States)

    Antonello, Andrea; Olivieri, Lorenzo; Francesconi, Alessandro

    2018-03-01

    Sun sensors represent a common and reliable technology for attitude determination, employed in many space missions thanks to their limited size and weight. Typically, two-axis digital Sun sensors employ an array of active pixels arranged behind a small aperture; the position of the sunlight's spot allows to determine the direction of the Sun. With the advent of smaller vehicles such as CubeSats and Nanosats, there is the need to further reduce the size and weight of such devices: as a trade-off, this usually results in the curtail of the performances. Nowadays, state of the art Sun sensors for CubeSats have resolutions of about 0.5°, with fields of view in the ±45° to ±90° range, with off-the-self prices of several thousands of dollars. In this work we introduce a novel low-cost miniaturized Sun sensor, based on a commercial CMOS camera detector; its main feature is the reduced size with respect to state-of-the-art sensors developed from the same technology, making it employable on CubeSats. The sensor consists of a precisely machined pinhole with a 10 μm circular aperture, placed at a distance of 7 mm from the CMOS. The standoff distance and casing design allow for a maximum resolution of less than 0.03°, outperforming most of the products currently available for nano and pico platforms; furthermore, the nature of the technology allows for reduced size and lightweight characteristics. The design, development and laboratory tests of the sensor are here introduced, starting with the definition of the physical model, the geometrical layout and its theoretical resolution; a more accurate model was then developed in order to account for the geometrical deviations and deformations of the pinhole-projected light-spot, as well as to account for the background noise and disturbances to the electronics. Finally, the laboratory setup is presented along with the test campaigns: the results obtained are compared with the simulations, allowing for the validation of the

  9. Multi-Aperture CMOS Sun Sensor for Microsatellite Attitude Determination

    Directory of Open Access Journals (Sweden)

    Michele Grassi

    2009-06-01

    Full Text Available This paper describes the high precision digital sun sensor under development at the University of Naples. The sensor determines the sun line orientation in the sensor frame from the measurement of the sun position on the focal plane. It exploits CMOS technology and an original optical head design with multiple apertures. This allows simultaneous multiple acquisitions of the sun as spots on the focal plane. The sensor can be operated either with a fixed or a variable number of sun spots, depending on the required field of view and sun-line measurement precision. Multiple acquisitions are averaged by using techniques which minimize the computational load to extract the sun line orientation with high precision. Accuracy and computational efficiency are also improved thanks to an original design of the calibration function relying on neural networks. Extensive test campaigns are carried out using a laboratory test facility reproducing sun spectrum, apparent size and distance, and variable illumination directions. Test results validate the sensor concept, confirming the precision improvement achievable with multiple apertures, and sensor operation with a variable number of sun spots. Specifically, the sensor provides accuracy and precision in the order of 1 arcmin and 1 arcsec, respectively.

  10. CRUQS: A Miniature Fine Sun Sensor for Nanosatellites

    Science.gov (United States)

    Heatwole, Scott; Snow, Carl; Santos, Luis

    2013-01-01

    A new miniature fine Sun sensor has been developed that uses a quadrant photodiode and housing to determine the Sun vector. Its size, mass, and power make it especially suited to small satellite applications, especially nanosatellites. Its accuracy is on the order of one arcminute, and it will enable new science in the area of nanosatellites. The motivation for this innovation was the need for high-performance Sun sensors in the nanosatellite category. The design idea comes out of the LISS (Lockheed Intermediate Sun Sensor) used by the sounding rocket program on their solar pointing ACS (Attitude Control System). This system uses photodiodes and a wall between them. The shadow cast by the Sun is used to determine the Sun angle. The new sensor takes this concept and miniaturizes it. A cruciform shaped housing and a surface-mount quadrant photodiode package allow for a two-axis fine Sun sensor to be packaged into a space approx.1.25xl x0.25 in. (approx.3.2x2.5x0.6 cm). The circuitry to read the photodiodes is a simple trans-impedance operational amplifier. This is much less complex than current small Sun sensors for nanosatellites that rely on photo-arrays and processing of images to determine the Sun center. The simplicity of the circuit allows for a low power draw as well. The sensor consists of housing with a cruciform machined in it. The cruciform walls are 0.5-mm thick and the center of the cruciform is situated over the center of the quadrant photodiode sensor. This allows for shadows to be cast on each of the four photodiodes based on the angle of the Sun. A simple operational amplifier circuit is used to read the output of the photodiodes as a voltage. The voltage output of each photodiode is summed based on rows and columns, and then the values of both rows or both columns are differenced and divided by the sum of the voltages for all four photodiodes. The value of both difference over sums for the rows and columns is compared to a table or a polynomial fit

  11. Micro technology based sun sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Pedersen, Martin; Fléron, René

    2003-01-01

    various payloads and platforms. The conventional and commercial actuators and attitude sensors are in most cases not suited for these satellites, which again lead to new design considerations. Another important property is the launch cost, which can be kept relatively low as a result of the concept....... This fact enables students to get hands-on experience with satellite systems design and project management. This paper describes the attitude control and determination system of a Danish student satellite (DTUsat), with main focus on the two-axis MOEMS sun sensor developed. On the magnetotorquer controlled...... DTUsat sun sensors are needed along with a magnetometer to obtain unambiguous attitude determination for the ACDS and the payloads - an electrodynamic tether and a camera. The accuracy needed was not obtainable by employing conventional attitude sensors. Hence a linear slit sensor was designed...

  12. A sun-crown-sensor model and adapted C-correction logic for topographic correction of high resolution forest imagery

    Science.gov (United States)

    Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.

    2014-10-01

    Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model

  13. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  14. Linear wide angle sun sensor for spinning satellites

    Science.gov (United States)

    Philip, M. P.; Kalakrishnan, B.; Jain, Y. K.

    1983-08-01

    A concept is developed which overcomes the defects of the nonlinearity of response and limitation in range exhibited by the V-slit, N-slit, and crossed slit sun sensors normally used for sun elevation angle measurements on spinning spacecraft. Two versions of sensors based on this concept which give a linear output and have a range of nearly + or - 90 deg of elevation angle are examined. Results are presented for the application of the twin slit version of the sun sensor in the three Indian satellites, Rohini, Apple, and Bhaskara II, which was successfully used for spin rate control and spin axis orientation control corrections as well as for sun elevation angle and spin period measurements.

  15. Low-power high-accuracy micro-digital sun sensor by means of a CMOS image sensor

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.

    2013-01-01

    A micro-digital sun sensor (?DSS) is a sun detector which senses a satellite’s instant attitude angle with respect to the sun. The core of this sensor is a system-on-chip imaging chip which is referred to as APS+. The APS+ integrates a CMOS active pixel sensor (APS) array of 368×368??pixels , a

  16. Low-Power Low-Noise CMOS Imager Design : In Micro-Digital Sun Sensor Application

    NARCIS (Netherlands)

    Xie, N.

    2012-01-01

    A digital sun sensor is superior to an analog sun sensor in aspects of resolution, albedo immunity, and integration. The proposed Micro-Digital Sun Sensor (µDSS) is an autonomous digital sun sensor which is implemented by means of a CMOS image sensor, which is named APS+. The µDSS is designed

  17. An autonomous low power high resolution micro-digital sun sensor

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.

    2011-01-01

    Micro-Digital Sun Sensor (?DSS) is a sun detector which senses the respective angle between a satellite and the sun. It is composed of a solar cell power supply, a RF communication block and a CMOS Image Sensor (CIS) chip, which is called APS+. The paper describes the implementation of a prototype

  18. A low-power and high-precision miniaturized digital sun sensor

    NARCIS (Netherlands)

    Boer, B.M. de; Durkut, M.

    2013-01-01

    A prototype miniaturized digital sun sensor (miniDSS) was developed by TNO. It is expected to be launched on QuadSat for in-orbit demonstration. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing

  19. BepiColombo fine sun sensor

    Science.gov (United States)

    Boslooper, Erik; van der Heiden, Nico; Naron, Daniël.; Schmits, Ruud; van der Velde, Jacob Jan; van Wakeren, Jorrit

    2017-11-01

    Design, development and verification of the passive Fine Sun Sensor (FSS) for the BepiColombo spacecraft is described. Major challenge in the design is to keep the detector at acceptable temperature levels while exposed to a solar flux intensity exceeding 10 times what is experienced in Earth orbit. A mesh type Heat Rejection Filter has been developed. The overall sensor design and its performance verification program is described.

  20. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    Science.gov (United States)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  1. Self-Powered Sun Sensor Microsystems

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; Graaf, G. de; Leijtens, J.A.P.; Wolffenbuttel, R.F.

    2009-01-01

    An analog sun sensor has been designed based on shade profile proportional to the angle of incidence of incoming light projected onto a 2×2 array of photodiodes. This concept enables an autonomous self-powered optical system with two the main functions (electrical power generation for the amplifier

  2. MiniDSS: a low-power and high-precision miniaturized digital sun sensor

    NARCIS (Netherlands)

    Boer, B.M. de; Durkut, M.; Laan, E.; Hakkesteegt, H.; Theuwissen, A.; Xie, N.; Leijtens, J.L.; Urquijo, E.; Bruins, P.

    2012-01-01

    A high-precision and low-power miniaturized digital sun sensor has been developed at TNO. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing circuitry as well as communication circuitry are combined.

  3. Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements

    Science.gov (United States)

    Appel, Pontus

    2005-01-01

    For full 3-axes attitude determination the magnetic field vector and the Sun vector can be used. A Coarse Sun Sensor consisting of six solar cells placed on each of the six outer surfaces of the satellite is used for Sun vector determination. This robust and low cost setup is sensitive to surrounding light sources as it sees the whole sky. To compensate for the largest error source, the Earth, an albedo model is developed. The total albedo light vector has contributions from the Earth surface which is illuminated by the Sun and visible from the satellite. Depending on the reflectivity of the Earth surface, the satellite's position and the Sun's position the albedo light changes. This cannot be calculated analytically and hence a numerical model is developed. For on-board computer use the Earth albedo model consisting of data tables is transferred into polynomial functions in order to save memory space. For an absolute worst case the attitude determination error can be held below 2∘. In a nominal case it is better than 1∘.

  4. MiniDSS: a low-power and high-precision miniaturized digital sun sensor

    Science.gov (United States)

    de Boer, B. M.; Durkut, M.; Laan, E.; Hakkesteegt, H.; Theuwissen, A.; Xie, N.; Leijtens, J. L.; Urquijo, E.; Bruins, P.

    2017-11-01

    A high-precision and low-power miniaturized digital sun sensor has been developed at TNO. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing circuitry as well as communication circuitry are combined. The design was optimized for low recurrent cost. The sensor is albedo insensitive and the prototype combines an accuracy in the order of 0.03° with a mass of just 72 g and a power consumption of only 65 mW.

  5. Micro digital sun sensor: system in a package

    NARCIS (Netherlands)

    Boom, C.W. de; Leijtens, J.A.P.; Duivenbode, L.M.H. van; Heiden, N. van der

    2004-01-01

    A novel micro Digital Sun Sensor (μDSS) is under development in the frame of a micro systems technology (MST) development program (Microned) from the Dutch Ministry of Economic Affairs. Use of available micro system technologies in combination with the implementation of a dedicated solarcell for

  6. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    Science.gov (United States)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  7. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data

    DEFF Research Database (Denmark)

    Fensholt, R.; Sandholt, I.; Proud, Simon Richard

    2010-01-01

    The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geome......The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun......-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS......, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible...

  8. Digital design update for a sun sensor on a chip

    NARCIS (Netherlands)

    Mert, O.

    2014-01-01

    In the beginning of one year project work at Moog-Bradford, the scope of my assignment was coordination of the firmware development activities as defined in the Sun Sensor on a Chip (SSOAC) proposal for ESA GSTP-5 program. As the time progressed in the proposal evaluation process, my project scope

  9. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    Science.gov (United States)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  10. Accurate and wide field of view MEMS-based sun sensor for industrial applications

    OpenAIRE

    Delgado, Francisco; Quero, J.M.; Garcia Ortega, Juan; López Tarrida, Cristina; Ortega Villasclaras, Pablo Rafael; Bermejo Broto, Sandra

    2012-01-01

    This paper describes the design, fabrication, sim- ulation, and experimental results of an improved miniaturized two-axis sun sensor for industrial applications, created by adapt- ing a technology used previously in satellite applications. The sensor for each axis is composed of six photodiodes integrated in a crystalline-silicon substrate and a layer of cover glass, which is used to protect the silicon and to hold the windows. The high preci...

  11. An error compensation method for a linear array sun sensor with a V-shaped slit

    International Nuclear Information System (INIS)

    Fan, Qiao-yun; Tan, Xiao-feng

    2015-01-01

    Existing methods of improving measurement accuracy, such as polynomial fitting and increasing pixel numbers, cannot guarantee high precision and good miniaturization specifications of a microsun sensor at the same time. Therefore, a novel integrated and accurate error compensation method is proposed. A mathematical error model is established according to the analysis results of all the contributing factors, and the model parameters are calculated through multi-sets simultaneous calibration. The numerical simulation results prove that the calibration method is unaffected by installation errors introduced by the calibration process, and is capable of separating the sensor’s intrinsic and extrinsic parameters precisely, and obtaining accurate and robust intrinsic parameters. In laboratorial calibration, the calibration data are generated by using a two-axis rotation table and a sun simulator. The experimental results show that owing to the proposed error compensation method, the sun sensor’s measurement accuracy is improved by 30 times throughout its field of view (±60°  ×  ±60°), with a RMS error of 0.1°. (paper)

  12. Sun Safe Mode Controller Design for LADEE

    Science.gov (United States)

    Fusco, Jesse C.; Swei, Sean S. M.; Nakamura, Robert H.

    2015-01-01

    This paper presents the development of sun safe controllers which are designed to keep the spacecraft power positive and thermally balanced in the event an anomaly is detected. Employed by NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), the controllers utilize the measured sun vector and the spacecraft body rates for feedback control. To improve the accuracy of sun vector estimation, the least square minimization approach is applied to process the sensor data, which is proven to be effective and accurate. To validate the controllers, the LADEE spacecraft model engaging the sun safe mode was first simulated and then compared with the actual LADEE orbital fight data. The results demonstrated the applicability of the proposed sun safe controllers.

  13. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors.

    Science.gov (United States)

    Esteban, Segundo; Girón-Sierra, Jose M; Polo, Óscar R; Angulo, Manuel

    2016-10-31

    Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  14. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors

    Directory of Open Access Journals (Sweden)

    Segundo Esteban

    2016-10-01

    Full Text Available Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  15. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  16. As reliable as the sun

    Science.gov (United States)

    Leijtens, J. A. P.

    2017-11-01

    Fortunately there is almost nothing as reliable as the sun which can consequently be utilized as a very reliable source of spacecraft power. In order to harvest this power, the solar panels have to be pointed towards the sun as accurately and reliably as possible. To this extend, sunsensors are available on almost every satellite to support vital sun-pointing capability throughout the mission, even in the deployment and save mode phases of the satellites life. Given the criticality of the application one would expect that after more than 50 years of sun sensor utilisation, such sensors would be fully matured and optimised. In actual fact though, the majority of sunsensors employed are still coarse sunsensors which have a proven extreme reliability but present major issues regarding albedo sensitivity and pointing accuracy.

  17. Cheap two axis sun following device

    International Nuclear Information System (INIS)

    Roth, P.; Georgiev, A.; Boudinov, H.

    2005-01-01

    A sun following system was constructed and tested. The tracker gives the possibility for automatic measuring of direct solar radiation with a phetylureum. The mechanism is operated by a digital program in the control system, situated separately from the mechanical part. The position of the sun is calculated, and the pointing errors appearing during its daily work are stored for later analysis. Additionally, in the active operation mode, the tracker uses the signal of a sun detecting linear sensor to control the pointing. Two stepper motors move the instrument platform, keeping the sun's beam at the center of the sensor. The mechanism was created at the Laboratory 'Evaluation Solar' of the Technical University Faradaic Santa Maria (UTFSM) in Valparaiso, Chile. The experiments show good results. The described sun tracker gives similar results as the Swiss sun tracker INTRA at a very much lower price

  18. Angular velocity determination of spinning solar sails using only a sun sensor

    Directory of Open Access Journals (Sweden)

    Kun Zhai

    2017-02-01

    Full Text Available The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.

  19. Optical model and calibration of a sun tracker

    International Nuclear Information System (INIS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-01-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker. - Highlights: • We present an optimal optical sun tracker model for atmospheric spectroscopy. • The problem of loss of stability of tracker pointing at the Sun has been solved. • We propose an optimal method for tracker calibration at a measurement site. • Test results demonstrate the efficiency of the proposed optimization methods.

  20. Intelligent Sun Tracking for a CPV Power Plant

    International Nuclear Information System (INIS)

    Maqsood, Ishtiaq; Emziane, Mahieddine

    2010-01-01

    The output of a solar panel is strongly dependent on the amount of perpendicular light flux falling on its surface, and a tracking system tries to parallel the vector area of the solar panel surface to the incident solar flux. We present a tracking technique based on a two-axis sun sensor which can be used to increase the power output from a number of CPV arrays connected together in a solar power plant. The outdoor testing procedure of the developed two-axis sun sensor is discussed. The detail of the algorithm used together with the related sun tracking equipment is also presented and discussed for the new two axes sun tracking system.

  1. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  2. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  3. Challenges to modeling the Sun-Earth System: A Workshop Summary

    Science.gov (United States)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  4. Modelling the seasonal variation of vitamin D due to sun exposure.

    Science.gov (United States)

    Diffey, B L

    2010-06-01

    The current interest in vitamin D as a preventive agent in many chronic diseases has led to a reappraisal of adequate sun exposure. Yet just what constitutes adequacy remains to be clearly defined and validated. To do this requires an understanding of how behaviour outdoors during the year translates into seasonal changes in vitamin D status. To develop a model for estimating the changes in serum 25-hydroxyvitamin D [25(OH)D] levels as a consequence of sun exposure throughout the year. A novel mathematical model is described that incorporates the changes in serum 25(OH)D following a single, whole-body exposure to solar ultraviolet radiation with daily sun exposure in order to estimate the annual variation in serum 25(OH)D. The model yields results that agree closely with measured data from a large population-based study. Application of the model showed that current advice about 10-20 min of daily sun exposure during the summer months does little in the way of boosting overall 25(OH)D levels, while sufficient sun exposure that could achieve a worthwhile benefit would compromise skin health. There is little in the way of public health advice concerning the benefits of sun exposure that can be given as an effective means of maintaining adequate vitamin D levels throughout the year. Instead it would seem safer and more effective to fortify more foods with vitamin D and/or to consider the use of supplements during the winter months. Messages concerning sun exposure should remain focused on the detrimental effects of excessive sun exposure and should avoid giving specific advice on what might be 'optimal' sun exposure. © 2010 The Authors. Journal Compilation © 2010 British Association of Dermatologists.

  5. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    Science.gov (United States)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  6. Sun-view angle effects on reflectance factors of corn canopies

    Science.gov (United States)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  7. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    Science.gov (United States)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  8. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.

    Science.gov (United States)

    Ortega-Terol, Damian; Hernandez-Lopez, David; Ballesteros, Rocio; Gonzalez-Aguilera, Diego

    2017-10-15

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology.

  9. Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings

    Science.gov (United States)

    Bates, David M.

    2016-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 which arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004–08), and has since been approved for a first and second extended mission through 2017. As part of the final extended missions, Cassini will begin an aggressive and exciting campaign of high inclination, low altitude flybys within the inner most rings of Saturn, skimming Saturn’s outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, requires a strategy for managing the Sun Sensor Assembly (SSA) health, the details of which are presented in this paper.

  10. Traditions of the Sun, One Model for Expanding Audience Access

    Science.gov (United States)

    Hawkins, I.; Paglierani, R.

    2006-12-01

    The Internet is a powerful tool with which to expand audience access, bringing students, teachers and the public to places and resources they might not otherwise visit or make use of. We will present Traditions of the Sun, an experiential Web site that invites exploration of the world's ancient observatories with special emphasis on Chaco Culture National Historic Park in the Four Corners region of the US and several sites in the Yucatan Peninsula in Mexico. Traditions of the Sun includes resources in English and Spanish along with a unique trilingual on-line book, "Traditions of the Sun, A Photographic Journal," containing explanatory text in Yucatec Maya as well. Traditions of the Sun offers rich opportunities for virtual visits to ancient sites used for solar observing while learning about current NASA research on the Sun and indigenous solar practices within a larger historical and cultural context. The site contains hundreds of photographs, historic images and rich multimedia to help tell the story of the Sun-Earth Connection. Visitors to the site can zoom in on the great Mayan cities of Chichen Itza, Uxmal, Dzibilchaltun, and Mayapan to learn about Mayan astronomy, history, culture, and science. They can also visit Chaco Canyon to watch sunrise over Pueblo Bonito on the summer solstice, take a virtual reality tour of the great kiva at Casa Rinconada or see panoramic vistas from Fajada Butte, an area which, for preservation purposes, is restricted to the public. Traditions of the Sun provides one model of how exploration and discovery can come to life for both formal and informal audiences via the Internet. Traditions of the Sun is a collaborative project between NASA's Sun-Earth Connection Education Forum, the National Park Service, Instituto National de Antropologia e Historia, Universidad Nacional Autonoma de Mexico, and Ideum.

  11. Self-powered optical sensor systems

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; Graaf, G. de; Leijtens, J.A.P.; Wolffenbuttel, R.F.

    2009-01-01

    A 0.35 μm CMOS process has been used for on-chip integration of a sun sensor composed of a 2x2 photodiode array and a current-to-voltage amplifier. Unlike conventional sun sensors, a shade profile proportional to the angle of incidence of incoming light is projected onto the photodiodes. This

  12. Thermal heliotrope - A passive sun-tracker

    Science.gov (United States)

    Byxbee, R. C.

    1971-01-01

    Continuous sun tracking device consists of helical bimetallic coil and control mechanism. Coil produces torque and angular displacement with temperature change, and acts as device's driving element. Control mechanism, concentric shading mechanism containing bimetallic sensor coil, controls tracking rate and provides for reset cycle.

  13. A practical equation of state for the sun and sun-like stars

    International Nuclear Information System (INIS)

    Lin, H.H.; Daeppen, W.

    2012-01-01

    For models of the Sun and Sun-like stars, a high-quality equation of state is crucial. Conversely, helio- and asteroseismological observations put constraints on the physical formalisms. They effectively turn the Sun and stars into laboratories for dense plasmas. For models of the Sun and Sun-like stars, the most accurate equation of state so far has been the one developed as part of OPAL opacity project of Livermore. However, the OPAL equation of state is limited in two important respects. First, it is only available in the form of pre-computed tables that are provided from Lawrence Livermore National Laboratory. Applications to stellar modeling require therefore interpolation, with unavoidable loss of accuracy. Second, the OPAL equation of state is proprietary and not freely available. Varying its underlying physical parameters is therefore no option for the community. We report on the most recent progress with the development of a high-precision emulation of the OPAL equation of state that will lead to an in-line tool for modelers (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The Logic-Based Supervisor Control for Sun-Tracking System of 1 MW HCPV Demo Plant: Study Case

    Directory of Open Access Journals (Sweden)

    Hong-Yih Yeh

    2012-02-01

    Full Text Available This paper presents a logic-based supervisor controller designed for trackers for a 1MW HCPV demo plant in Taiwan. A sun position sensor on the tracker is used to detect the sun position, as the sensor is sensitive to the intensity of sun light. The signal output of the sensor is partially affected by the cloud, which has a hard control position with the traditional PID control. Therefore we have used logic-based supervisor (LBS control which permits switching the PID control to sun trajectory under sunny or cloudy conditions. To verify the stability of the proposed control, an experiment was performed and the results show that the proposed control can efficiently achieve stabilization of the trackers of the 1MW HCPV demo plant.

  15. A Sun Path Observation System Based on Augment Reality and Mobile Learning

    OpenAIRE

    Tarng, Wernhuar; Ou, Kuo-Liang; Lu, Yun-Chen; Shih, Yi-Syuan; Liou, Hsin-Hun

    2018-01-01

    This study uses the augmented reality technology and sensor functions of GPS, electronic compass, and three-axis accelerometer on mobile devices to develop a Sun path observation system for applications in astronomy education. The orientation and elevation of the Sun can be calculated by the system according to the user’s location and local time to simulate the Sun path. When holding the mobile device toward the sky, the screen will show the virtual Sun at the same position as that of the rea...

  16. Predictive modeling and mapping of Malayan Sun Bear (Helarctos malayanus) distribution using maximum entropy.

    Science.gov (United States)

    Nazeri, Mona; Jusoff, Kamaruzaman; Madani, Nima; Mahmud, Ahmad Rodzi; Bahman, Abdul Rani; Kumar, Lalit

    2012-01-01

    One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.

  17. Predictive modeling and mapping of Malayan Sun Bear (Helarctos malayanus distribution using maximum entropy.

    Directory of Open Access Journals (Sweden)

    Mona Nazeri

    Full Text Available One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear's population.

  18. Activity Monitors Help Users Get Optimum Sun Exposure

    Science.gov (United States)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  19. Modelling the drying kinetics of green peas in a solar dryer and under open sun

    Energy Technology Data Exchange (ETDEWEB)

    Sunil [Department of Mechanical Engineering, BRCM CET Bahal, Haryana–127028 (India); Varun [Department of Mechanical Engineering, NIT Hamirpur, (H.P.)–177005 (India); Sharma, Naveen [Department of Mechanical and Industrial Engineering, IITR, (U.K.)–247667 (India)

    2013-07-01

    The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2), sum of squares error (SSE), mean squared error (MSE) and root mean square error (RMSE) between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.

  20. Design and implementation of a Sun tracker with a dual-axis single motor for an optical sensor-based photovoltaic system.

    Science.gov (United States)

    Wang, Jing-Min; Lu, Chia-Liang

    2013-03-06

    The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.

  1. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Chia-Liang Lu

    2013-03-01

    Full Text Available The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.

  2. Design and Implementation of a Sun Tracker with a Dual-Axis Single Motor for an Optical Sensor-Based Photovoltaic System

    Science.gov (United States)

    Wang, Jing-Min; Lu, Chia-Liang

    2013-01-01

    The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications. PMID:23467030

  3. Sun behaviour in Canadian children: results of the 2006 National Sun Survey.

    Science.gov (United States)

    Pichora, Erin C; Marrett, Loraine D

    2010-01-01

    Childhood sun exposure is a particularly important determinant of skin cancer, yet little data are available for children. This paper describes sun behaviour among Canadian children for the summer of 2006. As part of the Second National Sun Survey (NSS2), 1,437 parents reported on the time spent in the sun, and the frequency of sun protection behaviours and sunburning for one of their children aged 1 to 12 years. Analysis was carried out using complex survey procedures in SAS and STATA. The majority of children (94%) spend at least 30 minutes in the sun on a typical summer day; however, regular sun protection is only commonly reported for young children (1 to 5 years) and involves covering their heads and wearing sunscreen (85%). The frequency of other protective behaviours is much lower, and sun protection decreases with age. Older children are also twice as likely to spend extended time in the sun and to get a sunburn. Among older children, boys are more likely to cover their heads and girls are more likely to wear sunscreen. Regular sun protection among Canadian children is low, given their sun exposure. Heavy reliance on sunscreen is consistent with previous reports and indicates that other measures, such as seeking shade and wearing protective clothing, need to be promoted. Riskier sun behaviour among older children may reflect decreased parental control, as well as changing attitudes and peer pressure, and highlights the importance of adult role models and targeted interventions for this age group.

  4. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  5. Sun's dynamics and nucleosynthesis

    International Nuclear Information System (INIS)

    Gavanescu, Adela; Rusu, Mircea V.

    2005-01-01

    Nucleosynthesis processes in the sun are one of the main results related to the evolution of the Sun. Dynamics and energetics of the Sun could be studied indirectly by their elements products in produced by nucleosynthesis. Also solar atmosphere and its characteristics reveled in its full development is observed during the solar eclipses. We try to correlate these facts in order to obtained data to be used in solar models. (authors)

  6. Sun and planet detection system for satellites. Sonnen- und Erderfassungsverfahren fuer Satelliten

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B O; Scheit, A

    1980-05-22

    The invention refers to a process for the sun and planet detection system for satellites stabilised in three axes and equipped with detection sensors. The purpose of the invention is to describe such a detection system, which makes quick and reliable guiding of the satellite to its final position possible, permits the use of sensors of simple construction and of simple control laws and simple control logic. According to the invention, this problem is solved by having cumulative or alternate steps, depending on the position of the satellite relative to the sun. According to the invention they refer to the position of the sun outside the field of view for the measurement of various components and the simultaneous availability of several component values. It is particularly advantageous if only the absolutely necessary satellite manoeuvres have to be carried out, as this saves fuel and makes it possible to increase the payload or extend the satellite's life. (HWJ).

  7. A Solar Position Sensor Based on Image Vision.

    Science.gov (United States)

    Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José

    2017-07-29

    Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.

  8. Exact scattering in the SU(n) supersymmetric principal chiral model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1997-01-01

    The complete spectrum of states in the supersymmetric principal chiral model based on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scattering amongst these states. The SU(n)_L*SU(n)_R symmetry of the lagrangian is manifest in the S-matrix construction. The supersymmetries, on the other hand, are incorporated in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at level n. To test the proposed S-matrix, calculations of the change in the ground-state energy in the presence of a coupling to a background charge are carried out. The results derived from the lagrangian using perturbation theory and from the S-matrix using the TBA are found to be in complete agreement for a variety of background charges which pick out, in turn, the highest weight states in each of the fundamental representations of SU(n). In particular, these methods rule out the possibility of additional CDD factors in the S-matrix. Comparison of the expressions found for the free-...

  9. Mediation analysis of decisional balance, sun avoidance and sunscreen use in the precontemplation and preparation stages for sun protection.

    Science.gov (United States)

    Santiago-Rivas, Marimer; Velicer, Wayne F; Redding, Colleen

    2015-01-01

    Mediation analyses of sun protection were conducted testing structural equation models using longitudinal data with three waves. An effect was said to be mediated if the standardised path between processes of change, decisional balance and sun protection outcomes was significant. Longitudinal models of sun protection using data from individuals in the precontemplation (N = 964) and preparation (N = 463) stages who participated of an expert system intervention. Nine processes of change for sun protection, decisional balance constructs of sun protection (pros and cons), sun avoidance behaviour and sunscreen use. With the exception of two processes in the preparation stage, processes of change predicted the pros (r = .126-.614), and the pros predicted the outcomes (r = .181-.272). Three models with the cons as mediator in the preparation stage, and none in the precontemplation stage, showed a mediated relationship between processes and outcomes. In general, mediation analyses found both the process of change-to-pros and pros-to-behaviour paths significant for both precontemplation and preparation stages, and for both sun avoidance and sunscreen use outcomes. Findings provide support for the importance of assessing the role of underlying risk cognitions in improving sun protection adherence.

  10. The shivering sun opens its heart

    International Nuclear Information System (INIS)

    Gough, D.

    1976-01-01

    Recent discoveries, by various workers, of global oscillations of the Sun are summarised. The two major ways in which the Sun can vibrate, as a standing acoustic wave and as a standing gravity wave, are discussed. The recently discovered oscillations provide a new rich class of data with which to test theoretical models of the internal structure of the Sun. The implications of these new data with reference to solar models are considered. (U.K.)

  11. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  12. The Presence of the Chromosphere: Evidence for a Liquid Model of the Sun

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2006-04-01

    Critical Opalescence occurs at the critical point. It is that point in the phase diagram where the transition between liquid and gas is no longer discernable. In the laboratory, critical opalescence occurs as the meniscus disappears. There is often strong scattering of light and a transparent solution becomes cloudy. In approaching the critical point gases slowly begin to gain order as they prepare to enter the condensed state. In this presentation, it will be advanced that the Chromosphere of the Sun represents matter at the critical point. As such, the Chromosphere experiences a unique combination of temperature, pressure and gravity wherein the gaseous matter in the corona is preparing to condense onto a liquid photosphere. It is consequently stated that the very existence of the Chromosphere, constitutes a powerful piece of evidence in favor of condensed models of the Sun (http://www.arxiv.org/html/astro-ph/0410075 [1]). Additional evidence for a liquid plasma model of the Sun will also be presented.

  13. Model-based sensor diagnosis

    International Nuclear Information System (INIS)

    Milgram, J.; Dormoy, J.L.

    1994-09-01

    Running a nuclear power plant involves monitoring data provided by the installation's sensors. Operators and computerized systems then use these data to establish a diagnostic of the plant. However, the instrumentation system is complex, and is not immune to faults and failures. This paper presents a system for detecting sensor failures using a topological description of the installation and a set of component models. This model of the plant implicitly contains relations between sensor data. These relations must always be checked if all the components are functioning correctly. The failure detection task thus consists of checking these constraints. The constraints are extracted in two stages. Firstly, a qualitative model of their existence is built using structural analysis. Secondly, the models are formally handled according to the results of the structural analysis, in order to establish the constraints on the sensor data. This work constitutes an initial step in extending model-based diagnosis, as the information on which it is based is suspect. This work will be followed by surveillance of the detection system. When the instrumentation is assumed to be sound, the unverified constraints indicate errors on the plant model. (authors). 8 refs., 4 figs

  14. Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24

    Science.gov (United States)

    Carranza-fulmer, T. L.; Moldwin, M.

    2014-12-01

    The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience

  15. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  16. Integrable multi parametric SU(N) chain

    International Nuclear Information System (INIS)

    Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.

    1996-03-01

    We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs

  17. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-10-01

    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  18. Self-calibrating solar position sensor

    Science.gov (United States)

    Maxey, Lonnie Curt

    2018-01-30

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated by the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.

  19. Sun following system adjustment at the UTFSM

    International Nuclear Information System (INIS)

    Georgiev, A.; Roth, P.; Olivares, A.

    2004-01-01

    The 'Evaluacion Solar' Laboratory of the Technical University Federico Santa Maria (UTFSM) in Valparaiso exists since 1957. Some types of sun following systems using instruments for different types of solar measurements were created during the mentioned period in this Laboratory. A solar tracking unit INTRA was recently installed in the UTFSM. It is considered a modern measuring and registering system for actual measuring of radiation in digital form, easier to store and to process. The action of the sun tracker is autonomous, which makes it a flexible tool to support direct radiation measurements. A special device was designed and constructed to support the measuring instruments. Three Eppley pyrheliometers were mounted on the unit and connected with an automatic registering system. An additional UV measuring sensor will be mounted soon. The realized measurements were compared with the results obtained manually from a K and Z pyrheliometer. The difference between both types of pyrheliometers is very small, which is a good precondition for using the INTRA sun tracker for precise measurements in the future

  20. The Sun on Trial

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2014-03-01

    For 150 years, the Sun has been seen as a gaseous object devoid of a surface, as required by the Standard Solar Model (SSM). Yet, not one line of observational evidence supports a gaseous Sun. In contrast, overwhelming evidence exists that the Sun is comprised of condensed matter. Recently, 40 proofs have been compiled in conjunction with the Liquid Metallic Hydrogen Solar Model (LMHSM). This model advances that the Sun has a true surface. Photospheric structures, such as sunspots, granules, and faculae, are not optical illusions, as in the SSM, but real objects with a condensed nature. The LMHSM accounts for the thermal spectrum by invoking true inter-atomic structure on the photosphere in the form of the graphite-like layered hexagonal metallic hydrogen lattice first proposed by Wigner and Huntington. Within the convection zone, layered metallic hydrogen, insulated by intercalate atoms, enables the generation of the solar dynamo. Electrons located in conduction bands provide a proper means of generating magnetic fields. Metallic hydrogen ejected from the photosphere also thinly populates the corona, as reflected by the continuous K-coronal spectrum. This coronal matter harvests electrons, resulting in the production of highly ionized atoms. Electron affinity, not temperature, governs the ion profile. The chromosphere is a site of hydrogen and proton capture. Line emission in this region, strongly supports the idea that exothermic condensation reactions are occurring in the chromosphere. In the LMHSM, solar activity and solar winds are regulated by exfoliation reactions occurring in the Sun itself, as the metallic hydrogen lattice excludes non-hydrogen elements from the solar body.

  1. Advances in Sun-Earth Connection Modeling

    International Nuclear Information System (INIS)

    Ganguli, S.B.; Gavrishchaka, V.V.

    2003-01-01

    Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed

  2. Vortices in the SU(N) x SU(N) spin systems in two dimensions

    International Nuclear Information System (INIS)

    Kares, R.J.D.

    1982-01-01

    The SU(N) x SU(N) or chiral spin systems in two dimensions with spin variables in both the fundamental and the adjoint representations of SU(N) are considered. In the adjoint representation the chiral models are found to possess topologically stable, classical vortex solutions which carry a Z(N) topological charge. A relationship is established between the chiral models and massive Yang-Mills theory in two dimensions. This relationship is exploited to prove the asymptotic freedom of the chiral models and to find their weak coupling mass gap. The connection between the vortices of the chiral models and those of the massive Yang-Mills theory is discussed. The behavior of a gas of vortices in the SU(2) chiral model is considered. This gas is converted to an equivalent field theory and studied using the renormalization group. It is shown that the SU(2) vortex gas does not undergo a Kosterlitz-Thouless phase transition. This behavior probably persists for the higher SU(N) groups as well. Finally, using the massive Yang-Mills theory the effect of the coupling of vortices to spin wave fluctuations is investigated. It is argued that as a result of the vortex-spin wave interaction the vortices acquire a mass scale dynamically. A self consistency condition is derived for the vortex scale and used to compute the mass gap for the chiral models in the presence of vortices. The mass gap obtained in this way is found to be in agreement with the weak coupling result suggesting that vortices may be responsible for generating the mass gap in the chiral models near T = 0

  3. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds?

    International Nuclear Information System (INIS)

    Thune, P.

    1991-01-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab

  4. Sun Exposure, Sun-Related Symptoms, and Sun Protection Practices in an African Informal Traditional Medicines Market.

    Science.gov (United States)

    Wright, Caradee Y; Reddy, Tarylee; Mathee, Angela; Street, Renée A

    2017-09-28

    Informal workers in African market trade have little formal protection against sun exposure. We aimed to examine sun exposure, sun-related symptoms, and sun protection practices in an informal occupational setting. Trained fieldworkers asked 236 workers in the Warwick Junction market about their workplace, skin and eye sensitivity and skin colour, symptoms faced at work during the summer due to heat, and preventive measures. Data were analyzed using univariate logistic regression to assess the effect of gender and the risk of experiencing symptoms to sun exposure in relation to pre-existing diseases and perception of sun exposure as a hazard. Of the 236 participants, 234 were Black African and 141 (59.7%) were female. Portable shade was the most commonly used form of sun protection (69.9%). Glare from the sun (59.7%) and excessive sweating (57.6%) were commonly reported sun-related health symptoms. The use of protective clothing was more prevalent among those who perceived sun exposure as a hazard ( p = 0.003). In an informal occupational setting, sun exposure was high. Protective clothing and portable shade to eliminate heat and bright light were self-implemented. Action by local authorities to protect informal workers should consider sun exposure to support workers in their efforts to cope in hot weather.

  5. Sun Exposure, Sun-Related Symptoms, and Sun Protection Practices in an African Informal Traditional Medicines Market

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2017-09-01

    Full Text Available Informal workers in African market trade have little formal protection against sun exposure. We aimed to examine sun exposure, sun-related symptoms, and sun protection practices in an informal occupational setting. Trained fieldworkers asked 236 workers in the Warwick Junction market about their workplace, skin and eye sensitivity and skin colour, symptoms faced at work during the summer due to heat, and preventive measures. Data were analyzed using univariate logistic regression to assess the effect of gender and the risk of experiencing symptoms to sun exposure in relation to pre-existing diseases and perception of sun exposure as a hazard. Of the 236 participants, 234 were Black African and 141 (59.7% were female. Portable shade was the most commonly used form of sun protection (69.9%. Glare from the sun (59.7% and excessive sweating (57.6% were commonly reported sun-related health symptoms. The use of protective clothing was more prevalent among those who perceived sun exposure as a hazard (p = 0.003. In an informal occupational setting, sun exposure was high. Protective clothing and portable shade to eliminate heat and bright light were self-implemented. Action by local authorities to protect informal workers should consider sun exposure to support workers in their efforts to cope in hot weather.

  6. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  7. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models

    International Nuclear Information System (INIS)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A.

    2003-01-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  8. The Sun: the Earth light source

    Science.gov (United States)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  9. Sun and Sun Worship in Different Cultures

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2014-10-01

    The Sun symbol is found in many cultures throughout history, it has played an important role in shaping our life on Earth since the dawn of time. Since the beginning of human existence, civilisations have established religious beliefs that involved the Sun's significance to some extent. As new civilisations and religions developed, many spiritual beliefs were based on those from the past so that there has been an evolution of the Sun's significance throughout cultural development. For comparing and finding the origin of the Sun we made a table of 66 languages and compared the roots of the words. For finding out from where these roots came from, we also made a table of 21 Sun Gods and Goddesses and proved the direct crossing of language and mythology.

  10. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  11. Skin Tone Dissatisfaction, Sun Exposure, and Sun Protection in Australian Adolescents.

    Science.gov (United States)

    Hutchinson, Amanda D; Prichard, Ivanka; Ettridge, Kerry; Wilson, Carlene

    2015-08-01

    This study aimed to assess the adoption of sun protection and sun exposure behaviors, the extent to which these behaviors group together, and the relationship between skin tone dissatisfaction and sun-related behaviors in South Australian adolescents (aged 12-17). A total of 2,875 secondary school students (1,461 male and 1,414 female) completed a questionnaire including questions about sun protection and sun exposure behaviors and skin tone dissatisfaction. Regular adoption of sun protection behaviors was low and ranged from 20% (wearing protective clothing) to 44% (sunscreen use). A principal components analysis identified four subgroups of sun-related behaviors: sun protection, appearance enhancement, sun avoidance, and sun exposure. Females had significantly higher skin tone dissatisfaction than males. Skin tone dissatisfaction was associated with decreased sun protection and avoidance and increased appearance enhancement and sun exposure in both males and females. Skin tone dissatisfaction plays an important role in Australian adolescents' sun-related behavior. Appearance-based interventions may be effective in reducing skin cancer risk through reduced sun exposure.

  12. Modelling Structural Flexure Effects in CPV Sun Trackers

    OpenAIRE

    Luque-Heredia, Ignacio; Quéméré, G.; Magalhães, P.H.; Fraile de Lerma, Alberto; Hermanns, Lutz Karl Heinz; Alarcón Álvarez, Enrique; Luque López, Antonio

    2006-01-01

    Nowadays CPV trends mostly based in lens parqueted flat modules, enable the separate design of the sun tracker. To enable this possibility a set of specifications is to be prescribed for the tracker design team, which take into account fundamental requisites such as the maximum service loads both permanent and variable, the sun tracking accuracy and the tracker structural stiffness required to maintain the CPV array acceptance angle loss below a certain threshold. In its first part this paper...

  13. SPICE compatible behavioural modelling of resistive sensors

    International Nuclear Information System (INIS)

    Nandi, Prajit; Dhar, Anindya Sundar; Das, Soumen; Sahu, Debashis

    2014-01-01

    In this paper, a modelling technique for anisotropic magneto-resistors (AMRs) and piezo-resistors has been developed. These models are then used to model sensors using such elements. The motivation is to develop a platform which will help in the analysis of different performance parameters of such sensors and optimally design electronic systems for such sensor applications. Non-idealistic behaviour such as temperature and nonlinearity, hysteresis, mismatch, noise, etc have been considered while developing the model. The proposed technique helps us to study each of these non-idealities individually as well as understand the holistic sensor response. Root-cause analysis can, thus, be performed. Model parameters are derived from different product specifications and various characterization reports. The sensor's response predicted from the model is compared with the performance of these products. Response of the model is seen to closely follow the response of the actual product. (paper)

  14. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  15. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  16. Modeling a Consistent Behavior of PLC-Sensors

    Directory of Open Access Journals (Sweden)

    E. V. Kuzmin

    2014-01-01

    Full Text Available The article extends the cycle of papers dedicated to programming and verificatoin of PLC-programs by LTL-specification. This approach provides the availability of correctness analysis of PLC-programs by the model checking method.The model checking method needs to construct a finite model of a PLC program. For successful verification of required properties it is important to take into consideration that not all combinations of input signals from the sensors can occur while PLC works with a control object. This fact requires more advertence to the construction of the PLC-program model.In this paper we propose to describe a consistent behavior of sensors by three groups of LTL-formulas. They will affect the program model, approximating it to the actual behavior of the PLC program. The idea of LTL-requirements is shown by an example.A PLC program is a description of reactions on input signals from sensors, switches and buttons. In constructing a PLC-program model, the approach to modeling a consistent behavior of PLC sensors allows to focus on modeling precisely these reactions without an extension of the program model by additional structures for realization of a realistic behavior of sensors. The consistent behavior of sensors is taken into account only at the stage of checking a conformity of the programming model to required properties, i. e. a property satisfaction proof for the constructed model occurs with the condition that the model contains only such executions of the program that comply with the consistent behavior of sensors.

  17. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  18. Sun Allergy

    Science.gov (United States)

    Sun allergy Overview Sun allergy is a term often used to describe a number of conditions in which an itchy red rash occurs on skin that has been exposed to sunlight. The most common form of sun allergy is ...

  19. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    Science.gov (United States)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the

  20. The sun and the neutrinos

    International Nuclear Information System (INIS)

    Forgacsne Dajka, E.

    2000-01-01

    A review of the solar neutrino puzzle is given. The main processes in the sun, the pp-chain and the CNO cycle are described. The solar neutrino puzzle, i.e. the fact that the detected amount of neutrinos coming from the sun is less than the amount predicted by the solar model is discussed. The first generation solar neutrino experiments are presented. (K.A.)

  1. A Sun Path Observation System Based on Augment Reality and Mobile Learning

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2018-01-01

    Full Text Available This study uses the augmented reality technology and sensor functions of GPS, electronic compass, and three-axis accelerometer on mobile devices to develop a Sun path observation system for applications in astronomy education. The orientation and elevation of the Sun can be calculated by the system according to the user’s location and local time to simulate the Sun path. When holding the mobile device toward the sky, the screen will show the virtual Sun at the same position as that of the real Sun. The user can record the Sun path and the data of observation date, time, longitude, and latitude using the celestial hemisphere and the pole shadow on the system. By setting different observation times and locations, it can be seen that the Sun path changes with seasons and latitudes. The system provides contextual awareness of the Sun path concepts, and it can convert the observation data into organized and meaningful astronomical knowledge to enable combination of situated learning with spatial cognition. The system can solve the problem of being not able to record the Sun path due to a bad weather or topographical restrictions, and therefore it is helpful for elementary students when conducting observations. A teaching experiment has been conducted to analyze the learning achievement of students after using the system, and the results show that it is more effective than traditional teaching aids. The questionnaire results also reveal that the system is easy to operate and useful in recording the Sun path data. Therefore, it is an effective tool for astronomy education in elementary schools.

  2. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  3. The vectorial photoelectric effect under solar irradiance and its application to sun sensing

    International Nuclear Information System (INIS)

    Hechenblaikner, Gerald; Ziegler, Tobias

    2014-01-01

    Sun sensors are an integral part of the attitude and orbit control system onboard almost any spacecraft. While the majority of standard analogue sun sensors is based on photo-detectors which produce photo-currents proportional to the cosine of the incidence angle (cosine detectors), we propose an alternative scheme where the vectorial photoelectric effect is exploited to achieve a higher sensitivity of the sensed photo-current to the incidence angle. The vectorial photo-effect is investigated in detail for metal cathode detectors in a space environment. Besides long operational lifetimes without significant degradation, metal cathode detectors are insensitive to earth albedo, which may significantly reduce the errors affecting attitude measurements in low earth orbits. Sensitivity curves are calculated and trade-offs performed with the aim of optimizing the sensitivity whilst also providing currents sufficient for detection. Simple applications and detector configurations are also discussed and compared to the existing designs. (paper)

  4. Sun protection

    Science.gov (United States)

    ... sun exposure. The start of summer is when UV rays can cause the most skin damage. Use sun protection, even on cloudy days. Clouds and haze don't protect you from the sun. Avoid surfaces that reflect light, such as water, sand, concrete, snow, and areas ...

  5. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: a Review of Methods for Visible and Near-Infrared Wavelengths

    Directory of Open Access Journals (Sweden)

    Susan Kay

    2009-10-01

    Full Text Available Sun glint, the specular reflection of light from water surfaces, is a serious confounding factor for remote sensing of water column properties and benthos. This paper reviews current techniques to estimate and remove the glint radiance component from imagery. Methods for processing of ocean color images use statistical sea surface models to predict the glint from the sun and sensor positions and wind data. Methods for higher resolution imaging, used in coastal and shallow water mapping, estimate the glint radiance from the near-infrared signal. The effects of some current methods are demonstrated and possibilities for future techniques are briefly addressed.

  6. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models; SUN-RAH: simulador universitario de nucleoelectrica BWR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2003-07-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  7. Optimization method of star tracker orientation for sun-synchronous orbit based on space light distribution.

    Science.gov (United States)

    Wang, Geng; Xing, Fei; Wei, Minsong; Sun, Ting; You, Zheng

    2017-05-20

    Star trackers, optical attitude sensors with high precision, are susceptible to space light from the Sun and the Earth albedo. Until now, research in this field has lacked systematic analysis. In this paper, we propose an installation orientation method for a star tracker onboard sun-synchronous-orbit spacecraft and analyze the space light distribution by transforming the complicated relative motion among the Sun, Earth, and the satellite to the body coordinate system of the satellite. Meanwhile, the boundary-curve equations of the areas exposed to the stray light from the Sun and the Earth albedo were calculated by the coordinate-transformation matrix under different maneuver attitudes, and the installation orientation of the star tracker was optimized based on the boundary equations instead of the traditional iterative simulation method. The simulation and verification experiment indicate that this installation orientation method is effective and precise and can provide a reference for the installation of sun-synchronous orbit star trackers free from the stray light.

  8. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    Science.gov (United States)

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…

  9. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  10. Critical behaviour of SU(n) quantum chains and topological non-linear σ-models

    International Nuclear Information System (INIS)

    Affleck, I.; British Columbia Univ., Vancouver

    1988-01-01

    The critical behaviour of SU(n) quantum ''spin'' chains, Wess-Zumino-Witten σ-models and grassmanian σ-models at topological angle θ = π (of possible relevance to the quantum Hall effect) is reexamined. It is argued that an additional Z n symmetry is generally necessary to stabilize the massless phase. This symmetry is not present for the σ-models for n>2 and is only present for certain representations of ''spin'' chains. (orig.)

  11. Another Look at Helmholtz's Model for the Gravitational Contraction of the Sun

    Science.gov (United States)

    Tort, A. C.; Nogarol, F.

    2011-01-01

    We take another look at the Helmholtz model for the gravitational contraction of the Sun. We show that there are two other pedagogically useful ways of rederiving Helmholtz's main results that make use of Gauss's law, the concept of gravitational field energy and the work-kinetic energy theorem. An account of the energy balance involved in the…

  12. Sun-care product advertising in parenting magazines: what information does it provide about sun protection?

    Science.gov (United States)

    Kang, Hannah; Walsh-Childers, Kim

    2014-01-01

    This study analyzed the content of sun-care product advertisements in five major U.S. parenting magazines with high circulation: Family Circle, Parents, Family Fun, Parenting (Early Years), and Parenting (School Years). The study examined what information sun-care product advertisements tell parents about skin cancer prevention and about sunscreen use for themselves or for their children based on the Health Belief Model concepts of perceived benefits and perceived barriers. Results showed that the most commonly mentioned benefit of the product was that it blocks ultraviolet A (UVA) and ultraviolet B (UVB) rays. One-third of the ads promoted the product's effectiveness in overcoming four of the barriers that prevent people from using sunscreens: eye irritation, skin irritation, an unpleasant smell, and the need to reapply sunscreen too often or after physical activity. However, only a few of the ads provided information about the consequences of unprotected sun exposure or mentioned methods of sun protection or skin cancer prevention other than sunscreen use. We discuss the implications of these messages for parents' ability to understand correctly how to protect their children from damaging sun exposure.

  13. THE SUN WAS NOT BORN IN M67

    International Nuclear Information System (INIS)

    Pichardo, Bárbara; Moreno, Edmundo; Allen, Christine; Bedin, Luigi R.; Bellini, Andrea; Pasquini, Luca

    2012-01-01

    Using the most recent proper-motion determination of the old, solar-metallicity, Galactic open cluster M67 in orbital computations in a non-axisymmetric model of the Milky Way, including a bar and three-dimensional spiral arms, we explore the possibility that the Sun once belonged to this cluster. We have performed Monte Carlo numerical simulations to generate the present-day orbital conditions of the Sun and M67, and all the parameters in the Galactic model. We compute 3.5 × 10 5 pairs of orbits Sun-M67 looking for close encounters in the past with a minimum distance approach within the tidal radius of M67. In these encounters we find that the relative velocity between the Sun and M67 is larger than 20 km s –1 . If the Sun had been ejected from M67 with this high velocity by means of a three-body encounter, this interaction would have either destroyed an initial circumstellar disk around the Sun or dispersed its already formed planets. We also find a very low probability, much lower than 10 –7 , that the Sun was ejected from M67 by an encounter of this cluster with a giant molecular cloud. This study also excludes the possibility that the Sun and M67 were born in the same molecular cloud. Our dynamical results convincingly demonstrate that M67 could not have been the birth cluster of our solar system.

  14. Validity and Stability of the Decisional Balance for Sun Protection Inventory

    OpenAIRE

    Hui-Qing Yin; Joseph S. Rossi; Colleen A. Redding; Andrea L. Paiva; Steven F. Babbin; Wayne F. Velicer

    2014-01-01

    The 8-item Decisional Balance for sun protection inventory (SunDB) assesses the relative importance of the perceived advantages (Pros) and disadvantages (Cons) of sun protective behaviors. This study examined the psychometric properties of the SunDB measure, including invariance of the measurement model, in a population-based sample of N = 1336 adults. Confirmatory factor analyses supported the theoretically based 2-factor (Pros, Cons) model, with high internal consistencies for each subscale...

  15. A model for the Sun apparent movement from a geocentric perspective

    Directory of Open Access Journals (Sweden)

    Fernando Siqueira da Silva

    2010-01-01

    Full Text Available The present work has as main objective to build a model to identify the sun apparent movement (SAM as well as estimate the time interval in which it is above the horizon, to anywhere in the world and in any season. We begin with a brief reflection on the genesis of astronomy and some of its basic concepts, from which the model is built. The model basically consists of a transparent cylinder, in which are shown the paths of the SAM over the year. As applications of the model, are proposed some examples, such as the duration of "daylight" in different places of the globe. Making and using this model, besides the low cost and easy feasibility, provides a good understanding of the SAM.

  16. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    Science.gov (United States)

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (pproduction simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Sun

    CERN Document Server

    Golub, Leon

    2017-01-01

    Essential for life on earth and a major influence on our environment, the Sun is also the most fascinating object in the daytime sky. Every day we feel the effect of its coming and going – literally the difference between day and night. But figuring out what the Sun is, what it’s made of, why it glows so brightly, how old it is, how long it will last – all of these take thought and observation. Leon Golub and Jay M. Pasachoff offer an engaging and informative account of what scientists know about the Sun, and the history of these discoveries. Solar astronomers have studied the Sun over the centuries both for its intrinsic interest and in order to use it as a laboratory to reveal the secrets of other stars. The authors discuss the surface of the Sun, including sunspots and their eleven-year cycle, as well as the magnetism that causes them; the Sun’s insides, as studied mainly from seismic waves that astronomers record on its surface; the outer layers of the Sun that we see from Earth only at eclipses ...

  18. SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration

    OpenAIRE

    Nishioka, Yu; Imaizumi, Hiromasa; Imada, Junko; Katahira, Jun; Matsuura, Nariaki; Hieda, Miki

    2016-01-01

    The LINC complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, such as nuclear migration, mechanotransduction and chromatin tethering in the meiotic phase. However, it remains unknown how these functions are regulated in different cell contexts. An inner nuclear membrane component of the LINC complex, SUN1, is ubiquitously expressed. The human SUN1 gene produces over 10 variants by alternative splicing. Although functions of SUN1 are relat...

  19. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  20. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  1. Sun Ultra 5

    CERN Multimedia

    1998-01-01

    The Sun Ultra 5 is a 64-bit personal computer based on the UltraSPARC microprocessor line at a low price. The Ultra 5 has been declined in several variants: thus, some models have a processor with less cache memory to further decrease the price of the computer.

  2. The sun in time

    International Nuclear Information System (INIS)

    Sonett, C.P.; Giampapa, M.S.; Matthews, M.S.

    1991-01-01

    Various papers on solar science are presented. The topics considered include: variability of solar irradiance, sunspot number, solar diameter, and solar wind properties; theory of luminosity and radius variations; standard solar models; the sun and the IMF; variations of cosmic-ray flux with time; accelerated particles in solar flares; solar cosmic ray fluxes during the last 10 million yrs; solar neutrinos and solar history; time variations of Be-10 and solar activity; solar and terrestrial components of the atmospheric C-14 variation spectrum; solar flare heavy-ion tracks in extraterrestrial objects. Also addressed are: the faint young sun problem; atmospheric responses to solar irradiation; quaternary glaciations; solar-terrestrial relationships in recent sea sediments; magnetic history of the sun; pre- and main-sequence evolution of solar activity; magnetic activity in pre-main-sequence stars; classical T Tauri stars; relict magnetism of meteorites; luminosity variability of solar-type stars; evolution of angular momentum in solar-mass stars; time evolution of magnetic fields on solarlike stars

  3. Vitamin D Beliefs and Associations with Sunburns, Sun Exposure, and Sun Protection

    Science.gov (United States)

    Kim, Bang Hyun; Glanz, Karen; Nehl, Eric J.

    2012-01-01

    The main objective of this study was to examine certain beliefs about vitamin D and associations with sun exposure, sun protection behaviors, and sunburns. A total of 3,922 lifeguards, pool managers, and parents completed a survey in 2006 about beliefs regarding vitamin D and sun-related behaviors. Multivariate ordinal regression analyses and linear regression analysis were used to examine associations of beliefs and other variables. Results revealed that Non-Caucasian lifeguards and pool managers were less likely to agree that they needed to go out in the sun to get enough vitamin D. Lifeguards and parents who were non-Caucasian were less likely to report that sunlight helped the body to produce vitamin D. A stronger belief about the need to go out in the sun to get enough vitamin D predicted more sun exposure for lifeguards. For parents, a stronger belief that they can get enough vitamin D from foods predicted greater sun protection and a stronger belief that sunlight helps the body produce vitamin D predicted lower sun exposure. This study provides information regarding vitamin D beliefs and their association with certain sun related behaviors across different demographic groups that can inform education efforts about vitamin D and sun protection. PMID:22851950

  4. Sun exposure, sun protection and sunburn among Canadian adults.

    Science.gov (United States)

    Pinault, Lauren; Fioletov, Vitali

    2017-05-17

    Ultraviolet radiation (UVR) exposure and a history of sunburn are important risk factors for skin cancer. Sunburn is more common among men, younger age groups, and people in higher income households. Sun protection measures also vary by sex, age, and socioeconomic characteristics. Associations between ambient UVR and sunburn and sun safety measures have not been quantified. A total of 53,130 respondents aged 18 or older answered a Canadian Community Health Survey (CCHS) module on sun safety, which was administered in six provinces from 2005 to 2014. The module contained questions about sunburn, time in the sun, and sun protection. These respondents were linked to an ambient erythemal UVR dataset representing the June-to-August mean. Descriptive statistics and logistic regression were used to examine associations between population characteristics, sunburn, sun safety, time in the sun, and ambient UVR. Sunburn was reported by 33% of respondents and was more common among men, younger age groups, people who were not members of visible minorities, residents of higher income households, and individuals who were employed. On a typical summer day, a larger percentage of women than men sought shade and wore sunscreen, whereas a larger percentage of men wore a hat or long pants. As ambient summer UVR increased, women were more likely to apply sunscreen to their face, seek shade, or wear a hat (OR~1.02 to 1.09 per increase of 187 J/m² of erythemally-weighted UVR, or 5.4% of the mean); these associations were not observed among men. Findings related to sunburn and sun protection were similar to those of previous studies. The association between ambient UVR and women's precautionary measures suggests that information about UVR may influence their decision to protect their skin.

  5. Our turbulent sun

    International Nuclear Information System (INIS)

    Frazier, K.

    1982-01-01

    The quest for a new understanding of the sun and its surprising irregularities, variations, and effects is described. Attention is given to the sun's impact on life on earth, the weather and geomagnetic storms, sunspots, solar oscillations, the missing neutrinos in the sun, the 'shrinking sun', the 'dance' of the orbits, and the search for the 'climate connection'. It is noted that the 1980s promise to be the decade of the sun: not only because solar power may be a crucial ingredient in efforts to solve the energy crisis, but also because there will be brilliant auroras over North America, because sunspot activity will be the second highest since the 17th century, and because an unmanned spacecraft (i.e., the solar polar mission) will leave the plane of the solar system and observe the sun from above and below

  6. The star ''Sun''

    International Nuclear Information System (INIS)

    Pecker, J.-C.

    1982-01-01

    The author gives a resume of our knowledge of the Sun. In particular, he discusses the mass, luminosity and chemical composition of the Sun, and then asks what an observer from Sirius would think about the Sun. (G.T.H.)

  7. Forward modeling of the corona of the sun and solarlike stars

    DEFF Research Database (Denmark)

    Hardi, Peter; Gudiksen, Boris V.; Nordlund, Å.

    2006-01-01

    Transition Region Lines, AB-Initio Approach; Nonequilibrium Inozation; Doppler Shifts; Emission-Lines; Quiet-Sun; Sumer Telescope; Atomic Database; Magnetic-Field; Thin Plasmas......Transition Region Lines, AB-Initio Approach; Nonequilibrium Inozation; Doppler Shifts; Emission-Lines; Quiet-Sun; Sumer Telescope; Atomic Database; Magnetic-Field; Thin Plasmas...

  8. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  9. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21. Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+, and the excited neutral helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmologicalmolecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 23P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydrogen model, an ever increasing population of the 23S and 23P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 23P→2 3S lines and the overpopulation of the helium triplet

  10. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  11. Coherent states related with SU(N) and SU(N,1) groups

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shelepin, A.L.

    1990-01-01

    The basis of coherent state (CS) for symmetric presentations of groups SU(N) and SU(N,1) is plotted, its properties being investigated. Evolution of CS is considered. Relation between CS of groups SU(N) and Glauber is ascertained

  12. The validated sun exposure questionnaire

    DEFF Research Database (Denmark)

    Køster, B; Søndergaard, J; Nielsen, J B

    2017-01-01

    Few questionnaires used in monitoring sun-related behavior have been tested for validity. We established criteria validity of a developed questionnaire for monitoring population sun-related behavior. During May-August 2013, 664 Danes wore a personal electronic UV-dosimeter for one week...... that measured the outdoor time and dose of erythemal UVR exposure. In the following week, they answered a questionnaire on their sun-related behavior in the measurement week. Outdoor time measured by dosimetry correlated strongly with both outdoor time and the developed exposure scale measured...... in the questionnaire. Exposure measured in SED by dosimetry correlated strongly with the exposure scale. In a linear regression model of UVR (SED) received, 41 percent of the variation was explained by skin type, age, week of participation and the exposure scale, with the exposure scale as the main contributor...

  13. A model for ionic polymer metal composites as sensors

    Science.gov (United States)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2006-06-01

    This paper introduces a comprehensive model of sensors based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the sensing properties of IPMC-based sensors are taken into account and the dynamics of the sensors are modelled. A large amount of experimental evidence is given for the excellent agreement between estimations obtained using the proposed model and the observed signals. Furthermore, the effect of sensor scaling is investigated, giving interesting support to the activities involved in the design of sensing devices based on these novel materials. We observed that the need for a wet environment is not a key issue for IPMC-based sensors to work well. This fact allows us to put IPMC-based sensors in a totally different light to the corresponding actuators, showing that sensors do not suffer from the same drawbacks.

  14. Pre-main-sequence evolution of the sun

    International Nuclear Information System (INIS)

    Gough, D.

    1980-01-01

    The phase of solar evolution after the dynamical collapse is considered. The physics of the Kelvin-Helmholtz phase of gravitational collapse is described, attention being given to the early stages of the star when it was completely convective. It is noted that subsequently, a radiative core developed and evolution was controlled by the rate at which heat can diffuse through it by radiative transfer. Since the study of the Kelvin-Helmholtz contraction alone does not give enough information regarding the state of the sun when it first settled down to approximate hydrostatic equilibrium, other stars are studied, and information on the sun is obtained by analogy. Many young solar-type stars, such as the T Tauri stars, are not in the completely convective Hayashi (1961) phase hence it is proposed that the sun was completely mixed soon after its formation, which has some bearing on the sun's chemical structure. It is suggested that the surface of the sun was very nonuniform compared with the photosphere of today. The simple solar evolution model presented gives a good guide to the general way in which the sun contracted to the main sequence

  15. Sun exposure and sun protection practices of children and their parents.

    LENUS (Irish Health Repository)

    Kiely, A D

    2009-05-01

    The primary aims of this study were: to estimate sun exposure in hours of children in Cork during the summer months; to examine sun protection measures used by children and their parents and to explore parental knowledge of sun exposure and protection. A cross-sectional study, using a semi-structured questionnaire, was conducted in June 2006 in primary schools, pre-schools and creches throughout Cork City and County. Parents of 250 children aged less than 12 years were sampled. Mean sun exposure of Cork children was 40.9 hours per week in the summer months, with 77 (46.1%) children developing sunburn. 59.3% of the studied children were of skin type 1 or 2. 95 (57%) children on weekdays and 137 (82%) children at weekends were exposed to the sun between 11 am and 3 pm. Sunscreen and hats\\/caps were the most common protection measures used. A minority used protective clothing, sunglasses or sought shade. Thirty one (30.5%) children had sunscreen reapplied every 2 hours. Knowledge of sun protection was considerable among Irish parents. However the frequency of sunburn among Irish children suggests we are not providing them with adequate sun protection.

  16. A model-independent approach to the search for the sun neutrino oscillations from SNO data

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1996-01-01

    A model-independent approach to analyse the existence of the Sun neutrino oscillations from SNO data is proposed. The used approximations for the calculations are offered as well as a scheme to determine the existence of the neutrino oscillations

  17. Engineering workstation: Sensor modeling

    Science.gov (United States)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  18. A Survey of Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis; Jeung, Hoyoung; Aberer, Karl

    2013-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  19. The Sun-Duffey mass effluents calculation model applied to bottom reflooding tests of a single tube performed at the CDTN

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.; Rezende, H.C.

    1993-01-01

    A simple generalized model, developed by K.H. Sun and R.B. Duffey, is applied in this work to calculate the ratio of mass effluents during bottom reflooding of a single tube carried out at the CDTN/CNEN. The results of the benchmark experiments indicate that the accuracy on mass effluence ratio prediction can be within 15% by using the Sun-Duffey model. The reasonable agreement obtained between experimental data and model predictions suggest that it could be used for analysis of single tube reflood tests, in similar conditions. (author)

  20. Sun Safety

    Science.gov (United States)

    ... Children from the Sun? Are There Benefits to Spending Time Outdoors? The Surgeon General’s Call to Action to Prevent Skin Cancer Related Resources Sun Safety Tips for Men Tips for Families Tips for Schools Tips for Employers Tips for ...

  1. Validity and Stability of the Decisional Balance for Sun Protection Inventory

    Directory of Open Access Journals (Sweden)

    Hui-Qing Yin

    2014-01-01

    Full Text Available The 8-item Decisional Balance for sun protection inventory (SunDB assesses the relative importance of the perceived advantages (Pros and disadvantages (Cons of sun protective behaviors. This study examined the psychometric properties of the SunDB measure, including invariance of the measurement model, in a population-based sample of N=1336 adults. Confirmatory factor analyses supported the theoretically based 2-factor (Pros, Cons model, with high internal consistencies for each subscale (α≥.70. Multiple-sample CFA established that this factor pattern was invariant across multiple population subgroups, including gender, racial identity, age, education level, and stage of change subgroups. Multivariate analysis by stage of change replicated expected patterns for SunDB (Pros η2=.15, Cons η2=.02. These results demonstrate the internal and external validity and measurement stability of the SunDB instrument in adults, supporting its use in research and intervention.

  2. Influence of age, gender, educational level and self-estimation of skin type on sun exposure habits and readiness to increase sun protection.

    Science.gov (United States)

    Falk, M; Anderson, C D

    2013-04-01

    Sun exposure habits and the propensity to undertake sun protection differ between individuals. Not least in primary prevention of skin cancer, aiming at reducing ultraviolet (UV) exposure, knowledge about these factors may be of importance. The aim of the present study was to investigate, in a primary health care (PHC) population, the relationship between sun exposure habits/sun protection behaviour/readiness to increase sun protection and gender, age, educational level and skin UV-sensitivity. The baseline data from a previously performed RCT on skin cancer prevention was used. 415 patients, aged > 18 years, visiting a PHC centre in southern Sweden, filled-out a questionnaire mapping sun exposure, readiness to increase sun protection according to the Transtheoretical Model of Behaviour Change (TTM), and the above mentioned factors. Female gender was associated with more frequent suntanning (p protection. Subjects with low educational level reported less frequent sunscreen use than those with higher educational level, and also chose lower SPF (p skin UV-sensitivity was associated with markedly lower sun exposure (p protection. Females and subjects with high educational level reported higher readiness to increase sunscreen use than males and subjects with lower educational level (p skin type appear to be important factors affecting sun exposure habits and sun protection behaviour, which supports the idea of appropriate mapping of these factors in patients in order to individualise sun protection advice according to the individual patient situation and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. DETERMINING THE INITIAL HELIUM ABUNDANCE OF THE SUN

    International Nuclear Information System (INIS)

    Serenelli, Aldo M.; Basu, Sarbani

    2010-01-01

    We determine the dependence of the initial helium abundance and the present-day helium abundance in the convective envelope of solar models (Y ini and Y surf , respectively) on the parameters that are used to construct the models. We do so by using reference standard solar models (SSMs) to compute the power-law coefficients of the dependence of Y ini and Y surf on the input parameters. We use these dependencies to determine the correlation between Y ini and Y surf and use this correlation to eliminate uncertainties in Y ini from all solar model input parameters except the microscopic diffusion rate. We find an expression for Y ini that depends only on Y surf and the diffusion rate. By adopting the helioseismic determination of solar surface helium abundance, Y surf sun = 0.2485 ± 0.0035, and an uncertainty of 20% for the diffusion rate, we find that the initial solar helium abundance, Y ini sun , is 0.278 ± 0.006 independently of the reference SSMs (and particularly on the adopted solar abundances) used in the derivation of the correlation between Y ini and Y surf . When non-SSMs with extra mixing are used, then we derive Y ini sun = 0.273 ± 0.006. In both cases, the derived Y ini sun value is higher than that directly derived from solar model calibrations when the low-metallicity solar abundances (e.g., by Asplund et al.) are adopted in the models.

  4. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  5. Sun Exposure and Psychotic Experiences

    Directory of Open Access Journals (Sweden)

    Izabela Pilecka

    2017-06-01

    Full Text Available ObjectiveSun exposure is considered the single most important source of vitamin D. Vitamin D deficiency has been suggested to play a role in the etiology of psychotic disorders. The aim of the present study was to evaluate the association between sun exposure and psychotic experiences (PEs in a general population sample of Swedish women.MethodsThe study population included participants from The Swedish Women’s Lifestyle and Health cohort study. The 20-item community assessment of psychic experiences (CAPEs was administered between ages 30 and 50 to establish PEs. Sun exposure as measured by (1 sunbathing holidays and (2 history of sunburn was measured between ages 10 and 39. The association between sun exposure and PEs was evaluated by quantile regression models.Results34,297 women were included in the analysis. Women who reported no sunbathing holidays and 2 or more weeks of sunbathing holidays scored higher on the CAPE scale than women exposed to 1 week of sunbathing holidays across the entire distribution, when adjusting for age and education. Similarly, compared with women who reported a history of one sunburn, the women with none or two or more sunburns showed higher scores on the CAPE scale.ConclusionThe results of the present study suggest that, in a population-based cohort of middle aged women, both low and high sun exposure is associated with increased level of positive PEs.

  6. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    Science.gov (United States)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  7. The sun and space weather Second Edition

    CERN Document Server

    Hanslmeier, Arnold

    2007-01-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exis...

  8. Sun Protection Practices and Sun Exposure among Children with a Parental History of Melanoma

    Science.gov (United States)

    Glenn, Beth A.; Lin, Tiffany; Chang, L. Cindy; Okada, Ashley; Wong, Weng Kee; Glanz, Karen; Bastani, Roshan

    2014-01-01

    Background First-degree relatives of melanoma survivors have a substantially higher lifetime risk for melanoma than individuals with no family history. Exposure to ultraviolet radiation is the primary modifiable risk factor for the disease. Reducing UV exposure through sun protection may be particularly important for children with a parental history of melanoma. Nonetheless, limited prior research has investigated sun protection practices and sun exposure among these children. Methods The California Cancer Registry was used to identify melanoma survivors eligible to participate in a survey to assess their children's sun protection practices and sun exposure. The survey was administered by mail, telephone, or web to Latino and non-Latino white melanoma survivors with at least one child (0–17 years; N = 324). Results Sun exposure was high and the rate of sunburn was equivalent to or higher than estimates from average risk populations. Use of sun protection was suboptimal. Latino children were less likely to wear sunscreen and hats and more likely to wear sunglasses, although these differences disappeared in adjusted analyses. Increasing age of the child was associated with lower sun protection and higher risk for sunburn whereas higher objective risk for melanoma predicted improved sun protection and a higher risk for sunburns. Perception of high barriers to sun protection was the strongest modifiable correlate of sun protection. Conclusions Interventions to improve sun protection and reduce sun exposure and sunburns in high risk children are needed. Impact Intervening in high risk populations may help reduce the burden of melanoma in the U.S. PMID:25587110

  9. baonan sun

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. BAONAN SUN. Articles written in Pramana – Journal of Physics. Volume 90 Issue 2 February 2018 pp 23 Research Article. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger–Boussinesq system · BAONAN SUN ZHAN LIAN.

  10. Fengrui Sun

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Fengrui Sun. Articles written in Sadhana. Volume 34 Issue 5 October 2009 pp 851-864. Profit rate performance optimization for a generalized irreversible combined refrigeration cycle · Kang Ma Lingen Chen Fengrui Sun · More Details Abstract Fulltext PDF. Finite-time exergoeconomic ...

  11. Sunburn, sun exposure, and sun sensitivity in the Study of Nevi in Children.

    Science.gov (United States)

    Satagopan, Jaya M; Oliveria, Susan A; Arora, Arshi; Marchetti, Michael A; Orlow, Irene; Dusza, Stephen W; Weinstock, Martin A; Scope, Alon; Geller, Alan C; Marghoob, Ashfaq A; Halpern, Allan C

    2015-11-01

    To examine the joint effect of sun exposure and sunburn on nevus counts (on the natural logarithm scale; log nevi) and the role of sun sensitivity. We describe an analysis of cross-sectional data from 443 children enrolled in the prospective Study of Nevi in Children. To evaluate the joint effect, we partitioned the sum of squares because of interaction between sunburn and sun exposure into orthogonal components representing (1) monotonic increase in log nevi with increasing sun exposure (rate of increase of log nevi depends on sunburn), and (2) nonmonotonic pattern. In unadjusted analyses, there was a marginally significant monotonic pattern of interaction (P = .08). In adjusted analyses, sun exposure was associated with higher log nevi among those without sunburn (P sunburn (P = .14). Sunburn was independently associated with log nevi (P = .02), even though sun sensitivity explained 29% (95% confidence interval: 2%-56%, P = .04) of its effect. Children with high sun sensitivity and sunburn had more nevi, regardless of sun exposure. A program of increasing sun protection in early childhood as a strategy for reducing nevi, when applied to the general population, may not equally benefit everyone. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A CMOS image sensor with row and column profiling means

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Wang, X.; Leijtens, J.A.P.; Hakkesteegt, H.; Jansen, H.

    2008-01-01

    This paper describes the implementation and firstmeasurement results of a new way that obtains row and column profile data from a CMOS Image Sensor, which is developed for a micro-Digital Sun Sensor (μDSS).The basic profiling action is achieved by the pixels with p-type MOS transistors which realize

  13. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    International Nuclear Information System (INIS)

    Chaudhari, V.A.; Solanki, C.S.

    2009-01-01

    Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of un optimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated

  14. Creating a Sun-Safe Camp.

    Science.gov (United States)

    Landrey, Ann

    1996-01-01

    Strategies for minimizing sun exposure of campers and staff include educating campers about the sun's effect on their skin, scheduling activities when the sun is less intense, creating shade at the camp site, incorporating sun protection into camp dress code, and training staff regarding sun protection. Addresses OSHA and liability issues. (LP)

  15. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    Science.gov (United States)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  16. Probability Model for Data Redundancy Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2009-01-01

    Full Text Available Sensor networks are made of autonomous devices that are able to collect, store, process and share data with other devices. Large sensor networks are often redundant in the sense that the measurements of some nodes can be substituted by other nodes with a certain degree of confidence. This spatial correlation results in wastage of link bandwidth and energy. In this paper, a model for two associated Poisson processes, through which sensors are distributed in a plane, is derived. A probability condition is established for data redundancy among closely located sensor nodes. The model generates a spatial bivariate Poisson process whose parameters depend on the parameters of the two individual Poisson processes and on the distance between the associated points. The proposed model helps in building efficient algorithms for data dissemination in the sensor network. A numerical example is provided investigating the advantage of this model.

  17. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    Science.gov (United States)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  18. SunBlock '99: Young Scientists Investigate the Sun

    Science.gov (United States)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  19. The structure and evolution of the Sun

    CERN Document Server

    Severino, Giuseppe

    2017-01-01

    This book equips the reader with a coherent understanding of the structure of the Sun and its evolution and provides all the knowledge required to construct a simplified model of the Sun. The early chapters cover key aspects of basic physics and describe the Sun’s size, mass, luminosity, and temperature. Using a semi-empirical approach, the structure of the present Sun is then modeled in detail, layer by layer, proceeding from the photosphere to the convection zone, radiation zone, and core. Finally, all stages of the Sun’s evolution, from its formation to the end of its life, are carefully explained. The book is primarily intended for university students taking the initial steps in moving from physics to astrophysics. It includes worked exercises and problems to illustrate the concepts discussed, as well as additional problems for independent study. With the aim of helping the reader as much as possible, most of the mathematics required to use the book are provided in the text.

  20. The Sun was Not Born in M67

    Science.gov (United States)

    Pichardo, Bárbara; Moreno, Edmundo; Allen, Christine; Bedin, Luigi R.; Bellini, Andrea; Pasquini, Luca

    2012-03-01

    Using the most recent proper-motion determination of the old, solar-metallicity, Galactic open cluster M67 in orbital computations in a non-axisymmetric model of the Milky Way, including a bar and three-dimensional spiral arms, we explore the possibility that the Sun once belonged to this cluster. We have performed Monte Carlo numerical simulations to generate the present-day orbital conditions of the Sun and M67, and all the parameters in the Galactic model. We compute 3.5 × 105 pairs of orbits Sun-M67 looking for close encounters in the past with a minimum distance approach within the tidal radius of M67. In these encounters we find that the relative velocity between the Sun and M67 is larger than 20 km s-1. If the Sun had been ejected from M67 with this high velocity by means of a three-body encounter, this interaction would have either destroyed an initial circumstellar disk around the Sun or dispersed its already formed planets. We also find a very low probability, much lower than 10-7, that the Sun was ejected from M67 by an encounter of this cluster with a giant molecular cloud. This study also excludes the possibility that the Sun and M67 were born in the same molecular cloud. Our dynamical results convincingly demonstrate that M67 could not have been the birth cluster of our solar system. This work relies partly on observations of the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are The Ohio State University; The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  1. Occupational sun protection: workplace culture, equipment provision and outdoor workers' characteristics.

    Science.gov (United States)

    Reeder, Anthony I; Gray, Andrew; McCool, Judith P

    2013-01-01

    The aim of this study was to describe outdoor workers' sun-protective practices, workplace sun-safety culture and sun-protective equipment provision; investigate the association of demographic, personal and occupational factors with sun-protective practices; and identify potential strategies for improving workers' sun protection. The present study used a clustered survey design with randomly identified employers in nine occupations. Employees provided questionnaire measures of demographics, personal characteristics (skin type, skin cancer risk perceptions, tanning attitudes, sun-exposure knowledge), personal occupational sun protection practices (exposure reduction, use of sun-protective clothing, sunscreen and shade), workplace sun-protective equipment provision and perceived workplace sun-safety culture. Summative scores were calculated for attitudes, knowledge, workplace provision and culture. A multivariable model was built with worker and workplace variables as plausible predictors of personal sun protection. In this study, 1,061 workers (69% participation) from 112 workplaces provided sufficient information for analysis. Sex, age, prioritized ethnicity, education and risk perception differed significantly between occupational groups (pworkplace sun-protection equipment provision and supportive culture. After adjustment, each one-point increase in Workplace Sun-safety Culture 2013Score (range 12 points) was associated with a 0.16 higher Personal Sun-Protection Score (pWorkplace Provision Score (range 4 points) was associated with a 0.14 higher score (pworkplace culture are promising components for the development of comprehensive programmes to improve outdoor workers' sun-protective practices.

  2. Design and fabrication of sun tracker

    International Nuclear Information System (INIS)

    Novinrooz, A. J.; Ghasemi, M. R.; Mohati, M.; Sadri, H.

    2003-01-01

    A sun tacker system, consists of two parts (opto-electronic and hydraulic), has been designed and fabricated to be used in solar thermal power plant. In this paper various parts of the system including optical sensors, electronic circuits, computational control and mechanical lever have been explained and the operational mechanism of each one is discussed. The parabolic mirror used in this plant has 400 cm length, 570 cm width and 170 cm focal length. Rays falling to the axis of mirror are reflected and collected at the focal point, while unparallel rays are diverted. To determine the rate of divergence, a three - dimensional equation of radiation path is written. Using a computational program in Cl anguage the error is calculated from 0t o 0 .5 d eg, for modifying the operational error of the optical system. The optical sensors detect the beam deviation from the mirror's principal axis with a precision of 0.1 degree and transfer the necessary corrections to the active mechanical system of the hydraulic type. A three phase electro motor of 0.7 k W power and one thousand revolutions per minute controls the mirror movement

  3. On the exact S-matrix from CP sup(n-1) and SU(n) chiral Thirring model

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1980-03-01

    The S-matrix of CP sub(n-1) and SU(n) Thirring model is calculated, perturbatively, up to 2 loops. The calculation shows striking similarities, but the S -matrix has some deviations from the expected exact one. (Author) [pt

  4. Acoustic/seismic signal propagation and sensor performance modeling

    Science.gov (United States)

    Wilson, D. Keith; Marlin, David H.; Mackay, Sean

    2007-04-01

    Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).

  5. SU(N) Irreducible Schwinger Bosons

    OpenAIRE

    Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh

    2010-01-01

    We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of $(N-1)$ types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus all SU(N) representations are made as simple as SU(2).

  6. Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor

    Directory of Open Access Journals (Sweden)

    Jae-Han Park

    2012-06-01

    Full Text Available This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  7. Spatial uncertainty model for visual features using a Kinect™ sensor.

    Science.gov (United States)

    Park, Jae-Han; Shin, Yong-Deuk; Bae, Ji-Hun; Baeg, Moon-Hong

    2012-01-01

    This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  8. Atmospheric lidar co-alignment sensor: flight model electro-optical characterization campaign

    Science.gov (United States)

    Valverde Guijarro, Ángel Luis; Belenguer Dávila, Tomás.; Laguna Hernandez, Hugo; Ramos Zapata, Gonzalo

    2017-10-01

    Due to the difficulty in studying the upper layer of the troposphere by using ground-based instrumentation, the conception of a space-orbit atmospheric LIDAR (ATLID) becomes necessary. ATLID born in the ESA's EarthCare Programme framework as one of its payloads, being the first instrument of this kind that will be in the Space. ATLID will provide vertical profiles of aerosols and thin clouds, separating the relative contribution of aerosol and molecular scattering to know aerosol optical depth. It operates at a wavelength of 355 nm and has a high spectral resolution receiver and depolarization channel with a vertical resolution up to 100m from ground to an altitude of 20 km and, and up to 500m from 20km to 40km. ATLID measurements will be done from a sun-synchronous orbit at 393 km altitude, and an alignment (co-alignment) sensor (CAS) is revealed as crucial due to the way in which LIDAR analyses the troposphere. As in previous models, INTA has been in charge of part of the ATLID instrument co-alignment sensor (ATLID-CAS) electro-optical characterization campaign. CAS includes a set of optical elements to take part of the useful signal, to direct it onto the memory CCD matrix (MCCD) used for the co-alignment determination, and to focus the selected signal on the MCCD. Several tests have been carried out for a proper electro-optical characterization: CAS line of sight (LoS) determination and stability, point spread function (PSF), absolute response (AbsRes), pixel response non uniformity (PRNU), response linearity (ResLin) and spectral response. In the following lines, a resume of the flight model electrooptical characterization campaign is reported on. In fact, results concerning the protoflight model (CAS PFM) will be summarized. PFM requires flight-level characterization, so most of the previously mentioned tests must be carried out under simulated working conditions, i.e., the vacuum level (around 10-5 mbar) and temperature range (between 50°C and -30°C) that

  9. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.

    Science.gov (United States)

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-11-25

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  10. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor

    Directory of Open Access Journals (Sweden)

    Ching-Chuan Wei

    2016-11-01

    Full Text Available Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi. Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  11. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds. Livsstil, soling og bruning - hva med UV-A solarier

    Energy Technology Data Exchange (ETDEWEB)

    Thune, P [Ullevaal Sykehus, Oslo (Norway)

    1991-06-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab.

  12. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds. Livsstil, soling og bruning - hva med UV-A solarier

    Energy Technology Data Exchange (ETDEWEB)

    Thune, P. (Ullevaal Sykehus, Oslo (Norway))

    1991-06-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab.

  13. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    Science.gov (United States)

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  14. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak

    2010-01-01

    In this study was investigated the thin-layer drying characteristics in solar dryer with forced convection and under open sun with natural convection of mint leaves, and, performed energy analysis and exergy analysis of solar drying process of mint leaves. An indirect forced convection solar dryer consisting of a solar air collector and drying cabinet was used in the experiments. The drying data were fitted to ten the different mathematical models. Among the models, Wang and Singh model for the forced solar drying and the natural sun drying were found to best explain thin-layer drying behaviour of mint leaves. Using the first law of thermodynamics, the energy analysis throughout solar drying process was estimated. However, exergy analysis during solar drying process was determined by applying the second law of thermodynamics. Energy utilization ratio (EUR) values of drying cabinet varied in the ranges between 7.826% and 46.285%. The values of exergetic efficiency were found to be in the range of 34.760-87.717%. The values of improvement potential varied between 0 and 0.017 kJ s -1 . Energy utilization ratio and improvement potential decreased with increasing drying time and ambient temperature while exergetic efficiency increased.

  15. Modeling of an Aged Porous Silicon Humidity Sensor Using ANN Technique

    Directory of Open Access Journals (Sweden)

    Tarikul ISLAM

    2006-10-01

    Full Text Available Porous silicon (PS sensor based on capacitive technique used for measuring relative humidity has the advantages of low cost, ease of fabrication with controlled structure and CMOS compatibility. But the response of the sensor is nonlinear function of humidity and suffers from errors due to aging and stability. One adaptive linear (ADALINE ANN model has been developed to model the behavior of the sensor with a view to estimate these errors and compensate them. The response of the sensor is represented by third order polynomial basis function whose coefficients are determined by the ANN technique. The drift in sensor output due to aging of PS layer is also modeled by adapting the weights of the polynomial function. ANN based modeling is found to be more suitable than conventional physical modeling of PS humidity sensor in changing environment and drift due to aging. It helps online estimation of nonlinearity as well as monitoring of the fault of the PS humidity sensor using the coefficients of the model.

  16. Sun protection counseling by pediatricians has little effect on parent and child sun protection behavior.

    Science.gov (United States)

    Cohen, Liza; Brown, Judith; Haukness, Heather; Walsh, Lori; Robinson, June K

    2013-02-01

    To compare counseling concerning sun protection and outdoor exercise with the parent's report of the behavior of a child aged 9-16 years old. Structured interviews of medical personnel in 3 Chicago area practices elicited information about counseling methods and recommendations. In each practice, a convenience sample of parents completed a self-reported survey of their and their child's behavior. Sun protection counseling occurred more frequently than exercise counseling in all practices (P = .014). Sun protection counseling was associated with parental prompting (P = .004), performing a summer camp physical (P = .002), and the child having a sunburn (P = .003). After controlling for the child's age, sex, and skin tone, sun protection counseling was not associated with the child's use of sun protection. In multivariate analysis of the child's sun protection behavior, parental sunburns, indoor tanning in the last 12 months, perception of skin cancer risk, and sun protection self-efficacy were significant (P = .02). Children who pursued outdoor sports were twice as likely to use inadequate sun protection and sustain sunburns (CI 1.3-1.7). The child's sun protection behavior was influenced by parental sun protection, parental perception of skin cancer risk, and parental sun protection self-efficacy; therefore, sun protection for children needs to be aimed at parents as well as children. Communication with parents in a way that incorporates the principles of motivational interviewing may be more effective in promoting behavioral change than admonitions to use sunscreen. Copyright © 2013 Mosby, Inc. All rights reserved.

  17. Work-time sun behaviours among Canadian outdoor workers: results from the 2006 National Sun Survey.

    Science.gov (United States)

    Marrett, Loraine D; Pichora, Erin C; Costa, Michelle L

    2010-01-01

    The objective of the study was to describe summer work-related sun behaviours among Canadian outdoor workers. Information on time in the sun and sun protection practices at work during the summer of 2006 were collected from 1,337 outdoor workers aged 16-64 years as part of the Second National Sun Survey. Proportions (and 95% confidence intervals) were estimated using procedures appropriate for complex survey designs. Twenty-six percent of all Canadians, 39% of males and 33% of those aged 16-24 years work outdoors during the summer. Although 41% spend four or more hours daily in the sun at work, just over half always or often protect themselves by covering their heads (58%), wearing protective clothing (56%) or wearing sunglasses (54%), and only 29% use sunscreen. Males and those aged 16-24 spend the most work time in the sun but are the least likely to use protection. The prevalence of outdoor work and sun behaviours varies among regions. Study findings confirm the need for strategies to reduce time in the sun and increase the use of sun protection among outdoor workers. In order to be effective, these strategies must include both enhanced workplace policies and practice, and increased individual use of sun protection.

  18. Sun exposure and sun protection behaviours among young adult sport competitors.

    Science.gov (United States)

    Lawler, Sheleigh; Spathonis, Kym; Eakin, Elizabeth; Gallois, Cindy; Leslie, Eva; Owen, Neville

    2007-06-01

    To explore the relationship between sun protection and physical activity in young adults (18-30 years) involved in four organised sports. Participants (n=237) in field hockey, soccer, tennis and surf sports completed a self-administered survey on demographic and sun-protective behaviours while playing sport. Differences in sun-protective behaviour were explored by sport and by gender. Sunburn during the previous sporting season was high (69%). There were differences between sports for sunburn, sunscreen use and reapplication of sunscreen. Lifesaving had the highest rates compared with the other three sports. Hats and sunglasses worn by participants varied significantly by sports. A greater proportion of soccer and hockey players indicated they were not allowed to wear a hat or sunglasses during competition. For all sports, competition was played mainly in the open with no shade provision for competitors while they were playing. There were some gender differences within each of the sports. Female soccer and tennis players were more likely to wear sunscreen compared with males. Female hockey players were more likely to wear a hat compared with males. Our findings highlight that there is still room for improvement in sun-protective behaviours among young adult sport competitors. There is a need for a systematic approach to sun protection in the sporting environments of young adults. Health promotion efforts to increase physical activity need to be paired with sun protection messages.

  19. MedSun Reports

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medical Product Safety Network (MedSun) is an adverse event reporting program launched in 2002. The primary goal for MedSun is to work collaboratively with the...

  20. Conception and realization of a PV system provided with a sun tracker operating at dual axis

    Directory of Open Access Journals (Sweden)

    Khalil Kassmi

    2016-06-01

    Full Text Available In this paper, we present the conception, the realization and the experimentation of  a photovoltaic (PV system provided with a sun tracker reliable and low cost operating at dual axis. The tracker's role is to orient the PV generator, whose weight may reach 9 Kg, perpendicular to the sun with very good accuracy. This tracking  based on the use of four LDR sensors, which detect the intensity of light scattered by the sun a processing unit, from  command and control (UTCC, which manages all of the sun tracking tasks (the end detection of parcours, regulation of the power supplied by the PV panels (Command MPPT, ... . The results obtained show a significant improvement of the energy produced, compared to conventional PV installations where generators are fixed and oriented south at a  tilt 45°. During a day of operation, improvement could reach 41% and consumption of the tracking does not exceed 0.55% of the energy production produced by the PV generator (an improvement of 5 % compared to existing trackers.

  1. Structural insights into SUN-KASH complexes across the nuclear envelope

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wang; Zhaocai Zhou; Zhubing Shi; Shi Jiao; Cuicui Chen; Huizhen Wang; Guoguang Liu; Qiang Wang; Yun Zhao; Mark I Greene

    2012-01-01

    Linker of the nucleoskeleton and the cytoskeleton (LINC) complexes are composed of SUN and KASH domaincontaining proteins and bridge the inner and outer membranes of the nuclear envelope.LINC complexes play critical roles in nuclear positioning,cell polarization and cellular stiffness.Previously,we reported the homotrimeric structure of human SUN2.We have now determined the crystal structure of the human SUN2-KASH complex.In the complex structure,the SUN domain homotrimer binds to three independent "hook"-like KASH peptides.The overall conformation of the SUN domain in the complex closely resembles the SUN domain in its apo state.A major conformational change involves the AA'-loop of KASH-bound SUN domain,which rearranges to form a mini β-sheet that interacts with the KASH peptide.The PPPT motif of the KASH domain fits tightly into a hydrophobic pocket on the homotrimeric interface of the SUN domain,which we termed the BI-pocket.Moreover,two adjacent protomers of the SUN domain homotrimer sandwich the KASH domain by hydrophobic interaction and hydrogen bonding.Mutations of these binding sites disrupt or reduce the association between the SUN and KASH domains in vitro.In addition,transfection of wild-type,but not mutant,SUN2 promotes cell migration in Ovcar-3 cells.These results provide a structural model of the LINC complex,which is essential for additional study of the physical and functional coupling between the cytoplasm and the nucleoplasm.

  2. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-01-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, Σ, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, Σ r and Σ b , exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, Σ K , is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of Σ r and Σ K . We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  3. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    International Nuclear Information System (INIS)

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jørgen

    2012-01-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  4. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science......Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555....

  5. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.

    Science.gov (United States)

    Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei

    2017-01-13

    WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.

  6. Experimental constraints on pulsed and steady state models of the solar wind near the Sun

    International Nuclear Information System (INIS)

    Feldman, W.C.; Habbal, S.R.; Hoogeveen, G.; Wang, Y.

    1997-01-01

    Ulysses observations of the high-latitude solar wind were combined with Spartan 201 observations of the corona to investigate the nature and extent of uncertainties in our knowledge of solar wind structure near the Sun. In addition to uncertainties stemming from the propagation of errors in density profiles inferred from coronagraph observations [see, e.g., Lallement et al., 1986], an assessment of the consequences of choosing different analysis assumptions reveals very large, fundamental uncertainties in our knowledge of even the basics of coronal structure near the Sun. In the spirit of demonstrating the nature and extent of these uncertainties we develop just one of a generic class of explicitly time-dependent and filamentary models of the corona that is consistent with the Ulysses and Spartan 201 data. This model provides a natural explanation for the radial profiles of both the axial ratios and apparent radial speeds of density irregularities measured at radial distances less than 10R S using the interplanetary scintillation technique. copyright 1997 American Geophysical Union

  7. Seasons by the Sun

    Science.gov (United States)

    Stark, Meri-Lyn

    2005-01-01

    Understanding the Sun has challenged people since ancient times. Mythology from the Greek, Inuit, and Inca cultures attempted to explain the daily appearance and nightly disappearance of the Sun by relating it to a chariot being chased across the sky. While people no longer believe the Sun is a chariot racing across the sky, teachers are still…

  8. Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap

    International Nuclear Information System (INIS)

    Greiter, Martin; Rachel, Stephan

    2007-01-01

    To begin with, we introduce several exact models for SU(3) spin chains: First is a translationally invariant parent Hamiltonian involving four-site interactions for the trimer chain, with a threefold degenerate ground state. We provide numerical evidence that the elementary excitations of this model transform under representation 3 of SU(3) if the original spins of the model transform under representation 3. Second is a family of parent Hamiltonians for valence bond solids of SU(3) chains with spin representations 6, 10, and 8 on each lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and, hence, a Haldane gap in the excitation spectrum. We generalize some of our models to SU(n). Finally, we use the emerging rules for the construction of valence bond solid states to argue that models of antiferromagnetic chains of SU(n) spins, in general, possess a Haldane gap if the spins transform under a representation corresponding to a Young tableau consisting of a number of boxes λ which is divisible by n. If λ and n have no common divisor, the spin chain will support deconfined spinons and not exhibit a Haldane gap. If λ and n have a common divisor different from n, it will depend on the specifics of the model including the range of the interaction

  9. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  10. Developing a multipurpose sun tracking system using fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Alata, Mohanad [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)]. E-mail: alata@just.edu.jo; Al-Nimr, M.A. [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan); Qaroush, Yousef [Department of Mechanical Engineering, Jordan University of Science and Technology (JUST), PO Box 3030, Irbid 22110 (Jordan)

    2005-05-01

    The present work demonstrates the design and simulation of time controlled step sun tracking systems that include: one axis sun tracking with the tilted aperture equal to the latitude angle, equatorial two axis sun tracking and azimuth/elevation sun tracking. The first order Sugeno fuzzy inference system is utilized for modeling and controller design. In addition, an estimation of the insolation incident on a two axis sun tracking system is determined by fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm, along with least square estimation (LSE), generates the fuzzy rules that describe the relationship between the input/output data of solar angles that change with time. The fuzzy rules are tuned by an adaptive neuro-fuzzy inference system (ANFIS). Finally, an open loop control system is designed for each of the previous types of sun tracking systems. The results are shown using simulation and virtual reality. The site of application is chosen at Amman, Jordan (32 deg. North, 36 deg. East), and the period of controlling and simulating each type of tracking system is the year 2003.

  11. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    Science.gov (United States)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan

  12. Modeling of a new 2D Acceleration Sensor Array using SystemC-AMS

    International Nuclear Information System (INIS)

    Markert, Erik; Dienel, Marco; Herrmann, Goeran; Mueller, Dietmar; Heinkel, Ulrich

    2006-01-01

    This paper presents an approach for modeling and simulation of a new 2D acceleration sensor array using SystemC-AMS. The sensor array consists of six single acceleration sensors with different detection axes. These single sensors comprise of four capacitive segments and one mass segment, aligned in a semicircle. The redundant sensor information is used for offset correction. Modeling of the single sensors is achieved using sensor structure simplification into 11 points and analytic equations for capacity changes, currents and torques. This model was expanded by a PWM feedback circuit to keep the sensor displacement in a linear region. In this paper the single sensor model is duplicated considering different positions of the seismic mass resulting in different detection axes for the single sensors. The measured accelerations of the sensors are merged with different weights depending on the orientation. This also reduces calculation effort

  13. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  14. Child sun protection: sun-related attitudes mediate the association between children's knowledge and behaviours.

    Science.gov (United States)

    Wright, Caradee; Reeder, Anthony I; Gray, Andrew; Cox, Brian

    2008-12-01

    To describe and investigate the relationship among the sun-related knowledge, attitudes and behaviours of New Zealand primary schoolchildren and consider the roles of sex and school year level. A randomly selected, two-stage cluster sample of 488 children from 27 primary schools in five regions of New Zealand was surveyed regarding their sun-related knowledge, attitudes and behaviours. A scoring system was used to assign a knowledge, attitude and behaviour score to each child. Although knowledge increased with school year level, there was a decline in sun protective attitudes and behaviours. There was little variation in knowledge, attitudes and behaviour between boys and girls, but sex-year level interactions were found for knowledge and behaviour. When considering children's knowledge, attitudes and behaviours simultaneously, knowledge was only significantly associated with behaviours when mediated by attitudes. When targeting child sun protection and skin cancer prevention programmes, a focus on attitudes towards sun exposure and a suntan may prove beneficial in influencing sun-related behaviours.

  15. SU(N,1) inflation

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.; Srednicki, M.

    1985-01-01

    We present a simple model for primordial inflation in the context of SU(N, 1) no-scale n=1 supergravity. Because the model at zero temperature very closely resembles global supersymmetry, minima with negative cosmological constants do not exist, and it is easy to have a long inflationary epoch while keeping density perturbations of the right magnitude and satisfying other cosmological constraints. We pay specific attention to satisfying the thermal constraint for inflation, i.e. the existence of a high temperature minimum at the origin. (orig.)

  16. Totality eclipses of the Sun

    CERN Document Server

    Littmann, Mark; Willcox, Ken

    2008-01-01

    A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. - ;A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. Totality: Eclipses of the Sun is the best guide and reference book on solar eclipses ever written. It explains: how to observe them; how to photograph and videotape them; why they occur; their history and mythology; and future eclipses - when and where to see them. Totality also tells the remarkable story of how eclipses shocked scientists, revealed the workings of the Sun, and made Einstein famous. And the book shares the experiences and advice of many veteran eclipse observers. Totality: Eclipses of the Sun is profusely ill...

  17. Kug Sun Hong

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Kug Sun Hong. Articles written in Bulletin of Materials Science. Volume 33 Issue 1 February 2010 pp 43-47 Composites. Microstructure and mechanical properties of Mg–HAP composites · Asit Kumar Khanra Hwa Chul Jung Seung Hoon Yu Kug Sun Hong Kwang Seon Shin.

  18. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  19. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  20. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  1. The importance of reliability to the SunShot Initiative (Presentation Recording)

    Science.gov (United States)

    Jones-Albertus, Rebecca

    2015-09-01

    The U.S. Department of Energy's SunShot Initiative was launched in 2011 to make subsidy-free solar electricity cost competitive with conventional energy sources by the end of the decade. Research in reliability can play a major role in realizing the SunShot goal of 0.06/kWh. By improving photovoltaic module lifetime and reducing degradation rates, a system's lifetime energy output is increased. Increasing confidence in photovoltaic performance prediction can lower perceived investment risk and thus the cost of capital. Accordingly, in 2015, SunShot expects to award more than $40 million through its SunShot National Laboratory Multiyear Partnership (SuNLaMP) and Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) 2 funding programs, for research into reliability topics such as determining acceleration factors, modeling degradation rates and failure mechanisms, improving predictive performance models, and developing new test methods and instrumentation.

  2. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  3. MODELING THE CHROMOSPHERE OF A SUNSPOT AND THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Avrett, E.; Tian, H. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Curdt, W. [Max Planck Institut für Sonnensystemfoschung, Goettingen (Germany); Wülser, J.-P. [Lockheed Martin Advanced Techonology Center (United States)

    2015-10-01

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.

  4. Evidence for continuum absorption above the quiet sun transition region

    International Nuclear Information System (INIS)

    Schmahl, E.J.; Orrall, F.Q.

    1979-01-01

    We report new evidence for continuum absorption in the solar transition zone in EUV spectra obtained from OSO 4, OSO 6, ATM, and full Sun measurements. This absorption shortward of 912 A is manifest everywhere on the Sun's disk. It is present within network cells and boundaries of the quiet Sun, in coronal holes, in active regions, above the limb, and in solar prominences. Models of the upper chromosphere and the transition zone must be modified to include an admixture of neutral hydrogen (or possibly singly ionized helium) with the hotter plasma

  5. A Novel Petri Nets-Based Modeling Method for the Interaction between the Sensor and the Geographic Environment in Emerging Sensor Networks

    Science.gov (United States)

    Zhang, Feng; Xu, Yuetong; Chou, Jarong

    2016-01-01

    The service of sensor device in Emerging Sensor Networks (ESNs) is the extension of traditional Web services. Through the sensor network, the service of sensor device can communicate directly with the entity in the geographic environment, and even impact the geographic entity directly. The interaction between the sensor device in ESNs and geographic environment is very complex, and the interaction modeling is a challenging problem. This paper proposed a novel Petri Nets-based modeling method for the interaction between the sensor device and the geographic environment. The feature of the sensor device service in ESNs is more easily affected by the geographic environment than the traditional Web service. Therefore, the response time, the fault-tolerant ability and the resource consumption become important factors in the performance of the whole sensor application system. Thus, this paper classified IoT services as Sensing services and Controlling services according to the interaction between IoT service and geographic entity, and classified GIS services as data services and processing services. Then, this paper designed and analyzed service algebra and Colored Petri Nets model to modeling the geo-feature, IoT service, GIS service and the interaction process between the sensor and the geographic enviroment. At last, the modeling process is discussed by examples. PMID:27681730

  6. A Novel Petri Nets-Based Modeling Method for the Interaction between the Sensor and the Geographic Environment in Emerging Sensor Networks

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-09-01

    Full Text Available The service of sensor device in Emerging Sensor Networks (ESNs is the extension of traditional Web services. Through the sensor network, the service of sensor device can communicate directly with the entity in the geographic environment, and even impact the geographic entity directly. The interaction between the sensor device in ESNs and geographic environment is very complex, and the interaction modeling is a challenging problem. This paper proposed a novel Petri Nets-based modeling method for the interaction between the sensor device and the geographic environment. The feature of the sensor device service in ESNs is more easily affected by the geographic environment than the traditional Web service. Therefore, the response time, the fault-tolerant ability and the resource consumption become important factors in the performance of the whole sensor application system. Thus, this paper classified IoT services as Sensing services and Controlling services according to the interaction between IoT service and geographic entity, and classified GIS services as data services and processing services. Then, this paper designed and analyzed service algebra and Colored Petri Nets model to modeling the geo-feature, IoT service, GIS service and the interaction process between the sensor and the geographic enviroment. At last, the modeling process is discussed by examples.

  7. AXISYMMETRIC AB INITIO CORE-COLLAPSE SUPERNOVA SIMULATIONS OF 12-25 M{sub Sun} STARS

    Energy Technology Data Exchange (ETDEWEB)

    Bruenn, Stephen W.; Yakunin, Konstantin N. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, Anthony; Hix, W. Raphael; Lingerfelt, Eric J. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Endeve, Eirik [Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Marronetti, Pedro, E-mail: bruenn@fau.edu [Physics Division, National Science Foundation, Arlington, VA 22207 (United States)

    2013-04-10

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley and Heger progenitors of mass 12, 15, 20, and 25 M{sub Sun }. All four models exhibit shock revival over {approx}200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 M{sub Sun} model and the standing accretion shock instability appearing first in the 25 M{sub Sun} model. Three of the models have developed pronounced prolate morphologies (the 20 M{sub Sun} model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B = 10{sup 51} erg) for the 12, 15, 20, and 25 M{sub Sun} models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 M{sub Sun} diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is {approx}0.3 B, which is comparable to observations for lower mass progenitors.

  8. Influence of model errors in optimal sensor placement

    Science.gov (United States)

    Vincenzi, Loris; Simonini, Laura

    2017-02-01

    The paper investigates the role of model errors and parametric uncertainties in optimal or near optimal sensor placements for structural health monitoring (SHM) and modal testing. The near optimal set of measurement locations is obtained by the Information Entropy theory; the results of placement process considerably depend on the so-called covariance matrix of prediction error as well as on the definition of the correlation function. A constant and an exponential correlation function depending on the distance between sensors are firstly assumed; then a proposal depending on both distance and modal vectors is presented. With reference to a simple case-study, the effect of model uncertainties on results is described and the reliability and the robustness of the proposed correlation function in the case of model errors are tested with reference to 2D and 3D benchmark case studies. A measure of the quality of the obtained sensor configuration is considered through the use of independent assessment criteria. In conclusion, the results obtained by applying the proposed procedure on a real 5-spans steel footbridge are described. The proposed method also allows to better estimate higher modes when the number of sensors is greater than the number of modes of interest. In addition, the results show a smaller variation in the sensor position when uncertainties occur.

  9. Finite element modelling of fibre Bragg grating strain sensors and experimental validation

    Science.gov (United States)

    Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.

    2009-03-01

    Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.

  10. Precise nuclear physics for the sun

    International Nuclear Information System (INIS)

    Bemmerer, Daniel

    2012-01-01

    , mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth's atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth's atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth's climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.

  11. Precise nuclear physics for the sun

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel

    2012-07-01

    populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth's atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth's atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth's climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.

  12. Affordable and personalized lighting using inverse modeling and virtual sensors

    Science.gov (United States)

    Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney

    2014-03-01

    Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.

  13. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    Directory of Open Access Journals (Sweden)

    Jennifer Howcroft

    Full Text Available Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521. Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  14. Fuzzy modeling of analytical redundancy for sensor failure detection

    International Nuclear Information System (INIS)

    Tsai, T.M.; Chou, H.P.

    1991-01-01

    Failure detection and isolation (FDI) in dynamic systems may be accomplished by testing the consistency of the system via analytically redundant relations. The redundant relation is basically a mathematical model relating system inputs and dissimilar sensor outputs from which information is extracted and subsequently examined for the presence of failure signatures. Performance of the approach is often jeopardized by inherent modeling error and noise interference. To mitigate such effects, techniques such as Kalman filtering, auto-regression-moving-average (ARMA) modeling in conjunction with probability tests are often employed. These conventional techniques treat the stochastic nature of uncertainties in a deterministic manner to generate best-estimated model and sensor outputs by minimizing uncertainties. In this paper, the authors present a different approach by treating the effect of uncertainties with fuzzy numbers. Coefficients in redundant relations derived from first-principle physical models are considered as fuzzy parameters and on-line updated according to system behaviors. Failure detection is accomplished by examining the possibility that a sensor signal occurred in an estimated fuzzy domain. To facilitate failure isolation, individual FDI monitors are designed for each interested sensor

  15. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  16. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  17. Expansion of IFC model with structural sensors

    Directory of Open Access Journals (Sweden)

    Rio, J.

    2013-06-01

    Full Text Available The instrumentation and structural health monitoring, SHM, of buildings is a growing field in the construction industry. The goal of this research work is to explore ways of modeling SHM systems, and the resulting data collected from buildings, in standard information management system such as Building Information Models, BIM. These models need to be stored in digital databases with structures suitable for the specific building related information. In this work the Industry Foundation Classes, IFC, data model was used. A case study is presented to assess the applicability of the present IFC standard as a tool to build a three-dimensional digital model of a real instrumented building, as well as some of the structural sensors and their results. The interoperability of the digital model was verified by using different modeling, viewing and analysis software tools. Limitations of the current IFC model were explored and extensions to the sensor classes are proposed.La instrumentación y monitorización de la salud estructural de edificios, SHM, es un campo creciente en la industria de la construcción. El objetivo del presente trabajo es estudiar la modelación de sistemas SHM tomados de edificios en un modelo digital BIM e la sua integración de datos. Estos modelos deben almacenarse en bases de datos con una estructura apropiada para albergar información específica relacionada con la construcción. En este trabajo se utilizó el estándar Industry Foundation Classes, IFC. Se presenta un estudio de caso para evaluar la norma IFC como herramienta para modelar un edificio real instrumentado, así como algunos sensores estruturales e sus resultados. La inter-operatividad de lo modelo digital se ha comprobado mediante el uso de diferentes herramientas de software de modelación, visualización y análisis. Se exploran además limitaciones del modelo IFC y se proponen extensiones de las clases de sensores.

  18. Novel sensors for food inspection modelling, fabrication and experimentation

    CERN Document Server

    Abdul Rahman, Mohd Syaifudin; Yu, Pak-Lam

    2014-01-01

    This book addresses presents recent developments of novel planar interdigital sensors for food inspection. It covers the fundamentals of sensors, their design, modelling and simulations, fabrications, characterizations, experimental investigations and analyses. This book will be useful for the engineers and researchers especially higher undergraduate, postgraduate students as well as practitioners working on the development of Electromagnetic Sensors.

  19. Rancang Bangun Solar Tracker Berbasis Mikrokontroler Atmega8535 Dengan Sensor Ldr Dan Penampil Lcd

    OpenAIRE

    Syafrialdi, Roni; -, Wildian

    2015-01-01

    This research aims to design a solar tracker using a four-quadrant LDR that used for sensing the position of the sun. Solar tracker is the tools used to follow the direction of motion of the sun. The electronic circuits consisting of a power supply circuit, microcontroller ATmega8535 and LCD circuit, stepper motor driver circuit and LDR sensor circuit. The mechanical design using dual axis with stepper motor as an actuator to position the solar cell tilted appropriately to face the sun direct...

  20. Effect of sun radiation on the thermal behavior of distribution transformer

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim; Mohamadianfard, Mohamad

    2010-01-01

    Performance and life of oil-immersed distribution transformers are strongly dependent on the oil temperature. Transformers, working in regions with high temperature and high solar radiation, usually suffer from excessive heat in summers which results in their early failures. In this paper, the effect of sun radiation on the transformer was investigated by using experimental and analytical methods. Transformer oil temperature was measured in two different modes, with and without sun shield. Effects of different parameters such as direct and indirect solar radiation on the thermal behavior of the transformer were mathematically modeled and the results were compared with experimental findings. Agreements between the experimental and numerical results show that the model can reasonably predict thermal behavior of the transformer. It was found that a sun shield has an important effect on the oil temperature reduction in summer which could be as high as 7 deg. C depending on the load ratio. The amount of temperature reduction by sun shield reduces as the load ratio of transformer increases. By installing a sun shield and reducing oil temperature, transformer life could be increased up to 24% in average.

  1. Sun protection among Spanish beachgoers: knowledge, attitude and behaviour.

    Science.gov (United States)

    Cercato, M C; Ramazzotti, V; Sperduti, I; Asensio-Pascual, A; Ribes, I; Guillén, C; Nagore, E

    2015-03-01

    This study aims to investigate the level of awareness on the risks related to sun exposure, attitude towards sun protection and sun protection behaviour in Spanish beachgoers. During the summer of 2009, trained assistants conducted a structured interview with 630 sunbathers at the beaches of Valencia, Spain, via administrating a questionnaire including the following: (a) general data (age, gender, education, profession), (b) "knowledge" and "attitude" items and (c) self-assessed sun sensitivity, sun exposure and sun protection characteristics. The health belief model was used to evaluate factors that may influence on engaging healthy behaviour. The median age was 30 (2-82) years; the M/F ratio was 0.60. Despite the widespread regular ("often" or "always", 80%) use of high (>15) sun-protective factor sunscreens, current recommendations on sun protection were not regularly followed, and a history of sunburns is very common (70%). At multivariate analysis, female gender, age, fair hair, freckles, all-day use of sunscreens and wearing sunglasses were independent factors associated with having sunburn history. A high knowledge and a fairly good attitude emerged (median scores, 6/7 and 22/30, respectively). Age class (p = 0.032), educational level (p < 0.0001), sunscreen use (p = 0.048) and adequate timing of the first application of sunscreens (p = 0.015) were predictors of awareness, while factors associated with a more favourable attitude were educational level (p < 0.0001) and regular use of hats (p = 0.001). Wrong beliefs mainly concern sunscreens (false safety); the attractiveness of a tanned look is the main unfavourable attitude. Physical and motivational barriers are common (80%). The findings by highlighting constitutional and psychosocial factors involved in unhealthy behaviour provide useful information to promote sun-safe interventions in this population.

  2. F F Sun

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F F Sun. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 71-76. Study of electroless copper plating on ABS resin surface modified by heterocyclic organosilane self-assembled film · H N Zhang J Wang F F Sun D Liu H Y Wang F Wang.

  3. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  4. Skin Cancer-Sun Knowledge and Sun Protection Behaviors of Liver Transplant Recipients in Turkey.

    Science.gov (United States)

    Haney, Meryem Ozturk; Ordin, Yaprak Sarigol; Arkan, Gulcihan

    2017-09-08

    The aim of this study was to compare liver transplant recipients (LTRs) with the general population regarding their knowledge of skin cancer, sun health, sun protection behaviors, and affecting factors. This cross-sectional study was conducted in Turkey between March 2016 and September 2016 with 104 LTRs and 100 participants from the general population group (GPG). The mean age of the LTRs was 53.2 ± 11.8 and that of the GPG was 42.7 ± 14.5. The LTRs' skin cancer and sun knowledge were significantly lower than in the GPG, but there was no difference between the two groups in terms of their sun protection behavior scores. The most commonly used sun protection behaviors of LTRs were not being outside and not sunbathing between 10 a.m. and 4 p.m., wearing clothing that covers the skin, and avoiding the solarium. Behaviors commonly practiced by the GPG were wearing sunglasses, wearing sunscreen with a sun protection factor of 15 or higher before going outside, wearing sunscreen at the beach, while swimming or doing physical activity outside, and reapplying it every 2 h. Results of our study will contribute to the development of education and training programs for LTRs on skin cancer. The results also demonstrated the importance of practicing adequate sun protection behaviors which will certainly impact their future health.

  5. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud

    Directory of Open Access Journals (Sweden)

    Thanh Dinh

    2016-06-01

    Full Text Available This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.

  6. Correction of sun glint effect on MIVIS data of the Sicily campaign in July 2000

    Directory of Open Access Journals (Sweden)

    E. Zappitelli

    2006-06-01

    Full Text Available To assess the suspended and dissolved matter in water in the visible and near infrared spectral regions it is necessary to estimate with adequate accuracy the water leaving radiance. Consequently radiance measured by a remote sensor has to be corrected from the atmospheric and the sea surface effects consisting in the path radiance and the sun and sky glitter radiance contributions. This paper describes the application of the sun glint correction scheme on to airborne hyperspectral MIVIS measurements acquired on the area of the Straits of Messina during the campaign in July 2000. In the Messina case study data have been corrected for the atmospheric effects and for the sun-glitter contribution evaluated following the method proposed by Cox and Munk (1954, 1956. Comparison between glitter contaminated and glitter free data has been made taking into account the radiance profiles relevant to selected scan lines and the spectra of different pixels belonging to the same scan line and located out and inside the sun glitter area. The results show that spectra after correction have the same profile as the contaminated ones, although, at this stage, free glint data have not yet been used in water constituent retrieval and consequently the reliability of such correction cannot be completely evaluated.

  7. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    Science.gov (United States)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  8. SunShot Initiative Portfolio Book 2014

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2014-05-01

    The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.

  9. School Sun-Protection Policies--Does Being SunSmart Make a Difference?

    Science.gov (United States)

    Turner, Denise; Harrison, Simone L.; Buettner, Petra; Nowak, Madeleine

    2014-01-01

    Evaluate the comprehensiveness of primary school sun-protection policies in tropical North Queensland, Australia. Pre-determined criteria were used to assess publicly available sun-protection policies from primary schools in Townsville (latitude 19.3°S; n = 43), Cairns (16.9°S; n = 46) and the Atherton Tablelands (17.3°S; n = 23) during 2009-2012.…

  10. Parallel double-plate capacitive proximity sensor modelling based on effective theory

    International Nuclear Information System (INIS)

    Li, Nan; Zhu, Haiye; Wang, Wenyu; Gong, Yu

    2014-01-01

    A semi-analytical model for a double-plate capacitive proximity sensor is presented according to the effective theory. Three physical models are established to derive the final equation of the sensor. Measured data are used to determine the coefficients. The final equation is verified by using measured data. The average relative error of the calculated and the measured sensor capacitance is less than 7.5%. The equation can be used to provide guidance to engineering design of the proximity sensors

  11. The flight over the sun

    International Nuclear Information System (INIS)

    Ducrocq, A.

    1985-01-01

    With the ''Ulysse'' mission, a satellite is going for the first time to leave the ecliptic plane to observe the sun poles. The ISPM (International Solar Polar Mission) probe will go and visit the sun in passing Jupiter way. Sun pole regions are surmised to play a major role in solar wind production [fr

  12. Semiempirical modeling of large-scale flow on the Sun

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Pavel

    2001-01-01

    Roč. 199, č. 2 (2001), s. 251-266 ISSN 0038-0938 R&D Projects: GA AV ČR IAA3003806; GA AV ČR KSK1003601 Institutional research plan: CEZ:AV0Z1003909 Keywords : sun * magnetic field * horizontal flow Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  13. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  14. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  15. PROPERTIES OF NEAR-SUN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2013-05-15

    Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. We conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.

  16. Adaptive inferential sensors based on evolving fuzzy models.

    Science.gov (United States)

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  17. Correlates of Sun Protection and Sunburn in Children of Melanoma Survivors.

    Science.gov (United States)

    Tripp, Mary K; Peterson, Susan K; Prokhorov, Alexander V; Shete, Sanjay S; Lee, Jeffrey E; Gershenwald, Jeffrey E; Gritz, Ellen R

    2016-09-01

    Sunburns during childhood increase melanoma risk. Children of melanoma survivors are at higher risk, but little is known about their sunburn and sun protection. One study showed that almost half of melanoma survivors' children experienced sunburn in the past year. This study evaluated sunburn and sun protection in melanoma survivors' children, and relevant survivor characteristics from Social Cognitive Theory and the Health Belief Model. Melanoma survivors (N=340) were recruited from a comprehensive cancer center. Survivors completed a baseline questionnaire administered by telephone to report on the behavior of their children (N=340) as part of an RCT of a sun protection intervention. Data were collected in 2008 and analyzed in 2015. In the prior 6 months, 28% of children experienced sunburn. "Always" or "frequent" sun protection varied by behavior: sunscreen, 69%; lip balm, 15%; wide-brimmed hats, 9%; sleeved shirts, 28%; pants, 48%; sunglasses, 10%; shade, 33%; and limiting time outdoors, 45%. Survivors' sunburn and sun protection were positively associated with these outcomes in children. Correlates of sunburn also included older child age and higher risk perceptions. Correlates of sun protection behaviors included younger child age; stronger intentions, higher self-efficacy, and more positive outcome expectations about sun protection; and greater number of melanomas in survivors. Melanoma survivors may have a heightened awareness of the importance of their children's sun protection, but their children are not routinely protected. Correlates of children's sunburn and sun protection suggest subgroups of survivors to target with interventions to improve sun protection. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  18. ANALYTICAL MODELING OF INNOVATIVE SENSOR PLACEMENT STRATEGY FOR CORONA-BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    HASSAN H. EKAL

    2017-09-01

    Full Text Available Wireless Sensor Networks (WSNs applications are increasing rapidly, thanks to their broad potential in ecological monitoring, biomedical health monitoring, data gathering and many others. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In many-to-one communication (corona WSNs, sensor nodes located nearby the data collector (sink forward data sensed data received from other nodes, hence, having heavier workloads. These nodes consume more energy than the others, leading to quicker energy depletion.Consequently, this results in energy hole problem, where the network becomes separate islands, which affect the lifetime of the network negatively. When this situation occurs, the sensed data will not be forwarded to the intended sink; accordingly, the network will not be able to completely fulfil its required tasks. In this paper, an effective sensors placement strategy is proposed to avoid or alleviate energy hole problem in such type of WSNs. The proposed strategy aims to improve, scale, and balance the energy consumption among sensor nodes and to maximize the network lifetime, by sustaining the network coverage and connectivity. To achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption, while satisfying the network coverage and connectivity requirements. The theoretical design and modelling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The Experimental evaluation results have shown that the proposed sensors placement strategy is capable to increase the network lifetime considerably compared to conventional uniform strategy.

  19. Data-driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  20. Data–driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  1. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    Science.gov (United States)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  2. The Sun Sense Study: An Intervention to Improve Sun Protection in Children

    Science.gov (United States)

    Glasser, Alice; Shaheen, Magda; Glenn, Beth A.; Bastani, Roshan

    2010-01-01

    Objectives: To assess the effect of a multicomponent intervention on parental knowledge, sun avoidance behaviors, and sun protection practices in children 3-10 years. Methods: A randomized trial at a pediatric clinic recruited 197 caregiver-child pairs (90% parents). Intervention included a brief presentation and brochure for the parent and…

  3. Little sun

    DEFF Research Database (Denmark)

    Ebbesen, Toke Riis

    2017-01-01

    the ideas of Alfred Gell’s anthropology of art and the indicative framework derived from Argentinian semiotician Juan Pablo Bonta and Jørn Guldberg. The toy-like solar lamp Little Sun by Olafur Eliasson and Frederik Ottesen is used as case that blends the registers of social design and art......, and as an example of how designers attempt to determine meaning potentials through design in a complex interplay of different strategies. In the final analysis, what characterise objects like Little Sun is seldom that they communicate their meanings in themselves, but instead rely on forceful mediations to gain...

  4. Polymer-based blood vessel models with micro-temperature sensors in EVE

    Science.gov (United States)

    Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi

    2017-04-01

    Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.

  5. Prioritizing alarms from sensor-based detection models in livestock production

    DEFF Research Database (Denmark)

    Dominiak, Katarina Nielsen; Kristensen, Anders Ringgaard

    2017-01-01

    The objective of this review is to present, evaluate and discuss methods for reducing false alarms in sensor-based detection models developed for livestock production as described in the scientific literature. Papers included in this review are all peer-reviewed and present sensor-based detection...... models developed for modern livestock production with the purpose of optimizing animal health or managerial routines. The papers must present a performance for the model, but no criteria were specified for animal species or the condition sought to be detected. 34 papers published during the last 20 years...... (NBN) and Hidden phase-type Markov model, the NBN shows the greatest potential for future reduction of alerts from sensor-based detection models in livestock production. The included detection models are evaluated on three criteria; performance, time-window and similarity to determine whether...

  6. Solar flare leaves sun quaking

    Science.gov (United States)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  7. 77 FR 34122 - Application of Sun Air Express, LLC, d/b/a Sun Air International for Commuter Authority

    Science.gov (United States)

    2012-06-08

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary [Docket DOT-OST-2011-0169] Application of Sun Air Express, LLC, d/b/a Sun Air International for Commuter Authority AGENCY: Department of... order finding Sun Air Express, LLC d/b/a Sun Air International fit, willing, and able, and awarding it...

  8. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  9. On unique parameters and unified formal form of hot-wire anemometric sensor model

    International Nuclear Information System (INIS)

    LigePza, P.

    2005-01-01

    This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems

  10. Development of a whole-organism model to screen new compounds for sun protection.

    Science.gov (United States)

    Wang, Yun-Hsin; Wen, Chi-Chung; Yang, Zhi-Shiang; Cheng, Chien-Chung; Tsai, Jen-Ning; Ku, Chia-Chen; Wu, Hsin-Ju; Chen, Yau-Hung

    2009-01-01

    We used zebrafish as a whole-organism model to screen new compounds for sun protection activity. First of all, we designed a series of UVB exposure experiments and recorded the phenotypic changes of zebrafish embryos. Results showed that 100 mJ/cm(2) of UVB given six times separated by 30 min intervals is the best condition. Fin malformation (reduced and/or absent fin) phenotypes are the most evident consequences after exposure to UVB. Each fin was affected by UVB, including pelvic, ventral, caudal, and dorsal fin, but pelvic fin seemed to be the most sensitive target after UVB exposure. We furthermore carried out "prevention" and "treatment" experiments using green tea extract and/or (-)-epigallocatechin (EGCG) to test this whole-organism model by observing the morphological changes of all fins (especially pelvic fin) after UVB exposure. Effects of UVB, green tea extract and EGCG on fin development were assessed using the Kaplan-Meier analysis, log-rank test and Cox proportional hazards regression. Results showed that a zebrafish pelvic fin in the UVB + green tea (treatment) group is 5.51 (range from 2.39 to 14.90) times, one in the UVB + green tea (prevention) group is 7.04 (range from 3.11 to 18.92) times, and one in the 25 ppm of EGCG (prevention) group is 22.19 (range from 9.40 to 61.50) times more likely to return to normal fin than one in the UVB only group. On the basis of these observations, we believe this model is effective for screening the higher stability and lower toxicity of new compounds, such as small chemicals which are derivative from EGCG or other dietary agents for sun protection.

  11. Modelling of a micro Coriolis mass flow sensor for sensitivity improvement

    NARCIS (Netherlands)

    Groenesteijn, Jarno; van de Ridder, Bert; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    We have developed a multi-axis flexible body model with which we can investigate the behavior of (micro) Coriolis mass flow sensors with arbitrary channel geometry. The model has been verified by measurements on five different designs of micro Coriolis mass flow sensors. The model predicts the Eigen

  12. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy

    Science.gov (United States)

    A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...

  13. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  14. Ra: The Sun for Science and Humanity

    Science.gov (United States)

    1996-01-01

    To guide the development of the Ra Strategic Framework, we defined scientific and applications objectives. For our primary areas of scientific interest, we choose the corona, the solar wind, the Sun's effect on the Earth, and solar theory and model development. For secondary areas of scientific interest, we selected sunspots, the solar constant, the Sun's gravitational field, helioseismology and the galactic cosmic rays. We stress the importance of stereoscopic imaging, observations at high spatial, spectral, and temporal resolutions, as well as of long duration measurements. Further exploration of the Sun's polar regions is also important, as shown already by the Ulysses mission. From an applications perspective, we adopted three broad objectives that would derive complementary inputs for the Strategic Framework. These were to identify and investigate: possible application spin-offs from science missions, possible solar-terrestrial missions dedicated to a particular application, and possible future applications that require technology development. The Sun can be viewed as both a source of resources and of threats. Our principal applications focus was that of threat mitigation, by examining ways to improve solar threat monitoring and early warning systems. We compared these objectives to the mission objectives of past, current, and planned international solar missions. Past missions (1962-1980) seem to have been focused on improvement of scientific knowledge, using multiple instrument spacecraft. A ten year gap followed this period, during which the results from previous missions were analyzed and solar study programmes were prepared in international organizations. Current missions (1990-1996) focus on particular topics such as the corona, solar flares, and coronal mass ejections. In planned missions, Sun/Earth interactions and environmental effects of solar activity are becoming more important. The corona is the centre of interest of almost all planned missions

  15. Sun burn incidence and knowledge of greek elementary and high school children about sun protection.

    Science.gov (United States)

    Saridi, Maria Ioannis; Toska, Aikaterini George; Rekleiti, Maria Dimitrios; Tsironi, Maria; Geitona, Maria; Souliotis, Kyriakos

    2015-01-01

    Overexposure to sun radiation and particularly its accumulation during childhood and adolescence is a significant risk factor for skin cancer development. The sun burn is particularly important. To estimate sun burn incidence in young pupils in a coastal area of Greece. Two surveys were conducted in a school population in the same district in Greece, over different periods of time, in young people 9 to 18 years old (n=2 977). Anonymous questionnaires were completed. Levels of significance were two- tailed and statistical significance was set at p=0.05. SPSS 17.0 software was used for statistical analysis. From the individual characteristics of the participants it was shown that the majority of them had dark hair and fair skin, whereas a significant percentage reported the existence of moles on face and their body (83.4% vs 68.1%). The sun burn incidence was high in adolescents and the younger pupils (41.9% vs 55.6%). The younger aged children who were living in an urban area had significantly higher rates of sun burn than those living in semi-urban areas (33.8% vs 24.8%, p=0.020). As far as the knowledge of pupils about the risks of sun radiation it was shown that the elementary school pupils had better knowledge than those at high school. Finally, those with better knowledge had the fewer sun burns (Mean 2.83 SD 0.87, pknowledge to the decrease of sun burn incidence is important as long as this is continuous. Therefore, the education should concern not only children but also teachers and parents in the context of continuous and systematic programs of health education.

  16. Structure and expression of the maize (Zea mays L. SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants

    Directory of Open Access Journals (Sweden)

    Simmons Carl R

    2010-12-01

    subfamily may represent a novel class of proteins with possible new and intriguing roles within the plant nuclear envelope. Expression levels for ZmSUN1-4 are consistent with basic cellular functions, whereas ZmSUN5 expression levels indicate a role in pollen. Models for possible topological arrangements of the CCSD-type and PM3-type SUN-domain proteins are presented.

  17. Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor.

    Science.gov (United States)

    Biagi, Lyvia; Ramkissoon, Charrise M; Facchinetti, Andrea; Leal, Yenny; Vehi, Josep

    2017-06-12

    Continuous glucose monitors (CGMs) are prone to inaccuracy due to time lags, sensor drift, calibration errors, and measurement noise. The aim of this study is to derive the model of the error of the second generation Medtronic Paradigm Veo Enlite (ENL) sensor and compare it with the Dexcom SEVEN PLUS (7P), G4 PLATINUM (G4P), and advanced G4 for Artificial Pancreas studies (G4AP) systems. An enhanced methodology to a previously employed technique was utilized to dissect the sensor error into several components. The dataset used included 37 inpatient sessions in 10 subjects with type 1 diabetes (T1D), in which CGMs were worn in parallel and blood glucose (BG) samples were analyzed every 15 ± 5 min Calibration error and sensor drift of the ENL sensor was best described by a linear relationship related to the gain and offset. The mean time lag estimated by the model is 9.4 ± 6.5 min. The overall average mean absolute relative difference (MARD) of the ENL sensor was 11.68 ± 5.07% Calibration error had the highest contribution to total error in the ENL sensor. This was also reported in the 7P, G4P, and G4AP. The model of the ENL sensor error will be useful to test the in silico performance of CGM-based applications, i.e., the artificial pancreas, employing this kind of sensor.

  18. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  19. Time variations of the angular momentum of the sun

    International Nuclear Information System (INIS)

    Schatten, K.H.

    1977-01-01

    Time variations of density models of the Sun are investigated. This is an attempt to estimate the changing moment of inertia of the Sun in order to calculate the internal solar angular velocity based upon Newton's equation of motion. Previous estimates of dI/dt disagree with those based upon central densities in a homologously contracting model. It is shown that the homologously contracting model leads to large errors in dI/dt. Based upon an integration of Sears's solar model, dI/dt=-5.5 x 10 34 gm cm 2 s -1 . This suggests a core angular velocity of /sub thetar-italic/ = (0.15 +- 0.03) x 10 -3 s -1 , corresponding to a period of 0.5 +- 0.1 days, assuming a constant angular velocity with time. The brackets indicate a weighting which is discussed

  20. Fault-Tolerant Robot Programming through Simulation with Realistic Sensor Models

    Directory of Open Access Journals (Sweden)

    Axel Waggershauser

    2008-11-01

    Full Text Available We introduce a simulation system for mobile robots that allows a realistic interaction of multiple robots in a common environment. The simulated robots are closely modeled after robots from the EyeBot family and have an identical application programmer interface. The simulation supports driving commands at two levels of abstraction as well as numerous sensors such as shaft encoders, infrared distance sensors, and compass. Simulation of on-board digital cameras via synthetic images allows the use of image processing routines for robot control within the simulation. Specific error models for actuators, distance sensors, camera sensor, and wireless communication have been implemented. Progressively increasing error levels for an application program allows for testing and improving its robustness and fault-tolerance.

  1. Sun protection and skin self-examination in melanoma survivors.

    Science.gov (United States)

    Mujumdar, Urvi J; Hay, Jennifer L; Monroe-Hinds, Yvette C; Hummer, Amanda J; Begg, Colin B; Wilcox, Homer B; Oliveria, Susan A; Berwick, Marianne

    2009-10-01

    Patients diagnosed with melanoma are at risk for developing recurrent and second primary disease. Skin self-examination (SSE) and sun protection are standard clinical recommendations to minimize risk. In this study we examined performance of these behaviors in individuals with melanoma drawn from the general population. Potential participants (N=148) with a first primary melanoma diagnosed in 2000 were identified through a population-based cancer registry in New Jersey, USA. One hundred and fifteen individuals participated in a 30 min telephone interview concerning behavioral adherence with SSE and sun protection, self-efficacy for performing these behaviors, and perceived risk of developing another skin cancer. We utilized logistic regression to estimate potential associations of demographic, medical, and psychosocial factors with SSE and sun protection, respectively. Seventeen percent of subjects reported performing comprehensive SSE at least once every two months and 23% engaged in regular sun protection. Utilization of SSE was related to the presence of moles (OR=4.2, 95% CI: 1.1-15) and higher SSE self-efficacy (OR=14.4, 95% CI: 1.9-112). Regular sun protection was related to older age (>60 years; OR=3.3, 95% CI: 1.3-8.7), being female (OR=2.8, 95% CI: 1.1-7.3), and higher sun protection self-efficacy (OR=5.0, 95% CI: 1.4-18). These factors remained significant in multivariate models. In this group of primary melanoma survivors, the rates of SSE and sun protection are comparable to, but do not exceed, general population estimates. This study provides justification for further research to address barriers to prevention and control behaviors in melanoma survivors.

  2. A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas

    Science.gov (United States)

    Wu, Chun-Hsien; Chung, Yeh-Ching

    2009-01-01

    The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159

  3. Aerial Measuring System Sensor Modeling

    International Nuclear Information System (INIS)

    Detwiler, R.S.

    2002-01-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 microCi/m 2 . The helicopter calculations modeled the transport of americium-241 ( 241 Am) as this is

  4. Clustering of Sun Exposure Measurements

    OpenAIRE

    Have, Anna Szynkowiak; Larsen, Jan; Hansen, Lars Kai; Philipsen, Peter Alshede; Thieden, Elisabeth; Wulf, Hans Christian

    2002-01-01

    In a medically motivated Sun-exposure study, questionnaires concerning Sun-habits were collected from a number of subjects together with UV radiation measurements. This paper focuses on identifying clusters in the heterogeneous set of data for the purpose of understanding possible relations between Sun-habits exposure and eventually assessing the risk of skin cancer. A general probabilistic framework originally developed for text and Web mining is demonstrated to be useful for clustering of b...

  5. A Pharmacokinetic Model of a Tissue Implantable Cortisol Sensor.

    Science.gov (United States)

    Lee, Michael A; Bakh, Naveed; Bisker, Gili; Brown, Emery N; Strano, Michael S

    2016-12-01

    Cortisol is an important glucocorticoid hormone whose biochemistry influences numerous physiological and pathological processes. Moreover, it is a biomarker of interest for a number of conditions, including posttraumatic stress disorder, Cushing's syndrome, Addison's disease, and others. An implantable biosensor capable of real time monitoring of cortisol concentrations in adipose tissue may revolutionize the diagnosis and treatment of these disorders, as well as provide an invaluable research tool. Toward this end, a mathematical model, informed by the physiological literature, is developed to predict dynamic cortisol concentrations in adipose, muscle, and brain tissues, where a significant number of important processes with cortisol occur. The pharmacokinetic model is applied to both a prototypical, healthy male patient and a previously studied Cushing's disease patient. The model can also be used to inform the design of an implantable sensor by optimizing the sensor dissociation constant, apparent delay time, and magnitude of the sensor output versus system dynamics. Measurements from such a sensor would help to determine systemic cortisol levels, providing much needed insight for proper medical treatment for various cortisol-related conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. NEW SUNS IN THE COSMOS?

    Energy Technology Data Exchange (ETDEWEB)

    De Freitas, D. B.; Leao, I. C.; Lopes, C. E. Ferreira; Paz-Chinchon, F.; Canto Martins, B. L.; Alves, S.; De Medeiros, J. R. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Catelan, M. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago (Chile)

    2013-08-20

    The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission's Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period-T{sub eff} diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with a similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these ''New Sun'' candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of 14 CoRoT stars with sub- and super-solar rotational periods, and for the Sun itself in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties as far as the latter's imprints on light curve behavior are concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.

  7. Associations between authoritative parenting and the sun exposure and sun protective behaviours of adolescents and their friends.

    Science.gov (United States)

    Mewse, Avril J; Lea, Stephen E G; Ntala, Eleni; Eiser, J Richard

    2011-05-01

    Associations between the sun exposure and sun protective behaviours of adolescents and their friends were examined along with the role played by authoritative parenting and other family and peer socialisation factors. Four hundred and two adolescents (198 males, 204 females) participated in the research. It was found that these adolescents and their friends shared similar sun exposure and sun protective behaviours and had similar parenting backgrounds. Parental authoritativeness was positively associated with the use of sun protection, even after the effects of other familial and peer variables were controlled, but not with the time spent sunbathing which was associated with friends' behaviours. The theoretical and practical implications of these findings are discussed.

  8. Sensor response monitoring in pressurized water reactors using time series modeling

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Kerlin, T.W.

    1978-01-01

    Random data analysis in nuclear power reactors for purposes of process surveillance, pattern recognition and monitoring of temperature, pressure, flow and neutron sensors has gained increasing attention in view of their potential for helping to ensure safe plant operation. In this study, application of autoregressive moving-average (ARMA) time series modeling for monitoring temperature sensor response characteristrics is presented. The ARMA model is used to estimate the step and ramp response of the sensors and the related time constant and ramp delay time. The ARMA parameters are estimated by a two-stage algorithm in the spectral domain. Results of sensor testing for an operating pressurized water reactor are presented. 16 refs

  9. Real-time sun protection decisions in first-degree relatives of melanoma patients.

    Science.gov (United States)

    Hay, Jennifer L; Shuk, Elyse; Schofield, Elizabeth; Loeb, Rebecca; Holland, Susan; Burkhalter, Jack; Li, Yuelin

    2017-09-01

    Melanoma is the most serious skin cancer, and consistent use of sun protection is recommended to reduce risk. Yet sun protection use is generally inconsistent. Understanding the decisional factors driving sun protection choices could aid in intervention development to promote sun protection maintenance. In 59 first-degree relatives of melanoma patients, an interactive voice response system (IVRS) on participants' cell phones was used to assess twice daily (morning, afternoon) real-time sun protection usage (sunscreen, shade, hats, protective clothing) and decision factors (weather, type of activity, convenience, social support) over a 14-day summer interval where morning and afternoon outdoor exposures were anticipated. Generalized estimating equations and hierarchical linear models were used to examine the effect of demographics and decisional factors on sun protection choices over time. Sun protection use was inconsistent (e.g., 61% used sunscreen inconsistently). Most strategies were used independently, with the exception of moderate overlap of sunscreen and hat usage. Decision factors were highly relevant for sun protection. For instance, sunscreen use was related to the perception of having adequate time to apply it, whereas shade and hat usage were each related to convenience. Few findings emerged by gender, age, time of day, or year. Significant within-subject variation remained, however. The findings support continued examination of decision factors in understanding sun protection consistency in real time. Interventions where cues to action and environmental supports work together in varied settings can be developed to improve sun protection maintenance in populations at risk for this common disease. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-01-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  11. Trends in sunburns, sun protection practices, and attitudes toward sun exposure protection and tanning among US adolescents, 1998-2004.

    Science.gov (United States)

    Cokkinides, Vilma; Weinstock, Martin; Glanz, Karen; Albano, Jessica; Ward, Elizabeth; Thun, Michael

    2006-09-01

    Sun exposure in childhood is an important risk factor for developing skin cancer as an adult. Despite extensive efforts to reduce sun exposure among the young, there are no population-based data on trends in sunburns and sun protection practices in the young. The aim of this study was to describe nationally representative trend data on sunburns, sun protection, and attitudes related to sun exposure among US youth. Cross-sectional telephone surveys of youth aged 11 to 18 years in 1998 (N = 1196) and in 2004 (N = 1613) were conducted using a 2-stage sampling process to draw population-based samples. The surveys asked identical questions about sun protection, number of sunburns experienced, and attitudes toward sun exposure. Time trends were evaluated using pooled logistic regression analysis. In 2004, 69% of subjects reported having been sunburned during the summer, not significantly less than in 1998 (72%). There was a significant decrease in the percentage of those aged 11 to 15 years who reported sunburns and a nonsignificant increase among the 16- to 18-year-olds. The proportion of youth who reported regular sunscreen use increased significantly from 31% to 39%. Little change occurred in other recommended sun protection practices. A small reduction in sunburn frequency and modest increases in sun protection practices were observed among youth between 1998 and 2004, despite widespread sun protection campaigns. Nevertheless, the decrease in sunburns among younger teens may be cause for optimism regarding future trends. Overall, there was rather limited progress in improving sun protection practices and reducing sunburns among US youth between 1998 and 2004.

  12. After the Bell: Developing Sun Sense--Learning about Protection from the Sun's Rays

    Science.gov (United States)

    Farenga, Stephen J.; Ness, Daniel

    2008-01-01

    The American Academy of Dermatology (2008) reports that our students will experience 80% of their lifetime exposure to the Sun by the time they are 18. Further, research has demonstrated that continued exposure to the Sun's ultraviolet rays can lead to skin aging, sunburn, immune suppression, ocular melanoma, cataracts, corneal burns, and even…

  13. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    Science.gov (United States)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  14. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

    Science.gov (United States)

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-09-27

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  15. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  16. BPS Center Vortices in Nonrelativistic SU(N) Gauge Models with Adjoint Higgs Fields

    International Nuclear Information System (INIS)

    Oxman, L. E.

    2015-01-01

    We propose a class of SU(N) Yang-Mills models, with adjoint Higgs fields, that accept BPS center vortex equations. The lack of a local magnetic flux that could serve as an energy bound is circumvented by including a new term in the energy functional. This term tends to align, in the Lie algebra, the magnetic field and one of the adjoint Higgs fields. Finally, a reduced set of equations for the center vortex profile functions is obtained (for N=2,3). In particular, Z(3) BPS vortices come in three colours and three anticolours, obtained from an ansatz based on the defining representation and its conjugate.

  17. WHAT IS THE SOURCE OF QUIET SUN TRANSITION REGION EMISSION?

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. J.; De Pontieu, Bart [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2016-11-10

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph ( IRIS ) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  18. How to Observe the Sun Safely

    CERN Document Server

    Macdonald, Lee

    2012-01-01

    How to Observe the Sun Safely, Second Edition gives all the basic information and advice the amateur astronomer needs to get started in observing our own ever-fascinating star. Unlike many other astronomical objects, you do not need a large telescope or expensive equipment to observe the Sun. And it is possible to take excellent pictures of the Sun with today's low-cost digital cameras! This book surveys what is visible on the Sun and then describes how to record solar features and measure solar activity levels. There is also an account of how to use H-alpha and Calcium-K filters to observe and record prominences and other features of the solar chromosphere, the Sun's inner atmosphere. Because we are just entering a period of high activity on the Sun, following a long, quiet period, this is a great time to get involved with solar observing. Still emphasizing safety first, this Second Edition reflects recent and exciting advances in solar observing equipment. Chapters 6 through 8 have been completely revised ...

  19. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    Collings, N; Hegarty, K; Ramsander, T

    2012-01-01

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan–Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  20. An automated method for the evaluation of the pointing accuracy of Sun-tracking devices

    Science.gov (United States)

    Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.

    2017-03-01

    The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and

  1. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  2. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Directory of Open Access Journals (Sweden)

    Yaodong Xing

    2012-08-01

    Full Text Available Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  3. Z/sub N/ topology and charge confinement in SU(N) Higgs models

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Iwazaki, A.

    1981-01-01

    We analyze topological effects in frozen SU(N) Higgs models in continuous space-time, where topological excitations are Z/sub N/ vortices together with associated Z/sub N/ monopoles. The space dimension is either two or three. We show that vortex condensation generates magnetic gauge symmetry and that monopole condensation leads to a spontaneous breakdown of this symmetry. By summing up all possible excitation modes of Z/sub N/ vortices and Z/sub N/ monopoles, we derive an effective Lagrangian in the strong-coupling regime. We obtain the following conclusions: (i) if external charges are introduced in the fundamental representation, they are confined by electric vortex strings, and (ii) if external charges are introduced in the adjoint representation, they are screened completely

  4. A Denoising Based Autoassociative Model for Robust Sensor Monitoring in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Ahmad Shaheryar

    2016-01-01

    Full Text Available Sensors health monitoring is essentially important for reliable functioning of safety-critical chemical and nuclear power plants. Autoassociative neural network (AANN based empirical sensor models have widely been reported for sensor calibration monitoring. However, such ill-posed data driven models may result in poor generalization and robustness. To address above-mentioned issues, several regularization heuristics such as training with jitter, weight decay, and cross-validation are suggested in literature. Apart from these regularization heuristics, traditional error gradient based supervised learning algorithms for multilayered AANN models are highly susceptible of being trapped in local optimum. In order to address poor regularization and robust learning issues, here, we propose a denoised autoassociative sensor model (DAASM based on deep learning framework. Proposed DAASM model comprises multiple hidden layers which are pretrained greedily in an unsupervised fashion under denoising autoencoder architecture. In order to improve robustness, dropout heuristic and domain specific data corruption processes are exercised during unsupervised pretraining phase. The proposed sensor model is trained and tested on sensor data from a PWR type nuclear power plant. Accuracy, autosensitivity, spillover, and sequential probability ratio test (SPRT based fault detectability metrics are used for performance assessment and comparison with extensively reported five-layer AANN model by Kramer.

  5. Clustering of Sun Exposure Measurements

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Larsen, Jan; Hansen, Lars Kai

    2002-01-01

    In a medically motivated Sun-exposure study, questionnaires concerning Sun-habits were collected from a number of subjects together with UV radiation measurements. This paper focuses on identifying clusters in the heterogeneous set of data for the purpose of understanding possible relations between...... Sun-habits exposure and eventually assessing the risk of skin cancer. A general probabilistic framework originally developed for text and Web mining is demonstrated to be useful for clustering of behavioral data. The framework combines principal component subspace projection with probabilistic...

  6. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  7. 'My child did not like using sun protection': practices and perceptions of child sun protection among rural black African mothers.

    Science.gov (United States)

    Kunene, Zamantimande; Albers, Patricia N; Lucas, Robyn M; Banwell, Cathy; Mathee, Angela; Wright, Caradee Y

    2017-08-25

    Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child's 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade). Most mothers (97%) liked the sun protection equipment. However, many (78 of 86) reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans.

  8. Pairwise graphical models for structural health monitoring with dense sensor arrays

    Science.gov (United States)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  9. Caddo Sun Accounts across Time and Place

    Science.gov (United States)

    Gerona, Carla

    2012-01-01

    Billy Day, a Tunica/Biloxi, recently described the significance of the sun for Caddoan people. Day quoted an "old Caddo relative" of his who said: "I used to go outside and hold my hands up and bless myself with the sun--'a'hat.' Well, I can't do that anymore because they say we are sun worshipers. We didn't worship the sun. We worshiped what was…

  10. Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Ardid, M.; Felis, I.; Martínez-Mora, J.A. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/Paranimf 1, 46730 Gandia (Spain); Herrero, A., E-mail: mardid@fis.upv.es, E-mail: ivfeen@upv.es, E-mail: aherrero@mat.upv.es, E-mail: jmmora@fis.upv.es [Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain)

    2017-04-01

    The 79-string IceCube search for dark matter in the Sun public data is used to test Secluded Dark Matter models. No significant excess over background is observed and constraints on the parameters of the models are derived. Moreover, the search is also used to constrain the dark photon model in the region of the parameter space with dark photon masses between 0.22 and ∼ 1 GeV and a kinetic mixing parameter ε ∼ 10{sup −9}, which remains unconstrained. These are the first constraints of dark photons from neutrino telescopes. It is expected that neutrino telescopes will be efficient tools to test dark photons by means of different searches in the Sun, Earth and Galactic Center, which could complement constraints from direct detection, accelerators, astrophysics and indirect detection with other messengers, such as gamma rays or antiparticles.

  11. SunPy—Python for solar physics

    International Nuclear Information System (INIS)

    Community, The SunPy; Mumford, Stuart J; Freij, Nabil; Bennett, Samuel M; Christe, Steven; Ireland, Jack; Shih, Albert Y; Inglis, Andrew R; Pérez-Suárez, David; Liedtke, Simon; Hewett, Russell J; Mayer, Florian; Hughitt, Keith; Meszaros, Tomas; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J; Robitaille, Thomas P; Mampaey, Benjamin

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy. (paper)

  12. Software sensors based on the grey-box modelling approach

    DEFF Research Database (Denmark)

    Carstensen, J.; Harremoës, P.; Strube, Rune

    1996-01-01

    In recent years the grey-box modelling approach has been applied to wastewater transportation and treatment Grey-box models are characterized by the combination of deterministic and stochastic terms to form a model where all the parameters are statistically identifiable from the on......-box model for the specific dynamics is identified. Similarly, an on-line software sensor for detecting the occurrence of backwater phenomena can be developed by comparing the dynamics of a flow measurement with a nearby level measurement. For treatment plants it is found that grey-box models applied to on......-line measurements. With respect to the development of software sensors, the grey-box models possess two important features. Firstly, the on-line measurements can be filtered according to the grey-box model in order to remove noise deriving from the measuring equipment and controlling devices. Secondly, the grey...

  13. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    Science.gov (United States)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model

  14. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Yan Su

    2010-09-01

    Full Text Available Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  15. The Sun in Time

    Science.gov (United States)

    Adams, Mitzi L.; Bero, Elizabeth; Sever, Thomas L.

    1999-01-01

    Leveraging funds from NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, we combined the expertise of an archaeoastronomer, a solar scientist, and a teacher to trace humankind's view of the Sun and how that has changed, from the time of Stonehenge in about 1800 B.C.E., to the time of the Maya in 700 C.E., up to the modem era. Our program was aimed at middle-school students in an attempt to explain not only how science is done today, but how science has evolved from the observations of ancient societies. From these varied cultures, we touched on methods of observing the Sun, ideas of the composition of the Sun, and the relationship of the Sun to everyday life. Further, using the von Braun Astronomical Society's Planetarium in Huntsville, Alabama as a test-bed for the program, we illustrated concepts such as solstices, equinoxes, and local noon with approximately 800 eighth grade students from the local area. Our presentation to SEPA will include a description of NASA's IDEAS program and how to go about partnering with a NASA astronomer, some slides from our planetarium program and web-site, and some hands-on activities.

  16. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-09-01

    Full Text Available A wireless-powered sensor network (WPSN consisting of one hybrid access point (HAP, a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  17. Real-time sensor failure detection by dynamic modelling of a PWR plant

    International Nuclear Information System (INIS)

    Turkcan, E.; Ciftcioglu, O.

    1992-06-01

    Signal validation and sensor failure detection is an important problem in real-time nuclear power plant (NPP) surveillance. Although conventional sensor redundancy, in a way, is a solution, identification of faulty sensor is necessary for further preventive actions to be taken. A comprehensive solution for the system so that any sensory reading is verified by its model based estimated counterpart, in real-time. Such a realization is accomplished by means of dynamic system's states estimation methodology using Kalman filter modelling technique. The method is investigated by means of real-time data of the steam generator of Borssele nuclear power plant and the method has proved to be satisfactory for real-time sensor failure detection as well as model validation verification. (author). 5 refs.; 6 figs.; 1 tab

  18. Observability analysis for model-based fault detection and sensor selection in induction motors

    International Nuclear Information System (INIS)

    Nakhaeinejad, Mohsen; Bryant, Michael D

    2011-01-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements

  19. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    Science.gov (United States)

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.

  20. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    Directory of Open Access Journals (Sweden)

    Tingting Cao

    Full Text Available In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum. However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.

  1. Sun Protection for Children: A Review

    Directory of Open Access Journals (Sweden)

    Nazanin Shafie Pour

    2015-01-01

    Full Text Available Chronic ultraviolet exposure results in premature skin aging (photoaging, dyspigmentation, sallow color, textural changes, loss of elasticity, and premalignant actinic keratoses. UVB radiation is mainly responsible for acute damages such as sunburn, and long-term damage including melanoma. Today the sun's ultraviolet radiation (UVR induced skin cancer is a major issue worldwide. History of sun exposure and sunburns are the most important behavioral risks. Childhood sun exposure is considered as a substantial risk because a child’s skin has a thinner stratum corneum, lower levels of protective melanin, and a higher surface area to body-mass-ratio. Thus, protection against UVR in childhood is essential. Research has shown that people who have had a sunburn in childhood or were in the sun unprotected are more likely to have skin cancer. In this article, we review the literature to address the protection of children against sun and skin cancer.

  2. The Sun and How to Observe It

    CERN Document Server

    Jenkins, Jamey L

    2009-01-01

    Without the Sun, all life on Earth would perish. But what exactly do we know about this star that lights, heats, and powers Earth? Actually, we know quite a lot, thanks mainly to a host of eager solar observers. Looking directly at the Sun is EXTREMELY hazardous. But many astronomers, both professional and amateur, have found ways to view the Sun safely to learn about it. You, too, can view the Sun in all of its glorious detail. Some of the newest, most exciting telescopes on the market are affordable to amateur astronomers or even just curious sky watchers, and with this guide to what the Sun has to offer, including sunspots, prominences, and flares, plus reviews of the latest instruments for seeing and capturing images of the Sun, you can contribute to humankind’s knowledge of this immense ball of glowing gases that gives us all life. For a complete guide to Sun viewing, see also Total Solar Eclipses and How to Observe Them (2007) by Martin Mobberley in this same series.

  3. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  4. Mathematical modeling of a steam generator for sensor fault detection

    International Nuclear Information System (INIS)

    Prock, J.

    1988-01-01

    A dynamic model for a nuclear power plant steam generator (vertical, preheated, U-tube recirculation-type) is formulated as a sixth-order nonlinear system. The model integrates nodal mass and energy balances for the primary water, the U-tube metal and the secondary water and steam. The downcomer flow is determined by a static balance of momentum. The mathematical system is solved using transient input data from the Philippsburg 2 (FRG) nuclear power plant. The results of the calculation are compared with actual measured values. The proposed model provides a low-cost tool for the automatic control and simulation of the steam generating process. The ''parity-space'' algorithm is used to demonstrate the applicability of the mathematical model for sensor fault detection and identification purposes. This technique provides a powerful means of generating temporal analytical redundancy between sensor signals. It demonstrates good detection rates of sensor errors using relatively few steps of scanning time and allows the reconfiguration of faulty signals. (author)

  5. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor

    International Nuclear Information System (INIS)

    Haneveld, J; Lammerink, T S J; De Boer, M J; Sanders, R G P; Mehendale, A; Lötters, J C; Dijkstra, M; Wiegerink, R J

    2010-01-01

    This paper discusses the modeling, design and realization of micromachined Coriolis mass flow sensors. A lumped element model is used to analyze and predict the sensor performance. The model is used to design a sensor for a flow range of 0–1.2 g h −1 with a maximum pressure drop of 1 bar. The sensor was realized using semi-circular channels just beneath the surface of a silicon wafer. The channels have thin silicon nitride walls to minimize the channel mass with respect to the mass of the moving fluid. Special comb-shaped electrodes are integrated on the channels for capacitive readout of the extremely small Coriolis displacements. The comb-shaped electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods. Furthermore, it prevents squeezed film damping due to a thin layer of air between the capacitor electrodes. As a result, the sensor operates at atmospheric pressure with a quality factor in the order of 40 and does not require vacuum packaging like other micro Coriolis flow sensors. Measurement results using water, ethanol, white gas and argon are presented, showing that the sensor measures true mass flow. The measurement error is currently in the order of 1% of the full scale of 1.2 g h −1

  6. Sun light European Project

    Science.gov (United States)

    Soubielle, Marie-Laure

    2015-04-01

    2015 has been declared the year of light. Sunlight plays a major role in the world. From the sunbeams that heat our planet and feed our plants to the optical analysis of the sun or the modern use of sun particles in technologies, sunlight is everywhere and it is vital. This project aims to understand better the light of the Sun in a variety of fields. The experiments are carried out by students aged 15 to 20 in order to share their discoveries with Italian students from primary and secondary schools. The experiments will also be presented to a group of Danish students visiting our school in January. All experiments are carried out in English and involve teams of teachers. This project is 3 folds: part 1: Biological project = what are the mechanisms of photosynthesis? part 2: Optical project= what are the components of sunlight and how to use it? part 3: Technical project= how to use the energy of sunlight for modern devices? Photosynthesis project Biology and English Context:Photosynthesis is a process used by plants and other organisms to convert light energy, normally from the Sun, into chemical energy that can later fuel the organisms' activities. This chemical energy is stored in molecules which are synthesized from carbon dioxide and water. In most cases, oxygen is released as a waste product. Most plants perform photosynthesis. Photosynthesis maintains atmospheric oxygen levels and supplies all of the organic compounds and most of the energy necessary for life on Earth. Outcome: Our project consists in understanding the various steps of photosynthesis. Students will shoot a DVD of the experiments presenting the equipments required, the steps of the experiments and the results they have obtained for a better understanding of photosynthesis Digital pen project Electricity, Optics and English Context: Sunlight is a complex source of light based on white light that can be decomposed to explain light radiations or colours. This light is a precious source to create

  7. Application of new control strategy for sun tracking

    International Nuclear Information System (INIS)

    Rubio, F.R.; Ortega, M.G.; Gordillo, F.; Lopez-Martinez, M.

    2007-01-01

    The application of high concentration solar cells technology allows a significant increase in the amount of energy collected by solar arrays per unit area. However, to make it possible, more severe specifications on the sun pointing error are required. In fact, the performance of solar cells with concentrators decreases drastically if this error is greater than a small value. These specifications are not fulfilled by simple tracking systems due to different sources of errors (e.g., small misalignments of the structure with respect to geographical north) that appear in practice in low cost, domestic applications. This paper presents a control application of a sun tracker that is able to follow the sun with high accuracy without the necessity of either a precise procedure of installation or recalibration. A hybrid tracking system that consists of a combination of open loop tracking strategies based on solar movement models and closed loop strategies using a dynamic feedback controller is presented. Energy saving factors are taken into account, which implies that, among other factors, the sun is not constantly tracked with the same accuracy, to prevent energy overconsumption by the motors. Simulation and experimental results with a low cost two axes solar tracker are exposed, including a comparison between a classical open loop tracking strategy and the proposed hybrid one

  8. Fiber-optical sensor with intensity compensation model in college teaching of physics experiment

    Science.gov (United States)

    Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu

    2017-08-01

    Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.

  9. Distributed sensor management for space situational awareness via a negotiation game

    Science.gov (United States)

    Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2015-05-01

    Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.

  10. ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    Directory of Open Access Journals (Sweden)

    Zamantimande Kunene

    2017-08-01

    Full Text Available Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Results Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade. Most mothers (97% liked the sun protection equipment. However, many (78 of 86 reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Conclusions Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans.

  11. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    OpenAIRE

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied rece...

  12. Sun meter

    Science.gov (United States)

    Younskevicius, Robert E.

    1978-01-01

    A simple, inexpensive device for measuring the radiation energy of the sun impinging on the device. The measurement of the energy over an extended period of time is accomplished without moving parts or tracking mechanisms.

  13. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...

  14. Sun tracker for clear or cloudy weather

    Science.gov (United States)

    Scott, D. R.; White, P. R.

    1979-01-01

    Sun tracker orients solar collector so that they absorb maximum possible sunlight without being fooled by bright clouds, holes in cloud cover, or other atmospheric conditions. Tracker follows sun within 0.25 deg arc and is accurate within + or - 5 deg when sun is hidden.

  15. Sun protection policies and practices in New Zealand primary schools.

    Science.gov (United States)

    Reeder, Anthony I; Jopson, Janet A; Gray, Andrew

    2012-02-10

    For schools with primary age students, to report the percentages meeting specific requirements of the New Zealand SunSmart Schools Accreditation Programme (SSAP). Schools were randomly selected, within geographic regions, from the Ministry of Education schools database. A questionnaire, mailed to school principals, assessed schools regarding 12 criteria for accreditation: policy, information, hats, 'play in the shade', sunscreen, clothing, role modelling, curriculum, planning, rescheduling, shade provision and review. Post-stratification weights (for achieving each criterion) were used to compensate for oversampling within some regions and differential response rates between regions, using the number of schools per region. 388 schools (representative in socioeconomic decile, size and type) participated. Less than 4% fully met accreditation criteria. Clothing (42%), curriculum delivery and shade (each 54%) requirements were met by the fewest schools. Staff role modelling (92%) was the most commonly met. Schools with uniforms tended to have more protective clothing expectations. Ongoing promotion is needed to consolidate gains and encourage comprehensive sun protection through policies, practices, environment and curriculum. Staff role modelling requirements may be strengthened by implementing existing occupational guidelines for mitigating UVR hazards. There is a need to further assist schools, particularly regarding sun protective clothing, curriculum delivery and environmental shade.

  16. Prototype of sun projector device

    Science.gov (United States)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  17. The Award Winning Black Suns

    Science.gov (United States)

    Holbrook, Jarita

    2018-01-01

    Black Suns: An Astrophysics Adventure is a documentary film focusing on the annular and total solar eclipses of 2012. We made a different kind of astronomy documentary showing the human aspects rather than just focusing on pretty astronomy pictures. The film combines personal stories with science. Our heroes are Hakeem Oluseyi and Alphonse Sterling, who valiantly travel to study the solar corona during total solar eclipses. The goals of the film included presenting three dimensional scientists, to show their paths to becoming astrophysicists, and to show them as they collect data and work as scientists. Drama and tension surround taking data during the small window of time during totality. The Black Suns was filmed in Tokyo, Cairns, Tucson, and Melbourne Florida. Uniquely, the film began through a Kickstarter campaign to fund travel and filming in Tokyo. Many American Astronomical Society members donated to the film! Black Suns won the Jury Prize at the 2017 Art of Brooklyn Film Festival. Black Suns will be screening in full on ???.

  18. SU(N) multi-Skyrmions at finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Cientificos (CECS), Casilla, Valdivia (Chile); Di Mauro, Marco; Naddeo, Adele [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano, SA (Italy); Kurkov, Maxim A. [Universita di Napoli Federico II, Dipartimento di Matematica e Applicazioni ' ' R. Caccioppoli' ' , Napoli (Italy)

    2015-09-15

    We study multi-soliton solutions of the fourdimensional SU(N) Skyrme model by combining the hedgehog ansatz for SU(N) based on the harmonic maps of S{sup 2} into CP{sup N-1} and a geometrical trick which allows to analyze explicitly finite-volume effects without breaking the relevant symmetries of the ansatz. The geometric set-up allows to introduce a parameter which is related to the ft Hooft coupling of a suitable large N limit, in which N → ∞ and the curvature of the background metric approaches zero, in such a way that their product is constant. The relevance of such a parameter to the physics of the system is pointed out. In particular, we discuss how the discrete symmetries of the configurations depend on it. (orig.)

  19. Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun

    Science.gov (United States)

    Hanasoge, Shravan M.

    2017-09-01

    Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.

  20. Deployment-based lifetime optimization model for homogeneous Wireless Sensor Network under retransmission.

    Science.gov (United States)

    Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning

    2014-12-10

    Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.

  1. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  2. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-01-01

    Full Text Available In the Earth Observation sensor web environment, the rapid, accurate, and unified discovery of diverse remote sensing satellite sensors, and their association to yield an integrated solution for a comprehensive response to specific emergency tasks pose considerable challenges. In this study, we propose a remote sensing satellite sensor object model, based on the object-oriented paradigm and the Open Geospatial Consortium Sensor Model Language. The proposed model comprises a set of sensor resource objects. Each object consists of identification, state of resource attribute, and resource method. We implement the proposed attribute state description by applying it to different remote sensors. A real application, involving the observation of floods at the Yangtze River in China, is undertaken. Results indicate that the sensor inquirer can accurately discover qualified satellite sensors in an accurate and unified manner. By implementing the proposed union operation among the retrieved sensors, the inquirer can further determine how the selected sensors can collaboratively complete a specific observation requirement. Therefore, the proposed model provides a reliable foundation for sharing and integrating multiple remote sensing satellite sensors and their observations.

  3. Sun Tzu: Theorist for the Twenty-First Century

    Science.gov (United States)

    2010-03-01

    instructing its Senior Leaders in the productiveness of this Strategic Thinking Model and ensure that future leaders are given the appropriate...the following suggestion: (1) Continue to intergrate Sun Tzu’s noteworthy strategic theories in today’s campaign plans to win the conflicts against

  4. Tribute to Sun Kwok

    International Nuclear Information System (INIS)

    Leung, Kam Ching

    2016-01-01

    Sun Kwok was bom in Hong Kong in 1949. He did all his early schooling in Hong Kong and went to the same high school, Pui Ching Middle School, as I did but he was more than a decade later. There are two Education Systems in Hong Kong; the Chinese Language Schools and English Language School. Pui Ching was started by Christian missionaries in China and has a long history of providing quality education. Pui Ching is a Chinese Language School, and during colonial times, school entrance was difficult for students as we were not eligible to apply for admission to the University of Hong Kong, nor were we able to join the civil service. In spite of these handicaps, the school still managed to produce many excellent academics, including one Nobel Prize winner in physics and one Field's medalist in mathematics. Most of its graduates who sought further education went to the U.S. Or Canada as Sun Kwok did. Sun graduated from McMaster University and then went to the University of Minnesota for graduate studies. In the early 1970s, the University of Minnesota had just built one of the world's first infrared bolometers and the astronomers there (Nick Woolf and Ed Ney) were able to make some of the first infrared observations in the mid-infrared region. Through these observations, circumstellar dust was discovered, leading to the realization the evolved stars are losing mass. Sun wrote his PhD thesis on the mass loss mechanism of red giant stars, proposing that the stellar winds are driven by the mechanism of radiation pressure on grains. His 1975 paper is still widely cited to this date. In the same thesis, he showed that OH maser emission is a manifestation of the mass loss process and OH/IR stars are the most heavily mass-losing stars known. He went back to Canada for postdoctoral studies, first at UBC and then at York University. While at York, he applied his knowledge of mass loss to the problem of formation of planetary nebulae, leading to now well-established interacting

  5. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling

    Science.gov (United States)

    PéRez, C.; Nickovic, S.; Baldasano, J. M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V. E.

    2006-08-01

    A long Saharan dust event affected the western Mediterranean in the period 12-28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing Ångström exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed Ångström exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20-30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed.

  6. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 4: Preliminary nonscanner models and count conversion algorithms

    Science.gov (United States)

    Halyo, Nesim; Choi, Sang H.

    1987-01-01

    Two count conversion algorithms and the associated dynamic sensor model for the M/WFOV nonscanner radiometers are defined. The sensor model provides and updates the constants necessary for the conversion algorithms, though the frequency with which these updates were needed was uncertain. This analysis therefore develops mathematical models for the conversion of irradiance at the sensor field of view (FOV) limiter into data counts, derives from this model two algorithms for the conversion of data counts to irradiance at the sensor FOV aperture and develops measurement models which account for a specific target source together with a sensor. The resulting algorithms are of the gain/offset and Kalman filter types. The gain/offset algorithm was chosen since it provided sufficient accuracy using simpler computations.

  7. Soft Sensors: Chemoinformatic Model for Efficient Control and Operation in Chemical Plants.

    Science.gov (United States)

    Funatsu, Kimito

    2016-12-01

    Soft sensor is statistical model as an essential tool for controlling pharmaceutical, chemical and industrial plants. I introduce soft sensor, the roles, the applications, the problems and the research examples such as adaptive soft sensor, database monitoring and efficient process control. The use of soft sensor enables chemical industrial plants to be operated more effectively and stably. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function.

    Directory of Open Access Journals (Sweden)

    Jana Link

    2014-02-01

    Full Text Available LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84 and KASH (Klarsicht/ANC-1/Syne/homology domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun1(-/- meiocytes attached telomeres retained the capacity to form bouquet-like clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun1(-/- mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional.

  9. Tanel Padar & The Sun veab õhukitarri

    Index Scriptorium Estoniae

    2008-01-01

    Õhukitarri Eesti meistrivõistlustest 19. apr. Tallinnas Rock Cafés (võistluste eestvedajaks on ansambel Tanel Padar & The Sun, kes samas esitleb oma esimest ingliskeelset albumit "Here Comes The Sun")

  10. Keeping Cool Close to the Sun

    International Nuclear Information System (INIS)

    Hazi, A

    2006-01-01

    The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. The spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was

  11. Sensor Fusion and Model Verification for a Mobile Robot

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Vinther, Dennis; Østergaard, Kasper Zinck

    2005-01-01

    This paper presents the results of modeling, sensor fusion and model verification for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The model derived for the robot describes the actuator and wheel dynamics and the vehicle kinematics, and includes friction terms...

  12. Counseling on Sun Protection and Indoor Tanning.

    Science.gov (United States)

    Balk, Sophie J; Gottschlich, Elizabeth A; Holman, Dawn M; Watson, Meg

    2017-12-01

    The US Preventive Services Task Force recommends clinical counseling for individuals ages 10 to 24 years to decrease skin cancer risk. A national, random sample of US American Academy of Pediatrics members practicing primary care in 2002 (response rate 55%) and 2015 (response rate 43%). Surveys explored attitudes and experiences regarding sun protection counseling; indoor tanning questions were added in 2015. χ 2 tests compared demographics and counseling responses across years, and multivariable logistic regression models examined counseling predictors. More pediatricians in 2015 (34%) than in 2002 (23%) reported discussing sun protection during recent summer months with ≥75% of patients. This pattern held across all patient age groups (each P tanning at least once with 10 to 13 year-old patients; approximately half discussed this with older adolescents. Most (70%) did not know if their states had laws on minors' indoor tanning access; those stating they knew whether a law existed counseled more. Although improved, sun protection counseling rates remain low. Indoor tanning counseling can be improved. Because early-life exposure to UV radiation increases risk and clinician counseling can positively impact prevention behaviors, pediatricians have an important role in skin cancer prevention; counseling may save lives. Time constraints remain a barrier. Copyright © 2017 by the American Academy of Pediatrics.

  13. Communicating safe sun practices to farm youth: a model and field test of a proposed curriculum

    International Nuclear Information System (INIS)

    Turk, D.R.; Parrott, R.; Martin, M.; Steiner, C.; Lewis, D.

    1997-01-01

    This project was designed to identify the barriers and motivators to farm youths' performance of skin cancer prevention and detection behavior in order to design curricula which could directly address both. The curriculum as developed was pilot tested in 1994 at the Georgia Healthy Farmers ''Farm Kids'' Safety Camp. The 82 participants, aged 8 to 15 years, were children of Georgia farmers. Eight Sun Safety classes were held over the course of two days. Participants were seated in a large conference room and were given a research questionnaire packet consisting of a skin cancer prevention/detection knowledge measure, three skin cancer related fact sheets, and a workbook to be used to rate various skin cancer prevention/detection materials and behaviors staged at centers around the room. A brief presentation about the dangers of sun exposure and skin cancer prevention behaviors was given after which subjects participated in three activities: a sun protection hat station, a sun block station, and skin self exam station. Student t- tests were conducted comparing the outcome expectancy scores for individuals who reported that they would wear the particular hat or sunscreen with the outcome expectancy scores for individuals who reported that they would not wear the particular hat or sunscreen. Participants who reported that they would wear the hat had significantly higher positive outcome expectancy scores than those who said that they would not wear those hats. For four out of five sun blocks, participants who reported that they would wear these blocks had significantly higher positive outcome expectancies than those reporting that they would not wear them. The authors conclude that health education curricula to promote sun safety to youth must focus on building positive outcome expectancies in relation to the most efficacious practices, and in drawing clear distinctions for youth among their options, so that they are able to make decisions for themselves. (author)

  14. Evaluation of knowledge, attitude, and behavior about harmful effects of the sun and sun protection among patients attending an outpatient clinic

    Directory of Open Access Journals (Sweden)

    Sevim Terzi

    2017-03-01

    Full Text Available Background and Design: The aim of the study was to evaluate harmful effects of sun exposure and knowledge, attitude and behaviors related to sun protection among patients attending our outpatient clinic. Materials and Methods: A total of 400 patients (171 male and 229 female aged between 16 and 89 years were included in this study. Subjects were requested to fill out a questionnaire composed of 52 questions. In the first part of the questionnaire, patients’ socio-demographic characteristics, history of sunburn, first-degree relatives with a history of skin cancer; in the second part, knowledge about harmful effects of sun and sun protection were inquired. In the third part, patient attitude and behaviors related to sun protection was evaluated. Results: Our results revealed that 69.25% of patients had satisfactory level of knowledge. While the level of knowledge was not affected by economic status, place of residence, skin type and presence of skin cancer in participants or their first-degree relatives, it was found to be increased with increasing educational level. The patients were found to prefer avoiding mid-day sun (75.5% and staying in the shade (64.8% chiefly as sun protection methods and 45.3% of patients were found to use sunscreens. Most frequently preferred sources of information about harmful effects of the sun and sun protection methods were found to be television, magazines and newspapers (76.3%, doctor’s advice and internet, respectively. Conclusion: Although a satisfactory level of knowledge about harmful effects of the sun and protection methods was found, it was observed that individuals could not convert their knowledge into the sun protection behavior

  15. First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events

    DEFF Research Database (Denmark)

    Marsh, Andrew J.; Smith, David M.; Glesener, Lindsay

    2017-01-01

    We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due...... to its pioneering use of focusing optics. NuSTAR first observed quiet-Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet-Sun transient brightenings on timescales...... as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet-Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the Nu...

  16. Diffusion time scales and accretion in the sun

    International Nuclear Information System (INIS)

    Michaud, G.

    1977-01-01

    It is thought that surface abundances in the Sun could be due largely to accretion either of comets or grains, and it has been suggested that if surface convection zones were smaller than is usually indicated by model calculations, accretion would be especially important. Unless the zone immediately below the surface convection zone is sufficiently stable for diffusion to be important, other transport processes, such as turbulence and meridional circulation, more efficient than diffusion, will tend to homogenise the Sun. Diffusion is the slowest of the transport processes and will become important when other transport processes become inoperative. Using diffusion theory the minimum mass of the convection zone can be determined in order that transport processes at the bottom of the zone are not to influence abundances in the convection zone. If diffusion time scales are shorter than the life of the star (Sun) diffusion will modify the abundances in the convection zone. The mass in the convection zone for which diffusion time scales are equal to the life of the star on the main sequence then determines the minimum mass in the convection zone that justifies neglect of transport processes at the bottom of the convection zone. It is calculated here that, for the Sun, this mass is between 3 x 10 -3 and 10 -2 solar mass, and a general explosion is derived for the diffusion time scale as a function of the mass of the convection zone. (U.K.)

  17. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  18. Sun behaviour after cutaneous malignant melanoma

    DEFF Research Database (Denmark)

    Idorn, L W; Datta, P; Heydenreich, J

    2013-01-01

    Background  It has been reported that patients with cutaneous malignant melanoma (CMM) can lower their risk of a second primary melanoma by limiting recreational sun exposure. Previous studies based on questionnaires and objective surrogate measurements indicate that before their diagnosis......, patients with CMM are exposed to higher ultraviolet radiation (UVR) doses than controls, followed by a reduction after diagnosis. Objectives  In a prospective, observational case-control study, we aimed to assess sun exposure after diagnosis of CMM by objective measurements to substantiate advice about sun...... months and 6 years before the start of the study. During a summer season participants filled in sun exposure diaries daily and wore personal electronic UVR dosimeters in a wristwatch that continuously measured time-stamped UVR doses in standard erythema dose. Results  The UVR dose of recently diagnosed...

  19. Fly me to the Sun! ESA inaugurates the European Project on the Sun

    Science.gov (United States)

    2000-11-01

    In an initiative mounted by ECSITE (European Collaborative for Science, Industry and Technology Exhibitions) with funding from the European Commission and under the supervision, coordination and co-sponsorship of ESA, five teams of youngsters (16-18 years old) from Belgium, France, Germany, Italy and the Netherlands were selected and coordinated by European science museums from each of their countries (Musée des Sciences et des Techniques - Parentville, B; Cité de l'Espace - Toulouse, F; Deutsches Museum - Munich, D; Fondazione IDIS - Naples, I; Foundation Noordwijk Space Expo - Noordwijk, NL). The teams each focused on a theme related to solar research: "How does the Sun work?" (I), "The Sun as a star" (F), "Solar activity" (NL), "Observing the Sun" (D), "Humans and the Sun" (B), and built exhibition "modules" that they will present at the inauguration, in the context of European Science and Technology Week 2000 (6-10 November), promoted by the European Commission. During the two-day event, a jury of representatives of other European science and technology museums, ESA scientists, a science journalist, and two ESA astronauts (Frank de Winne and Andre Kuipers) will judge the youngsters' exhibition modules on the basis of their scientific correctness, their museological value and the commitment shown by the young "communication experts". The winning team will be officially announced on 9 November. The prize is a weekend at the Space Camp in Redu, Belgium. The objective of the European Project on the Sun is educational. It aims, through the direct and "fresh" involvement of youngsters, to heighten European citizens' awareness of space research in general and the Sun's influence on our daily lives in particular. The role of the European Space Agency as reference point in Europe for solar research has been fundamental to the project. From ESA's perspective, EPOS is part of this autumn's wider communication initiative called the Solar Season, which is highlighting ESA

  20. Generating Land Surface Reflectance for the New Generation of Geostationary Satellite Sensors with the MAIAC Algorithm

    Science.gov (United States)

    Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.

    2017-12-01

    The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance

  1. Optimal sun-shading design for enhanced daylight illumination of subtropical classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ming-Chin [Architecture and Building Research Institute, MOI (China); Chiang, Che-Ming [Department of Architecture, National Cheng-Kung University, Tainan 701 (China); Chou, Po-Cheng [Department of Interior Design, Shu-Te University, No. 59 Hun-Shan Road, Yenchau 82445, Kaohsiung County (China); Chang, Kuei-Feng [Department of Real Estate Management, National Pingtung Institute of Commerce (China); Lee, Chia-Yen [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515 (China)

    2008-07-01

    This study investigates the feasibility of fitting windows with sun-shadings in order to minimize the lighting power costs in daylight-illuminated classrooms lit from a single side in subtropical regions. An IES-CPC model is created of a representative classroom in Taiwan, and a series of simulations is performed to determine the average illuminance value and the uniformity of the illuminance distribution in the classroom under various lighting conditions with no sun-shadings fitted to the window. The numerical results are found to be in good agreement with the experimental measurements obtained using an array of nine-channel photometers. Having confirmed the validity of the simulation scheme, the illumination properties of four different sun-shading designs are considered. The results show that a double-layered sun-shading represents the optimal sun-shading design in terms of achieving a uniform illumination distribution within the classroom. Given appropriate physical dimensions, this daylight access device achieves the minimum illuminance requirement of 500 lx and improves the lighting uniformity ratio from 0.25-0.35 to 0.40-0.42. Furthermore, using this sun-shading device, the required illuminance ratio of 0.5 can be obtained simply by switching on one of the three rows of lights in the classroom. Accordingly, the daylight access device not only improves the illuminance conditions within the classroom, but also reduces the lighting power cost by 71.5% compared to the case where all of the lights are turned on. (author)

  2. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  3. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  4. Sensors advancements in modeling, design issues, fabrication and practical applications

    CERN Document Server

    Mukhopadhyay, Subhash Chandra

    2008-01-01

    Sensors are the most important component in any system and engineers in any field need to understand the fundamentals of how these components work, how to select them properly and how to integrate them into an overall system. This book has outlined the fundamentals, analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors, electromagnetic, capacitive, ultrasonic, vision, Terahertz, displacement, fibre-optic and so on. The book: addresses the identification, modeling, selection, operation and integration of a wide variety of se

  5. Observing the Sun with NuSTAR

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in

  6. Aerial measuring system sensor modeling

    International Nuclear Information System (INIS)

    Detwiler, Rebecca

    2002-01-01

    The AMS fixed-wing and rotary-wing systems are critical National Nuclear Security Administration (NNSA) Emergency Response assets. This project is principally focused on the characterization of the sensors utilized with these systems via radiation transport calculations. The Monte Carlo N-Particle code (MCNP) which has been developed at Los Alamos National Laboratory was used to model the detector response of the AMS fixed wing and helicopter systems. To validate the calculations, benchmark measurements were made for simple source-detector configurations. The fixed-wing system is an important tool in response to incidents involving the release of mixed fission products (a commercial power reactor release), the threat or actual explosion of a Radiological Dispersal Device, and the loss or theft of a large industrial source (a radiography source). Calculations modeled the spectral response for the sensors contained, a 3-element NaI detector pod and HpGe detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 C i/m2

  7. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  8. Sun Tracker Operates a Year Between Calibrations

    Science.gov (United States)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  9. Sun Proof

    Centers for Disease Control (CDC) Podcasts

    2012-10-23

    In this podcast for kids, the Kidtastics talk about the harmful effects of the sun and how to protect yourself from it.  Created: 10/23/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 10/23/2012.

  10. Revelation of the Sun Self-Similarity Skeletal Structures

    International Nuclear Information System (INIS)

    Rantsev-Kartinov, V.A.

    2005-01-01

    The analysis of databases of photographic images of a surface of the Sun, its atmosphere and the closest its space environment taken at various spatial resolutions and for various types of radiation of a surface of the Sun by means of a method multilevel dynamic contrasting, has revealed presence skeletal structures as on the Sun directly such and in its environment. It is demonstrated the revealed a global structures of the Sun and powerful ejections of mass of its corona, as well as the structures of its atmosphere, protuberances, sun-spots and a globular structures of its photosphere

  11. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  12. Models and control for force/torque sensors in robotics

    International Nuclear Information System (INIS)

    Johansson, Gert.

    1992-01-01

    One of the important problems in automatic assembly is the relative positioning accuracy between the parts in the assembly process. Inaccurate positions cause large insertion forces, wear and might damage the parts. They can also completely disable the assembly process. A solution to this problem is to detect the positioning error and to make a relevant adjustment of the position or path. This thesis presents a solution based on active feedback of force/torque data from a wrist mounted sensor. A task independent control algorithm has been realized through a sensor model concept. The sensor model includes an algorithm that transforms force/torque input to relevant motion of the end effector. The transformation is specified by a set of parameters e.g. desired forces, compliance and stopping criteria. The problem with gravity forces for varying end effector orientation is compensated by an algorithm, divided into three complexity levels. The compensation method includes a calibration sequence to ensure valid end effector properties to be used in the algorithm. A problem with available robot technology is bad integration possibilities for external sensors. To allow necessary modifications and expansions, an open and general control system architecture is proposed. The architecture is based in a computer workstation and transputers in pipeline for the robot specific operations. (au)

  13. Sun and Skin: The Dark Side of Sun Exposure

    Science.gov (United States)

    ... a toll on your skin and its underlying connective tissue. As a result, your skin may develop more wrinkles and lines. Too much sun exposure can also raise your risk for skin cancer, the most common type of cancer in the ...

  14. Sun, UV Radiation and Your Eyes

    Science.gov (United States)

    ... Sunglasses Sun Smart UV Safety Infographic The Sun, UV Radiation and Your Eyes Leer en Español: El ... Aug. 28, 2014 Keep an Eye on Ultraviolet (UV) Safety Eye medical doctors (ophthalmologists) caution us that ...

  15. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47. Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355. The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in

  16. Attitude sensor alignment calibration for the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  17. Heating the Chromosphere in the Quiet Sun

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    The best-studied star the Sun still harbors mysteries for scientists to puzzle over. A new study has now explored the role of tiny magnetic-field hiccups in an effort to explain the strangely high temperatures of the Suns upper atmosphere.Schematic illustrating the temperatures in different layers of the Sun. [ESA]Strange Temperature RiseSince the Suns energy is produced in its core, the temperature is hottest here. As expected, the temperature decreases further from the Suns core up until just above its surface, where it oddly begins to rise again. While the Suns surface is 6,000 K, the temperature is higher above this: 10,000 K in the outer chromosphere.So how is the chromosphere of the Sun heated? Its possible that the explanation can be found not amid high solar activity, but in quiet-Sun regions.In a new study led by Milan Goi (Lockheed Martin Solar and Astrophysics Laboratory, Bay Area Environmental Research Institute), a team of scientists has examined a process that quietly happens in the background: the cancellation of magnetic field lines in the quiet Sun.Activity in a SupergranuleTop left: SDO AIA image of part of the solar disk. The next three panels are a zoom of the particular quiet-Sun region that the authors studied, all taken with IRIS at varying wavelengths: 1400 (top right), 2796 (bottom left), and 2832 (bottom right). [Goi et al. 2018]The Sun is threaded by strong magnetic field lines that divide it into supergranules measuring 30 million meters across (more than double the diameter of Earth!). Supergranules may seem quiet inside, but looks can be deceiving: the interiors of supergranules contain smaller, transient internetwork fields that move about, often resulting in magnetic elements of opposite polarity encountering and canceling each other.For those internetwork flux cancellations that occur above the Suns surface, a small amount of energy could be released that locally heats the chromosphere. But though each individual event has a small

  18. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  19. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    International Nuclear Information System (INIS)

    Fu, Y; Xu, O; Yang, W; Zhou, L; Wang, J

    2017-01-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately. (paper)

  20. Nuclear astrophysics of the sun

    International Nuclear Information System (INIS)

    Kocharov, G.E.

    1980-01-01

    In the first chapter we will discuss the problem of nuclear reactions in the interior of the sun and consider the modern aspects of the neutrino astrophysics of the Sun. The second chapter is devoted to the high energy interactions in the solar atmosphere during the flares. Among a great number of events during the solar flares we shall consider mainly the nuclear reactions. Special attention will be paid to the genetic connection between the different components of solar electromagnetic and corpuscular radiation. The idea of the unity of processes in different parts of the Sun, from hot and dense interior up to the rare plasma of the solar corona will be the main line of the book. (orig./WL) 891 WL/orig.- 892 HIS

  1. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  2. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  3. An articulated predictive model for fluid-free artificial basilar membrane as broadband frequency sensor

    Science.gov (United States)

    Ahmed, Riaz; Banerjee, Sourav

    2018-02-01

    In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM2) sensors is reported with variable engineering parameters that contribute to it's frequency selection capabilities. The predictive model reported herein is for advancement over existing method by incorporating versatile and nonhomogeneous (e.g. functionally graded) model parameters that could not only exploit the possibilities of creating complex combinations of broadband frequency sensors but also explain the unique unexplained physical phenomenon that prevails in BM2, e.g. tailgating waves. In recent years, few notable attempts were made to fabricate the artificial basilar membrane, mimicking the mechanics of the human cochlea within a very short range of frequencies. To explain the operation of these sensors a few models were proposed. But, we fundamentally argue the "fabrication to explanation" approach and proposed the model driven predictive design process for the design any (BM2) as broadband sensors. Inspired by the physics of basilar membrane, frequency domain predictive model is proposed where both the material and geometrical parameters can be arbitrarily varied. Broadband frequency is applicable in many fields of science, engineering and technology, such as, sensors for chemical, biological and acoustic applications. With the proposed model, which is three times faster than its FEM counterpart, it is possible to alter the attributes of the selected length of the designed sensor using complex combinations of model parameters, based on target frequency applications. Finally, the tailgating wave peaks in the artificial basilar membranes that prevails in the previously reported experimental studies are also explained using the proposed model.

  4. jianhua sun

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences. JIANHUA SUN. Articles written in Journal of Biosciences. Volume 42 Issue 4 December 2017 pp 575-584 Article. MicroRNA-486-5p suppresses TGF-b2-induced proliferation, invasion and epithelial–mesenchymal transition of lens epithelial cells by targeting Smad2.

  5. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  6. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  7. Tracing the journey of the Sun and the Solar siblings through the Milky Way

    Science.gov (United States)

    Martínez-Barbosa, Carmen Adriana

    2016-04-01

    This thesis is focused on studying the motion of the Sun and the Solar siblings through the Galaxy. The Solar siblings are stars that were born with the Sun in the same molecular cloud 4.6 Gyr ago. In the first part of the thesis, we present an efficient method to calculate the evolution of small systems embedded in larger systems. Generalizations of this method are used to calculate the motion of the Sun and the Solar siblings in an analytical potential containing a central bar and spiral arms. By integrating the orbit of the Sun backwards in time, we determine its birth radius and the amount of radial migration experienced by our star. The birth radius of the Sun is used to investigate the evolution and disruption of the Sun's birth cluster. Depending on the Galaxy model parameters, the present-day phase-space distribution of the Solar siblings might be quite different. We used these data to predict the regions in the Galaxy where it will be more likely to search for So! lar siblings in the future. Finally, we compute the stellar encounters experienced by the Sun along its orbit and their role on the stability of the outer Solar System.

  8. Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.

    Science.gov (United States)

    Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen

    2004-04-01

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.

  9. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Science.gov (United States)

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510

  10. First Experiences with Kinect v2 Sensor for Close Range 3d Modelling

    Science.gov (United States)

    Lachat, E.; Macher, H.; Mittet, M.-A.; Landes, T.; Grussenmeyer, P.

    2015-02-01

    RGB-D cameras, also known as range imaging cameras, are a recent generation of sensors. As they are suitable for measuring distances to objects at high frame rate, such sensors are increasingly used for 3D acquisitions, and more generally for applications in robotics or computer vision. This kind of sensors became popular especially since the Kinect v1 (Microsoft) arrived on the market in November 2010. In July 2014, Windows has released a new sensor, the Kinect for Windows v2 sensor, based on another technology as its first device. However, due to its initial development for video games, the quality assessment of this new device for 3D modelling represents a major investigation axis. In this paper first experiences with Kinect v2 sensor are related, and the ability of close range 3D modelling is investigated. For this purpose, error sources on output data as well as a calibration approach are presented.

  11. FIRST EXPERIENCES WITH KINECT V2 SENSOR FOR CLOSE RANGE 3D MODELLING

    Directory of Open Access Journals (Sweden)

    E. Lachat

    2015-02-01

    Full Text Available RGB-D cameras, also known as range imaging cameras, are a recent generation of sensors. As they are suitable for measuring distances to objects at high frame rate, such sensors are increasingly used for 3D acquisitions, and more generally for applications in robotics or computer vision. This kind of sensors became popular especially since the Kinect v1 (Microsoft arrived on the market in November 2010. In July 2014, Windows has released a new sensor, the Kinect for Windows v2 sensor, based on another technology as its first device. However, due to its initial development for video games, the quality assessment of this new device for 3D modelling represents a major investigation axis. In this paper first experiences with Kinect v2 sensor are related, and the ability of close range 3D modelling is investigated. For this purpose, error sources on output data as well as a calibration approach are presented.

  12. SunPy: Python for Solar Physics

    Science.gov (United States)

    Bobra, M.; Inglis, A. R.; Mumford, S.; Christe, S.; Freij, N.; Hewett, R.; Ireland, J.; Martinez Oliveros, J. C.; Reardon, K.; Savage, S. L.; Shih, A. Y.; Pérez-Suárez, D.

    2017-12-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community. SunPy aims to provide the software for obtaining and analyzing solar and heliospheric data. This poster introduces a new major release, SunPy version 0.8. The first major new feature introduced is Fido, the new primary interface to download data. It provides a consistent and powerful search interface to all major data providers including the VSO and the JSOC, as well as individual data sources such as GOES XRS time series. It is also easy to add new data sources as they become available, i.e. DKIST. The second major new feature is the SunPy coordinate framework. This provides a powerful way of representing coordinates, allowing simple and intuitive conversion between coordinate systems and viewpoints of different instruments (i.e., Solar Orbiter and the Parker Solar Probe), including transformation to astrophysical frames like ICRS. Other new features including new timeseries capabilities with better support for concatenation and metadata, updated documentation and example gallery. SunPy is distributed through pip and conda and all of its code is publicly available (sunpy.org).

  13. System-Level Modelling and Simulation of MEMS-Based Sensors

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan; Shafique, Mohammad

    2005-01-01

    The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration with the......The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration...... with the existing embedded system design methodologies is possible. In this paper, we present a MEMS design methodology that uses VHDL-AMS based system-level model of a MEMS device as a starting point and combines the top-down and bottom-up design approaches for design, verification, and optimization...

  14. Sun protective behaviour in renal transplant recipients. A qualitative study based on individual interviews and the Health Belief Model

    DEFF Research Database (Denmark)

    Skiveren, Jette; Mortensen, Erik Lykke; Haedersdal, Merete

    2010-01-01

    : The major result was the finding that patients did not perceive the threat of skin cancer as an important health problem and, therefore, did not give a high priority to sun protection, even though patients were aware of their increased risk of developing skin cancer. Moreover, negative individual attitudes......BACKGROUND: Renal transplant recipients (RTRs) are at high-risk of developing aggressive and potentially lethal non-melanoma skin cancer, which emphasizes the need for consistent sun protective behaviour. OBJECTIVE: To identify factors that exert an influence on the sun protective behaviour of RTRs...... recommend that RTRs are informed about the potential severity of skin cancer, and about the importance of consistent sun protective behaviour....

  15. Analysis of the heat transfer models for the development of the 3D model of thermal hydraulics of the BWR core and possible implementation in the SUN-RAH

    International Nuclear Information System (INIS)

    Sanchez S, R.A.; Morales S, J.B.

    2005-01-01

    In previous versions of the SUN-RAH, the core of the reactor was simulated starting from the punctual kinetics of neutrons of the same one. Different mathematical models to implement an unidimensional simulation of the thermal hydraulics of the core of the reactor to have a tool but exact were proposed. Of among the different ones modeling, those of Heat Transfer of n nodes and that of a differential equation of heat transfer were chosen. Both present the mathematical derivation of the equations of radial transfer of the heat generated in a bar of fuel, numeric routines for the calculation of the typical thermodynamic properties, calculation of the stationary state and dynamic response of some premature operational occurrences. It was carried out the comparison among both proposals with the purpose of being implemented in the SUN-RAH. This simulator includes all the main components of the thermodynamic cycle, with that the implementation of the one dimension models of the core, will be transform it into a tool but reliable. To make congruent the multidimensional kinetics of neutrons is necessary to have a model of heat transfer congruent with her for that here an analysis is made of that model of transfer it can be used in a great number of neutronic nodes. (Author)

  16. Fast analytical model of MZI micro-opto-mechanical pressure sensor

    Science.gov (United States)

    Rochus, V.; Jansen, R.; Goyvaerts, J.; Neutens, P.; O’Callaghan, J.; Rottenberg, X.

    2018-06-01

    This paper presents a fast analytical procedure in order to design a micro-opto-mechanical pressure sensor (MOMPS) taking into account the mechanical nonlinearity and the optical losses. A realistic model of the photonic MZI is proposed, strongly coupled to a nonlinear mechanical model of the membrane. Based on the membrane dimensions, the residual stress, the position of the waveguide, the optical wavelength and the phase variation due to the opto-mechanical coupling, we derive an analytical model which allows us to predict the response of the total system. The effect of the nonlinearity and the losses on the total performance are carefully studied and measurements on fabricated devices are used to validate the model. Finally, a design procedure is proposed in order to realize fast design of this new type of pressure sensor.

  17. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere I. Continuous Emission and Condensed Matter Within the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.

  18. Real-time GIS data model and sensor web service platform for environmental data management.

    Science.gov (United States)

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  19. Massive stars evolution with mass-loss. 20-100 M(sun) models

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Sreenivasan, S R [Calgary Univ., Alberta (Canada). Dept. of Physics; Nasi, E [Padua Univ. (Italy). Istituto di Astronomia

    1978-02-01

    The evolution of stars with initial masses 20, 30, 40, 60, 80, 100 M(sun) and Population I chemical composition (X = 0.700, Z = 0.02) is calculated, taking into account mass-loss due to stellar winds, from the main sequence up to the early stages of central He-burning. This study incorporates mass-loss rates predicted by the theory of Castor et al. (1975) for the early type phases and a novel way of treating mass-loss rates due to acoustic energy flux driven winds in the later stages analogous to the work of Fusi-Pecci and Renzini (1975a). The results are presented in terms of evolutionary tracks, isochrones, loci of constant mass-loss rates and loci of constant mass in the HR diagram. The effects of mass-loss on the internal structure of the models as well as on the occurrence of semiconvection are also investigated. A detailed comparison of the theoretical predictions and observational results is made and possible implications for O, Of, Wolf-Rayet stars and red supergiants are brought out.

  20. The depth of the honeybee's backup sun-compass systems.

    Science.gov (United States)

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  1. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Directory of Open Access Journals (Sweden)

    Tai-hoon Kim

    2010-12-01

    Full Text Available Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained.

  2. A new picture for the internal rotation of the sun

    International Nuclear Information System (INIS)

    Morrow, C.A.

    1988-01-01

    This thesis describes a helioseismic quest to determine the angular velocity inside the Sun as a function of depth and latitude. The author analyzes rotational frequency splittings extracted from 15 days of full-disk observations of the solar acoustic oscillations (1 = 15-99) obtained with the Fourier Tachometer (a Doppler analyzing instrument design by Tim Brown). She has compared the observed frequency splittings to those generated by several different physically-motivated models for the solar internal angular velocity. She also introduces convenient preliminary analysis techniques, which require no formal computations and which guide the choices of rotation models. He analysis suggests that the differential rotation in latitude observed at the solar surface pervades the convection zone and perhaps even deeper layers. Thus, the convection zone appears to contain little or no radial gradient of angular velocity. The analysis further indicates that the angular velocity of the outer portion of the radiative interior is constant, or nearly so, at a value that is intermediate between the relatively fast equatorial rate and the slower polar rate of the surface profile. This new picture of the Sun's internal rotation implies that a significant radial gradient exists only in a transitional layer between the convection zone and the radiative interior. This model has intriguing implications for the solar dynamo, for the current distribution and transport of angular momentum, and for the current distribution and transport of angular momentum, and for the rotational and evolutionary history of the Sun

  3. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  4. Modeling The Influence Of H2O On Metal Oxide Sensor Responses To CO

    International Nuclear Information System (INIS)

    Fort, A.; Mugnaini, M.; Pasquini, I.; Rocchi, S.; Vignoli, V.

    2009-01-01

    It is well know that the relative humidity largely affects the response of MOX gas sensors to the target gases. The influence of water vapor on MOX sensor operation has been deeply studied and many results can be found in the literature. Nevertheless the effect of water was not incorporated in the sensor models presented up to now. In this work the authors propose, on the basis of experimental evidence, a simplified model for SnO 2 sensors, able to account for the water contribution, when the target gas is CO. The authors start from a model already presented and tested for dry gases (CO and O 2 ), and add the water contribution, assuming that the direct reaction between CO and water can be neglected.

  5. A comprehensive approach to evaluating and classifying sun-protective clothing.

    Science.gov (United States)

    Downs, N J; Harrison, S L

    2018-04-01

    National standards for clothing designed to protect the wearer from the harmful effects of solar ultraviolet radiation (UVR) have been implemented in Australia/New Zealand, Europe and the U.S.A. Industry standards reflect the need to protect the skin by covering a considerable proportion of the potentially exposed body surface area (BSA) and by reducing UVR-transmission through fabric (the Ultraviolet Protection Factor; UPF). This research aimed to develop a new index for rating sun-protective clothing that incorporates the BSA coverage of the garment in addition to the UPF of the fabric. A mannequin model was fixed to an optical bench and marked with horizontal lines at 1-cm intervals. An algorithm (the Garment Protector Factor; GPF) was developed based on the number of lines visible on the clothed vs. unclothed mannequin and the UPF of the garment textile. This data was collected in 2015/16 and analysed in 2016. The GPF weights fabric UPF by BSA coverage above the minimum required by international sun-protective clothing standards for upper-body, lower-body and full-body garments. The GPF increases with BSA coverage of the garment and fabric UPF. Three nominal categories are proposed for the GPF: 0 ≤ GPF garments that 'meet' minimum standards; 3 ≤ GPF garments providing 'good' sun protection; and GPF ≥ 6 indicating 'excellent' protection. Adoption of the proposed rating scheme should encourage manufacturers to design sun-protective garments that exceed the minimum standard for BSA coverage, with positive implications for skin cancer prevention, consumer education and sun-protection awareness. © 2017 British Association of Dermatologists.

  6. yimin sun

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YIMIN SUN. Articles written in Journal of Genetics. Volume 96 Issue 4 September 2017 pp 687-693 RESEARCH NOTE. The association study of nonsyndromic cleft lip with or without cleft palate identified risk variants of the GLI3 gene in a Chinese population · YIRUI WANG YIMIN SUN ...

  7. Piece of the sun

    CERN Document Server

    Wayne, Teddy

    2015-01-01

    Our rapidly industrialising world has an insatiable hunger for energy, and conventional sources are struggling to meet demand. Oil is running out, coal is damaging our climate, many nations are abandoning nuclear, yet solar, wind and water will never be a complete replacement. The solution, says Daniel Clery in this deeply researched and revelatory book, is to be found in the original energy source: the Sun itself. There, at its centre, the fusion of 630 million tonnes of hydrogen every second generates an unfathomable amount of energy. By replicating even a tiny piece of the Sun's power

  8. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  9. Effects of electrostatic discharge on three cryogenic temperature sensor models

    Energy Technology Data Exchange (ETDEWEB)

    Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  10. Effects of electrostatic discharge on three cryogenic temperature sensor models

    International Nuclear Information System (INIS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure

  11. Modelling and processing of data from a fibre-optic sensor of vibrations

    International Nuclear Information System (INIS)

    Morawski, R Z; Makowski, P L; Michalik, L; Domanski, A W

    2010-01-01

    A new technique of vibration sensing, based on a polarimetric fibre-optic strain sensor, is presented; it is designed for localisation of multiple sources of disturbances in a broad spectrum without using fibre gratings. A mathematical model of the sensor is used for development of a variational method for estimation of amplitudes of component vibrations on the basis of noisy samples of the voltage at the output of the sensor.

  12. Centralized Bayesian reliability modelling with sensor networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 19, č. 5 (2013), s. 471-482 ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant - others:GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf

  13. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revised

    Science.gov (United States)

    Fargion, Giulietta S.; Mueller, James L.

    2000-01-01

    The document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. This document supersedes the earlier version (Mueller and Austin 1995) published as Volume 25 in the SeaWiFS Technical Report Series. This document marks a significant departure from, and improvement on, theformat and content of Mueller and Austin (1995). The authorship of the protocols has been greatly broadened to include experts specializing in some key areas. New chapters have been added to provide detailed and comprehensive protocols for stability monitoring of radiometers using portable sources, abovewater measurements of remote-sensing reflectance, spectral absorption measurements for discrete water samples, HPLC pigment analysis and fluorometric pigment analysis. Protocols were included in Mueller and Austin (1995) for each of these areas, but the new treatment makes significant advances in each topic area. There are also new chapters prescribing protocols for calibration of sun photometers and sky radiance sensors, sun photometer and sky radiance measurements and analysis, and data archival. These topic areas were barely mentioned in Mueller and Austin (1995).

  14. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    Science.gov (United States)

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  15. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  16. Numerical simulations of quiet Sun magnetic fields seeded by the Biermann battery

    Science.gov (United States)

    Khomenko, E.; Vitas, N.; Collados, M.; de Vicente, A.

    2017-08-01

    The magnetic fields of the quiet Sun cover at any time more than 90% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is the action of the local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field and sufficiently high spatial resolution in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.

  17. Sun exposure and protection behavior of Danish farm children

    DEFF Research Database (Denmark)

    Bodekær, Mette; Øager Petersen, Bibi; Philipsen, Peter Alshede

    2014-01-01

    families) kept daily sun behavior diaries (sun exposure, sunscreen use, sunburns) over a 4-month summer period (15,985 diary days). The Pigment Protection Factor (PPF), an objective measure of sun exposure, was measured at two body sites, before and after summer. All participants presented data from...... the same 115 days. Risk behavior (sun exposure of upper body) took place on 9.5 days (boys) and 15.6 days (girls). Sunburn and sunscreen use were infrequent. Boys' sun exposure resulted in an increased photo protection over the study period of 1.7 SED (upper arm) and 0.8 SED (shoulder) to elicit erythema...

  18. A Probabilistic Model of the LMAC Protocol for Concurrent Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Esparza, Luz Judith R; Zeng, Kebin; Nielsen, Bo Friis

    2011-01-01

    We present a probabilistic model for the network setup phase of the Lightweight Medium Access Protocol (LMAC) for concurrent Wireless Sensor Networks. In the network setup phase, time slots are allocated to the individual sensors through resolution of successive collisions. The setup phase...

  19. A Neural Network Approach for Building An Obstacle Detection Model by Fusion of Proximity Sensors Data

    Science.gov (United States)

    Peralta, Emmanuel; Vargas, Héctor; Hermosilla, Gabriel

    2018-01-01

    Proximity sensors are broadly used in mobile robots for obstacle detection. The traditional calibration process of this kind of sensor could be a time-consuming task because it is usually done by identification in a manual and repetitive way. The resulting obstacles detection models are usually nonlinear functions that can be different for each proximity sensor attached to the robot. In addition, the model is highly dependent on the type of sensor (e.g., ultrasonic or infrared), on changes in light intensity, and on the properties of the obstacle such as shape, colour, and surface texture, among others. That is why in some situations it could be useful to gather all the measurements provided by different kinds of sensor in order to build a unique model that estimates the distances to the obstacles around the robot. This paper presents a novel approach to get an obstacles detection model based on the fusion of sensors data and automatic calibration by using artificial neural networks. PMID:29495338

  20. Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection.

    Science.gov (United States)

    Schaller, Torsten; Bulli, Lorenzo; Pollpeter, Darja; Betancor, Gilberto; Kutzner, Juliane; Apolonia, Luis; Herold, Nikolas; Burk, Robin; Malim, Michael H

    2017-10-01

    Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1 NL4.3 and HIV-1 IIIB ) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro -assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1 -/- and SUN2 -/- cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes

  1. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  2. The Sun in Time: Activity and Environment

    Directory of Open Access Journals (Sweden)

    Güdel Manuel

    2007-12-01

    Full Text Available The Sun's magnetic activity has steadily declined during its main-sequence life. While the solar photospheric luminosity was about 30% lower 4.6 Gyr ago when the Sun arrived on the main sequence compared to present-day levels, its faster rotation generated enhanced magnetic activity; magnetic heating processes in the chromosphere, the transition region, and the corona induced ultraviolet, extreme-ultraviolet, and X-ray emission about 10, 100, and 1000 times, respectively, the present-day levels, as inferred from young solar-analog stars. Also, the production rate of accelerated, high-energy particles was orders of magnitude higher than in present-day solar flares, and a much stronger wind escaped from the Sun, permeating the entire solar system. The consequences of the enhanced radiation and particle fluxes from the young Sun were potentially severe for the evolution of solar-system planets and moons. Interactions of high-energy radiation and the solar wind with upper planetary atmospheres may have led to the escape of important amounts of atmospheric constituents. The present dry atmosphere of Venus and the thin atmosphere of Mars may be a product of early irradiation and heating by solar high-energy radiation. High levels of magnetic activity are also inferred for the pre-main sequence Sun. At those stages, interactions of high-energy radiation and particles with the circumsolar disk in which planets eventually formed were important. Traces left in meteorites by energetic particles and anomalous isotopic abundance ratios in meteoritic inclusions may provide evidence for a highly active pre-main sequence Sun. The present article reviews these various issues related to the magnetic activity of the young Sun and the consequent interactions with its environment. The emphasis is on the phenomenology related to the production of high-energy photons and particles. Apart from the activity on the young Sun, systematic trends applicable to the entire

  3. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Weekend Warriors expand/collapse Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are ... skiing! Be Mindful of Time Spent in the Sun, Regardless of the Season If possible, ski early ...

  4. Population and age-group trends in weekend sun protection and sunburn over two decades of the SunSmart programme in Melbourne, Australia.

    Science.gov (United States)

    Makin, J K; Warne, C D; Dobbinson, S J; Wakefield, M A; Hill, D J

    2013-01-01

    In response to the high skin cancer burden in Australia, the multicomponent, community-wide SunSmart programme has worked since 1988 to reduce excessive sun exposure.  To examine trends in key sun-protection behaviours and sunburn for the Melbourne population from 1987 to 2007, and examine for the first time patterns of change among age groups.   Representative cross-sectional weekly telephone surveys of weekend sun protection and sunburn were conducted over 11 of the summers in the period 1987-88 to 2006-07. Trends were analysed for the population and for age groups, adjusting for ambient temperature and ultraviolet radiation, which are environmental determinants of sun-related behaviour and sunburn.   The general pattern of trends suggests two distinct periods, one with rapid improvement in behaviours (more sunscreen use, less unprotected body exposure and less sunburn) from 1987-88 to 1994-95, and the second from 1997-98 to 2006-07 with fewer changes in behaviours noted. The age-group analyses showed a similar pattern of change over time across groups, with a few notable exceptions.  The similarity of the pattern of trends among age groups suggests that external influences including the SunSmart programme's activity had a relatively similar impact across the population. Sun-related behaviours continue to be amenable to change. More recent relative stability with some declines in sun protection suggests further intensive campaigns and other strategies may be needed to maintain previous successes and to achieve more universal use of sun protection. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  5. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export.

    Science.gov (United States)

    Li, Ping; Noegel, Angelika A

    2015-11-16

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the l I: nker of N: ucleoskeleton and C: ytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Pyrometer model based on sensor physical structure and thermal operation

    International Nuclear Information System (INIS)

    Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier

    2010-01-01

    This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.

  7. Passive long range acousto-optic sensor

    Science.gov (United States)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  8. Modeling and simulation of soft sensor design for real-time speed and position estimation of PMSM.

    Science.gov (United States)

    Omrane, Ines; Etien, Erik; Dib, Wissam; Bachelier, Olivier

    2015-07-01

    This paper deals with the design of a speed soft sensor for permanent magnet synchronous motor. At high speed, model-based soft sensor is used and it gives excellent results. However, it fails to deliver satisfactory performance at zero or very low speed. High-frequency soft sensor is used at low speed. We suggest to use a model-based soft sensor together with the high-frequency soft sensor to overcome the limitations of the first one at low speed range. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. No smoking guns under the Sun

    CERN Document Server

    CERN. Geneva

    2000-01-01

    The Sun is a typical main sequence star that generates its energy via the fusion of hydrogen into helium in two chains of nuclear reactions: the so-called pp chain and the CNO chain. If the nucleon number, electric charge, lepton flavour and energy are conserved and the Sun is in a steady state, then the total solar neutrino flux is fixed, to a good approximation, by the solar luminosity (approximately 65 billion neutrinos/cm2/s at Earth), independent of the specific nuclear reactions that power the Sun and produce neutrinos by beta decay or the electron capture of reaction products. The neutrinos from the dominant pp chain are produced by the beta decay of proton pairs (pp), boron-8 and lithium-4, and by electron capture by pp pairs and beryllium-7. Their spectra can be measured directly in the laboratory or calculated from the standard theory of electroweak interactions. To a very good approximation, they are independent of the conditions in the Sun. Only their relative contributions depend on the detailed ...

  10. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.

    Science.gov (United States)

    Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J

    2018-01-01

    Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.

  11. Improved signal model for confocal sensors accounting for object depending artifacts.

    Science.gov (United States)

    Mauch, Florian; Lyda, Wolfram; Gronle, Marc; Osten, Wolfgang

    2012-08-27

    The conventional signal model of confocal sensors is well established and has proven to be exceptionally robust especially when measuring rough surfaces. Its physical derivation however is explicitly based on plane surfaces or point like objects, respectively. Here we show experimental results of a confocal point sensor measurement of a surface standard. The results illustrate the rise of severe artifacts when measuring curved surfaces. On this basis, we present a systematic extension of the conventional signal model that is proven to be capable of qualitatively explaining these artifacts.

  12. The quiet Sun brightness temperature at 408 MHz

    International Nuclear Information System (INIS)

    Avignon, Y.; Lantos, P.; Palagi, F.; Patriarchi, P.

    1975-01-01

    The flux of the radio quiet Sun and the brightness temperature at 408 MHz (73cm) are derived from measurements with the E-W Nancay interferometer and the E-W arm of the Medicina North Cross. It is shown that the lowest envelopes, which defined the radio quiet Sun, correspond to transits of extended coronal holes across the disk of the Sun. (Auth.)

  13. Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data.

    Directory of Open Access Journals (Sweden)

    Lorraine Scotson

    Full Text Available Monitoring population trends of threatened species requires standardized techniques that can be applied over broad areas and repeated through time. Sun bears Helarctos malayanus are a forest dependent tropical bear found throughout most of Southeast Asia. Previous estimates of global population trends have relied on expert opinion and cannot be systematically replicated. We combined data from 1,463 camera traps within 31 field sites across sun bear range to model the relationship between photo catch rates of sun bears and tree cover. Sun bears were detected in all levels of tree cover above 20%, and the probability of presence was positively associated with the amount of tree cover within a 6-km2 buffer of the camera traps. We used the relationship between catch rates and tree cover across space to infer temporal trends in sun bear abundance in response to tree cover loss at country and global-scales. Our model-based projections based on this "space for time" substitution suggested that sun bear population declines associated with tree cover loss between 2000-2014 in mainland southeast Asia were ~9%, with declines highest in Cambodia and lowest in Myanmar. During the same period, sun bear populations in insular southeast Asia (Malaysia, Indonesia and Brunei were projected to have declined at a much higher rate (22%. Cast forward over 30-years, from the year 2000, by assuming a constant rate of change in tree cover, we projected population declines in the insular region that surpassed 50%, meeting the IUCN criteria for endangered if sun bears were listed on the population level. Although this approach requires several assumptions, most notably that trends in abundance across space can be used to infer temporal trends, population projections using remotely sensed tree cover data may serve as a useful alternative (or supplement to expert opinion. The advantages of this approach is that it is objective, data-driven, repeatable, and it requires that

  14. Will the aerosol derived from the OCM satellite sensor be representative of the aerosol over Goa?

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Rodrigues, A.; Desa, E.; Chauhan, P.

    Most of the ocean color satellite sensors such as IRS-P4 OCM, SeaWiFS and MODIS are sun synchronous and have pass over the regions during noon. From our measurements of aerosol optical properties using five-channel sunphotometer over the coastal...

  15. Hybrid Multiple Soft-Sensor Models of Grinding Granularity Based on Cuckoo Searching Algorithm and Hysteresis Switching Strategy

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-01-01

    Full Text Available According to the characteristics of grinding process and accuracy requirements of technical indicators, a hybrid multiple soft-sensor modeling method of grinding granularity is proposed based on cuckoo searching (CS algorithm and hysteresis switching (HS strategy. Firstly, a mechanism soft-sensor model of grinding granularity is deduced based on the technique characteristics and a lot of experimental data of grinding process. Meanwhile, the BP neural network soft-sensor model and wavelet neural network (WNN soft-sensor model are set up. Then, the hybrid multiple soft-sensor model based on the hysteresis switching strategy is realized. That is to say, the optimum model is selected as the current predictive model according to the switching performance index at each sampling instant. Finally the cuckoo searching algorithm is adopted to optimize the performance parameters of hysteresis switching strategy. Simulation results show that the proposed model has better generalization results and prediction precision, which can satisfy the real-time control requirements of grinding classification process.

  16. SOHO reveals violent action on the quiet Sun

    Science.gov (United States)

    1996-05-01

    SOHO's scientists are impressed by the vigorous action that they see going on every day, because the Sun is in the very quietest phase of its eleven-year cycle of activity. To ground-based observatories it appears extremely calm just now. The early indications of SOHO's performance amply justify the creation of a sungazing spacecraft capable of observing ultraviolet emissions that are blotted out by the Earth's atmosphere. Apart from the imager, two ultraviolet spectrometers and an ultraviolet coronagraph (an imager for the outer atmosphere) are busy analysing the violent processes at a wide range of wavelengths. Between them, these instruments should cure long-lasting ignorance concerning the Sun, especially about why the atmosphere is so hot and what drives the solar wind that blows non-stop into the Solar System. Scientists from other experimental teams use SOHO to explore the Sun from its deep interior to the far reaches of the solar wind. They have watched the supposedly quiet Sun belching huge masses of gas into space. They have mapped a hole burnt by the solar wind in a breeze of gas coming from the stars. And they have detected currents of gas flowing just below the visible surface. SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO on 2 December 1995, and also provides the ground stations and an operations centre near Washington. The first results are the more remarkable because SOHO arrived at its vantage point 1,500,000 kilometres out in space only in February, and formally completed its commissioning on 16 April. It has a long life ahead of it. All scientific instruments are working well. The luminosity oscillation imager belonging to the VIRGO experiment had trouble with its lens cover. When opened, the cover rebounded on its hinges and closed again. Commands were devised that gave a shorter impulse

  17. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  18. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  19. Dynamic sensing model for accurate delectability of environmental phenomena using event wireless sensor network

    Science.gov (United States)

    Missif, Lial Raja; Kadhum, Mohammad M.

    2017-09-01

    Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.

  20. Grand Minima: Is The Sun Going To Sleep?

    Science.gov (United States)

    Mcintosh, S. W.; Leamon, R. J.

    2014-12-01

    We explore recent observational work which indicate that the energetics of the sun's outer atmosphere have been on a steady decline for the past decade and perhaps longer. Futher, we show that new investigations into evolution of the Sun's global magnetic activity appear to demonstrate a path through which the Sun can go into, and exit from, a grand activity minimum without great difficulty while retaining an activity cycle - only losing sunspots. Are we at the begining of a new grand(-ish) minimum? Naturally, only time will tell, but the observational evidence hint that one may not be far off to what impact on the Sun-Earth Connection.

  1. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    Science.gov (United States)

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  2. Knowledge and Practice of Sun Protection in Schools in South Africa Where No National Sun Protection Programme Exists

    Science.gov (United States)

    Wright, Caradee Y.; Reeder, Anthony I.; Albers, Patricia N.

    2016-01-01

    Interventions in primary schools that increase sun-protective behaviours and decrease ultraviolet radiation exposure, sunburn incidence and skin cancer risk can be effective. SunSmart School Accreditation Programmes (SSAP) are recommended. Prior to SSAP implementation in South Africa, we explored the feasibility of obtaining national baseline…

  3. New high (> or =6M/sub sun/) upper mass limit for planetary nebula formation, and a new high lower mass bound for carbon detonation supernova models

    International Nuclear Information System (INIS)

    Tuchman, Y.; Sack, N.; Barkat, Z.

    1978-01-01

    Envelope ejection leading to a planetary nebula has been recently shown to occur as the terminal point of the Mira stage. The ejection is due to a diverging pulsational instability, not to a dynamical one. It is found that in this case (and for Population I, mixing length=1 pressure scale height) the upper mass limit for formation of planetary nebulae is at least 6 M/sub sun/. It thus follows that the lower mass limit for realization of carbon detonation model configurations is also at last 6 M/sub sun/

  4. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  5. Reconnection on the Sun

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  6. Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation

    Science.gov (United States)

    Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo

    2018-07-01

    Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.

  7. Ineffectiveness of sun awareness posters in dermatology clinics.

    Science.gov (United States)

    Jung, G W; Senthilselvan, A; Salopek, T G

    2010-06-01

    Although sun awareness posters have been used in doctors' offices and clinics for decades to promote sun protective behaviour, there is no evidence of their usefulness. To investigate whether sun awareness posters lead to inquiry of skin cancer and sun protection measures. Patients considered at risk for skin cancer seen at a dermatology clinic were randomly asked to complete a questionnaire designed to assess the effectiveness of three different sun awareness posters placed in patient rooms. The posters were selected on the basis of their catchy slogan and eye-appealing images, and included those featuring parental interest, sex appeal and informative advice. Only half of the patients noticed the posters (50.6%). The poster with sex appeal garnered the most attention (67.8%), followed by the informative poster (49.2%) and the parental interest poster (35.8%) (P poster inquired about cutaneous cancers and sun protection practices twice as often as those who did not notice the poster, only one-tenth of such inquiries were attributed to the poster ( approximately 5% of the target population). As reported in the questionnaire, the posters themselves were less effective than the advice of physicians in influencing patient attitudes towards sun protection measures. Organizations that produce and disseminate posters should consider beyond focus groups when they design their posters and should consider field testing their products to ensure that they are reaching the targeted audience and are having the expected beneficial effect, otherwise their posters are simply decorative.

  8. Australian primary school communities' understandings of SunSmart: a qualitative study.

    Science.gov (United States)

    Winslade, Matthew; Wright, Bradley; Dudley, Dean; Cotton, Wayne; Brown, Alexandra

    2017-10-01

    Skin cancer represents a major health issue for Australia. Childhood sun exposure is an important risk factor and evidence suggests the use of sun protection measures by Australian school children could be improved. This study examines how the SunSmart Program, a school-based skin cancer prevention resource, can be supported to further increase sun protection behaviours to assist in lowering skin cancer incidence. The Health Promoting Schools (HPS) framework was adopted to select key stakeholders from a convenience sample of five school communities. Students, teaching staff and parents participated in semi-structured focus group and individual interviews. A thematic analysis was used to extract key themes from the data. Although these school communities were aware of sun protection practices and the risks associated with sun exposure, their understandings of the SunSmart Program were limited. Sun protection policy implementation was inconsistent and students were unlikely to engage in sun protection practices beyond the school setting. School communities require additional support and engagement to holistically enforce the principles of the SunSmart Program. © 2017 The Authors.

  9. Hop-by-HopWorm Propagation with Carryover Epidemic Model in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun-Won Ho

    2015-10-01

    Full Text Available In the internet, a worm is usually propagated in a random multi-hop contact manner. However, the attacker will not likely select this random multi-hop propagation approach in a mobile sensor network. This is because multi-hop worm route paths to random vulnerable targets can be often breached due to node mobility, leading to failure of fast worm spread under this strategy. Therefore, an appropriate propagation strategy is needed for mobile sensor worms. To meet this need, we discuss a hop-by-hop worm propagation model in mobile sensor networks. In a hop-by-hop worm propagation model, benign nodes are infected by worm in neighbor-to-neighbor spread manner. Since worm infection occurs in hop-by-hop contact, it is not substantially affected by a route breach incurred by node mobility. We also propose the carryover epidemic model to deal with the worm infection quota deficiency that might occur when employing an epidemic model in a mobile sensor network. We analyze worm infection capability under the carryover epidemic model. Moreover, we simulate hop-by-hop worm propagation with carryover epidemic model by using an ns-2 simulator. The simulation results demonstrate that infection quota carryovers are seldom observed where a node’s maximum speed is no less than 20 m/s.

  10. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Laura Ruotsalainen

    2018-02-01

    Full Text Available The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU, sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF, which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is

  11. Secluded Dark Matter search in the Sun with the ANTARES neutrino telescope

    CERN Multimedia

    Adrián-Martínez, S

    2014-01-01

    Models where Dark Matter (DM) is secluded from the Standard Model via a mediator have increased their presence during the last decade to explain some experimental observations. This is a special scenario where DM, which would gravitationally accumulate in sources like the Sun, the Earth or the Galactic Centre, is annihilated into a non-standard Model mediator which subsequently decays into Standard Model particles, two co-linear muons for example. As the lifetime of the mediator could be large enough, its decay may occur in the vicinity of the Earth and the resulting SM particles could be detected. In this work we will describe the analysis for secluded dark matter coming from the Sun with ANTARES in three different cases: a) detection of di-muons that result of the mediator decay, or neutrino detection from: b) mediator that decays into di-muon and, in turn, into neutrinos, and c) mediator that directly decays into neutrinos. Sensitivities and results of the analysis for each case will be presented.

  12. Sun protection policies of Australian primary schools in a region of high sun exposure.

    Science.gov (United States)

    Harrison, S L; Garzón-Chavez, D R; Nikles, C J

    2016-06-01

    Queensland, Australia has the highest rates of skin cancer globally. Predetermined criteria were used to score the comprehensiveness of sun protection policies (SPP) of primary schools across Queensland. SPP were sought for schools in 10 regions (latitude range 16.3°S-28.1°S) from 2011 to 2014. Of the 723 schools sampled, 90.9% had a written SPP available publicly. Total SPP scores were low {mean 3.6 [95% CI: 3.4-3.9]; median 2 [interquartile range (IQR) 2, 4]}, with only 3.2% of schools achieving the maximum score of 12. Median SPP scores were higher in Northern and Central Queensland [both 2 (IQR 2, 6) and (IQR 2, 5), respectively] than in Southern Queensland [2 (IQR 2, 3); P = 0.004]. Clothing and hat-wearing were addressed in most policies (96% and 89%) while few schools used their SPP to plan outdoor events (5.2%) or reschedule activities to minimize sun exposure (11.7%). The SunSmart Schools program has been operating in Queensland for 17 years, and while most primary schools now have a written SPP, most are not comprehensive. Incentive-based approaches (5-star-rating award scheme and grants) may assist in addressing this issue, to reduce sun exposure of students and teachers. These data provide a baseline from which improvements in the comprehensiveness of school SPPs can be evaluated. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. An equivalent circuit model of supercapacitors for applications in wireless sensor networks

    Science.gov (United States)

    Yang, Hengzhao; Zhang, Ying

    2011-04-01

    Energy harvesting technologies have been extensively researched to develop long-lived wireless sensor networks. To better utilize the harvested energy, various energy storage systems are proposed. A simple circuit model is developed to describe supercapacitor behavior, which uses two resistor-capacitor branches with different time constants to characterize the charging and redistribution processes, and a variable leakage resistance (VLR) to characterize the self-discharge process. The voltage and temperature dependence of the VLR values is also discussed. Results show that the VLR model is more accurate than the energy recursive equation (ERE) models for short term wireless sensor network applications.

  14. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  15. Electrostatic sensor modeling for torque measurements

    Science.gov (United States)

    Mika, Michał; Dannert, Mirjam; Mett, Felix; Weber, Harry; Mathis, Wolfgang; Nackenhorst, Udo

    2017-09-01

    Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko (1984). Thus, there have been optical and magnetical, as well as capacitive sensors introduced). This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  16. Electrostatic sensor modeling for torque measurements

    Directory of Open Access Journals (Sweden)

    M. Mika

    2017-09-01

    Full Text Available Torque load measurements play an important part in various engineering applications, as for automotive industry, in which the drive torque of a motor has to be determined. A widely used measuring method are strain gauges. A thin flexible foil, which supports a metallic pattern, is glued to the surface of the object the torque is being applied to. In case of a deformation due to the torque load, the change in the electrical resistance is measured. With the combination of constitutive equations the applied torque load is determined by the change of electrical resistance. The creep of the glue and the foil material, together with the temperature and humidity dependence, may become an obstacle for some applications Kapralov and Fesenko(1984. Thus, there have been optical and magnetical, as well as capacitive sensors introduced . This paper discusses the general idea behind an electrostatic capacitive sensor based on a simple draft of an exemplary measurement setup. For better understanding an own electrostatical, geometrical and mechanical model of this setup has been developed.

  17. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Zhang Yingjun

    2015-02-01

    Full Text Available In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  18. Avoiding domain wall problem in SU(N) grand unified theories

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Zhiyong, Z.

    1982-08-01

    We look for the possibility of embedding the discrete sub-group of U(1)-Pecci-Quinn symmetry into the continuous one to avoid the domain wall problem. We find, within some restricted context, among various SU(N) models only one-family SU(5) and SU(6). (author)

  19. Energetic neutrinos from heavy-neutralino annihilation in the Sun. Ph.D. Thesis

    Science.gov (United States)

    Kamionkowski, Marc

    1991-01-01

    Neutralinos may be captured in the sun and annihilated therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. Neutralinos that are either nearly pure Higgsino or a Higgsino/gaugino combination are generally captured in the sun by coherent scattering off nuclei via exchange of the lightest Higgs boson. If the squark mass is not much greater than the neutralino mass, then capture of neutralinos that are primarily gaugino occurs predominantly by spin-dependent scattering off hydrogen in the sun. The neutrino signal from annihilation of WIMPs with masses in the range of 80 to 1000 GeV in the sun should generally be stronger than that from weakly interacting massive particle (WIMP) annihilation in the earth, and detection rates for mixed-state neutralinos are generally higher than those for Higgsinos or gauginos.

  20. A Dynamic Programming Model for Internal Attack Detection in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiong Shi

    2017-01-01

    Full Text Available Internal attack is a crucial security problem of WSN (wireless sensor network. In this paper, we focus on the internal attack detection which is an important way to locate attacks. We propose a state transition model, based on the continuous time Markov chain (CTMC, to study the behaviors of the sensors in a WSN under internal attack. Then we conduct the internal attack detection model as the epidemiological model. In this model, we explore the detection rate as the rate of a compromised state transition to a response state. By using the Bellman equation, the utility for the state transitions of a sensor can be written in standard forms of dynamic programming. It reveals a natural way to find the optimal detection rate that is by maximizing the total utility of the compromised state of the node (the sum of current utility and future utility. In particular, we encapsulate the current state, survivability, availability, and energy consumption of the WSN into an information set. We conduct extensive experiments and the results show the effectiveness of our solutions.

  1. Predictors of sun protection behaviours and sunburn among Australian adolescents.

    Science.gov (United States)

    Pettigrew, Simone; Jongenelis, Michelle; Strickland, Mark; Minto, Carolyn; Slevin, Terry; Jalleh, Geoffrey; Lin, Chad

    2016-07-13

    Excessive sun exposure and sunburn increase individuals' risk of skin cancer. It is especially important to prevent sunburn in childhood due to the higher relative risk of skin cancer across the life span compared to risk associated with sunburn episodes experienced later in life. This study examined demographic and attitudinal factors associated with engagement in a range of sun protection behaviours (wearing a hat, wearing protective clothing, staying in the shade, and staying indoors during the middle of the day) and the frequency of sunburn among Western Australian adolescents to provide insights of relevance for future sun protection campaigns. Cross-sectional telephone surveys were conducted annually with Western Australians between 2005/06 and 2014/15. The results from 4150 adolescents aged 14-17 years were used to conduct a path analysis of factors predicting various sun protection behaviours and sunburn. Significant primary predictors of the sun protection behaviours included in the study were skin type (sun sensitivity), gender, tanning-related attitudes and behaviours, and perceived relevance of public service advertisements that advocate sun protection. Of the four sun protection behaviours investigated, staying in the shade and staying indoors during the middle of the day were associated with a lower frequency of sunburn. There is a particular need to target sun protection messages at adolescent males who are less likely to engage in the most effective sun protection behaviours and demonstrate an increased propensity to experience sunburn. The results suggest that such future sun protection messages should include a focus on the importance of staying in the shade or indoors during periods of high UV radiation to increase awareness of the efficacy of these methods of avoiding skin cancer.

  2. WAS THE SUN BORN IN A MASSIVE CLUSTER?

    International Nuclear Information System (INIS)

    Dukes, Donald; Krumholz, Mark R.

    2012-01-01

    A number of authors have argued that the Sun must have been born in a cluster of no more than several thousand stars, on the basis that, in a larger cluster, close encounters between the Sun and other stars would have truncated the outer solar system or excited the outer planets into eccentric orbits. However, this dynamical limit is in tension with meteoritic evidence that the solar system was exposed to a nearby supernova during or shortly after its formation; a several-thousand-star cluster is much too small to produce a massive star whose lifetime is short enough to have provided the enrichment. In this paper, we revisit the dynamical limit in the light of improved observations of the properties of young clusters. We use a series of scattering simulations to measure the velocity-dependent cross-section for disruption of the outer solar system by stellar encounters, and use this cross-section to compute the probability of a disruptive encounter as a function of birth cluster properties. We find that, contrary to prior work, the probability of disruption is small regardless of the cluster mass, and that it actually decreases rather than increases with cluster mass. Our results differ from prior work for three main reasons: (1) unlike in most previous work, we compute a velocity-dependent cross-section and properly integrate over the cluster mass-dependent velocity distribution of incoming stars; (2) we recognize that ∼90% of clusters have lifetimes of a few crossing times, rather than the 10-100 Myr adopted in many earlier models; and (3) following recent observations, we adopt a mass-independent surface density for embedded clusters, rather than a mass-independent radius as assumed many earlier papers. Our results remove the tension between the dynamical limit and the meteoritic evidence, and suggest that the Sun was born in a massive cluster. A corollary to this result is that close encounters in the Sun's birth cluster are highly unlikely to truncate the

  3. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  4. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2017-09-01

    Full Text Available By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  5. ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    OpenAIRE

    Zamantimande Kunene; Patricia N. Albers; Robyn M. Lucas; Cathy Banwell; Angela Mathee; Caradee Y. Wright

    2017-01-01

    Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. ...

  6. The Sun murrab Baltimaadesse ja Soome

    Index Scriptorium Estoniae

    2008-01-01

    Aprillis andis ansambel Tanel Padar & The Sun Soomes, Lätis, Leedus ja Eestis üksteist kontserti. Heliplaadi "Here Gomes The Sun" lugu "Hopelessness You" on Soome raadiote tipp 300s neljakümnendal kohal, lugu "Learn the game" on Leedu FM99 raadios 33 enim mängitava loo seas, laul "One of those days" saavutas Läti raadio SWH rokkmuusika edetabelis teise koha.

  7. Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

    Science.gov (United States)

    Reis, Louis G.

    With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to

  8. The Ringcore Fluxgate Sensor

    DEFF Research Database (Denmark)

    Brauer, Peter

    1997-01-01

    A model describing the fundamental working principle of the "ringcore fluxgate sensor" is derived. The model is solely based on geometrical and measurable magnetic properties of the sensor and from this a number of fluxgate phenomenon can be described and estimated. The sensitivity of ringcore...... fluxgate sensors is measured for a large variety of geometries and is for all measurements found to fall between two limits obtained by the fluxgate model. The model is used to explain the zero field odd harmonic output of the fluxgate sensor, called the "feedthrough". By assuming a non ideal sensor...... with spatially distributed magnetization, the model predicts feedthrough signals which exactly reflects the measured signals. The non-linearities in a feedback compensated ringcore fluxgate sensors, called the "transverse field effect", can also be explained by the model. Measurements on stress annealed...

  9. The evolution of low-mass close binary systems. IV. 0.80 M/sub sun/+0.40 M/sub sun/: Catastrophic mass loss

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1977-01-01

    The evolution of both components of a 0.80 M/sub sun/+0.40 M/sub sun/ binary with initial separation 1.60 R/sub sun/ is presented. This system reaches mass transfer during core hydrogen burning in the primary. The primary has such a deep convective envelope that mass transfer proceeds on a dynamical time scale. Mass exchange is followed through the first 6.25 x 10 -3 M/sub sun/, by which time the transfer rate has reached 8.33 x 10 -4 M/sub sun/ yr -1 .It is shown that mass transfer on a dynamical time scale leads to supercritical accretion by the secondary component, and hence is presumably accompanied by extensive mass and angular momentum losses. Stability against such rapid mass transfer may impose severe limitations on the masses and mass ratios of cataclysmic variables

  10. A modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array

    International Nuclear Information System (INIS)

    Liang, Guanhao; Wang, Yancheng; Mei, Deqing; Xi, Kailun; Chen, Zichen

    2015-01-01

    This paper presents a modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array, which utilizes solid polydimethylsiloxane (PDMS) film as the dielectric layer. To predict the deformation of the sensing unit and capacitance changes, each sensing unit is simplified into a three-layer plate structure and divided into central, edge and corner regions. The plate structure and the three regions are studied by the general and modified models, respectively. For experimental validation, the capacitive tactile sensor array with 8  ×  8 (= 64) sensing units is fabricated. Experiments are conducted by measuring the capacitance changes versus applied external forces and compared with the general and modified models’ predictions. For the developed tactile sensor array, the sensitivity predicted by the modified analytical model is 1.25%/N, only 0.8% discrepancy from the experimental measurement. Results demonstrate that the modified analytical model can accurately predict the sensing performance of the sensor array and could be utilized for model-based optimal capacitive tactile sensor array design. (paper)

  11. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  12. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    Directory of Open Access Journals (Sweden)

    Nathan J. Downs

    2017-11-01

    Full Text Available Exposure to natural sunlight, specifically solar ultraviolet (UV radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall, or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations, to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones. The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies.

  13. Generic Sensor Failure Modeling for Cooperative Systems

    Science.gov (United States)

    Jäger, Georg; Zug, Sebastian

    2018-01-01

    The advent of cooperative systems entails a dynamic composition of their components. As this contrasts current, statically composed systems, new approaches for maintaining their safety are required. In that endeavor, we propose an integration step that evaluates the failure model of shared information in relation to an application’s fault tolerance and thereby promises maintainability of such system’s safety. However, it also poses new requirements on failure models, which are not fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined generic failure model as well as a processing chain for automatically extracting such failure models from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic failure model not only fulfills the predefined requirements, but also models failure characteristics appropriately when compared to traditional techniques. PMID:29558435

  14. Development of organic membrane and biosensor. ; Artificial membrane chemical sensor on the model of olfactory cells. Seitaimaku to bio sensor no hatten. ; Kyusaibo wo model to shita jinkomaku kagaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, S; Kashiwayanagi, M; Kurihara, K [Hokkaido University, Sapporo (Japan). Faculty of Pharmaceutical Science

    1991-05-05

    The olfactory cell is the most prominent chemical sensor to detect various kinds of external chemical substances with high sensibility. Consequently, on the model of such an organic chemical sensor mechanism, an artificial membrane with functions to detect and distinguish various chemical substances has been developed. In this study, a test using a lipid bimolecular membrane was carried out. As a result, it was found that the lipid bimolecular membrane showed membrane potential changes responding to various odorants. The mambrane with proper lipid composition presented almost the same sensibility to odorants as an olfactory organ. Response characteristic against various odors changed greatly due to the lipid composition and the addition of protein. It was also found that various odors can be discriminated by analyzing response information obtained from a lot of mambranes with different compositions Such ideas can be applied to the odor discrimination of the artificial membrane sensor. 14 refs., 13 figs.

  15. To protect or not to protect: examining reasons for sun protection among young women at risk for skin cancer.

    Science.gov (United States)

    Auerbach, M V; Heckman, C J; Darlow, S

    2018-03-27

    We aimed to further the understanding of the low rates of sun protection in young women at risk for skin cancer. Six-hundred-sixty-one daily diary entries were received via text message over 14 days from 56 young women at moderate to high risk of developing skin cancer. Women reported whether or not they used sun protection and also listed what their reasons were for using protection or not using sun protection each day. Multi-level modeling was used to examine the influence of study variables when predicting daily sun protection or lack of protection. The number of days in which sun protection was reported was positively associated with "habit" and "prevention" as reasons for protection and negatively associated with "not-needed" and "unprepared" as reasons for non-protection. Self-reported sun protection increased over the 14-day study period. Results of this study suggest the potential value of interventions aimed at motives for sun-protection behaviors.

  16. Pre-main sequence sun: a dynamic approach

    International Nuclear Information System (INIS)

    Newman, M.J.; Winkler, K.H.A.

    1979-01-01

    The classical pre-main sequence evolutionary behavior found by Hayashi and his coworkers for the Sun depends crucially on the choice of initial conditions. The Hayashi picture results from beginning the calculation with an already centrally condensed, highly Jeans unstable object not terribly far removed from the stellar state initially. The present calculation follows the work of Larson in investigating the hydrodynamic collapse and self-gravitational accretion of an initially uniform, just Jeans unstable interstellar gas-dust cloud. The resulting picture for the early history of the Sun is quite different from that found by Hayashi. A rather small (R approx. = 2 R/sub sun/), low-luminosity (L greater than or equal to L/sub sun/) protostellar core develops. A fully convective stellar core, characteristic of Hayashi's work, is not found during the accretion process, and can only develop, if at all, in the subsequent pre-main sequence Kelvin-Helmholtz contraction of the core. 3 figures, 1 table

  17. Unintended Sunburn: A Potential Target for Sun Protection Messages

    Directory of Open Access Journals (Sweden)

    Geraldine F. H. McLeod

    2017-01-01

    Full Text Available New Zealand (NZ has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents’ experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents’ outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade and reducing potential barriers to sun protection.

  18. Unintended Sunburn: A Potential Target for Sun Protection Messages.

    Science.gov (United States)

    McLeod, Geraldine F H; Reeder, Anthony I; Gray, Andrew R; McGee, Rob

    2017-01-01

    New Zealand (NZ) has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR) remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents' experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents' outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade) and reducing potential barriers to sun protection.

  19. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    Science.gov (United States)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun

  20. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  1. Predictors of sun protection behaviours and sunburn among Australian adolescents

    Directory of Open Access Journals (Sweden)

    Simone Pettigrew

    2016-07-01

    Full Text Available Abstract Background Excessive sun exposure and sunburn increase individuals’ risk of skin cancer. It is especially important to prevent sunburn in childhood due to the higher relative risk of skin cancer across the life span compared to risk associated with sunburn episodes experienced later in life. This study examined demographic and attitudinal factors associated with engagement in a range of sun protection behaviours (wearing a hat, wearing protective clothing, staying in the shade, and staying indoors during the middle of the day and the frequency of sunburn among Western Australian adolescents to provide insights of relevance for future sun protection campaigns. Methods Cross-sectional telephone surveys were conducted annually with Western Australians between 2005/06 and 2014/15. The results from 4150 adolescents aged 14–17 years were used to conduct a path analysis of factors predicting various sun protection behaviours and sunburn. Results Significant primary predictors of the sun protection behaviours included in the study were skin type (sun sensitivity, gender, tanning-related attitudes and behaviours, and perceived relevance of public service advertisements that advocate sun protection. Of the four sun protection behaviours investigated, staying in the shade and staying indoors during the middle of the day were associated with a lower frequency of sunburn. Conclusion There is a particular need to target sun protection messages at adolescent males who are less likely to engage in the most effective sun protection behaviours and demonstrate an increased propensity to experience sunburn. The results suggest that such future sun protection messages should include a focus on the importance of staying in the shade or indoors during periods of high UV radiation to increase awareness of the efficacy of these methods of avoiding skin cancer.

  2. The Toboggan Sun

    NARCIS (Netherlands)

    Davidson, WPS; van der Werf, SY

    2005-01-01

    Special variants of the Novaya Zemlya effect may arise from localized temperature inversions that follow the height profile of hills or mountains. Rather than following its natural path, the rising or setting Sun may, under such circumstances, appear to slide along a distant mountain slope. We found

  3. YUAN-BO SUN

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YUAN-BO SUN. Articles written in Journal of Genetics. Volume 97 Issue 1 March 2018 pp 173-178 RESEARCH ARTICLE. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network · XIAN-DONG SONG XIAN-XU SONG GUI-BO LIU ...

  4. Multispectral simulation environment for modeling low-light-level sensor systems

    Science.gov (United States)

    Ientilucci, Emmett J.; Brown, Scott D.; Schott, John R.; Raqueno, Rolando V.

    1998-11-01

    Image intensifying cameras have been found to be extremely useful in low-light-level (LLL) scenarios including military night vision and civilian rescue operations. These sensors utilize the available visible region photons and an amplification process to produce high contrast imagery. It has been demonstrated that processing techniques can further enhance the quality of this imagery. For example, fusion with matching thermal IR imagery can improve image content when very little visible region contrast is available. To aid in the improvement of current algorithms and the development of new ones, a high fidelity simulation environment capable of producing radiometrically correct multi-band imagery for low- light-level conditions is desired. This paper describes a modeling environment attempting to meet these criteria by addressing the task as two individual components: (1) prediction of a low-light-level radiance field from an arbitrary scene, and (2) simulation of the output from a low- light-level sensor for a given radiance field. The radiance prediction engine utilized in this environment is the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model which is a first principles based multi-spectral synthetic image generation model capable of producing an arbitrary number of bands in the 0.28 to 20 micrometer region. The DIRSIG model is utilized to produce high spatial and spectral resolution radiance field images. These images are then processed by a user configurable multi-stage low-light-level sensor model that applies the appropriate noise and modulation transfer function (MTF) at each stage in the image processing chain. This includes the ability to reproduce common intensifying sensor artifacts such as saturation and 'blooming.' Additionally, co-registered imagery in other spectral bands may be simultaneously generated for testing fusion and exploitation algorithms. This paper discusses specific aspects of the DIRSIG radiance prediction for low

  5. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.

  6. The Sun A User's Manual

    CERN Document Server

    Vita-Finzi, Claudio

    2008-01-01

    The Sun is an account of the many ways in which our nearest star affects our planet, how its influence has changed over the last few centuries and millennia, and the extent to which we can predict its future impact. The Sun's rays foster the formation of Vitamin D by our bodies, but it can also promote skin cancer, cataracts, and mutations in our DNA. Besides providing the warmth and light essential to most animal and plant life, solar energy contributes substantially to global warming. Although the charged particles of the solar wind shield us from harmful cosmic rays, solar storms may damage artificial satellites and cripple communication systems and computer networks. The Sun is the ideal renewable energy source, but its exploitation is still bedevilled by the problems of storage and distribution. Our nearest star, in short, is a complex machine which needs to be treated with caution, and this book will equip every reader with the knowledge that is required to understand the benefits and dangers it can bri...

  7. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  8. Modelling the guaranteed QoS for wireless sensor networks: a network calculus approach

    Directory of Open Access Journals (Sweden)

    Yu Jianping

    2011-01-01

    Full Text Available Abstract Wireless sensor networks (WSNs became one of the high technology domains during the last 10 years. Real-time applications for them make it necessary to provide the guaranteed quality of service (QoS. The main contributions of this article are a system skeleton and a guaranteed QoS model that are suitable for the WSNs. To do it, we develop a sensor node model based on virtual buffer sharing and present a two-layer scheduling model using the network calculus. With the system skeleton, we develop a guaranteed QoS model, such as the upper bounds on buffer queue length/delay/effective bandwidth, and single-hop/multi-hops delay/jitter/effective bandwidth. Numerical results show the system skeleton and the guaranteed QoS model are scalable for different types of flows, including the self-similar traffic flows, and the parameters of flow regulators and service curves of sensor nodes affect them. Our proposal leads to buffer dimensioning, guaranteed QoS support and control in the WSNs.

  9. Parental use of sun protection for their children-does skin color matter?

    Science.gov (United States)

    Tan, Marcus G; Nag, Shudeshna; Weinstein, Miriam

    2018-03-01

    Excessive sun exposure during childhood is a risk factor for skin cancer. This study aimed to compare the frequency of ideal sun protection use between parents with lighter- and darker-skinned children and explore their attitudes and beliefs on sun safety and their choice of sun protection. Parents of children aged 6 months to 6 years completed self-administered questionnaires about sun protection practices for their children. Parents assessed their child's Fitzpatrick phototype and were divided into lighter- (Fitzpatrick phototype I-III) and darker-skinned (Fitzpatrick phototype IV-VI) groups. Sun safety guidelines from the Canadian Dermatology Association were used to qualify ideal sun protection. A total of 183 parents were included. Overall, 31 parents (17%) used ideal sun protection for their children. As their children grew older, parents were less likely to use ideal sun protection (odds ratio = 0.69, 95% confidence interval = 0.53-0.90). Parents in the lighter-skinned group were more likely to use ideal sun protection for their children (odds ratio = 7.4, 95% confidence interval = 2.7-20.1), believe that sun exposure was harmful (odds ratio = 17.2, 95% confidence interval = 4.0-74.9), and perceive value in sun protection (odds ratio = 11.4, 95% confidence interval = 3.3-39.0); the darker-skinned group believed that darker skin tones provided more sun protection (odds ratio = 12.4, 95% confidence interval = 6.1-25.4). Ideal parental sun protection efforts are overall low, particularly in parents of darker-skinned children. The identified attitudes toward and beliefs about sun safety may aid in delivery of future sun protection interventions, especially in multiracial populations. © 2018 Wiley Periodicals, Inc.

  10. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  11. Sun-Tanning Perceptions of a New Zealand Urban Population (1994–2005/6

    Directory of Open Access Journals (Sweden)

    A. I. Reeder

    2014-01-01

    Full Text Available Background. Sun-tanning perceptions are monitored to identify changes and help refine targeting of skin cancer prevention messages. Aim. To investigate associations between perceptions of sun-tanning and demographic factors among a New Zealand urban population, 1994–2006. Methods. A telephone survey series was conducted during summer in 1994, 1997, 1999/2000, 2002/2003, and 2005/2006. Demographic and personal information (sex, age group, skin sun-sensitivity, and self-defined ethnicity obtained from 6,195 respondents, 50.2% female, 15–69 years, was investigated in relation to six sun-tanning related statements. A total “positive perceptions of tanning” (ProTan score was also calculated. Regression analyses modelled each component and the ProTan score against survey year and respondent characteristics. Results. Statistically significantly higher ProTan scores were found for age group (strong reverse dose-response effect, male sex, residence (highest in Auckland, ethnicity (highest among Europeans, and sun sensitivity (an n-shaped association. There was no statistically significant change in total ProTan scores from baseline. Conclusions. The development, pretesting, and evaluation of messages for those groups most likely to endorse ProTan statements should be considered for the New Zealand skin cancer prevention program. To achieve and embed significant change, mass media campaigns may require greater intensity and reinforcement with sustained contextual support for settings-based behavioural change.

  12. A probabilistic model-based soft sensor to monitor lactic acid bacteria fermentations

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2018-01-01

    A probabilistic soft sensor based on a mechanistic model was designed to monitor S. thermophilus fermentations, and validated with experimental lab-scale data. It considered uncertainties in the initial conditions, on-line measurements, and model parameters by performing Monte Carlo simulations...... the model parameters that were then used as input to the mechanistic model. The soft sensor predicted both the current state variables, as well as the future course of the fermentation, e.g. with a relative mean error of the biomass concentration of 8 %. This successful implementation of a process...... within the monitoring system. It predicted, therefore, the probability distributions of the unmeasured states, such as biomass, lactose, and lactic acid concentrations. To this end, a mechanistic model was developed first, and a statistical parameter estimation was performed in order to assess parameter...

  13. Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study.

    Science.gov (United States)

    Hosseinyalamdary, Siavash

    2018-04-24

    Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy.

  14. An Energy Oriented Model and Simulator for Wireless Sensor etworks

    African Journals Online (AJOL)

    Nafiisah

    Wireless Sensor Network, Energy Modeling, Simulation, Energy. Efficiency ..... xMBCR: This scheme is based on the MBCR strategy, but improves the battery ... Moreover WSNs require large scale deployment (smart dusts) in remote and.

  15. Optimization of DNA Sensor Model Based Nanostructured Graphene Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.

  16. A microcantilever-based alcohol vapor sensor-application and response model

    DEFF Research Database (Denmark)

    Jensenius, Henriette; Thaysen, Jacob; Rasmussen, Anette Alsted

    2000-01-01

    A recently developed microcantilever probe with integrated piezoresistive readout has been applied as a gas sensor. Resistors, sensitive to stress changes, are integrated on the flexible cantilevers. This makes it possible to monitor the cantilever deflection electrically and with an integrated...... is a direct measure of the molecular concentration of alcohol vapor. On the basis of the model the detection limit of this cantilever-based sensor is determined to be below 10 ppm for alcohol vapor measurements. Furthermore, the time response of the cantilever can be used to distinguish between different...

  17. Open Standards for Sensor Information Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

    2009-07-01

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  18. Trajectory control sensor engineering model detailed test objective

    Science.gov (United States)

    Dekome, Kent; Barr, Joseph Martin

    1991-01-01

    The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.

  19. Numeric modeling of HfO2 neutron flux sensor parameters during sensor burnup in the RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2001-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) from the package SCALE 4.3 was used for calculations. It has been obtained that the main neutron absorber 167 Er isotope practically burns up completely at the 18 MW d/kgU burnup depth, and at that time the capture rate of thermal neutrons in erbium decreases ten-fold. The average neutron flux density was calculated 7.6*10 13 neutrons. Cm -2 S -1 in the RBMK-1500 reactor grating, when the nuclear fuel enriched with 235 U by 2.4% and with Er by 0.4% is used in a fuel assembly. When the sensor burnup reaches 28 MW d/kgU, the neutron absorption rate of 178 Hf exceeds the rate of 177 Hf. The overall neutron absorption rate in hafnium decreases 2.53 times due to the sensor burnup to 56 MW d/kgU. The corrective factors ξ d (I) at different integral flux I of the sensors were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by processing repeated calibration results of Hf sensors in RBMK-1500 reactors, as well as compared to the theoretical one currently used in the Ignalina NPP special mathematical algorithms. (author)

  20. Sun and Sjogren's Syndrome

    Science.gov (United States)

    Patient Education Sheet The Sun and Sjögren’s Syndrome The SSF thanks Mona Z. Mofid, MD, FAAD, Diplomate, American Board of Dermatology, and Medical Director, American Melanoma Foundation, San Diego, California, ...

  1. Licensing the Sun

    Science.gov (United States)

    Demski, Jennifer

    2013-01-01

    The University of San Diego (USD) and Point Loma Nazarene University (PLNU) are licensing the sun. Both California schools are generating solar power on campus without having to sink large amounts of capital into equipment and installation. By negotiating power purchasing agreements (PPAs) with Amsolar and Perpetual Energy Systems, respectively,…

  2. Multistream sensor fusion-based prognostics model for systems with single failure modes

    International Nuclear Information System (INIS)

    Fang, Xiaolei; Paynabar, Kamran; Gebraeel, Nagi

    2017-01-01

    Advances in sensor technology have facilitated the capability of monitoring the degradation of complex engineering systems through the analysis of multistream degradation signals. However, the varying levels of correlation with physical degradation process for different sensors, high-dimensionality of the degradation signals and cross-correlation among different signal streams pose significant challenges in monitoring and prognostics of such systems. To address the foregoing challenges, we develop a three-step multi-sensor prognostic methodology that utilizes multistream signals to predict residual useful lifetimes of partially degraded systems. We first identify the informative sensors via the penalized (log)-location-scale regression. Then, we fuse the degradation signals of the informative sensors using multivariate functional principal component analysis, which is capable of modeling the cross-correlation of signal streams. Finally, the third step focuses on utilizing the fused signal features for prognostics via adaptive penalized (log)-location-scale regression. We validate our multi-sensor prognostic methodology using simulation study as well as a case study of aircraft turbofan engines available from NASA repository.

  3. The Sun as a system of elementary particles

    International Nuclear Information System (INIS)

    Kleczek, J.

    1986-01-01

    The paper based on known facts of solar physics-is an attempt to interpret the Sun as a selfgravitating system of about 10/sup 57/ nucleons and electrons. These elementary particles are endowed with strong, electromagnetic, weak and gravitational interactions. Origin of the Sun, its evolution, structure and physiology are consequences of the four interactions. Each structural property, every evolutionary process, any activity phenomenon or event on the Sun can be traced backwards to the four fundamental forces of nature, viz. to interactions of elementary particles

  4. Thermal comfort in sun spaces: To what extend can energy collectors and seasonal energy storages provide thermal comfort in sun space?

    Directory of Open Access Journals (Sweden)

    Christian Wiegel

    2017-10-01

    Full Text Available Preparation for fossil fuel substitution in the building sector persists as an essential subject in architectural engineering. Since the building sector still remains as one of the three major global end energy consumer – climate change is closely related to construction and design. We have developed the archetype sun space to what it is today : a simple but effective predominant naturally ventilated sun trap and as well as living space enlargement. With the invention of industrial glass orangery’s more and more changed from frost protecting envelopes to living spaces from which we meantime expect thermal comfort in high quality. But what level of thermal comfort provide sun spaces? And to what extend may sun spaces manage autarkic operation profiting from passive solar gains and, beyond that, surplus energy generation for energy neutral conditioning of aligned spaces? We deliver detailed information for this detected gap of knowledge. We know about limited thermal comfort in sun spaces winter times. This reasons the inspection of manifold collector technologies, which enable to be embedded in facades and specifically in sun space envelopes. Nonetheless, effective façade integrated collectors are ineffective in seasons with poor irradiation. Hence, the mismatch of offer and demand we have experienced with renewable energies ignites thinking about appropriate seasonal energy storages, which enlarges the research scope of this work. This PhD thesis project investigates on both, a yearly empirical test set up analysis and a virtual simulation of different oriented and located sun spaces abroad Germany. Both empirical and theoretical evaluation result in a holistic research focusing on a preferred occupation time in terms of cumulative frequencies of operational temperature and decided local discomfort, of potential autarkic sun space operation and prospective surplus exergy for alternative heating of aligned buildings. The results are mapped

  5. Experimental checking results of mathematical modeling of the radiation environment sensor based on diamond detectors

    International Nuclear Information System (INIS)

    Gladchenkov, E V; Kolyubin, V A; Nedosekin, P G; Zaharchenko, K V; Ibragimov, R F; Kadilin, V V; Tyurin, E M

    2017-01-01

    Were conducted a series of experiments, the purpose of which had to verify the mathematical model of the radiation environment sensor. Theoretical values of the beta particles count rate from 90 Sr - 90 Y source registered by radiation environment sensor was compared with the experimental one. Theoretical (calculated) count rate of beta particles was found with using the developed mathematical model of the radiation environment sensor. Deviation of the calculated values of the beta particle count rate does not exceed 10% from the experimental. (paper)

  6. Evaluation of circuit models for an IPMC (ionic polymer-metal composite) sensor using a parameter estimate method

    International Nuclear Information System (INIS)

    Park, Kiwon; Lee, Hyungki

    2012-01-01

    The present study investigated a sensor system to effectively detect the bending angles applied on an ionic polymer metal composite sensor. Firstly, the amount of net charge produced by the motion of cations was correlated to the bending angle based on the geometric relationship between a flat and a bent IPMC, and the relationship was represented by linear and nonlinear polynomial equations. Secondly, several existing and modified R and C circuit models with a linear charge model were evaluated using the experimental data. Thirdly, the nonlinear charge model was applied to a selected circuit model, and the effectivenesses of the linear and the nonlinear charge models were compared. Finally, the sensor output signal was fed into the inverse model of the identified circuit model to reproduce the bending angles. This paper presents a simple data processing procedure using the inverse transfer function of a selected circuit model that successfully monitored various bending motions of an IPMC sensor.

  7. Fixture For Mounting A Pressure Sensor

    Science.gov (United States)

    Cagle, Christopher M.

    1995-01-01

    Fixture for mounting pressure sensor in aerodynamic model simplifies task of removal and replacement of sensor in event sensor becomes damaged. Makes it unnecessary to dismantle model. Also minimizes any change in aerodynamic characteristics of model in event of replacement. Removable pressure sensor installed in fixture in wall of model. Wires from sensor pass through channel under surface.

  8. Sun Protection is Fun! A Skin Cancer Prevention Program for Preschools.

    Science.gov (United States)

    Tripp, Mary K.; Herrmann, Nancy B.; Parcel, Guy S.; Chamberlin, Robert M.; Gritz, Ellen R.

    2000-01-01

    Describes the Sun Protection is Fun! skin cancer prevention program for preschool children that features intervention methods grounded in social cognitive theory and emphasizes symbolic modeling, vicarious learning, enactive mastery experiences, and persuasion. Program components include a curriculum and teacher's guide, videos, newsletters,…

  9. Outdoor Workers' Use of Sun Protection at Work and Leisure

    Directory of Open Access Journals (Sweden)

    Cheryl E. Peters

    2016-09-01

    Conclusion: This high-participation rate cohort helps characterize sun protection behaviors among outdoor workers. Workers practiced better sun protection at work than on weekends, suggesting that workplace policies supportive of sun protection could be useful for skin cancer prevention in the construction industry.

  10. Mathematical Model and Calibration Procedure of a PSD Sensor Used in Local Positioning Systems.

    Science.gov (United States)

    Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Domingo-Perez, Francisco; Tsirigotis, Georgios

    2016-09-15

    Here, we propose a mathematical model and a calibration procedure for a PSD (position sensitive device) sensor equipped with an optical system, to enable accurate measurement of the angle of arrival of one or more beams of light emitted by infrared (IR) transmitters located at distances of between 4 and 6 m. To achieve this objective, it was necessary to characterize the intrinsic parameters that model the system and obtain their values. This first approach was based on a pin-hole model, to which system nonlinearities were added, and this was used to model the points obtained with the nA currents provided by the PSD. In addition, we analyzed the main sources of error, including PSD sensor signal noise, gain factor imbalances and PSD sensor distortion. The results indicated that the proposed model and method provided satisfactory calibration and yielded precise parameter values, enabling accurate measurement of the angle of arrival with a low degree of error, as evidenced by the experimental results.

  11. Modeling and simulation of soft sensor design for real-time speed estimation, measurement and control of induction motor.

    Science.gov (United States)

    Etien, Erik

    2013-05-01

    This paper deals with the design of a speed soft sensor for induction motor. The sensor is based on the physical model of the motor. Because the validation step highlight the fact that the sensor cannot be validated for all the operating points, the model is modified in order to obtain a fully validated sensor in the whole speed range. An original feature of the proposed approach is that the modified model is derived from stability analysis using automatic control theory. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  13. Thermal evaluation of a sun tracking solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    El-Tous, Yousif; Al-Mofleh, Anwar [Department of Electrical Engineering, Faculty of Engineering Technology, Al-Balqa' Applied University, P.O. Box 15008, Amman (Jordan); Badran, Omar. O. [Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Appllied University, P.O. Box 15008, Amman (Jordan)

    2012-07-01

    Solar energy is one of many important types of renewable energy. Jordan is of great needs for renewable energy systems applications since it depends totally in generation of its required energy on imported oil. This study is an experimental work of tracking system developed for enhancing the solar heating using solar cooker. An electronic sun tracking device was used for rotating the solar heater with the movement of the sun. A comparison between fixed and sun tracked cooker showed that the use of sun tracking increased the heating temperature by 36% due to the increase in radiation concentration and using internal mirror reflectors. The programming method used for tracking control works efficiently in all weather conditions regardless of the presence of clouds. It can be used as backup control circuit in which relays are the essential control devices.

  14. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  15. Does physical activity increase the risk of unsafe sun exposure?

    Science.gov (United States)

    Jardine, Andrew; Bright, Margaret; Knight, Libby; Perina, Heather; Vardon, Paul; Harper, Catherine

    2012-04-01

    Recent increases in the prevalence of self-reported participation in physical activity are encouraging and beneficial for health overall. However, the implications for sun safety need to be considered, particularly in Australia, which has the highest incidence of skin cancer in the world. This study investigated the relationship between physical activity and sunburn to determine if there is a need for integration of sun safety in physical activity promotion. During the 2009/10 southern hemisphere summer, 7802 adults aged 18 to 74 years participated in a computer-assisted telephone interview survey which included a range of self-reported health measures including physical activity, sunburn, skin type, sun protection behaviour and demographic questions. Multivariate logistic regression modelling was undertaken to estimate the association between physical activity and sunburn. Those who reported doing any level of physical activity were significantly more likely to report having experienced sunburn in the past 12 months and on the last weekend, compared with those who did none, with the strongest association among those who undertook 7 hours or more. Each hour of physical activity was associated with a modest increase in the odds of experiencing sunburn in the previous 12 months (OR 1.02, 95% CI 1.010-1.037) and weekend (OR 1.04, 95% CI: 1.023-1.065), after adjusting for potential confounding variables. This study highlights the need for sun protection to be given more prominence in physical activity promotion in order to optimise health benefits without increasing the prevalence of sunburn and associated skin cancer risk.

  16. The Sun as you never saw it before

    Science.gov (United States)

    1997-02-01

    The remarkable images come from SOHO's visible-light coronagraph LASCO. It masks the intense rays from the Sun's surface in order to reveal the much fainter glow of the solar atmosphere, or corona. Operated with its widest field of view, in its C3 instrument, LASCO's unprecedented sensitivity enables it to see the thin ionized gas of the solar wind out to the edges of the picture, 22 million kilometres from the Sun's surface. Many stars are brighter than the gas, and they create the background scene. The results alter human perceptions of the Sun. Nearly 30 years ago, Apollo photographs of the Earth persuaded everyone of what until then they knew only in theory, that we live on a small planet. Similarly the new imagery shows our motion in orbit around the Sun, and depicts it as one star among - yet close enough to fill the sky emanations that engulf us. For many centuries even astrologers knew that the Sun was in Sagittarius in December and drifting towards the next zodiacal constellation, Capricornus. This was a matter of calculation only, because the Sun's own brightness prevented a direct view of the starfield. The SOHO-LASCO movie makes this elementary point of astronomy a matter of direct observation for the first time. The images are achievable only from a vantage point in space, because the blue glow of the Earth's atmosphere hides the stars during the day. A spacial allocation of observing time, and of data tranmission from the SOHO spacecraft, enabled the LASCO team to obtain large numbers of images over the period 22-28 December 1996. Since then, a sustained effort in image processing, frame by frame, has achieved a result of high technical and aesthetic quality. Only now is the leader of the LASCO team, Guenter Brueckner of the US Naval Research Laboratory, satisfied with the product and ready to authorize its release. "I spend my life examining the Sun," Brueckner says, "but this movie is a special thrill. For a moment I forget the years of effort that

  17. Prioritizing alarms from sensor-based detection models in livestock production - A review on model performance and alarm reducing methods

    DEFF Research Database (Denmark)

    Dominiak, Katarina Sylow; Kristensen, Anders Ringgaard

    2017-01-01

    The objective of this review is to present, evaluate and discuss methods for reducing false alarms in sensor-based detection models developed for livestock production as described in the scientific literature. Papers included in this review are all peer-reviewed and present sensor-based detection...

  18. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    Science.gov (United States)

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  19. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol and 10 mW transmission power). The designed sensor housings were capable......Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor; and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  20. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol, and 10 mW transmission power). The designed sensor housings were capable......By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor: and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...