WorldWideScience

Sample records for sun earth solar

  1. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  2. Sunwatchers Across Time: Sun-Earth Day from Ancient and Modern Solar Observatories

    Science.gov (United States)

    Hawkins, I.; Vondrak, R.

    Humans across all cultures have venerated, observed, and studied the Sun for thousands of years. The Sun, our nearest star, provides heat and energy, is the cause of the seasons, and causes space weather effects that influence our technology-dependent society. The Sun is also part of indigenous tradition and culture. The Inca believed that the Sun had the power to make things grow, and it does, providing us with the heat and energy that are essential to our survival. From a NASA perspective, Sun-Earth Connection research investigates the effects of our active Sun on the Earth and other planets, namely, the interaction of the solar wind and other dynamic space weather phenomena with the solar system. We present plans for Sun-Earth Day 2005, a yearly celebration of the Sun-Earth Connection sponsored by the NASA Sun-Earth Connection Education Forum (SECEF). SECEF is one of four national centers of space science education and public outreach funded by NASA Office of Space Science. Sun-Earth Day involves an international audience of schools, science museums, and the general public in activities and events related to learning about the Sun-Earth Connection. During the year 2005, the program will highlight cultural and historical perspectives, as well as NASA science, through educational and public outreach events intended to involve diverse communities. Sun-Earth Day 2005 will include a series of webcasts from solar observatories produced by SECEF in partnership with the San Francisco Exploratorium. Webcasts from Chaco Culture National Historical Park in New Mexico, USA, and from Chichen Itza, Mexico, will be accessed by schools and the public. Sun-Earth Day will also feature NASA Sun-Earth Connection research, missions, and the people who make it possible. One of the goals of this talk is to inform and engage COSPAR participants in these upcoming public events sponsored by NASA. Another goal is to share best practices in public event programming, and present impact

  3. Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5

    DEFF Research Database (Denmark)

    Gopalswamy, Nat; Davila, Joseph M.; Auchère, Frédéric

    2011-01-01

    Observatory (STEREO) missions, but these missions lacked some key measurements: STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer. SOHO and other imagers such as the Solar Mass Ejection Imager (SMEI) located on the Sun-Earth line are also not well-suited to measure Earth-directed CMEs....... The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented....... The study found that the scientific payload (seven remote-sensing and three in-situ instruments) can be readily accommodated and can be launched using an intermediate size vehicle; a hybrid propulsion system consisting of a Xenon ion thruster and hydrazine has been found to be adequate to place the payload...

  4. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  5. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  6. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  7. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  8. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    Science.gov (United States)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun-Earth

  9. THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Patsourakos, S.; Nindos, A.; Kouloumvakos, A. [University of Ioannina, Department of Physics, Section of Astrogeophysics, Ioannina (Greece); Georgoulis, M. K.; Gontikakis, C.; Moraitis, K.; Syntelis, P. [Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens (Greece); Vourlidas, A. [Space Physics Division, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Sarris, T.; Anagnostopoulos, G.; Iliopoulos, A. C.; Pavlos, G.; Sarafopoulos, D. [Democritus University of Thrace, Department of Electrical and Computer Engineering, Xanthi (Greece); Anastasiadis, A.; Tsironis, C. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Chintzoglou, G. [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Daglis, I. A.; Katsavrias, C. [Department of Physics, University of Athens (Greece); Hatzigeorgiu, N. [University of California, Berkeley, Space Sciences Laboratory, Berkeley, CA 94720-7450 (United States); Nieves-Chinchilla, T. [IACS/CUA at NASA Goddard Space Flight Center Heliospheric Physics Lab, Greenbelt, MD 20771 (United States); and others

    2016-01-20

    During the interval 2012 March 7–11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 km s{sup −1}) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13 R{sub ⊙} to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.

  10. Solar Flare Aimed at Earth

    Science.gov (United States)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  11. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  12. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    Science.gov (United States)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  13. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  14. A Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Science

    Science.gov (United States)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; hide

    2016-01-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  15. Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24

    Science.gov (United States)

    Carranza-fulmer, T. L.; Moldwin, M.

    2014-12-01

    The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience

  16. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  17. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Liu, Ying D.; Luhmann, Janet G.; Möstl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noé; Davies, Jackie A.

    2013-01-01

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtained concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the

  18. Solar flare leaves sun quaking

    Science.gov (United States)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  19. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    Science.gov (United States)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  20. New insight into Earth's weather through studies of Sun's magnetic fields

    Science.gov (United States)

    1990-01-01

    Solar Vector Magnetograph is used to predict solar flares, and other activities associated with sun spots. This research provides new understanding about weather on the Earth, and solar-related conditions in orbit.

  1. Sun-Earth Day: Growth and Impact of NASA E/PO Program

    Science.gov (United States)

    Hawkins, I.; Thieman, J.

    2004-12-01

    Over the past six years, the NASA Sun-Earth Connection Education Forum has sponsored and coordinated education public outreach events to highlight NASA Sun-Earth Connection research and discoveries. Our strategy involves using celestial phenomena, such as total solar eclipses and the Transit of Venus to celebrate Sun-Earth Day, a popular Education and Public Outreach international program. Sun-Earth Day also focuses attention on Equinoxes and Solstices to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium, Maryland Science Center, NASA Connect, Sun-Earth Connection missions, Ideum, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. We will report lessons learned from several years of experience, and strategies for growth and sustainability. We will also share our plans for "Ancient Observatories - Timeless Knowledge" our theme for Sun-Earth Day 2005, which will feature solar alignments at ancient sites that mark the equinoxes and/or solstices. The video and webcast programming will feature several sites including: Chaco Canyon (New Mexico), Hovenweep (Utah), and Chichen Itza (Mexico). Many of these sites present unique opportunities to develop authentic cultural connections to Native Americans, highlighting the importance of the Sun across the ages.

  2. Challenges to modeling the Sun-Earth System: A Workshop Summary

    Science.gov (United States)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  3. The Sun: the Earth light source

    Science.gov (United States)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of

  4. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  5. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... an Earth albedo model, based on reflectivity data from NASA's Total Ozone Mapping Spectrometer project, has been published. In this paper the proposed model is presented, and the model is sought validated by comparing simulated data with telemetry from the Danish Ørsted satellite. A novel method...... for modeling Sun sensor output by incorporating the Earth albedo model is presented. This model utilizes the directional information of in the Earth albedo model, which is achieved by Earth surface partitioning. This allows accurate simulation of the Sun sensor output and the results are consistent with Ørsted...

  6. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  7. Solar radiation pressure application for orbital motion stabilization near the Sun-Earth collinear libration point

    Science.gov (United States)

    Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily

    2018-05-01

    Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.

  8. Behaviour of Earths Magnetic Field During Solar Eclipse ( 29 May 2006)

    International Nuclear Information System (INIS)

    Ozcep, F.; Alp, H.

    2007-01-01

    Interaction and relation between geophysical properties (gravity, geomagnetic field, etc.) of the Earth and Sun has been a fascinating topic ever since humanity habilitated the Earth. For example, the role of solar energy in sustaining agricultural activities was noted long ago and human beings are ever grateful to the Sun for his bounty. Since prehistoric times, many cultures have regarded the Sun as a deity. However, until recent decades, the contribution of Sun was assumed to be only in heat and light, which everybody could feel easily. Our aim is to study the behaviour of earths magnetic field during solar e clips ( 29 may 2006). Fort this aim, from 27 may 2006 hour 18.00 to 29 may 2006 hour 18.00, it was observed the earths magnetic field before, during and after solar eclipse. During this period, every 5 minute , magnetic field were measured by two proton magnetometer

  9. Transient shock waves in heliosphere and Sun-Earth relations

    International Nuclear Information System (INIS)

    Voeroes, Z.

    1990-01-01

    The problem of shock waves, caused by solar activity in the Earth's magnetosphere and its magnetic field, is discussed. All types of shock waves have their origin either in solar corona effects or in solar eruptions. Ionospheric and magnetospheric effects, such as X and gamma radiation, particle production, geomagnetic storms and shock waves, caused by solar activity, are dealt with and attempts are made to explain their interdependence. The origin and propagation of coronal shock waves, interplanetary shock waves and geomagnetic field disorders are described and their relations discussed. The understanding of the solar corona and wind phenomena seems to allow prediction of geomagnetic storms. The measurement and analysis of solar activity and its effects could yield useful information about shock waves physics, geomagnetosphere structure and relations between the Earth and the Sun. (J.J.). 7 figs., 1 tab., 37 refs

  10. The solar wind and the earth

    International Nuclear Information System (INIS)

    Akasofu, I.; Kamide, Y.

    1987-01-01

    The sun constantly emits an enormous amount of radiation into space. This energy emission consists of three modes. Almost all the energy is emitted in the form of familiar sunlight but sun also emits X-rays, extreme ultraviolet (EUV), and UV radiation, which is absorbed above the earth's stratosphere, as a second mode of solar energy. The sun has made another important mode of energy emission in which the energy is carried out by charged particles. These particles have a bery wide range of energies, from less than 1 keV to more than 1 GeV. Because of this wide range, it is convenient to group them into two components: particles, with energies greater than 10 keV and the lower-energy particles. The former are generally referred to as solar portions or solar cosmic rays; their emission is associated with active features on the sun. Low-energy particles constitute plasma which is called the solar wind

  11. Drift-free solar sail formations in elliptical Sun-synchronous orbits

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter

    2017-10-01

    To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.

  12. Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements

    Science.gov (United States)

    Appel, Pontus

    2005-01-01

    For full 3-axes attitude determination the magnetic field vector and the Sun vector can be used. A Coarse Sun Sensor consisting of six solar cells placed on each of the six outer surfaces of the satellite is used for Sun vector determination. This robust and low cost setup is sensitive to surrounding light sources as it sees the whole sky. To compensate for the largest error source, the Earth, an albedo model is developed. The total albedo light vector has contributions from the Earth surface which is illuminated by the Sun and visible from the satellite. Depending on the reflectivity of the Earth surface, the satellite's position and the Sun's position the albedo light changes. This cannot be calculated analytically and hence a numerical model is developed. For on-board computer use the Earth albedo model consisting of data tables is transferred into polynomial functions in order to save memory space. For an absolute worst case the attitude determination error can be held below 2∘. In a nominal case it is better than 1∘.

  13. The Sun-earth Imbalance radiometer for a direct measurement of the net heating of the earth

    Science.gov (United States)

    Dewitte, Steven; Karatekin, Özgür; Chevalier, Andre; Clerbaux, Nicolas; Meftah, Mustapha; Irbah, Abdanour; Delabie, Tjorven

    2015-04-01

    It is accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly. The measurement is challenging both in terms of space-time sampling of the radiative energy that is leaving the earth and in terms of accuracy. The incoming solar radiation and the outgoing terrestrial radiation are of nearly equal magnitude - of the order of 340 W/m² - resulting in a much smaller difference or imbalance of the order of 1 W/m². The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar and the outgoing terrestrial radiation with the same instrument. Based on our 30 year experience of measuring the Total Solar Irradiance with the Differential Absolute RADiometer (DIARAD) type of instrument and on our 10 year experience of measuring the Earth Radiation Budget with the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat Second Generation, we propose an innovative constellation of Sun-earth IMBAlance (SIMBA) radiometer cubesats with the ultimate goal to measure the Sun-earth radiation imbalance. A first Simba In Orbit Demonstration satellite is scheduled for flight with QB50 in 2015. It is currently being developed as ESA's first cubesat through an ESA GSTP project. In this paper we will give an overview of the Simba science objectives and of the current satellite and payload development status.

  14. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  15. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  16. Sun-earth connection education through modern views of ancient

    Science.gov (United States)

    Thieman, J. R.

    The NASA Sun-Earth Connection Education Forum (SECEF) has the responsibility of using the latest science results from the study of solar physics, space physics, and aeronomy to inspire students in the classroom and to inform the public in general. SECEF works with NASA's Sun-Earth Connection spaceflight missions to accomplish this goal. Each year the missions and SECEF combine to promote their science through a major event designed to attract the attention of all. In late 2004 and 2005 the event will be the study of solar observatories created by ancient peoples and a comparison of their knowledge and culture to present understanding. Two solar observatory sites will be featured, Chaco Canyon in the U.S. and Chichen Itza in Mexico. There are many other places throughout the world that could also be featured as solar observatories and some of these may be described on the SECEF web site or used in future occurrences. Special emphasis is placed on events associated with the solstice and equinox dates. It is hoped that there will be happenings around the world on these days and SECEF will work with many museums, science centers, and other groups to help make this happen. Plans for the 2005 Ancient Observatories event and possible future events on the same subject will be described.

  17. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    Science.gov (United States)

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  18. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    Science.gov (United States)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  19. Sun-Earth National Program. 2006-2009 results and prospects

    International Nuclear Information System (INIS)

    Fontaine, Dominique; Vilmer, Nicole

    2010-01-01

    PNST (Programme National Soleil-Terre/Sun-Earth National Program) is dedicated to analysis of the Sun-Earth system, from generation of the solar magnetic field, flares and coronal mass ejections, until impact on the terrestrial magnetosphere, ionosphere and thermosphere. Research activities carried out in the frame of Programme National Soleil-Terre (PNST) rely on both ground-based and space-borne instruments. One of the main objectives of PNST is to stimulate coordinated studies and to optimize scientific return of these instruments. This document is the 2006-2009 scientific report of the program. It presents in the introduction some highlights, the main questions, the thematic reviews and the forces and weaknesses of the program. Then, part 2 is a review of the main scientific questions: mechanisms at the origin of the eruptive activity in plasmas; mechanisms involved in particles heating and acceleration; energy transfers at different scales in the plasma and dynamics of turbulence in this anisotropic medium; coupling mechanisms between the different plasma envelopes; Sun-Earth relations and space meteorology; interfaces with other programs (planetary plasmas, magnetism and sun-type stars activity). Part 3 presents the results and prospects of the ground and space instrumentation, of databases and numerical tools. Finally, the administrative and financial status of the program is summarized (Program structure and operation, budget, manpower, publications)

  20. SunPy—Python for solar physics

    International Nuclear Information System (INIS)

    Community, The SunPy; Mumford, Stuart J; Freij, Nabil; Bennett, Samuel M; Christe, Steven; Ireland, Jack; Shih, Albert Y; Inglis, Andrew R; Pérez-Suárez, David; Liedtke, Simon; Hewett, Russell J; Mayer, Florian; Hughitt, Keith; Meszaros, Tomas; Malocha, Michael; Evans, John; Agrawal, Ankit; Leonard, Andrew J; Robitaille, Thomas P; Mampaey, Benjamin

    2015-01-01

    This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPy's functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy. (paper)

  1. SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2011-01-01

    The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  2. Studies of Earth Space Environment and Sudden Disappearances of Solar Prominences

    National Research Council Canada - National Science Library

    Huang, Tian-Sen

    2005-01-01

    With the support from AFOSR's Minority University Program, we worked on research of Sun-Earth space environment, conducted daily solar observation programs, improved solar instruments, and established...

  3. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    Science.gov (United States)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the

  4. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  5. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  6. The effects of solar Reimers η on the final destinies of Venus, the Earth, and Mars

    Science.gov (United States)

    Guo, Jianpo; Lin, Ling; Bai, Chunyan; Liu, Jinzhong

    2016-04-01

    Our Sun will lose sizable mass and expand enormously when it evolves to the red giant branch phase and the asymptotic giant branch phase. The loss of solar mass will push a planet outward. On the contrary, solar expansion will enhance tidal effects, and tidal force will drive a planet inward. Will our Sun finally engulf Venus, the Earth, and Mars? In the literature, one can find a large number of studies with different points of view. A key factor is that we do not know how much mass the Sun will lose at the late stages. The Reimers η can describe the efficiency of stellar mass-loss and greatly affect solar mass and solar radius at the late stages. In this work, we study how the final destinies of Venus, the Earth, and Mars can be depending on Reimers η chosen. In our calculation, the Reimers η varies from 0.00 to 0.75, with the minimum interval 0.0025. Our results show that Venus will be engulfed by the Sun and Mars will most probably survive finally. The fate of the Earth is uncertain. The Earth will finally be engulfed by the Sun while η <0.4600, and it will finally survive while η ≥ 0.4600. New observations indicate that the average Reimers η for solar-like stars is 0.477. This implies that Earth may survive finally.

  7. Statistical analysis of solar events associated with SSC over one year of solar maximum during cycle 23: propagation and effects from the Sun to the Earth

    Science.gov (United States)

    Cornilleau-Wehrlin, Nicole; Bocchialini, Karine; Menvielle, Michel; Chambodut, Aude; Fontaine, Dominique; Grison, Benjamin; Marchaudon, Aurélie; Pick, Monique; Pitout, Frédéric; Schmieder, Brigitte; Régnier, Stéphane; Zouganelis, Yannis

    2017-04-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, helicity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The observed Sun-to-Earth travel times are compared to those estimated using existing simple models of propagation in the interplanetary medium. This comparison is used to statistically assess performances of various models. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach (for instance the all 12 well identified Magnetic Clouds of 2002 give rise to SSCs).

  8. Correlations and linkages between the sun and the earth's atmosphere: Needed measurements and observations

    Science.gov (United States)

    Kellogg, W. W.

    1975-01-01

    A study was conducted to identify the sequence of processes that lead from some change in solar input to the earth to a change in tropospheric circulation and weather. Topics discussed include: inputs from the sun, the solar wind, and the magnetosphere; bremsstrahlung, ionizing radiation, cirrus clouds, thunderstorms, wave propagation, and gravity waves.

  9. Prediction of CMEs and Type II Bursts from Sun to Earth

    Science.gov (United States)

    Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.

    2017-12-01

    Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.

  10. A Closer Earth and the Faint Young Sun Paradox: Modification of the Laws of Gravitation or Sun/Earth Mass Losses?

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2013-10-01

    Full Text Available Given a solar luminosity LAr = 0.75L0 at the beginning of the Archean 3.8 Ga ago, where L0 is the present-day one, if the heliocentric distance, r, of the Earth was rAr = 0.956r0, the solar irradiance would have been as large as IAr = 0.82I0. It would have allowed for a liquid ocean on the terrestrial surface, which, otherwise, would have been frozen, contrary to the empirical evidence. By further assuming that some physical mechanism subsequently displaced the Earth towards its current distance in such a way that the irradiance stayed substantially constant over the entire Archean from 3.8 to 2.5 Ga ago, a relative recession per year as large as r˙/r ≈3.4 × 10−11 a−1 would have been required. Although such a figure is roughly of the same order of magnitude of the value of the Hubble parameter 3.8 Ga ago HAr = 1.192H0 = 8.2 × 10−11 a−1, standard general relativity rules out cosmological explanations for the hypothesized Earth’s recession rate. Instead, a class of modified theories of gravitation with nonminimal coupling between the matter and the metric naturally predicts a secular variation of the relative distance of a localized two-body system, thus yielding a potentially viable candidate to explain the putative recession of the Earth’s orbit. Another competing mechanism of classical origin that could, in principle, allow for the desired effect is the mass loss, which either the Sun or the Earth itself may have experienced during the Archean. On the one hand, this implies that our planet should have lost 2% of its present mass in the form of eroded/evaporated hydrosphere. On the other hand, it is widely believed that the Sun could have lost mass at an enhanced rate, due to a stronger solar wind in the past for not more than ≈ 0.2–0.3 Ga.

  11. How did the Sun affect the climate when life evolved on the Earth?

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Svensmark, Henrik

    2010-01-01

    day Sun. The reduction in the galactic cosmic ray influx caused by the young Sun's enhanced shielding capability has been suggested as a solution to what is known as the faint young Sun paradox, i.e. the fact that the luminosity of the young Sun was only around 75% of its present value when life...... started to evolve on our planet around four billion years ago. This suggestion relies on the hypothesis that the changing solar activity results in a changing influx of galactic cosmic rays to the Earth, which results in a changing low-altitude cloud coverage and thus a changing climate. Here we show how...

  12. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme

    Science.gov (United States)

    Riley, Pete

    2017-01-01

    Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982

  13. Our turbulent sun

    International Nuclear Information System (INIS)

    Frazier, K.

    1982-01-01

    The quest for a new understanding of the sun and its surprising irregularities, variations, and effects is described. Attention is given to the sun's impact on life on earth, the weather and geomagnetic storms, sunspots, solar oscillations, the missing neutrinos in the sun, the 'shrinking sun', the 'dance' of the orbits, and the search for the 'climate connection'. It is noted that the 1980s promise to be the decade of the sun: not only because solar power may be a crucial ingredient in efforts to solve the energy crisis, but also because there will be brilliant auroras over North America, because sunspot activity will be the second highest since the 17th century, and because an unmanned spacecraft (i.e., the solar polar mission) will leave the plane of the solar system and observe the sun from above and below

  14. Sun-Earth National Program (PNST). 2010-2013 results and prospects

    International Nuclear Information System (INIS)

    2014-01-01

    PNST (Programme National Soleil-Terre/Sun-Earth National Program) is dedicated to analysis of the Sun-Earth system, from generation of the solar magnetic field, flares and coronal mass ejections, until impact on the terrestrial magnetosphere, ionosphere and thermosphere. Research activities carried out in the frame of Programme National Soleil-Terre (PNST) rely on both ground-based and space-borne instruments. One of the main objectives of PNST is to stimulate coordinated studies and to optimize scientific return of these instruments. This document is the 2010-2013 scientific report of the program. It presents in the introduction the main questions and the 2010-2013 highlights. The 2010-2013 results and prospects are detailed in part 2: coupling mechanisms between the different plasma envelopes; multi-scale energy transport and turbulence; plasma acceleration and heating mechanisms; eruptive or impulsive activity in plasmas; space meteorology; perspectives. Part 3 deals with the interfaces with other programs (planetary plasmas, magnetism and sun-type stars activity). Part 4 presents the means, services and tools (ground and space instrumentation, databases and numerical tools). Finally, the administrative and financial status of the program is summarized (Program structure and operation, budget, manpower, publications)

  15. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  16. Sun-Earth Connections: How the Sun Knocks Out My Cell Phone from 150 Million Kilometers Away

    Science.gov (United States)

    Ladbury, Raymond L.

    2014-01-01

    Large solar particle events (SPE) threaten many elements of critical infrastructure. A 2013 study by Lloyds of London and Atmospheric and Environmental Research recently found that if a worst-case solar event like the 1859 Carrington Event struck our planet now, it could result on $0.6-$2.36 trillion in damages to the economy. In March 2014, researchers Y. D. Liu et al. revealed that just such an event had narrowly missed Earth in July 2012. The event was observed by the STEREO A spacecraft. In this presentation, we examine how the sun can pack such a punch from 150 million km away, the threats such solar particle events pose, their mechanisms and the efforts NASA and other space agencies are carrying out to understand and mitigate such risks.

  17. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    Science.gov (United States)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  18. SunPy: Python for Solar Physics

    Science.gov (United States)

    Bobra, M.; Inglis, A. R.; Mumford, S.; Christe, S.; Freij, N.; Hewett, R.; Ireland, J.; Martinez Oliveros, J. C.; Reardon, K.; Savage, S. L.; Shih, A. Y.; Pérez-Suárez, D.

    2017-12-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community. SunPy aims to provide the software for obtaining and analyzing solar and heliospheric data. This poster introduces a new major release, SunPy version 0.8. The first major new feature introduced is Fido, the new primary interface to download data. It provides a consistent and powerful search interface to all major data providers including the VSO and the JSOC, as well as individual data sources such as GOES XRS time series. It is also easy to add new data sources as they become available, i.e. DKIST. The second major new feature is the SunPy coordinate framework. This provides a powerful way of representing coordinates, allowing simple and intuitive conversion between coordinate systems and viewpoints of different instruments (i.e., Solar Orbiter and the Parker Solar Probe), including transformation to astrophysical frames like ICRS. Other new features including new timeseries capabilities with better support for concatenation and metadata, updated documentation and example gallery. SunPy is distributed through pip and conda and all of its code is publicly available (sunpy.org).

  19. Sun-Earth Day: Reaching the Education Audience by Informal Means

    Science.gov (United States)

    Thieman, J.; Lewis, E.; Cline, T.

    2010-01-01

    For ten years the Sun-Earth Day program has promoted Heliophysics education to ever larger audiences through events centered on attractive annual themes. What originally started out as a one day event quickly evolved into a series of programs and events that occur throughout the year culminating with a celebration on or near the Spring Equinox. The events are often formal broadcasts or webcasts seeking to convey the science behind the latest solar-terrestrial mission discoveries. This has been quite successful, but it is clear that the younger generation increasingly depends on social networking approaches and informal news transmission for learning what is happening in the world around them. For 2010, the Sun-Earth Day team put emphasis on using informal approaches to bring the theme to the audience. The main event, a webcast from the NASA booth at the National Science Teachers Association (NSTA) annual meeting by the NASA EDGE group, took a lighthearted and offbeat approach to interviewing scientists and educators about Heliophysics news. NASA EDGE programs are unscripted and unpredictable, and that represents a different approach to getting the message across. The webcast was supplemented by a number of social networking avenues. The Sun-Earth Day program explored a wide range of social media applications including Facebook, Twitter, NING, podcasting, iPhone apps, etc. Each of these offers unique and effective methods to promote Heliophysics content and mission related highlights. The facebook site was quite popular and message posting there told the Sun-Earth Day story piece by piece. The same could be said of twittering and the tweetup held at the NSTA site. Has all of this been effective? Results are still being gathered, but anecdotal responses from the world seem very positive. What other methods might be used in the future to bring the science to a personal hands-on, interactive experience? Outcomes: Participants will: (1) Be introduced to the Sun-Earth

  20. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  1. Tidal effects on Earth, Planets, Sun by far visiting moons

    Science.gov (United States)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  2. The Sun and the Earth's Climate

    Directory of Open Access Journals (Sweden)

    Haigh Joanna D.

    2007-10-01

    Full Text Available Variations in solar activity, at least as observed in numbers of sunspots, have been apparent since ancient times but to what extent solar variability may affect global climate has been far more controversial. The subject had been in and out of fashion for at least two centuries but the current need to distinguish between natural and anthropogenic causes of climate change has brought it again to the forefront of meteorological research. The absolute radiometers carried by satellites since the late 1970s have produced indisputable evidence that total solar irradiance varies systematically over the 11-year sunspot cycle, relegating to history the term “solar constant”, but it is difficult to explain how the apparent response to the Sun, seen in many climate records, can be brought about by these rather small changes in radiation. This article reviews some of the evidence for a solar influence on the lower atmosphere and discusses some of the mechanisms whereby the Sun may produce more significant impacts than might be surmised from a consideration only of variations in total solar irradiance.

  3. Statistical analysis of solar events associated with SSC over year of solar maximum during cycle 23: 2. Characterisation on the Sun-Earth path - Geoeffectiveness

    Science.gov (United States)

    Cornilleau-Wehrlin, N.; Bocchialini, K.; Menvielle, M.; Fontaine, D.; Grison, B.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.; Chambodut, A.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, magnetic field polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach ; for instance all the 12 well identified Magnetic Clouds of 2002 give rise to SSCs.

  4. Magnetic fields in the atmospheres of the sun and of the earth

    International Nuclear Information System (INIS)

    Berton, R.

    1991-01-01

    Transient phenomena in the atmospheres of the Sun (flares) and of the Earth (magnetic storms, polar auroras) have a strong impact on space-related techniques involving the conducting layers (ionosphere) of the terrestrial atmosphere (propagation of radio waves, spacecraft). This influence is indirect in the case of the Sun, and operates via radiation (X rays) and particle fluxes (protons, etc.). In the case of the Earth, disturbances occur in situ, but they can be induced by the solar activity. In both situations, the output energy is taken from the magnetic field pervading these celestial bodies, and whose detailed topology is as yet imperfectly known. In this way, the present study of the electrodynamic conditions in these two environments shows how physicists of both specialities can benefit reciprocally from their respective know-how acquired in the determination of magnetic fields from surface measured values. 42 refs [fr

  5. Thermal evaluation of a sun tracking solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    El-Tous, Yousif; Al-Mofleh, Anwar [Department of Electrical Engineering, Faculty of Engineering Technology, Al-Balqa' Applied University, P.O. Box 15008, Amman (Jordan); Badran, Omar. O. [Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Appllied University, P.O. Box 15008, Amman (Jordan)

    2012-07-01

    Solar energy is one of many important types of renewable energy. Jordan is of great needs for renewable energy systems applications since it depends totally in generation of its required energy on imported oil. This study is an experimental work of tracking system developed for enhancing the solar heating using solar cooker. An electronic sun tracking device was used for rotating the solar heater with the movement of the sun. A comparison between fixed and sun tracked cooker showed that the use of sun tracking increased the heating temperature by 36% due to the increase in radiation concentration and using internal mirror reflectors. The programming method used for tracking control works efficiently in all weather conditions regardless of the presence of clouds. It can be used as backup control circuit in which relays are the essential control devices.

  6. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    Science.gov (United States)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; hide

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  7. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  8. Climate and weather of the Sun-Earth system (CAWSES) highlights from a priority program

    CERN Document Server

    Lübken, Franz-Josef

    2012-01-01

    CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some impor

  9. Preferred solar wind emitting longitudes on the sun

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1977-01-01

    During the 11 1/2-year period from July 1964 through December 1975, high- and low-speed solar wind flows originated from preferred solar longitudes. The preferred longitude effect was most pronounced from 1970 onward but was also evident in the years preceding 1970. The most pronounced modulation in average solar wind speed with longitude (approximately 20%) was obtained when it was assumed that the synodic rotation period of the sun is 27.025 days. Some deep internal structure in the sun must ultmately be responsible for these long-lived longitudinal effects, which appear to rotate rigidly with the sun

  10. The sun as a star: Solar phenomena and stellar applications

    International Nuclear Information System (INIS)

    Noyes, R.W.

    1981-01-01

    Our Sun is a run-of-the-mill star, having no obvious extremes of stellar properties. For this reason it is perhaps more, rather than less, interesting as an astrophysical object, for its sameness to other stars suggests that in studying the Sun, we are studying at close hand common, rather than unusual stellar phenomena. Conversely, comparative study of the Sun and other solar-type stars is an invaluable tool for solar physics, for two reasons: First, it allows us to explore how solar properties and phenomena depend on parameters we cannot vary on the Sun - most fundamentally, rotation rate and mass. Second, study of solar-like stars of different ages allows us to see how stellar and solar phenomena depend on age; study of other stars may be one of the best ways to infer the earlier history of the Sun, as well as its future history. In this review we shall concentrate on phenomena common to the Sun and solar-type (main sequence) stars with different fundamental properties such as mass, age, and rotation. (orig.)

  11. Sun, Solar Analogs and the Climate Saas-Fee Advanced Course 34 2004 Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Haigh, Joanna Dorothy; Güdel, Lockwood Michael Manuel; Schmutz, Giampapa Mark; Werner, S

    2005-01-01

    This book presents the lectures notes of the 34th Saas-Fee Advanced Course "The Sun, Solar Analogs and the Climate" given by leading scientists in the field. Emphasis is on the observed variability of the Sun and the present understanding of the variability’s origin as well as its impact on the Earth's climate. The solar variability is then studied in the broader context of solar-type stars, allowing for better understanding of the solar-activity cycle and the magnetic activity in general. This book provides an accessible and up-to-date introduction to the field for graduate students and serves as modern source of reference for active researchers in this field.

  12. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    Science.gov (United States)

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  13. CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps

    Science.gov (United States)

    Pallamraju, D.; Kozyra, J.; Basu, S.

    Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future

  14. Occurrence and core-envelope structure of 1-4x Earth-size planets around Sun-like stars

    OpenAIRE

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R_e planets with orbital periods under 100 days, and 11% have 1-2...

  15. The Maunder minimum and the variable sun-earth connection

    CERN Document Server

    Wei Hock Soon, Willie

    2003-01-01

    This book takes an excursion through solar science, science history, and geoclimate with a husband and wife team who revealed some of our sun's most stubborn secrets. E Walter and Annie S D Maunder's work helped in understanding our sun's chemical, electromagnetic and plasma properties. They knew the sun's sunspot migration patterns and its variable, climate-affecting, inactive and active states in short and long time frames. An inactive solar period starting in the mid-seventeenth century lasted approximately seventy years, one that E Walter Maunder worked hard to make us understand: the Maun

  16. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  17. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  18. Solar Irradiance Variability and Its Impacts on the Earth Climate System

    Science.gov (United States)

    Harder, J. W.; Woods, T. N.

    The Sun plays a vital role in the evolution of the climates of terrestrial planets. Observations of the solar spectrum are now routinely made that span the wavelength range from the X-ray portion of the spectrum (5 nm) into the infrared to about 2400 nm. Over this very broad wavelength range, accounting for about 97% of the total solar irradiance, the intensity varies by more than 6 orders of magnitude, requiring a suite of very different and innovative instruments to determine both the spectral irradiance and its variability. The origins of solar variability are strongly linked to surface magnetic field changes, and analysis of solar images and magnetograms show that the intensity of emitted radiation from solar surface features in active regions has a very strong wavelength and magnetic field strength dependence. These magnetic fields produce observable solar surface features such as sunspots, faculae, and network structures that contribute in different ways to the radiated output. Semi-empirical models of solar spectral irradiance are able to capture much of the Sun's output, but this topic remains an active area of research. Studies of solar structures in both high spectral and spatial resolution are refining this understanding. Advances in Earth observation systems and high-quality three-dimensional chemical climate models provide a sound methodology to study the mechanisms of the interaction between Earth's atmosphere and the incoming solar radiation. Energetic photons have a profound effect on the chemistry and dynamics of the thermosphere and ionosphere, and these processes are now well represented in upper atmospheric models. In the middle and lower atmosphere the effects of solar variability enter the climate system through two nonexclusive pathways referred to as the top-down and bottom-up mechanisms. The top-down mechanism proceeds through the alteration of the photochemical rates that establish the middle atmospheric temperature structure and

  19. Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard

    Science.gov (United States)

    Pellish, Jonathan

    2017-01-01

    Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.

  20. MSW regeneration of solar νe in the earth

    International Nuclear Information System (INIS)

    Cribier, M.; Rich, J.

    1986-01-01

    The MSW (Mikheyev-Smirnov-Wolfenstein) effect is discussed for a variety of radiochemical and real-time solar neutrino experiments taking into account the effects of neutrino passage through the sun and earth. It is emphasized that during the night ν e regeneration in the earth can lead to measurable increases in counting rates and to a time-dependent ν e energy spectrum. Such observations would verify the presence of the MSW effect and lead to a restriction on the allowed values of neutrino mass differences and mixing angles. (orig.)

  1. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  2. SOLAR NEUTRINO PHYSICS OSCILLATIONS: SENSITIVITY TO THE ELECTRONIC DENSITY IN THE SUN'S CORE

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chieze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)

    2013-03-01

    Solar neutrinos coming from different nuclear reactions are now detected with high statistics. Consequently, an accurate spectroscopic analysis of the neutrino fluxes arriving on Earth's detectors becomes available, in the context of neutrino oscillations. In this work, we explore the possibility of using this information to infer the radial profile of the electronic density in the solar core. So, we discuss the constraints on the Sun's density and chemical composition that can be determined from solar neutrino observations. This approach constitutes an independent and alternative diagnostic to the helioseismic investigations already done. The direct inversion method, which we propose to obtain the radial solar electronic density profile, is almost independent of the solar model.

  3. Ra: The Sun for Science and Humanity

    Science.gov (United States)

    1996-01-01

    To guide the development of the Ra Strategic Framework, we defined scientific and applications objectives. For our primary areas of scientific interest, we choose the corona, the solar wind, the Sun's effect on the Earth, and solar theory and model development. For secondary areas of scientific interest, we selected sunspots, the solar constant, the Sun's gravitational field, helioseismology and the galactic cosmic rays. We stress the importance of stereoscopic imaging, observations at high spatial, spectral, and temporal resolutions, as well as of long duration measurements. Further exploration of the Sun's polar regions is also important, as shown already by the Ulysses mission. From an applications perspective, we adopted three broad objectives that would derive complementary inputs for the Strategic Framework. These were to identify and investigate: possible application spin-offs from science missions, possible solar-terrestrial missions dedicated to a particular application, and possible future applications that require technology development. The Sun can be viewed as both a source of resources and of threats. Our principal applications focus was that of threat mitigation, by examining ways to improve solar threat monitoring and early warning systems. We compared these objectives to the mission objectives of past, current, and planned international solar missions. Past missions (1962-1980) seem to have been focused on improvement of scientific knowledge, using multiple instrument spacecraft. A ten year gap followed this period, during which the results from previous missions were analyzed and solar study programmes were prepared in international organizations. Current missions (1990-1996) focus on particular topics such as the corona, solar flares, and coronal mass ejections. In planned missions, Sun/Earth interactions and environmental effects of solar activity are becoming more important. The corona is the centre of interest of almost all planned missions

  4. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  5. Precise nuclear physics for the sun

    International Nuclear Information System (INIS)

    Bemmerer, Daniel

    2012-01-01

    For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth's atmosphere in space, have succeeded in observing astronomical objects that are billions of light-years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun's inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth's climate may strongly affect the living conditions in a number of densely populated areas

  6. Precise nuclear physics for the sun

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel

    2012-07-01

    For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth's atmosphere in space, have succeeded in observing astronomical objects that are billions of light-years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun's inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth's climate may strongly affect the living conditions in a number of densely

  7. 15 million degrees a journey to the centre of the Sun

    CERN Document Server

    Green, Lucie

    2016-01-01

    Light takes eight minutes to reach Earth from the surface of the Sun. But its journey within the Sun takes hundreds of thousands of years. What is going on in there? What are light and heat? How does the Sun produce them and how on earth did scientists discover this? In this astonishing and enlightening adventure, you'll travel millions of miles from inside the Sun to its surface and to Earth, where the light at the end of its journey is allowing you to read right now. You'll discover how the Sun works (including what it sounds like), the latest research in solar physics and how a solar storm could threaten everything we know. And you'll meet the groundbreaking scientists, including the author, who pieced this extraordinary story together.

  8. Mass extinctions, galactic orbits in the solar neighborhood and the Sun: a connection?

    Science.gov (United States)

    Porto de Mello, G. F.; Dias, W. S.; Lépine, J. R. D.; Lorenzo-Oliveira, D.; Siqueira, R. K.

    2014-10-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment; a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages; and the destruction of Earth's ozone layer posed by supernova explosions. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.

  9. The Sun and How to Observe It

    CERN Document Server

    Jenkins, Jamey L

    2009-01-01

    Without the Sun, all life on Earth would perish. But what exactly do we know about this star that lights, heats, and powers Earth? Actually, we know quite a lot, thanks mainly to a host of eager solar observers. Looking directly at the Sun is EXTREMELY hazardous. But many astronomers, both professional and amateur, have found ways to view the Sun safely to learn about it. You, too, can view the Sun in all of its glorious detail. Some of the newest, most exciting telescopes on the market are affordable to amateur astronomers or even just curious sky watchers, and with this guide to what the Sun has to offer, including sunspots, prominences, and flares, plus reviews of the latest instruments for seeing and capturing images of the Sun, you can contribute to humankind’s knowledge of this immense ball of glowing gases that gives us all life. For a complete guide to Sun viewing, see also Total Solar Eclipses and How to Observe Them (2007) by Martin Mobberley in this same series.

  10. Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System

    Science.gov (United States)

    Eddy, John A.

    2010-01-01

    In a world of warmth and light and living things we soon forget that we are surrounded by a vast universe that is cold and dark and deadly dangerous, just beyond our door. On a starry night, when we look out into the darkness that lies around us, the view can be misleading in yet another way: for the brightness and sheer number of stars, and their chance groupings into familiar constellations, make them seem much nearer to each other, and to us, that in truth they are. And every one of them--each twinkling, like a diamond in the sky--is a white-hot sun, much like our own. The nearest stars in our own galaxy--the Milky Way-- are more than a million times further away from us than our star, the Sun. We could make a telephone call to the Moon and expect to wait but a few seconds between pieces of a conversation, or but a few hours in calling any planet in our solar system.

  11. The Early Years: The Earth-Sun System

    Science.gov (United States)

    Ashbrook, Peggy

    2015-01-01

    We all experience firsthand many of the phenomena caused by Earth's Place in the Universe (Next Generation Science Standard 5-ESS1; NGSS Lead States 2013) and the relative motion of the Earth, Sun, and Moon. Young children can investigate phenomena such as changes in times of sunrise and sunset (number of daylight hours), Moon phases, seasonal…

  12. The Sun

    CERN Document Server

    Golub, Leon

    2017-01-01

    Essential for life on earth and a major influence on our environment, the Sun is also the most fascinating object in the daytime sky. Every day we feel the effect of its coming and going – literally the difference between day and night. But figuring out what the Sun is, what it’s made of, why it glows so brightly, how old it is, how long it will last – all of these take thought and observation. Leon Golub and Jay M. Pasachoff offer an engaging and informative account of what scientists know about the Sun, and the history of these discoveries. Solar astronomers have studied the Sun over the centuries both for its intrinsic interest and in order to use it as a laboratory to reveal the secrets of other stars. The authors discuss the surface of the Sun, including sunspots and their eleven-year cycle, as well as the magnetism that causes them; the Sun’s insides, as studied mainly from seismic waves that astronomers record on its surface; the outer layers of the Sun that we see from Earth only at eclipses ...

  13. Solar Energy Education. Reader, Part I. Energy, Society, and the Sun

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which were selected for information on solar energy is presented in this booklet. This booklet is the first of a four part series of the Solar Energy Reader. The articles provide brief discussions on topics such as the power of the sun, solar energy developments for homes, solar energy versus power plants, solar access laws, and the role of utilities with respect to the sun's energy. (BCS)

  14. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  15. Young Sun, Early Earth and the Origins of Life Lessons for Astrobiology

    CERN Document Server

    Gargaud, Muriel; López-García, Purificación; Montmerle, Thierry; Pascal, Robert

    2012-01-01

    - How did the Sun come into existence? - How was the Earth formed? - How long has Earth been the way it is now, with its combination of oceans and continents? - How do you define “life”? - How did the first life forms emerge? - What conditions made it possible for living things to evolve? All these questions are answered in this colourful textbook addressing undergraduate students in "Origins of Life" courses and the scientifically interested public. The authors take the reader on an amazing voyage through time, beginning five thousand million years ago in a cloud of interstellar dust and ending five hundred million years ago, when the living world that we see today was finally formed. A chapter on exoplanets provides an overview of the search for planets outside the solar system, especially for habitable ones. The appendix closes the book with a glossary, a bibliography of further readings and a summary of the Origins of the Earth and life in fourteen boxes.

  16. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    Science.gov (United States)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  17. The Earth's Interaction With the Sun Over the Millennia From Analyses of Historical Sunspot, Auroral and Climate Records

    Science.gov (United States)

    Yau, K.

    2001-12-01

    A prolonged decrease in the Sun's irradiance during the Maunder Minimum has been proposed as a cause of the Little Ice Age ({ca} 1600-1800). Eddy [{Science} {192}, 1976, 1189] made this suggestion after noting that very few sunspots were observed from 1645 to 1715, indicative of a weakened Sun. Pre-telescopic Oriental sunspot records go back over 2200 years. Periods when no sunspots were seen have been documented by, {eg}, Clark [{Astron} {7}, 2/1979, 50]. Abundances of C 14 in tree rings and Be10 in ice cores are also good indicators of past solar activity. These isotopes are produced by cosmic rays high in the atmosphere. When the Sun is less active more of them are made and deposited at ground level. There is thus a strong {negative} correlation between their abundances and sunspot counts. Minima of solar activity in tree rings and a south polar ice core have been collated by, {eg}, Bard [{Earth Planet Sci Lett} {150} 1997, 453]; and show striking correspondence with periods when no sunspots were seen, centered at {ca} 900, 1050, 1500, 1700. Pang and Yau [{Eos} {79}, #45, 1998, F149] investigated the Medieval Minimum at 700, using in addition the frequency of auroral sighting7s, a good indicator of solar activity too [Yau, PhD thesis, 1988]; and found that the progression of minima in solar activity goes back to 700. Auroral frequency, C 14 and Be 10 concentrations are also affected by variations in the geomagnetic field. Deposition changes can also influence C 14 and Be 10 abundances. Sunspot counts are thus the only true indicator of solar activity. The Sun's bolometric variations (-0.3% for the Maunder Minimum) can contribute to climatic changes (\\0.5° C for the Little Ice Age)[{eg}, Lean, {GRL} {22}, 1995, 3195]. For times with no thermometer data, temperature can be estimated from, {eg}, Oxygen 18 isotopic abundance in ice cores, which in turn depends on the temperature of the ocean water it evaporated from. We have linked the Medieval Minimum to the cold

  18. Heliophysics: The New Science of the Sun-Solar System Connection. Recommended Roadmap for Science and Technology 2005-2035

    Science.gov (United States)

    2005-01-01

    This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.

  19. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space. Volume 3: Key to identification of solar features

    Science.gov (United States)

    Geller, Murray

    1992-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was operated as part of the Spacelab-3 (SL-3) payload on the shuttle Challenger. The instrument, a Fourier transform spectrometer, recorded over 2000 infrared solar spectra from an altitude of 360 km. Although the majority of the spectra were taken through the limb of the Earth's atmosphere in order to better understand its composition, several hundred of the 'high-sun' spectra were completely free from telluric absorption. These high-sun spectra recorded from space are, at the present time, the only high-resolution infrared spectra ever taken of the Sun free from absorptions due to constituents in the Earth's atmosphere. Volumes 1 and 2 of this series provide a compilation of these spectra arranged in a format suitable for quick-look reference purposes and are the first record of the continuous high-resolution infrared spectrum of the Sun and the Earth's atmosphere from space. In the Table of Identifications, which constitutes the main body of this volume, each block of eight wavenumbers is given a separate heading and corresponds to a page of two panels in Volume 1 of this series. In addition, three separate blocks of data available from ATMOS from 622-630 cm(exp -1), 630-638 cm(exp -1) and 638-646 cm(exp -1), excluded from Volume 1 because of the low signal-to-noise ratio, have been included due to the certain identification of several OH and NH transitions. In the first column of the table, the corrected frequency is given. The second column identifies the molecular species. The third and fourth columns represent the assigned transition. The fifth column gives the depth of the molecular line in millimeters. Also included in this column is a notation to indicate whether the line is a blend or lies on the shoulder(s) of another line(s). The final column repeats a question mark if the line is unidentified.

  20. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    Science.gov (United States)

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  1. The sun, the solar wind, and the heliosphere

    CERN Document Server

    Miralles, Mari Paz

    2011-01-01

    This volume presents a concise, up-to-date overview of current research on the observations, theoretical interpretations, and empirical and physical descriptions of the Sun, the Solar Wind, and the Heliosphere, from the solar interior outward to the planets.

  2. Statistical Analysis of Solar Events Associated with SSC over Year of Solar Maximum during Cycle 23: 1. Identification of Related Sun-Earth Events

    Science.gov (United States)

    Grison, B.; Bocchialini, K.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of herafter detailed criteria (velocities, drag coefficient, radio waves, polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The categorization of the events at L1 is made on published catalogues. For each potential CME/L1 event association we compare the velocity observed at L1 with the one observed at the Sun and the estimated balistic velocity. Observations of radio emissions (Type II, Type IV detected from the ground and /or by WIND) associated to the CMEs make the solar source more probable. We also compare the polarity of the magnetic clouds with the hemisphere of the solar source. The drag coefficient (estimated with the drag-based model) is calculated for each potential association and it is compared to the expected range values. We identified a solar source for 26 SSC related events. 12 of these 26 associations match all criteria. We finally discuss the difficulty to perform such associations.

  3. Solar Energy Education. Reader, Part IV. Sun schooling

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  4. The Sun in Time

    Science.gov (United States)

    Adams, Mitzi L.; Sever, Thomas L.; Bero, Elizabeth

    1998-01-01

    Using a grant from NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, we have developed an inter-disciplinary curriculum for middle-school students which targets both history and astronomy. Our curriculum explores the attitudes and techniques of ancient spiritual leaders, specifically those of the Maya and Inca cultures, who observed and tried to control the Sun. We wish students to understand the probable importance of astronomical observations to these ancient peoples. In addition, using the experience of an archaeologist, we show how modern techniques of viewing the Earth through satellite imagery, has allowed the re-discovery of ancient sites where solar observations and attempted manipulation of the universe took place. To contrast ancient observations of the Sun with modern ones, we use the experience of a solar astronomer and bring to the classroom up-to-date information about solar astronomy and the impact of solar activity on the Earth's environment. In this presentation, we will present fragments of our curriculum as well as results from pre- and post-tests given to participating groups of students. Finally, we will discuss comments from local middle-school teachers who were asked to evaluate our curriculum.

  5. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  6. SOHO reveals violent action on the quiet Sun

    Science.gov (United States)

    1996-05-01

    SOHO's scientists are impressed by the vigorous action that they see going on every day, because the Sun is in the very quietest phase of its eleven-year cycle of activity. To ground-based observatories it appears extremely calm just now. The early indications of SOHO's performance amply justify the creation of a sungazing spacecraft capable of observing ultraviolet emissions that are blotted out by the Earth's atmosphere. Apart from the imager, two ultraviolet spectrometers and an ultraviolet coronagraph (an imager for the outer atmosphere) are busy analysing the violent processes at a wide range of wavelengths. Between them, these instruments should cure long-lasting ignorance concerning the Sun, especially about why the atmosphere is so hot and what drives the solar wind that blows non-stop into the Solar System. Scientists from other experimental teams use SOHO to explore the Sun from its deep interior to the far reaches of the solar wind. They have watched the supposedly quiet Sun belching huge masses of gas into space. They have mapped a hole burnt by the solar wind in a breeze of gas coming from the stars. And they have detected currents of gas flowing just below the visible surface. SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO on 2 December 1995, and also provides the ground stations and an operations centre near Washington. The first results are the more remarkable because SOHO arrived at its vantage point 1,500,000 kilometres out in space only in February, and formally completed its commissioning on 16 April. It has a long life ahead of it. All scientific instruments are working well. The luminosity oscillation imager belonging to the VIRGO experiment had trouble with its lens cover. When opened, the cover rebounded on its hinges and closed again. Commands were devised that gave a shorter impulse

  7. Chemical Impact of Solar Energetic Particle Event From The Young Sun: Implications for the Origin of Prebiotic Chemistry and the Fain Young Sun Paradox

    Science.gov (United States)

    Airapetian, V.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2015-12-01

    Understanding how the simple molecules present on the early Earth and possibly Mars may have set a path for complex biological molecules, the building blocks of life, represents one of greatest unsolved questions. Here we present a new model of the rise of the abiotic nitrogen fixation and associated pre-biotic chemistry in the early Earth and Mars atmosphere mediated by solar eruptive events. Our physical models of interaction of magnetic clouds ejected from the young Sun with magnetospheres of the early Earth show significant perturbations of geomagnetic fields that produce extended polar caps. These polar caps provide pathways for energetic particles associated with magnetic clouds to penetrate into the nitrogen-rich weakly reducing atmosphere and initiate the reactive chemistry by breaking molecular nitrogen, carbon dioxide, methane and producing hydrogen cyanide, the essential compound for life. The model also shows that contrary to the current models of warming of early Earth and Mars, major atmospheric constituents, CO2 and CH4 will be destroyed due to collisional dissociation with energetic particles. Instead, efficient formation of the potent greenhouse gas, nitrous oxide, as a by-product of these processes is expected. This mechanism can consistently explain the Faint Young Sun's paradox for the early atmospheres of Earth and Mars. Our new model provides insight into how life may have initiated on Earth and Mars and how to search for the spectral signatures on planets "pregnant" with the potential for life.

  8. Effect of sun and planet-bound dark matter on planet and satellite dynamics in the solar system

    International Nuclear Information System (INIS)

    Iorio, L.

    2010-01-01

    We apply our recent results on orbital dynamics around a mass-varying central body to the phenomenon of accretion of Dark Matter-assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. We inspect its consequences on the orbits of the planets and their satellites over timescales of the order of the age of the solar system. It turns out that a solar Dark Matter accretion rate of ≈ 10 −12 yr −1 , inferred from the upper limit ΔM/M = 0.02−0.05 on the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr, would have displaced the planets faraway by about 10 −2 −10 1 au 4.5 Gyr ago. Another consequence is that the semimajor axis of the Earth's orbit, approximately equal to the Astronomical Unit, would undergo a secular increase of 0.02-0.05 m yr −1 , in agreement with the latest observational determinations of the Astronomical Unit secular increase of 0.07±0.02 m yr −1 and 0.05 m yr −1 . By assuming that the Sun will continue to accrete Dark Matter in the next billions year at the same rate as putatively done in the past, the orbits of its planets will shrink by about 10 −1 −10 1 au ( ≈ 0.2−0.5 au for the Earth), with consequences for their fate, especially of the inner planets. On the other hand, lunar and planetary ephemerides set upper bounds on the secular variation of the Sun's gravitational parameter GM which are one one order of magnitude smaller than ≈ 10 −12 yr −1 . Dark Matter accretion on planets has, instead, less relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits would have been just 10 −2 −10 1 km wider than now. Dark Matter accretion is not able to explain the observed accelerations of the orbits of some of the Galilean satellites of Jupiter, the secular decrease of the semimajor axis of the Earth's artificial satellite LAGEOS and the secular increase of the Moon's orbit eccentricity

  9. Totality eclipses of the Sun

    CERN Document Server

    Littmann, Mark; Willcox, Ken

    2008-01-01

    A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. - ;A total eclipse of the Sun is the most awesome sight in the heavens. Totality: Eclipses of the Sun takes you to eclipses of the past, present, and future, and lets you see - and feel - why people travel to the ends of the Earth to observe them. Totality: Eclipses of the Sun is the best guide and reference book on solar eclipses ever written. It explains: how to observe them; how to photograph and videotape them; why they occur; their history and mythology; and future eclipses - when and where to see them. Totality also tells the remarkable story of how eclipses shocked scientists, revealed the workings of the Sun, and made Einstein famous. And the book shares the experiences and advice of many veteran eclipse observers. Totality: Eclipses of the Sun is profusely ill...

  10. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  11. The sun and space weather Second Edition

    CERN Document Server

    Hanslmeier, Arnold

    2007-01-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exis...

  12. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    -Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  13. Ionospheric Change and Solar EUV Irradiance

    Science.gov (United States)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  14. Frequency distributions: from the sun to the earth

    Directory of Open Access Journals (Sweden)

    N. B. Crosby

    2011-11-01

    Full Text Available The space environment is forever changing on all spatial and temporal scales. Energy releases are observed in numerous dynamic phenomena (e.g. solar flares, coronal mass ejections, solar energetic particle events where measurements provide signatures of the dynamics. Parameters (e.g. peak count rate, total energy released, etc. describing these phenomena are found to have frequency size distributions that follow power-law behavior. Natural phenomena on Earth, such as earthquakes and landslides, display similar power-law behavior. This suggests an underlying universality in nature and poses the question of whether the distribution of energy is the same for all these phenomena. Frequency distributions provide constraints for models that aim to simulate the physics and statistics observed in the individual phenomenon. The concept of self-organized criticality (SOC, also known as the "avalanche concept", was introduced by Bak et al. (1987, 1988, to characterize the behavior of dissipative systems that contain a large number of elements interacting over a short range. The systems evolve to a critical state in which a minor event starts a chain reaction that can affect any number of elements in the system. It is found that frequency distributions of the output parameters from the chain reaction taken over a period of time can be represented by power-laws. During the last decades SOC has been debated from all angles. New SOC models, as well as non-SOC models have been proposed to explain the power-law behavior that is observed. Furthermore, since Bak's pioneering work in 1987, people have searched for signatures of SOC everywhere. This paper will review how SOC behavior has become one way of interpreting the power-law behavior observed in natural occurring phenomenon in the Sun down to the Earth.

  15. Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space Fractal Flow Turbulence: Gravitational Wave Diminution and Earth Climate Cooling

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2014-10-01

    Full Text Available Space speed fluctuations, which have a 1 / f spectrum, are shown to be the cause of solar flares. The direction and magnitude of the space flow has been detected from numer- ous different experimental techniques, and is close to the normal to the plane of the ecliptic. Zener diode data shows that the fluctuations in the space speed closely match the Sun Solar Cycle 23 flare count, and reveal that major solar flares follow major space speed fluctuations by some 6 days. This implies that a warning period of some 5 days in predicting major solar flares is possible using such detectors. This has significant conse- quences in being able to protect various spacecraft and Earth located electrical systems from the subsequent arrival of ejected plasma from a solar flare. These space speed fluctuations are the actual gravitational waves, and have a significant magnitude. This discovery is a significant application of the dynamical space phenomenon and theory. We also show that space flow turbulence impacts on the Earth’s climate, as such tur- bulence can input energy into systems, which is the basis of the Zener Diode Quantum Detector. Large scale space fluctuations impact on both the sun and the Earth, and as well explain temperature correlations with solar activity, but that the Earth temperatures are not caused by such solar activity. This implies that the Earth climate debate has been missing a key physical process. Observed diminishing gravitational waves imply a cooling epoch for the Earth for the next 30 years.

  16. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  17. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    Solar MHD is an important tool for understanding many solar phenomena. It also plays a crucial role in explaining the behaviour of more general cosmical magnetic fields and plasmas, since the Sun provides a natural laboratory in which such behaviour may be studied. While terrestrial experiments are invaluable in demonstrating general plasma properties, conclusions from them cannot be applied uncritically to solar plasmas and have in the past given rise to misconceptions about solar magnetic field behaviour. Important differences between a laboratory plasma on Earth and the Sun include the nature of boundary conditions, the energy balance, the effect of gravity and the size of the magnetic Reynolds number (generally of order unity on the Earth and very much larger on the Sun). The overall structure of the book is as follows. It begins with two introductory chapters on solar observations and the MHD equations. Then the fundamentals of MHD are developed in chapters on magnetostatics, waves, shocks, and instabilities. Finally, the theory is applied to the solar phenomena of atmospheric heating, sunspots, dynamos, flares, prominences, and the solar wind. (Auth.)

  18. Divergence of sun-rays by atmospheric refraction at large solar zenith angles

    Directory of Open Access Journals (Sweden)

    R. Uhl

    2004-01-01

    Full Text Available For the determination of photolysis rates at large zenith angles it has been demonstrated that refraction by the earth's atmosphere must be taken into account. In fact, due to the modified optical path the optical transmittance is thereby increased in most instances. Here we show that in addition the divergence of sun-rays, which is also caused by refraction but which reduces the direct solar irradiance, should not be neglected. Our calculations are based on a spherically symmetric atmosphere and include extinction by Rayleigh scattering, ozone, and background aerosol. For rays with 10km tangent altitude the divergence yields a reduction of about 10% to 40% at solar zenith angles of 91° to 96°. Moreover, we find that the divergence effect can completely cancel the relative enhancement caused by the increase of transmittance.

  19. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  20. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  1. Tracing the journey of the Sun and the Solar siblings through the Milky Way

    Science.gov (United States)

    Martínez-Barbosa, Carmen Adriana

    2016-04-01

    This thesis is focused on studying the motion of the Sun and the Solar siblings through the Galaxy. The Solar siblings are stars that were born with the Sun in the same molecular cloud 4.6 Gyr ago. In the first part of the thesis, we present an efficient method to calculate the evolution of small systems embedded in larger systems. Generalizations of this method are used to calculate the motion of the Sun and the Solar siblings in an analytical potential containing a central bar and spiral arms. By integrating the orbit of the Sun backwards in time, we determine its birth radius and the amount of radial migration experienced by our star. The birth radius of the Sun is used to investigate the evolution and disruption of the Sun's birth cluster. Depending on the Galaxy model parameters, the present-day phase-space distribution of the Solar siblings might be quite different. We used these data to predict the regions in the Galaxy where it will be more likely to search for So! lar siblings in the future. Finally, we compute the stellar encounters experienced by the Sun along its orbit and their role on the stability of the outer Solar System.

  2. 76 FR 80385 - Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species...

    Science.gov (United States)

    2011-12-23

    .... Operation related activities could include solar panel maintenance, on-site parking, operation of solar...-FXES11120800000F2-123] Draft Environmental Impact Statement and Proposed Maricopa Sun Solar Complex Multi-Species... National Environmental Policy Act for the proposed Maricopa Sun Solar Complex Habitat Conservation Plan...

  3. On the Path to SunShot: Emerging Opportunities and Challenges in Financing Solar

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    This report analyzes solar financing strategies and their role in achieving the U.S. Department of Energy's SunShot goals. Financing is critical to solar deployment, because the costs of solar technologies are paid up front, while their benefits are realized over decades. Solar financing has been shaped by government solar incentives, particularly federal tax incentives, which have spawned complex tax-equity structures that monetize tax benefits for project sponsors who otherwise could not use them efficiently. Although these structures have helped expand solar deployment, they are relatively costly and inefficient. This has spurred solar stakeholders to develop lower-cost financing solutions such as securitization of solar project portfolios, solar-specific loan products, and methods for incorporating residential solar's value into home values. To move solar further toward an unsubsidized SunShot future, additional financial innovation must occur. Development of a larger, more mature U.S. solar industry will likely increase financial transparency and investor confidence, which in turn will enable simpler, lower-cost financing methods. Utility-scale solar might be financed more like conventional generation assets are today, non-residential solar might be financed more like a new roof, and residential solar might be financed more like an expensive appliance. Assuming a constant, SunShot-level installed photovoltaic (PV) system price, such financing innovations could reduce PV's levelized cost of electricity (LCOE) by an estimated 25%-50% compared with historical financing approaches. These results suggest that financing can adapt to changing conditions and might ease the transition away from a reliance on tax incentives while driving solar's LCOE toward the SunShot goals.

  4. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    Science.gov (United States)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  5. Seismology and geodesy of the sun: Solar geodesy.

    Science.gov (United States)

    Dicke, R H

    1981-03-01

    Measurements of the elliptical figure of the sun made in 1966 are analyzed on an hourly basis. This analysis yields an improved measure of the previously found solar distortion, rotating rigidly with a sidereal period of 12.38+/-0.10 days. It also yields a set of residùals used to search for signals due to low-frequency solar oscillations.

  6. Nearest star the surprising science of our sun

    CERN Document Server

    Golub, Leon

    2014-01-01

    How did the Sun evolve, and what will it become? What is the origin of its light and heat? How does solar activity affect the atmospheric conditions that make life on Earth possible? These are the questions at the heart of solar physics, and at the core of this book. The Sun is the only star near enough to study in sufficient detail to provide rigorous tests of our theories and help us understand the more distant and exotic objects throughout the cosmos. Having observed the Sun using both ground-based and spaceborne instruments, the authors bring their extensive personal experience to this sto

  7. Solar Dynamics and Its Effects on the Heliosphere and Earth

    CERN Document Server

    Baker, D. N; Schwartz, S. J; Schwenn, R; Steiger, R

    2007-01-01

    The SOHO and Cluster missions form a single ESA cornerstone. Yet they observe very different regions in our solar system: the solar atmosphere on one hand and the Earth’s magnetosphere on the other. At the same time the Ulysses mission provides observations in the third dimension of the heliosphere, and many others add to the picture from the Lagrangian point L1 to the edge of the heliosphere. It is the aim of this ISSI volume to tie these observations together in addressing the topic of Solar Dynamics and its Effects on the Heliosphere and Earth, thus contributing to the International Living With a Star (ILWS) program. The volume starts out with an assessment and description of the reasons for solar dynamics and how it couples into the heliosphere. The three subsequent sections are each devoted to following one chain of events from the Sun all the way to the Earth’s magnetosphere and ionosphere: The normal solar wind chain, the chain associated with coronal mass ejections, and the solar energetic particl...

  8. Solar flares and radiocarbon abundance in the atmosphere of the Earth

    International Nuclear Information System (INIS)

    Metskhvarishvili, R.Ya.; Imedadze, T.Sh.; Tleugaliev, S.Kh.; Tsinamdzgvrishvili, T.Sh.; Tsereteli, S.L.

    1978-01-01

    The correlation between the radiocarbon ( 14 C) content in the atmosphere of the Earth and the solar activity is studied. Annual measurements of the 14 C content in the tree rings for the last 120 years have been made. Relations of the radiocarbon content in dendrochronologically dated tree rings and the Wolf numbers for the period from 1850 to 1940 are presented. The spectroscopic and Borg methods have been used to ascertain the periodicities in the radiocarbon series. It is shown that well-defined periods of approximately 11 and approximately 65 years are observed in the radiocarbon series. The former is associated with an 11-year and the latter with a secular cycle of the 14 C content in the earth atmosphere. To study the relation of the solar activity to the level of radiocarbon in the earth atmosphere a mutual correlation function was calculated for various values of the time lags of 14 C with respect to the processes on the Sun. It follows from the data obtained that a positive correlation takes place for time lags smaller than three years. The detected positive correlation has revealed that the effect of solar flares in the 11-year cycle is prevalent

  9. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    Science.gov (United States)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  10. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  11. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  12. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  13. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere I. Continuous Emission and Condensed Matter Within the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.

  14. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  15. Evolution of the solar constant

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales

  16. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 sun Illumination.

    Science.gov (United States)

    Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun

    2018-05-09

    Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.

  17. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on

  18. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    Science.gov (United States)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  19. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  20. Proceedings of the workshop: the solar constant and the Earth's atmosphere

    International Nuclear Information System (INIS)

    Zirin, H.; Moore, R.L.; Walter, J.

    1976-01-01

    The solar constant has long been a fundamental quantity in astrophysics, but as with many fundamental quantities, interest in its exact value or its variation has not been great over the last decade. This was particularly due to the fact that most models of stars indicated that their luminosity should be quite constant, varying only over nuclear burning times of hundreds of millions of years. Thus, after the pioneering work of Abbott, it has been more a subject of interest for atmospheric scientists who needed to know the exact inputs to the Earth's atmosphere. In recent years however, the celebrated problem of the missing solar neutrinos has brought into question the theories of stellar structure, and the solar constant is again being thought about. Standard solar models predict a lower solar constant in the past, 75% of the present, 4x10 9 years ago and a virtually constant value over short time scales (10 7 years). However, the lack of observed neutrinos predicted by this model suggests that the interior of the Sun is not really understood, which means that solar constant variations cannot be ruled out on the basis of the theory of stellar interiors. Measurement of the planets, the old Smithsonian measurements, and other data suggest that the Sun cannot have varied more than a few percent over the past hundred years, but some of the measurements even suggest small variation of the order of a percent. On the other hand, in the important near ultraviolet region, there is evidence for some variation in the 2700-3100 A region and up to 50% variation below 1600 A, dependent on solar activity. (Auth.)

  1. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    Science.gov (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  2. ONSETS AND SPECTRA OF IMPULSIVE SOLAR ENERGETIC ELECTRON EVENTS OBSERVED NEAR THE EARTH

    International Nuclear Information System (INIS)

    Kontar, Eduard P.; Reid, Hamish A. S.

    2009-01-01

    Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.

  3. The apparent motion of the Sun revisited

    Science.gov (United States)

    Probst, Oliver

    2002-05-01

    The knowledge of the apparent motion of the Sun - due to the combined effects of the rotation of the Earth around its proper axis and the translation around the Sun - is important both in natural and man-made systems. In particular, a proper explanation of the seasons requires an understanding of this solar geometry. In this paper we present a simple derivation of the relevant formulae based on vector algebra. The possible trajectories are discussed in detail. An approximate explicit formula for the seasonal variations of solar radiation is derived and discussed. The calculations give useful insights into the geometry of the problem and are thought to be helpful for the undergraduate teaching of solar energy engineering, classical mechanics and astronomy.

  4. The Sun as you never saw it before

    Science.gov (United States)

    1997-02-01

    The remarkable images come from SOHO's visible-light coronagraph LASCO. It masks the intense rays from the Sun's surface in order to reveal the much fainter glow of the solar atmosphere, or corona. Operated with its widest field of view, in its C3 instrument, LASCO's unprecedented sensitivity enables it to see the thin ionized gas of the solar wind out to the edges of the picture, 22 million kilometres from the Sun's surface. Many stars are brighter than the gas, and they create the background scene. The results alter human perceptions of the Sun. Nearly 30 years ago, Apollo photographs of the Earth persuaded everyone of what until then they knew only in theory, that we live on a small planet. Similarly the new imagery shows our motion in orbit around the Sun, and depicts it as one star among - yet close enough to fill the sky emanations that engulf us. For many centuries even astrologers knew that the Sun was in Sagittarius in December and drifting towards the next zodiacal constellation, Capricornus. This was a matter of calculation only, because the Sun's own brightness prevented a direct view of the starfield. The SOHO-LASCO movie makes this elementary point of astronomy a matter of direct observation for the first time. The images are achievable only from a vantage point in space, because the blue glow of the Earth's atmosphere hides the stars during the day. A spacial allocation of observing time, and of data tranmission from the SOHO spacecraft, enabled the LASCO team to obtain large numbers of images over the period 22-28 December 1996. Since then, a sustained effort in image processing, frame by frame, has achieved a result of high technical and aesthetic quality. Only now is the leader of the LASCO team, Guenter Brueckner of the US Naval Research Laboratory, satisfied with the product and ready to authorize its release. "I spend my life examining the Sun," Brueckner says, "but this movie is a special thrill. For a moment I forget the years of effort that

  5. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  6. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    Science.gov (United States)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted

  7. Interconnection getting energy from the Sun and the radiating Earth in cosmos

    International Nuclear Information System (INIS)

    Jumayev, E.E.

    2004-01-01

    Full text: Biosphere comprises atmosphere of itself. In our models must be reflected track record of atmosphere, one or another image is described attraction of air masses, that air, which we breath and in which we live. And not only motion. As well as energy of atmosphere, which nearly does not delay a sunshine, a is warmed by the heat, the infrared radiating a surface of the Earth and ocean. Enormous role play else two factors. First, the evaporation and condensation moisture, formation an clouds snow, ice, fallout of precipitation. Changing a phase condition of water brings about the big expenses or separation of energy and is one of the reasons, defining condition of atmosphere, but consequently, climate. Besides, rainfall, nature an clouds. Their distribution on the territory, moisture of atmosphere and ground alongside with sharing the temperatures is a most important factor, influencing upon the condition of alive part biosphere, which carries a name an biota and comprises of itself flora and fauna. The second factor, defining energy of atmosphere, - an interaction of ocean and atmosphere. One good storm in the North Atlantic will send atmosphere of more energy than for the whole it gets from solar radiation just. Thereby, model must be capable to describe processes of energy of ocean, its interaction with atmosphere, formation sea ice glacier and etc. Very important feature speakers biosphere is an activity its potential part. Depending on the nature of vegetation is changed terrestrial surface, the ability to reflect solar radiation. Besides, features of atmosphere and ocean hang from the intensity of geochemistry cycles, nature of rotation of materials in nature. Main role in making an greenhouse of rotation of materials in the nature. Main role in making of greenhouse effect play water vapors and carbon dioxide. Role of greenhouse effect in shaping climate Land us If in 'ts atmosphere was not a water pair and acid, which delay a heat radiation of planet

  8. A parabolic solar cooker with automatic two axes sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Al-Soud, Mohammed S.; Akayleh, Ali; Hrayshat, Eyad S. [Electrical Engineering Department, Faculty of Engineering, Tafila Technical University, P.O. Box 66, Tafila 66110 (Jordan); Abdallah, Essam [Mechanical Engineering Department, FET, AL-Balqa Applied University, Amman (Jordan); Abdallah, Salah [Mechanical and Industrial Engineering Department, Applied Science University (Jordan)

    2010-02-15

    A parabolic solar cooker with automatic two axes sun tracking system was designed, constructed, operated and tested to overcome the need for frequent tracking and standing in the sun, facing all concentrating solar cookers with manual tracking, and a programmable logic controller was used to control the motion of the solar cooker. The results of the continuous test - performed for three days from 8:30 h to 16:30 h in the year 2008 - showed that the water temperature inside the cooker's tube reached 90 C in typical summer days, when the maximum registered ambient temperature was 36 C. It was also noticed that the water temperature increases when the ambient temperature gets higher or when the solar intensity is abundant. This is in favor of utilizing this cooker in many developing countries, which are characterized by high solar insulations and high temperatures. Besides cooking, the proposed cooker could be utilized for warming food, drinks as well as to pasteurize water or milk. (author)

  9. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  10. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    Science.gov (United States)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  11. Mass loss from the proto-sun: Formation and evolution of the solar nebula

    International Nuclear Information System (INIS)

    Trivedi, B.M.P.

    1984-01-01

    We consider the formation and evolution of the solar nebula in the light of observations of T Tauri stars, oxygen-isotopic anomalies in meteorites, and the mass and angular momentum distribution in the present solar system. It is argued that the solar nebula formed from the mass lost by the proto-Sun. The outflow of initially partially ionized material in the presence of a strong proto-solar magnetic field would lead to the transfer of angular momentum from the central Sun to the outflowing matter. This explains the present angular momentum distribution between the Sun and the planetary system. When the outflowing matter cooled sufficiently, to less than 2000 K, approx. l0 12 cm from the Sun, the material would neutralize, and the magnetic field would then decouple from the outflowing matter. Further motion would be governed by the gravitational field of the proto-Sun, the gas pressure, and the centrifugal force. When these forces balance, the radial flow would stop, and a rotating solar nebula would form. Chemical condensation would occur in the outflowing matter when suitable pressure-temperature conditions would develop. The condensation of the refractory mineral Al 2 O 3 would start at a distance of approx.2 x l0 12 cm from the Sun, where the pressure would be approx. 3 x l0 8 atm, and temperature approx. l450 K. The condensation sequence of other lower temperature minerals would follow this. All the refractory minerals and iron would condense within the orbit of the planet Mercury. All the volatiles would condense before the outflowing matter crossed the asteroid region. The grains would move to the outer part of the nebula along with the outflowing gas

  12. Solar Probe Plus: A NASA Mission to Touch the Sun

    Science.gov (United States)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  13. Design, construction and operation of spherical solar cooker with automatic sun tracking system

    International Nuclear Information System (INIS)

    Abu-Malouh, Riyad; Abdallah, Salah; Muslih, Iyad M.

    2011-01-01

    In this work, the effect of two axes tracking on a solar cooking system was studied. A dish was built to concentrate solar radiation on a pan that is fixed at the focus of the dish. The dish tracks the sun using a two axes sun tracking system. This system was built and tested. Experimental results obtained show that the temperature inside the pan reached more than 93 o C in a day where the maximum ambient temperature was 32 o C. This temperature is suitable for cooking purposes and this was achieved by using the two axes sun tracking system.

  14. SOHO starts a revolution in the science of the Sun

    Science.gov (United States)

    1996-07-01

    In addition, SOHO has found clues to the forces that accelerate the solar wind of atomic particles blowing unceasingly through the Solar System. By relating the huge outbursts called coronal mass ejections to preceding magnetic changes in the Sun, SOHO scientists hope to predict such events which, in the Earth's vicinity, endanger power supplies and satellites. SOHO sees differences in the strength of the solar wind in various directions, by mapping a cavity in the cloud of interstellar hydrogen surrounding the Sun. As a bonus, SOHO secured remarkable images of Comet Hyakutake, by ultraviolet and visible light. The revolution in solar science will seem more complete when all the pieces and actions of the Sun, detected by twelve different instruments, are brought together in observations and concepts. Fundamental questions will then be open to re-examination, about the origin of the Sun's magnetism, the cause of its variations in the 11-year cycle of sunspot activity, and the consequences for the Solar System at large. SOHO is greater than the sum of its parts. "SOHO takes solar science by storm," says Roger Bonnet, the European Space Agency's Director of Science, "thanks to its combination of instruments. Unprecedented results from individual telescopes and spectrometers are impressive, of course, but what is breathtaking is SOHO's ability to explore the Sun all the way from its nuclear core to the Earth's vicinity and beyond. We can expect a completely new picture of how agitation inside the Sun, transmitted through the solar atmosphere, directly affects us on the Earth." SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO and provides the ground stations and an operations centre at the Goddard Space Flight Center near Washington. SOHO has an uninterrupted view of the Sun from a halo orbit around Lagrangian

  15. Solar Mosaic Inc. Mosaic Home Solar Loan SunShot 9 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Colin James [Solar Mosaic Inc., Oakland, CA (United States)

    2017-02-09

    The 6686 Mosaic SunShot award has helped Solar Mosaic Inc to progress from an early stage startup focused on commercial crowdfunding to a leading multi-state residential solar lender. The software platform is now used by the majority of the nation's top solar installers and offers a variety of simple home solar loans. Mosaic is has originated approximately $1Bil in solar loans to date to put solar on over 35k rooftops. The company now lends to homeowners with a wide range of credit scores across multiple states and mitigates boundaries preventing them from profiting from ownership of a home solar system. The project included milestones in 5 main categories: 1. Lending to homeowners outside of CA 2. Lending to homeowners with FICO scores under 700 3. Packaging O&M with the home solar loan 4. Allowing residential installers to process home solar loans via API 5. Lowering customer acquisition costs below $1500 This report includes a detailed review of the final results achieved and key findings.

  16. Deciphering solar magnetic activity: on grand minima in solar activity

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Physics, Montana State University, Bozeman, MT (United States)

    2015-07-08

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well- understood. There has been tremendous progress in the century since the discovery of solar magnetism—magnetism that ultimately drives the electromagnetic, particulate, and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a “grand minimum”? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(&ish) year solar activity cycle.

  17. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Directory of Open Access Journals (Sweden)

    Scott William Mcintosh

    2015-07-01

    Full Text Available The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish year solar activity cycle.

  18. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Science.gov (United States)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  19. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Science.gov (United States)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  20. Suns-VOC characteristics of high performance kesterite solar cells

    Science.gov (United States)

    Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.

    2014-08-01

    Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.

  1. No smoking guns under the Sun

    CERN Document Server

    CERN. Geneva

    2000-01-01

    The Sun is a typical main sequence star that generates its energy via the fusion of hydrogen into helium in two chains of nuclear reactions: the so-called pp chain and the CNO chain. If the nucleon number, electric charge, lepton flavour and energy are conserved and the Sun is in a steady state, then the total solar neutrino flux is fixed, to a good approximation, by the solar luminosity (approximately 65 billion neutrinos/cm2/s at Earth), independent of the specific nuclear reactions that power the Sun and produce neutrinos by beta decay or the electron capture of reaction products. The neutrinos from the dominant pp chain are produced by the beta decay of proton pairs (pp), boron-8 and lithium-4, and by electron capture by pp pairs and beryllium-7. Their spectra can be measured directly in the laboratory or calculated from the standard theory of electroweak interactions. To a very good approximation, they are independent of the conditions in the Sun. Only their relative contributions depend on the detailed ...

  2. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    Science.gov (United States)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  3. HARPS-N OBSERVES THE SUN AS A STAR

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, Xavier; Glenday, Alex; Phillips, David F.; Charbonneau, David; Latham, David W.; Li, Chih-Hao; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchschacher, Nicolas; Lovis, Christophe; Pepe, Francesco; Udry, Stéphane [Observatoire Astronomique de l’Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny (Switzerland); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS (United Kingdom); Cecconi, Massimo; Cosentino, Rosario; Ghedina, Adriano; Lodi, Marcello; Molinari, Emilio, E-mail: xdumusque@cfa.harvard.edu [INAF—Fundación Galileo Galilei, Rambla José Ana Fernández Pérez 7, E-38712 Breña Baja (Spain)

    2015-12-01

    Radial velocity (RV) perturbations induced by stellar surface inhomogeneities including spots, plages and granules currently limit the detection of Earth-twins using Doppler spectroscopy. Such stellar noise is poorly understood for stars other than the Sun because their surface is unresolved. In particular, the effects of stellar surface inhomogeneities on observed stellar radial velocities are extremely difficult to characterize, and thus developing optimal correction techniques to extract true stellar radial velocities is extremely challenging. In this paper, we present preliminary results of a solar telescope built to feed full-disk sunlight into the HARPS-N spectrograph, which is in turn calibrated with an astro-comb. This setup enables long-term observation of the Sun as a star with state-of-the-art sensitivity to RV changes. Over seven days of observing in 2014, we show an average 50 cm s{sup −1} RV rms over a few hours of observation. After correcting observed radial velocities for spot and plage perturbations using full-disk photometry of the Sun, we lower by a factor of two the weekly RV rms to 60 cm s{sup −1}. The solar telescope is now entering routine operation, and will observe the Sun every clear day for several hours. We will use these radial velocities combined with data from solar satellites to improve our understanding of stellar noise and develop optimal correction methods. If successful, these new methods should enable the detection of Venus over the next two to three years, thus demonstrating the possibility of detecting Earth-twins around other solar-like stars using the RV technique.

  4. Magnitude of Solar Radiation Torque in the Transition Region from the Umbra to the Dark Shadow of the Earth

    International Nuclear Information System (INIS)

    Cabette, R E S; Kolesnikov, I; Zanardi, M C

    2015-01-01

    The analysis of solar radiation pressure force and its influence on the motion of artificial satellites has been developed by researchers. Accurate models to describe the influence of the Earth's shadow on the torque and force due to solar radiation pressure have been presented. In this work the solar radiation torque (SRT) and its influence on the attitude of an artificial satellite are taken into account by the introduction of the Earth's shadow function in the equations of motion. This function assumes a unitary value when the satellite is in the fully illuminated region of its orbit, and the value zero for the full shade region. The main objective of this study is to analyze the magnitude of SRT using the equations described by quaternions during a 35 day period and to compare the results with the satellite transition through the shadow region and the time interval in this region. The duration and transition through the shadow region were obtained using the software 'Shadow Conditions of Earth Satellites'. The formulation is applied to the Brazilian Data Collection Satellites SCD1 and SCD2, and the torque model is presented in terms of the satellite attitude quaternion, distance of the satellite to the Sun, orbital elements, right ascension and declination of the Sun. (paper)

  5. SOHO hunts elusive solar prey

    Science.gov (United States)

    1995-10-01

    SOHO will carry twelve sophisticated telescopes and other instruments, developed in record time by twelve international consortia involving scientific institutes in 15 countries. Roger M. Bonnet, the Director of ESA’s Scientific Programme said: "Each one of these instruments by itself would be enough to make major breakthroughs in our understanding of the Sun. But what makes SOHO such an exciting mission is that we will operate all the instruments together and find possible links between various phenomena at different levels in the volume of the Sun and in the interplanetary medium". Four years of intense efforts by space engineering teams in ESA and across Europe, under the leadership of the prime contractor Matra Marconi Space of Toulouse, France, have fulflled the dream of scientists who wished to build a superb space observatory for examining the Sun. SOHO, together with the four-spacecraft Cluster mission - which will explore near-Earth space, forms the Solar-Terrestrial Science Programme, the first cornerstone in ESA’s long-term programme 'Horizon 2000'. No night time for SOHO Instead of being placed in orbit around the Earth, SOHO will be lofted to a position where the gravitational pulls of the Earth and the Sun cancel each other out exactly, at 1.5 million kilometres sunward from the Earth. This is known in astronomy as the inner Lagrangian point after the French mathematician, Joseph Louis Lagrange, who first calculated its position near the end of the eighteenth century. SOHO will fly in an elliptical, or "halo" orbit around the Lagrangian point, with an orbit radius of about 600,000 kilometres, allowing the spacecraft to experience perpetual day. It will have a continuous, uninterrupted view of the Sun for twenty four hours of the day, all three hundred and sixty five days of the year, producing an extraordinary amount of data. All previous solar observatories have either been on the Earth or in orbit around our planet. On the Earth, telescopes are

  6. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  7. SunShot Initiative: Making Solar Energy Affordable for All Americans (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-10-01

    Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, making solar energy affordable for more American families and businesses.

  8. ULYSSES comes full circle, before revisiting the Sun's poles

    Science.gov (United States)

    1998-04-01

    From its unique perspective, Ulysses has provided scientists with the very first all-round map of the heliosphere, the huge bubble in space filled by the Sun's wind. The Earth swims deep inside the heliosphere, and gusts and shocks in the solar wind can harm satellites, power supplies and ommunications. They may also affect our planet's weather. A better grasp of the solar weather in the heliosphere is therefore one of the major aims of ESA's science programme. In a project of international cooperation between ESA and NASA, Ulysses was launched towards Jupiter in October 1990 by the US space shuttle Discovery. Arriving in February 1992, Ulysses stole energy from the giant planet in a slingshot manoeuvre and was propelled back towards the Sun in an elongated orbit almost at right angles to the ecliptic plane, where the Earth and other planets circle the Sun. "This month Ulysses returns to the point in space where its out-of-ecliptic journey began, but Jupiter isn't there," explains Richard Marsden, ESA's project scientist for Ulysses. "Following its own inexorable path around the Sun, Jupiter is far away on the opposite side of the Solar System. So Ulysses' course will not be changed a second time. The spacecraft is now in effect a man-made comet, forever bound into a 6-year polar orbit around the Sun." Ulysses now starts its second orbit. It will travel over the poles of the Sun in 2000-2001 just as the count of dark sunspots is expected to reach a maximum. With its operational life extended for the Ulysses Solar Maximum Mission, the spacecraft will find the heliosphere much stormier than during its first orbit. Discoveries so far Like its mythical namesake, Ulysses has already had an eventful voyage of discovery. Its unique trajectory has provided the scientific teams with a new perspective, from far out in space and especially in the previously unknown regions of the heliosphere over the Sun's poles. Passing within 9.8 degrees of the polar axis, the highly

  9. Angular velocity determination of spinning solar sails using only a sun sensor

    Directory of Open Access Journals (Sweden)

    Kun Zhai

    2017-02-01

    Full Text Available The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.

  10. Sounds of space: listening to the Sun-Earth connection

    Science.gov (United States)

    Craig, N.; Mendez, B.; Luhmann, J.; Sircar, I.

    2003-04-01

    NASA's STEREO/IMPACT Mission includes an Education and Public Outreach component that seeks to offer national programs for broad audiences highlighting the mission's solar and geo-space research. In an effort to make observations of the Sun more accessible and exciting for a general audience, we look for alternative ways to represent the data. Scientists most often represent data visually in images, graphs, and movies. However, any data can also be represented as sound audible to the human ear, a process known as sonification. We will present our plans for an exciting prototype program that converts the science results of solar energetic particle data to sound. We plan to make sounds, imagery, and data available to the public through the World Wide Web where they may create their own sonifications, as well as integrate this effort to a science museum kiosk format. The kiosk station would include information on the STEREO mission and monitors showing images of the Sun from each of STEREO's two satellites. Our goal is to incorporate 3D goggles and a headset into the kiosk, allowing visitors to see the current or archived images in 3D and hear stereo sounds resulting from sonification of the corresponding data. Ultimately, we hope to collaborate with composers and create musical works inspired by these sounds and related solar images.

  11. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer

    2006-08-01

    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  12. Space Weather: The Solar Perspective

    Science.gov (United States)

    Schwenn, Rainer

    2006-08-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  13. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  14. Sun position calculator (SPC) for Landsat imagery with geodetic latitudes

    Science.gov (United States)

    Seong, Jeong C.

    2015-12-01

    Landsat imagery comes with sun position information such as azimuth and sun elevation, but they are available only at the center of a scene. To aid in the use of Landsat imagery for various solar radiation applications such as topographic correction, solar power, urban heat island, agriculture, climate and vegetation, it is necessary to calculate the sun position information at every pixel. This research developed a PC application that creates sun position data layers in ArcGIS at every pixel in a Landsat scene. The SPC program is composed of two major routines - converting universal transverse Mercator (UTM) projection coordinates to geographic longitudes and latitudes, and calculating sun position information based on the Meeus' routine. For the latter, an innovative method was also implemented to account for the Earth's flattening on an ellipsoid. The Meeus routine implemented in this research showed about 0.2‧ of mean absolute difference from the National Renewable Energy Laboratory (NREL) Solar Position Algorithm (SPA) routine when solar zenith and azimuth angles were tested with every 30 min data at four city locations (Fairbanks, Atlanta, Sydney and Rio Grande) on June 30, 2014. The Meeus routine was about ten times faster than the SPA routine. Professionals who need the Sun's position information for Landsat imagery will benefit from the SPC application.

  15. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  16. The Sun Recorded Through History Scientific Data Extracted from Historical Documents

    CERN Document Server

    Vázquez, M

    2009-01-01

    The Sun Recorded Through History is a text that reconstructs past solar activity based on information from historical documents, complementing studies using other techniques. Historical accounts describing phenomena related to solar activity, such as aurorae, sunspots, and corona observed during solar eclipses can be used as a proxy of solar activity in the past. These descriptions are reviewed, on the one hand providing primary material for the history of astronomy and, on the other, verifying or refuting current ideas concerning the time variability of the Sun on the scale of centuries. Documents predating the discovery of photography (around 1840) that contain information on these topics are highlighted, but modern drawings are also included. The lower temporal limit of study is set by the archaeoastronomy of prehistoric sources. In addition, the necessary background on the Sun is provided, with special emphasis on observing techniques and the influences of telescopes and the Earth's atmosphere on the data...

  17. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  18. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  19. First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun

    Science.gov (United States)

    Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.

    2018-05-01

    Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond

  20. Global oscillations of the Sun: observed as oscillations in the apparent solar limb darkening function

    International Nuclear Information System (INIS)

    Hill, H.A.; Caudell, T.P.

    1979-01-01

    Analysis of the 1973 solar oblateness observations made at SCLERA has indicated that most of the oscillatory power found in observations of the apparent solar diameter is statistically significant and that it is produced by fluctuations in the limb darkening function rather than by a simple displacement of the solar limb. The differential refractive effects in the Earth's atmosphere may be ruled out as operative mechanisms for generating the observed oscillations. Solar and non-solar mechanisms for producing changes in the apparent limb darkening function are considered as possible sources of the observed oscillatory effects; it is concluded that acoustic and gravity modes of oscillation are the only viable mechanisms capable of producing these phenomena. This interpretation necessitates the imposition of certain constraints on modelling of the solar interior and on solar pulsation theory. The conclusion that the oscillations are detected through changes in the limb darkening function leads to a new constraint on the photospheric boundary conditions used in pulsation theory. The identification of two of the oscillations as being high-order gravity modes also necessitates the formulation of a new constraint on the Brunt-Vaisalai frequency in the solar interior and, in addition, may place a constraint depth on the convection zone. Application of the constraint on the Brunt-Vaisalai frequency permits discrimination between current models while the first constraint, if correct, may further complicate studies of the outer envelope of the Sun. (author)

  1. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K.; Wong, C.W. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur (Malaysia)

    2009-03-15

    Azimuth-elevation and tilt-roll tracking mechanism are among the most commonly used sun-tracking methods for aiming the solar collector towards the sun at all times. It has been many decades that each of these two sun-tracking methods has its own specific sun-tracking formula and they are not interrelated. In this paper, the most general form of sun-tracking formula that embraces all the possible on-axis tracking methods is presented. The general sun-tracking formula not only can provide a general mathematical solution, but more significantly it can improve the sun-tracking accuracy by tackling the installation error of the solar collector. (author)

  2. Space Moves: Adding Movement to Solar System Lessons

    Science.gov (United States)

    Jenkins, Deborah Bainer; Heidorn, Brent

    2009-01-01

    Earth and space science figure prominently in the National Science Education Standards for levels 5-8 (NRC 1996). The Earth in the Solar System standard focuses on students' ability to understand (1) the composition of the solar system (Earth, Moon, Sun, planets with their moons, and smaller objects like asteroids and comets) and (2) that…

  3. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    Science.gov (United States)

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  4. "Tormenta Espacial" - Exploring The Sun-earth Connection With A Spanish-language Planetarium Show

    Science.gov (United States)

    Elteto, Attila; Salas, F.; Duncan, D.; Traub-Metlay, S.

    2007-10-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - "Space Storm” - into "Tormenta Espacial". This show explores the Sun-Earth connection and explains how solar activity affects technology and life on Earth. Solar scientists from NOAA's Space Environment Center and the University of Colorado at Boulder contributed to provide scientific accuracy. Show content and accompanying educational materials are aligned with state and national science standards. While designed for students in grades 6-8, this show has been positively evaluated by students from grades 4-10 and shown to the general public with favorable responses. Curricular materials extend the planetarium experience into the K-12 classroom so that students inspired and engaged by the show continue to see real-life applications and workplace opportunities. Fiske Planetarium offers both "Space Storm” and "Tormenta Espacial” to other planetariums at a minimal rate, including technical support for the life of the show. Thanks to a request from a planetarium in Belgium, a version of "Space Storm” is available with no spoken dialogue so that languages other than English or Spanish may be accommodated. Collaborative projects among planetariums, NASA missions (planned as well as active), research scientists and other parties keep EPO activities healthy and well-funded. Fiske Planetarium staff strive to develop and maintain partnerships throughout the EPO and informal education communities.

  5. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space: A compilation of ATMOS spectra of the region from 650 to 4800 cm (2.3 to 16 micron). Volume 1: The Sun

    Science.gov (United States)

    Farmer, Crofton B.; Norton, Robert H.

    1989-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecular Spectroscopy experiment was operated as part of the Spacelab-3 payload of the shuttle Challenger. The instrument, a modified Michelson Interferometer covering the frequency range from 600 to 5000/cm, at a spectral resolution of 0.01/cm, recorded infrared spectra of the Sun and of the Earth's atmosphere at times close to entry into and exit from occultation by the Earth's limb as seen from the shuttle orbit of 360 km. Spectra were obtained that are free from absorptions due to constituents of the atmosphere (i.e., solar pure spectra), as well as spectra of the atmosphere itself, covering line-of-sight tangent altitudes that span the range from the lower thermosphere to the bottom of the troposphere. This atlas, believed to be the first record of observations of the continuous high resolution infrared spectrum of the Sun and the Earth's atmosphere from space, provides a compilation of these spectra arranged in a hardcopy format suitable for quick-look reference purposes; the data are also available in digital form.

  6. Modelling the drying kinetics of green peas in a solar dryer and under open sun

    Energy Technology Data Exchange (ETDEWEB)

    Sunil [Department of Mechanical Engineering, BRCM CET Bahal, Haryana–127028 (India); Varun [Department of Mechanical Engineering, NIT Hamirpur, (H.P.)–177005 (India); Sharma, Naveen [Department of Mechanical and Industrial Engineering, IITR, (U.K.)–247667 (India)

    2013-07-01

    The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2), sum of squares error (SSE), mean squared error (MSE) and root mean square error (RMSE) between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.

  7. Solar Electricity for Homes

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  8. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (

  9. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  10. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    Science.gov (United States)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. On the Path to SunShot: Emerging Issues and Challenges in Integrating Solar with the Distribution System.

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mather, Bary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baker, Kyri [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bharatkumar, Ashwini [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-01

    The U.S. Department of Energy launched the SunShot Initiative in 2011 with the goal of making solar electricity cost-competitive with conventionally generated electricity by 2020. At the time this meant reducing photovoltaic and concentrating solar power prices by approximately 75%— relative to 2010 costs—across the residential, commercial, and utility-scale sectors. To examine the implications of this ambitious goal, the Department of Energy’s Solar Energy Technologies Office (SETO) published the SunShot Vision Study in 2012. The study projected that achieving the SunShot price-reduction targets could result in solar meeting roughly 14% of U.S. electricity demand by 2030 and 27% by 2050—while reducing fossil fuel use, cutting emissions of greenhouse gases and other pollutants, creating solar-related jobs, and lowering consumer electricity bills.

  12. BepiColombo fine sun sensor

    Science.gov (United States)

    Boslooper, Erik; van der Heiden, Nico; Naron, Daniël.; Schmits, Ruud; van der Velde, Jacob Jan; van Wakeren, Jorrit

    2017-11-01

    Design, development and verification of the passive Fine Sun Sensor (FSS) for the BepiColombo spacecraft is described. Major challenge in the design is to keep the detector at acceptable temperature levels while exposed to a solar flux intensity exceeding 10 times what is experienced in Earth orbit. A mesh type Heat Rejection Filter has been developed. The overall sensor design and its performance verification program is described.

  13. The inconstant solar constant

    International Nuclear Information System (INIS)

    Willson, R.C.; Hudson, H.

    1984-01-01

    The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots

  14. Electromagnetic behaviour of the earth and planets

    International Nuclear Information System (INIS)

    McCarthy, A.J.

    2002-01-01

    Forecast problems of global warming, rising sea-levels, UV enhancement, and solar disruptions of power grids and satellite communications, have been widely discussed. Added to these calamities is the steady decay of the Earth's magnetic radiation shield against high energy particles. A system of solar-induced aperiodic electromagnetic resonances, referred to here as the Debye resonances, is resurrected as the preferred basis for describing the electromagnetic behaviour of the Earth and planets. Debye's two basic solutions to the spherical vector wave equation provide foundations for electromagnetic modes of the terrestrial and gaseous planets respectively in contrast with the separate electric and magnetic approaches usually taken. For those engaged in radiation protection issues, this paper provides the first published account of how the Sun apparently triggers an Earth magnetic shield against its own harmful radiation. Disturbances from the Sun - which are random in terms of polarity, polarisation, amplitude, and occurrence - are considered here to trigger the Debye modes and generate observed planetary electric and magnetic fields. Snapping or reconnection of solar or interplanetary field lines, acting together with the newly conceived magnetospheric transmission lines of recent literature, is suspected as the excitation mechanism. Virtual replacement of free space by plasma, places the electromagnetic behaviour of the Earth and planets under greatly enhanced control from the Sun. From a radiation protection viewpoint, modal theory based on solar-terrestrial coupling provides a new insight into the origin of the Earth's magnetic radiation shield, greater understanding of which is essential to development of global cosmic radiation protection strategies. Should man-made influences unduly increase conductivities of the Earth's magnetosphere, planet Earth could be left with no magnetic radiation shield whatsoever. Copyright (2002) Australasian Radiation Protection

  15. Understanding the origin of the solar cyclic activity for an improved earth climate prediction

    Science.gov (United States)

    Turck-Chièze, Sylvaine; Lambert, Pascal

    This review is dedicated to the processes which could explain the origin of the great extrema of the solar activity. We would like to reach a more suitable estimate and prediction of the temporal solar variability and its real impact on the Earth climatic models. The development of this new field is stimulated by the SoHO helioseismic measurements and by some recent solar modelling improvement which aims to describe the dynamical processes from the core to the surface. We first recall assumptions on the potential different solar variabilities. Then, we introduce stellar seismology and summarize the main SOHO results which are relevant for this field. Finally we mention the dynamical processes which are presently introduced in new solar models. We believe that the knowledge of two important elements: (1) the magnetic field interplay between the radiative zone and the convective zone and (2) the role of the gravity waves, would allow to understand the origin of the grand minima and maxima observed during the last millennium. Complementary observables like acoustic and gravity modes, radius and spectral irradiance from far UV to visible in parallel to the development of 1D-2D-3D simulations will improve this field. PICARD, SDO, DynaMICCS are key projects for a prediction of the next century variability. Some helioseismic indicators constitute the first necessary information to properly describe the Sun-Earth climatic connection.

  16. Learning about the Dynamic Sun through Sounds

    Science.gov (United States)

    Quinn, M.; Peticolas, L. M.; Luhmann, J.; MacCallum, J.

    2008-06-01

    Can we hear the Sun or its solar wind? Not in the sense that they make sound. But we can take the particle, magnetic field, electric field, and image data and turn it into sound to demonstrate what the data tells us. We present work on turning data from the two-satellite NASA mission called STEREO (Solar TErrestrial RElations Observatory) into sounds and music (sonification). STEREO has two satellites orbiting the Sun near Earth's orbit to study the coronal mass ejections (CMEs) from the Corona. One sonification project aims to inspire musicians, museum patrons, and the public to learn more about CMEs by downloading STEREO data and using it to make music. We demonstrate the software and discuss the way in which it was developed. A second project aims to produce a museum exhibit using STEREO imagery and sounds from STEREO data. We demonstrate a "walk across the Sun" created for this exhibit so people can hear the features on solar images. We show how pixel intensity translates into pitches from selectable scales with selectable musical scale size and octave locations. We also share our successes and lessons learned.

  17. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric RelationshipSolar RadiationEstimation of Terrestrial Solar RadiationModels Based on Long-Term Measured Horizontal Solar RadiationMeasurement of Solar RadiationSolar Radiation Mapping Using Satellite DataReferencesSuggested ReadingsSolar Thermal CollectorsRadiative Properties and Characteristics of MaterialsFlat-Plate CollectorsTubular Solar Energy CollectorsExperimental Testing of CollectorsConcentrating Solar CollectorsParabolic Trough ConcentratorCompound-Curvature Solar ConcentratorsCentral Receiver CollectorFresnel Reflectors and LensesSolar Concentrator SummaryReferencesSuggested ReadingThermal Energy Storage and TransportThermal Energy StorageTypes of TESDesign of Storage SystemEnergy Transport ...

  18. Children's Concepts of the Shape and Size of the Earth, Sun and Moon

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2013-02-01

    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models which young people use and how they theorise in the process of acquiring more scientific conceptions. In this article, the relevant published research is reviewed critically and in-depth in order to frame a series of investigations using semi-structured interviews carried out with 248 participants aged 3-18 years from China and New Zealand. Analysis of qualitative and quantitative data concerning the reasoning of these subjects (involving cognitive categorisations and their rank ordering) confirmed that (a) concepts of Earth shape and size are embedded in a 'super-concept' or 'Earth notion' embracing ideas of physical shape, 'ground' and 'sky', habitation of and identity with Earth; (b) conceptual development is similar in cultures where teachers hold a scientific world view and (c) children's concepts of shape and size of the Earth, Sun and Moon can be usefully explored within an ethnological approach using multi-media interviews combined with observational astronomy. For these young people, concepts of the shape and size of the Moon and Sun were closely correlated with their Earth notion concepts and there were few differences between the cultures despite their contrasts. Analysis of the statistical data used Kolmogorov-Smirnov Two-Sample Tests with hypotheses confirmed at K-S alpha level 0.05; rs : p < 0.01.

  19. High-Performance Data Analysis Tools for Sun-Earth Connection Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interactive Data Language (IDL) is a standard tool used by many researchers in observational fields. Present day Sun-Earth Connection missions like SOHO, or...

  20. Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update

    Science.gov (United States)

    Fox, N. J.

    2016-12-01

    Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.

  1. Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update

    Science.gov (United States)

    Fox, N. J.

    2017-12-01

    The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.

  2. Soft X-rays from the sunlit earth's atmosphere

    International Nuclear Information System (INIS)

    McKenzie, D.L.; Rugge, H.R.; Charles, P.A.

    1982-01-01

    The HEAO-1 A-2 experiment low energy proportional counters have been used to measure the X-ray spectrum of the sunlit earth in the energy range 0.2 to 0.8 keV. The X-rays arise by coherent scattering of, or fluorescence of atmospheric constituents by, solar coronal X-rays incident on the atmosphere. Although the relative spectral contributions of the two processes depend upon the sun-earth-satellite geometry, fluorescent oxygen and nitrogen K X-ray emission is always important. The observed spectra were compared with calculations in order to derive the coronal temperature and emission measure, parameters that characterize the incident solar spectrum. These derived parameters agree well with the expected values for the nonflaring sun, and good agreement was obtained between measurements closely spaced in time but having a wide range of geometries and counting rates. Thus X-ray observations of the sunlit earth's atmosphere can be a useful monitor of solar activity for satellite-borne instrumentation unable to view the sun directly. The total measured fluorescent line flux agreed well with calculations, but the N:O line ratio did not. This disagreement is attributed to several causes which are discussed. (author)

  3. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  4. Traditions of the Sun, One Model for Expanding Audience Access

    Science.gov (United States)

    Hawkins, I.; Paglierani, R.

    2006-12-01

    The Internet is a powerful tool with which to expand audience access, bringing students, teachers and the public to places and resources they might not otherwise visit or make use of. We will present Traditions of the Sun, an experiential Web site that invites exploration of the world's ancient observatories with special emphasis on Chaco Culture National Historic Park in the Four Corners region of the US and several sites in the Yucatan Peninsula in Mexico. Traditions of the Sun includes resources in English and Spanish along with a unique trilingual on-line book, "Traditions of the Sun, A Photographic Journal," containing explanatory text in Yucatec Maya as well. Traditions of the Sun offers rich opportunities for virtual visits to ancient sites used for solar observing while learning about current NASA research on the Sun and indigenous solar practices within a larger historical and cultural context. The site contains hundreds of photographs, historic images and rich multimedia to help tell the story of the Sun-Earth Connection. Visitors to the site can zoom in on the great Mayan cities of Chichen Itza, Uxmal, Dzibilchaltun, and Mayapan to learn about Mayan astronomy, history, culture, and science. They can also visit Chaco Canyon to watch sunrise over Pueblo Bonito on the summer solstice, take a virtual reality tour of the great kiva at Casa Rinconada or see panoramic vistas from Fajada Butte, an area which, for preservation purposes, is restricted to the public. Traditions of the Sun provides one model of how exploration and discovery can come to life for both formal and informal audiences via the Internet. Traditions of the Sun is a collaborative project between NASA's Sun-Earth Connection Education Forum, the National Park Service, Instituto National de Antropologia e Historia, Universidad Nacional Autonoma de Mexico, and Ideum.

  5. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART A: TUTORIAL

    Science.gov (United States)

    Amory-Mazaudier, C.; Menvielle, M.; Curto, J-J.; Le Huy, M.

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern Solar Terrestrial Physics, Atmospheric Physics and Space Weather. In this part A, we introduce knowledge on the Sun-Earth system. We consider the physical process of the dynamo which is present in the Sun, in the core of the Earth and also in the regions between the Sun and the Earth, the solar wind-magnetosphere and the ionosphere. Equations of plasma physics and Maxwell's equations will be recalled. In the Sun-Earth system there are permanent dynamos (Sun, Earth's core, solar wind - magnetosphere, neutral wind - ionosphere) and non-permanent dynamos that are activated during magnetic storms in the magnetosphere and in the ionosphere. All these dynamos have associated electric currents that affect the variations of the Earth's magnetic field which are easily measurable. That is why a part of the tutorial is also devoted to the magnetic indices which are indicators of the electric currents in the Sun-Earth system. In order to understand some results of the part B, we present some characteristics of the Equatorial region and of the electrodynamics coupling the Auroral and Equatorial regions.

  6. A knowledge discovery approach to explore some Sun/Earth's climate relationships

    Science.gov (United States)

    Pou, A.; Valdes, J.

    2009-09-01

    Recent developments in data driven modeling and analysis including computational intelligence techniques may throw new light on the exploration of possible solar activity/Earth's climate relationships. Here we present three different examples of methodologies under development and some preliminary results. a) Multivariate Time Series Model Mining (MVTSMM) analysis [1] and Genetic Programming were applied to Greenland's CRETE Site-E ice core Delta O18/16 values (1721-1983, one year interval sampling) and with sunspots activity (International Sunspots Number) during the same time span [2]. According to the results (1771 to 1933 period) indicated by the lag importance spectrum obtained with MVTSMM analysis, the sun's activity itself shows high internal variability and is inhomogeneous. The Dalton minimum, a low activity period usually considered to occur between 1790 and 1830, is shown to be a complex structure beginning about 1778 and ending in 1840. Apparently, the system entered a new state in 1912. In the joint analysis, the analytical tool uses extensively the solar activity data to explain the Delta O18/16 data, showing areas of stable patterns, lag drifts and abrupt pattern disruptions, indicating changes of state in the solar processes of several kinds at different times. b) A similar MVTSMM analysis was conducted on Central England Temperature (CET) and solar activity data using Group Sunspots Number (GSN) with a useful interpretive span of time from 1771 to 1916. The joint analysis involved large amounts of solar activity variables, except for the 1843-1862 and 1877-1889 periods where the discovered models used much less information from GSN data. As with the Crete-E/ISN analysis the lag importance spectrum of CET/GSN shows a number of clear discontinuities. A quarter of them are present in both (1778-1779, 1806, 1860-1862, 1912-1913). These experiments were designed for testing methodologies and not for specific hypothesis testing. However, it seems that

  7. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    Science.gov (United States)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  8. Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation

    Science.gov (United States)

    Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.

    1995-01-01

    Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.

  9. Spatially Resolved Images and Solar Irradiance Variability R ...

    Indian Academy of Sciences (India)

    Abstract. The Sun is the primary source of energy that governs both the terrestrial climate and near-earth space environment. Variations in UV irradiances seen at earth are the sum of global (solar dynamo) to regional. (active region, plage, network, bright points and background) solar mag- netic activities that can be ...

  10. On the Path to SunShot - Emerging Opportunities and Challenges in Financing Solar

    Energy Technology Data Exchange (ETDEWEB)

    Feldham, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    Financial innovations—independent of technology-cost improvements—could cut the cost of solar energy to customers and businesses by 30%–60% (see Feldman and Bolinger 2016). Financing is critical to solar deployment, because the costs of solar technologies are paid up front, while their benefits are realized over decades. Solar financing has been shaped by the government incentives designed to accelerate solar deployment. This is particularly true for federal tax incentives, which have spawned complex tax-equity structures that monetize tax benefits for project sponsors who otherwise could not use them efficiently. Although these structures have helped expand solar deployment, they are relatively costly and inefficient. This has spurred solar stakeholders to develop lower-cost financing solutions such as securitization of solar project portfolios, solar-specific loan products, and methods for incorporating residential PV’s value into home values. To move solar further toward an unsubsidized SunShot future, additional financial innovation must occur. Development of a larger, more mature U.S. solar industry will likely increase financial transparency and investor confidence, which in turn will enable simpler, lower-cost financing methods. Utility-scale solar might be financed more like conventional generation assets are today, non-residential solar might be financed more like a new roof, and residential solar might be financed more like an expensive appliance. Assuming a constant, SunShot-level installed PV system price, such financing innovations could reduce PV’s LCOE by an estimated 30%–60% (depending on the sector) compared with historical financing approaches.

  11. Solar research and photography

    International Nuclear Information System (INIS)

    Honig, E.

    1977-01-01

    The first photograph of a solar eclipse was taken as early as 1887. Since that time, the phenomena taking place on the sun have not only been observed through telescopes, they have also been photographed using the most various methods. Apart from black-and-white pictures and colour photographs, there are also X-ray solar photographs, radio pictures, spectroheliograms, digital photographs, etc. To overcome the atmospheric barrier, balloons and rockets have been used, and since the beginning of space research satellites help to take photographs of the sun. These photographs of the sun help the astronomes to get a better understanding of the phenomena going on at the sun and to come to more precise conclusions as far as their influences on the earth are concerned. (author)

  12. THINNING OF THE SUN'S MAGNETIC LAYER: THE PECULIAR SOLAR MINIMUM COULD HAVE BEEN PREDICTED

    International Nuclear Information System (INIS)

    Basu, Sarbani; Broomhall, Anne-Marie; Chaplin, William J.; Elsworth, Yvonne

    2012-01-01

    The solar magnetic activity cycle causes changes in the Sun on timescales that are equivalent to human lifetimes. The minimum solar activity that preceded the current solar cycle (cycle 24) was deeper and quieter than any other recent minimum. Using data from the Birmingham Solar Oscillations Network (BiSON), we show that the structure of the solar sub-surface layers during the descending phase of the preceding cycle (cycle 23) was very different from that during cycle 22. This leads us to believe that a detailed examination of the data would have led to the prediction that the cycle 24 minimum would be out of the ordinary. The behavior of the oscillation frequencies allows us to infer that changes in the Sun that affected the oscillation frequencies in cycle 23 were localized mainly to layers above about 0.996 R ☉ , depths shallower than about 3000 km. In cycle 22, on the other hand, the changes must have also occurred in the deeper-lying layers.

  13. Solar radiation as a forest management tool: a primer of principles and application

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  14. The Sun-Earth saddle point: characterization and opportunities to test general relativity

    Science.gov (United States)

    Topputo, Francesco; Dei Tos, Diogene A.; Rasotto, Mirco; Nakamiya, Masaki

    2018-04-01

    The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun-Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on L_{1,2} Lagrange point orbits. Sun-Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.

  15. Solar Energy Educational Material, Activities and Science Projects

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Educational Materials Solar with glasses " ;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as

  16. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    Science.gov (United States)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  17. The sun in time

    International Nuclear Information System (INIS)

    Sonett, C.P.; Giampapa, M.S.; Matthews, M.S.

    1991-01-01

    Various papers on solar science are presented. The topics considered include: variability of solar irradiance, sunspot number, solar diameter, and solar wind properties; theory of luminosity and radius variations; standard solar models; the sun and the IMF; variations of cosmic-ray flux with time; accelerated particles in solar flares; solar cosmic ray fluxes during the last 10 million yrs; solar neutrinos and solar history; time variations of Be-10 and solar activity; solar and terrestrial components of the atmospheric C-14 variation spectrum; solar flare heavy-ion tracks in extraterrestrial objects. Also addressed are: the faint young sun problem; atmospheric responses to solar irradiation; quaternary glaciations; solar-terrestrial relationships in recent sea sediments; magnetic history of the sun; pre- and main-sequence evolution of solar activity; magnetic activity in pre-main-sequence stars; classical T Tauri stars; relict magnetism of meteorites; luminosity variability of solar-type stars; evolution of angular momentum in solar-mass stars; time evolution of magnetic fields on solarlike stars

  18. The far-side solar magnetic index

    International Nuclear Information System (INIS)

    Hernandez, Irene Gonzalez; Jain, Kiran; Hill, Frank; Tobiska, W Kent

    2011-01-01

    Several magnetic indices are used to model the solar irradiance and ultimately to forecast it. However, the observation of such indices are generally limited to the Earth-facing hemisphere of the Sun. Seismic maps of the far side of the Sun have proven their capability to locate and track medium-large active regions at the non-visible hemisphere. We present here the possibility of using the average signal from these seismic far-side maps as a proxy to the non-visible solar activity which can complement the current front-side solar activity indices.

  19. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    International Nuclear Information System (INIS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  20. Sun's dynamics and nucleosynthesis

    International Nuclear Information System (INIS)

    Gavanescu, Adela; Rusu, Mircea V.

    2005-01-01

    Nucleosynthesis processes in the sun are one of the main results related to the evolution of the Sun. Dynamics and energetics of the Sun could be studied indirectly by their elements products in produced by nucleosynthesis. Also solar atmosphere and its characteristics reveled in its full development is observed during the solar eclipses. We try to correlate these facts in order to obtained data to be used in solar models. (authors)

  1. The Telemachus mission: dynamics of the polar sun and heliosphere

    Science.gov (United States)

    Roelof, E.

    Telemachus in Greek mythology was the faithful son of Ulysses. The Telemachus mission is envisioned as the next logical step in the exploration of the polar regions of the Sun and heliosphere so excitingly initiated by the ESA/NASA Ulysses mission. Telemachus is a polar solar-heliospheric mission described in the current NASA Sun-Earth Connections Roadmap (2003-2028) that has successfully undergone two Team X studies by NASA/JPL. The pioneering observations from Ulysses transformed our perception of the structure and dynamics of these polar regions through which flow the solar wind, magnetic fields and energetic particles that eventually populate most of the volume of the heliosphere. Ulysses carried only fields and particles detectors. Telemachus, in addition to modern versions of such essential in situ instruments, will carry imagers that will give solar astronomers a new viewpoint on coronal mass ejections and solar flares, as well as their first purely polar views of the photospheric magnetic field, thereby providing new helioseismology to probe the interior of the Sun. Unlike the RTG-powered Ulysses, the power for Telemachus will come simply from solar panels. Gravity assist encounters with Venus and Earth (twice) will yield ˜5 years of continuous in-ecliptic cruise science between 0.7 AU and 3.3 AU that will powerfully complement other contemporary solar-heliospheric missions. The Jupiter gravity assist, followed by a perihelion burn ˜8 years after launch, will place Telemachus in a permanent ˜0.2 AU by 2.5 AU heliographic polar orbit (inclination >80 deg) whose period will be 1.5 years. Telemachus will then pass over the solar poles at ˜0.4 AU (compared to 1.4 AU for Ulysses) and spend ˜2 weeks above 60 deg on each polar pass (alternating perihelions between east and west limbs as viewed from Earth). In 14 polar passes during a 10.5 year solar cycle, Telemachus would accumulate over half a year of polar science data. During the remainder of the time, it

  2. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  3. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.

    Science.gov (United States)

    Halim, Mohammad A

    2012-12-27

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley - Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  4. Flights of a spacecraft with a solar sail out of ecliptic plane

    Science.gov (United States)

    Polyakhova, Elena; Starkov, Vladimir; Stepenko, Nikolai

    2018-05-01

    Solar sailing is an unique form of spacecraft (SC) propulsion that uses the free and limitless supply of photons from the Sun. The investigation of near-the-Sun space properties is of the great scientific interest. It can be realized by help of solar sailing. We present the numerical simulation of several closed modelled trajectories of a spacecraft with a controlled solar sail to reach out of ecliptic plane, to flight over the Sun north and south poles and return to the Earth.

  5. New eyes on the sun a guide to satellite images and amateur observation

    CERN Document Server

    Wilkinson, John

    2012-01-01

    Information collected by satellites recently sent by the USA, the European Space Agency, Japan, Germany, the United Kingdom, and Russia to monitor the Sun has changed our knowledge and understanding of the Sun, particularly its effect on Earth. This book presents these findings in a way that will be welcomed by amateur astronomers, students, educators and anyone interested in the Sun. Enhanced by many colour photographs, the book combines newly acquired scientific understanding with detailed descriptions of features visible on the Sun’s surface and in its atmosphere. In the past, observing the Sun has been left to academics with specialised instruments, since solar observation has been unsafe because of the risk of eye damage.  This book explains how amateur astronomers can safely observe the various solar phenomena using special hydrogen-alpha telescopes that are not too expensive. Amateurs can now make a positive contribution to science by monitoring the Sun as professionals do.  Amateurs can also acces...

  6. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  7. Study of s-component of the solar radio emission and short-term quantitative prediction of powerful solar flares

    International Nuclear Information System (INIS)

    Guseynov, Sh; Gakhramanov, I.G.

    2012-01-01

    Full text : All living and non-living things on Earth is dependent on the processes occurring in the Sun. Therefore the study of the Sun with the aim to predict powerful solar flares is of great scientific and practical importance. It is known that the main drawback of modern forecasting of solar flares and the low reliability of forecasts is the lack of use of the physical concepts of the mechanism of flares

  8. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  9. Solar cosmic ray events at large radial distances from the sun

    International Nuclear Information System (INIS)

    Zwickl, R.; Webber, W.R.; McDonald, F.B.; Teegarden, B.; Trainor, J.

    1975-01-01

    Using the GSFC-UNH cosmic ray telescope on Pioneer 10 and 11 we have examined solar cosmic ray events out to a distance approximately 5 AU from the sun. Here we consider two aspects of this work, both related to our anisotropy studies. First, a detailed error analysis of the cosine fit to the anisotropy is presented. Second, we look at the anisotropy and intensity time characteristics during solar events as a function of radial distance. (orig.) [de

  10. SunBlock '99: Young Scientists Investigate the Sun

    Science.gov (United States)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  11. Global helioseismology (WP4.1): From the Sun to the stars & solar analogs

    Science.gov (United States)

    García, Rafael A.

    2017-10-01

    Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1) has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields). After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.

  12. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  13. Solar system a visual exploration of the planets, moons, and other heavenly bodies that orbit our sun

    CERN Document Server

    Chown, Marcus

    2011-01-01

    Based on the latest ebook sensation developed by Theodore Gray and his company Touch Press, this beautiful print book presents a new and fascinating way to experience the wonders of the solar system Following the stunning success of both the print edition and the app of The Elements, Black Dog & Leventhal and Touch Press have teamed up again. Solar System is something completely new under the sun. Never before have the wonders of our solar system—all its planets, dwarf planets, the sun, moons, rocky Asteroid Belt, and icy Kuiper Belt—been so immediately accessible to readers of all ages. Beginning with a fascinating overview and then organized by planet, in order of its distance from the sun, Solar System takes us on a trip across time and space that includes a front-row seat to the explosive birth of the solar system, a journey to (and then deep inside) each of its eight planets, and even an in-depth exploration of asteroids and comets. With hundreds of gorgeous images produced especially for this...

  14. International solar-terrestrial physics program: a plan for the core spaceflight missions

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This brochure has been prepared to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  15. Stereo and Solar Cycle 24

    Science.gov (United States)

    Kaise,r Michael L.

    2008-01-01

    The twin STEREO spacecrafi, launched in October 2006, are in heliocentric orbits near 4 AU with one spacecraft (Ahead) leading Earth in its orbit around the Sun and the other (Behind) trailing Earth. As viewed from the Sun, the STEREO spacecraft are continually separating from one another at about 45 degrees per year with Earth biseding the angle. At present, th@spaser=raft are a bit more than 45 degrees apart, thus they are able to each 'vie@ ground the limb's of the Sun by about 23 degrees, corresponding to about 1.75 days of solar rotation. Both spameraft contain an identical set of instruments including an extreme ultraviolet imager, two white light coronagraphs, tws all-sky imagers, a wide selection of energetic particle detectors, a magnetometer and a radio burst tracker. A snapshot of the real time data is continually broadcast to NOW-managed ground stations and this small stream of data is immediately sent to the STEREO Science Center and converted into useful space weather data within 5 minutes of ground receipt. The resulting images, particle, magnetometer and radio astronomy plots are available at j g i t , : gAs timqe conting ues ijnto . g solar cycle 24, the separation angle becomes 90 degrees in early 2009 and 180 degrees in early 201 1 as the activity heads toward maximum. By the time of solar maximum, STEREO will provide for the first time a view of the entire Sun with the mronagraphs and e*reme ultraviolet instruments. This view wilt allow us to follow the evolution of active regions continuously and also detect new active regions long before they pose a space weather threat to Earth. The in situ instruments will be able to provide about 7 days advanced notice of co-rotating structures in the solar wind. During this same intewal near solar maximum, the wide-angle imagers on STEREB will both be ;able to view EarlCP-dirsted CMEs in their plane-oPsky. When combined with Eat-lhorbiting assets available at that time, it seems solar cycle 24 will mark a

  16. Optical model and calibration of a sun tracker

    International Nuclear Information System (INIS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-01-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker. - Highlights: • We present an optimal optical sun tracker model for atmospheric spectroscopy. • The problem of loss of stability of tracker pointing at the Sun has been solved. • We propose an optimal method for tracker calibration at a measurement site. • Test results demonstrate the efficiency of the proposed optimization methods.

  17. Neutrinos from the Sun, pollution of the Galaxy by the products of stellar nucleosynthesis and the terrestrial ice ages

    International Nuclear Information System (INIS)

    Kuchowicz, B.

    1978-01-01

    One of the possible explanations of Davis' observational results on solar neutrinos is the hypothesis stating that the metal abundance Z is extremely low throughout the whole Sun, with the exception of its surface layers. Accretion of interstellar matter during the voyage of the Sun in the Galaxy should be responsible for the higher abundance of the heavy elements of the solar surface. The matter which was accreted by the Sun might have contained a higher percentage of the heavy elements than the matter out of which the Sun was born. Periods of enhanced accretion during the passage of the Sun through the spiral arms of the Galaxy can be ralated to the successive ages in the history of the Earth. (author)

  18. Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.

    Directory of Open Access Journals (Sweden)

    Joan-Pau Sánchez

    Full Text Available Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.

  19. Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.

    Science.gov (United States)

    Sánchez, Joan-Pau; McInnes, Colin R

    2015-01-01

    Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.

  20. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  1. Global helioseismology (WP4.1: From the Sun to the stars & solar analogs

    Directory of Open Access Journals (Sweden)

    García Rafael A.

    2017-01-01

    Full Text Available Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1 has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields. After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.

  2. Mass, Energy, Space And Time System Theory---MEST A way to help our earth

    Science.gov (United States)

    Cao, Dayong

    2009-03-01

    There are two danger to our earth. The first, the sun will expand to devour our earth, for example, the ozonosphere of our earth is be broken; The second, the asteroid will impact near our earth. According to MEST, there is a interaction between Black hole (and Dark matter-energy) and Solar system. The orbit of Jupiter is a boundary of the interaction between Black hole (and Dark matter-energy) and Solar system. Because there are four terrestrial planets which is mass-energy center as solar system, and there are four or five Jovian planets which is gas (space-time) center as black hole system. According to MEST, dark matter-energy take the velocity of Jupiter gose up. So there are a lot of asteroids and dark matter-energy near the orbit of Jupiter-the boundary. Dark matter-energy can change the orbit of asteroid, and take it impacted near our earth. Because the Dark matter-energy will pressure the Solar system. It is a inverse process with sun's expandedness. So the ``two danger'' is from a new process of the balance system between Black hole (and Dark matter-energy) and Solar system. According to MEST, We need to find the right point for our earth in the ``new process of the balance system.''

  3. Imaging Near-Earth Electron Densities Using Thomson Scattering

    Science.gov (United States)

    2009-01-15

    geocentric solar magnetospheric (GSM) coordinates1. TECs were initially computed from a viewing loca- tion at the Sun-Earth L1 Lagrange point2 for both...further find that an elliptical Earth orbit (apogee ~30 RE) is a suitable lower- cost option for a demonstration mission. 5. SIMULATED OBSERVATIONS We

  4. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak

    2010-01-01

    In this study was investigated the thin-layer drying characteristics in solar dryer with forced convection and under open sun with natural convection of mint leaves, and, performed energy analysis and exergy analysis of solar drying process of mint leaves. An indirect forced convection solar dryer consisting of a solar air collector and drying cabinet was used in the experiments. The drying data were fitted to ten the different mathematical models. Among the models, Wang and Singh model for the forced solar drying and the natural sun drying were found to best explain thin-layer drying behaviour of mint leaves. Using the first law of thermodynamics, the energy analysis throughout solar drying process was estimated. However, exergy analysis during solar drying process was determined by applying the second law of thermodynamics. Energy utilization ratio (EUR) values of drying cabinet varied in the ranges between 7.826% and 46.285%. The values of exergetic efficiency were found to be in the range of 34.760-87.717%. The values of improvement potential varied between 0 and 0.017 kJ s -1 . Energy utilization ratio and improvement potential decreased with increasing drying time and ambient temperature while exergetic efficiency increased.

  5. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    Science.gov (United States)

    Kusiolek, Richard

    Summary An array of 55,000 40-foot antennas can generate from the rays of the Sun enough electrical power to replace 50 The economic potential is huge. There are new industries that will only grow and there are different ways to collect solar energy, including wind power. The energy sources we rely on for the most part are finite - fossil fuels, coal, oil and natural gas are all limited in supply. The cost will only continue to rise as demand increases. The time of global economic crossover between the EU, Asia Pacific and North America is coming within less than five years. The biggest opportunity for solar energy entrepreneurs would seem to be in municipal contracting where 1500 40-foot stacking antennas can be hooked into a grid to power an entire city. The antenna can generate 45 kilowatts of energy, enough to satisfy the electrical needs 7x24 of ten to twenty homes. It is possible to design and build 35-by-80-foot pedestals that track the sun from morning until night to provide full efficiency. A normal solar cell looks in the sky for only four or five hours of direct sunlight. Fabrication of these pedestals would sell for USD 50, 000-70,000 each. The solar heat collected by the antennas can be bounced into a Stirling engine, creating electricity at a focal point. Water can be heated by running through that focal point. In addition, salt water passing through the focal point can be desalinated, and since the antenna can generate up to 2,000 degrees of heat at the focal point. The salt water passing through the focal point turns to steam, which separates the salt and allows the steam to be turned into fresh drinking water. Collector energy can be retained in betavoltaics which uses semiconductors to capture energy from radioactive materials and turn it into usable electricity for automobiles. In a new battery, the silicon wafers in the battery are etched with a network of deep pores. These pores vastly increase the exposure surface area of the silicon, allowing

  6. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  7. Sun-Earth System Interaction studies over Vietnam: an international cooperative project

    Directory of Open Access Journals (Sweden)

    C. Amory-Mazaudier

    2006-12-01

    Full Text Available During many past decades, scientists from various countries have studied separately the atmospheric motions in the lower atmosphere, in the Earth's magnetic field, in the magnetospheric currents, etc. All of these separate studies lead today to the global study of the Sun and Earth connections, and as a consequence, new scientific programs (IHY- International Heliophysical Year, CAWSES- Climate and Weather in the Sun-Earth System are defined, in order to assume this new challenge. In the past, many scientists did not have the possibility to collect data at the same time in the various latitude and longitude sectors. Now, with the progress of geophysical sciences in many developing countries, it is possible to have access to worldwide data sets. This paper presents the particularities of geophysical parameters measured by the Vietnamese instrument networks. It introduces a cooperative Vietnamese-IGRGEA (International Geophysical Research Group Europe Africa project, and presents, for the first time, to the international community, the geophysical context of Vietnam. Concerning the ionosphere: since 1963, during four solar cycles, the ionosonde at Phu Thuy (North Vietnam was operating. The Phu Thuy data exhibits the common features for the ionospheric parameters, previously observed in other longitude and latitude sectors. The critical frequencies of the E, F1 and F2 ionospheric layers follow the variation of the sunspot cycle. F2 and E critical frequencies also exhibit an annual variation. The first maps of TEC made with data from GPS receivers recently installed in Vietnam illustrate the regional equatorial pattern, i.e. two maxima of electronic density at 15° N and 15° S from the magnetic equator and a trough of density at the magnetic equator. These features illustrate the equatorial fountain effect. Concerning the Earth's magnetic field: a strong amplitude of the equatorial electrojet was first observed by the CHAMP satellite at the height

  8. Long time-scale fluctuations in the evolution of the Earth

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1981-01-01

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed. (U.K.)

  9. Long time-scale fluctuations in the evolution of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK). Astronomy Centre

    1981-02-18

    Current knowledge about certain terrestrial phenomena is reviewed: (a) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment and (b) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions etc. are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. Fluctuations of glaciation within an ice-epoch may result from changes of insolation accompanying fluctuations of the Earth's motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun's motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. Impacts of planetesimals may be more important than hitherto recognized. Although the intensity of solar 'activity' is variable, terrestrial effects provide no confirmation that the Sun is a 'variable star'. As for the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed.

  10. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    Science.gov (United States)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  11. Monochromatic neutrinos from massive fourth generation neutrino annihilation in the Sun and Earth

    International Nuclear Information System (INIS)

    Belotskij, K.M.; Khlopov, M.Yu.; Shibaev, K.I.

    2001-01-01

    Accumulation inside the Earth and Sun of heavy (with the mass of 50 GeV) primordial neutrinos and antineutrinos of the fourth generation and their successive annihilation is considered. The minimal estimations of annihilational fluxes of monochromatic e, μ, τ neutrinos (neutrinos and antineutrinos) with the energy of 50 GeV are 4.1·10 -6 cm -2 ·s -1 from the Earth core and 1.1·10 -7 cm -2 ·s -1 from the Sun core. That makes the analysis of underground neutrino observatory data the additional source of information on the existence of massive stable 4th generation neutrino. It is shown that due to the kinetic equilibrium between the influx of the neutrinos and their annihilation the existence of new U(1)-gauge interaction of the 4th generation neutrino does not virtually influence the estimations of annihilational e-, μ-, τ-neutrino fluxes

  12. The Sunnel: Engaging Visitors in Solar Research via a Tunnel Through the Sun

    Science.gov (United States)

    DeMuth, Nora H.; Walker, C. E.

    2006-12-01

    The publicly accessible hallway space inside the McMath-Pierce Solar Telescope building on Kitt Peak has great untapped potential to house a display that would be relevant and understandable to KPNO visitors without the need for mediation or further explanation. An effective display would unite background content on solar physics and astronomy, and information on current solar research techniques and results in an accessible way that would excite and engage visitors. Considering these requirements, we created a concept currently dubbed the Sunnel (for “Sun-tunnel”). The Sunnel consists of two 95by 13-foot murals of the layers of the Sun stretching down the visitor hallway in the McMath-Pierce Solar Telescope. Temperatures of the layers are represented by the colors of the peak in the corresponding black-body curves, and solar features such as sunspots and pressure waves are represented by abstract designs flowing along the walls. A photon path will be laid on the floor using tiles, and several posters highlighting current solar research and background science content relevant to solar research will be displayed on one wall. An audio tour featuring interviews with solar researchers guides visitors along the Sunnel, engaging them and supporting deeper appreciation of the solar research. Installation of the murals is scheduled for early 2007, just in time to celebrate the International Heliophysical Year. DeMuth's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  13. Solar sketching a comprehensive guide to drawing the sun

    CERN Document Server

    Rix, Erika; Russell, Sally; Handy, Richard

    2015-01-01

    From the authors of Sketching the Moon comes a comprehensive guide filled with richly illustrated, detailed drawing tutorials that cover a variety of solar phenomena. Time-honored, traditional methods and media are described in tandem with innovative techniques developed and shared by contemporary astronomical sketchers. Explanations of what to expect visually from white light, Hydrogen-alpha and Calcium K filters are provided for those new to solar observing, along with essential tips on equipment, observing techniques and the practicalities of drawing at the eyepiece. For the technically minded, detailed descriptions are given on how to use image manipulation software to bring your sketches to life through animation.   The Sun is the most visually dynamic object in our solar system and offers compelling, spectacular views. Knotted magnetic field lines give rise to powerful eruptions and form the intricate sunspots and arching prominences that make our nearest star one of the most exciting, yet challenging,...

  14. Sun as a maker of weather and climate

    Energy Technology Data Exchange (ETDEWEB)

    Willett, H C

    1976-01-01

    The theory that an increase of atmospheric carbon dioxide produced by the combustion of fossil fuels could best explain the warming trend observed from 1920 to 1940 has long stimulated popular concern and debate. An alternative explanation proposing that variations in solar activity best fit recent observed climatic fluctuations, and offering a very sketchy physical hypothesis is presented. Patterns of atmospheric circulation on earth reflect cyclic changes in the sun. By studying solar cycles, a ''little ice age'' bringing extremes of cold is predicted by the year 2200. However, the next age of widespread glaciation is still too distant to be seen.

  15. 7th Class Students' Opinions on Sun, Earth and Moon System

    Science.gov (United States)

    Aydin, Suleyman

    2017-01-01

    This study is conducted to detect the students' perceptions on Sun, Moon and Earth (SME) system and define the 7th grade students' attitudes on the subject. In the study, since it was aimed to detect and evaluate the students' perceptions on some basic astronomical concepts without changing the natural conditions, a descriptive approach was…

  16. Pushing concentration of stationary solar concentrators to the limit.

    Science.gov (United States)

    Winston, Roland; Zhang, Weiya

    2010-04-26

    We give the theoretical limit of concentration allowed by nonimaging optics for stationary solar concentrators after reviewing sun- earth geometry in direction cosine space. We then discuss the design principles that we follow to approach the maximum concentration along with examples including a hollow CPC trough, a dielectric CPC trough, and a 3D dielectric stationary solar concentrator which concentrates sun light four times (4x), eight hours per day year around.

  17. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    Science.gov (United States)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  18. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  19. The flight over the sun

    International Nuclear Information System (INIS)

    Ducrocq, A.

    1985-01-01

    With the ''Ulysse'' mission, a satellite is going for the first time to leave the ecliptic plane to observe the sun poles. The ISPM (International Solar Polar Mission) probe will go and visit the sun in passing Jupiter way. Sun pole regions are surmised to play a major role in solar wind production [fr

  20. Status of the Daniel K. Inouye Solar Telescope: unraveling the mysteries the Sun.

    Science.gov (United States)

    Rimmele, Thomas R.; Pillet, Valentin; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Rosner, Robert; Casini, Roberto; Lin, Haosheng; von der Luehe, Oskar; Woeger, Friedrich; Tritschler, Alexandra; Fehlmann, Andre; Jaeggli, Sarah A.; Schmidt, Wolfgang; De Wijn, Alfred; Rast, Mark; Harrington, David M.; Sueoka, Stacey R.; Beck, Christian; Schad, Thomas A.; Warner, Mark; McMullin, Joseph P.; Berukoff, Steven J.; Mathioudakis, Mihalis; DKIST Team

    2018-06-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to address many of the fundamental problems in solar and stellar astrophysics, including the origin of stellar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar and stellar output. DKIST will also address basic research aspects of Space Weather and help improve predictive capabilities. In combination with synoptic observations and theoretical modeling DKIST will unravel the many remaining mysteries of the Sun.The construction of DKIST is progressing on schedule with 80% of the facility complete. Operations are scheduled to begin early 2020. DKIST will replace the NSO facilities on Kitt Peak and Sac Peak with a national facility with worldwide unique capabilities. The design allows DKIST to operate as a coronagraph. Taking advantage of its large aperture and infrared polarimeters DKIST will be capable to routinely measure the currently illusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Achieving this resolution is critical for the ability to observe magnetic structures at their intrinsic, fundamental scales. Five instruments will be available at the start of operations, four of which will provide highly sensitive measurements of solar magnetic fields throughout the solar atmosphere – from the photosphere to the corona. The data from these instruments will be distributed to the world wide community via the NSO/DKIST data center

  1. Solar Power Beaming: From Space to Earth

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  2. Solar Probe Plus: A mission to touch the sun

    Science.gov (United States)

    Kinnison, J.; Lockwood, M. K.; Fox, N.; Conde, R.; Driesman, A.

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) determine the structure and dynamics of the magnetic fields at the sources of the fast and slow solar wind, 2) trace the flow of energy that heats the corona and accelerates the solar wind. and 3) determine what mechanisms accelerate and transport energetic particles. In this paper, we present the Solar Probe Plus mission along with a brief comparison with some previous concepts for such a mission, and discuss the trade studies that led to the SPP implementation. We present a summary of the challenges associated with operation in the solar encounter environment and discuss the technology development and engineering trade studies to compose a mission that will not only survive this environment, but will provide the data needed to answer the science questions that have remained unanswered to date.

  3. Heating the Chromosphere in the Quiet Sun

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    The best-studied star the Sun still harbors mysteries for scientists to puzzle over. A new study has now explored the role of tiny magnetic-field hiccups in an effort to explain the strangely high temperatures of the Suns upper atmosphere.Schematic illustrating the temperatures in different layers of the Sun. [ESA]Strange Temperature RiseSince the Suns energy is produced in its core, the temperature is hottest here. As expected, the temperature decreases further from the Suns core up until just above its surface, where it oddly begins to rise again. While the Suns surface is 6,000 K, the temperature is higher above this: 10,000 K in the outer chromosphere.So how is the chromosphere of the Sun heated? Its possible that the explanation can be found not amid high solar activity, but in quiet-Sun regions.In a new study led by Milan Goi (Lockheed Martin Solar and Astrophysics Laboratory, Bay Area Environmental Research Institute), a team of scientists has examined a process that quietly happens in the background: the cancellation of magnetic field lines in the quiet Sun.Activity in a SupergranuleTop left: SDO AIA image of part of the solar disk. The next three panels are a zoom of the particular quiet-Sun region that the authors studied, all taken with IRIS at varying wavelengths: 1400 (top right), 2796 (bottom left), and 2832 (bottom right). [Goi et al. 2018]The Sun is threaded by strong magnetic field lines that divide it into supergranules measuring 30 million meters across (more than double the diameter of Earth!). Supergranules may seem quiet inside, but looks can be deceiving: the interiors of supergranules contain smaller, transient internetwork fields that move about, often resulting in magnetic elements of opposite polarity encountering and canceling each other.For those internetwork flux cancellations that occur above the Suns surface, a small amount of energy could be released that locally heats the chromosphere. But though each individual event has a small

  4. How to Observe the Sun Safely

    CERN Document Server

    Macdonald, Lee

    2012-01-01

    How to Observe the Sun Safely, Second Edition gives all the basic information and advice the amateur astronomer needs to get started in observing our own ever-fascinating star. Unlike many other astronomical objects, you do not need a large telescope or expensive equipment to observe the Sun. And it is possible to take excellent pictures of the Sun with today's low-cost digital cameras! This book surveys what is visible on the Sun and then describes how to record solar features and measure solar activity levels. There is also an account of how to use H-alpha and Calcium-K filters to observe and record prominences and other features of the solar chromosphere, the Sun's inner atmosphere. Because we are just entering a period of high activity on the Sun, following a long, quiet period, this is a great time to get involved with solar observing. Still emphasizing safety first, this Second Edition reflects recent and exciting advances in solar observing equipment. Chapters 6 through 8 have been completely revised ...

  5. The Search for Another Earth – Part II

    Indian Academy of Sciences (India)

    In this part, we will describe various kinds of ... the Earth will also be discussed. 1. .... life. system is oxygen rich because the interstellar cloud from which the Sun and the solar planets were born .... a habitable planet must be rocky in order to sustain liquid ... helped in keeping the atmosphere of the Earth habitable for a long.

  6. From the Sun to the Earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    C. Hanuise

    2006-03-01

    Full Text Available During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME. Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1 the expansion of the auroral oval, and aurorae seen at mid latitudes, (2 the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3 the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4 the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities.

  7. Observing the Sun with NuSTAR

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in

  8. The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Science.gov (United States)

    Jones, Geraint H.; Knight, Matthew M.; Battams, Karl; Boice, Daniel C.; Brown, John; Giordano, Silvio; Raymond, John; Snodgrass, Colin; Steckloff, Jordan K.; Weissman, Paul; Fitzsimmons, Alan; Lisse, Carey; Opitom, Cyrielle; Birkett, Kimberley S.; Bzowski, Maciej; Decock, Alice; Mann, Ingrid; Ramanjooloo, Yudish; McCauley, Patrick

    2018-02-01

    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun's centre, equal to half of Mercury's perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and

  9. The sun and the neutrinos

    International Nuclear Information System (INIS)

    Forgacsne Dajka, E.

    2000-01-01

    A review of the solar neutrino puzzle is given. The main processes in the sun, the pp-chain and the CNO cycle are described. The solar neutrino puzzle, i.e. the fact that the detected amount of neutrinos coming from the sun is less than the amount predicted by the solar model is discussed. The first generation solar neutrino experiments are presented. (K.A.)

  10. Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence

    Science.gov (United States)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-05-01

    The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).

  11. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  12. Facilities for High Resolution Imaging of the Sun

    Science.gov (United States)

    von der Lühe, Oskar

    2018-04-01

    The Sun is the only star where physical processes can be observed at their intrinsic spatial scales. Even though the Sun in a mere 150 million km from Earth, it is difficult to resolve fundamental processes in the solar atmosphere, because they occur at scales of the order of the kilometer. They can be observed only with telescopes which have apertures of several meters. The current state-of-the-art are solar telescopes with apertures of 1.5 m which resolve 50 km on the solar surface, soon to be superseded by telescopes with 4 m apertures with 20 km resolution. The US American 4 m DSI Solar Telescope is currently constructed on Maui, Hawaii, and is expected to have first light in 2020. The European solar community collaborates intensively to pursue the 4 m European Solar Telescope with a construction start in the Canaries early in the next decade. Solar telescopes with slightly smaller are also in the planning by the Russian, Indian and Chinese communities. In order to achieve a resolution which approaches the diffraction limit, all modern solar telescopes use adaptive optics which compensates virtually any scene on the solar disk. Multi-conjugate adaptive optics designed to compensate fields of the order on one minute of arc have been demonstrated and will become a facility feature of the new telescopes. The requirements for high precision spectro-polarimetry – about one part in 104 – makes continuous monitoring of (MC)AO performance and post-processing image reconstruction methods a necessity.

  13. Ancient sun: fossil record in the earth, moon and meteorites. Proceedings of the Conference, Boulder, CO, October 16-19, 1979

    International Nuclear Information System (INIS)

    Pepin, R.O.; Eddy, J.A.; Merrill, R.B.

    1980-01-01

    Papers are presented concerning theories of solar variability and their consequences for luminosity, particle emission and magnetic field changes within the past 4.5 billion years, and on the records of such solar behavior in lunar, meteoritic and terrestrial materials. Specific topics include the neutrino luminosity of the sun, the relation of sunspots to the terrestrial climate of the past 100 years, solar modulation of galactic cosmic rays, the historical record of solar activity, C-14 variations in terrestrial and marine reservoirs, and solar particle fluxes as indicated by track, thermoluminescence and solar wind measurements in lunar rocks. Attention is also given to the spin-down of the solar interior through circulation currents and fluid instabilities, grain surface exposure models in planetary regoliths, rare gases in the solar wind, nitrogen isotopic variations in the lunar regolith, the influence of solar UV radiation on climate, and the pre-main sequence evolution of the sun and evidence of the primordial solar wind in the electromagnetic induction heating of the asteroids and moon

  14. The genesis solar-wind sample return mission

    International Nuclear Information System (INIS)

    Wiens, Roger C.

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the ±10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously

  15. Heliotropic dust rings for Earth climate engineering

    Science.gov (United States)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  16. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 and CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro, E-mail: pietro.baratella@sissa.it, E-mail: marco.cirelli@cea.fr, E-mail: andi.hektor@cern.ch, E-mail: joosep.pata@cern.ch, E-mail: morten.piibeleht@cern.ch, E-mail: alessandro.strumia@cern.ch [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2014-03-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.

  17. Solar corona electron density distribution

    International Nuclear Information System (INIS)

    Esposito, P.B.; Edenhofer, P.; Lueneburg, E.

    1980-01-01

    Three and one-half months of single-frequency (f= 0 2.2 x 10 9 Hz) time delay data (earth-to-spacecraft and return signal travel time) were acquired from the Helios 2 spacecraft around the time of its solar occupation (May 16, 1976). Following the determination of the spacecraft trajectory the excess time delay due to the integrated effect of free electrons along the signal's ray path could be separated and modeled. An average solar corona, equatorial, electron density profile, during solar minimum, was deduced from time delay measurements acquired within 5--60 solar radii (R/sub S/) of the sun. As a point of reference, at 10 R/sub S/ from the sun we find an average electron density of 4500 el cm -3 . However, there appears to be an asymmtry in the electron density as the ray path moved from the west (preoccultation) to east (post-occulation) solar limb. This may be related to the fact that during entry into occulation the heliographic latitude of the ray path (at closes approach to the sun) was about 6 0 , whereas during exit it became -7 0 . The Helios electron density model is compared with similar models deduced from a variety of different experimental techniques. Within 5--20 R/sub S/ of the sun the models separate according to solar minimum or maximum conditions; however, anomalies are evident

  18. SUN-TO-EARTH CHARACTERISTICS OF THE 2012 JULY 12 CORONAL MASS EJECTION AND ASSOCIATED GEO-EFFECTIVENESS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Möstl, Christian, E-mail: liuxying@spaceweather.ac.cn [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)

    2016-10-01

    We analyze multi-spacecraft observations associated with the 2012 July 12 coronal mass ejection (CME), covering the source region on the Sun from the Solar Dynamics Observatory , stereoscopic imaging observations from the Solar Terrestrial Relations Observatory ( STEREO ), magnetic field characteristics from Mercury Surface, Space Environment, Geochemistry, and Ranging ( MESSENGER ), and type II radio burst and in situ measurements from Wind . A triangulation method based on STEREO stereoscopic observations is employed to determine the kinematics of the CME, and the outcome is compared with the results derived from the type II radio burst using a solar wind electron density model. A Grad–Shafranov technique is applied to Wind in situ data to reconstruct the flux-rope structure and compare it with the observations of the solar source region, which helps in understanding the geo-effectiveness associated with the CME structure. Our conclusions are as follows: (1) the CME undergoes an impulsive acceleration, a rapid deceleration before reaching MESSENGER , and then a gradual deceleration out to 1 au, which should be considered in CME kinematics models; (2) the type II radio burst was probably produced from a high-density interaction region between the CME-driven shock and a nearby streamer or from the shock flank with lower heights, which implies uncertainties in the determination of CME kinematics using solely type II radio bursts; (3) the flux-rope orientation and chirality deduced from in situ reconstructions at Wind agree with those obtained from solar source observations; (4) the prolonged southward magnetic field near the Earth is mainly from the axial component of the largely southward inclined flux rope, which indicates the importance of predicting both the flux-rope orientation and magnetic field components in geomagnetic activity forecasting.

  19. SUN-TO-EARTH CHARACTERISTICS OF THE 2012 JULY 12 CORONAL MASS EJECTION AND ASSOCIATED GEO-EFFECTIVENESS

    International Nuclear Information System (INIS)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Yang, Zhongwei; Möstl, Christian

    2016-01-01

    We analyze multi-spacecraft observations associated with the 2012 July 12 coronal mass ejection (CME), covering the source region on the Sun from the Solar Dynamics Observatory , stereoscopic imaging observations from the Solar Terrestrial Relations Observatory ( STEREO ), magnetic field characteristics from Mercury Surface, Space Environment, Geochemistry, and Ranging ( MESSENGER ), and type II radio burst and in situ measurements from Wind . A triangulation method based on STEREO stereoscopic observations is employed to determine the kinematics of the CME, and the outcome is compared with the results derived from the type II radio burst using a solar wind electron density model. A Grad–Shafranov technique is applied to Wind in situ data to reconstruct the flux-rope structure and compare it with the observations of the solar source region, which helps in understanding the geo-effectiveness associated with the CME structure. Our conclusions are as follows: (1) the CME undergoes an impulsive acceleration, a rapid deceleration before reaching MESSENGER , and then a gradual deceleration out to 1 au, which should be considered in CME kinematics models; (2) the type II radio burst was probably produced from a high-density interaction region between the CME-driven shock and a nearby streamer or from the shock flank with lower heights, which implies uncertainties in the determination of CME kinematics using solely type II radio bursts; (3) the flux-rope orientation and chirality deduced from in situ reconstructions at Wind agree with those obtained from solar source observations; (4) the prolonged southward magnetic field near the Earth is mainly from the axial component of the largely southward inclined flux rope, which indicates the importance of predicting both the flux-rope orientation and magnetic field components in geomagnetic activity forecasting.

  20. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  1. From the Sun to the Earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    C. Hanuise

    2006-03-01

    Full Text Available During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME. Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1 the expansion of the auroral oval, and aurorae seen at mid latitudes, (2 the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3 the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4 the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities.

  2. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  3. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    Science.gov (United States)

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  5. Solar wind and its interaction with the Earth magnetosphere

    International Nuclear Information System (INIS)

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  6. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo; Freitas, Fabricio C. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Ramirez, Ivan [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Yong, David; Asplund, Martin; Alves-Brito, Alan; Casagrande, Luca [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bergemann, Maria [Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching (Germany); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Lind, Karin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Castro, Matthieu; Do Nascimento, Jose-Dias [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael, E-mail: tmonroe@usp.br [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.

  7. Solar and stellar flares and their impact on planets

    Science.gov (United States)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  8. A umbrella for the Earth

    International Nuclear Information System (INIS)

    Kunzig, R.

    2009-01-01

    In front of the global warming threat, the 'geo-engineers' foresee some solutions to change the climate of the Earth, like for instance, by hiding part of the solar radiation. Among the solutions one can notice: the injection of sulfur dioxide in the stratosphere, the artificial generation of clouds using sea fog generators, or the putting into orbit of disc-shape screens creating a 100000 km x 12000 km elliptical 'umbrella' between the sun and the Earth. (J.S.)

  9. The Sun on Trial

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2014-03-01

    For 150 years, the Sun has been seen as a gaseous object devoid of a surface, as required by the Standard Solar Model (SSM). Yet, not one line of observational evidence supports a gaseous Sun. In contrast, overwhelming evidence exists that the Sun is comprised of condensed matter. Recently, 40 proofs have been compiled in conjunction with the Liquid Metallic Hydrogen Solar Model (LMHSM). This model advances that the Sun has a true surface. Photospheric structures, such as sunspots, granules, and faculae, are not optical illusions, as in the SSM, but real objects with a condensed nature. The LMHSM accounts for the thermal spectrum by invoking true inter-atomic structure on the photosphere in the form of the graphite-like layered hexagonal metallic hydrogen lattice first proposed by Wigner and Huntington. Within the convection zone, layered metallic hydrogen, insulated by intercalate atoms, enables the generation of the solar dynamo. Electrons located in conduction bands provide a proper means of generating magnetic fields. Metallic hydrogen ejected from the photosphere also thinly populates the corona, as reflected by the continuous K-coronal spectrum. This coronal matter harvests electrons, resulting in the production of highly ionized atoms. Electron affinity, not temperature, governs the ion profile. The chromosphere is a site of hydrogen and proton capture. Line emission in this region, strongly supports the idea that exothermic condensation reactions are occurring in the chromosphere. In the LMHSM, solar activity and solar winds are regulated by exfoliation reactions occurring in the Sun itself, as the metallic hydrogen lattice excludes non-hydrogen elements from the solar body.

  10. The Analysis of the Properties of Super Solar Proton Events and the Associated Phenomena

    Science.gov (United States)

    Cheng, L. B.; Le, G. M.; Lu, Y. P.; Chen, M. H.; Li, P.; Yin, Z. Q.

    2014-05-01

    The solar flare, the propagation speed of shock driven by coronal mass ejection (CME) from the sun to the Earth, the source longitudes and Carrington longitudes, and the geomagnetic storms associated with each super solar proton event with the peak flux equal to or exceeding 10000 pfu have been investigated. The analysis results show that the source longitudes of super solar proton events ranged from E30° to W75°. The Carrington longitudes of source regions of super solar proton events distributed in the two longitude bands, 130°˜220° and 260°˜320°, respectively. All super solar proton events were accompanied by major solar flares and fast CMEs. The averaged speeds of shocks propagated from the sun to the Earth were greater than 1200 km/s. Eight super solar proton events were followed by major geomagnetic storms (Dst≤-100 nT). One super solar proton event was followed by a geomagnetic storm with Dst=-96 nT.

  11. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  12. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-01-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, Σ, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, Σ r and Σ b , exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, Σ K , is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of Σ r and Σ K . We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  13. Sun light European Project

    Science.gov (United States)

    Soubielle, Marie-Laure

    2015-04-01

    2015 has been declared the year of light. Sunlight plays a major role in the world. From the sunbeams that heat our planet and feed our plants to the optical analysis of the sun or the modern use of sun particles in technologies, sunlight is everywhere and it is vital. This project aims to understand better the light of the Sun in a variety of fields. The experiments are carried out by students aged 15 to 20 in order to share their discoveries with Italian students from primary and secondary schools. The experiments will also be presented to a group of Danish students visiting our school in January. All experiments are carried out in English and involve teams of teachers. This project is 3 folds: part 1: Biological project = what are the mechanisms of photosynthesis? part 2: Optical project= what are the components of sunlight and how to use it? part 3: Technical project= how to use the energy of sunlight for modern devices? Photosynthesis project Biology and English Context:Photosynthesis is a process used by plants and other organisms to convert light energy, normally from the Sun, into chemical energy that can later fuel the organisms' activities. This chemical energy is stored in molecules which are synthesized from carbon dioxide and water. In most cases, oxygen is released as a waste product. Most plants perform photosynthesis. Photosynthesis maintains atmospheric oxygen levels and supplies all of the organic compounds and most of the energy necessary for life on Earth. Outcome: Our project consists in understanding the various steps of photosynthesis. Students will shoot a DVD of the experiments presenting the equipments required, the steps of the experiments and the results they have obtained for a better understanding of photosynthesis Digital pen project Electricity, Optics and English Context: Sunlight is a complex source of light based on white light that can be decomposed to explain light radiations or colours. This light is a precious source to create

  14. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  15. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  16. The vectorial photoelectric effect under solar irradiance and its application to sun sensing

    International Nuclear Information System (INIS)

    Hechenblaikner, Gerald; Ziegler, Tobias

    2014-01-01

    Sun sensors are an integral part of the attitude and orbit control system onboard almost any spacecraft. While the majority of standard analogue sun sensors is based on photo-detectors which produce photo-currents proportional to the cosine of the incidence angle (cosine detectors), we propose an alternative scheme where the vectorial photoelectric effect is exploited to achieve a higher sensitivity of the sensed photo-current to the incidence angle. The vectorial photo-effect is investigated in detail for metal cathode detectors in a space environment. Besides long operational lifetimes without significant degradation, metal cathode detectors are insensitive to earth albedo, which may significantly reduce the errors affecting attitude measurements in low earth orbits. Sensitivity curves are calculated and trade-offs performed with the aim of optimizing the sensitivity whilst also providing currents sufficient for detection. Simple applications and detector configurations are also discussed and compared to the existing designs. (paper)

  17. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  18. Children's Concepts of the Shape and Size of the Earth, Sun and Moon

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2013-01-01

    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models…

  19. Science with the Expanded Owens Valley Solar Array

    Science.gov (United States)

    Nita, Gelu M.; Gary, Dale E.; Fleishman, Gregory D.; Chen, Bin; White, Stephen M.; Hurford, Gordon J.; McTiernan, James; Hickish, Jack; Yu, Sijie; Nelin, Kjell B.

    2017-08-01

    The Expanded Owens Valley Solar Array (EOVSA) is a solar-dedicated radio array that makes images and spectra of the full Sun on a daily basis. Our main science goals are to understand the basic physics of solar activity, such as how the Sun releases stored magnetic energy on timescales of seconds, and how that solar activity, in the form of solar flares and coronal mass ejections, influences the Earth and near-Earth space environment, through disruptions of communication and navigation systems, and effects on satellites and systems on the ground. The array, which is composed out of thirteen 2.1 m dishes and two 27 m dishes (used only for calibration), has a footprint of 1.1 km EW x 1.2 km NS and it is capable of producing, every second, microwave images at two polarizations and 500 science channels spanning the 1-18 GHz frequency range. Such ability to make multi-frequency images of the Sun in this broad range of frequencies, with a frequency dependent resolution ranging from ˜53” at 1 GHz to ˜3”at 18 GHz, is unique in the world. Here we present an overview of the EOVSA instrument and a first set of science-quality active region and solar flare images produced from data taken during April 2017.This research is supported by NSF grant AST-1615807 and NASA grant NNX14AK66G to New Jersey Institute of Technology.

  20. The Earth in space: An essay on the origin of the Solar system

    Directory of Open Access Journals (Sweden)

    S. BURMAN

    1964-06-01

    Full Text Available The origin of the sun and planets has been reviewed
    from manifold considerations — nuclear, astrophysical, chemical and geophysical.
    Basically, there are two schools of thought: monistic, which
    postulates that the sun and the planets formed from some primordial system
    of gases; and dualistic, which holds that the planets and meteorites had
    genesis in the sun's collision wtili another star. The extreme improbability
    of collision almost discards this hypothesis.
    The present day accepted theories are, hence, the monistic ones, and
    the one particularly favored is the Dust — cloud hypothesis — that the sun
    condensed into a star due to the gravitational collapse of a massive interstellar
    gas-cloud, and subsequently gave birth to planets as further evolution
    of the cloud progressed. Studies of extinct radioactivities, within the
    framework of the above hypothesis, give clue to the early history of the
    solar system and in particular indicate that the time interval between the
    start of condensation and the formation of the meteorite parent-bodies is
    less six million years (Cameron. In this context the origin of stars from
    " globules " or proto-stars has been briefly discussed.
    A somewhat " exotic " theory of the formation of planets from the
    sun which hinged on the concept of secular decrease of the ' constant ' of
    gravitation with the age of the universe (Dirac's hypothesis has been discussed.
    The earth (with expansion of its volume and other celestial
    bodies might provide empirical confirmation of the concept of diminishing
    gravitation — an important problem of general relativity. This new idea
    of physics might revolutionise fundamental concepts in geology and geophysics.

  1. International Living With a Star (ILWS), a new collaborative space program in Solar, Heliospheric and Solar-Terrestrial Physics

    Science.gov (United States)

    Opgenoorth, H. J.; Guhathakurta, M.; Liu, W.; Kosugi, T.; Zelenyi, L.

    2003-04-01

    International cooperation has long been a vital element in the scientific investigation of solar variability and its impact on Earth and its space environment. Recently a new international cooeperative program in solar terrestrial physics has been established by the major space agencies of the world, called the International Living With a Star (ILWS) program. ILWS is a follow on to the highly successful International Solar Terrestrial Physics (ISTP) program which involved international parterners. ISTP, with its steady flow of discoveries and new knowledge in solar Terrestrial physics, has laid the foundation for the coordinated study of the Sun-Earth sytem as a connected stellar-planetary system, system which is humanity's home. The first step in establishing ILWS was taken in the fall of 2000 when funding was approved for the NASA's Living With a Star (LWS) program whose goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. The scientific goals of ILWS are defined in a broader sense, aiming to include future solar, heliospheric and solar terrestrial missions of both applied and fundamental scientific focus. The ultimate goal of ILWS wil be to increase our understanding of how solar variability affects the terrestrial and other planetary environments both in the short and long term, and in particular how man and society may be affected by solar variability and its consequences. The mission charter of ILWS is 'to stimulate, strengthen and coordinate space research in order to understand the governing processes of the connected Sun-Earth System as an integrated entity'. More detailed ILWS Objectives are to stimulate and facilitate: - The study of the Sun Earth connected system and the effects which influence life and society - Collaboration among all potential partners in solar-terrestrial space missions - Synergistic coordination of international

  2. Four identical satellites investigating the Earth's turbulent relationship with the Sun

    Science.gov (United States)

    1996-05-01

    Once in space, the four satellites will manoeuvre to an eccentric polar trajectory along which they will fly in tetrahedral formation for the next two years. They will take highly precise and, for the first time, three- dimensional measurements of the extraordinarily dynamic phenomena that occur where the solar wind meets the near- Earth environment. They will gather an unprecedented volume of very high- quality information on the magnetic storms, electric currents and particle accelerations that take place in the space surrounding our planet, which give rise to all manner of events, such as the aurorae in the polar regions, power cuts, breakdowns in telecommunication systems, or satellite malfunctions, and perhaps even changes in climate. The Cluster mission will also gather a host of fundamental information on the ionised gases whose behaviour physicists are trying to reproduce under laboratory conditions with the ultimate aim of generating thermonuclear energy. A cosmic battlefield The Sun's flames are lapping at the Earth's doorstep. In its constant state of effervescence/evaporation, it emits into space a wind charged with ions, electrons and protons which reach Earth at speeds of 1.5 to 3 million kph. Fortunately, our planet is armed with a natural shield against this onslaught: the magnetosphere, a distant magnetic, ionised extension of our atmosphere which slows and deflects the bulk of the stream of particles emitted by the Sun. This shield does not provide complete protection, however. Under constant buffeting from the interplanetary wind, the "fluid" magnetic screen is buckled, distorted and occasionally torn, causing small holes. When this happens, intense electric currents, magnetic storms and particle accelerations immediately develop. The overall interaction between the solar wind and the magnetosphere is so violent that the energy transferred can be as much as 1013 watts - equivalent to worldwide power consumption - and the currents induced run to

  3. Nuclear astrophysics of the sun

    International Nuclear Information System (INIS)

    Kocharov, G.E.

    1980-01-01

    In the first chapter we will discuss the problem of nuclear reactions in the interior of the sun and consider the modern aspects of the neutrino astrophysics of the Sun. The second chapter is devoted to the high energy interactions in the solar atmosphere during the flares. Among a great number of events during the solar flares we shall consider mainly the nuclear reactions. Special attention will be paid to the genetic connection between the different components of solar electromagnetic and corpuscular radiation. The idea of the unity of processes in different parts of the Sun, from hot and dense interior up to the rare plasma of the solar corona will be the main line of the book. (orig./WL) 891 WL/orig.- 892 HIS

  4. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    International Nuclear Information System (INIS)

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-01-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html

  5. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 & CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Helsinki Institute of Physics, P.O. Box 64, Helsinki, FI-00014 (Finland); Pata, Joosep; Piibeleht, Morten [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Strumia, Alessandro [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Dipartimento di Fisica dell’Università di Pisa and INFN, Largo Buonarroti 2, Pisa (Italy)

    2014-03-27

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html.

  6. Geomagnetic storm related to intense solar radio burst type II and III ...

    African Journals Online (AJOL)

    The strong energetic particles ejected during sun's activity will propagate towards earth and contribute to solar radio bursts. These solar radio bursts can be detected using CALLISTO system. The open website of the NASA provides us the data including CALLISTO, TESIS, solar monitor, SOHO and space weather. The type ...

  7. Five years of discoveries with SOHO have made the Sun transparent

    Science.gov (United States)

    2001-04-01

    The announcement of these new far-side services coincides with the celebration of Sun-Earth Day 2001, by the European Space Agency, NASA and other agencies. It also marks the fifth anniversary of the commissioning of the European-built SOHO, in April 1996, and the formal start at that time of the observations with a dozen sets of clever solar instruments. European and US scientific teams contributed the instruments to this project of international cooperation between ESA and NASA. "What started as unusual research has become an everyday tool," notes Jean-Loup Bertaux of the CNRS Service d’Aéronomie near Paris, who leads the French-Finnish team responsible for the SWAN instrument. "We should no longer be taken by surprise by highly active regions that suddenly come into view as the Sun rotates." The Sun takes roughly four weeks to turn completely around on its axis, but active regions can appear and grow in only a few days. So until two years ago, no one had any way of telling when an active region might come ‘around the corner’ -- perhaps blazing away with eruptions as soon as it appeared. If an active region can be detected in the middle of the far side it will appear on the eastern (left-hand) side of the visible disk about seven days later. The SWAN team announced the telltale ultraviolet observations in June 1999. In March 2000 Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado, reported that they had detected, with SOHO’s MDI, sound waves reflected from far-side sunspots. Speeded by the intense magnetic fields associated with sunspot regions, the sound waves arrived a few seconds early at the Sun’s near-side face, compared with sound waves from sunspot-free regions. Decoding MDI data from a million points on the Sun’s near side, to obtain an impression of the far side, uses a technique called helioseismic holography and requires a powerful computer. Both discoveries were made retrospectively from SOHO’s archives. Since then

  8. Solar radiation and human health

    Energy Technology Data Exchange (ETDEWEB)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan [Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo (Norway); Brekke, Paal [Norwegian Space Centre, PO Box 113, Skoeyen, N-0212 Oslo (Norway); Dahlback, Arne [Department of Physics, University of Oslo, Blindern, 0316 Oslo (Norway); Andersson-Engels, Stefan [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Reichrath, Joerg [Klinik fuer Dermatologie, Venerologie und Allergologie, Universitaetsklinikum des Saarlandes, D-66421 Homburg/Saar (Germany); Holick, Michael F [Department of Medicine, Section of Endocrinology, Nutrition and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, 85 E. Newton St., M-1013, Boston, MA 02118 (United States); Grant, William B, E-mail: asta.juzeniene@rr-research.no, E-mail: kmoan@hotmail.com, E-mail: paal.brekke@spacecentre.no, E-mail: arne.dahlback@fys.uio.no, E-mail: j.e.moan@fys.uio.no, E-mail: stefan.andersson-engels@fysik.lth.se, E-mail: joerg.reichrath@uks.eu, E-mail: mfholick@bu.edu, E-mail: wbgrant@infionline.net [Sunlight, Nutrition and Health Research Center (SUNARC), PO Box 641603, San Francisco, CA 94164-1603 (United States)

    2011-06-15

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  9. Solar radiation and human health

    Science.gov (United States)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  10. Solar radiation and human health

    International Nuclear Information System (INIS)

    Juzeniene, Asta; Moan, Kristin; Moan, Johan; Brekke, Paal; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Joerg; Holick, Michael F; Grant, William B

    2011-01-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  11. Using Google Earth to Assess Shade for Sun Protection in Urban Recreation Spaces: Methods and Results.

    Science.gov (United States)

    Gage, R; Wilson, N; Signal, L; Barr, M; Mackay, C; Reeder, A; Thomson, G

    2018-05-16

    Shade in public spaces can lower the risk of and sun burning and skin cancer. However, existing methods of auditing shade require travel between sites, and sunny weather conditions. This study aimed to evaluate the feasibility of free computer software-Google Earth-for assessing shade in urban open spaces. A shade projection method was developed that uses Google Earth street view and aerial images to estimate shade at solar noon on the summer solstice, irrespective of the date of image capture. Three researchers used the method to separately estimate shade cover over pre-defined activity areas in a sample of 45 New Zealand urban open spaces, including 24 playgrounds, 12 beaches and 9 outdoor pools. Outcome measures included method accuracy (assessed by comparison with a subsample of field observations of 10 of the settings) and inter-rater reliability. Of the 164 activity areas identified in the 45 settings, most (83%) had no shade cover. The method identified most activity areas in playgrounds (85%) and beaches (93%) and was accurate for assessing shade over these areas (predictive values of 100%). Only 8% of activity areas at outdoor pools were identified, due to a lack of street view images. Reliability for shade cover estimates was excellent (intraclass correlation coefficient of 0.97, 95% CI 0.97-0.98). Google Earth appears to be a reasonably accurate and reliable and shade audit tool for playgrounds and beaches. The findings are relevant for programmes focused on supporting the development of healthy urban open spaces.

  12. Monitoring solar irradiance from L2 with Gaia

    Science.gov (United States)

    Serpell, E.

    2017-09-01

    Gaia is the European Space Agency's cornerstone astrometry mission to measure the positions of a billion stars in the Milky Way with unprecedented accuracy. Since early 2014 Gaia has been operating in a halo orbit around the second Sun-Earth Lagrange point that provides the stable thermal environment, without Earth eclipses, needed for the payload to function accurately. The spacecraft is equipped with a number of thermally isolated, sun-facing thermistors that provide a continuous measurement of the local equilibrium temperature. As a consequence of the spacecraft design and operational conditions these temperature measurements have been used to infer the solar output over a broad wavelength range. In this paper we present an analysis of temperature measurements made of the Gaia solar panels at frequencies of up to 1 Hz for the first 35 months of routine operations. We show that the Gaia solar panel temperature measurements are capable of precisely determining short term changes to the solar output at a level of better than 0.04% with time constants of a few minutes.

  13. "Earth, Sun and Moon": Computer Assisted Instruction in Secondary School Science--Achievement and Attitudes

    Science.gov (United States)

    Ercan, Orhan; Bilen, Kadir; Ural, Evrim

    2016-01-01

    This study investigated the impact of a web-based teaching method on students' academic achievement and attitudes in the elementary education fifth grade Science and Technology unit, "System of Earth, Sun and Moon". The study was a quasi-experimental study with experimental and control groups comprising 54 fifth grade students attending…

  14. THE PRECAMBRIAN HISTORY OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM AND EARTH. PART 1

    Directory of Open Access Journals (Sweden)

    M. I. Kuz’min

    2014-01-01

    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was

  15. A new view of the Sun from space

    CERN Document Server

    Bonnet, Roger Maurice

    2001-01-01

    Artificial Satellites are providing new tools for the observation of our star. The European Space Agency, ESA, in cooperation with NASA has programmed and developed three important space missions: SOHO, ULYSSES, and CLUSTER which offer new opportunities to study the Sun and how it influences the Earth's environment. SOHO in particular, thanks to an unprecedented stability together with a very complete set of instruments, has responded to several of the most fundamental questions concerning the behaviour and the running of our star. It is now possible to probe its interior down to the very core where the thermonuclear reactions occur and to deduce the physical conditions which exist therein. It is also possible to understand better the origin of the solar wind and why is the solar corona so hot. These two questions have been at the core of a large number of observations and theoretical studies for a long time. Thanks to ULYSSES which observes the Sun from a unique vantage point, outside the ecliptic plane wher...

  16. Climatic effects during passage of the solar system through interstellar clouds

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.; Butler, D.M.; Newman, M.J.

    1976-01-01

    It is thought likely that the solar system passes through regions where there are a large number of dense interstellar clouds. When this occurs several processes may cause significant changes in the climate of the Earth and other planets. Matters here discussed include the influences of compression of the solar wind cavity, accretion of matter by the Sun, and particulate input into the Earth's atmosphere. Gravitational energy released by the accretion of interstellar material by the Sun may enhance the solar luminosity, and considerations of terrestrial heat balance suggest that luminosity enhancements of 1% or more will produce significant variations of climate. Observational evidence suggests that there is some mechanism producing a relationship between solar wind flow and climate. One proposed mechanism is that contemporary solar wind modulation of galactic cosmic rays influences climate, and the fact that the Earth would be outside the solar wind cavity for all or part of the year may have an effect on terrestrial climate. Relatively small variations of solar UV radiation input may have perceptible influences on climate, and if a 1% variation in radiation input to the stratosphere has a significant effect then accretion may have a large impact on terrestrial conditions, even though the change in the total heat balance is negligible.With regard to dust input into the Earth's atmosphere it is estimated that during the lifetime of the solar system the mass of dust grains accreted by the Earth should have been about 10 16 to 10 18 g; the matter of evidence for their presence is discussed. It is concluded that the processes proposed have very complex implications for global weather patterns; and at present it is not possible to evaluate which, if any, will unquestionably affect the Earth's climate. (U.K.)

  17. Solar radio bursts as a tool for space weather forecasting

    Science.gov (United States)

    Klein, Karl-Ludwig; Matamoros, Carolina Salas; Zucca, Pietro

    2018-01-01

    The solar corona and its activity induce disturbances that may affect the space environment of the Earth. Noticeable disturbances come from coronal mass ejections (CMEs), which are large-scale ejections of plasma and magnetic fields from the solar corona, and solar energetic particles (SEPs). These particles are accelerated during the explosive variation of the coronal magnetic field or at the shock wave driven by a fast CME. In this contribution, it is illustrated how full Sun microwave observations can lead to (1) an estimate of CME speeds and of the arrival time of the CME at the Earth, (2) the prediction of SEP events attaining the Earth. xml:lang="fr"

  18. On the solar origin of interplanetary disturbances observed in the vicinity of the Earth

    Directory of Open Access Journals (Sweden)

    N. Vilmer

    Full Text Available The solar origin of 40 interplanetary disturbances observed in the vicinity of the Earth between January 1997 and June 1998 is investigated in this paper. Analysis starts with the establishment of a list of Interplanetary Mass Ejections or ICMEs (magnetic clouds, flux ropes and ejecta and of Interplanetary Shocks measured at WIND for the period for which we had previously investigated the coupling of the interplanetary medium with the terrestrial ionospheric response. A search for associated coronal mass ejections (CMEs observed by LASCO/SOHO is then performed, starting from an estimation of the transit time of the inter-planetary perturbation from the Sun to the Earth, assumed to be achieved at a constant speed (i.e. the speed measured at 1 AU. EIT/SOHO and Nançay Radioheliograph (NRH observations are also used as proxies in this identification for the cases when LASCO observations do not allow one to firmly establish the association. The last part of the analysis concerns the identification of the solar source of the CMEs, performed using a large set of solar observations from X-ray to radio wavelengths. In the present study, this association is based on a careful examination of many data sets (EIT, NRH and H images and not on the use of catalogs and of Solar Geophysical Data reports. An association between inter-planetary disturbances and LASCO/CMEs or proxies on the disk is found for 36 interplanetary events. For 32 events, the solar source of activity can also be identified. A large proportion of cases is found to be associated with a flare signature in an active region, not excluding of course the involvement of a filament. Conclusions are finally drawn on the propagation of the disturbances in the interplanetary medium, the preferential association of disturbances detected close to the Earth’s orbit with halos or wide CMEs and the location on the solar disk of solar sources of the interplanetary disturbances during that period

  19. Hemispheric asymmetry of the sun suggested by the annual variation of the aa index

    International Nuclear Information System (INIS)

    Oksman, J.; Kataja, E.

    1986-01-01

    The annual variation of Mayaud's aa index has been discovered to exhibit unequal spring and fall maxima, the relative dominance of the two equinoxes varying in a quasiperiodic way. This finding suggests to us that one magnetic hemisphere of the sun might predominate slightly over the other for several years in succession, the dominance switching over in a quasiperiodic way. The result of this magnetic asymmetry of the sun would be a droop of the current sheet in the solar wind and a difference of the solar magnetic latitudes of the earth in the two equinoxes, resulting in an equinoctial asymmetry in the energy transfer from the solar wind into the magnetosphere and, consequently, in geomagnetic agitation. Comparison with other available pieces of evidence suggests that some non-reconnection mechanism, such as viscous interaction at the flanks of the magnetosphere, might play an important role in geomagnetic agitation

  20. Everything turns around the sun. Four components for an enhanced solar coverage; Alles dreht sich um die Sonne. Vier Komponenten fuer eine hohe solare Deckung

    Energy Technology Data Exchange (ETDEWEB)

    Leukefeld, Timo [Timo Leukefeld - Energie verbindet, Freiberg im Breisgau (Germany); Prutti, Corina [Das Komm.Buero, Muenchen (Germany)

    2013-07-01

    The efficient use of the sun as an inexhaustible source of energy is in the focus of a solar house. A solar thermal power system with a long-term heat storage system supplies the inhabitants of the solar house with heat for the heating system and hot water. In Germany, the sustainable building concept already has been proven more than 1,300 times.

  1. The chemical composition of the sun from helioseismic and solar neutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Villante, Francesco L. [Dipartimento di Scienze Fisiche e Chimiche, Università dell' Aquila, I-67100 L' Aquila (Italy); Serenelli, Aldo M. [Instituto de Ciencias del Espacio (CSIC-IEEC), Facultad de Ciencias, E-08193 Bellaterra (Spain); Delahaye, Franck [LERMA, Observatoire de Paris, ENS, UPMC, UCP, CNRS, F-92190 Meudon (France); Pinsonneault, Marc H. [Astronomy Department, Ohio State University, Columbus, OH 43210 (United States)

    2014-05-20

    We perform a quantitative analysis of the solar composition problem by using a statistical approach that allows us to combine the information provided by helioseismic and solar neutrino data in an effective way. We include in our analysis the helioseismic determinations of the surface helium abundance and of the depth of the convective envelope, the measurements of the {sup 7}Be and {sup 8}B neutrino fluxes, and the sound speed profile inferred from helioseismic frequencies. We provide all the ingredients to describe how these quantities depend on the solar surface composition, different from the initial and internal composition due to the effects of diffusion and nuclear reactions, and to evaluate the (correlated) uncertainties in solar model predictions. We include error sources that are not traditionally considered such as those from inversion of helioseismic data. We, then, apply the proposed approach to infer the chemical composition of the Sun. Our result is that the opacity profile of the Sun is well constrained by the solar observational properties. In the context of a two-parameter analysis in which elements are grouped as volatiles (i.e., C, N, O, and Ne) and refractories (i.e., Mg, Si, S, and Fe), the optimal surface composition is found by increasing the abundance of volatiles by (45 ± 4)% and that of refractories by (19 ± 3)% with respect to the values provided by Asplund et al. (2009, ARA and A, 47, 481). This corresponds to the abundances ε{sub O} = 8.85 ± 0.01 and ε{sub Fe} = 7.52 ± 0.01, which are consistent at the ∼1σ level with those provided by Grevesse and Sauval (1998, SSRv, 85, 161). As an additional result of our analysis, we show that the best fit to the observational data is obtained with values of input parameters of the standard solar models (radiative opacities, gravitational settling rate, and the astrophysical factors S {sub 34} and S {sub 17}) that differ at the ∼1σ level from those presently adopted.

  2. Transport of transient solar wind particles in Earth's cusps

    International Nuclear Information System (INIS)

    Parks, G. K.; Lee, E.; Teste, A.; Wilber, M.; Lin, N.; Canu, P.; Dandouras, I.; Reme, H.; Fu, S. Y.; Goldstein, M. L.

    2008-01-01

    An important problem in space physics still not understood well is how the solar wind enters the Earth's magnetosphere. Evidence is presented that transient solar wind particles produced by solar disturbances can appear in the Earth's mid-altitude (∼5 R E geocentric) cusps with densities nearly equal to those in the magnetosheath. That these are magnetosheath particles is established by showing they have the same ''flattop'' electron distributions as magnetosheath electrons behind the bow shock. The transient ions are moving parallel to the magnetic field (B) toward Earth and often coexist with ionospheric particles that are flowing out. The accompanying waves include electromagnetic and broadband electrostatic noise emissions and Bernstein mode waves. Phase-space distributions show a mixture of hot and cold electrons and multiple ion species including field-aligned ionospheric O + beams

  3. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  4. Radiation aspects on the Earth's surface during solar flares

    International Nuclear Information System (INIS)

    Mansurov, K.Zh.; Aitmukhambetov, A.A.

    2002-01-01

    In the paper the results of investigation of radiation solution in the space near the Earth at the different altitudes of the Earth atmosphere and at the ground level in dependence on geo-coordinates and solar activity during 1957-1999 are presented. Radiation is due to the Galactic cosmic ray flux for different periods of the Solar activity: - the radiation doses of the radioactive clouds at latitudes ∼12-13 km which go ground the Earth two or three times were created; - it seems to years that these clouds make a certain contribution to the ecological situation in the Earth atmosphere and on the surface. The radiation near ground level of the Earth for the last 1500 years was calculated also using the data of radioactive carbon 14 C intensity investigation

  5. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  6. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Mohsen Taherbaneh

    2010-01-01

    Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

  7. A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer

    Science.gov (United States)

    Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.

    2016-10-01

    The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.

  8. Sun and Sun Worship in Different Cultures

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2014-10-01

    The Sun symbol is found in many cultures throughout history, it has played an important role in shaping our life on Earth since the dawn of time. Since the beginning of human existence, civilisations have established religious beliefs that involved the Sun's significance to some extent. As new civilisations and religions developed, many spiritual beliefs were based on those from the past so that there has been an evolution of the Sun's significance throughout cultural development. For comparing and finding the origin of the Sun we made a table of 66 languages and compared the roots of the words. For finding out from where these roots came from, we also made a table of 21 Sun Gods and Goddesses and proved the direct crossing of language and mythology.

  9. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  10. Earth power spectrum and its potential as a usable energy source

    International Nuclear Information System (INIS)

    Richards, E.E.

    1984-01-01

    The aurora is a natural, visible manifestation of a large electrical-current system that is continually pumping millions of megawatts of electromagnetic power into the upper polar atmospheres, exceeding the total electrical generating capacity of the United States. Auroras begin on the sun, where the energy spirals away into interplanetary space at hundreds of miles per second; four days after it leaves the sun, this high speed stream of solar wind reaches the vicinity of the earth where the plasma collides with and moves around the planet's magnetic field. The high-speed solar wind reshapes the field into a comet-shaped cavity called the magnetosphere. The sunward shock front extends some 10-15 earth radii into space, while the night-side magnetotail stretches out beyond 60 earth radii (Re), reaching beyond the Moon's orbit. As the solar wind blows downstream along the edges of this magnetic cavity, the energies leak in and become part of an immense reservoir called the plasmasheet, which runs down the length of the magnetotail. The plasma that leaks in is carried back toward the Earth by the flow of the plasmasheet and down the funnels over the two polar regions, causing a constant ring-shaped glow. The path of the auroral energy streaming in along the Earth's magnetic field lines appears as a thin, glowing curtain hanging from 60 to hundreds of miles above the Earth. The magnetosphere is a big container of energy storage

  11. The SOLAR-C Mission: Science Objectives and Current Status

    Science.gov (United States)

    Suematsu, Y.; Solar-C Working Group

    2016-04-01

    The SOLAR-C is a Japan-led international solar mission for mid-2020s designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and to advance algorithms for predicting short and long term solar magnetic activities. For these purposes, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1"-0.3"), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. SOLAR-C will also contribute to understand the solar influence on the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions.

  12. Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

    Science.gov (United States)

    Winslow, Reka M.; Schwadron, Nathan A.; Lugaz, Noé; Guo, Jingnan; Joyce, Colin J.; Jordan, Andrew P.; Wilson, Jody K.; Spence, Harlan E.; Lawrence, David J.; Wimmer-Schweingruber, Robert F.; Mays, M. Leila

    2018-04-01

    Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.

  13. The Sun in Time: Activity and Environment

    Directory of Open Access Journals (Sweden)

    Güdel Manuel

    2007-12-01

    Full Text Available The Sun's magnetic activity has steadily declined during its main-sequence life. While the solar photospheric luminosity was about 30% lower 4.6 Gyr ago when the Sun arrived on the main sequence compared to present-day levels, its faster rotation generated enhanced magnetic activity; magnetic heating processes in the chromosphere, the transition region, and the corona induced ultraviolet, extreme-ultraviolet, and X-ray emission about 10, 100, and 1000 times, respectively, the present-day levels, as inferred from young solar-analog stars. Also, the production rate of accelerated, high-energy particles was orders of magnitude higher than in present-day solar flares, and a much stronger wind escaped from the Sun, permeating the entire solar system. The consequences of the enhanced radiation and particle fluxes from the young Sun were potentially severe for the evolution of solar-system planets and moons. Interactions of high-energy radiation and the solar wind with upper planetary atmospheres may have led to the escape of important amounts of atmospheric constituents. The present dry atmosphere of Venus and the thin atmosphere of Mars may be a product of early irradiation and heating by solar high-energy radiation. High levels of magnetic activity are also inferred for the pre-main sequence Sun. At those stages, interactions of high-energy radiation and particles with the circumsolar disk in which planets eventually formed were important. Traces left in meteorites by energetic particles and anomalous isotopic abundance ratios in meteoritic inclusions may provide evidence for a highly active pre-main sequence Sun. The present article reviews these various issues related to the magnetic activity of the young Sun and the consequent interactions with its environment. The emphasis is on the phenomenology related to the production of high-energy photons and particles. Apart from the activity on the young Sun, systematic trends applicable to the entire

  14. Diffuse Solar System Design and Utilization in Agriculture and ...

    African Journals Online (AJOL)

    Diffuse solar radiation is a component of total solar radiation that is good for low temperature grade heating. Since the portion of the scattered radiation from the sun, which consists of short and long waves, that reaches the earth is diffused, its utilization in Agriculture as this paper suggested, has multiple phase change ...

  15. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  16. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  17. Solar activity and life. A review

    International Nuclear Information System (INIS)

    Messerotti, M.; Chela-Flores, J.

    2007-09-01

    Recent claims advocate a downward revision of the solar oxygen abundance. This is a reflection of what may be called a 'solar crisis' whereby we mean that previous consensus in our understanding of our nearest star was unfounded. The implications for solar physics, and chemistry, are obvious and much research in the near future will give us a much clearer understanding of the Sun. We wish to review and update recent work concerning the frontier between Space Weather (SpW) and Astrobiology. We argue that the present robust programs of various space agencies reinforce our hope for a better understanding of the bases of Astrobiology. Eventually with a more realistic model of the Sun, more reliable discussions of all the factors influencing the origin of life on Earth will be possible. (author)

  18. Intelligent Sun Tracking for a CPV Power Plant

    International Nuclear Information System (INIS)

    Maqsood, Ishtiaq; Emziane, Mahieddine

    2010-01-01

    The output of a solar panel is strongly dependent on the amount of perpendicular light flux falling on its surface, and a tracking system tries to parallel the vector area of the solar panel surface to the incident solar flux. We present a tracking technique based on a two-axis sun sensor which can be used to increase the power output from a number of CPV arrays connected together in a solar power plant. The outdoor testing procedure of the developed two-axis sun sensor is discussed. The detail of the algorithm used together with the related sun tracking equipment is also presented and discussed for the new two axes sun tracking system.

  19. Features in the Behavior of the Solar Wind behind the Bow Shock Front near the Boundary of the Earth's Magnetosphere

    Science.gov (United States)

    Grib, S. A.; Leora, S. N.

    2017-12-01

    Macroscopic discontinuous structures observed in the solar wind are considered in the framework of magnetic hydrodynamics. The interaction of strong discontinuities is studied based on the solution of the generalized Riemann-Kochin problem. The appearance of discontinuities inside the magnetosheath after the collision of the solar wind shock wave with the bow shock front is taken into account. The propagation of secondary waves appearing in the magnetosheath is considered in the approximation of one-dimensional ideal magnetohydrodynamics. The appearance of a compression wave reflected from the magnetopause is indicated. The wave can nonlinearly break with the formation of a backward shock wave and cause the motion of the bow shock towards the Sun. The interaction between shock waves is considered with the well-known trial calculation method. It is assumed that the velocity of discontinuities in the magnetosheath in the first approximation is constant on the average. All reasonings and calculations correspond to consideration of a flow region with a velocity less than the magnetosonic speed near the Earth-Sun line. It is indicated that the results agree with the data from observations carried out on the WIND and Cluster spacecrafts.

  20. The two earths of Eratosthenes.

    Science.gov (United States)

    Carman, Christián Carlos; Evans, James

    2015-03-01

    In the third century B.C.E., Eratosthenes of Cyrene made a famous measurement of the circumference of the Earth. This was not the first such measurement, but it is the earliest for which significant details are preserved. Cleomedes gives a short account of Eratosthenes' method, his numerical assumptions, and the final result of 250,000 stades. However, many ancient sources attribute to Eratosthenes a result of 252,000 stades. Historians have attempted to explain the second result by supposing that Eratosthenes later made better measurements and revised his estimate or that the original result was simply rounded to 252,000 to have a number conveniently divisible by 60 or by 360. These explanations are speculative and untestable. However, Eratosthenes' estimates of the distances of the Sun and Moon from the Earth are preserved in the doxographical literature. This essay shows that Eratosthenes' result of 252,000 stades for the Earth's circumference follows from a solar distance that is attributed to him. Thus it appears that Eratosthenes computed not only a lower limit for the size of the Earth, based on the assumption that the Sun is at infinity, but also an upper limit, based on the assumption that the Sun is at a finite distance. The essay discusses the consequences for our understanding of his program.

  1. The effect of recent Venus transit on Earth’s atmosphere

    Directory of Open Access Journals (Sweden)

    H. P. Sardar

    2006-06-01

    Full Text Available Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 22°34lN to observe the effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows a good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with high content of CO2, and nitrogen which absorbs electromagnetic and corpuscular radiations from Sun, depleting the solar radiation reaching the Earth to a considerable extent. As a result, relevant parameters of Earth’s atmosphere are modulated and here we show how these changes are reflected in identical behaviour of fair weather field and ELF and VLF spectra.

  2. Design and Implementation of PLC-Based Automatic Sun tracking System for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Wang Jinping

    2016-01-01

    Full Text Available A sun-tracking system for parabolic trough solar concentrators (PTCs is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of PLC based sun tracking control system for PTC. Sun tracking control system consists of a Programmable Logic Controller (PLC and a single axis hydraulic drives tracking control system. Hydraulic drives and the necessary tracking angle algorithm have been designed and developed to perform the technical tasks. A PLC unit was employed to control and monitor the mechanical movement of the PTC and to collect and store data related to the tracking angle of PTC. It is found that the tracking error of the system is less than 0.6°. Field experience shows that tracking algorithm act stable and reliable and suit for PTCs.

  3. Signals from the planets, via the Sun to the Earth

    Science.gov (United States)

    Solheim, J.-E.

    2013-12-01

    The best method for identification of planetary forcing of the Earth's climate is to investigate periodic variations in climate time series. Some natural frequencies in the Earth climate system seem to be synchronized to planetary cycles, and amplified to a level of detection. The response by the Earth depends on location, and in global averaged series, some planetary signals may be below detection. Comparing sea level rise with sunspot variations, we find phase variations, and even a phase reversal. A periodogram of the global temperature shows that the Earth amplifies other periods than observed in sunspots. A particular case is that the Earth amplifies the 22 yr Hale period, and not the 11 yr Schwabe period. This may be explained by alternating peak or plateau appearance of cosmic ray counts. Among longer periods, the Earth amplifies the 60 yr planetary period and keeps the phase during centennials. The recent global warming may be interpreted as a rising branch of a millennium cycle, identified in ice cores and sediments and also recorded in history. This cycle peaks in the second half of this century, and then a 500 yr cooling trend will start. An expected solar grand minimum due to a 200 yr cycle will introduce additional cooling in the first part of this century.

  4. The Award Winning Black Suns

    Science.gov (United States)

    Holbrook, Jarita

    2018-01-01

    Black Suns: An Astrophysics Adventure is a documentary film focusing on the annular and total solar eclipses of 2012. We made a different kind of astronomy documentary showing the human aspects rather than just focusing on pretty astronomy pictures. The film combines personal stories with science. Our heroes are Hakeem Oluseyi and Alphonse Sterling, who valiantly travel to study the solar corona during total solar eclipses. The goals of the film included presenting three dimensional scientists, to show their paths to becoming astrophysicists, and to show them as they collect data and work as scientists. Drama and tension surround taking data during the small window of time during totality. The Black Suns was filmed in Tokyo, Cairns, Tucson, and Melbourne Florida. Uniquely, the film began through a Kickstarter campaign to fund travel and filming in Tokyo. Many American Astronomical Society members donated to the film! Black Suns won the Jury Prize at the 2017 Art of Brooklyn Film Festival. Black Suns will be screening in full on ???.

  5. What is the sun's real potential?

    International Nuclear Information System (INIS)

    Joliot, P.

    2009-01-01

    The sun has colossal energy potential, yet it is barely exploited. It radiates 10,000 times more energy than man now uses. Plants only recover one thousandth of this immense energy source. A closer look at the potential of processes for using solar energy, from photovoltaics to biofuels and biomass to the 'promise' of artificial photosynthesis The sun represents an inexhaustible source of energy. It is the well from which most of the energy sources available on the earth's surface spring, excepting nuclear and geothermal energy. Among the methods capable of recovering solar energy directly, three of them are currently in use: - Producing hot water with solar collectors; - High-temperature thermal power plants (1,000 deg.C or more); - Photovoltaics. Photovoltaic electricity already represents a significant source of energy in areas with low population density. Generating such power can also help meet the basic needs of poor countries. The last two methods nevertheless require a means for storing the energy produced, a function provided by the hot water tank in the first method. What about photosynthetic reactions that convert solar energy into chemical energy? Photosynthesis not only synthesizes organic products, it also recycles carbon dioxide and regenerates oxygen, all of which are vital to maintaining life on earth. We currently expect to produce renewable energy - mainly biofuels - by converting biomass produced by photosynthesis. Plants generally store less than 1% of the sun's energy in their organic matter. This feeble energy balance can become negative when the energy spent for sowing, harvesting and processing is taken into account, especially if only a fraction of the organic matter is actually collected, as in the case of corn or rapeseed oil. The substantial amount of land and water needed to produce large quantities of biofuels would put too much strain on food crops, especially in light of the large and ever growing numbers of people suffering from

  6. Solar wind electron densities from Viking dual-frequency radio measurements

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Anderson, J.D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the Earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii (R/sub sun/) to 200 R/sub sun/. The measurements were made during a period of solar activity minimum (1976--1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r/sup -2.7/ and r/sup -2.04/. However, the more rapidly falling term quickly disappears at moderate latitudes (approx.20 0 ), leaving only the inverse-square behavior

  7. We'd rather be solar sailing

    Science.gov (United States)

    Kuznik, Frank

    1994-06-01

    On 4 Feb. 1993 a solar sail that traveled piggyback on a Progress resupply rocket to the Mir Space Station was deployed after undocking from the Mir. It was the first sun-propelled spacecraft, and it attempted to reflect a patch of sunlight onto the night side of Earth, but wasn't very successful because of extensive cloud cover. Solar sail technology and its historical development are briefly discussed. NASA'a views and the World Space Foundation's involvement in solar sail development are presented.

  8. Flights between a neighborhoods of unstable libration points of Sun-Earth system

    Science.gov (United States)

    Surkova, Valerya; Shmyrov, Vasily

    2018-05-01

    In this paper we study the problem of constructing impulse flights between neighborhoods of unstable collinear libration points of the Sun-Earth system [1]. Such maneuvering in near-Earth space may prove to be in demand in modern space navigation. For example, such a maneuvering was done by the space vehicle GENESIS. Three test points are chosen for the implementation of the impulse control, in order to move to a neighborhood of the libration point L2. It is shown that the earlier on the exit from the vicinity of the libration point L1 impulse control was realized, the sooner the neighborhood L2 was achieved. Separated from this problem, the problem of optimal control in the neighborhood of L2 was considered and a form of stabilizing control is presented.

  9. Fly me to the Sun! ESA inaugurates the European Project on the Sun

    Science.gov (United States)

    2000-11-01

    In an initiative mounted by ECSITE (European Collaborative for Science, Industry and Technology Exhibitions) with funding from the European Commission and under the supervision, coordination and co-sponsorship of ESA, five teams of youngsters (16-18 years old) from Belgium, France, Germany, Italy and the Netherlands were selected and coordinated by European science museums from each of their countries (Musée des Sciences et des Techniques - Parentville, B; Cité de l'Espace - Toulouse, F; Deutsches Museum - Munich, D; Fondazione IDIS - Naples, I; Foundation Noordwijk Space Expo - Noordwijk, NL). The teams each focused on a theme related to solar research: "How does the Sun work?" (I), "The Sun as a star" (F), "Solar activity" (NL), "Observing the Sun" (D), "Humans and the Sun" (B), and built exhibition "modules" that they will present at the inauguration, in the context of European Science and Technology Week 2000 (6-10 November), promoted by the European Commission. During the two-day event, a jury of representatives of other European science and technology museums, ESA scientists, a science journalist, and two ESA astronauts (Frank de Winne and Andre Kuipers) will judge the youngsters' exhibition modules on the basis of their scientific correctness, their museological value and the commitment shown by the young "communication experts". The winning team will be officially announced on 9 November. The prize is a weekend at the Space Camp in Redu, Belgium. The objective of the European Project on the Sun is educational. It aims, through the direct and "fresh" involvement of youngsters, to heighten European citizens' awareness of space research in general and the Sun's influence on our daily lives in particular. The role of the European Space Agency as reference point in Europe for solar research has been fundamental to the project. From ESA's perspective, EPOS is part of this autumn's wider communication initiative called the Solar Season, which is highlighting ESA

  10. environmental/climatic effect on stand-alone solar energy supply

    African Journals Online (AJOL)

    This paper investigates the climatic effects and environmental variations on the perfor- mance of a ... inter-connected arrays due to shades from clouds, tress and ... Modeling of Solar Module .... needs. The earth revolves around the sun in an.

  11. New Earth-abundant Materials for Large-scale Solar Fuels Generation.

    Science.gov (United States)

    Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David

    2018-05-30

    The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

  12. L'assorbimento della radiazione solare su scala planetaria

    Directory of Open Access Journals (Sweden)

    S. SCIARRATTA

    1968-06-01

    Full Text Available In the present paper the AA. search an eventual phenomenon
    with the universal diurnal variation, which may influence the
    natural terrestrial phenomena. Considering that the first cause of the
    diurnal variations is the solar radiation arriving 011 the Earth, such a phenomenon
    may be founded in the diurnal rotation of the Earth, therefore
    1 lie regions illuminated by the sun are different according to the universal
    time. Since the regions of the Earth have different albedo, the solar radiation
    absorbed by the entire Earth will have an universal diurnal variation.
    The A A. have calculated the apparent surface (with the sun as a point
    of view of the lands and of the seas at different hours (U.T. and in the
    different period of the year.
    In order of include in computation the absorption of the solar radiation
    by the atmosphere, the AA. have calculated these surfaces with a
    correction due to this absorption. In these computations the eventual
    cloudiness not appears, because in this first approximation the cloudiness
    is supposed equal 011 the entire Earth. These surfaces with the correction
    of the atmospheric absorption are proportional to the solar energy really
    absorbed by the entire Earth.
    By the comparison of the universal diurnal variation of those surfaces
    with that of a natural phenomenon (the atmospheric electric field, the
    AA. show that it is possible, with some reductions, to make these variations
    coincide. These reductions are an advance of the maximum (4 hours and
    a coefficient which reckons the albedo's difference.
    The AA. recognize that it is no possible with this preliminary study
    to explain the influence of the solar energy absorbed by the entire Earth
    011 the atmospheric electric field; but according to the AA. this correlation
    will take an important contribution also to the researches for the general

  13. Solar Ethics: A New Paradigm for Environmental Ethics and Education?

    Science.gov (United States)

    Peters, Michael A.; Hung, Ruyu

    2009-01-01

    This article provides grounds for a new paradigm of environmental ethics and education based on the centrality of the sun and solar system--a shift from anthropocentrism to solar systemism. The article provides some grounds for this shift from the physical sciences that considers the planet Earth as part of a wider system that is dependent upon…

  14. Radiation From Solar Activity | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  15. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  16. Seek a Minor Sun: The Distribution of Habitable Planets in the Hertzsprung-Russell-Rosenberg Diagram

    Science.gov (United States)

    Gaidos, Eric

    2015-07-01

    The Sun-Earth systems has long been used as a template to understand habitable planets around other stars and to develop missions to seek them. However, two decades of exoplanet studies have shown that many, if not most planetary systems around G dwarf stars do not resemble the Solar System. Moreover, an objective census of our Galaxy might ignore solar- type stars and focus on M dwarfs, which constitute some 80% of all stars in the neighborhood. Recent work has shown that M dwarfs have more close-in planets than solar-type stars, and perhaps more planets in the "habitable zone" defined by stellar irradiation. M dwarfs also burn hydrogen over a vastly longer time; slow evolution on the main sequence means a planet can remain habitable for much longer, providing a more permissive environment for the evo- lution of life and intelligence. If M dwarfs are such compelling locales to look for life, why are we ourselves not orbiting a red Sun?

  17. Here comes the sun...; Here comes the sun...

    Energy Technology Data Exchange (ETDEWEB)

    Best, Robert [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    It sounds a bit strange that you can use solar energy to maintain or refrigerate products or spaces below the ambient temperature, because we know that something that makes the sun is heating; but yes indeed, the sun can produce cold, and in addition without polluting, and without consuming conventional energy. In this document are mentioned the various research projects on solar cooling that have been made in the Energy Research Center at the Universidad Nacional Autonoma de Mexico such as the thermo-chemical intermittent refrigerator, the geothermal cooling demonstration system in Mexicali, B.C., the GAX system for air conditioning, the ice producer intermittent solar refrigerator, the continuous solar refrigerator, the refrigeration by ejection-compression. It also mentions the functioning of heat pumps and the process of solar drying applications in agricultural products. [Spanish] Suena un poco extrano que se pueda utilizar la energia solar para mantener o refrigerar productos o espacios por debajo de la temperatura ambiente, ya que sabemos que algo que hace el sol es calentar; pero si, el sol puede producir frio, y ademas sin contaminar y sin consumir energia convencional. En este documento se mencionan las diferentes investigaciones sobre refrigeracion solar que se han realizado en el Centro de Investigacion en Energia de la Universidad Nacional Autonoma de Mexico como el refrigerador termoquimico intermitente, el sistema demostrativo de refrigeracion geotermico en Mexicali, B.C., el sistema GAX para aire acondicionado, el refrigerador solar intermitente productor de hielo, el refrigerador continuo solar, la refrigeracion por eyecto-compresion. Tambien se menciona el funcionamiento de las bombas de calor y el proceso de secado solar de aplicacion en productos agropecuarios.

  18. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  19. A Study of Sympathetic Flaring Using a Full-Sun Event Catalog

    Science.gov (United States)

    Higgins, P. A.; Schrijver, C. J.; Title, A. M.; Bloomfield, D.; Gallagher, P.

    2013-12-01

    There has been a trove of papers published on the statistics of flare occurrence. These studies are trying to answer the question of whether or not subsequent solar flares are related. The majority of these works have not included both flare location information and the physical properties of the regions responsible for the eruptions, and none have taken advantage of full-Sun event coverage. Now that SDO/AIA is available and the STEREO spacecraft have progressed past 90 degrees from Earth's heliographic longitude, this new information is available to us. This work aims to quantify how common sympathetic events are, and how important they are in the forecasting of solar flares. A 3D plot of detected and clustered flare events for a full solar rotation, including the Valentine's Day Event of 2011. A full-Sun image in the EUV (304A) including both STEREO view points and AIA. The GOES X-ray light curves during the February period of 2011 are shown in the bottom panel. Detected flare events are indicated by the green dashed lines and the time stamp of this image is denoted by the red line.

  20. The Sun among the stars. Pt. 3

    International Nuclear Information System (INIS)

    Hardorp, J.

    1980-01-01

    Energy distributions from 3308 to 8390 Angstroem of two candidates for a solar spectral analog and of 14 other northern G-type dwarfs are compared to the solar energy distribution via stellar spectrophotometric standards. The reliability of the stellar and solar flux-calibrations is evaluated. While the stellar calibration seems to be in good shape, solar calibrations differ widely. Labs.and Neckel's calibration is the best match to the energy distributions from 4500 to 8390 Angstroem of those four stars that share the Sun's ultraviolet line spectrum (16 Cyg B, G5V, and the three Hyades stars VB 64, 106, and 142). Below 4500 Angstroem, discrepancies of up to 6% remain which do not seem to be genuine Sun-star differences. An error in the Labs and Neckel tables between 5700 and 6000 Angstroem is corrected. The NASA Standard Tables of Solar Spectral Irradiance cannot be trusted, since there seems to be no star in the sky that look like the NASA-sun. The four stars mentioned are taken to be perfect solar spectral analogs. An improved table of solar spectral irradiance is then given by the magnitudes of 16 Cyg B minus 32.945, based on Tueg's atellar and Labs and Neckel's solar calibrations. The Sun's place in the UBV system is V = -26.71 +- 0.03, B-V = 0.665 +- 0.005, and U-B = 0.20 +- 0.01. Most previous photometric investigations found a bluer Sun because they used the wrong solar calibration. For deriving accurate albedos of planets, any one of the calibrated G-type stars can be used as a standard star, when corrections are applied, although the solar analogs themselves are to be preferred. The MK system of spectral classification should be revised. (orig.)

  1. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Isaacson, Howard; Kolbl, Rea; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  2. A New Way that Planets can Affect the Sun

    Science.gov (United States)

    Wolff, Charles; Patrone, Paul

    2010-01-01

    As planets orbit the Sun, the Sun also has to move to keep the total momentum of the solar system constant. The Sun's small orbital motion plus its 25 day rotation about its axis combine to invigorate some solar instabilities. Occasional convection cells at the proper phase in their short life can be strengthened by factors of two or more. This local burst of extra kinetic energy eventually reaches the surface where it can increase the intensity of solar activity. It might explain some reports in the last century of how planetary positions correlate with solar activity. This is the first effect of planets that is large enough to cause a significant response on the Sun.

  3. Study of the behaviour of the equatorial ionization anomaly (EIA) during solar flares

    Science.gov (United States)

    Aggarwal, Malini; Astafyeva, Elvira

    2014-05-01

    A solar flare occurring in the sun's chromosphere is observed in various wavebands (radio to x-rays). The response of the solar flare which causes sudden changes in the earth's ionosphere is not yet well understood though investigations suggested that its impact depends on the size and location of occurrence of solar flare on sun. Considering this, we have carried an investigation to study the response of two strong and gradual solar flares: 2 Apr 2001 (X20, limb) and 7 Feb 2010 (M6.4, disk) on the earth's equatorial-low latitude regions using multi-technique observations of satellite and ground-based instruments. We found a weakening of strength of equatorial ionization anomaly (EIA) in total electron content during both the flares as observed by TOPEX, JASON-1 and JASON-2 altimeter measurements. The H component of the geomagnetic field also shows a sudden change at equatorial and low latitude stations in the sunlit hemisphere during the flare. The observations of ionosonde at low-latitudes indicate a strong absorption of higher-frequency radio signals. The detail response of these flare on EIA of the earth's ionosphere will be presented and discussed.

  4. Some problems of solar-terrestrial energy relations

    International Nuclear Information System (INIS)

    Kovalevskij, I.V.

    1982-01-01

    Energy aspects of relations of phenomena occurring on the Sun, in the interplanetary space, magnetosphere, ionosphere and on the Earth's surface are discussed. Particular attention is given to the energy radiated by the Sun (flares, coronal holes). The problems are considered of the energy transfer and transformation in high-velocity and flare flows of solar wind. Estimates are performed: of densities of various types of energy of the interplanetary space at the Earth's orbit level; energy fluxes incident on the magnetosphere; energy accumulated inside the magnetosphere; a series of energy parameters of magnetic storms. It is pointed out that nowadays one of the main problems of the magnetosphere physics is studying ways of the interplanatary space energy transfer into the magnetosphere. In this connection some problems are investigated: plasma penetration through the dayside magnetopause, solar wind plasma entry into the magnetotail, the electric field effect on transition region plasma penetration into the distant magnetotail

  5. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  6. On the Path to SunShot. The Environmental and Public Health Benefits of Achieving High Solar Penetrations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carpenter, Alberta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Compared with fossil fuel generators, photovoltaics (PV) and concentrating solar power (CSP) produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). In this report, we monetize the emission reductions from achieving the U.S. Department of Energy's SunShot deployment goals: 14% of U.S. electricity demand met by solar in 2030 and 27% in 2050. We estimate that achieving these goals could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238-$252 billion. This is equivalent to 2.0-2.2 cents per kilowatt-hour of solar installed (cents/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4 cents/kWh-solar--while also preventing 25,000-59,000 premature deaths. To put this in perspective, this estimated combined benefit of 3.5 cents/kWh-solar due to SunShot-level solar deployment is approximately equal to the additional levelized cost of electricity reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, the analysis shows that achieving the SunShot goals could save 4% of total power-sector water withdrawals and 9% of total power-sector water consumption over the 2015-2050 period--a particularly important consideration for arid states where substantial solar will be deployed. These results have potential implications for policy innovation and the economic competitiveness of solar and other generation technologies.

  7. Communications with Mars During Periods of Solar Conjunction: Initial Study Results

    Science.gov (United States)

    Morabito, D.; Hastrup, R.

    2001-07-01

    During the initial phase of the human exploration of Mars, a reliable communications link to and from Earth will be required. The direct link can easily be maintained during most of the 780-day Earth-Mars synodic period. However, during periods in which the direct Earth-Mars link encounters increased intervening charged particles during superior solar conjunctions of Mars, the resultant effects are expected to corrupt the data signals to varying degrees. The purpose of this article is to explore possible strategies, provide recommendations, and identify options for communicating over this link during periods of solar conjunctions. A significant improvement in telemetry data return can be realized by using the higher frequency 32 GHz (Ka-band), which is less susceptible to solar effects. During the era of the onset of probable human exploration of Mars, six superior conjunctions were identified from 2015 to 2026. For five of these six conjunctions, where the signal source is not occulted by the disk of the Sun, continuous communications with Mars should be achievable. Only during the superior conjunction of 2023 is the signal source at Mars expected to lie behind the disk of the Sun for about one day and within two solar radii (0. 5 deg) for about three days.

  8. Search for the sources of the solar wind in the 9.1 cm brightness temperature

    International Nuclear Information System (INIS)

    George, R.G.

    1975-01-01

    The sources of solar wind streams have been the object of intensive research for many years, but the various ideas of where and how streams originate on the sun are still incomplete and contradictory. The present study is an attempt to find the solar wind sources by mathematically approximating the 9.1 cm brightness temperature which would be expected at the foot of spacecraft-measured solar wind streams and by then comparing it with actual radio brightness temperature measurements. Several significant results were found from an analysis of the correlation results. Most plasma emanating from the sun was found to come from high solar latitudes and to deviate significantly from the normally expected east-west path in the low corona. Magnetic channelng causes correlation studies to fail when the sun's magnetic configuration is unstable. The travel time of the plasma from the sun's 9.1 cm emission level to the earth is often more than a month

  9. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Gibson, S. E., E-mail: lzh@umich.edu [NCAR/HAO, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2013-08-20

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier

  10. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  11. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  12. Cheap two axis sun following device

    International Nuclear Information System (INIS)

    Roth, P.; Georgiev, A.; Boudinov, H.

    2005-01-01

    A sun following system was constructed and tested. The tracker gives the possibility for automatic measuring of direct solar radiation with a phetylureum. The mechanism is operated by a digital program in the control system, situated separately from the mechanical part. The position of the sun is calculated, and the pointing errors appearing during its daily work are stored for later analysis. Additionally, in the active operation mode, the tracker uses the signal of a sun detecting linear sensor to control the pointing. Two stepper motors move the instrument platform, keeping the sun's beam at the center of the sensor. The mechanism was created at the Laboratory 'Evaluation Solar' of the Technical University Faradaic Santa Maria (UTFSM) in Valparaiso, Chile. The experiments show good results. The described sun tracker gives similar results as the Swiss sun tracker INTRA at a very much lower price

  13. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  14. Advances in Sun-Earth Connection Modeling

    International Nuclear Information System (INIS)

    Ganguli, S.B.; Gavrishchaka, V.V.

    2003-01-01

    Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed

  15. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers.

    Science.gov (United States)

    Ndawula, J; Kabasa, J D; Byaruhanga, Y B

    2004-08-01

    This study investigated the effects of three drying methods (open sun drying, visqueen-covered solar dryer and polyethylene-covered solar dryer) on b-carotene and vitamin C content of edible portions of mango fruit (Mangifera indica) and cowpea leaves (Vigna unguiculata). Commercial samples were analysed for vitamin C by titrimetry and b-carotene by spectrophotometry at 450 nm. Differences in vitamin retention and loss associated with the three drying methods were assessed by analysis of variance and least significant difference (LSD) at (pdrying. Open sun drying method caused the greatest b-carotene and vitamin C loss (58% and 84% respectively), while the visqueen-covered solar dryer caused the least loss (34.5% and 71% respectively). Blanching cowpea leaves improved b-carotene and vitamin C retention by 15% and 7.5% respectively. The b-carotene and vitamin C content of fresh ripe mango fruit was 5.9 and 164.3 mg/100g DM respectively. Similar to effects on cowpea leaves, the mango micronutrient content decreased (pdrying. The open sun drying method caused the greatest b-carotene (94.2%) and vitamin C (84.5%) loss, while the visqueen-covered solar dryer caused the least (73 and 53% respectively). These results show that the three solar drying methods cause significant loss of pro-vitamin A and vitamin C in dried fruits and vegetables. However, open sun drying causes the most loss and the visqueen-covered solar dryer the least, making the later a probable better drying technology for fruit and vegetable preservation. The drying technologies should be improved to enhance vitamin retention.

  16. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  17. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    Science.gov (United States)

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  18. Simultaneous observations of solar MeV particles in a magnetic cloud and in the earth's northern tail lobe - Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage

    Science.gov (United States)

    Farrugia, C. J.; Richardson, I. G.; Burlaga, L. F.; Lepping, R. P.; Osherovich, V. A.

    1993-01-01

    Simultaneous ISEE 3 and IMP 8 spacecraft observations of magnetic fields and flow anisotropies of solar energetic protons and electrons during the passage of an interplanetary magnetic cloud show various particle signature differences at the two spacecraft. These differences are interpretable in terms of the magnetic line topology of the cloud, the connectivity of the cloud field lines to the solar surface, and the interconnection between the magnetic fields of the magnetic clouds and of the earth. These observations are consistent with a magnetic cloud model in which these mesoscale configurations are curved magnetic flux ropes attached at both ends to the sun's surface, extending out to 1 AU.

  19. The modelling of solar radiation quantities and intensities in a two dimensional compound parabolic collector

    OpenAIRE

    2010-01-01

    M.Ing. A dissertation presented on the basic solar design principles such as sun-earth geometry, energy wavelengths, optics, incidence angles, parabolic collector configurations and design, materials for solar applications, efficiencies, etc to be considered in Solar Concentrating Collector design. These principles were applied in the design and fabrication of a prototype solar collector. The solar collector was tested to verify and correct mathematical models that were generated from exis...

  20. Sign of the day-night asymmetry for solar neutrinos

    International Nuclear Information System (INIS)

    Chiang, Cheng-Wei; Wolfenstein, Lincoln

    2001-01-01

    A qualitative understanding of the day-night asymmetry for solar neutrinos is provided. The greater night flux in ν e is seen to be a consequence of the fact that the matter effect in the Sun and that in the Earth have the same sign. It is shown in the adiabatic approximation for the Sun and constant density for the Earth that, for all values of the mixing angle θ V between 0 and π/2, the night flux of neutrinos is greater than the day flux. Only for small values of θ V where the adiabatic approximation badly fails does the sign of the day-night asymmetry reverse

  1. Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-12-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.

  2. On the paleo-magnetospheres of Earth and Mars

    Science.gov (United States)

    Scherf, Manuel; Khodachenko, Maxim; Alexeev, Igor; Belenkaya, Elena; Blokhina, Marina; Johnstone, Colin; Tarduno, John; Lammer, Helmut; Tu, Lin; Guedel, Manuel

    2017-04-01

    The intrinsic magnetic field of a terrestrial planet is considered to be an important factor for the evolution of terrestrial atmospheres. This is in particular relevant for early stages of the solar system, in which the solar wind as well as the EUV flux from the young Sun were significantly stronger than at present-day. We therefore will present simulations of the paleo-magnetospheres of ancient Earth and Mars, which were performed for ˜4.1 billion years ago, i.e. the Earth's late Hadean eon and Mars' early Noachian. These simulations were performed with specifically adapted versions of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as ISO-standard for the Earth's magnetic field (see e.g. Alexeev et al., 2003). One of the input parameters into our model is the ancient solar wind pressure. This is derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the initial rotation rate of the early Sun (Johnstone et al., 2015). Another input parameter is the ancient magnetic dipole field. In case of Earth this is derived from measurements of the paleomagnetic field strength by Tarduno et al., 2015. These data from zircons are varying between 0.12 and 1.0 of today's magnetic field strength. For Mars the ancient magnetic field is derived from the remanent magnetization in the Martian crust as measured by the Mars Global Surveyor MAG/ER experiment. These data together with dynamo theory are indicating an ancient Martian dipole field strength in the range of 0.1 to 1.0 of the present-day terrestrial dipole field. For the Earth our simulations show that the paleo-magnetosphere during the late Hadean eon was significantly smaller than today, with a standoff-distance rs ranging from ˜3.4 to 8 Re, depending on the input parameters. These results also have implications for the early terrestrial atmosphere. Due to the significantly higher EUV flux, the

  3. Our explosive sun a visual feast of our source of light and life

    CERN Document Server

    Brekke, Pal

    2012-01-01

    The center of our Solar System is a star, one among billions of stars in our own galaxy. This star, which we call the Sun, gives rise to all life on Earth, is the driver of the photosynthesis in plants, and is the source of all food, energy, and fossil fuels on Earth. For us humans, the Sun as seen with the naked eye appears as a static and quiet yellow disk in the sky. However, it is in fact a stormy and variable star and contributes much more than only light and heat. It is the source of the beautiful northern and southern lights and can affect our technology-based society in many ways. The Sun is, like astronomy in general, a good entrance to natural science, since it affects us in so many ways and connects us to many other fields of science, such as physics, chemistry, biology, and meteorology. The book includes additional material on Springer Extras, a large number of animations and video material. A PowerPoint presentation of the book is also included there as a useful resource for teachers.

  4. The production of cosmogenic isotopes in the earth's atmosphere and their inventories

    International Nuclear Information System (INIS)

    O'Brien, K.; de la Zerda Lerner, A.; Shea. M.A.; Smart, D.F.

    1991-01-01

    In this paper, production rates of cosmogenic isotopes in the Earth's atmosphere and their dependence on solar modulation and geomagnetic field intensity are calculated. Spallation cross sections were also obtained using the Silberberg-Tsao equations and solar modulation effects were calculated using the force-field model. The current geomagnetic field is treated in detail, and past magnetic fields are modeled based on the archeomagnetic record. Radiocarbon and radioberyllium inventories so obtained are in good agreement with current values. The neutrino-emitting radioactivity of the Earth's atmosphere is shown to add a negligible contribution to the flux from the Sun

  5. Pre-main-sequence evolution of the sun

    International Nuclear Information System (INIS)

    Gough, D.

    1980-01-01

    The phase of solar evolution after the dynamical collapse is considered. The physics of the Kelvin-Helmholtz phase of gravitational collapse is described, attention being given to the early stages of the star when it was completely convective. It is noted that subsequently, a radiative core developed and evolution was controlled by the rate at which heat can diffuse through it by radiative transfer. Since the study of the Kelvin-Helmholtz contraction alone does not give enough information regarding the state of the sun when it first settled down to approximate hydrostatic equilibrium, other stars are studied, and information on the sun is obtained by analogy. Many young solar-type stars, such as the T Tauri stars, are not in the completely convective Hayashi (1961) phase hence it is proposed that the sun was completely mixed soon after its formation, which has some bearing on the sun's chemical structure. It is suggested that the surface of the sun was very nonuniform compared with the photosphere of today. The simple solar evolution model presented gives a good guide to the general way in which the sun contracted to the main sequence

  6. Impact of the 2017 Solar Eclipse on Smart Grid

    Science.gov (United States)

    Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.

    2017-12-01

    With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.

  7. A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN-YANG OVERSET GRID AND AN AMR GRID

    International Nuclear Information System (INIS)

    Feng Xueshang; Zhang Shaohua; Xiang Changqing; Yang Liping; Jiang Chaowei; Wu, S. T.

    2011-01-01

    A hybrid three-dimensional (3D) MHD model for solar wind study is proposed in the present paper with combined grid systems and solvers. The computational domain from the Sun to Earth space is decomposed into the near-Sun and off-Sun domains, which are respectively constructed with a Yin-Yang overset grid system and a Cartesian adaptive mesh refinement (AMR) grid system and coupled with a domain connection interface in the overlapping region between the near-Sun and off-Sun domains. The space-time conservation element and solution element method is used in the near-Sun domain, while the Harten-Lax-Leer method is employed in the off-Sun domain. The Yin-Yang overset grid can avoid well-known singularity and polar grid convergence problems and its body-fitting property helps achieve high-quality resolution near the solar surface. The block structured AMR Cartesian grid can automatically capture far-field plasma flow features, such as heliospheric current sheets and shock waves, and at the same time, it can save significant computational resources compared to the uniformly structured Cartesian grid. A numerical study of the solar wind structure for Carrington rotation 2069 shows that the newly developed hybrid MHD solar wind model successfully produces many realistic features of the background solar wind, in both the solar corona and interplanetary space, by comparisons with multiple solar and interplanetary observations.

  8. Solar rotation effects on the thermospheres of Mars and Earth.

    Science.gov (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  9. A Thermodynamic History of the Solar Constitution — I: The Journey to a Gaseous Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available History has the power to expose the origin and evolution of scientific ideas. How did humanity come to visualize the Sun as a gaseous plasma? Why is its interior thought to contain blackbody radiation? Who were the first people to postulate that the density of the solar body varied greatly with depth? When did mankind first conceive that the solar surface was merely an illusion? What were the foundations of such thoughts? In this regard, a detailed review of the Sun’s thermodynamic history provides both a necessary exposition of the circumstance which accompanied the acceptance of the gaseous mod- els and a sound basis for discussing modern solar theories. It also becomes an invitation to reconsider the phase of the photosphere. As such, in this work, the contributions of Pierre Simon Laplace, Alexander Wilson, William Herschel, Hermann von Helmholtz, Herbert Spencer, Richard Christopher Carrington, John Frederick William Herschel, Father Pietro Angelo Secchi, Herv ́ e August Etienne Albans Faye, Edward Frankland, Joseph Norman Lockyer, Warren de la Rue, Balfour Stewart, Benjamin Loewy, and Gustav Robert Kirchhoff, relative to the evolution of modern stellar models, will be discussed. Six great pillars created a gaseous Sun: 1 Laplace’s Nebular Hypothesis, 2 Helmholtz’ contraction theory of energy production, 3 Andrew’s elucidation of crit- ical temperatures, 4 Kirchhoff’s formulation of his law of thermal emission, 5 Pl ̈ ucker and Hittorf’s discovery of pressure broadening in gases, and 6 the evolution of the stel- lar equations of state. As these are reviewed, this work will venture to highlight not only the genesis of these revolutionary ideas, but also the forces which drove great men to advance a gaseous Sun.

  10. Conversion of piston-driven shocks from powerful solar flares to blast wave shocks in the solar wind

    International Nuclear Information System (INIS)

    Pinter, S.

    1990-01-01

    It was suggested by Smart and Shea (1985) that the time of arrival of solar-flare-generated shock waves at any point in space may be predicted by assuming that they are first driven from the Sun after which they decay into blast shocks. Their study was extended by using the duration of the Type IV radio emission as a phenomenological symptom of the piston-driven phase of these shocks. Using a sample of 39 cases of combined Type II/Type IV observations from 1972 to 1982 solar flares, it was found that the average predicted times-of-arrival of these shocks to Earth (and elsewhere) deviate from the actual times by 1.40 hr with a standard deviation of 1.25 hr. On the average, a representative shock from this sample is emitted from a powerful flare with a velocity of 1,560 km sec -1 ; moves at a constant inertial velocity to a distance of 0.12 AU after which it begins to decelerate as a classical (Sedov-type) blast shock that is convected by the ambient solar wind as suggested by Smart and Shea; and arrives to Earth 45.8 hr after its initiation in the Sun. Shocks that appear to deviate from this phenomenological scenario by virtue of lack of detection on Earth are assumed to decay into fast mode MHD waves. (author). 7 figs., 1 tab., 53 refs

  11. Potency of Solar Energy Applications in Indonesia

    OpenAIRE

    Handayani, Noer Abyor; Ariyanti, Dessy

    2012-01-01

    Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but t...

  12. Solar Variability Magnitudes and Timescales

    Science.gov (United States)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  13. A Concept for Providing Warning of Chelyabinsk-like Meteors, including those approaching from the Sun

    Science.gov (United States)

    Dunham, D. W.; Reitsema, H.; Lu, E.; Arentz, R.; Linfield, R.; Chapman, C. R.; Farquhar, R. W.; Furfaro, R.; Eismont, N. A.; Ledkov, A.; Chumachenko, E.

    2013-12-01

    's), including those in orbits mostly inside the Earth's orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit. Few modifications would be needed to the 50cm aperture passively-cooled infrared-observing Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. Many objects in the 25-50m range will not be found by current NEO surveys, while they would nearly always be seen by this possible mission. A dense metallic NEO as small as 5m across can rain destruction over an area of 1 or 2 square kilometers, as the Sikhote-Alin meteor showed in 1947 Other concepts are either ineffective at providing warning of asteroids approaching from the Sun, or are more expensive, involving three or more spacecraft. We should give better warning for future 'Bolts out of the blue'.

  14. Experimental constraints on pulsed and steady state models of the solar wind near the Sun

    International Nuclear Information System (INIS)

    Feldman, W.C.; Habbal, S.R.; Hoogeveen, G.; Wang, Y.

    1997-01-01

    Ulysses observations of the high-latitude solar wind were combined with Spartan 201 observations of the corona to investigate the nature and extent of uncertainties in our knowledge of solar wind structure near the Sun. In addition to uncertainties stemming from the propagation of errors in density profiles inferred from coronagraph observations [see, e.g., Lallement et al., 1986], an assessment of the consequences of choosing different analysis assumptions reveals very large, fundamental uncertainties in our knowledge of even the basics of coronal structure near the Sun. In the spirit of demonstrating the nature and extent of these uncertainties we develop just one of a generic class of explicitly time-dependent and filamentary models of the corona that is consistent with the Ulysses and Spartan 201 data. This model provides a natural explanation for the radial profiles of both the axial ratios and apparent radial speeds of density irregularities measured at radial distances less than 10R S using the interplanetary scintillation technique. copyright 1997 American Geophysical Union

  15. A Look into the Hellish Cradles of Suns and Solar Systems

    Science.gov (United States)

    2009-09-01

    New images released today by ESO delve into the heart of a cosmic cloud, called RCW 38, crowded with budding stars and planetary systems. There, young stars bombard fledgling suns and planets with powerful winds and blazing light, helped in their task by short-lived, massive stars that explode as supernovae. In some cases, this onslaught cooks away the matter that may eventually form new solar systems. Scientists think that our own Solar System emerged from such an environment. The dense star cluster RCW 38 glistens about 5500 light years away in the direction of the constellation Vela (the Sails). Like the Orion Nebula Cluster, RCW 38 is an "embedded cluster", in that the nascent cloud of dust and gas still envelops its stars. Astronomers have determined that most stars, including the low mass, reddish ones that outnumber all others in the Universe, originate in these matter-rich locations. Accordingly, embedded clusters provide scientists with a living laboratory in which to explore the mechanisms of star and planetary formation. "By looking at star clusters like RCW 38, we can learn a great deal about the origins of our Solar System and others, as well as those stars and planets that have yet to come", says Kim DeRose, first author of the new study that appears in the Astronomical Journal. DeRose did her work on RCW 38 as an undergraduate student at the Harvard-Smithsonian Center for Astrophysics, USA. Using the NACO adaptive optics instrument on ESO's Very Large Telescope [1], astronomers have obtained the sharpest image yet of RCW 38. They focused on a small area in the centre of the cluster that surrounds the massive star IRS2, which glows in the searing, white-blue range, the hottest surface colour and temperatures possible for stars. These dramatic observations revealed that IRS2 is actually not one, but two stars - a binary system consisting of twin scorching stars, separated by about 500 times the Earth-Sun distance. In the NACO image, the astronomers

  16. Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission

    Science.gov (United States)

    Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher

    2017-01-01

    The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.

  17. Solar Cells from Earth-Abundant Semiconductors with Plasmon-Enhanced Light Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Atwater, Harry

    2012-04-30

    Progress is reported in these areas: Plasmonic Light Trapping in Thin Film a-Si Solar Cells; Plasmonic Light Trapping in Thin InGaN Quantum Well Solar Cells; and Earth Abundant Cu{sub 2}O and Zn{sub 3}P{sub 2} Solar Cells.

  18. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  19. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    International Nuclear Information System (INIS)

    Chaudhari, V.A.; Solanki, C.S.

    2009-01-01

    Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of un optimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated

  20. A Snapshot of the Sun Near Solar Minimum: The Whole Heliosphere Interval

    Science.gov (United States)

    Thompson, Barbara J.; Gibson, Sarah E.; Schroeder, Peter C.; Webb, David F.; Arge, Charles N.; Bisi, Mario M.; de Toma, Giuliana; Emery, Barbara A.; Galvin, Antoinette B.; Haber, Deborah A.; hide

    2011-01-01

    We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar heliospheric planetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March 16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth's mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.

  1. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

    Science.gov (United States)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis

    2018-03-01

    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth–Moon system. Using this approach, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner-Solar-System objects predominantly reflects spatial heterogeneity. Here we use the isotopic composition of the refractory element calcium to show that the nucleosynthetic variability in the inner Solar System primarily reflects a rapid change in the mass-independent calcium isotope composition of protoplanetary disk solids associated with early mass accretion to the proto-Sun. We measure the mass-independent 48Ca/44Ca ratios of samples originating from the parent bodies of ureilite and angrite meteorites, as well as from Vesta, Mars and Earth, and find that they are positively correlated with the masses of their parent asteroids and planets, which are a proxy of their accretion timescales. This correlation implies a secular evolution of the bulk calcium isotope composition of the protoplanetary disk in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within one million years of the collapse of the proto-Sun reveal the full range of inner-Solar-System mass-independent 48Ca/44Ca ratios, indicating a rapid change in the composition of the material of the protoplanetary disk. We infer that this secular evolution reflects admixing of pristine outer-Solar-System material into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth

  2. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  3. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  4. Solar Science with the Atacama Large Millimeter/Submillimeter Array-A New View of Our Sun

    Czech Academy of Sciences Publication Activity Database

    Wedemeyer, S.; Bastian, T.S.; Brajša, R.; Hudson, H. S.; Fleishman, G.; Loukitcheva, M.; Fleck, B.; Kontar, E. P.; de Pontieu, B.; Yagoubov, P.; Tiwari, S.; Soler, R.; Black, J.H.; Antolin, P.; Scullion, E.; Gunár, Stanislav; Labrosse, N.; Ludwig, H.-G.; Benz, A. O.; White, S.M.; Hauschildt, P.; Doyle, J.G.; Nakariakov, V. M.; Ayres, T.; Heinzel, Petr; Karlický, Marian; Van Doorsselaere, T.; Gary, D.; Alissandrakis, C. E.; Nindos, A.; Solanki, S.K.; Rouppe van der Voort, L.; Shimojo, M.; Kato, Y.; Zaqarashvili, T.; Perez, E.; Selhorst, C.L.; Bárta, Miroslav

    2016-01-01

    Roč. 200, 1-4 (2016), s. 1-73 ISSN 0038-6308 R&D Projects: GA ČR GA13-24782S EU Projects: European Commission(XE) 312495 - SOLAR NET Grant - others:EC(XE) 606862 Program:FP7 Institutional support: RVO:67985815 Keywords : Sun * photosphere * chromosphere Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.497, year: 2016

  5. Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun

    Science.gov (United States)

    Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis

    2014-01-01

    Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  6. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  7. Our Explosive Sun

    Science.gov (United States)

    Brown, D. S.

    2009-01-01

    The Sun's atmosphere is a highly structured but dynamic place, dominated by the solar magnetic field. Hot charged gas (plasma) is trapped on lines of magnetic force that can snap like an elastic band, propelling giant clouds of material out into space. A range of ground-based and space-based solar telescopes observe these eruptions, particularly…

  8. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  9. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  10. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  11. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns

    Energy Technology Data Exchange (ETDEWEB)

    Baudrit, Mathieu; Algora, Carlos [Instituto de Energia Solar, Universidad Politecnica de Madrid (Spain)

    2010-02-15

    A theoretical conversion efficiency of 36.4% at 1000 suns concentration has been determined by means of realistic models and an improved optimization routine. The starting point device was the recent world-record monolithic GaInP/GaAs dual-junction solar cell that was grown lattice matched on a GaAs substrate by MOVPE, which has an efficiency of 32.6% at 1000 suns. Using previously calibrated models developed at our institution, IES-UPM, together with Silvaco ATLAS TCAD software, we reproduced the characteristics of the world-record solar cell, and then determined a cell configuration that would yield greater efficiency by using an optimization routine to hone the doping concentration and the thickness of each layer. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  13. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  14. Evaluation of a tracking flat-plate solar collector in Brazil

    International Nuclear Information System (INIS)

    Maia, Cristiana B.; Ferreira, André G.; Hanriot, Sérgio M.

    2014-01-01

    The continuing research for an alternative power source due to the perceived scarcity of fuel fossils has, in recent years, given solar energy a remarkable edge. Nevertheless, the Earth's daily and seasonal movement affects the intensity of the incident solar radiation. Devices can track the sun in order to ensure optimum positions with regard to incident solar radiation, maximizing the absorbed solar energy, and the useful energy gain. In this paper, a mathematical model is developed to estimate the solar radiation absorbed, the useful energy gain, and the efficiency of a flat-plate solar collector in Brazil. The results for a sun tracking flat-plate solar collector were compared to fixed devices. The full tracking system with rotation about two axes presented higher absorbed energy, when compared to the rotation about a single axe and to a fixed collector. Also, it was shown that the tilt angle for a fixed solar collector does not cause significant variations in the useful energy gain or in the absorbed solar radiation, for the same azimuth angle. - Highlights: • A model was developed for solar radiation based on experimental data for K T . • Useful energy gain and efficiency of a flat-plate solar collector were evaluated for a one-year period. • Several sun tracking systems were compared to fixed devices. • Tilt angle for a fixed device does not significantly affect the useful energy gain

  15. Sun tracker for clear or cloudy weather

    Science.gov (United States)

    Scott, D. R.; White, P. R.

    1979-01-01

    Sun tracker orients solar collector so that they absorb maximum possible sunlight without being fooled by bright clouds, holes in cloud cover, or other atmospheric conditions. Tracker follows sun within 0.25 deg arc and is accurate within + or - 5 deg when sun is hidden.

  16. Impact of the 2017 Solar Eclipse on the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-12

    With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid users with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.

  17. Skylab investigations of solar corona

    International Nuclear Information System (INIS)

    Krivsky, L.

    1976-01-01

    The findings are reported obtained by the observation of the Sun and its corona from Skylab. The most important findings include the discovery of explosive loop structures induced by eruptive phenomena below the corona, in the chromosphere. The front edge of the explosive loop structure was observed at a distance of 1,700,000 to 2,800,000 km from the Sun. The rate of prominence was around 500 km/s. The loop structure disturbed the original shape of the corona above the solar disk edge. A graph was plotted of the variation of the release of the expanding loop structure from the solar surface in millions of kilometers with time. The graph aided in refuting the erroneous assumption that the prominence was not associated with radio bursts similar to those induced by plasma shock waves. It was also shown that a prominent shock wave is present in the vicinity of the expanding structure front which, at lower levels, got released from the eruptive flare above the solar ''surface''. The knowledge obtained does not involve the Sun alone but is also valuable from the point of view of the prognosis of consequent magnetic anomalies in the interstellar space and geomagnetic disturbances on the Earth. (Z.S.)

  18. Power producing sun shades; Elproducerende solafskaermninger

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, K.; Soerensen, Henrik; Katic, I.; Schmidt-Petersen, H.; AAroe, D.

    2012-01-15

    Integrating photovoltaics into sun shades takes advantage of the best opportunities to capture and utilize solar energy when the shades are most needed to shield users from solar radiation. The report describes results of a development project for solar shading in the form of broad, horizontal and rotating lamellae with solar cells and an integrated control function that simultaneously is optimized based on energy consumption and thermal and visual indoor climate. The project idea was to meet the needs for effective sun protection in the present office, commercial and public buildings, where glass facades are dominant. The conclusion of the development project is that it rarely would be optimal to integrate solar cells into movable shades. This will normally only be relevant in cases where it is justified by architectural considerations. (LN)

  19. Propagation of energetic electrons in the solar corona observed with LOFAR

    Science.gov (United States)

    Breitling, F.

    2017-06-01

    This work reports about new high-resolution imaging and spectroscopic observations of solar type III radio bursts at low radio frequencies in the range from 30 to 80 MHz. Solar type III radio bursts are understood as result of the beam-plasma interaction of electron beams in the corona. The Sun provides a unique opportunity to study these plasma processes of an active star. Its activity appears in eruptive events like flares, coronal mass ejections and radio bursts which are all accompanied by enhanced radio emission. Therefore solar radio emission carries important information about plasma processes associated with the Sun's activity. Moreover, the Sun's atmosphere is a unique plasma laboratory with plasma processes under conditions not found in terrestrial laboratories. Because of the Sun's proximity to Earth, it can be studied in greater detail than any other star but new knowledge about the Sun can be transfer to them. This "solar stellar connection" is important for the understanding of processes on other stars. The novel radio interferometer LOFAR provides imaging and spectroscopic capabilities to study these processes at low frequencies. Here it was used for solar observations. LOFAR, the characteristics of its solar data and the processing and analysis of the latter with the Solar Imaging Pipeline and Solar Data Center are described. The Solar Imaging Pipeline is the central software that allows using LOFAR for solar observations. So its development was necessary for the analysis of solar LOFAR data and realized here. Moreover a new density model with heat conduction and Alfvén waves was developed that provides the distance of radio bursts to the Sun from dynamic radio spectra. Its application to the dynamic spectrum of a type III burst observed on March 16, 2016 by LOFAR shows a nonuniform radial propagation velocity of the radio emission. The analysis of an imaging observation of type III bursts on June 23, 2012 resolves a burst as bright, compact region

  20. August 1972 solar-terrestrial events: interplanetary magnetic field observations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E J [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-10-01

    A review is presented of the interplanetary magnetic field observations acquired in early August 1972 when four solar flares erupted in McMath Plage region 1976. Measurements of the interplanetary field were obtained by Earth satellites, HEOS-2 and Explorer 41, and by Pioneers 9 and 10 which, by good fortune, were radially aligned and only 45/sup 0/ east of the Earth-Sun direction. In response to the four flares, four interplanetary shocks were seen at Earth and at Pioneer 9, which was then at a heliocentric distance of 0.78 AU. However, at Pioneer 10, which was 2.2 AU from the Sun, only two forward shocks and one reverse shock were seen. The available magnetic field data acquired in the vicinity of the shocks are presented. Efforts to identify corresponding shocks at the several locations and to deduce their velocities of propagation between 0.8 and 2.2 AU are reviewed. The early studies were based on average velocities between the Sun and Pioneer 9, the Sun and Earth and the Sun and Pioneer 10. A large deceleration of the shocks between the Sun and 0.8 AU as well as between 0.8 and 2.2 AU was inferred. More recently the local velocities of the shocks at Pioneers 9 and 10 have become available. A comparision of these velocities shows little, if any, deceleration between 0.8 and 2.2 AU and implies that most or all of the deceleration actually occurred nearer the Sun. Evidence is also presented that shows a significant departure of the flare-generated shock fronts from spherical symmetry.

  1. The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Kwon, R.-Y.; Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 Spain (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel D-24118 (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2014-12-10

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2013 April 11 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. We use extreme ultraviolet (EUV) and white-light coronagraph observations from the Solar Dynamics Observatory (SDO), the SOlar and Heliospheric Observatory, and the twin Solar TErrestrial RElations Observatory spacecraft (STEREO-A and STEREO-B) to determine the angular extent of the EUV wave and coronal mass ejection (CME) associated with the origin of the SEP event. We compare the estimated release time of SEPs observed at each spacecraft with the arrival time of the structures associated with the CME at the footpoints of the field lines connecting each spacecraft with the Sun. Whereas the arrival of the EUV wave and CME-driven shock at the footpoint of STEREO-B is consistent, within uncertainties, with the release time of the particles observed by this spacecraft, the EUV wave never reached the footpoint of the field lines connecting near-Earth observers with the Sun, even though an intense SEP event was observed there. We show that the west flank of the CME-driven shock propagating at high altitudes above the solar surface was most likely the source of the particles observed near Earth, but it did not leave any EUV trace on the solar disk. We conclude that the angular extent of the EUV wave on the solar surface did not agree with the longitudinal extent of the SEP event in the heliosphere. Hence EUV waves cannot be used reliably as a proxy for the solar phenomenon that accelerates and injects energetic particles over broad ranges of longitudes.

  2. DETERMINING THE INITIAL HELIUM ABUNDANCE OF THE SUN

    International Nuclear Information System (INIS)

    Serenelli, Aldo M.; Basu, Sarbani

    2010-01-01

    We determine the dependence of the initial helium abundance and the present-day helium abundance in the convective envelope of solar models (Y ini and Y surf , respectively) on the parameters that are used to construct the models. We do so by using reference standard solar models (SSMs) to compute the power-law coefficients of the dependence of Y ini and Y surf on the input parameters. We use these dependencies to determine the correlation between Y ini and Y surf and use this correlation to eliminate uncertainties in Y ini from all solar model input parameters except the microscopic diffusion rate. We find an expression for Y ini that depends only on Y surf and the diffusion rate. By adopting the helioseismic determination of solar surface helium abundance, Y surf sun = 0.2485 ± 0.0035, and an uncertainty of 20% for the diffusion rate, we find that the initial solar helium abundance, Y ini sun , is 0.278 ± 0.006 independently of the reference SSMs (and particularly on the adopted solar abundances) used in the derivation of the correlation between Y ini and Y surf . When non-SSMs with extra mixing are used, then we derive Y ini sun = 0.273 ± 0.006. In both cases, the derived Y ini sun value is higher than that directly derived from solar model calibrations when the low-metallicity solar abundances (e.g., by Asplund et al.) are adopted in the models.

  3. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  4. Prototype of sun projector device

    Science.gov (United States)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  5. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  6. The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Richardson, I. G.; Thompson, B. J.; Rosenvinge, T. T. von; Mays, M. L.; Mäkelä, P. A.; Xie, H.; Thakur, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bain, H. M. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Zhang, M.; Zhao, L. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL (United States); Cane, H. V. [Department of Mathematics and Physics, University of Tasmania, Hobart (Australia); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Riley, P., E-mail: david.lario@jhuapl.edu [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2017-03-20

    We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fast halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.

  7. Long-term field test of solar PV power generation using one-axis 3-position sun tracker

    KAUST Repository

    Huang, B.J.; Ding, W.L.; Huang, Y.C.

    2011-01-01

    The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand

  8. Nimbus-7 Solar and Earth Flux Data in Native Binary Format

    Data.gov (United States)

    National Aeronautics and Space Administration — The NIMBUS7_ERB_SEFDT data set is the Solar and Earth Flux Data Tape (SEFDT) generated from Nimbus-7 Earth Radiation Budget (ERB) instrument data. The main purpose...

  9. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China); Xu, Guirong [Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205 (China)

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  10. ASTROMETRIC JITTER OF THE SUN AS A STAR

    International Nuclear Information System (INIS)

    Makarov, V. V.; Parker, D.; Ulrich, R. K.

    2010-01-01

    The daily variation of the solar photocenter over some 11 yr is derived from the Mount Wilson data reprocessed by Ulrich et al. to closely match the surface distribution of solar irradiance. The standard deviations of astrometric jitter are 0.52 μAU and 0.39 μAU in the equatorial and the axial dimensions, respectively. The overall dispersion is strongly correlated with solar cycle, reaching 0.91 μAU at maximum activity in 2000. The largest short-term deviations from the running average (up to 2.6 μAU) occur when a group of large spots happen to lie on one side with respect to the center of the disk. The amplitude spectrum of the photocenter variations never exceeds 0.033 μAU for the range of periods 0.6-1.4 yr, corresponding to the orbital periods of planets in the habitable zone. Astrometric detection of Earth-like planets around stars as quiet as the Sun is not affected by star spot noise, but the prospects for more active stars may be limited to giant planets.

  11. How the Sun Knocks Out My Cell Phone from 150 Million Kilometers Away

    Science.gov (United States)

    Ladbury, Ray

    2014-01-01

    Large solar particle events (SPE) threaten many elements of critical infrastructure. A 2013 study by Lloyds of London and Atmospheric and Environmental Research recently found that if a worst-case solar event like the 1859 Carrington Event struck our planet now, it could result on $0.6-$2.36 trillion in damages to the economy. In March 2014, researchers Y. D. Liu et al. revealed that just such an event had narrowly missed Earth in July 2012. The event was observed by the STEREO A spacecraft. In this presentation, we examine how the sun can pack such a punch from 150 million km away, the threats such solar particle events pose, their mechanisms and the efforts NASA and other space agencies are carrying out to understand and mitigate such risks.

  12. Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings

    Energy Technology Data Exchange (ETDEWEB)

    Stukel, Laura [Elevate Energy, Chicago, IL (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Adomatis, Sandra [Adomatis Appraisal Services, Punta Gorda, FL (United States); Foley, Craig [Sustainable Real Estate Consulting Services, Somerville, MA (United States); Parsons, Laura [Center for Sustainable Energy, San Diego, CA (United States); James, Mark [Vermont Law School, South Royalton, VT (United States). Inst. for Energy and Environment; Mastor, Roxana-Andreea [Vermont Law School, South Royalton, VT (United States). Inst. for Energy and Environment; Wedewer, Lindsey [Colorado Energy Office, Denver, CO (United States)

    2017-04-13

    Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listing service (MLS).

  13. Improving magnetosphere in situ observations using solar sails

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter; Schiff, Conrad; Williams, Trevor

    2018-01-01

    Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA's Magnetospheric Multi-Scale mission.

  14. Results of the 1973 NASA/JPL balloon flight solar cell calibration program

    Science.gov (United States)

    Yasui, R. K.; Greenwood, R. F.

    1975-01-01

    High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.

  15. The Sun A User's Manual

    CERN Document Server

    Vita-Finzi, Claudio

    2008-01-01

    The Sun is an account of the many ways in which our nearest star affects our planet, how its influence has changed over the last few centuries and millennia, and the extent to which we can predict its future impact. The Sun's rays foster the formation of Vitamin D by our bodies, but it can also promote skin cancer, cataracts, and mutations in our DNA. Besides providing the warmth and light essential to most animal and plant life, solar energy contributes substantially to global warming. Although the charged particles of the solar wind shield us from harmful cosmic rays, solar storms may damage artificial satellites and cripple communication systems and computer networks. The Sun is the ideal renewable energy source, but its exploitation is still bedevilled by the problems of storage and distribution. Our nearest star, in short, is a complex machine which needs to be treated with caution, and this book will equip every reader with the knowledge that is required to understand the benefits and dangers it can bri...

  16. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  17. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  18. Sun-view angle effects on reflectance factors of corn canopies

    Science.gov (United States)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.

    1985-01-01

    The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.

  19. A Solar Energy Cycle

    Science.gov (United States)

    Childs, Gregory

    2007-01-01

    In sixth grade, students understand that Earth gets visible light from the Sun, but students may also believe the Earth gets heat from the Sun. This last part is incorrect because the Sun is too far from the Earth to heat it directly. So, how does the Sun heat the Earth? When light strikes an object, it can be reflected or absorbed. Absorbed light…

  20. On the Path to SunShot - The Environmental and Public Health Benefits of Achieving High Penetrations of Solar Energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carpenter, Alberta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Monetizing the environmental health benefits of solar could add ~3.5¢/kWh to the value of solar energy (see Wiser et al. 2016). The monetary impacts due to environmental degradation and public health impacts seem far removed from the apparent “sticker price” of electricity. Yet quantifying these impacts is essential to understanding the true costs and benefits of solar and conventional generating technologies. Compared with fossil fuel generators, PV and CSP produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). Achieving the SunShot-level solar deployment targets—14% of U.S. electricity demand met by solar in 2030 and 27% in 2050—could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238–$252 billion. This is equivalent to 2.0–2.2 cents per kilowatt-hour of solar installed (¢/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4¢/kWh-solar—while also preventing 25,000–59,000 premature deaths. To put this in perspective, the estimated 3.5¢/kWh-solar in benefits due to SunShot-level solar deployment is approximately equal to the additional LCOE reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, water savings from achieving the SunShot goals, could result in the 2015–2050 cumulative savings of 4% of total power-sector withdrawals and 9% of total power-sector consumption—a particularly important consideration for arid states where substantial solar will be deployed. Improving public health and the environment is but one aspect of solar’s many costs and benefits. Clearly, however

  1. The Descent of the Serpent: Using a Successful Ancient Solar Observatories Webcast from Chichen Itza to Highlight Space Weather Research

    Science.gov (United States)

    Hawkins, I.; Higdon, R.; Cline, T.

    2006-12-01

    Over the past seven years, NASA's Sun-Earth Connection Education Forum has sponsored and coordinated education and public outreach events to highlight NASA's heliophysics research and discoveries. Our strategy involves using celestial events, such as total solar eclipses and the Transit of Venus, as well as Sun-Earth Day during the March Equinox, to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium and other museums, Ideum, NASA TV, NASA heliophysics missions, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide and internationally. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. As part of an Ancient Observatories theme in 2005, we have successfully featured solar alignments with ancient structures made by indigenous cultures that mark the equinoxes and/or solstices in cultural and historical parks in the Americas. In partnership with the Exploratorium, we produced broadcast-quality and webcast programming during the March equinox that shared heliophysics within a broad cultural context with formal and informal education audiences internationally. The program: "Descent of the Serpent" featured the light and shadow effect at sunset that takes place during the spring equinox at the Pyramid of El Castillo, in Chichén Itzá (México). This program made unique and authentic cultural connections to the knowledge of solar astronomy of the Maya, the living Mayan culture of today, and the importance of the Sun across the ages. We involved Sun-Earth Connection scientists, their missions, and research

  2. Solar wind drivers of geomagnetic storms during more than four solar cycles

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available Using a classification of the near-Earth solar wind into three basic flow types: (1 High-speed streams associated with coronal holes at the Sun; (2 Slow, interstream solar wind; and (3 Transient flows originating with coronal mass ejections (CMEs at the Sun, including interplanetary CMEs and the associated upstream shocks and post-shock regions, we determine the drivers of geomagnetic storms of various size ranges based on the Kp index and the NOAA “G” criteria since 1964, close to the beginning of the space era, to 2011, encompassing more than four solar cycles (20–23. We also briefly discuss the occurrence of storms since the beginning of the Kp index in 1932, in the minimum before cycle 17. We note that the extended low level of storm activity during the minimum following cycle 23 is without precedent in this 80-year interval. Furthermore, the “typical” numbers of storm days/cycle quoted in the standard NOAA G storm table appear to be significantly higher than those obtained from our analysis, except for the strongest (G5 storms, suggesting that they should be revised downward.

  3. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    Science.gov (United States)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  4. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  5. Optimising position control of a solar parabolic trough

    Directory of Open Access Journals (Sweden)

    Puramanathan Naidoo

    2011-03-01

    Full Text Available In today’s climate of growing energy needs and increasing environmental concerns, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy. This study is based on the implementation of a mathematical computation – the PSA (Plataforma Solar de Almeria computation developed at PSA (the European Test Centre for solar energy applications – embedded in a control algorithm to locate the position of the sun. Tests were conducted on a solar parabolic trough (SPT constructed at the Solar Thermal Applications Research Laboratory of the Mangosuthu University of Technology (Durban, South Africa for optimal position control using the PSA value. The designed control algorithm embedded in an industrial Siemens S7-314 C-2PtP programmable logic controller compared the PSA computation to a measured position of the SPT to optimally rotate the SPT to a desired position with the constant movement of the sun. The two main angles of the sun relative to the position of the SPT on earth, the zenith angle and the azimuth angle, both calculated in the PSA from the vertical and horizontal planes, respectively, were applied to the control algorithm to generate an appropriate final tracking angle within a 0.007 radian (0° 24′ 3.6″ tolerance, in accordance to the construction specifications and solar collector testing standards of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 1991. These values, together with the longitude and latitude applicable to the geographical location of the SPT, were processed in the control software to rotate the SPT to an optimal position with respect to the position of the sun in its daily path, for solar-to-thermal conversion.

  6. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    International Nuclear Information System (INIS)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui; Luhmann, Janet G.; Richardson, John D.; Lugaz, Noé

    2014-01-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished

  7. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Richardson, John D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lugaz, Noé, E-mail: liuxying@spaceweather.ac.cn [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-10-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished.

  8. Witnessing Solar Rejuvenation

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    At the end of last year, the Suns large-scale magnetic field suddenly strengthened, reaching its highest value in over two decades. Here, Neil Sheeley and Yi-Ming Wang (both of the Naval Research Laboratory) propose an explanation for why this happened and what it predicts for the next solar cycle.Magnetic StrengtheningUntil midway through 2014, solar cycle 24 the current solar cycle was remarkably quiet. Even at its peak, it averaged only 79 sunspots per year, compared to maximums of up to 190 in recent cycles. Thus it was rather surprising when, toward the end of 2014, the Suns large-scale magnetic field underwent a sudden rejuvenation, with its mean field leaping up to its highest values since 1991 and causing unprecedentedly large numbers of coronal loops to collapse inward.Yet in spite of the increase we observed in the Suns open flux (the magnetic flux leaving the Suns atmosphere, measured from Earth), there was not a significant increase in solar activity, as indicated by sunspot number and the rate of coronal mass ejections. This means that the number of sources of magnetic flux didnt increase so Sheeley and Wang conclude that flux must instead have been emerging from those sources in a more efficient way! But how?Aligned ActivityWSO open flux and the radial component of the interplanetary magnetic field (measures of the magnetic flux leaving the Suns photosphere and heliosphere, respectively), compared to sunspot number (in units of 100 sunspots). A sudden increase in flux is visible after the peak of each of the last four sunspot cycles. Click for a larger view! [Sheeley Wang 2015]The authors show that the active regions on the solar surface in late 2014 lined up in such a way that the emerging flux was enhanced, forming a strong equatorial dipole field that accounts for the sudden rejuvenation observed.Interestingly, this rejuvenation of the Suns open flux wasnt just a one-time thing; similar bursts have occurred shortly after the peak of every sunspot

  9. Solar and Stellar Flares and Their Effects on Planets

    Science.gov (United States)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  10. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  11. Solar Sentinels: Report of the Science and Technology Definition Team

    Science.gov (United States)

    2006-01-01

    The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.

  12. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  13. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  14. Prediciting Solar Activity: Today, Tomorrow, Next Year

    Science.gov (United States)

    Pesnell, William Dean

    2008-01-01

    Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to space weather effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less fuel can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms. Predicting those events that will affect our assets in space includes a solar prediction and how the radiation will propagate through the solar system. I will talk our need for solar activity predictions and anticipate how those predictions could be made more accurate in the future.

  15. SunShot Vision Study: February 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.

  16. Numerical analysis of orbital transfers to Mars using solar sails and attitude control

    Science.gov (United States)

    Pereira, M. C.; de Melo, C. F.; Meireles, L. G.

    2017-10-01

    Solar sails present a promising alternative method of propulsion for the coming phases of the space exploration. With the recent advances in materials engineering, the construction of lighter and more resistant materials capable of impelling spaceships with the use of solar radiation pressure has become increasingly viable technologically and economically. The studies, simulations and analysis of orbital transfers from Earth to Mars proposed in this work were implemented considering the use of a flat solar sail. Maneuvers considering the delivery of a sailcraft from a Low Earth Orbit to the border of the Earth’s sphere of influence and interplanetary trajectories to Mars were investigated. A set of simulations were implemented varying the attitude of the sail relative to the Sun. Results show that a sailcraft can carry out transfers with final velocity with respect to Mars smaller than the interplanetary Patched-conic approximation, although this requires a longer time of transfers, provided the attitude of the sailcraft relative to the Sun can be controlled in some points of the trajectories.

  17. CORRECTION OF THE TEMPERATURE EFFECT IN 1020 NM BAND OF SUN-SKY RADIOMETER

    Directory of Open Access Journals (Sweden)

    K. Li

    2018-04-01

    Full Text Available Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  18. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    Science.gov (United States)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  19. Development and validation of a learning progression for change of seasons, solar and lunar eclipses, and moon phases

    Science.gov (United States)

    Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella

    2015-12-01

    In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.

  20. Study of very low energy neutrinos from the Sun and from the Earth with the Borexino detector.

    CERN Document Server

    CERN. Geneva

    2011-01-01

    Borexino is a liquid scintillator unsegmented detector, running at the Gran Sasso underground Laboratories (LNGS). Thanks to its unprecedented low level of radioactive contamination, Borexino currently is the only experiment able to perform a real time measurement of solar neutrino interactions below few MeV. In solar neutrinos Borexino measured the neutrino flux from 7Be (862 keV) with total uncertainty smaller than 5%, the flux from 8B with a lower threshold down to 3 MeV, the day/night asymmetry of the 7Be neutrino flux with a total experimental uncertainty of 1%. These measurements introduce strong constraints also on the solar neutrino flux from the pp and CNO reactions. The impact of these Borexino results are extremely relevant both in solar physics, in connection with the understanding of Sun-like stars, and in neutrino physics. In particular, the precision measurement of the 7Be solar neutrino flux allows a real time investigation of neutrino oscillations below few MeV and provides a unique opportuni...

  1. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  2. Sun Protection and Skin Examination Practices in a Setting of High Ambient Solar Radiation: A Population-Based Cohort Study.

    Science.gov (United States)

    Olsen, Catherine M; Thompson, Bridie S; Green, Adèle C; Neale, Rachel E; Whiteman, David C

    2015-09-01

    Primary prevention and early detection are integral strategies to reduce the burden of skin cancer. To describe the prevalence of sun protection and skin examination practices in a population exposed to high levels of ambient solar radiation and to identify associated factors. Cross-sectional analyses of baseline data from a prospective cohort of 40,172 adults aged 40 through 69 years from Queensland, Australia, recruited in 2011. We obtained data on all melanoma diagnoses through 2009 via record linkage with the Queensland Cancer Registry (notifications have been mandatory since 1982). We calculated prevalence proportion ratios to compare prevalence of sun protection and skin examination practices in 3 separate groups: those with a history of melanoma (group 1), those with a self-reported history of treated actinic lesions (group 2), and those without either (group 3). We used multivariate generalized linear models to identify factors associated with each practice. Participants with a previously confirmed melanoma (group 1; n = 1433) and/or treated actinic lesions (group 2; n = 24,006) were more likely than those without (group 3; n = 14,733) to report sun protection practices, including regular use of sunscreen (53.3%, 45.1%, and 38.1%, respectively) and wearing hats (74.7%, 68.2%, and 58.2%, respectively). They were also more likely to have had a whole-body skin examination by a physician in the past 3 years (93.7%, 83.4%, and 52.1%, respectively). Within all 3 groups, the strongest association with sun protection practices was with sun-sensitive skin type. Within group 3 (no history of treated skin lesions), the strongest factor associated with clinical skin examinations was self-reported nevus density at 21 years of age, whereas a family history of melanoma was a significant factor in groups 2 and 3. In this large sample exposed to high levels of ambient solar radiation, sun protection and skin examination practices were most frequent among those

  3. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  4. Novel Solar Sail Mission Concepts for High-Latitude Earth and Lunar Observation

    NARCIS (Netherlands)

    Heiligers, M.J.; Parker, Jeffrey S.; Macdonald, Malcolm

    2016-01-01

    This paper proposes the use of solar sail periodic orbits in the Earth-Moon system for ob-servation of the high-latitudes of the Earth and Moon. At the Earth, the high-latitudes will be crucial in answering questions concerning global climate change, monitoring space weather events and ensuring

  5. Little sun

    DEFF Research Database (Denmark)

    Ebbesen, Toke Riis

    2017-01-01

    the ideas of Alfred Gell’s anthropology of art and the indicative framework derived from Argentinian semiotician Juan Pablo Bonta and Jørn Guldberg. The toy-like solar lamp Little Sun by Olafur Eliasson and Frederik Ottesen is used as case that blends the registers of social design and art......, and as an example of how designers attempt to determine meaning potentials through design in a complex interplay of different strategies. In the final analysis, what characterise objects like Little Sun is seldom that they communicate their meanings in themselves, but instead rely on forceful mediations to gain...

  6. Sun Tracker Operates a Year Between Calibrations

    Science.gov (United States)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  7. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  8. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  9. CONCEPTUAL STEPS TOWARDS EXPLORING THE FUNDAMENTAL NATURE OF OUR SUN

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2004-06-01

    Full Text Available One of the basic questions of solar research is the nature of the Sun. We show here how the plasma nature of the Sun leads to the self-generation of solar activity. The release of magnetic, rotational, gravitational, nuclear energies and that of the gravity mode oscillations deviate from uniformity and spherical symmetry. Through instabilities they lead to the emergence of sporadic and localized regions like flux tubes, electric filaments, magnetic elements and high temperature regions. A systematic approach exploring the solar collective degrees of freedom, extending to ordering phenomena of the magnetic features related to Higgs fields, is presented. Handling solar activity as transformations of energies from one form to another one presents a picture on the network of the energy levels of the Sun, showing that the Sun is neither a mere "ball of gas" nor a "quiescent steady-state fusion-reactor machine", but a complex self-organizing system. Since complex self-organizing systems are similar to living systems (and, by some opinion, identical with them, we also consider what arguments indicate the living nature of the Sun. Thermodynamic characteristics of the inequilibrium Sun are found important in this respect and numerical estimations of free energy rate densities and specific exergies are derived.

  10. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    Science.gov (United States)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  11. Role of solar influences on geomagnetosphere and upper atmosphere

    Science.gov (United States)

    Kumar Tripathi, Arvind

    The Earth's magnetosphere and upper atmosphere can be greatly perturbed by variations in the solar luminosity caused by disturbances on the solar surface. The state of near-Earth space environment is governed by the Sun and is very dynamic on all spatial and temporal scale. The geomagnetic field which protects the Earth from solar wind and cosmic rays is also essential to the evolution of life; its variations can have either direct or indirect effect on human physiology and health state even if the magnitude of the disturbance is small. Geomagnetic disturbances are seen at the surface of the Earth as perturbations in the components of the geomagnetic field, caused by electric currents flowing in the magnetosphere and upper atmosphere. Ionospheric and thermospheric storms also result from the redistribution of particles and fields. Global thermospheric storm winds and composition changes are driven by energy injection at high latitudes. These storm effects may penetrate downwards to the lower thermosphere and may even perturb the mesosphere. Many of the ionospheric changes at mid-latitude can be understood as a response to thermospheric perturbations. The transient bursts of solar energetic particles, often associated with large solar transients, have been observed to have effects on the Earth's middle and lower atmosphere, including the large-scale destruction of polar stratospheric and tropospheric ozone. In the present, we have discussed effect of solar influences on earth's magnetosphere and upper atmosphere that are useful to space weather and global warming, on the basis of various latest studies.

  12. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-10-24

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  13. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NARCIS (Netherlands)

    Heiligers, M.J.; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-01-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail

  14. Solar wind stream evolution at large heliocentric distances - Experimental demonstration and the test of a model

    Science.gov (United States)

    Gosling, J. T.; Hundhausen, A. J.; Bame, S. J.

    1976-01-01

    A stream propagation model which neglects all dissipation effects except those occurring at shock interfaces, was used to compare Pioneer-10 solar wind speed observations, during the time when Pioneer 10, the earth, and the sun were coaligned, with near-earth Imp-7 observations of the solar wind structure, and with the theoretical predictions of the solar wind structure at Pioneer 10 derived from the Imp-7 measurements, using the model. The comparison provides a graphic illustration of the phenomenon of stream steepening in the solar wind with the attendant formation of forward-reverse shock pairs and the gradual decay of stream amplitudes with increasing heliocentric distance. The comparison also provides a qualitative test of the stream propagation model.

  15. Application of new control strategy for sun tracking

    International Nuclear Information System (INIS)

    Rubio, F.R.; Ortega, M.G.; Gordillo, F.; Lopez-Martinez, M.

    2007-01-01

    The application of high concentration solar cells technology allows a significant increase in the amount of energy collected by solar arrays per unit area. However, to make it possible, more severe specifications on the sun pointing error are required. In fact, the performance of solar cells with concentrators decreases drastically if this error is greater than a small value. These specifications are not fulfilled by simple tracking systems due to different sources of errors (e.g., small misalignments of the structure with respect to geographical north) that appear in practice in low cost, domestic applications. This paper presents a control application of a sun tracker that is able to follow the sun with high accuracy without the necessity of either a precise procedure of installation or recalibration. A hybrid tracking system that consists of a combination of open loop tracking strategies based on solar movement models and closed loop strategies using a dynamic feedback controller is presented. Energy saving factors are taken into account, which implies that, among other factors, the sun is not constantly tracked with the same accuracy, to prevent energy overconsumption by the motors. Simulation and experimental results with a low cost two axes solar tracker are exposed, including a comparison between a classical open loop tracking strategy and the proposed hybrid one

  16. The Cambridge Guide to the Solar System

    Science.gov (United States)

    Lang, Kenneth R.

    2003-10-01

    The Cambridge Guide to the Solar System provides a comprehensive, funamental, and up-to-date description of the solar system. It is written in a concise, light and uniform style, without being unnecessarily weighted down with specialized materials or the variable writing of multiple authors. It is filled with vital facts and information for astronomers of all types and for anyone with a scientific interest in the Earth, our Moon, all the other planets and their satellites, and related topics such as asteroids, comets, meteorites and meteors. The language, style, ideas and profuse illustrations will attract the general reader as well as professionals. A thorough report for general readers, it includes much compact reference data. Metaphors, similes and analogies will be of immense help to the lay person or non-science student, and they add to the enjoyment of the material. Vignettes containing historical, literary and even artistic material make this book unusual and interesting, and enhance its scientific content. Kenneth Lang is professor of astronomy in the Physics and Astronomy Department at Tufts University. He is the author of several astrophysics books, including The Sun from Space (Springer Verlag, 2000), Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics (Springer Verlag, 1999), Sun, Earth and Sky (Copernicus Books, 1997), Astrophysical Data: Planets and Stars (Springer Verlag, 1993), and Wanderers in Space: Exploration and Discovery in the Solar System (Cambridge, 1991),

  17. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  18. 77 FR 36272 - SunShot Prize: America's Most Affordable Rooftop

    Science.gov (United States)

    2012-06-18

    ...The Department of Energy (DOE) announces in this notice the release of the SunShot Prize: America's Most Affordable Rooftop Solar for public comment. Interested persons are encouraged to learn about the SunShot Prize: America's Most Affordable Rooftop rules at eere.energy.gov/solar/sunshot/prize.html.

  19. SCIENCE OF SUN PHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available Typically, the total amount of gases and particles in a column of atmosphere cannot be determined from measurements just at Earth's surface, by a single measurement essentially at the bottom of the atmosphere column. Balloons, airplanes, and rockets are all used to perform direct measurements in the atmosphere at altitudes up to and beyond the stratosphere. Satellite-based instruments provide global views, but it is difficult to infer surface and column distributions from space-based measurements, so such measurements must still be supplemented by ground-based measurements. Sun photometry is an important way of probing the atmosphere from the ground to measure the effects of the atmosphere on Sun radiation crossing through the atmosphere to Earth's surface. These indirect technique provide information about the entire atmosphere above the observer, not just the atmosphere that can be sampled directly close to Earth's surface.

  20. What the Sun Has Taught Us About Basic Properties of Matter

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Sarbani [Yale University

    2012-03-07

    The Sun is an immensely large object formed out of many tons of gas. Yet the Sun can help us learn about some of the basic properties of matter. The structure of the Sun is governed not only by macrophysics such as hydrostatic equilibrium, convective and radiative heat transport, but also by microphysics such as nuclear reaction rates and the equation of state of the material that forms the Sun. Knowledge of the detailed structure of the Sun can therefore help us constrain the basic properties of matter. Helioseismology, the study of solar pulsations, has given us the means to get a detailed picture of the solar interior. In this talk I shall discuss how helioseismology has allowed us to determine details of solar structure, and in turn allowing us to study basic properties of matter.

  1. Solar excitation of bicentennial Earth rotation oscillations

    Czech Academy of Sciences Publication Activity Database

    Ron, Cyril; Chapanov, Y.; Vondrák, Jan

    2012-01-01

    Roč. 9, č. 3 (2012), s. 259-268 ISSN 1214-9705 R&D Projects: GA ČR GA205/08/0908 Grant - others:Bulgarian NSF(BG) DO02-275; FP7(BG) MCA PIRSES-GA-2009-246874 Institutional support: RVO:67985815 Keywords : Earth rotation * solar activity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.530, year: 2011

  2. LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Vourlidas, A.; Raouafi, N. E.; Haggerty, D. K.; Ho, G. C.; Anderson, B. J. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Gómez-Herrero, R. [Space Research Group, Physics and Mathematics Department, University of Alcalá, Alcalá de Henares, E-28871 (Spain); Dresing, N. [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany); Riley, P. [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2016-03-01

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2014 February 25 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. These include spacecraft located near Earth; the twin Solar TErrestrial RElations Observatory spacecraft, STEREO-A and STEREO-B, located at ∼1 au from the Sun 153° west and 160° east of Earth, respectively; the MErcury Surface Space ENvironment GEochemistry and Ranging mission (at 0.40 au and 31° west of Earth); and the Juno spacecraft (at 2.11 au and 48° east of Earth). Although the footpoints of the field lines nominally connecting the Sun with STEREO-A, STEREO-B and near-Earth spacecraft were quite distant from each other, an intense high-energy SEP event with Fe-rich prompt components was observed at these three locations. The extent of the extreme-ultraviolet wave associated with the solar eruption generating the SEP event was very limited in longitude. However, the white-light shock accompanying the associated coronal mass ejection extended over a broad range of longitudes. As the shock propagated into interplanetary space it extended over at least ∼190° in longitude. The release of the SEPs observed at different longitudes occurred when the portion of the shock magnetically connected to each spacecraft was already at relatively high altitudes (≳2 R{sub ⊙} above the solar surface). The expansion of the shock in the extended corona, as opposite to near the solar surface, determined the SEP injection and SEP intensity-time profiles at different longitudes.

  3. The Solar System Origin Revisited

    Science.gov (United States)

    Johnson, Fred M.

    2016-10-01

    A novel theory will be presented based in part on astronomical observations, plasma physics experiments, principles of physics and forensic techniques. The new theory correctly predicts planetary distances with a 1% precision. It accounts for energy production mechanism inside all of the planets including our Earth. A log-log mass-luminosity plot of G2 class stars and solar system planets results in a straight line plot, whose slope implies that a fission rather than a proton-proton fusion energy production is operating. Furthermore, it is a confirmation that all our planets had originated from within our Sun. Other still-born planets continue to appear on the Sun's surface, they are mislabeled as sunspots.

  4. NEW SUNS IN THE COSMOS?

    Energy Technology Data Exchange (ETDEWEB)

    De Freitas, D. B.; Leao, I. C.; Lopes, C. E. Ferreira; Paz-Chinchon, F.; Canto Martins, B. L.; Alves, S.; De Medeiros, J. R. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Catelan, M. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago (Chile)

    2013-08-20

    The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission's Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period-T{sub eff} diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with a similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these ''New Sun'' candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of 14 CoRoT stars with sub- and super-solar rotational periods, and for the Sun itself in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties as far as the latter's imprints on light curve behavior are concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.

  5. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  6. The shivering sun opens its heart

    International Nuclear Information System (INIS)

    Gough, D.

    1976-01-01

    Recent discoveries, by various workers, of global oscillations of the Sun are summarised. The two major ways in which the Sun can vibrate, as a standing acoustic wave and as a standing gravity wave, are discussed. The recently discovered oscillations provide a new rich class of data with which to test theoretical models of the internal structure of the Sun. The implications of these new data with reference to solar models are considered. (U.K.)

  7. Phase fluctuations model for EM wave propagation through solar scintillation at superior solar conjunction

    Science.gov (United States)

    Xu, Guanjun; Song, Zhaohui

    2017-04-01

    Traveling solar wind disturbances have a significant influence on radio wave characteristics during the superior solar conjunction communication. This paper considers the impact of solar scintillation on phase fluctuations of electromagnetic (EM) wave propagation during the superior solar conjunction. Based on the Geometric Optics approximation, the close-form approximation model for phase fluctuations is developed. Both effects of anisotropic temporal variations function of plasma irregularities and their power spectrum are presented and analyzed numerically. It is found that phase fluctuations rapidly decrease with increasing Sun-Earth-Probe angle and decrease with increasing frequency at the rate of 1/f2. Moreover, the role of various features of the solar wind irregularities and their influence on the EM wave characteristic parameters is studied and discussed. Finally, we study the phase fluctuations of typical cases in order to better understand the impact of phase fluctuations in future deep space communication scenarios during solar conjunction periods.

  8. New enhancement mechanism of the transitions in the Earth of the solar and atmospheric neutrinos crossing the Earth core

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1999-01-01

    It is shown that the ν 2 → ν e and ν μ → ν e (ν e → ν μ(τ) ) transitions respectively of the solar and atmospheric neutrinos in the Earth in the case of ν e - ν μ(τ) mixing in vacuum, are strongly enhanced by a new type of resonance when the neutrinos cross the Earth core. The resonance is operative at small mixing angles but differs from the MSW one. It is in many respects similar to the electron paramagnetic resonance taking place in a specific configuration of two magnetic fields. The conditions for existence of the new resonance include, in particular, specific constraints on the neutrino oscillation lengths in the Earth mantle and in the Earth core, thus the resonance is a 'neutrino oscillation length resonance'. It leads also to enhancement of the ν 2 → ν e and ν e → ν s transitions in the case of ν e - ν s mixing and of the ν-bar s (or ν μ → ν s ) transitions at small mixing angles. The presence of the neutrino oscillation length resonance in the transitions of solar and atmospheric neutrinos traversing the Earth core has important implications for current and future solar and atmospheric neutrino experiments, and more specifically, for the interpretation of the results of the Super-Kamiokande experiment

  9. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    Science.gov (United States)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  10. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  11. The Sun

    International Nuclear Information System (INIS)

    Hejna, L.; Sobotka, M.

    1987-01-01

    The conference proceedings contain 50 papers classified in six parts. The introductory paper is devoted to magnetic fields of the Sun and of low-mass main-sequence stars. 7 papers discuss the morphology and fine structure of solar active regions, 9 papers deal with evolutionary aspects of the regions, 6 papers with observations and theories of the solar magnetic field, 9 deal with velocity fields, oscillations and waves in the active regions and 18 papers discuss the physical structure of active regions and its diagnostics. (M.D.). 218 figs., 19 tabs., 1,317 refs

  12. The earth’'s electric field sources from sun to mud

    CERN Document Server

    Kelley, Michael C

    2013-01-01

    The Earth's Electric Field provides you with an integrated and comprehensive picture of the generation of the terrestrial electric fields, their dynamics and how they couple/propagate through the medium. The Earth's Electric Field provides basic principles of terrestrial electric field related topics, but also a critical summary of electric field related observations and their significance to the various related phenomena in the atmosphere. For the first time, Kelley brings together information on this topic in a coherent way, making it easy to gain a broad overview of the critical processes in an efficient way. If you conduct research in atmospheric science, physics, atmospheric chemistry, space plasma physics, and solar terrestrial physics, you will find this book to be essential reading. The only book on the physics of terrestrial electric fields and their generation mechanisms, propagation and dynamics-making it essential reading for scientists conducting research in upper atmospheric, ionospheric, magnet...

  13. Observations of the solar wind speed near the sun

    International Nuclear Information System (INIS)

    Grall, R. R.; Coles, Wm. A.; Klinglesmith, M. T.

    1996-01-01

    Two-antenna scintillation (IPS) observations can provide accurate measurements of the velocity with which electron density fluctuations drift past the line of sight. These fluctuations can be used as tracers for the solar plasma and allow us to estimate the solar wind velocity near the Sun where spacecraft have not yet penetrated. We present recent IPS measurements made with the EISCAT and VLBA arrays. We have found that by using baselines which are several times the scale size of the diffraction pattern we are able to partially deconvolve the line of sight integration which affects remote sensing data. The long baselines allow the fast and slow components of the solar wind to be separated and their velocities estimated individually. In modeling IPS it is important that the scattering be 'weak' because the model then requires only 1 spatial parameter instead of 3. EISCAT can only operate near 933MHz which limits the observation to outside of 18R · , however the VLBA has higher frequency receivers which allow it to observe inside of 15R · . The density variance δN e 2 in the fast wind is a factor of 10-15 less than in the slow (Coles et al., 1995) making it necessary to consider the entire line of sight, particularly when the fast wind occupies the center portion. Using the point of closest approach and the average velocity to characterize the observation can lead to an incorrect interpretation of the data. We have compared our IPS observations with maps made from the Yohkoh soft X ray, HAO's white-light electron density, and Stanford magnetic field measurements as well as with the IMP8 and Ulysses spacecraft data to assist in placing the fast and slow wind. Here we have selected those observation from 1994 which were dominated by the southern coronal hole and have estimated a velocity acceleration profile for the fast solar wind between 7 and 100R · which is presented in Figure 1. The observations suggest that the fast solar wind is fully developed by ≅7R

  14. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    Science.gov (United States)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  15. Dynamics and control of a solar collector system for near Earth object deflection

    International Nuclear Information System (INIS)

    Gong Shenping; Li Junfeng; Gao Yunfeng

    2011-01-01

    A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects. We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC). The MC is used to collect the sunlight to its focal point, where the SC is placed and directs the collected light to an asteroid. Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path. First, the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled. Secondly, the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors. Finally, the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor. The results show that the solar collector is much more efficient with respect to deflection capability.

  16. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  17. Eruptions from the Sun

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  18. Heating of the outer solar atmosphere

    International Nuclear Information System (INIS)

    Parker, E.N.

    1983-01-01

    The author discusses the idea that there must be a source of magnetic fields somewhere below the solar surface. He starts by considering present day ideas about the sun's internal structure. The sun has a radius of approximately 700,000 km, of which the outer 100,000 km or so is the convective zone, according to mixing-length models. The dynamo is believed to operate in the convective zone, across which there may be a 5-10% variation in the angular velocity. There are the stretched east-west fields similar to the ones in the earth's core. Associated with these are poloidal fields which contribute to a net dipole moment of the sun and are generated by a dynamo. The author shows that essentially no magnetic field configuration has an equilibrium; they dissipate quickly in spite of the high conductivity in fluid motions and heating. This is probably the major part of the heating of the sun's outer atmosphere. (Auth.)

  19. Atlas of solar hidden photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza,Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,Föhringer Ring 6, 80805 München (Germany)

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  20. Atlas of solar hidden photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier, E-mail: redondo@mpp.mpg.de [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain)

    2015-07-01

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.