WorldWideScience

Sample records for summertime ambient ozone

  1. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  2. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Science.gov (United States)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  3. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-02-01

    Full Text Available Widespread efforts to abate ozone (O3 smog have significantly reduced emissions of nitrogen oxides (NOx over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July–August 2004, SENEX (June–July 2013, and SEAC4RS (August–September 2013 and long-term ground measurement networks alongside a global chemistry–climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy in both 2004 and 2013. Among the major RON species, nitric acid (HNO3 is dominant (∼ 42–45 %, followed by NOx (31 %, total peroxy nitrates (ΣPNs; 14 %, and total alkyl nitrates (ΣANs; 9–12 % on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  4. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.

    Science.gov (United States)

    Wang, Qin'geng; Han, Zhiwei; Wang, Tijian; Zhang, Renjian

    2008-05-20

    This study is intended to understand and quantify the impacts of biogenic emissions of volatile organic compounds (VOC) and nitrogen oxides (NO(x)) on the formation of tropospheric ozone during summertime in eastern China. The model system consists of the non-hydrostatic mesoscale meteorological model (MM5) and a tropospheric chemical and transport model (TCTM) with the updated carbon-bond chemical reaction mechanism (CBM-IV). The spatial resolution of the system domain is 30 km x 30 km. The impacts of biogenic emissions are investigated by performing simulations (36 h) with and without biogenic emissions, while anthropogenic emissions are constant. The results indicate that biogenic emissions have remarkable impacts on surface ozone in eastern China. In big cities and their surrounding areas, surface ozone formation tends to be VOC-limited. The increase in ozone concentration by biogenic VOC is generally 5 ppbv or less, but could be more than 10 ppbv or even 30 ppbv in some local places. The impacts of biogenic NO(x) are different or even contrary in different regions, depending on the relative availability of NO(x) and VOC. The surface ozone concentrations reduced or increased by the biogenic NO(x) could be as much as 10 ppbv or 20 ppbv, respectively. The impacts of biogenic emissions on ozone aloft are generally restricted to the boundary layer and generally more obvious during the daytime than during the nighttime. This study is useful for understanding the role of biogenic emissions and for planning strategies for surface ozone abatement in eastern China. Due to limitations of the emission inventories used and the highly non-linear nature of zone formation, however, some uncertainties remain in the results.

  5. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.

    Science.gov (United States)

    Zhao, Hui; Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-03-29

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  6. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    Science.gov (United States)

    Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-01-01

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively. PMID:29596366

  7. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2018-03-01

    Full Text Available Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  8. Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios

    Science.gov (United States)

    Lee, Jae-Bum; Cha, Jun-Seok; Hong, Sung-Chul; Choi, Jin-Young; Myoung, Ji-Su; Park, Rokjin J.; Woo, Jung-Hun; Ho, Changhoi; Han, Jin-Seok; Song, Chang-Keun

    2015-04-01

    We have developed the Integrated Climate and Air Quality Modeling System (ICAMS) through the one-way nesting of global-regional models to examine the changes in the surface ozone concentrations over East Asia under future climate scenarios. Model simulations have been conducted for the present period of 1996-2005 to evaluate the performance of ICAMS. The simulated surface ozone concentrations reproduced the observed monthly mean concentrations at sites in East Asia with high R2 values (0.4-0.9), indicating a successful simulation to capture both spatial and temporal variability. We then performed several model simulations with the six IPCC SRES scenarios (A2, A1B, A1FI, A1T, B1, and B2) for the next three periods, 2016-2025 (the 2020s), 2046-2055 (the 2050s), and 2091-2100 (the 2090s). The model results show that the projected changes of the annual daily mean maximum eight-hour (DM8H) surface ozone concentrations in summertime for East Asia are in the range of 2-8 ppb, -3 to 8 ppb, and -7 to 9 ppb for the 2020s, the 2050s, and the 2090s, respectively, and are primarily determined based on the emission changes of NOx and NMVOC. The maximum increases in the annual DM8H surface ozone and high-ozone events occur in the 2020s for all scenarios except for A2, implying that the air quality over East Asia is likely to get worse in the near future period (the 2020s) than in the far future periods (the 2050s and the 2090s). The changes in the future environment based on IPCC SRES scenarios would also influence the change in the occurrences of high-concentrations events more greatly than that of the annual DM8H surface ozone concentrations. Sensitivity simulations show that the emissions increase is the key factor in determining future regional surface ozone concentrations in the case of a developing country, China, whereas a developed country, Japan would be influenced more greatly by effects of the regional climate change than the increase in emissions.

  9. SUMMERTIME AMBIENT FORMALDEHYDE IN FIVE U.S. METROPOLITAN AREAS: NASHVILLE, ATLANTA, HOUSTON, PHILADELPHIA, TAMPA

    Science.gov (United States)

    In this paper, we briefly review the atmospheric chemistry and previous intercomparison measurements for HCHO, with special reference to the diffusion scrubber-Hantzsch reaction based fluorescence instrument used in the field studies reported herein. Then we discuss summertime HC...

  10. Effects of El Niño on Summertime Ozone Air Quality in the Eastern United States

    Science.gov (United States)

    Shen, Lu; Mickley, Loretta J.

    2017-12-01

    We investigate the effect of El Niño on maximum daily 8 h average surface ozone over the eastern United States in summer during 1980-2016. El Niño can influence the extratropical climate through the propagation of stationary waves, leading to (1) reduced transport of moist, clean air into the middle and southern Atlantic states and greater subsidence, reduced precipitation, and increased surface solar radiation in this region, as well as (2) intensified southerly flow into the south central states, which here enhances flux of moist and clean air. As a result, each standard deviation increase in the Niño 1 + 2 index is associated with an increase of 1-2 ppbv ozone in the Atlantic states and a decrease of 0.5-2 ppbv ozone in the south central states. These influences can be predicted 4 months in advance. We show that U.S. summertime ozone responds differently to eastern-type El Niño events compared to central-type events.

  11. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    Science.gov (United States)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  12. Long-term Measurements of Summer-time Ozone at the Walnut Grove Tower - Understanding Trends in the Boundary Layer

    Science.gov (United States)

    Mahmud, A.; Di, P.; Mims, D.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2015-12-01

    The California Air Resources Board (CARB) has been monitoring boundary layer ozone at the Walnut Grove Tower (WGT) since 1996 for investigating regional transport and vertical profile. Walnut Grove is located between Sacramento and Stockton, CA in the Sacramento - San Joaquin Delta. Sampling inlets are positioned at 30-ft, 400-ft, 800-ft, 1200-ft and 1600-ft levels of the 2000-ft tower, which is one of the tallest monitoring towers in the Western US. Ozone, ambient temperature, wind speed, and wind direction are simultaneously measured at each level, and reported as hourly averages. The current study included analyses of available ozone and corresponding meteorological data for the months of June - September from 1996 - 2014 with objectives to: 1) explore trends and inter-annual variability of ozone, 2) examine any correlations between ozone and meteorological parameters, 3) understand interactions of ozone measured at various levels, and 4) assess how well a regulatory state-of-the-science air quality model such as the Community Multi-scale Air Quality Model (CMAQ) captures observation. Daily 1-hr maximum ozone has been consistently decreasing during the 1996 - 2014 period at a rate of ~1 ppb per year. This indicates that CARB's measures to control ambient ozone have been effective over the past years. Evolution of the vertical profile throughout the day shows that ozone is fairly homogeneously mixed between 1 - 5 pm, when mixing height typically reaches the maximum. Ozone at 30-ft shows the greatest variability because of its proximity to the ground and emissions sources - rises faster during morning hours (7 - 10 am) and declines more rapidly during evening hours (7 - 10 pm) compared to other levels. Air masses reaching the tower are predominantly southwesterly (247 - 257 deg.) at the bottom, and southwesterly to slightly northwesterly (254 - 302 deg.) at top levels. Daily 1-hr maximum ozone was negatively correlated with wind speed (i.e. ozone was high under

  13. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  14. Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-02-01

    Full Text Available The impact that changes in future climate, anthropogenic US emissions, background tropospheric composition, and land-use have on summertime regional US ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations, where each set of simulations was conducted for five months of July climatology, using the Community Multi-scale Air Quality (CMAQ model. Projected regional scale changes in meteorology due to climate change under the Intergovernmental Panel on Climate Change (IPCC A2 scenario are derived through the downscaling of Parallel Climate Model (PCM output with the MM5 meteorological model. Future chemical boundary conditions are obtained through downscaling of MOZART-2 (Model for Ozone and Related Chemical Tracers, version 2.4 global chemical model simulations based on the IPCC Special Report on Emissions Scenarios (SRES A2 emissions scenario. Projected changes in US anthropogenic emissions are estimated using the EPA Economic Growth Analysis System (EGAS, and changes in land-use are projected using data from the Community Land Model (CLM and the Spatially Explicit Regional Growth Model (SERGOM. For July conditions, changes in chemical boundary conditions are found to have the largest impact (+5 ppbv on average daily maximum 8-h (DM8H ozone. Changes in US anthropogenic emissions are projected to increase average DM8H ozone by +3 ppbv. Land-use changes are projected to have a significant influence on regional air quality due to the impact these changes have on biogenic hydrocarbon emissions. When climate changes and land-use changes are considered simultaneously, the average DM8H ozone decreases due to a reduction in biogenic VOC emissions (−2.6 ppbv. Changes in average 24-h (A24-h PM2.5 concentrations are dominated by projected changes in anthropogenic emissions (+3 μg m−3, while changes in chemical boundary conditions have a negligible effect. On average, climate change reduces A24-h PM2

  15. Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument

    Science.gov (United States)

    Liu, Jane J.; Jones, Dylan B. A.; Worden, John R.; Noone, David; Parrington, Mark; Kar, Jay

    2009-03-01

    We use the GEOS-Chem chemical transport model to interpret observations of tropospheric ozone from the Tropospheric Emission Spectrometer (TES) satellite instrument in summer 2005. Observations from TES reveal elevated ozone in the middle troposphere (500-400 hPa) across North Africa and the Middle East. Observed ozone abundances in the middle troposphere are at a maximum in summer and a minimum in winter, consistent with the previously predicted summertime "Middle East ozone maximum." This summertime enhancement in ozone is associated with the Arabian and Sahara anticyclones, centered over the Zagros and Atlas Mountains, respectively. These anticyclones isolate the middle troposphere over northeast Africa and the Middle East, with westerlies to the north and easterlies to the south, facilitating the buildup of ozone. Over the Middle East, we find that in situ production and transport from Asia provides comparable contributions of 30-35% to the ozone buildup. Over North Africa, in situ production is dominant (at about 20%), with transport from Asia, North America, and equatorial Africa each contributing about 10-15% to the total ozone. We find that although the eastern Mediterranean is characterized by strong descent in the middle and upper troposphere in summer, transport from the boundary layer accounts for about 25% of the local Middle Eastern contribution to the ozone enhancement in the middle troposphere. This upward transport of boundary layer air is associated with orographic lifting along the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water.

  16. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Science.gov (United States)

    2012-05-21

    ... and 81 Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications...-9668-2] RIN 2060-AP37 Air Quality Designations for the 2008 Ozone National Ambient Air Quality...

  17. effect of ambient levels of ozone on photosynthetic components

    African Journals Online (AJOL)

    ACSS

    To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on ... (Rubisco), thus contributing to the reduction in net photosynthetic rate at the .... USA). During the measurements, atmospheric. CO2 concentrations, air ...... productivity and implications for climate change. Annual Review of Plant Biology 63:.

  18. Effect of ambient levels of ozone on photosynthetic components and ...

    African Journals Online (AJOL)

    Effect of ambient levels of ozone on photosynthetic components and radical scavenging system in leaves of African cowpea varieties. ... The O3-induced significant reduction in catalase activity was observed in Blackeye at vegetative and reproductive growth stages; and in Asontem at reproductive growth stage. On the other ...

  19. Summertime ozone formation in Xi'an and surrounding areas, China

    Directory of Open Access Journals (Sweden)

    T. Feng

    2016-04-01

    Full Text Available In this study, the ozone (O3 formation in China's northwest city of Xi'an and surrounding areas is investigated using the Weather Research and Forecasting atmospheric chemistry (WRF-Chem model during the period from 22 to 24 August 2013, corresponding to a heavy air pollution episode with high concentrations of O3 and PM2.5. The model generally performs well compared to measurements in simulating the surface temperature, relative humidity, and wind speed and direction, near-surface O3 and PM2.5 mass concentrations, and aerosol constituents. High aerosol concentrations in Xi'an and surrounding areas significantly decrease the photolysis frequencies and can reduce O3 concentrations by more than 50 µg m−3 (around 25 ppb on average. Sensitivity studies show that the O3 production regime in Xi'an and surrounding areas is complicated, varying from NOx to VOC (volatile organic compound-sensitive chemistry. The industrial emissions contribute the most to the O3 concentrations compared to biogenic and other anthropogenic sources, but neither individual anthropogenic emission nor biogenic emission plays a dominant role in the O3 formation. Under high O3 and PM2.5 concentrations, a 50 % reduction in all the anthropogenic emissions only decreases near-surface O3 concentrations by about 14 % during daytime. The complicated O3 production regime and high aerosol levels pose a challenge for O3 control strategies in Xi'an and surrounding areas. Further investigation regarding O3 control strategies will need to be performed, taking into consideration the rapid changes in anthropogenic emissions that are not reflected in the current emission inventories and the uncertainties in the meteorological field simulations.

  20. Association between ambient ozone and health outcomes in Prague

    Czech Academy of Sciences Publication Activity Database

    Hůnová, I.; Malý, Marek; Řezáčová, J.; Braniš, M.

    2013-01-01

    Roč. 86, č. 1 (2013), s. 89-97 ISSN 0340-0131 Grant - others:GA MŠk(CZ) 2B08077; GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : ambient ozone * cardiovascular diseases * hospital admissions * mortality * respiratory diseases Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.198, year: 2013

  1. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  2. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    Directory of Open Access Journals (Sweden)

    C. Xing

    2017-12-01

    Full Text Available Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2 and formaldehyde (HCHO concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO algorithm, while vertical distribution of ozone (O3 was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km. Planetary boundary layer (PBL height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs in the lower troposphere.

  3. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study

    OpenAIRE

    Christian N. Gencarelli; Ian M. Hedgecock; Francesca Sprovieri; Gregor J. Schürmann; Nicola Pirrone

    2014-01-01

    Ozone concentrations in the Mediterranean area regularly exceed the maximum levels set by the EU Air Quality Directive, 2008/50/CE, a maximum 8-h mean of 120 μg·m-3, in the summer, with consequences for both human health and agriculture. There are a number of reasons for this: the particular geographical and meteorological conditions in the Mediterranean play a part, as do anthropogenic ozone precursor emissions from around the Mediterranean and continental Europe. Ozone concentrations measur...

  4. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    Science.gov (United States)

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of

  5. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study

    Directory of Open Access Journals (Sweden)

    Christian N. Gencarelli

    2014-12-01

    Full Text Available Ozone concentrations in the Mediterranean area regularly exceed the maximum levels set by the EU Air Quality Directive, 2008/50/CE, a maximum 8-h mean of 120 μg·m-3, in the summer, with consequences for both human health and agriculture. There are a number of reasons for this: the particular geographical and meteorological conditions in the Mediterranean play a part, as do anthropogenic ozone precursor emissions from around the Mediterranean and continental Europe. Ozone concentrations measured on-board the Italian Research Council’s R. V. Urania during summer oceanographic campaigns between 2000 and 2010 regularly exceeded 60 ppb, even at night. The WRF/Chem (Weather Research and Forecasting (WRF model coupled with Chemistrymodel has been used to simulate tropospheric chemistry during the periods of the measurement campaigns, and then, the same simulations were repeated, excluding the contribution of maritime traffic in the Mediterranean to the anthropogenic emissions inventory. The differences in the model output suggest that, in large parts of the coastal zone of the Mediterranean, ship emissions Atmosphere 2014, 5 938 contribute to 3 and 12 ppb to ground level daily average ozone concentrations. Near busy shipping lanes, up to 40 ppb differences in the hourly average ozone concentrations were found. It seems that ship emissions could be a significant factor in the exceedance of the EU directive on air quality in large areas of the Mediterranean Basin.

  6. OH, HO2 and RO2 Radical and OH Reactivity Observations during the Summertime in Beijing: High In-Situ Ozone Production and Evidence of a Missing OH Source.

    Science.gov (United States)

    Whalley, L.; Ye, C.; Slater, E.; Woodward-Massey, R.; Lee, J. D.; Squires, F. A.; Hopkins, J. R.; Dunmore, R.; Shaw, M.; Hamilton, J.; Lewis, A. C.; Crilley, L.; Kramer, L. J.; Bloss, W.; Heard, D. E.

    2017-12-01

    Despite substantial reductions in primary emissions of pollutants in China over the past decade, concentrations of the secondary pollutant, ozone, still frequently exceed air quality threshold limits in urban areas during the summertime. We will present measurements of OH, HO2 and RO2 radicals and OH reactivity made in central Beijing at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, close to the North 4th ring road in May and June 2017 which formed the summer phase of `An Integrated Study of AIR Pollution PROcesses'. Elevated levels of O3 (>100 ppbv) were regularly observed. NO concentrations were elevated during the morning but often decreased to below the instrument limit of detection during the afternoon hours when the ozone concentrations peaked. Biogenic emissions influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The OH measurements were made using the FAGE technique, equipped with an inlet pre injector (IPI) which provides an alternative method to determine the instrument background signal by injecting a scavenger to remove ambient OH and ensures an artefact-free OH measurement. Elevated levels of OH were observed, with a mean peak OH concentration of 1.2×107 molecule cm-3 at noon; but with OH concentrations reaching up to 2.5×107 molecule cm-3 on some days. Mean peak HO2 concentrations of 3×108 molecule cm-3 and total RO2 of 1.2×109 molecule cm-3 were recorded, with maximum concentrations of 1.0×109 molecule cm-3 and 4×109 molecule cm-3 observed for HO2 and RO2 respectively, suggesting significant in situ ozone production. A comparison of the artefact-free OH observations with steady state calculations, constrained to the total OH reactivity measurement and known OH precursors that were measured alongside OH, highlights a significant missing daytime OH source under low [NO], with the steady state OH concentrations approximately a factor of two lower than the OH concentrations

  7. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization

    International Nuclear Information System (INIS)

    Lee, I-S.; Tsai, S.-W.

    2008-01-01

    The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 deg. C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 x 10 -4 cm 3 s -1 with detection limit of 58.8 μg m -3 h -1 . Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone

  8. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A

    2003-09-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture.

  9. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania

    International Nuclear Information System (INIS)

    Yuska, D.E.; Skelly, J.M.; Ferdinand, J.A.; Stevenson, R.E.; Savage, J.E.; Mulik, J.D.; Hines, A.

    2003-01-01

    Passive samplers and bioindicator plants detect ozone air pollution in north central Pennsylvania. - Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture

  10. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  11. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data.... Primary and Secondary Ambient Air Quality Standards for Ozone. 2.1 Data Reporting and Handling Conventions... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of...

  12. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  13. Protection of plants from ambient ozone by applications of ethylenediurea (EDU): A meta-analytic review

    International Nuclear Information System (INIS)

    Feng Zhaozhong; Wang Shuguang; Szantoi, Zoltan; Chen Shuai; Wang Xiaoke

    2010-01-01

    A meta-analysis was conducted to quantitatively assess the effects of ethylenediurea (EDU) on ozone (O 3 ) injury, growth, physiology and productivity of plants grown in ambient air conditions. Results indicated that EDU significantly reduced O 3 -caused visible injury by 76%, and increased photosynthetic rate by 8%, above-ground biomass by 7% and crop yield by 15% in comparison with non-EDU treated plants, suggesting that ozone reduces growth and yield under current ambient conditions. EDU significantly ameliorated the biomass and yield of crops and grasses, but had no significant effect on tree growth with an exception of stem diameter. EDU applied as a soil drench at a concentration of 200-400 mg/L has the highest positive effect on crops grown in the field. Long-term research on full-grown tree species is needed. In conclusion, EDU is a powerful tool for assessing effects of ambient [O 3 ] on vegetation. - EDU effectively protect plants against ambient ozone.

  14. Cardiopulmonary mortality and COPD attributed to ambient ozone.

    Science.gov (United States)

    Khaniabadi, Yusef Omidi; Hopke, Philip K; Goudarzi, Gholamreza; Daryanoosh, Seyed Mohammad; Jourvand, Mehdi; Basiri, Hassan

    2017-01-01

    Tropospheric ozone is the second most important atmospheric pollutant after particulate matter with respect to its impact on human health and is increasing of its concentrations globally. The main objective of this study was to assess of health effects attributable to ground-level ozone (O 3 ) in Kermanshah, Iran using one-hour O 3 concentrations measured between March 2014 and March 2015. The AirQ program was applied for estimation of the numbers of cardiovascular mortality (CM), respiratory mortality (RM), and hospital admissions for chronic obstructive pulmonary disease (HA-COPD) using relative risk (RR) and baseline incidence (BI) as defined by the World Health Organization (WHO). The largest percentage of person-days for different O 3 concentrations was in the concentration range of 30-39µg/m 3 . The health modeling results suggested that ~2% (95% CI: 0-2.9%) of cardiovascular mortality, 5.9% (95% CI: 2.3-9.4) of respiratory mortality, and 4.1% (CI: 2.5-6.1%) of the HA-COPD were attributed to O 3 concentrations higher than 10µg/m 3 . For each 10µg/m 3 increase in O 3 concentration, the risk of cardiovascular mortality, respiratory mortality, and HA-COPD increased by 0.40%, 1.25%, and 0.86%, respectively. Furthermore, 88.8% of health effects occurred on days with O 3 level less than 100µg/m 3 . Thus, action is needed to reduce the emissions of O 3 precursors especially transport and energy production in Kermanshah. Copyright © 2016. Published by Elsevier Inc.

  15. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  16. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    Science.gov (United States)

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  17. Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities.

    Science.gov (United States)

    Yin, Peng; Chen, Renjie; Wang, Lijun; Meng, Xia; Liu, Cong; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Zhou, Maigeng; Kan, Haidong

    2017-11-21

    Few large multicity studies have been conducted in developing countries to address the acute health effects of atmospheric ozone pollution. We explored the associations between ozone and daily cause-specific mortality in China. We performed a nationwide time-series analysis in 272 representative Chinese cities between 2013 and 2015. We used distributed lag models and over-dispersed generalized linear models to estimate the cumulative effects of ozone (lagged over 0-3 d) on mortality in each city, and we used hierarchical Bayesian models to combine the city-specific estimates. Regional, seasonal, and demographic heterogeneity were evaluated by meta-regression. At the national-average level, a 10-μg/m 3 increase in 8-h maximum ozone concentration was associated with 0.24% [95% posterior interval (PI): 0.13%, 0.35%], 0.27% (95% PI: 0.10%, 0.44%), 0.60% (95% PI: 0.08%, 1.11%), 0.24% (95% PI: 0.02%, 0.46%), and 0.29% (95% PI: 0.07%, 0.50%) higher daily mortality from all nonaccidental causes, cardiovascular diseases, hypertension, coronary diseases, and stroke, respectively. Associations between ozone and daily mortality due to respiratory and chronic obstructive pulmonary disease specifically were positive but imprecise and nonsignificant. There were no statistically significant differences in associations between ozone and nonaccidental mortality according to region, season, age, sex, or educational attainment. Our findings provide robust evidence of higher nonaccidental and cardiovascular mortality in association with short-term exposure to ambient ozone in China. https://doi.org/10.1289/EHP1849.

  18. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  19. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... the data handling procedures for the reported data). 2.3Comparisons with the Primary and Secondary... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY...

  20. The chemical effects on the summertime ozone in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian monsoon region

    Science.gov (United States)

    Gu, Yixuan; Liao, Hong; Xu, Jianming; Zhou, Guangqiang

    2018-01-01

    We use the global three-dimensional Goddard Earth Observing System chemical transport model with the Universal tropospheric-stratospheric Chemistry eXtension mechanism to examine the contributions of the chemical processes to summertime O3 in the upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau and the South Asian monsoon region (TP/SASM). Simulated UTLS O3 concentrations are evaluated by comparisons with Microwave Limb Sounder products and net chemical production of O3 (NPO3) are evaluated by comparisons with model results in previous studies. Simulations show that the chemical processes lead to an increase in O3 concentration, which is opposite to the effect of O3 transport in the UTLS over the TP/SASM region throughout the boreal summer. NPO3 in UTLS over the TP/SASM region is the largest in summer. Elevated values (0.016-0.020 Tg year-1) of the seasonal mean NPO3 are simulated to locate at 100 hPa in the TP/SASM region, where the mixing ratios of O3 are low and those of O3 precursors (NO x , VOCs, and CO) are high. The high concentrations of O3 precursors (NO x , VOCs, and CO) together with the active photochemical reactions of NO2 in the UTLS over the TP/SASM region during summertime could be important reasons for the enhancement of {NP}_{{{O}3 }} over the studied region.

  1. Influence of ambient ozone on the incidence of bone fractures especially among the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J.

    1979-02-01

    Elevated levels of breatheable ozone will reduce the amount of uv radiation in the range of 280 to 305 nm reaching the surface of earth. This range of uv converts the provitamin 7-dehydrocholesterol to vitamin D, within the human. Since most typical diets contain low levels of vitamin D, the role of uv-related vitamin D synthesis in the skin is considered to provide very important contributions to the total vitamin D content of the blood. Thus, elevated levels of ambient ozone should result in a decreased level of vitamin D synthesis which may be expressed as an increase in the incidence of histological osteomalacia and ultimately bone fractures, especially among the elderly.

  2. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Zhong Shiyuan; Esperanza, Annie; Brown, Timothy J.; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  3. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Haiganoush K., E-mail: hpreisler@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St, Albany, CA 94710 (United States); Zhong Shiyuan, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building, East Lansing, MI 48824-1117 (United States); Esperanza, Annie, E-mail: annie_esperanza@nps.go [Sequoia and Kings Canyon National Parks, 47050 Generals Highway Three Rivers, CA 93271 (United States); Brown, Timothy J., E-mail: tim.brown@dri.ed [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89521-10095 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Tarnay, Leland, E-mail: Leland_Tarnay@nps.go [Yosemite National Park, El Portal, CA 95318 (United States)

    2010-03-15

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. - We have demonstrated that it is possible to produce accurate forecasts of next-day hourly ozone levels in the Sierra Nevada, CA, during fire season.

  4. The effect of ambient ozone and humidity on the performance of nylon and Teflon filters used in ambient air monitoring filter-pack systems

    Science.gov (United States)

    PE Padgett

    2010-01-01

    Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...

  5. Possible changes in the dose of biologically active ultraviolet radiation received by the biosphere in the summertime Arctic due to total ozone interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, Aleksandr N. (Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation))

    1994-12-01

    Data for total ozone measurements since 1972 from the world ozone measuring network have been analyzed to study ozone interannual variability and estimate its possible effect on the UV-B dose received by the arctic biosphere. Possible interannual changes in the UV-B dose received by DNA associated with overall interannual ozone variability, as well as with the quasi-biennial oscillation (QBO) in total ozone were computed for different summer months. In general, the largest interannual variations in UV-B dose may occur in the Russian Arctic, whereas the possible variations in the Canadian Arctic are the smallest. Overall variations in the UV-B dose received by DNA can exceed 25% (2[sigma] criterion) in the Taimyr and Severnaya Zemlya for June and July, and 30% in the Laptev Sea for August. In the European sector of the Arctic, the possible variations are greater than 10%, and can exceed 15% in the north Norwegian Sea for July and 20% in Spitsbergen for August. Possible overall variations in the Canadian Arctic and Alaska are [<=]10%, reaching 15% in Alaska for August, however. The total ozone QBO can also cause essential and (statistically) predicted changes in UV-B radiation. In general, the UV-B dose received by DNA is found to be greater in the Arctic during the westerly phase of the QBO of the equatorial stratospheric wind at 50 mb level than during the easterly phase. The difference can reach or exceed 15% (relative to the mean value) in Taimyr for June and in Severnaya Zemlya for July and August. In northern Europe and Iceland, the difference can reach 10% for August. In the Canadian Arctic, the QBO-related effect is small. In Alaska, the appropriate difference in UV-B dose has an opposite sign for August, exceeding 5% in magnitude

  6. Exposure-plant response of ambient ozone over the tropical Indian region

    Directory of Open Access Journals (Sweden)

    S. Deb Roy

    2009-07-01

    Full Text Available A high resolution regional chemistry-transport model has been used to study the distribution of exposure-plant response index (AOT40, Accumulated exposure Over a Threshold of 40 ppb, expressed as ppb h over the Indian geographical region for the year 2003 as case study. The directives on ozone pollution in ambient air provided by United Nations Economic Commission for Europe (UNECE and World Health Organization (WHO for vegetation protection (AOT40 have been used to assess the air quality. A substantial temporal and spatial variation in AOT40 values has been observed across the Indian region. Large areas of India show ozone values above the AOT40 threshold limit (3000 ppb h for 3 months. Simulated AOT40 values are found to be substantially higher throughout the year over the most fertile Indo-Gangetic plains than the other regions of India, which can have an adverse effect on plants and vegetation in this region. The observed monthly AOT40 values reported from an Indian station, agree reasonably well with model simulated results. There is an underestimation of AOT40 in the model results during the periods of highest ozone concentration from December to March. We find that the simulated AOT40 target values for protection of vegetation is exceeded even in individual months, especially during November to April. Necessary and effective emission reduction strategies are therefore required to be developed in order to curb the surface level ozone pollution to protect the vegetation from further damage in India whose economy is highly dependent on agricultural sector and may influence the global balance.

  7. Assessing plant response to ambient ozone: growth of young apple trees in open-top chambers and corresponding ambient air plots

    International Nuclear Information System (INIS)

    Manning, W.J.; Cooley, D.R.; Tuttle, A.F.; Frenkel, M.A.; Bergweiler, C.J.

    2004-01-01

    Open-top chambers (OTCs) and corresponding ambient air plots (AA) were used to assess the impact of ambient ozone on growth of newly planted apple trees at the Montague Field research center in Amherst, MA. Two-year-old apple trees (Malus domestica Borkh 'Rogers Red McIntosh') were planted in the ground in circular plots. Four of the plots were enclosed with OTCs where incoming air was charcoal-filtered (CF); four were enclosed with OTCs where incoming air was not charcoal-filtered (NF) and four were not enclosed, allowing access to ambient air conditions (AA). Conditions in both CF and NF OTCs resulted in increased tree growth and changed incidence of disease and arthropod pests, compared to trees in AA. As a result, we were not able to use the OTC method to assess the impact of ambient ozone on growth of young apple trees in Amherst, MA. - Capsule: Conditions in charcoal-filtered and non-filtered open-top chambers affected apple tree growth equally and prevented assessment of ambient ozone effects

  8. The Load of Lightning-induced Nitrogen Oxides and Its Impact on the Ground-level Ozone during Summertime over the Mountain West States

    Science.gov (United States)

    Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...

  9. Radial diffusive sampler for the determination of 8-h ambient ozone concentrations

    International Nuclear Information System (INIS)

    Plaisance, H.; Gerboles, M.; Piechocki, A.; Detimmerman, F.; Saeger, E. de

    2007-01-01

    The 8-h ozone radial diffusive sampler was evaluated according to the CEN protocol for the validation of diffusive samplers. All the parameters regarding the sampler characteristics were found to be consistent with the requirements of this protocol apart from the blank value, which must be evaluated and subtracted at each sampling. The nominal uptake rate was determined in laboratory conditions. However, the uptake rate depends on the mass uptake, temperature, humidity and on the combination of temperature and humidity. Based on laboratory experiments, an empirical model has been established which improved the agreement between the radial sampler and the reference method. This improvement was observed under several different meteorological and emission conditions of sampling. By using the model equation of uptake rate, the data quality objective of 30% for the expanded uncertainty included in the O 3 European Directive, is easily attained. Therefore, the sampler represents an appropriate indicative method. - A passive sampler has been fully validated for monitoring 8-h ozone concentrations in ambient air

  10. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China

    Science.gov (United States)

    Wei, Wei; Lv, Zhao Feng; Li, Yue; Wang, Li Tao; Cheng, Shuiyuan; Liu, Huan

    2018-02-01

    In China, petro-chemical manufacturing plants generally gather in the particular industrial zone defined as PIZ in some cities, and distinctly influence the air quality of these cities for their massive VOCs emissions. This study aims to quantify the local and regional impacts of PIZ VOCs emission and its relevant reduction policy on the surface ozone based on WRF-Chem model, through the case study of Beijing. Firstly, the model simulation under the actual precursors' emissions over Beijing region for July 2010 is conducted and evaluated, which meteorological and chemical predictions both within the thresholds for satisfactory model performance. Then, according to simulated H2O2/HNO3 ratio, the nature of photochemical ozone formation over Beijing is decided, the VOCs-sensitive regime over the urban areas, NOx-sensitive regime over the northern and western rural areas, and both VOCssbnd and NOx-mixed sensitive regime over the southern and eastern rural areas. Finally, a 30% VOCs reduction scenario (RS) and a 100% VOCs reduction scenario (ZS) for Beijing PIZ are additional simulated by WRF-Chem. The sensitivity simulations imply that the current 30% reduction policy would bring about an O3 increase in the southern and western areas (by +4.7 ppb at PIZ site and +2.1 ppb at LLH station), and an O3 decrease in the urban center (by -1.7 ppb at GY station and -2.5 ppb at DS station) and in the northern and eastern areas (by -1.2 ppb at MYX station), mainly through interfering with the circulation of atmospheric HOx radicals. While the contribution of the total VOCs emission of PIZ to ozone is greatly prominent in the PIZ and its surrounding areas along south-north direction (12.7% at PIZ site on average), but slight in the other areas of Beijing (<3% in other four stations on average).

  11. Ambient Ozone Exposure in Czech Forests: A GIS-Based Approach to Spatial Distribution Assessment

    Science.gov (United States)

    Hůnová, I.; Horálek, J.; Schreiberová, M.; Zapletal, M.

    2012-01-01

    Ambient ozone (O3) is an important phytotoxic pollutant, and detailed knowledge of its spatial distribution is becoming increasingly important. The aim of the paper is to compare different spatial interpolation techniques and to recommend the best approach for producing a reliable map for O3 with respect to its phytotoxic potential. For evaluation we used real-time ambient O3 concentrations measured by UV absorbance from 24 Czech rural sites in the 2007 and 2008 vegetation seasons. We considered eleven approaches for spatial interpolation used for the development of maps for mean vegetation season O3 concentrations and the AOT40F exposure index for forests. The uncertainty of maps was assessed by cross-validation analysis. The root mean square error (RMSE) of the map was used as a criterion. Our results indicate that the optimal interpolation approach is linear regression of O3 data and altitude with subsequent interpolation of its residuals by ordinary kriging. The relative uncertainty of the map of O3 mean for the vegetation season is less than 10%, using the optimal method as for both explored years, and this is a very acceptable value. In the case of AOT40F, however, the relative uncertainty of the map is notably worse, reaching nearly 20% in both examined years. PMID:22566757

  12. Understanding in situ ozone production in the summertime through radical observations and modelling studies during the Clean air for London project (ClearfLo)

    Science.gov (United States)

    Whalley, Lisa K.; Stone, Daniel; Dunmore, Rachel; Hamilton, Jacqueline; Hopkins, James R.; Lee, James D.; Lewis, Alastair C.; Williams, Paul; Kleffmann, Jörg; Laufs, Sebastian; Woodward-Massey, Robert; Heard, Dwayne E.

    2018-02-01

    Measurements of OH, HO2, RO2i (alkene and aromatic-related RO2) and total RO2 radicals taken during the ClearfLo campaign in central London in the summer of 2012 are presented. A photostationary steady-state calculation of OH which considered measured OH reactivity as the OH sink term and the measured OH sources (of which HO2+ NO reaction and HONO photolysis dominated) compared well with the observed levels of OH. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2, however, highlighted a substantial discrepancy between radical observations under lower NOx conditions ([NO] model was missing a significant peroxy radical sink; the model overpredicted HO2 by up to a factor of 10 at these times. Known radical termination steps, such as HO2 uptake on aerosols, were not sufficient to reconcile the model-measurement discrepancies alone, suggesting other missing termination processes. This missing sink was most evident when the air reaching the site had previously passed over central London to the east and when elevated temperatures were experienced and, hence, contained higher concentrations of VOCs. Uncertainties in the degradation mechanism at low NOx of complex biogenic and diesel related VOC species, which were particularly elevated and dominated OH reactivity under these easterly flows, may account for some of the model-measurement disagreement. Under higher [NO] (> 3 ppbv) the box model increasingly underpredicted total [RO2]. The modelled and observed HO2 were in agreement, however, under elevated NO concentrations ranging from 7 to 15 ppbv. The model uncertainty under low NO conditions leads to more ozone production predicted using modelled peroxy radical concentrations ( ˜ 3 ppbv h-1) versus ozone production from peroxy radicals measured ( ˜ 1 ppbv h-1). Conversely, ozone production derived from the predicted peroxy radicals is up to an order of magnitude lower than from the observed peroxy radicals as [NO

  13. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    Science.gov (United States)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  14. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    Science.gov (United States)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  15. Current ambient ozone in China has threatened the health of farmland ecosystem

    Science.gov (United States)

    Feng, Z.

    2017-12-01

    Ground-level Ozone (O3) has been one of global environmental issues as a result of rising concentration at most parts of the earth causing significant biological and economic damage to both agricultural and native species. Although the rising trends in O3 concentration have leveled off or decreased slightly in North America and Europe, the trends are increasing in developing countries such as India and China. Here, the impacts of ozone on crops in China are reviewed from studies during the last two decades. The field experimental methods include open-top chambers (OTC), free-air concentration enrichments (FACE) and chemical protectant EDU application. The experimental crops are winter wheat, rice, soybean, and oilrape. At a regional scale, yield loss in Yangtze River Delta by O3 was estimated to be 17%, 3% and 6% for wheat, rice and oil rape, respectively, and the corresponding economic losses were estimated to be 86 M US , 116 M US and 39 M US $ at the rate of 2007 (Yao et al., 2008). In four years' FACE studies, a mean 25% enhancement above the ambient O3 concentration significantly reduced the grain yield by, on average, 20% and 12% for winter wheat and rice, respectively, but there were significant differences in O3 sensitivity among the cultivars studied (Shi et al., 2009; Zhu et al., 2011). Both flux and concentration -based dose-response relationships indicated that FACE system induced larger yield loss of crops than OTCs, suggesting that O3 effects on crop yield were underestimated. Therefore, it can be inferred that food security will be seriously threatened by rising O3 concentration due to the intensive rate of urbanization in China. However, the impacts of O3 on local food crops need to be investigated more thoroughly in different parts of China, and the combined effects of elevated O3 and other factors like warming and CO2 should be considered. ReferencesFeng, Z. Z., Tang, H.Y., Uddling, J, et al. (2012). Environ Pollut, 164, 16-23. Shi, G.Y., Yang, L

  16. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment.

    Science.gov (United States)

    Zhan, Yu; Luo, Yuzhou; Deng, Xunfei; Grieneisen, Michael L; Zhang, Minghua; Di, Baofeng

    2018-02-01

    In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O 3 ] MDA8 ) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O 3 ] MDA8 by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R 2  = 0.69 and RMSE = 26 μg/m 3 ). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O 3 ] MDA8 is predicted to be 84 ± 23 μg/m 3 annually, with the highest seasonal mean in the summer (103 ± 8 μg/m 3 ). The summer [O 3 ] MDA8 is predicted to be the highest in North China (125 ± 17 μg/m 3 ). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O 3 ] MDA8 >100 μg/m 3 ), and 12% of the population are exposed to [O 3 ] MDA8 >160 μg/m 3 (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O 3 pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O 3 ] MDA8 of 140 ± 29 μg/m 3 in summer. To the best of the authors' knowledge, this study is the first statistical modeling work of ambient O 3 for China at the national level. This timely and extensively validated [O 3 ] MDA8 dataset is valuable for refining epidemiological analyses on O 3 pollution in China. Copyright © 2017 Elsevier Ltd. All rights

  17. Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: Progress and an experimental approach

    International Nuclear Information System (INIS)

    Manning, William J.

    2005-01-01

    Much has been written about the effects of ambient ozone on tree growth. Cause and effect has been established with seedlings in chambers. Results from multi-year studies with older tree seedlings, in open-top chambers, have been inconclusive, due to chamber effects. Extrapolation of results from chambers to trees in the forest is not possible. Predictive models for forest tree growth reductions caused by ozone have been developed, but not verified. Dendrochronological methods have been used to establish correlations between radial growth reductions in forest trees and ambient ozone exposure. The protective chemical ethylenediurea (EDU) has been used to protect tree seedlings from ozone injury. An experimental approach is advocated here that utilizes forest trees selected for sensitivity and non-sensitivity to ozone, dendrochronological methods, the protective chemical EDU, and monitoring data for ambient ozone, stomatal conductance, soil moisture potential, air temperature, PAR, etc. in long-term investigations to establish cause and effect relationships. - Progress is reviewed and an experimental approach is proposed to demonstrate a cause and effect relationship for ambient ozone and forest tree growth

  18. Assessing effects of ambient ozone on injury and growth of Trifolium subterraneum at four rural sites in the Netherlands with ethylenediurea (EDU)

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Dijk, van C.J.

    1997-01-01

    To assess adverse effects of ambient ozone on injury and growth, EDU (ethylenediurea) and non-EDU-treated plants of subterranean clover (Trifolium subterraneum cv. Geraldton) were exposed to ambient air at four rural sites in the Netherlands. In each of two successive experiments of eight weeks

  19. Monitoring ambient ozone with a passive measurement technique method, field results and strategy

    NARCIS (Netherlands)

    Scheeren, BA; Adema, EH

    1996-01-01

    A low-cost, accurate and sensitive passive measurement method for ozone has been developed and tested. The method is based on the reaction of ozone with indigo carmine which results in colourless reaction products which are detected spectrophotometrically after exposure. Coated glass filters are

  20. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    Science.gov (United States)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  1. Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland.

    Science.gov (United States)

    Oksanen, Elina; Manninen, Sirkku; Vapaavuori, Elina; Holopainen, Toini

    2009-12-01

    In this review the main growth responses of Finnish birch (Betula pendula, B. pubescens) and aspen species (Populus tremula and P. tremuloides x P. tremula) are correlated with ozone exposure, indicated as the AOT40 value. Data are derived from 23 different laboratory, open-top chamber, and free-air fumigation experiments. Our results indicate that these tree species are sensitive to increasing ozone concentrations, though high intraspecific variation exists. The roots are the most vulnerable targets in both genera. These growth reductions, determined from trees grown under optimal nutrient and water supply, were generally accompanied by increased visible foliar injuries, carbon allocation toward defensive compounds, reduced carbohydrate contents of leaves, impaired photosynthesis processes, disturbances in stomatal function, and earlier autumn senescence. Because both genera have shown complex ozone defense and response mechanisms, which are modified by variable environmental conditions, a mechanistically based approach is necessary for accurate ozone risk assessment.

  2. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Carriero, G.; Emiliani, G.; Giovannelli, A.; Hoshika, Y.; Manning, W.J.; Traversi, M.L.; Paoletti, E.

    2015-01-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O 3 ). Effects of long-term ambient O 3 exposure (23 ppm h AOT40) on biomass of an O 3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (−51%) and below-ground biomass (−47%) was reduced by O 3 although the effect was significant only for stem and coarse roots. Ambient O 3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O 3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated. - Highlights: • 6-y ambient O 3 exposure was investigated in a sensitive poplar clone. • EDU irrigation protected poplar against ambient O 3 exposure. • O 3 reduced biomass of roots and stem, but did not change biomass allocation. • O 3 decreased stem diameter only in the lower third of the stem. • O 3 increased moisture content of the wood along the stem. - Ozone exposure reduced lateral branching, leaves and roots in younger trees, and affected stem and roots in older trees, while shoot/root ratios did not change.

  3. Observation-based trends in ambient ozone in the Czech Republic over the past two decades

    Science.gov (United States)

    Hůnová, Iva; Bäumelt, Vít

    2018-01-01

    We present the trends in ambient ozone concentrations based on high quality data measured continuously at 26 long-term monitoring sites (9 urban, 17 rural including 10 mountain stations) in the Czech Republic in 1994-2015. We considered annual and summer medians, the 10th and 98th percentiles, maximum daily 8-h running mean concentrations and exposure index AOT40F. For all indicators taken into account except for the 10th percentile, our results showed a similar pattern with significant decreasing trends for about one half of the examined sites. We obtained similar results for all types of sites. The most pronounced decrease in O3 concentrations was recorded at mountain sites. Namely, at the Šerlich mountain site, with an overall decrease per year in annual median by 0.43 ppb, summer median by 1.17 ppb, maximal daily 8-h average by 0.45 ppb, the 10th percentile by 0.62 ppb. The peak concentrations indicated by the 98th percentile and AOT40F decreased most at urban site České Budějovice by 0.75 ppb and 0.84 ppb h per year, respectively. For sites exhibiting significant decreasing trends, an overall decrease per year in annual median was 0.22 ppb, in summer median 0.41 ppb, in the 10th percentile 0.23 ppb, in the 98th percentile 0.53 ppb, and in AOT40F 0.51 ppb h. A significant increasing trend was detected only in the 10th percentile at just three sites, with the highest increase of 0.19 ppb per year recorded at the rural site Sněžník. Moreover, a consistent decrease in limit value exceedances was detected, with by far the highest violation recorded in the meteorologically exceptional year of 2003. Out of the 26 sites under review, seven have not recorded a significant decreasing trend in O3 in any of the considered statistics. The lack of trends in O3 at these seven sites is likely associated with changing time patterns in local NO and NO2 emissions: in particular, with the increasing ratio in NO2/NOx. There is an obvious geographical pattern in recorded O3

  4. Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees

    International Nuclear Information System (INIS)

    Olbrich, Maren; Knappe, Claudia; Wenig, Marion; Gerstner, Elke; Haeberle, Karl-Heinz; Kitao, Mitsutoshi; Matyssek, Rainer; Stich, Susanne; Leuchner, Michael; Werner, Herbert; Schlink, Katja; Mueller-Starck, Gerhard; Welzl, Gerhard; Scherb, Hagen; Ernst, Dieter; Heller, Werner; Bahnweg, Guenther

    2010-01-01

    In 2006, a controlled infection study was performed in the 'Kranzberger Forst' to address the following questions: (1) Will massive artificial inoculation with Apiognomonia errabunda override the previously observed inhibitory effect of chronic ozone? (2) Can biochemical or molecular markers be detected to account for the action of ozone? To this end six adult beech trees were chosen, three ozone fumigated (2x ozone) and three control trees (ambient = 1x ozone). Spore-sprayed branches of sun and shade crown positions of each of the trees, and uninoculated control branches, were enclosed in 100-L plastic bags for one night to facilitate infection initiation. Samples were taken within a five-week period after inoculation. A. errabunda infestation levels quantified by real-time PCR increased in leaves that were not fumigated with additional ozone. Cell wall components and ACC (ethylene precursor 1-amino cyclopropane-1-carboxylic acid) increased upon ozone fumigation and may in part lead to the repression of fungal infection. - Chronic sublethal ozone exposure reduces both natural and artificial infestation of beech leaves by the endophytic fungus Apiognomonia errabunda.

  5. Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, Maren; Knappe, Claudia; Wenig, Marion; Gerstner, Elke [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg (Germany); Haeberle, Karl-Heinz; Kitao, Mitsutoshi; Matyssek, Rainer [Forest Botany, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Stich, Susanne [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg (Germany); Leuchner, Michael; Werner, Herbert [Bioclimatology, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Schlink, Katja; Mueller-Starck, Gerhard [Section of Forest Genetics, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Welzl, Gerhard [Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg (Germany); Scherb, Hagen [Institute of Biomathematics and Biometry, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg (Germany); Ernst, Dieter; Heller, Werner [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg (Germany); Bahnweg, Guenther, E-mail: bahnweg@helmholtz-muenchen.d [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg (Germany)

    2010-04-15

    In 2006, a controlled infection study was performed in the 'Kranzberger Forst' to address the following questions: (1) Will massive artificial inoculation with Apiognomonia errabunda override the previously observed inhibitory effect of chronic ozone? (2) Can biochemical or molecular markers be detected to account for the action of ozone? To this end six adult beech trees were chosen, three ozone fumigated (2x ozone) and three control trees (ambient = 1x ozone). Spore-sprayed branches of sun and shade crown positions of each of the trees, and uninoculated control branches, were enclosed in 100-L plastic bags for one night to facilitate infection initiation. Samples were taken within a five-week period after inoculation. A. errabunda infestation levels quantified by real-time PCR increased in leaves that were not fumigated with additional ozone. Cell wall components and ACC (ethylene precursor 1-amino cyclopropane-1-carboxylic acid) increased upon ozone fumigation and may in part lead to the repression of fungal infection. - Chronic sublethal ozone exposure reduces both natural and artificial infestation of beech leaves by the endophytic fungus Apiognomonia errabunda.

  6. Commuters’ Personal Exposure to Ambient and Indoor Ozone in Athens, Greece

    Directory of Open Access Journals (Sweden)

    Krystallia K. Kalimeri

    2017-07-01

    Full Text Available This pilot study aimed to monitor the residential/office indoor, outdoor, and personal levels of ozone for people living, working, and commuting in Athens, Greece. Participants (16 persons of this study worked at the same place. Passive sampling analysis results did not indicate any limit exceedance (Directive 2008/50/EC: 120 µg/m3, World Health Organization (WHO Air Quality Guidelines 2005: 100 µg/m3. The highest “house-outdoor” concentration was noticed for participants living in the north suburbs of Athens, confirming the photochemical ozone formation at the northern parts of the basin during southwestern prevailing winds. The residential indoor to outdoor ratio (I/O was found to be significantly lower than unity, underlying the outdoor originality of the pollutant. The highest “office-indoor” concentration was observed in a ground-level building, characterized by the extensive use of photocopy machines and printers. Personal ozone levels were positively correlated only with indoor-office concentrations. A clear correlation of personal ozone levels to the time spent by the individuals during moving/staying outdoors was observed. On the other hand, no correlation was observed when focusing only on commuting time, due to the fact that transit time includes both on-foot and in-vehicle time periods, therefore activities associated with increased exposure levels, but also with pollutants removal by recirculating air filtering systems, respectively.

  7. Climate Change Impacts on Human Health Due to Changes in Ambient Ozone Concentrations (External Review Draft)

    Science.gov (United States)

    This report uses results from a previous report titled Assessment of the Impacts of Global Change on Regional U.S. Air Quality: A Synthesis of Climate Change Impacts on Ground-Level Ozone, a number of high-resolution, spatially explicit population projections developed ...

  8. Analysis of the effects of combustion emissions and Santa Ana winds on ambient ozone during the October 2007 southern California wildfires

    Science.gov (United States)

    A. Bytnerowicz; D. Cayan; P. Riggan; S. Schilling; P. Dawson; M. Tyree; L. Wolden; R. Tissell; H. Preisler

    2010-01-01

    Combustion emissions and strong Santa Ana winds had pronounced effects on patterns and levels of ambient ozone (O3) in southern California during the extensive wildland fires of October 2007. These changes are described in detail for a rural receptor site, the Santa Margarita Ecological Reserve, located among large fires in San Diego and Orange counties. In addition,...

  9. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2006-01-01

    Full Text Available Ozone and carbon monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a Lagrangian-based study (backward trajectories and a Reverse Domain Filling technique to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3≃100 ppbv; CO≃90 ppbv in the dry airstream of the cyclone, and again in the upper troposphere (O3≃200 ppbv; CO≃90 ppbv on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement with the maritime development of the cyclone, the chemical composition of the anticyclonic portion of the warm conveyor belt outflow (O3≃40 ppbv; CO≃85 ppbv corresponds to the lowest mixing ratios of both ozone and carbon monoxide in the upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv and relatively low CO (80 ppbv observed northwest of the cyclone prevents identification of the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed.

  10. Host location behavior of Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) in ambient and moderately elevated ozone in field conditions

    International Nuclear Information System (INIS)

    Pinto, D.M.; Himanen, S.J.; Nissinen, A.; Nerg, A.-M.; Holopainen, J.K.

    2008-01-01

    In field O 3 -enrichment experiments increased herbivore densities have been reported, which could be due to negatively affected host location behavior of natural enemies. We addressed the impact of doubling background O 3 on the host location of the parasitoid Cotesia plutellae by conducting 24-h trials in an open-air O 3 -fumigation system during two consecutive years. Two circles (radii 1.40 and 4.00 m) of Plutella xylostella-infested potted cabbage plants were placed in the O 3 and ambient plots. Female wasps were released into each plot from the center, and observed 5 times over a 24-h period to assess their host location capability. Thereafter, plants were kept in laboratory conditions until larvae pupation to determine parasitism rates. No significant differences were detected between ambient and O 3 -enriched environments either in the number of wasps found in the field, or in the percentages of parasitized larvae. This suggests that moderately elevated O 3 will not affect the behavior of this parasitoid. - Atmospheric ozone increases do not directly affect the biological control of the cabbage pest, Plutella xylostella

  11. Host location behavior of Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) in ambient and moderately elevated ozone in field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, D.M. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland)], E-mail: delia.pinto@uku.fi; Himanen, S.J. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Nissinen, A. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Agrifood Research Finland, Plant Protection, FIN-31600 Jokioinen (Finland); Nerg, A.-M.; Holopainen, J.K. [Department of Environmental Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland)

    2008-11-15

    In field O{sub 3}-enrichment experiments increased herbivore densities have been reported, which could be due to negatively affected host location behavior of natural enemies. We addressed the impact of doubling background O{sub 3} on the host location of the parasitoid Cotesia plutellae by conducting 24-h trials in an open-air O{sub 3}-fumigation system during two consecutive years. Two circles (radii 1.40 and 4.00 m) of Plutella xylostella-infested potted cabbage plants were placed in the O{sub 3} and ambient plots. Female wasps were released into each plot from the center, and observed 5 times over a 24-h period to assess their host location capability. Thereafter, plants were kept in laboratory conditions until larvae pupation to determine parasitism rates. No significant differences were detected between ambient and O{sub 3}-enriched environments either in the number of wasps found in the field, or in the percentages of parasitized larvae. This suggests that moderately elevated O{sub 3} will not affect the behavior of this parasitoid. - Atmospheric ozone increases do not directly affect the biological control of the cabbage pest, Plutella xylostella.

  12. OZONE AMBIENT AIR QUALITY STANDARD HAS BENEFICIAL EFFECT ON PONDEROSA PINE IN CALIFORNIA

    Science.gov (United States)

    Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. However, to date there has not been a simple and objective method to determine if the standards and resultant control strategies have reduced O3 impacts on ...

  13. Assessing ambient ozone injury in olive (Olea europaea L.) plants by using the antioxidant ethylenediurea (EDU) in Saudi Arabia.

    Science.gov (United States)

    Basahi, J M; Ismail, I M; Haiba, N S; Hassan, I A; Lorenzini, G

    2016-06-01

    The antiozonant chemical, ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea, abbreviated as EDU), was applied as stem injections or soil drenches to 5-year-old containerized plants of olive (Olea europaea L. cultivar Kalamata) in growth chambers in order to assess its ameliorative effects against realistic ozone (O3) stress. Visible injury symptoms were reduced greatly in individuals treated with EDU, with injection applications having greater protection than soil drenches. EDU application caused increases in the measured ecophysiological parameters compared to untreated individuals. In particular, the stem injection protected plants against photosynthetic impairment (unchanged net photosynthetic rates and intercellular CO2 concentration, in comparison to plants grown in filtered air). EDU application increased the protection of PSII from ambient O3 oxidative stress, although it did not retain the proportion of redox state of QA, pigment composition of photosynthetic apparatus and size of light-harvesting complex of PSII. However, the stem injection of plants with EDU induced lower non-photochemical quenching (NPQ) values in comparison to ambient air (-2 %), indicating a better photoprotection of PSII in comparison to soil drench application. EDU application caused increases in the morphological and biometric parameters compared to individuals exposed to ambient air. To the best of our knowledge, this is the first study highlighting the protection of Kalamata olive trees due to EDU in terms of growth, yield, visible injury, and photosynthetic performance. Furthermore, this study proved that EDU could be a low-cost and a low-technology efficient tool for assessing O3 effects on plant performances in the field in Saudi Arabia.

  14. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature

    International Nuclear Information System (INIS)

    Nikolov, Penko; Genov, Krassimir; Konova, Petya; Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir; Kumar, Narendra; Sarker, Dipak K.; Pishev, Dimitar; Rakovsky, Slavcho

    2010-01-01

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO 2 sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm -1 ) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag + , instead of Na + , Ca 2+ , or K + ions, existing in the natural clinoptilolite form. The samples Ag/SiO 2 and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  15. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zheng Qiwei; Yao Fangfang; Chen Zhan; Feng Zhaozhong; Manning, W.J.

    2007-01-01

    Foliar applications of ethylenediurea (abbreviated as EDU) were made at 0, 150, 300 or 450 ppm to field-grown rice and wheat in the Yangtze Delta in China. Rice and wheat responded differently to ambient ozone and EDU applications. For wheat, some growth characteristics, such as yield, seed number per plant, seed set rate and harvest index, increased significantly at 300 ppm EDU treatment, while for rice no parameters measured were statistically different regarding EDU application. The reason may be that the wheat cultivar used may be more sensitive to ozone than the rice cultivar. EDU was effective in demonstrating ozone effects on the wheat cultivar, but not on the rice cultivar. Cultivar sensitivity might be an important consideration when assessing the effects of ambient ozone on plants. - Cultivar sensitivity should be considered when using protective chemical to assess the effects of ambient ozone on plants

  16. Development of an ozone high sensitive sensor working at ambient temperature

    International Nuclear Information System (INIS)

    Berger, F; Ghaddab, B; Sanchez, J B; Mavon, C

    2011-01-01

    Hybrid SnO 2 /SWNTs thin layer were deposited by using sol-gel process. Such sensitive layers showed very high performances for O 3 flow detection at ambient temperature. Limit sensitivity, lower than 21,5 ppb of O 3 in air has been reached by using these hybrid layers. Compared to usefull metal oxide sensors, the main advantage of the use of such hybrid layers, is that these devices enable the detection of O 3 traces at room temperature. The influence of sensor's working temperature is discussed and finally a reactional mechanism for the detection of O 3 is proposed.

  17. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Zhang, J.W.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.; Davis, D.D.; Steiner, K.C.

    2005-01-01

    The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (ψ L ) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g wv ) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P n ), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P wv and P n demonstrate the strong influence of heterogeneous environmental conditions within forest canopies. - Within the heterogeneous environment of a mature forest, many factors in addition to soil moisture play a significant role in determining exposure/response relationships to ozone

  18. Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions.

    Science.gov (United States)

    Kumari, Sumita; Agrawal, Madhoolika

    2014-03-01

    The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ambient Ozone Concentrations and the Risk of Perforated and Nonperforated Appendicitis: A Multicity Case-Crossover Study

    Science.gov (United States)

    Tanyingoh, Divine; Dixon, Elijah; Johnson, Markey; Wheeler, Amanda J.; Myers, Robert P.; Bertazzon, Stefania; Saini, Vineet; Madsen, Karen; Ghosh, Subrata; Villeneuve, Paul J.

    2013-01-01

    Background: Environmental determinants of appendicitis are poorly understood. Past work suggests that air pollution may increase the risk of appendicitis. Objectives: We investigated whether ambient ground-level ozone (O3) concentrations were associated with appendicitis and whether these associations varied between perforated and nonperforated appendicitis. Methods: We based this time-stratified case-crossover study on 35,811 patients hospitalized with appendicitis from 2004 to 2008 in 12 Canadian cities. Data from a national network of fixed-site monitors were used to calculate daily maximum O3 concentrations for each city. Conditional logistic regression was used to estimate city-specific odds ratios (ORs) relative to an interquartile range (IQR) increase in O3 adjusted for temperature and relative humidity. A random-effects meta-analysis was used to derive a pooled risk estimate. Stratified analyses were used to estimate associations separately for perforated and nonperforated appendicitis. Results: Overall, a 16-ppb increase in the 7-day cumulative average daily maximum O3 concentration was associated with all appendicitis cases across the 12 cities (pooled OR = 1.07; 95% CI: 1.02, 1.13). The association was stronger among patients presenting with perforated appendicitis for the 7-day average (pooled OR = 1.22; 95% CI: 1.09, 1.36) when compared with the corresponding estimate for nonperforated appendicitis [7-day average (pooled OR = 1.02, 95% CI: 0.95, 1.09)]. Heterogeneity was not statistically significant across cities for either perforated or nonperforated appendicitis (p > 0.20). Conclusions: Higher levels of ambient O3 exposure may increase the risk of perforated appendicitis. PMID:23842601

  20. Issues in assessing the economic benefits of ambient ozone control: some examples from agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.M.

    1983-01-01

    Information on the economic benefits arising from alternative secondary National Ambient Air Quality Standards can provide one measure of regulatory efficiency. If benefits assessments are to be used in assessing regulatory impacts of federal standards as recently ordered by President Ronald Reagan, the economic concept of benefits, the limitations of benefits analysis, and the validity of those estimates needs to be clarified. Some methodological and applied issues which can effect the validity of environmental economic assessments as they pertain to agriculture are reviewed. Recent studies from the assessment literature on agriculture are critiqued with respect to how well they address such issues. An attempt is made to identify potential sources of variability in estimates found within that literature. Finally, implications for performance of future assessments are discussed.

  1. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  2. Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Poonam [Laboratory of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005 (India); Agrawal, Madhoolika [Laboratory of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005 (India)], E-mail: madhoo58@yahoo.com; Agrawal, Shashi Bhushan [Laboratory of Air Pollution and Global Climate Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005 (India)

    2009-03-15

    A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O{sub 3} concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O{sub 3}. - NPK level above recommended alleviates the adverse effects of ambient ozone on a tropical mustard cultivar.

  3. Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels

    International Nuclear Information System (INIS)

    Singh, Poonam; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2009-01-01

    A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O 3 concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O 3 . - NPK level above recommended alleviates the adverse effects of ambient ozone on a tropical mustard cultivar

  4. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model

    Institute of Scientific and Technical Information of China (English)

    SU Rong; ZHAI ChongZhi; ZHANG YuanHang; LU KeDing; YU JiaYan; TAN ZhaoFeng; JIANG MeiQing; LI Jing; XIE ShaoDong; WU YuSheng; ZENG LiMin

    2018-01-01

    An intensive field campaign was conducted in Chongqing during the summer of 2015 to explore the formation mechanisms of ozone pollution.The sources of ozone,the local production rates,and the controlling factors,as well as key species of volatile organic compounds (VOCs),were quantified by integrating a local ozone budget analysis,calculations of the relative incremental reactivity,and an empirical kinetic model approach.It was found that the potential for rapid local ozone formation exists in Chongqing.During ozone pollution episodes,the ozone production rates were found to be high at the upwind station Nan Quan,the urban station Chao Zhan,and the downwind station Jin-Yun Shan.The average local ozone production rate was 30× 10-9 V/V h1 and the daily integration of the produced ozone was greater than 180× 10-9 V/V.High ozone concentrations were associated with urban and downwind air masses.At most sites,the local ozone production was VOC-limited and the key species were aromatics and alkene,which originated mainly from vehicles and solvent usage.In addition,the air masses at the northwestern rural sites were NOx-limited and the local ozone production rates were significantly higher during the pollution episodes due to the increased NOx concentrations.In summary,the ozone abatement strategies of Chongqing should be focused on the mitigation of VOCs.Nevertheless,a reduction in NOx is also beneficial for reducing the regional ozone peak values in Chongqing and the surrounding areas.

  5. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada.

    Science.gov (United States)

    Buteau, Stephane; Hatzopoulou, Marianne; Crouse, Dan L; Smargiassi, Audrey; Burnett, Richard T; Logan, Travis; Cavellin, Laure Deville; Goldberg, Mark S

    2017-07-01

    In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution. As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O 3 ) and nitrogen dioxide (NO 2 ) of participants' residences in Montreal, 1991-2002. We used the following methods to predict spatially-resolved daily concentrations of O 3 and NO 2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement. We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O 3 and NO 2 . On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O 3 and 108ppb

  6. Meta-analysis of the association between short-term exposure to ambient ozone and respiratory hospital admissions

    International Nuclear Information System (INIS)

    Ji Meng; Bell, Michelle L; Cohan, Daniel S

    2011-01-01

    Ozone is associated with health impacts including respiratory outcomes; however, results differ across studies. Meta-analysis is an increasingly important approach to synthesizing evidence across studies. We conducted meta-analysis of short-term ozone exposure and respiratory hospitalizations to evaluate variation across studies and explore some of the challenges in meta-analysis. We identified 136 estimates from 96 studies and investigated how estimates differed by age, ozone metric, season, lag, region, disease category, and hospitalization type. Overall results indicate associations between ozone and various kinds of respiratory hospitalizations; however, study characteristics affected risk estimates. Estimates were similar, but higher, for the elderly compared to all ages and for previous day exposure compared to same day exposure. Comparison across studies was hindered by variation in definitions of disease categories, as some (e.g., asthma) were identified through ≥ 3 different sets of ICD codes. Although not all analyses exhibited evidence of publication bias, adjustment for publication bias generally lowered overall estimates. Emergency hospitalizations for total respiratory disease increased by 4.47% (95% interval: 2.48, 6.50%) per 10 ppb 24 h ozone among the elderly without adjustment for publication bias and 2.97% (1.05, 4.94%) with adjustment. Comparison of multi-city study results and meta-analysis based on single-city studies further suggested publication bias.

  7. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    Science.gov (United States)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  8. 75 FR 1566 - Public Hearings for Reconsideration of the 2008 National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-01-12

    ..., Moody Ballroom (located on the ground floor), 8181 Airport Boulevard, Houston, Texas 77061. Telephone... Standards for Ozone'' proposed rule should be addressed to Ms. Susan Lyon Stone, U.S. EPA, Office of Air... Park, NC 27711, telephone: (919) 541-1146, e-mail: stone[email protected] . SUPPLEMENTARY INFORMATION: The...

  9. Effects of ambient ozone on reactive oxygen species and antioxidant metabolites in leaves of pea (pisum sativum l.) plants

    International Nuclear Information System (INIS)

    Hassan, I.A.; Almeelbi, T.; Basahi, J.M.

    2017-01-01

    The differential response of two pea plants (Pisum sativum L. cultivars Little Marvel and Victory) to ambient O3 grown under open top chambers (OTCs) was analyzed and compared. Reactive oxygen species (ROS) generation, antioxidant metabolites such as ascorbate/glutathione as well as a series of enzymes for scavenging ROS were analyzed, all aiming to reveal the differential behavior of two closely related plants when exposed to ambient O3.Antioxidant levels and activities of related enzymes in response to ambient were noticeably different among Little Marvel and Victory plants. However, the response was cultivar-specific. There was higher accumulation of ROS and relatively lower induction of antioxidants and more inhibition in photosynthetic rates in Victory than Little Marvel. There was a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as ascorbate (As), glutathione reductase (GR), superoxide dismutase (SOD), reduced (GSH) and oxidized glutathione (GSSG) in pea plants. These portrays a higher sensitivity of Victory to ambient O3.To the best of our knowledge, this is one of the very few studies attempted to describe the changes in contents of antioxidants and activities of related enzymes in leaves of two closely related cultivars to further ourunderstanding on the defense mechanism and strategies under ambient O3. The results highlighted the possible roles of antioxidants in O3 detoxification through activation an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions. (author)

  10. Vertical and Horizontal Measurements of Ambient Ozone over a Gas and Oil Production Area using a UAV Platform

    Science.gov (United States)

    Jensen, A.; Gowing, I.; Martin, R. S.

    2013-12-01

    During the 2013 wintertime Uintah Basin Ozone Study (UBOS13), an autonomous unmanned aerial vehicle (UAV) platform, coupled with an on-board UV ozone monitor, flew several spatial profiles near the location (Horse Pool) of other concentrated measurements by other co-investigators. The airframe, part of the Utah Water Research Laboratory's (UWRL) AggieAir UAV program, consisted of a custom-built, battery-operated plane with and 2.4 m (8 ft) wing span and a 12.7 cm x 12.7 cm x 30.5 cm payload bay with a carrying capacity of approximately 2.0 kg. With the current power system, the fully-loaded AggieAir UAV can fly for approximately 45 minutes at a nominal airspeed of 13.4 m/s (30 mph). The system can be operated either in manual control or be flown autonomously following preprogrammed waypoints via a built in GPS system. The AggieAir UAV systems were primarily designed for photographic and telemetry tracking projects. For the UBOS13 flights, a 2B Technologies Model 205 Ozone (O3) monitor was modified for minimal weight optimization, wrapped with lightweight insulation and secured into the UAV payload bay. Additionally, HOBO Model H08-001-02 shielded temperature/datalogger was secured to the exterior of the UAV from parallel thermal profile determination. During the study period, three demonstration flight profiles were obtained on February 17 and 18, 2013: two vertical 'curtain' profiles and a pair of 'stacked' horizontal profiles. As recorded by numerous ground-based monitoring sites, the ozone during the UAV test periods was characterized by initial trends of daytime O3 maximums over 130 ppb, followed by a meteorological front partially ventilating the Basin on the evening of Feb. 17th leading to decreased O3 minimums around 40 ppb. However, the ground level O3 rebuilt quickly to ground level maximums approaching 100 ppb. The vertical 'curtain' flown on the evening of Feb. 17th only reached a maximum elevation of about 2160 m ASL (600 m AGL) due to encountering

  11. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.

    Science.gov (United States)

    Tripathi, Ruchika; Agrawal, S B

    2012-11-01

    Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Ozone decomposition on Ag/SiO{sub 2} and Ag/clinoptilolite catalysts at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, Penko, E-mail: penmail@mail.bg [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Genov, Krassimir; Konova, Petya [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Kumar, Narendra [Laboratory of Industrial Chemistry, Process Chemistry Centre, Abo Akademi University, Biskopsgatan 8, 20500 Abo/Turku (Finland); Sarker, Dipak K. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Pishev, Dimitar [University of Chemical Technology and Metallurgy, 1756 Sofia (Bulgaria); Rakovsky, Slavcho [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2010-12-15

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO{sub 2} sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm{sup -1}) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag{sup +}, instead of Na{sup +}, Ca{sup 2+}, or K{sup +} ions, existing in the natural clinoptilolite form. The samples Ag/SiO{sub 2} and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  13. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    Science.gov (United States)

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  14. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt

    International Nuclear Information System (INIS)

    Ismail, I.M.; Basahi, J.M.; Hassan, I.A.

    2014-01-01

    Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009–2013) at a rural site in northern Egypt. Net photosynthetic rates (P N ), stomatal conductance (g s ), intercellular CO 2 (C i ) and chlorophyll fluorescence were measured. Ozone (O 3 ) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. P N of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O 3 . The maximum impairment in P N was recorded in the cultivar Victory (46%) in 2013 when the highest O 3 levels were recorded (90 nL L −1 ). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between P N and C i , indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The P N vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (Φ PSII ) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively. - Highlights: • Ozone (O 3 ) concentrations recorded were within the ranges of phytotoxicity. • O 3 has a clear influence on the physiological parameters. • O 3 decreased Photosynthetic rates, chlorophyll

  15. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, I.M.; Basahi, J.M. [Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589 (Saudi Arabia); Hassan, I.A., E-mail: ihassan_eg@yahoo.com [Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589 (Saudi Arabia); Department of Botany, Faculty of Science, Alexandria University, 21526 El Shatby, Alexandria (Egypt)

    2014-11-01

    Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009–2013) at a rural site in northern Egypt. Net photosynthetic rates (P{sub N}), stomatal conductance (g{sub s}), intercellular CO{sub 2} (C{sub i}) and chlorophyll fluorescence were measured. Ozone (O{sub 3}) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. P{sub N} of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O{sub 3}. The maximum impairment in P{sub N} was recorded in the cultivar Victory (46%) in 2013 when the highest O{sub 3} levels were recorded (90 nL L{sup −1}). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between P{sub N} and C{sub i}, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The P{sub N} vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (Φ{sub PSII}) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively. - Highlights: • Ozone (O{sub 3}) concentrations recorded were within the ranges of phytotoxicity. • O{sub 3} has a clear influence on the physiological

  16. Tropospheric Enhancement of Ozone over the UAE

    Science.gov (United States)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  17. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  18. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  19. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies.

    Science.gov (United States)

    Atkinson, R W; Butland, B K; Dimitroulopoulou, C; Heal, M R; Stedman, J R; Carslaw, N; Jarvis, D; Heaviside, C; Vardoulakis, S; Walton, H; Anderson, H R

    2016-02-23

    While there is good evidence for associations between short-term exposure to ozone and a range of adverse health outcomes, the evidence from narrative reviews for long-term exposure is suggestive of associations with respiratory mortality only. We conducted a systematic, quantitative evaluation of the evidence from cohort studies, reporting associations between long-term exposure to ozone and mortality. Cohort studies published in peer-reviewed journals indexed in EMBASE and MEDLINE to September 2015 and PubMed to October 2015 and cited in reviews/key publications were identified via search strings using terms relating to study design, pollutant and health outcome. Study details and estimate information were extracted and used to calculate standardised effect estimates expressed as HRs per 10 ppb increment in long-term ozone concentrations. 14 publications from 8 cohorts presented results for ozone and all-cause and cause-specific mortality. We found no evidence of associations between long-term annual O3 concentrations and the risk of death from all causes, cardiovascular or respiratory diseases, or lung cancer. 4 cohorts assessed ozone concentrations measured during the warm season. Summary HRs for cardiovascular and respiratory causes of death derived from 3 cohorts were 1.01 (95% CI 1.00 to 1.02) and 1.03 (95% CI 1.01 to 1.05) per 10 ppb, respectively. Our quantitative review revealed a paucity of independent studies regarding the associations between long-term exposure to ozone and mortality. The potential impact of climate change and increasing anthropogenic emissions of ozone precursors on ozone levels worldwide suggests further studies of the long-term effects of exposure to high ozone levels are warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Measurement of Ozone Production Sensor

    Directory of Open Access Journals (Sweden)

    M. Cazorla

    2010-05-01

    Full Text Available A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS, measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.

  1. Ozone Nonattainment Areas - 1 Hour

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Ozone - 1hour (Legacy...

  2. Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-04-01

    Full Text Available Both observations and a 3-D chemical transport model suggest that surface ozone over populated eastern China features a summertime trough and that the month when surface ozone peaks differs by latitude and region. Source-receptor analysis is used to quantify the contributions of background ozone and Chinese anthropogenic emissions on this variability. Annual mean background ozone over China shows a spatial gradient from 55 ppbv in the northwest to 20 ppbv in the southeast, corresponding with changes in topography and ozone lifetime. Pollution background ozone (annual mean of 12.6 ppbv shows a minimum in the summer and maximum in the spring. On the monthly-mean basis, Chinese pollution ozone (CPO has a peak of 20–25 ppbv in June north of the Yangtze River and in October south of it, which explains the peaks of surface ozone in these months. The summertime trough in surface ozone over eastern China can be explained by the decrease of background ozone from spring to summer (by −15 ppbv regionally averaged over eastern China. Tagged simulations suggest that long-range transport of ozone from northern mid-latitude continents (including Europe and North America reaches a minimum in the summer, whereas ozone from Southeast Asia exhibits a maximum in the summer over eastern China. This contrast in seasonality provides clear evidence that the seasonal switch in monsoonal wind patterns plays a significant role in determining the seasonality of background ozone over China.

  3. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].

    Science.gov (United States)

    Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua

    2009-04-15

    Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.

  4. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    Science.gov (United States)

    Background: Associations between ozone (O3) and fine particulate matter (PM2.5) concentrations and birth outcomes have been previously demonstrated. We perform an exploratory analysis of O3 and PM2.5 concentrations during early pregnancy and multiple types of birth defects. Met...

  5. 40 CFR Appendix H to Part 50 - Interpretation of the 1-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... a daily maximum hourly average ozone measurement that is greater than the level of the standard... determining the expected number of annual exceedances relate to accounting for incomplete sampling. In general... measurement. In some cases, a measurement might actually have been missed but in other cases no measurement...

  6. Radial diffusive samplers for determination of 8-h concentration of BTEX, acetone, ethanol and ozone in ambient air during a sea breeze event

    Science.gov (United States)

    Roukos, Joelle; Locoge, Nadine; Sacco, Paolo; Plaisance, Hervé

    2011-01-01

    The radial diffusive sampler Radiello ® filled with Carbograph 4 was evaluated for monitoring BTEX, ethanol and acetone concentrations for 8-hour exposure time. The sampling rates were first evaluated in an exposure chamber under standard conditions. Benzene and toluene showed the highest sampling rates with satisfactory standard deviations. Ethylbenzene and xylenes showed medium sampling rates but higher standard deviations that can be attributed to a low affinity of these compounds with the adsorbent medium for short sampling time. Acetone has a fair result because of the increase of its partial pressure in the vicinity of the adsorbent surface in the course of sampling. The Carbograph 4 adsorbent does not seem to be suitable for sampling ethanol, likely because of its high volatility. The influences of three environmental factors (temperature (T), relative humidity (RH) and concentration level (C)) on the sampling rates were also evaluated, following a fractional factorial design at two factor levels (low and high). Results were only investigated on benzene, toluene and acetone. Temperature and relative humidity are found to be the most important factors leading to variability of the benzene and toluene sampling rates. The applicability of the sampler for 8-hour sampling was demonstrated by the results of a measurement campaign carried out during a sea breeze event. Mapping of benzene, toluene and acetone concentrations showed the highest concentrations in the industrial zone following the wind direction coming from the North. Nevertheless, the sea breeze tends to reduce the spread of the industrial plumes. On the contrary, the ozone map presents the lowest concentrations at the same industrial area indicating a net consumption of ozone. The highest ozone concentrations were found in the southeastern zone suggesting a local ozone formation.

  7. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  8. Reshaping the Built Environment to Reduce Environmental and Public Health Impacts of Summertime Heat

    Science.gov (United States)

    Rosenthal, J. E.; Bakewell, K.

    2005-12-01

    , risk of mortality was higher in the black community, and in those living in certain types of low-income and multi-tenant housing. Interventions in the built environment to promote urban heat island mitigation can reduce ambient temperatures, potentially reducing heat-related mortality rates in vulnerable populations, electricity consumption and air pollutant emissions, and slow ozone formation, an important health stressor. These mitigation measures may also serve as adaptive responses for a range of potential future climate conditions. Here we review current research that assesses the health, air quality, and energy conservation benefits in cities from these interventions in the built environment, and discuss the techniques and research objectives of a new pilot community-based project to mitigate the heat island effect in the South Bronx, New York City through implementation of vegetated and high albedo roofing on residential and institutional buildings. Recent studies use mesoscale climate models and a variety of land-use and land-cover scenarios to project the effects of increasing vegetative fraction and albedo within metropolitan regions and to evaluate the impacts of measures that may serve both as adaptive responses to current conditions and mitigation for future climate variability. Through this perspective, we address the questions: What urban design approaches make for resilient cities in a changing environment? What costs and benefits may be expected by the adoption of heat island mitigation techniques within the New York metropolitan region?

  9. Arctic summertime measurements of ammonia in the near-surface atmosphere

    Science.gov (United States)

    Moravek, A.; Murphy, J. G.; Wentworth, G.; Croft, B.; Martin, R.

    2016-12-01

    Measurements of gas-phase ammonia (NH3) in the summertime Arctic are rare, despite the impact NH3 can have on new particle formation rates and nitrogen deposition. The presence of NH3 can also increase the ratio of particulate-phase ammonium (NH4+) to non-sea salt sulphate (nss-SO42-) which decreases particle acidity. Known regional sources of NH3in the Arctic summertime include migratory seabird colonies and northern wildfires, whereas the Arctic Ocean is a net sink. In the summer of 2016, high time resolution measurements were collected in the Arctic to improve our understanding of the sources, sinks and impacts of ammonia in this remote region. A four week study was conducted at Alert, Canada (82.5º N, 62.3 º W) from June 23 to July 19, 2016 to examine the magnitude and sources of NH3 and SO42-. The Ambient Ion Monitor-Ion Chromatography system (AIM-IC) provided on-line, hourly averaged measurements of NH3, NH4+, SO42- and Na+. Measurements of NH3 ranged between 50 and 700 pptv (campaign mean of 240 pptv), consistent with previous studies in the summertime Arctic boundary layer. Levels of NH4+ and nss-SO42- were near or below detection limits ( 20 ng m-3) for the majority of the study. Tundra and lake samples were collected to investigate whether these could be important local sources of NH3 at Alert. These surface samples were analyzed for NH4+, pH and temperature and a compensation point (χ) for each sample was calculated to determine if these surface reservoirs can act as net NH3 sources. Precipitation samples were also collected throughout the study to better constrain our understanding of wet NH4+deposition in the summertime Arctic. From mid-July through August, 2016, NH3 was measured continuously using a laser spectroscopy technique onboard the Canadian Coast Guard Ship Amundsen in the eastern Arctic Ocean. Ocean-atmosphere exchange of NH3 was quantified using measurements of sea surface marine NH4+ concentrations. In addition, wet deposition of

  10. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  11. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    Science.gov (United States)

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  12. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    International Nuclear Information System (INIS)

    Vinikoor-Imler, Lisa C.; Stewart, Thomas G.; Luben, Thomas J.; Davis, J. Allen; Langlois, Peter H.

    2015-01-01

    We performed an exploratory analysis of ozone (O 3 ) and fine particulate matter (PM 2.5 ) concentrations during early pregnancy and multiple types of birth defects. Data on births were obtained from the Texas Birth Defects Registry (TBDR) and the National Birth Defects Prevention Study (NBDPS) in Texas. Air pollution concentrations were previously determined by combining modeled air pollution concentrations with air monitoring data. The analysis generated hypotheses for future, confirmatory studies; although many of the observed associations were null. The hypotheses are provided by an observed association between O 3 and craniosynostosis and inverse associations between PM 2.5 and septal and obstructive heart defects in the TBDR. Associations with PM 2.5 for septal heart defects and ventricular outflow tract obstructions were null using the NBDPS. Both the TBDR and the NBPDS had inverse associations between O 3 and septal heart defects. Further research to confirm the observed associations is warranted. - Highlights: • Air pollution concentrations combined modeled air data and air monitoring data. • No associations were observed between the majority of birth defects and PM 2.5 and O 3 . • Estimated associations between PM 2.5 and certain heart defects varied by dataset. • Results were suggestive of an inverse association between O 3 and septal heart defects. • Higher O 3 concentrations may be associated with increased odds of craniosynostosis. - Although most observed associations between ozone and fine particulate matter concentrations and birth defects were null, some were present and warrant further consideration

  13. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  14. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  15. Use of the antiozonant ethylenediurea (EDU) in Italy: verification of the effects of ambient ozone on crop plants and trees and investigation of EDU's mode of action.

    Science.gov (United States)

    Paoletti, Elena; Contran, Nicla; Manning, William J; Ferrara, Anna M

    2009-05-01

    Twenty-four experiments where EDU was used to protect plants from ozone (O(3)) in Italy are reviewed. Doses of 150 and 450 ppm EDU at 2-3 week intervals were successfully applied to alleviate O(3)-caused visible injury and growth reductions in crop and forest species respectively. EDU was mainly applied as soil drench to crops and by stem injection or infusion into trees. Visible injury was delayed and reduced but not completely. In investigations on mode of action, EDU was quickly (8 days), as it cannot move via phloem. EDU did not enter cells, suggesting it does not directly affect cell metabolism. EDU delayed senescence, did not affect photosynthesis and foliar nitrogen content, and stimulated antioxidant responses to O(3) exposure. Preliminary results suggest developing an effective soil application method for forest trees is warranted.

  16. Ozone Nonattainment Areas - 8 Hour (1997 Standard)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for ozone over 8 hours and...

  17. Potential Predictability and Prediction Skill for Southern Peru Summertime Rainfall

    Science.gov (United States)

    WU, S.; Notaro, M.; Vavrus, S. J.; Mortensen, E.; Block, P. J.; Montgomery, R. J.; De Pierola, J. N.; Sanchez, C.

    2016-12-01

    The central Andes receive over 50% of annual climatological rainfall during the short period of January-March. This summertime rainfall exhibits strong interannual and decadal variability, including severe drought events that incur devastating societal impacts and cause agricultural communities and mining facilities to compete for limited water resources. An improved seasonal prediction skill of summertime rainfall would aid in water resource planning and allocation across the water-limited southern Peru. While various underlying mechanisms have been proposed by past studies for the drivers of interannual variability in summertime rainfall across southern Peru, such as the El Niño-Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), and extratropical forcings, operational forecasts continue to be largely based on rudimentary ENSO-based indices, such as NINO3.4, justifying further exploration of predictive skill. In order to bridge this gap between the understanding of driving mechanisms and the operational forecast, we performed systematic studies on the predictability and prediction skill of southern Peru summertime rainfall by constructing statistical forecast models using best available weather station and reanalysis datasets. At first, by assuming the first two empirical orthogonal functions (EOFs) of summertime rainfall are predictable, the potential predictability skill was evaluated for southern Peru. Then, we constructed a simple regression model, based on the time series of tropical Pacific sea-surface temperatures (SSTs), and a more advanced Linear Inverse Model (LIM), based on the EOFs of tropical ocean SSTs and large-scale atmosphere variables from reanalysis. Our results show that the LIM model consistently outperforms the more rudimentary regression models on the forecast skill of domain averaged precipitation index and individual station indices. The improvement of forecast correlation skill ranges from 10% to over 200% for different

  18. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  19. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone

    Science.gov (United States)

    M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky

    1996-01-01

    We studied root growth and respiration of potted plants and field-grown aspen trees (Populus tremuloides Michx.) exposed to ambient or twice-ambient ozone. Root dry weight of potted plants decreased up to 45% after 12 weeks of ozone treatment, and root system respiration decreased by 27%. The ozone-induced decrease in root system respiration of...

  20. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2007-07-01

    Full Text Available Vertical ozone profiles measured in the period 1996–2002 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft for flights connecting Central Europe to the Eastern Mediterranean basin (Heraklion, Rhodes, Antalya were analysed in order to evaluate the high rural ozone levels recorded in the Mediterranean area during summertime. The 77 flights during summer (JJAS showed substantially (10–12 ppb, 20–40% enhanced ozone mixing ratios in the lower troposphere over the Eastern Mediterranean frequently exceeding the 60 ppb, 8-h EU air quality standard, whereas ozone between 700 hPa and 400 hPa was only slightly (3–5 ppb, 5–10% higher than over Central Europe. Analysis of composite weather maps for the high and low ozone cases, as well as back-trajectories and vertical profiles of carbon monoxide, suggest that the main factor leading to high tropospheric ozone values in the area is anticyclonic influence, in combination with a persistent northerly flow in the lower troposphere during summertime over the Aegean. On the other hand the lowest ozone levels are associated with low-pressure systems, especially the extension of the Middle East low over the Eastern Mediterranean area.

  1. Summertime elevation of radon in southern Appalachian homes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wilson, D.L.

    1990-01-01

    For houses in particular countries of the southern Appalachians, the atypical situation arises of higher indoor levels of radon during summertime rather than wintertime. Where such conditions prevail, it is recommended that houses be screened for elevated radon during warmer rather than colder seasons of the year. This paper discusses the materials and methods used for the screening, the results and conclusions, and presents some recommendations. 7 refs., 1 fig., 1 tab

  2. Effects of ozone on the sporulation, germination, and pathogenicity of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.R.; Weidensaul, T.C.

    1978-02-01

    Studies were initiated to determine if Botrytis cinerea conidia remain viable when grown in vivo and in vitro in the presence of ambient ozone levels and whether ozonized conidia retain pathogenicity. Experimental materials and methods used are described.

  3. PLASMA AND LUNG MACROPHAGE CAROTENOID RESPONSIVENESS TO SUPPLEMENTATION AND OZONE EXPOSURE IN HUMANS

    Science.gov (United States)

    OBJECTIVE:: To examine the effect of ozone exposure and vegetable juice supplementation on plasma and lung macrophage concentrations of carotenoids. DESIGN:: A randomized trial. SETTING:: Subjects were exposed to ambient air prior to antioxidant supplementation and to ozone after...

  4. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    Science.gov (United States)

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  5. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  6. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  7. Ozone modeling

    Energy Technology Data Exchange (ETDEWEB)

    McIllvaine, C M

    1994-07-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.

  8. Ozone modeling

    International Nuclear Information System (INIS)

    McIllvaine, C.M.

    1994-01-01

    Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented

  9. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  10. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    Science.gov (United States)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  11. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    Science.gov (United States)

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  12. Ambient Ozone and Human Health Epidemiological Analysis ...

    Science.gov (United States)

    ... tf ^(.4 Hi ft!' 1 xo \\l lit s- jj 1 4 !!il 5 a .J ; 5 -••:« ss a*«h - jliir ~ j}! 5 J * w = S * 2 is? « • — i:s : £„-! Jf | •"* • i Kiel's TC • 3 : ti !v * 3 I** SSJ Isi = 5 f ...

  13. Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet

    Science.gov (United States)

    Shi, G.; Buffen, A. M.; Ma, H.; Hu, Z.; Sun, B.; Li, C.; Yu, J.; Ma, T.; An, C.; Jiang, S.; Li, Y.; Hastings, M. G.

    2018-06-01

    Surface snow and atmospheric samples collected along a traverse from the coast to the ice sheet summit (Dome A) are used to investigate summertime atmospheric production of nitrate (NO3-) across East Antarctica. The strong relationship observed between δ15N and δ18O of nitrate in the surface snow suggests a large (lesser) extent of nitrate photolysis in the interior (coastal) region. A linear correlation between the oxygen isotopes of nitrate (δ18O and Δ17O) indicates mixing of various oxidants that react with NOx (NOx = NO + NO2) to produce atmospheric nitrate. On the plateau, the isotopes of snow nitrate are best explained by local reoxidation chemistry of NOx, possibly occurring in both condensed and gas phases. Nitrate photolysis results in redistribution of snow nitrate, and the plateau snow is a net exporter of nitrate and its precursors. Our results suggest that while snow-sourced NOx from the plateau due to photolysis is a significant input to the nitrate budget in coastal snow (up to ∼35%), tropospheric transport from mid-low latitudes dominates (∼65%) coastal snow nitrate. The linear relationship of δ18O vs. Δ17O of the snow nitrate suggests a predominant role of hydroxyl radical (OH) and ozone (O3) in nitrate production, although a high Δ17O(O3) is required to explain the observations. Across Antarctica the oxygen isotope composition of OH appears to be dominated by exchange with water vapor, despite the very dry environment. One of the largest uncertainties in quantifying nitrate production pathways is the limited knowledge of atmospheric oxidant isotopic compositions.

  14. Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region

    Science.gov (United States)

    Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva

    1998-01-01

    Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...

  15. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    Science.gov (United States)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  16. Ozone reduction strategy for the northeastern part of Austria: cooperation and compilation of the fundamentals

    International Nuclear Information System (INIS)

    Orthofer, R.; Winiwarter, W.

    1996-05-01

    This report is contribution to the implementation of an ozone reduction strategy for the northeastern part of Austria. The report contains a regional emission inventory, an emission projection for the years 1996, 2001 and 2006, an evaluation of further stationary sources reduction options. The ozone formation potentials of non-methane volatile organic compounds (NMVOC) emissions were calculated separately for both mobile and stationary source group, in order to assess the respective contribution to the local ozone formation. It can be shown that status-quo reduction measures are more efficient in terms of ozone formation potential during the summer season than in terms of NMVOC emission mass reduction. It is recommended that further NMVOC emission control should focus primarily on industrial solvent emissions, domestic heating of water during summertime with solid fuels, and on stubble burning in the fields. (author)

  17. Measurements of the potential ozone production rate in a forest

    Science.gov (United States)

    Crilley, L.; Sklaveniti, S.; Kramer, L.; Bloss, W.; Flynn, J. H., III; Alvarez, S. L.; Erickson, M.; Dusanter, S.; Locoge, N.; Stevens, P. S.; Millet, D. B.; Alwe, H. D.

    2017-12-01

    Biogenic volatile organic compounds (BVOC) are a significant source of organic compounds globally and alongside NOx play a key role in the formation of ozone in the troposphere. Understanding how changes in NOx concentrations feed through to altered ozone production in BVOC dominated environments will aid our understanding of future atmospheric composition, notably as developing nations transition from NOx dominated to NOx limited chemistry as a result of mitigation strategies. Here we empirically investigate this ambient ozone formation potential. We report deployment of a custom built instrument to measure in near real time the potential for in situ chemical ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for a sampled ambient air mixture, including full VOC complexity, i.e. independent of characterization of individual organic compounds. Ground level measurements were performed as part of the PROPHET-AMOS 2016 field campaign, at a site located within a Northern Michigan forest that has typically low NOx abundance, but high isoprene and terpenoid loadings. As the ambient NOx concentrations were low during the campaign, experiments were performed in which NO was artificially added to the sampled ambient air mixture, to quantify changes in the potential ozone production rate as a function of NOx, and hence the ozone forming characteristics of the ambient air. Preliminarily results from these experiments are presented, and indicate that while ozone production increases with added NO, significant variation was observed for a given NO addition, reflecting differences in the ambient VOC chemical reactivity and ozone formation tendency.

  18. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    Science.gov (United States)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  19. Ozone Layer Protection

    Science.gov (United States)

    ... and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “sunscreen” – protecting ... GreenChill Partnership Responsible Appliance Disposal (RAD) Program Ozone Protection vs. Ozone Pollution This website addresses stratospheric ozone ...

  20. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  1. Summertime OH reactivity from a receptor coastal site in the Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    N. Zannoni

    2017-10-01

    Full Text Available Total hydroxyl radical (OH reactivity, the total loss frequency of the hydroxyl radical in ambient air, provides the total loading of OH reactants in air. We measured the total OH reactivity for the first time during summertime at a coastal receptor site located in the western Mediterranean Basin. Measurements were performed at a temporary field site located in the northern cape of Corsica (France, during summer 2013 for the project CARBOSOR (CARBOn within continental pollution plumes: SOurces and Reactivity–ChArMEx (Chemistry and Aerosols Mediterranean Experiment. Here, we compare the measured total OH reactivity with the OH reactivity calculated from the measured reactive gases. The difference between these two parameters is termed missing OH reactivity, i.e., the fraction of OH reactivity not explained by the measured compounds. The total OH reactivity at the site varied between the instrumental LoD (limit of detection  =  3 s−1 to a maximum of 17 ± 6 s−1 (35 % uncertainty and was 5 ± 4 s−1 (1σ SD – standard deviation on average. It varied with air temperature exhibiting a diurnal profile comparable to the reactivity calculated from the concentration of the biogenic volatile organic compounds measured at the site. For part of the campaign, 56 % of OH reactivity was unexplained by the measured OH reactants (missing reactivity. We suggest that oxidation products of biogenic gas precursors were among the contributors to missing OH reactivity.

  2. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  3. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Institut Plant Protection (IPP), National Council Research (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)], E-mail: e.paoletti@ipp.cnr.it; Ferrara, Anna Maria [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Calatayud, Vicent; Cervero, Julia [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Giannetti, Fabio [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Sanz, Maria Jose [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003-9320 (United States)

    2009-03-15

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator.

  4. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    International Nuclear Information System (INIS)

    Paoletti, Elena; Ferrara, Anna Maria; Calatayud, Vicent; Cervero, Julia; Giannetti, Fabio; Sanz, Maria Jose; Manning, William J.

    2009-01-01

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator

  5. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    Science.gov (United States)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  6. A passive sampler for atmospheric ozone

    International Nuclear Information System (INIS)

    Grosjean, D.; Hisham, M.W.M.

    1992-01-01

    A simple, cost-effective passive sampler has been developed for the determination of atmospheric ozone. This passive sampler is based on a colorant which fades upon reaction with ozone, whose concentration can be determined by reflectance measurement of the color change. Direct, on-site measurements are possible, and no chemical analyses are needed. Sampler design and validation studies have been carried out and included quantitative determination of color change vs exposure time (1-8 days), color change vs. ozone concentration (30-350 ppb), and response to changes in sampler configuration that modify the passive sampling rate. With indigo carmine as the colorant, the detection limits are 30 ppb. day and 120 ppb. day using a plastic grid and Teflon filter, respectively, as diffusion barriers. Interferences from nitrogen dioxide, formaldehyde and peroxyacetyl nitrate are 15, 4 and 16%, respectively, thus resulting in a negligible bias when measuring ozone in ambient air

  7. Ozone from fireworks: Chemical processes or measurement interference?

    Science.gov (United States)

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ozone, OH and NO3 sink terms at a coniferous forest site in Central Germany: Role of biogenic VOCs

    Science.gov (United States)

    Bonn, B.; Bourtsoukidis, S.; Haunold, W.; Sitals, R.; Jacobi, S.

    2012-04-01

    Oxidation capacities of ecosystems are important to facilitate an ecosystem feedback on oxidation stress and in order to survive. We have conducted seasonal ambient measurements of a series of biogenic VOCs using a plant enclosure technique and determined the ambient levels of ozone, NOx as well as basic meteorological parameters at a managed spruce forest site in Central Germany (Mt. Kleiner Feldberg). The site is 810 m a.s.l. and faces distinct anthropogenic contributions from the Rhine-Main-area including the airport and major traffic routes in from the southeast. The opposite direction is moderately polluted and can be classified as Central German background condition. Since atmospheric chemistry and pollutants become very important especially for this site, which is the most polluted one in Germany with respect to ozone we approximated the sink terms for the atmospheric oxidation agents of interest at this site, i.e ozone, OH and NO3 using the measurements and box model steady state calculations for intermediate species not measured directly between the first of April and the start of November 2011. BVOC measurements were obtained with PTR-MS every 36 s and averaged for 30 min intervals afterwards to facilitate the inclusion of the monitoring data of the Hessian Agency for the Environment and Geology (HLUG) in Wiesbaden, Germany: temperature, humidity, global radiation, ozone and NOx. Analysis was performed with Matlab (Mathworks Inc.) and included the gas-phase chemistry set-up described by the Master Chemical Mechanism (MCM, v3, [1]). This resulted in the following outcome for sinks of oxidants: Ozone: Significant contributions were found for mono- and sesquiterpenes as well as for NOx. The individual contributions vary notably with the time of the day and the year and the emission strength of biogenic VOCs. Especially for the early season in April sesquiterpene reactions dominated the sink by up to 80% during nighttime, while NOx reactions dominated the

  9. Vegetation-mediated Climate Impacts on Historical and Future Ozone Air Quality

    Science.gov (United States)

    Tai, A. P. K.; Fu, Y.; Mickley, L. J.; Heald, C. L.; Wu, S.

    2014-12-01

    Changes in climate, natural vegetation and human land use are expected to significantly influence air quality in the coming century. These changes and their interactions have important ramifications for the effectiveness of air pollution control strategies. In a series of studies, we use a one-way coupled modeling framework (GEOS-Chem driven by different combinations of historical and future meteorological, land cover and emission data) to investigate the effects of climate-vegetation changes on global and East Asian ozone air quality from 30 years ago to 40 years into the future. We find that future climate and climate-driven vegetation changes combine to increase summertime ozone by 2-6 ppbv in populous regions of the US, Europe, East Asia and South Asia by year 2050, but including the interaction between CO2 and biogenic isoprene emission reduces the climate impacts by more than half. Land use change such as cropland expansion has the potential to either mostly offset the climate-driven ozone increases (e.g., in the US and Europe), or greatly increase ozone (e.g., in Southeast Asia). The projected climate-vegetation effects in East Asia are particularly uncertain, reflecting a less understood ozone production regime. We thus further study how East Asian ozone air quality has evolved since the early 1980s in response to climate, vegetation and emission changes to shed light on its likely future course. We find that warming alone has led to a substantial increase in summertime ozone in populous regions by 1-4 ppbv. Despite significant cropland expansion and urbanization, increased summertime leafiness of vegetation in response to warming and CO2 fertilization has reduced ozone by 1-2 ppbv, driven by enhanced ozone deposition dominating over elevated biogenic emission and partially offsetting the warming effect. The historical role of CO2-isoprene interaction in East Asia, however, remains highly uncertain. Our findings demonstrate the important roles of land cover

  10. Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications

    Directory of Open Access Journals (Sweden)

    G. R. Wentworth

    2016-02-01

    Full Text Available Continuous hourly measurements of gas-phase ammonia (NH3(g were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30 to 650 ng m−3 (40–870 pptv with the highest values recorded in Lancaster Sound (74°13′ N, 84°00′ W. Simultaneous measurements of total ammonium ([NHx], pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ, which is the ambient NH3(g concentration at which surface–air fluxes change direction. Ambient NH3(g was usually several orders of magnitude larger than both χocean and χMP (< 0.4–10 ng m3 indicating these surface pools are net sinks of NH3. Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m−2 s−1 for the open ocean and melt ponds, respectively. Sufficient NH3(g was present to neutralize non-sea-salt sulfate (nss-SO42− in the boundary layer during most of the study. This finding was corroborated with a historical data set of PM2.5 composition from Alert, Nunavut (82°30′ N, 62°20′ W wherein the median ratio of NH4+/nss-SO42− equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g emissions from seabird guano on boundary-layer composition and nss-SO42− neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g concentrations and nss-SO42− neutralization. This is strong evidence that seabird colonies are significant sources of NH3 in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely

  11. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  12. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  13. Impacts of Interannual Variability in Biogenic VOC Emissions near Transitional Ozone Production Regimes

    Science.gov (United States)

    Geddes, J.

    2017-12-01

    Due to successful NOx emission controls, summertime ozone production chemistry in urban areas across North America is transitioning from VOC-limited to increasingly NOx-limited. In some regions where ozone production sensitivity is in transition, interannual variability in surrounding biogenic VOC emissions could drive fluctuations in the prevailing chemical regime and modify the impact of anthropogenic emission changes. I use satellite observations of HCHO and NO2 column density, along with a long-term simulation of atmospheric chemistry, to investigate the impact of interannual variability in biogenic isoprene sources near large metro areas. Peak emissions of isoprene in the model can vary by up to 20-60% in any given year compared to the long term mean, and this variability drives the majority of the variability in simulated local HCHO:NO2 ratios (a common proxy for ozone production sensitivity). The satellite observations confirm increasingly NOx-limited chemical regimes with large interannual variability. In several instances, the model and satellite observations suggest that variability in biogenic isoprene emissions could shift summertime ozone production from generally VOC- to generally NOx- sensitive (or vice versa). This would have implications for predicting the air quality impacts of anthropogenic emission changes in any given year, and suggests that drivers of biogenic emissions need to be well understood.

  14. Redox Toxicology of Ambient Air Pollution

    Science.gov (United States)

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  15. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  16. Secondary maxima in ozone profiles

    Directory of Open Access Journals (Sweden)

    R. Lemoine

    2004-01-01

    Full Text Available Ozone profiles from balloon soundings as well as SAGEII ozone profiles were used to detect anomalous large ozone concentrations of ozone in the lower stratosphere. These secondary ozone maxima are found to be the result of differential advection of ozone-poor and ozone-rich air associated with Rossby wave breaking events. The frequency and intensity of secondary ozone maxima and their geographical distribution is presented. The occurrence and amplitude of ozone secondary maxima is connected to ozone variability and trend at Uccle and account for a large part of the total ozone and lower stratospheric ozone variability.

  17. Trends in on-road vehicle emissions and ambient air quality in Atlanta, Georgia, USA, from the late 1990s through 2009.

    Science.gov (United States)

    Vijayaraghavan, Krish; DenBleyker, Allison; Ma, Lan; Lindhjem, Chris; Yarwood, Greg

    2014-07-01

    On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995-2009 period despite an increase in total vehicle distance traveled. The CO and NO(x) emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO(x) in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001-2009. Although this trend coexists with the declining trends in on-road NO(x), VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NO(x) in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO(x) during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of

  18. Tropospheric Ozone and Photochemical Smog

    Science.gov (United States)

    Sillman, S.

    2003-12-01

    global background ozone can make the effects of local pollution events everywhere more acute, and can also cause ecological damage in remote locations that are otherwise unaffected by urban pollution. Ozone at the global scale is also related to greenhouse warming.This chapter provides an overview of photochemical smog at the urban and regional scale, focused primarily on ozone and including a summary of information about particulates. It includes the following topics: dynamics and extent of pollution events; health and ecological impacts; relation between ozone and precursor emissions, including hydrocarbons and nitrogen oxides (NOx); sources, composition, and fundamental properties of particulates; chemistry of ozone and related species; methods of interpretation based on ambient measurements; and the connection between air pollution events and the chemistry of the global troposphere. Because there are many similarities between the photochemistry of ozone during pollution events and the chemistry of the troposphere in general, this chapter will include some information about global tropospheric chemistry and the links between urban-scale and global-scale events. Additional treatment of the global troposphere is found in Volume 4 of this work. The chemistry of ozone formation discussed here is also related to topics discussed in greater detail elsewhere in this volume (see Chapters 9.10 and 9.12) and in Volume 4.

  19. Observations of ozone formation in power plant plumes and implications for ozone control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; Kuster, W.C.; Goldan, P.D.; Huebler, G.; Meagher, J.F.; Fehsenfeld, F.C. [NOAA, Boulder, CO (USA). Aeronomy Lab.

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural US coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NOx (NO plus NO{sub 2}) concentration, which is determined by plant NOx emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modular ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NOx and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NOx emission rates and geographic locations in current and future US ozone control strategies could substantially enhance the efficacy of NOx reductions from these sources. 18 refs., 4 figs.

  20. TOWARDS RELIABLE AND COST-EFFECTIVE OZONE EXPOSURE ASSESSMENT: PARAMETER EVALUATION AND MODEL VALIDATION USING THE HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    Science.gov (United States)

    Accurate assessment of chronic human exposure to atmospheric criteria pollutants, such as ozone, is critical for understanding human health risks associated with living in environments with elevated ambient pollutant concentrations. In this study, we analyzed a data set from a...

  1. Assessment of Protective Effect of Some Modern Agrochemicals against Ozone-Induced Stress in Sensitive Clover and Tobacco Cultivars

    OpenAIRE

    Blum, Oleg; Didyk, Nataliya; Pavluchenko, Nataliya; Godzik, Barbara

    2011-01-01

    Some modern agrochemicals with antioxidant potential were tested for their protective effect against ozone injury using clover and tobacco ozone-sensitive cultivars as model plants subjected to ambient ozone at two sites (Kyiv city in Ukraine and Szarów village in Poland). All used agrochemicals showed partial protective effects against ozone injury on clover and tobacco. Conducted studies confirmed the effectiveness of modern fungicides belonging to strobilurin group as protectants of sensit...

  2. Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing

    Science.gov (United States)

    Niemeier, Ulrike; Granier, Claire; Kornblueh, Luis; Walters, Stacy; Brasseur, Guy P.

    2006-05-01

    Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm-2. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm-2.

  3. Air pollution by ozone across Europe during summer 2010. Overview of exceedances of EC ozone threshold values for April-September 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-15

    This report provides an evaluation of ground-level ozone pollution in Europe for April-September 2010, based on information submitted to the European Commission under Directive 2002/3/EC on ozone in ambient air. Since Members States have not yet finally validated the submitted data, the conclusions drawn in this report should be considered as preliminary. (Author)

  4. Periodismo ambiental

    Directory of Open Access Journals (Sweden)

    Lucía Lemos

    2015-01-01

    Full Text Available Los periodistas toman el tema del medio ambiente cada vez más en serio. El uso de temas relacionados con el medio ambiente, debe estar ligado al análisis socio-económico y a las posibilidades de comunicación y educación de diferentes regiones del mundo. A continuación se presenta un resumen de la situación ambiental, las acciones de prensa y comunicación que se llevan a cabo en América Central (Panamá, El Salvador, Costa Rica y en Sudamérica Brasil,Colombia, Chile, México, y Perú. Se concluye en la necesidad de formar hábitos ecológicos. Los comunicadores deben presentar soluciones a los problemas, fomentar campañas comunes, compartir información y velar por el ambiente ambiente para que las generaciones futuras no tengan que perecer.

  5. The Antarctic ozone hole

    International Nuclear Information System (INIS)

    Jones, Anna E

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For the historical perspective, the events leading up to the discovery of the 'hole' are presented, as well as the response from the international community and the measures taken to protect the ozone layer now and into the future

  6. Is the ozone climate penalty robust in Europe?

    International Nuclear Information System (INIS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frédérik; Rouïl, Laurence; Andersson, Camilla; Engardt, Magnuz; Langner, Joakim; Baklanov, Alexander; Brandt, Jørgen; Christensen, Jesper H; Geels, Camilla; Hedegaard, Gitte B; Doherty, Ruth; Giannakopoulos, Christos; Katragkou, Eleni; Lei, Hang; Manders, Astrid; Melas, Dimitris; Sofiev, Mikhail; Soares, Joana

    2015-01-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071–2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041–2070 and 2071–2100 time windows, respectively

  7. Is the ozone climate penalty robust in Europe?

    Science.gov (United States)

    Colette, Augustin; Andersson, Camilla; Baklanov, Alexander; Bessagnet, Bertrand; Brandt, Jørgen; Christensen, Jesper H.; Doherty, Ruth; Engardt, Magnuz; Geels, Camilla; Giannakopoulos, Christos; Hedegaard, Gitte B.; Katragkou, Eleni; Langner, Joakim; Lei, Hang; Manders, Astrid; Melas, Dimitris; Meleux, Frédérik; Rouïl, Laurence; Sofiev, Mikhail; Soares, Joana; Stevenson, David S.; Tombrou-Tzella, Maria; Varotsos, Konstantinos V.; Young, Paul

    2015-08-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively.

  8. Background Ozone in Southern China During 1994-2015: Role of Anthropogenic Emission and Climate Change

    Science.gov (United States)

    Wang, T.; Zhang, L.; Poon, S.

    2016-12-01

    Tropospheric ozone plays important roles in atmospheric chemistry, air quality, and climate. Changes in background ozone concentrations and underlying causes are therefore of great interest to the scientific community and governments. Compared with North America and Europe, long-term measurements of background ozone in China are scarce. This study reports the longest continuous ozone record in southern China measured at a background site (Hok Tsui) in Hong Kong during 1994-2015. The analysis of the 22-year record shows that the surface ozone in the background atmosphere of southern China has been increasing, with an overall Theil-Sen estimated rate of 0.43 ppbv/yr. Compared with our previous results during 1994-2007 (Wang et al., 2009), the average rate of increase has slowed down over during 2008-2015 (0.32 vs. 0.58 ppbv/yr), possibly due to smaller increase or even decrease in ozone precursors emission in mainland China in recent years. The average rates of change show significant seasonal differences with the largest rate occurring in summer (0.32, 0.55, 0.52, and 0.36 ppbv/yr in spring, summer, autumn, and winter, respectively). Monthly mean ozone concentrations at Hok Tsui are compared against an East Asian Monsoon index. It is found that only the summer-time ozone over period 2008-2015 has a strong positive correlation with the index, suggesting that climate might have played an important role in driving the ozone increase observed in summer since 2008. The ozone trend in Hong Kong will be compared to those from other regions in East Asia, and the role of emission changes in Asia will be discussed.

  9. Tropospheric ozone and the environment II. Effects, modeling and control

    International Nuclear Information System (INIS)

    Berglund, R.L.

    1992-01-01

    This was the sixth International Specialty Conference on ozone for the Air ampersand Waste Management Association since 1978 and the first to be held in the Southeast. Of the preceding five conferences, three were held in Houston, one in New England, and one in Los Angeles. The changing location continues to support the understanding that tropospheric ozone is a nationwide problem, requiring understanding and participation by representatives of all regions. Yet, questions such as the following continue to be raised over all aspects of the nation's efforts to control ozone. Are the existing primary and secondary National Ambient Air Quality Standards (NAAQS) for ozone the appropriate targets for the ozone control strategy, or should they be modified to more effectively accommodate new health or ecological effects information, or better fit statistical analyses of ozone modeling data? Are the modeling tools presently available adequate to predict ozone concentrations for future precursor emission trends? What ozones attainment strategy will be the best means of meeting the ozone standard? To best answer these and other questions there needs to be a continued sharing of information among researchers working on these and other questions. While answers to these questions will often be qualitative and location specific, they will help focus future research programs and assist in developing future regulatory strategies

  10. Is There Evidence that Mid-Latitude Stratospheric Ozone Depletion Occurs in Conjunction with North American Monsoon Convection?

    Science.gov (United States)

    Rosenlof, K. H.; Ray, E. A.; Portmann, R. W.

    2017-12-01

    A recent study suggests that during the period of the summertime North American Monsoon (NAM), ozone depletion could occur as a result of catalytic ozone destruction associated with the cold and wet conditions caused by overshooting convection. Aura Microwave Limb Sounder (MLS) water vapor measurements do show that the NAM region is wetter than other parts of the globe in regards to both the mean and extremes. However, definitive evidence of ozone depletion occurring in that region has not been presented. In this study, we examine coincident measurements of water vapor, ozone, and tropospheric tracers from aircraft data taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign looking specifically for ozone depletion in regions identified as impacted by overshooting convection. Although we do find evidence of lower ozone values in air impacted by convective overshoots, using tropospheric tracers we attribute those observations to input of tropospheric air rather than catalytic ozone destruction. Additionally, we explore the consequences of these lower ozone values on surface UV, and conclude that there is minimal impact on the UV index.

  11. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences.

    Science.gov (United States)

    Williams, J.; Petäjä, T.

    2012-04-01

    This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  12. The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010: an overview of meteorological and chemical influences

    Directory of Open Access Journals (Sweden)

    J. Williams

    2011-10-01

    Full Text Available This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce; mixed forest (Birch and conifers; and woodland scrub (e.g. Willows, Aspen; indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO, urban anthropogenic pollution (pentane and SO2 and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes. None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.

  13. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  14. Society of Behavioral Medicine (SBM) position statement: SBM supports curbing summertime weight gain among America's youth.

    Science.gov (United States)

    Bohnert, Amy; Zarrett, Nicole; Beets, Michael W; Hall, Georgia; Buscemi, Joanna; Heard, Amy; Pate, Russell

    2017-12-01

    The Society of Behavioral Medicine recommends adoption of policies at the district, state, and federal levels that minimize weight gain among youth over the summertime, particularly among low-income, minority school-age youth who appear to be at greater risk. Policies that facilitate (1) partnerships between school districts and community organizations to provide affordable summertime programming, (2) strategic efforts by schools and communities to encourage families to enroll and attend summertime programming via the creation of community-wide summertime offerings offices, (3) adoption of joint-use/shared use agreements in communities to promote use of indoor and outdoor school facilities to provide affordable programming during the summer months, and (4) implementation of strategies that help summer programs achieve the Healthy Eating and Physical Activity (HEPA) standards which have been endorsed by the Healthy Out-of-School Time (HOST) coalition. Research is needed to elucidate key mechanisms by which involvement in structured programming may reduce weight gain over the summer months.

  15. Contribution of ozone to airborne aldehyde formation in Paris homes.

    Science.gov (United States)

    Rancière, Fanny; Dassonville, Claire; Roda, Célina; Laurent, Anne-Marie; Le Moullec, Yvon; Momas, Isabelle

    2011-09-15

    Indoor aldehydes may result from ozone-initiated chemistry, mainly documented by experimental studies. As part of an environmental investigation included in the PARIS birth cohort, the aim of this study was to examine ozone contribution to airborne aldehyde formation in Paris homes. Formaldehyde, acetaldehyde and hexaldehyde levels, as well as styrene, nitrogen dioxide and nicotine concentrations, comfort parameters and carbon dioxide levels, were measured twice during the first year of life of the babies. Ambient ozone concentrations were collected from the closest background station of the regional air monitoring network. Traffic-related nitrogen oxide concentrations in front of the dwellings were estimated by an air pollution dispersion model. Home characteristics and families' way of life were described by questionnaires. Stepwise multiple linear regression models were used to link aldehyde levels with ambient ozone concentrations and a few aldehyde precursors involved in oxidation reactions, adjusting for other indoor aldehyde sources, comfort parameters and traffic-related nitrogen oxides. A 4 and 11% increase in formaldehyde and hexaldehyde levels was pointed out when 8-hour ozone concentrations increased by 20 μg/m(3). The influence of potential precursors such as indoor styrene level and frequent use of air fresheners, containing unsaturated volatile organic compounds as terpenes, was also found. Thus, our results suggest that ambient ozone can significantly impact indoor air quality, especially with regard to formaldehyde and hexaldehyde levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Ambient Utopia

    NARCIS (Netherlands)

    Heylen, Dirk K.J.; Bosse, Tibor

    2012-01-01

    his chapter presents an analysis of the ambitions that lie behind the concept of Ambient Intelligence as it is presented by the advocates and researchers working in the field. In particular it looks at the ideas regarding the forms of natural and intuitive forms of interaction that are envisaged –

  17. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

    Science.gov (United States)

    Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.

    2017-12-01

    Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more

  18. Ozone Antimicrobial Efficacy

    Science.gov (United States)

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  19. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  20. Aviation-attributable ozone as a driver for changes in mortality related to air quality and skin cancer

    Science.gov (United States)

    Eastham, Sebastian D.; Barrett, Steven R. H.

    2016-11-01

    Aviation is a significant source of tropospheric ozone, which is a critical UV blocking agent, an indirect precursor to the formation of particulate matter, and a respiratory health hazard. To date, investigations of human health impacts related to aviation emissions have focused on particulate matter, and no global estimate yet exists of the combined health impact of aviation due to ozone, particulate matter and UV exposure changes. We use a coupled tropospheric-stratospheric chemical-transport model with a global aviation emissions inventory to estimate the total impact of aviation on all three risk factors. We find that surface ozone due to aviation emissions is maximized during hemispheric winter due to the greater wintertime chemical lifetime of ozone, but that a smaller enhancement of 0.5 ppbv occurs during summertime. This summertime increase results in an estimated 6,800 premature mortalities per year due to ozone exposure, over three times greater than previous estimates. During the winter maximum, interaction with high background NOx concentrations results in enhanced production of nitrate aerosol and increased annual average exposure to particulate matter. This ozone perturbation is shown to be the driving mechanism behind an additional 9,200 premature mortalities due to exposure to particulate matter. However, the increase in tropospheric ozone is also found to result in 400 fewer mortalities due to melanoma skin cancer in 2006. This is the first estimate of global melanoma mortality due to aviation, and the first estimate of skin cancer mortality impacts due to aviation using a global chemical transport model.

  1. Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010

    Science.gov (United States)

    Fu, Y.; Tai, A. P. K.

    2015-09-01

    Understanding how historical climate and land cover changes have affected tropospheric ozone in East Asia would help constrain the large uncertainties associated with future East Asian air quality projections. We perform a series of simulations using a global chemical transport model driven by assimilated meteorological data and a suite of land cover and land use data to examine the public health effects associated with changes in climate, land cover, land use, and anthropogenic emissions between the 5-year periods 1981-1985 and 2007-2011 in East Asia. We find that between these two periods land cover change alone could lead to a decrease in summertime surface ozone by up to 4 ppbv in East Asia and ~ 2000 fewer ozone-related premature deaths per year, driven mostly by enhanced dry deposition resulting from climate- and CO2-induced increase in vegetation density, which more than offsets the effect of reduced isoprene emission arising from cropland expansion. Climate change alone could lead to an increase in summertime ozone by 2-10 ppbv in most regions of East Asia and ~ 6000 more premature deaths annually, mostly attributable to warming. The combined impacts (-2 to +12 ppbv) show that while the effect of climate change is more pronounced, land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. While the changes in anthropogenic emissions remain the largest contributor to deteriorating ozone air quality in East Asia over the past 30 years, we show that climate change and land cover changes could lead to a substantial modification of ozone levels, and thus should come into consideration when formulating future air quality management strategies. We also show that the sensitivity of surface ozone to land cover change is more dependent on dry deposition than on isoprene emission in most of East Asia, leading to ozone responses that are quite distinct from that in North America, where most ozone

  2. Acute effects of ozone on mortality from the "Air pollution and health : A European approach" project

    NARCIS (Netherlands)

    Gryparis, A; Forsberg, B; Katsouyanni, K; Analitis, A; Touloumi, G; Schwartz, J; Samoli, E; Medina, S; Anderson, HR; Niciu, EM; Wichmann, HE; Kriz, B; Kosnik, M; Skorkovsky, J; Vonk, JM; Dortbudak, Z

    2004-01-01

    In the Air Pollution and Health: A European Approach (APHEA2) project, the effects of ambient ozone concentrations on mortality were investigated. Data were collected on daily ozone concentrations, the daily number of deaths, confounders, and potential effect modifiers from 23 cities/areas for at

  3. Effect of ozone exposure on maximal airway narrowing in non-asthmatic and asthmatic subjects

    NARCIS (Netherlands)

    Hiltermann, T J; Stolk, J; Hiemstra, P S; Fokkens, P H; Rombout, P J; Sont, J K; Sterk, P J; Dijkman, J H

    1995-01-01

    1. Ozone is a major constituent of air pollution in the summer. Epidemiological studies have demonstrated that there is an increase in hospital admissions for respiratory diseases 1 day after peak levels of ambient ozone. This may be due to an increase in the responsiveness of the airways to

  4. Ozone layer - climate change interactions. Influence on UV levels and UV related effects

    NARCIS (Netherlands)

    Kelfkens G; Bregman A; de Gruijl FR; van der Leun JC; Piquet A; van Oijen T; Gieskes WWC; van Loveren H; Velders GJM; Martens P; Slaper H; NOP; LPI; LLO

    2002-01-01

    Ozone in the atmosphere serves as a partially protective filter against the most harmful part of the solar UV-spectrum. Decreases in ozone lead to increases in ambient UV with a wide variety of adverse effects on human health, aquatic and terrestrial ecosystems and food chains. Human health

  5. An assessment of ground-level ozone concentrations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1997-01-01

    Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. A first air quality assessment was prepared as part of the Alberta Energy and Utilities Board application, in order to evaluate the emissions and potential impacts associated with the development. The Pembina Institute raised several issues with respect to potential future changes in ambient ozone levels as a result of the Aurora Mine operations. In response to these concerns, another more rigorous assessment was conducted to predict future ground-level ozone concentrations in the Fort McMurray area. This report includes: (1) ambient air quality guidelines for ozone, (2) emissions inventory for dispersion modelling, (3) dispersion modelling methodology, and (4) predicted ambient ozone concentrations. Ground level ozone (O 3 ) concentrations result from anthropogenically produced ozone, and from naturally occurring ozone. Ozone is not directly emitted to the atmosphere from industrial sources, but is formed as a result of chemical reactions between NO x and VOCs, which are emitted from industrial sources within the Athabasca oil sands region. NO x and VOC emissions associated with the Aurora Mine operation are predicted to increase hourly average ozone concentrations in the Fort McMurray area by only 0.001 ppm. 17 refs., 18 tabs., 5 figs

  6. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  7. Effects of ozone exposure on lung function in man: a review

    Energy Technology Data Exchange (ETDEWEB)

    Folinsbee, L J

    1981-01-01

    Ozone, an important component of photochemical smog, has a decided impact on lung function in man. In this review, the effects of zone on human lung function are discussed with particular attention to levels which are near the threshold of producing no effect. Attempts to define dose-response relationships and effects on sensitive subject populations are described. The relationship between exercise and ozone toxicity is presented in addition to the potential impact of ambient ozone exposure on athletic performance. Effects of ozone on respiratory symptoms and the interaction of ozone with other pollutants are briefly examined. Considerable attention has been directed at the phenomenon of adaptation to repeated ozone exposure and to possible mechanism of action of ozone.

  8. An Estimate of Biogenic Emissions of Volatile Organic Compounds during Summertime in China (7 pp).

    Science.gov (United States)

    Heinrich, Almut

    2007-01-01

    and Aim. An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smog and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated from forests and woodlands. The averaged emission intensity was 4.11 mgC m-2 hr-1 for forests and 1.12 mgC m-2 hr-1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the

  9. Ozone pollution: rising concentrations despite French and EU efforts

    International Nuclear Information System (INIS)

    Ba, M.; Elichegaray, Ch.

    2003-11-01

    Ozone is the main indicator of photochemical pollution which is caused by a complex combination of primary pollutants formed by chemical reactions in the troposphere, in the presence of sunlight. These primary pollutants, otherwise known as precursors of ozone (nitrogen oxides, volatile organic compounds and carbon monoxide), are emitted both by natural sources and human activities. In urban areas, during the summer months, ozone is often the main cause of deterioration in air quality. Directive 2002/3/EC relating to ozone in ambient air entered into force on 9 September 2003, superseding the first ozone Directive (92/72/CE) of 21 September 1992. In the last 10 years, monitoring of ozone pollution has considerably progressed in France (the number of analysers has increased tenfold). Emissions of the ozone precursors fell significantly (-27%) between 1990 and 2000 in France as a result of combined efforts in all sectors of activity. However, between 1994 and 2002, ozone levels remained above the information threshold for the protection of human health and vegetation on average more than 100 days a year in rural areas and over 40 days a year in urban and peri-urban areas. Efforts undertaken both in France and other European countries aim to improve the situation and ensure compliance with the requirements of Directive 2002/3/EC. (author)

  10. Development of a sensitive passive sampler using indigotrisulfonate for the determination of tropospheric ozone.

    Science.gov (United States)

    Garcia, Gabriel; Allen, Andrew George; Cardoso, Arnaldo Alves

    2010-06-01

    A new sampling and analytical design for measurement of ambient ozone is presented. The procedure is based on ozone absorption and decoloration (at 600 nm) of indigotrisulfonate dye, where ozone adds itself across the carbon-carbon double bond of the indigo. A mean relative standard deviation of 8.6% was obtained using samplers exposed in triplicate, and a correlation coefficient (r) of 0.957 was achieved in parallel measurements using the samplers and a commercial UV ozone instrument. The devices were evaluated in a measurement campaign, mapping spatial and temporal trends of ozone concentrations in a region of southeast Brazil strongly influenced by seasonal agricultural biomass burning, with associated emissions of ozone precursors. Ozone concentrations were highest in rural areas and lowest at an urban site, due to formation during downwind transport and short-term depletion due to titration with nitric oxide. Ozone concentrations showed strong seasonal trends, due to the influences of precursor emissions, relative humidity and solar radiation intensity. Advantages of the technique include ease and speed of use, the ready availability of components, and excellent sensitivity. Achievable temporal resolution of ozone concentrations is 8 hours at an ambient ozone concentration of 3.8 ppb, or 2 hours at a concentration of 15.2 ppb.

  11. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    Science.gov (United States)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  12. The stratospheric ozone and the ozone layer

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez Jesus Antonio

    2000-01-01

    An overview is presented of the principal characteristics of the stratospheric ozone in the Earth's atmosphere, with particular emphasis on the tropics and the ozone hole over the poles. Some effects produced in the atmosphere as a consequence of the different human activities will be described, and some data on stratospheric ozone will be shown. We point out the existence of a nucleus of least ozone in the tropics, stretching from South America to central Africa, with annual mean values less than 240 DU, a value lower than in the middle latitudes and close to the mean values at the South Pole. The existence of such a minimum is confirmed by mean values from measurements made on satellites or with earthbound instruments, for different sectors in Colombia, like Medellin, Bogota and Leticia

  13. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  14. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    OpenAIRE

    M. L. White; R. S. Russo; Y. Zhou; J. L. Ambrose; K. Haase; E. K. Frinak; R. K. Varner; O. W. Wingenter; H. Mao; R. Talbot; B. C. Sive

    2009-01-01

    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) con...

  15. Summertime Minimum Streamflow Elasticity to Antecendent Winter Precipitation, Peak Snow Water Equivalent and Summertime Evaporative Demand in the Western US Maritime Mountains

    Science.gov (United States)

    Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.

    2017-12-01

    As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.

  16. Ozone therapy in periodontics.

    Science.gov (United States)

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  17. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  18. On the impact of temperature on tropospheric ozone concentration ...

    Indian Academy of Sciences (India)

    The influence of temperature on tropospheric ozone (O3)concentrations in urban and photochemically polluted areas in the greater Athens region are investigated in the present study.Hourly values of the ambient air temperature used for studying the urban heat island effect in Athens were recorded at twenty-three ...

  19. Semiconductor Sensors Application for Definition of Factor of Ozone Heterogeneous Destruction on Teflon Surface

    Directory of Open Access Journals (Sweden)

    Nataliya V. Finogenova

    2003-12-01

    Full Text Available In our paper we present the results of our research, which was carried out by means of semiconductor sensor techniques (SCS, which allowed evaluating heterogeneous death-rate of ozone (γ Teflon surface. When ozone concentration is near to Ambient Air Standard value, γ is assessed to be equal to 6,57*10-7. High technique response provide possibility to determine ozone contents in the air media and the percentage of ozone, decomposed on the communication surfaces and on the surfaces of installation in the low concentration range (1–100 ppb.

  20. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  1. Ozone and ozone injury on plants in and around Beijing, China

    International Nuclear Information System (INIS)

    Wan, Wuxing; Manning, W.J.; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Zhang, Qianqian

    2014-01-01

    Ozone (O 3 ) levels were assessed for the first time with passive samplers at 10 sites in and around Beijing in summer 2012. Average O 3 concentrations were higher at locations around Beijing than in the city center. Levels varied with site locations and ranged from 22.5 to 48.1 ppb and were highest at three locations. Hourly O 3 concentrations exceeded 40 ppb for 128 h and 80 ppb for 17 h from 2 to 9 in August at one site, where it had a real-time O 3 analyzer. Extensive foliar O 3 injury was found on 19 species of native and cultivated trees, shrubs, and herbs at 6 of the 10 study sites and the other 2 sites without passive sampler. This is the first report of O 3 foliar injury in and around Beijing. Our results warrant an extensive program of O 3 monitoring and foliar O 3 injury assessment in and around Beijing. - Highlights: • Plants have been threatened by high O 3 concentration in and around Beijing, China. • 19 plant species are reported as obvious ambient O 3 injury symptoms in Beijing. • The O 3 injury symptoms occur more often where ambient O 3 concentration is higher. • The results warrant more extensive and long-term study of ambient O 3 in China. - First report of ozone incidence and ozone injury on plants in and around Beijing, China

  2. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  3. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  4. Ozone carcinogenesis in vitro and its co-carcinogenesis with radiation

    International Nuclear Information System (INIS)

    Borek, C.

    1988-01-01

    Ozone (O/sub 3/), a reactive species of oxygen, is an important natural constituent of the atmosphere. Background levels of ozone in the lower atmosphere may range up to 0.1 ppm and are modified by geographic elevation, solar radiation and climatic conditions. Since some ozone effects are radiomimetic, its actions may be enhanced in the presence of ionizing radiation from background and/or manmade sources. While stratospheric ozone spares the earth from excess solar ultraviolet (UV) radiation, high levels of ozone in the environment are toxic and present a health hazard to man. Excess environmental exposure to ozone can result from a variety of sources. Ozone is a key component in oxidant smog and in the vicinity of high electric voltage equipment when in operation. Ozone is widely used as a disinfectant for air and water, in bleaches, waxes, textiles, oils. and inorganic synthesis. Enhanced levels of ozone are found in planes flying at high altitudes. Because of the toxic nature of ozone and its potential hazard to man, its levels in the environment are subject to government regulation. The current standard is set at an hourly average of 235 μg/m/sup 3/ (0.12 ppm) not to be exceeded more than once per year. Urban areas with high levels of photochemical smog (e.g. Southern California) may experience high ambient ozone levels which can reach 0.5 ppm

  5. Ozone, area social conditions, and mortality in Mexico City

    International Nuclear Information System (INIS)

    O'Neill, M.S.; Loomis, Dana; Borja-Aburto, V.H.

    2004-01-01

    We investigated whether the association of daily mortality and ambient ozone differs by age and area social conditions of the region of residence using a time-series analysis. The study setting was metropolitan Mexico City, a high altitude city situated in a valley, with an estimated 20 million inhabitants, large socioeconomic gradients, and ozone levels frequently exceeding international standards. We stratified daily deaths by six census-derived socioeconomic indicators, based on characteristics of the county where decedents lived. We used Poisson regression to model the association between daily mortality and ozone levels (on the day of death and the previous day) in separate models, stratified by area socioeconomic level and age, and controlling for time trends and temperature. Ozone was positively associated with total mortality [0.65% increase per 10 ppb increment, 95% confidence interval (CI): 0.02%, 1.28%] and for mortality among those over age 65 [1.39% increase per 10 ppb increment, 95% CI: 0.51%, 2.28%]. Associations between ozone and all-age mortality did not show any consistent patterns according to socioeconomic gradients. We conclude that elderly people are at higher risk for ozone-associated mortality. Though county-level social indicators in Mexico City were not strong markers of vulnerability to ozone-associated acute mortality in this analysis, complex associations between individual and area-level factors may exist that would require additional data and further analyses to elucidate

  6. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  7. Pollution Control Using Ozone

    DEFF Research Database (Denmark)

    2017-01-01

    This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone.......This invention relates to a method for cleaning air comprising one or more pollutants, the method comprising contacting the air with thermal decompositions products of ozone....

  8. The pollution by ozone

    International Nuclear Information System (INIS)

    1997-09-01

    Air pollution by ozone is increasing in spite of several points to reduce it. If the process of ozone formation are complex, the sources of this pollution are well known: first, mobile sources with automobiles (49%), boats , trains and planes (13%), then are following paints and solvents(18%), thermal power plants(11%), and finally industry processing with 5%. (N.C.)

  9. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  10. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  11. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Science.gov (United States)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  12. Ozone Induced Premature Mortality and Crop Yield Loss in China

    Science.gov (United States)

    Lin, Y.; Jiang, F.; Wang, H.

    2017-12-01

    Exposure to ambient ozone is a major risk factor for health impacts such as chronic obstructive pulmonary disease (COPD) and cause damage to plant and agricultural crops. But these impacts were usually evaluated separately in earlier studies. We apply Community Multi-scale Air Quality model to simulate the ambient O3 concentration at a resolution of 36 km×36 km across China. Then, we follow Global Burden of Diseases approach and AOT40 (i.e., above a threshold of 40 ppb) metric to estimate the premature mortalities and yield losses of major grain crops (i.e., winter wheat, rice and corn) across China due to surface ozone exposure, respectively. Our results show that ozone exposure leads to nearly 67,700 premature mortalities and 145 billion USD losses in 2014. The ozone induced yield losses of all crop production totaled 78 (49.9-112.6)million metric tons, worth 5.3 (3.4-7.6)billion USD, in China. The relative yield losses ranged from 8.5-14% for winter wheat, 3.9-15% for rice, and 2.2-5.5% for maize. We can see that the top four health affected provinces (Sichuan, Henan, Shandong, Jiangsu) are also ranking on the winter wheat and rice crop yield loss. Our results provide further evidence that surface ozone pollution is becoming urgent air pollution in China, and have important policy implications for China to alleviate the impacts of air pollution.

  13. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations

    International Nuclear Information System (INIS)

    Mainiero, Raphael; Kazda, Marian; Haeberle, Karl-Heinz; Nikolova, Petia Simeonova; Matyssek, Rainer

    2009-01-01

    Fine root dynamics (diameter < 1 mm) in mature Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate. - Doubling of ozone concentrations in mature European beech affected the seasonal timing of fine root turnover rather than the turnover rate.

  14. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Directory of Open Access Journals (Sweden)

    M. L. White

    2009-01-01

    Full Text Available Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1 increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG content to meet US EPA summertime volatility standards, (2 local industrial emissions and (3 local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  15. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    Science.gov (United States)

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  16. The study of international and interstate transport of ozone in Yuma, Arizona

    Science.gov (United States)

    Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.

    2017-12-01

    In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.

  17. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  18. Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA

    Directory of Open Access Journals (Sweden)

    Tero Mielonen

    2018-05-01

    Full Text Available Satellite data suggest that summertime aerosol optical depth (AOD over the southeastern USA depends on the air/land surface temperature, but the magnitude of the radiative effects caused by this dependence remains unclear. To quantify these radiative effects, we utilized several remote sensing datasets and ECMWF reanalysis data for the years 2005–2011. In addition, the global aerosol–climate model ECHAM-HAMMOZ was used to identify the possible processes affecting aerosol loads and their dependence on temperature over the studied region. The satellite-based observations suggest that changes in the total summertime AOD in the southeastern USA are mainly governed by changes in anthropogenic emissions. In addition, summertime AOD exhibits a dependence on southerly wind speed and land surface temperature (LST. Transport of sea salt and Saharan dust is the likely reason for the wind speed dependence, whereas the temperature-dependent component is linked to temperature-induced changes in the emissions of biogenic volatile organic compounds (BVOCs over forested regions. The remote sensing datasets indicate that the biogenic contribution increases AOD with increasing temperature by approximately (7 ± 6 × 10−3 K−1 over the southeastern USA. In the model simulations, the increase in summertime AOD due to temperature-enhanced BVOC emissions is of a similar magnitude, i.e., (4 ± 1 × 10−3 K−1. The largest source of BVOC emissions in this region is broadleaf trees, thus if the observed temperature dependence of AOD is caused by biogenic emissions the dependence should be the largest in the vicinity of forests. Consequently, the analysis of the remote sensing data shows that over mixed forests the biogenic contribution increases AOD by approximately (27 ± 13 × 10−3 K−1, which is over four times higher than the value for over the whole domain, while over other land cover types in the study region (woody savannas and cropland/natural mosaic

  19. Ozone, greenhouse effect. Ozone, effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Aviam, A.M.; Arthaut, R.

    1992-12-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs.

  20. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  1. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  2. Comparative study of ozonized olive oil and ozonized sunflower oil

    Directory of Open Access Journals (Sweden)

    Díaz Maritza F.

    2006-01-01

    Full Text Available In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observed in both oils but they were higher in ozonized sunflower oil. Iodine value was zero in ozonized olive oil whereas in ozonized sunflower was 8.8 g Iodine per 100 g. The antimicrobial activity was similar for both ozonized oils except for Minimum Bactericidal Concentrations of Pseudomona aeruginosa. Composition of fatty acids in both ozonized oils showed gradual decrease in unsaturated fatty acids (C18:1, C18:2 with gradual increase in ozone doses.

  3. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    Science.gov (United States)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  4. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  5. Ozone Therapy in Dentistry

    Science.gov (United States)

    Domb, William C

    2014-01-01

    Summary The 21st century dental practice is quite dynamic. New treatment protocols and new materials are being developed at a rapid pace. Ozone dental therapy falls into the category of new treatment protocols in dentistry, yet ozone is not new at all. Ozone therapy is already a major treatment modality in Europe, South America and a number of other countries. What is provided here will not be an exhaustive scientific treatise so much as a brief general introduction into what dentists are now doing with ozone therapies and the numerous oral/systemic links that make this subject so important for physicians so that, ultimately, they may serve their patients more effectively and productively. PMID:25363268

  6. Ozone health effects

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Ozone is a principal component of photochemical air pollution endogenous to numerous metropolitan areas. It is primarily formed by the oxidation of NOx in the presence of sunlight and reactive organic compounds. Ozone is a highly active oxidizing agent capable of causing injury to the lung. Lung injury may take the form of irritant effects on the respiratory tract that impair pulmonary function and result in subjective symptoms of respiratory discomfort. These symptoms include, but are not limited to, cough and shortness of breath, and they can limit exercise performance. The effects of ozone observed in humans have been primarily limited to alterations in respiratory function, and a range of respiratory physiological parameters have been measured as a function of ozone exposure in adults and children. These affects have been observed under widely varying (clinical experimental and environmental settings) conditions

  7. 2001 Ozone Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the...

  8. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T.; Hakola, H. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  9. Photochemical processes and ozone production in Finnish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, T; Hakola, H [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Photochemical ozone production is observed in March-September. Highest ozone concentrations and production efficiencies are observed in spring in the northern parts and in summer in the southern parts of the country. VOC concentrations are relatively low compared to continental areas in general. During the growing season a substantial part of the total reactive mass of VOCs is of biogenic origin. Large forest areas absorb ozone substantially, decreasing the ambient ozone concentrations in central and northern parts of Finland where long-range transport of ozone is relatively important compared to local production. The aim of the work conducted at Finnish Meteorological Institute has been to characterise concentrations of photochemically active species in the boundary layer and their photochemical formation and deposition including the effects on vegetation. Also interactions between the boundary layer and free troposphere of ozone have been studied. In the future, fluxes of both biogenic species and air pollutants will be measured and the models will be further developed so that the photochemical and micrometeorological processes could be better understood

  10. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    Science.gov (United States)

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.

  11. The ozone backlash

    International Nuclear Information System (INIS)

    Taubes, G.

    1993-01-01

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam

  12. Ozone depletion calculations

    International Nuclear Information System (INIS)

    Luther, F.M.; Chang, J.S.; Wuebbles, D.J.; Penner, J.E.

    1992-01-01

    Models of stratospheric chemistry have been primarily directed toward an understanding of the behavior of stratospheric ozone. Initially this interest reflected the diagnostic role of ozone in the understanding of atmospheric transport processes. More recently, interest in stratospheric ozone has arisen from concern that human activities might affect the amount of stratospheric ozone, thereby affecting the ultraviolet radiation reaching the earth's surface and perhaps also affecting the climate with various potentially severe consequences for human welfare. This concern has inspired a substantial effort to develop both diagnostic and prognostic models of stratospheric ozone. During the past decade, several chemical agents have been determined to have potentially significant impacts on stratospheric ozone if they are released to the atmosphere in large quantities. These include oxides of nitrogen, oxides of hydrogen, chlorofluorocarbons, bromine compounds, fluorine compounds and carbon dioxide. In order to assess the potential impact of the perturbations caused by these chemicals, mathematical models have been developed to handle the complex coupling between chemical, radiative, and dynamical processes. Basic concepts in stratospheric modeling are reviewed

  13. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly Kaye [Univ. of California, Berkeley, CA (United States)

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and

  14. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  15. Modeling Stomatal Conductance to Estimate Seasonal Uptake in the Ozone-Sensitive Bioindicator Plant Common Milkweed (A. syriaca L.)

    Science.gov (United States)

    Bergweiler, C.

    2008-12-01

    The US EPA National Ambient Air Quality Standard (NAAQS) was not conceived to nor does it provide an accurate definition of the absorbed ozone dose or baseline exposure level to protect vegetation. This research presents a multiplicative modeling approach based not only on atmospheric, but on equally important physiological, phenological, and environmental parameters. Physiological constraints on ozone uptake demonstrate that actual absorption is substantially lower than that assumed by a simple interpretation of hourly atmospheric ozone concentrations. Coupled with development of foliar injury expression this provides evidence that tropospheric ozone is more toxic to vegetation than is currently understood.

  16. Summertime blues

    Index Scriptorium Estoniae

    2009-01-01

    USA presidendi Barack Obama plaaniväline kohtumine president Toomas Hendrik Ilvesega 15. juunil 2009 Washingtonis oli kodeeritud sõnum Moskvale, et Ameerika toetus NATO idapiiril olevatele riikidele on vankumatu. Eesti riigipead nimetatakse artiklis Ameerika lemmikuks Ida-Euroopa poliitikute seas. Vabariigi President töövisiidil Ameerika Ühendriikides 9.-16.06.2009

  17. The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles

    OpenAIRE

    Delucchi, Mark A.; Murphy, James; Kim, Jin; McCubbin, Donald R.

    1996-01-01

    The detrimental effects of ambient ozone on crops, even at relatively low concentrations, are well-established (Thompson et al., 1976; Heck and Brandt, 1977; Heck et al., 1982; Environmental Protection Agency, 1984; California Air Resources Board, 1987; Olszyk et al., 1988a, 1988b; Heagle et al., 1986; McCool et al., 1986, Ashmore, 1991). Ozone enters plant leaves through the stomatal openings in the leaf surface and then produces byproducts that reduce the efficiency of photosynthesis (CARB...

  18. 75 FR 2938 - National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-01-19

    ... advance. Commenters should notify Ms. Crabtree if they will need specific audiovisual (AV) equipment... data that assess effects of early life exposure to O 3 . Table of Contents The following topics are... working toward amending existing rules to establish new nationwide VOC content limits for household and...

  19. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  20. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    Science.gov (United States)

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  1. Effects of elevated ozone on CO2 uptake and leaf structure in sugar maple under two light environments

    International Nuclear Information System (INIS)

    Bäck, J.; Vanderklein, D.W.; Topa, M.A.

    1999-01-01

    The interactive effects of ozone and light on leaf structure, carbon dioxide uptake and short-term carbon allocation of sugar maple (Acer saccharum Marsh.) seedlings were examined using gas exchange measurements and 14 C-macroautoradiographic techniques. Two-year-old sugar maple seedlings were fumigated from budbreak for 5 months with ambient or 3 × ambient ozone in open-top chambers, receiving either 35% (high light) or 15% (low light) of full sunlight. Ozone accelerated leaf senescence, and reduced net photosynthesis, 14 CO 2 uptake and stomatal conductance, with the effects being most pronounced under low light. The proportion of intercellular space increased in leaves of seedlings grown under elevated ozone and low light, possibly enhancing the susceptibility of mesophyll cells to ozone by increasing the cumulative dose per mesophyll cell. Indeed, damage to spongy mesophyll cells in the elevated ozone × low light treatment was especially frequent. 14 C macroautoradioraphy revealed heterogeneous uptake of 14 CO 2 in well defined areole regions, suggesting patchy stomatal behaviour in all treatments. However, in seedlings grown under elevated ozone and low light, the highest 14 CO 2 uptake occurred along larger veins, while interveinal regions exhibited little or no uptake. Although visible symptoms of ozone injury were not apparent in these seedlings, the cellular damage, reduced photosynthetic rates and reduced whole-leaf chlorophyll levels corroborate the visual scaling of whole-plant senescence, suggesting that the ozone × low light treatment accelerated senescence or senescence-like injury in sugar maple. (author)

  2. Ozone air pollution effects on tree-ring growth,{delta}{sup 13}C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland); Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Saurer, M. [Paul Scherrer Inst. Villigen (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Zurich (Switzerland); Skelly, J.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Plant Pathology; Krauchi, N.; Schaub, M. [Swiss Federal Inst. for Forest, Snow and Landscape Research, Birmensdorf (Switzerland)

    2007-07-15

    Species specific plant responses to tropospheric ozone pollution depend on a range of morphological, biochemical and physiological characteristics as well as environmental factors. The effects of ambient tropospheric ozone on annual tree-ring growth, {delta}{sup 13} C in the rings, leaf gas exchange and ozone-induced visible foliar injury in three ozone-sensitive woody plant species in southern Switzerland were assessed during the 2001 and 2002 growing seasons. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air and non-filtered air in open-top chambers, and to ambient air (AA) in open plots. The objective was to determine if a relationship exists between measurable ozone-induced effects at the leaf level and subsequent changes in annual tree-ring growth and {delta} {sup 13} C signatures. The visible foliar injury, early leaf senescence and premature leaf loss in all species was attributed to the ambient ozone exposures in the region. Ozone had pronounced negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular carbon dioxide concentrations increased in all species in response to ozone in 2002 only. The width and {delta}{sup 13} C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased {delta}{sup 13} C in all species, suggesting that the timing of ozone exposure and extent of leaf-level responses may be relevant in determining the sensitivity of tree productivity to ozone exposure. 48 refs., 4 tabs., 2 figs.

  3. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  4. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  5. Health Effects of Ozone Pollution

    Science.gov (United States)

    Inhaling ozone can cause coughing, shortness of breath, worse asthma or bronchitis symptoms, and irritation and damage to airways.You can reduce your exposure to ozone pollution by checking air quality where you live.

  6. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  7. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  8. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Directory of Open Access Journals (Sweden)

    Jennifer B Landesmann

    Full Text Available Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb. We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  9. Ozone exposure of a weed community produces adaptive changes in seed populations of Spergula arvensis.

    Science.gov (United States)

    Landesmann, Jennifer B; Gundel, Pedro E; Martínez-Ghersa, M Alejandra; Ghersa, Claudio M

    2013-01-01

    Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.

  10. Ozone bioindicator sampling and estimation

    Science.gov (United States)

    Gretchen C, Smith; William D. Smith; John W. Coulston

    2007-01-01

    Ozone is an important forest stressor that has been measured at known phytotoxic levels at forest locations across the United States. The percent forest exhibiting negative impacts from ozone air pollution is one of the Montreal Process indicators of forest health and vitality. The ozone bioindicator data of the U.S. Forest Service Forest Inventory and Analysis Program...

  11. Ozonated Olive Oils and Troubles

    Directory of Open Access Journals (Sweden)

    Bulent Uysal

    2014-04-01

    Full Text Available One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. [J Intercult Ethnopharmacol 2014; 3(2.000: 49-50

  12. Disappearing threat to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gribbin, J

    1979-02-15

    Concern that human activities might disturb the dynamic natural equilibrium of the ozone layer has stemmed from the fact that this layer plays a key part in the ecology of the earth by absorbing harmful ultraviolet radiation which would otherwise penetrate to the ground. Apparently, however, a decline of as much at 15% in total global ozone would have very little effect on climate. A 50% reduction would produce a marked cooling of the stratosphere at 40 km altitude over the tropics, but barely detectable changes in temperature and rainfall in the lower atmosphere. Therefore, biological effects of more uv light at ground level is the only hazard associated with ozone depletion on the scale which might take place.

  13. Physical mechanisms of spring and summertime drought related with the global warming over the northern America

    Science.gov (United States)

    Choi, W.; Kim, K. Y.

    2017-12-01

    Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.

  14. Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.

    Science.gov (United States)

    Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.

    2010-01-01

    Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.

  15. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  16. Assessment of Protective Effect of Some Modern Agrochemicals against Ozone-Induced Stress in Sensitive Clover and Tobacco Cultivars.

    Science.gov (United States)

    Blum, Oleg; Didyk, Nataliya; Pavluchenko, Nataliya; Godzik, Barbara

    2011-01-01

    Some modern agrochemicals with antioxidant potential were tested for their protective effect against ozone injury using clover and tobacco ozone-sensitive cultivars as model plants subjected to ambient ozone at two sites (Kyiv city in Ukraine and Szarów village in Poland). All used agrochemicals showed partial protective effects against ozone injury on clover and tobacco. Conducted studies confirmed the effectiveness of modern fungicides belonging to strobilurin group as protectants of sensitive crops against ozone damage. The effectiveness of new growth regulators "Emistym C" and "Agrostymulin" was showed for the first time. Out of the studied agrochemicals, fungicide "Strobi" and natural growth regulator "Emistym C" demonstrated the best protective effects. These agrochemicals present promise for further studies of their possible utilization for enhancement of ozone tolerance of sensitive crops.

  17. Future local and remote influences on Mediterranean ozone air quality and climate forcing

    Science.gov (United States)

    Arnold, Steve; Martin, Maria Val; Emmons, Louisa; Rap, Alex; Heald, Colette; Lamarque, Jean-Francois; Tilmes, Simone

    2013-04-01

    The Mediterranean region is expected to display large increases in population over the coming decades, and to exhibit strong sensitivity to projected climate change, with increasing frequency of extreme summer temperatures and decreases in precipitation. Understanding of how these changes will affect atmospheric composition in the region is limited. The eastern Mediterranean basin has been shown to exhibit a pronounced summertime local maximum in tropospheric ozone, which impacts both local air quality and the atmospheric radiation balance. In summer, the region is subject to import of pollution from Northern Europe in the boundary layer and lower troposphere, from North American sources in the large-scale westerly flow of the free mid and upper-troposphere, as well as import of pollution lofted in the Asian monsoon and carried west to the eastern Mediterranean in anticyclonic flow in the upper troposphere over north Africa. In addition, interactions with the land-surface through biogenic emission sources and dry deposition play important roles in the Mediterranean ozone budget. Here we use the NCAR Community Earth System Model (CESM) to investigate how tropospheric ozone in the Mediterranean region responds to climate, land surface and global emissions changes between present day and 2050. We simulate climate and atmospheric composition for the year 2050, based on greenhouse gas abundances, trace gas and aerosol emissions and land cover and use from two representative concentration pathway (RCP) scenarios (RCP4.5 & RCP8.5), designed for use by the Coupled Model Intercomparison Project Phase 5(CMIP5) experiments in support of the IPCC. By comparing these simulations with a present-day scenario, we investigate the effects of predicted changes in climate and emissions on air quality and climate forcing over the Mediterranean region. The simulations suggest decreases in boundary layer ozone and sulfate aerosol throughout the tropospheric column over the Mediterranean

  18. 40 CFR 51.918 - Can any SIP planning requirements be suspended in 8-hour ozone nonattainment areas that have air...

    Science.gov (United States)

    2010-07-01

    ... suspended in 8-hour ozone nonattainment areas that have air quality data that meets the NAAQS? 51.918 Section 51.918 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... 8-hour Ozone National Ambient Air Quality Standard § 51.918 Can any SIP planning requirements be...

  19. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  20. Revealing source signatures in ambient BTEX concentrations

    International Nuclear Information System (INIS)

    Zalel, Amir; Yuval; Broday, David M.

    2008-01-01

    Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations. - BTEX sources are identified from temporal variations of ambient concentration

  1. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  2. Our Shrinking Ozone Layer

    Indian Academy of Sciences (India)

    Depletion of the ozone layer is therefore having significant effects on life on .... but there is always a net balance between the rate of formation and destruction ..... award of Commonwealth Fellowship during the present work and also being an ...

  3. Dobson ozone spectrophotometer modification.

    Science.gov (United States)

    Komhyr, W. D.; Grass, R. D.

    1972-01-01

    Description of a modified version of the Dobson ozone spectrophotometer in which several outdated electronic design features have been replaced by circuitry embodying more modern design concepts. The resulting improvement in performance characteristics has been obtained without changing the principle of operation of the original instrument.

  4. The ozone monitoring instrument

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.R.; Mälkki, A.; Visser, H.; Vries, J. de; Stammes, P.; Lundell, J.O.V.; Saari, H.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Adminsitration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial

  5. Ozone, greenhouse effect

    International Nuclear Information System (INIS)

    Aviam, A.M.; Arthaut, R.

    1992-01-01

    This file is made of eight general papers on environment (climates under observation, research on photo-oxidizing pollution, scientific aspects of stratospheric ozone layer, urban engineering and environment, glory of public gardens, earths not very natural, darwinism and society, economical data on environment). (A.B.). refs., 3 tabs

  6. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  7. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  8. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  9. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    Science.gov (United States)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  10. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    Science.gov (United States)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  11. Effects of ozone exposures on epicuticular wax of ponderosa pine needles

    International Nuclear Information System (INIS)

    Bytnerowicz, A.; Turunen, M.

    1994-01-01

    Two-year-old ponderosa pine (Pinus ponderosa L.) seedlings were exposed during the 1989 and 1990 growing seasons to ozone in open-top chambers placed in a forested location at Shirley Meadow, Greenhorn Mountain Range, Sierra Nevada. The ozone treatments were as follows: charcoal-filtered air (CF); charcoal-filtered air with addition of ambient concentrations of ozone (CF + O 3 ); and charcoal-filtered air with addition of doubled concentrations of ozone (CF + 2 x O 3 ). Ozone effects on ponderosa pine seedlings progressed and accumulated over two seasons of exposure. Throughout the first season, increased visible injury and accelerated senescence of the foliage were noted. Subsequently, during the second season of ozone exposure, various physiological and biochemical changes in the foliage took place. All these changes led to reduced growth and biomass of the seedlings. Epistomatal waxes of needles from the CA + 2 x O 3 treatment had an occluded appearance. This phenomenon may be caused by earlier phenological development of needles from the high-ozone treatments and disturbed development and synthesis of waxes. It may also be caused by chemical degradation of waxes by exposures to high ozone concentrations. (orig.)

  12. Exploring the Liquefied Petroleum Gas - Ozone Relation in Guadalajara, Mexico, by Smog Chamber Experiments

    OpenAIRE

    Jaimes-López, José Luis; Sandoval-Fernández, Julio; Zambrano-García, Angel

    2005-01-01

    It has been hypothesized that liquefied petroleum gas (LPG) emissions can increase substantially the formation of ozone (O3) in the ambient air. We tested experimentally such hypothesis in Guadalajara's downtown by captive-air irradiation (CAI) techniques. During November 1997-January, 1998, morning ambient air samples were confined in outdoor smog chambers and subjected to the following treatments: 35% addition of commercial LPG or one out of two mixtures of major LPG compounds (propane/buta...

  13. [Ozone concentration distribution of urban].

    Science.gov (United States)

    Yin, Yong-quan; Li, Chang-mei; Ma, Gui-xia; Cui, Zhao-jie

    2004-11-01

    The increase of ozone concentration in urban is one of the most important research topics on environmental science. With the increase of nitrogen oxides and hydrogen-carbon compounds which are exhausted from cars, the ozone concentration in urban is obviously increased on sunlight, and threat of photochemistry smog will be possible. Therefore, it is very important to monitor and study the ozone concentration distribution in urban. The frequency-distribution, diurnal variation and monthly variation of ozone concentration were studied on the campus of Shandong University during six months monitoring. The influence of solar radiation and weather conditions on ozone concentration were discussed. The frequency of ozone concentration less than 200 microg/m3 is 96.88%. The ozone concentration has an obvious diurnal variation. The ozone concentration in the afternoon is higher than in the morning and in the evening. The maximum appears in June, when it is the strong solar radiation and high air-temperature. The weather conditions also influence the ozone concentration. The ozone concentration in clear day is higher than in rainy and cloudy day.

  14. Temporal-Spatial Ambient Concentrator Estimator (T-SpACE): Hierarchical Bayesian Model Software Used to Estimate Ambient Concentrations of NAAQS Air Pollutants in Support of Health Studies

    Science.gov (United States)

    To fulfill its mission to protect human health and the environment, EPA has established National Ambient Air Quality Standards (NAAQS) on six selected air pollutants known as criteria pollutants: ozone (O3); carbon monoxide (CO); lead (Pb); nitrogen dioxide (NO2); sulfur dioxide ...

  15. Comparative study of ozonized olive oil and ozonized sunflower oil

    OpenAIRE

    Díaz,Maritza F.; Hernández,Rebeca; Martínez,Goitybell; Vidal,Genny; Gómez,Magali; Fernández,Harold; Garcés,Rafael

    2006-01-01

    In this study the ozonized olive and sunflower oils are chemical and microbiologically compared. These oils were introduced into a reactor with bubbling ozone gas in a water bath at room temperature until they were solidified. The peroxide, acidity and iodine values along with antimicrobial activity were determined. Ozonization effects on the fatty acid composition of these oils were analyzed using Gas-Liquid Chromatographic Technique. An increase in peroxidation and acidity values was observ...

  16. The future is 'ambient'

    Science.gov (United States)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  17. Summertime greenhouse gas fluxes from an urban bog undergoing restoration through rewetting

    Directory of Open Access Journals (Sweden)

    A. Christen

    2016-04-01

    Full Text Available Rewetting can promote the ecological recovery of disturbed peatland ecosystems and may help to revert these ecosystems to carbon dioxide (CO2 sinks. However, rewetting of disturbed peatlands can also cause substantial emissions of methane (CH4 and possibly nitrous oxide (N2O. This study quantified summertime emissions of the three major long-lived greenhouse gases (GHGs CO2, CH4 and N2O; from undisturbed, disturbed and rewetted soils in the Burns Bog Ecological Conservancy Area (BBECA, a 20 km2 urban bog located in Delta, British Columbia, Canada. Four sites were chosen that represent different stages before or after ecological recovery in the BBECA: (i a relatively undisturbed scrub pine / Sphagnum / low shrub ecosystem; (ii a Rhynchospora alba / Sphagnum ecosystem that was disturbed by peat mining more than 65 years ago; (iii a R. alba / Dulichium arundinaceum ecosystem that was disturbed by peat mining 50 years ago and rewetted five years ago; and (iv a disturbed and rewetted surface with little vegetation cover that was cleared of vegetation 16 years ago and rewetted two years ago. The GHG fluxes from soils and ground vegetation were measured at all sites during June–August 2014, using a portable non-steady-state chamber system for CO2 and syringe sampling and laboratory analysis for CH4 and N2O fluxes. All four sites exhibited net GHG emissions into the atmosphere, dominated by CH4, which contributed 81–98 % of net CO2 equivalent (CO2e emissions. Overall, the median CH4 flux for all measurements and sites was ~74 mg m-2 day-1 (~30–410 mg m-2 day-1, 25th–75th percentiles. Fluxes in the rewetted (water-saturated sedge ecosystem were highest, with a quarter of the values higher than 3,000 mg m-2 day-1 (median 78 mg m-2 day-1. Exchange of CO2 due to photosynthesis and respiration was of secondary importance compared to soil CH4 emissions. Continuous CO2 flux measurements using the eddy covariance approach in the disturbed and rewetted R

  18. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Science.gov (United States)

    Li, Haiyan; Zhang, Qiang; Zheng, Bo; Chen, Chunrong; Wu, Nana; Guo, Hongyu; Zhang, Yuxuan; Zheng, Yixuan; Li, Xin; He, Kebin

    2018-04-01

    Compared to the severe winter haze episodes in the North China Plain (NCP), haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1) measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang), the average PM1 concentrations were 35.0 and 64.2 µg m-3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA) in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high. To effectively alleviate

  19. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Directory of Open Access Journals (Sweden)

    H. Li

    2018-04-01

    Full Text Available Compared to the severe winter haze episodes in the North China Plain (NCP, haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1 measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang, the average PM1 concentrations were 35.0 and 64.2 µg m−3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA, and low-volatility oxygenated organic aerosol (LV-OOA in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high

  20. Incidence of ozone symptoms on vegetation within a National Wildlife Refuge in New Jersey, USA

    International Nuclear Information System (INIS)

    Davis, Donald D.; Orendovici, Teodora

    2006-01-01

    During 1993-1996 and 2001-2003, we evaluated the percentage of plants (incidence) exhibiting ozone-induced foliar symptoms on vegetation within a National Wildlife Refuge located along the Atlantic Ocean coast of New Jersey, USA. Incidence varied among plant species and years. Bioindicator plants most sensitive to ozone, across all years, included native common milkweed (Asclepias syriaca) and wild grape (Vitis spp.), as well as introduced tree-of-heaven (Ailanthus altissima). Less sensitive bioindicators included Virginia creeper (Parthenocissus quinquefolia) and winged sumac (Rhus coppolina). Black cherry (Prunus serotina) and sassafras (Sassafras albidum) were least sensitive. The greatest incidence of ozone symptoms, across all plant species, occurred in 1996, followed by 2001 > 1995 > 1994 > 1993 > 2003 > 2002. A model was developed that showed a statistically significant relationship between incidence of ozone symptoms and the following parameters: plant species, Palmer Drought Severity Index, and the interaction of W126 x N100 measures of ambient ozone. - Vegetation in a National Wildlife Refuge containing a Class I wilderness area exhibits foliar symptoms from ambient ozone

  1. Ozone air pollution and foliar injury development on native plants of Switzerland

    International Nuclear Information System (INIS)

    Novak, Kristopher; Skelly, John M.; Schaub, Marcus; Kraeuchi, Norbert; Hug, Christian; Landolt, Werner; Bleuler, Peter

    2003-01-01

    Visible ozone-induced foliar injury on native forest species of Switzerland was identified and confirmed under ambient OTC-conditions and related to the current European AOT40 standard. - The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O 3 in the 2001 season

  2. Incidence of ozone symptoms on vegetation within a National Wildlife Refuge in New Jersey, USA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Donald D. [Department of Plant Pathology, Ecology Program, Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16803 (United States)]. E-mail: ddd2@psu.edu; Orendovici, Teodora [Department of Plant Pathology, Ecology Program, Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16803 (United States)

    2006-10-15

    During 1993-1996 and 2001-2003, we evaluated the percentage of plants (incidence) exhibiting ozone-induced foliar symptoms on vegetation within a National Wildlife Refuge located along the Atlantic Ocean coast of New Jersey, USA. Incidence varied among plant species and years. Bioindicator plants most sensitive to ozone, across all years, included native common milkweed (Asclepias syriaca) and wild grape (Vitis spp.), as well as introduced tree-of-heaven (Ailanthus altissima). Less sensitive bioindicators included Virginia creeper (Parthenocissus quinquefolia) and winged sumac (Rhus coppolina). Black cherry (Prunus serotina) and sassafras (Sassafras albidum) were least sensitive. The greatest incidence of ozone symptoms, across all plant species, occurred in 1996, followed by 2001 > 1995 > 1994 > 1993 > 2003 > 2002. A model was developed that showed a statistically significant relationship between incidence of ozone symptoms and the following parameters: plant species, Palmer Drought Severity Index, and the interaction of W126 x N100 measures of ambient ozone. - Vegetation in a National Wildlife Refuge containing a Class I wilderness area exhibits foliar symptoms from ambient ozone.

  3. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    Science.gov (United States)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  4. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  5. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Guihua Wang; Ogden, Joan M.; Chang, Daniel P.Y.

    2007-01-01

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x ) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air

  6. Summertime mid-to-upper tropospheric nitrous oxide over the Mediterranean as a footprint of Indian emissions

    Science.gov (United States)

    Kangah, Yannick; Ricaud, Philippe; Attié, Jean-Luc; Saitoh, Naoko; Hauglustaine, Didier; El Amraoui, Laaziz; Zbinden, Regina; Delon, Claire

    2016-04-01

    We used global scale thermal infrared measurements of mid-to-upper tropospheric nitrous oxide (N2O) from the Greenhouse gases Observing SATellite (GOSAT) and outputs from the 3D Chemical Transport Model LMDz-OR-INCA to assess the impact of the Indian subcontinent N2O emissions on the N2O field over the eastern Mediterranean Basin (MB) during summer. The use of nitrogen fertilizer coupled with high soil humidity during summer monsoon period produce high emissions of N2O in many south Asian countries and especially the Indian subcontinent. N2O is transported to the upper troposphere by updrafts associated to the monsoon and redistributed westward to the eastern Mediterranean via the Asian Monsoon Anticyclone. This summertime (June-July-August) enrichment in N2O in the eastern Mediterranean produces a maximum in the east-west difference of MB mid-to-upper tropospheric N2O anomaly representative for the period 2010-2013 with a maximum in July and a peak-to-peak amplitude of ~1.0 ± 0.3 ppbv observed by GOSAT consistently with LMDz-OR-INCA but less intense (~0.5 ppbv). This summertime enrichment of N2O over the eastern Mediterranean is consistent with the increase of the surface emissions and the convective precipitations over the Indian subcontinent during the summer monsoon period. N2O over the eastern Mediterranean can therefore be considered as a footprint of Indian summertime emissions.

  7. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  8. Evaluation of DNA dosimetry to assess ozone-mediated variability of biologically harmful radiation in Antarctica

    NARCIS (Netherlands)

    George, AL; Peat, HJ; Buma, AGJ

    In this study we investigated the use of a DNA dosimeter to accurately measure changes in ultraviolet B radiation (UVBR; 280-315 nm) under Antarctic ozone hole conditions. Naked DNA solution in quartz tubes was exposed to ambient solar radiation at Rothera Research Station, Antarctica, between

  9. Protecting the ozone layer.

    Science.gov (United States)

    Munasinghe, M; King, K

    1992-06-01

    Stratospheric ozone layer depletion has been recognized as a problem by the Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol (MP). The ozone layer shields the earth from harmful ultraviolet radiation (UV-B), which is more pronounced at the poles and around the equator. Industrialized countries have contributed significantly to the problem by releasing chlorofluorocarbons (CFCs) and halons into the atmosphere. The effect of these chemicals, which were known for their inertness, nonflammability, and nontoxicity, was discovered in 1874. Action to deal with the effects of CFCs and halons was initiated in 1985 in a 49-nation UN meeting. 21 nations signed a protocol limiting ozone depleting substances (ODS): CFCs and halons. Schedules were set based on each country's use in 1986; the target phaseout was set for the year 2000. The MP restricts trade in ODSs and weights the impact of substances to reflect the extent of damage; i.e., halons are 10 times more damaging than CFCs. ODS requirements for developing countries were eased to accommodate scarce resources and the small fraction of ODS emissions. An Interim Multilateral Fund under the Montreal Protocol (IMFMP) was established to provide loans to finance the costs to developing countries in meeting global environmental requirements. The IMFMP is administered by the World Bank, the UN Environmental Program, and the UN Development Program. Financing is available to eligible countries who use .3 kg of ODS/person/year. Rapid phaseout in developed countries has occurred due to strong support from industry and a lower than expected cost. Although there are clear advantages to rapid phaseout, there were no incentives included in the MP for rapid phaseout. Some of the difficulties occur because the schedules set minimum targets at the lowest possible cost. Also, costs cannot be minimized by a country-specific and ODS-specific process. The ways to improve implementation in scheduling and

  10. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  11. Depletion of ozone layer and health

    International Nuclear Information System (INIS)

    Kripke, M.L.

    1990-01-01

    A decrease in food supply, rather than an increase in cancers, could turn out to be the greatest danger from the loss of the Earth's ozone shield says the author. This could result from alterations in plants and animals that are more sensitive than humans to increased levels of ultraviolet radiation. Increasing ambient ultraviolet radiation within a short time would exert dramatic selective pressure on all living organisms, but the global consequences of such an occurrence cannot be predicted. Common skin cancer is the best understood link with ultraviolet radiation. In fact, the link is so straightforward that precise calculations are possible: a 1% decrease in ozone equals a 2% increase in ultraviolet radiation, which translates into a 3 to 6% increase in common skin cancers in the US. If the immune system is damaged, the body cannot survive the continual onslaught of infectious agents present in the environment. People's willingness to protect themselves against sunlight exposure has been dictated by fashion. The fashionability of hats and sunglasses is beneficial for reducing the risk of cataracts; on the other hand, the fashionability of sun-tans has probably contributed to the rising incidence of skin cancer among Caucasians. The best remedy she advises is to avoid overexposure to sunlight

  12. Characterizing the composition and evolution of and urban particles in Chongqing (China) during summertime

    Science.gov (United States)

    Chen, Yang; Yang, Fumo; Mi, Tian; Cao, Junji; Shi, Guangming; Huang, Rujin; Wang, Huanbo; Chen, Jun; Lou, Shengrong; Wang, Qiyuan

    2017-05-01

    Urban particles were investigated using a single particle aerosol mass spectrometer (SPAMS) in Chongqing during the summertime (from 07/05/2014 to 08/06/2014). Chemical composition, mixing state, and atmospheric behavior of urban particles were studied. The major particle types include ECOC (Elemental-Carbon-Organic-Carbon 20.6%), OC (20.1%), KSec (K-Secondary) (13.3%), BB (Biomass burning, 11.9%), NaK (sodium-potassium-rich, 7.3%), Al-rich (4.0%), Fe-rich (3.2%), Ca-rich (1.4%), Ca-EC (1.6%), and NaKPb (0.5%). EC, ECOC, OC, and Ca-EC were prevalent in the condensation mode (Case studies suggested that wet scavenging (rain) rates of different single particle types followed an order of NaKPb > Fe-rich > EC > Ca-EC > Ca-rich > KSec > OC > NaK > ECOC > Al-rich > BB. Increased number fraction of EC and KSec were correlated with the increase of odd oxygen (Ox = O3 + NO2). EC, OC, and ECOC were enriched at higher relative humidity. The findings of this study on the mixing state, temporal variation, processing, and evolution of single particles provide new insight into the atmospheric behavior and impacts of urban particles.

  13. The Role of Overshooting Convection in Elevated Stratospheric Water Vapor over the Summertime Continental United States

    Science.gov (United States)

    Herman, R. L.; Ray, E. A.; Rosenlof, K. H.; Bedka, K. M.; Schwartz, M. J.; Read, W. G.; Troy, R. F.

    2016-12-01

    The NASA ER-2 aircraft sampled the UTLS region over North America during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. On four flights targeting convectively-influenced air parcels, in situ measurements of enhanced water vapor in the lower stratosphere over the summertime continental United States were made using the JPL Laser Hygrometer (JLH Mark2). Water vapor mixing ratios greater than 10 ppmv, twice the stratospheric background levels, were measured at pressure levels between 80 and 160 hPa. Through satellite observations and analysis, we make the connection between these in situ water measurements and overshooting cloud tops. The overshooting tops (OT) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Back-trajectory analysis ties enhanced water to OT one to seven days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American Monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. Regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  14. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  15. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    Science.gov (United States)

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  16. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

    Science.gov (United States)

    Wernli, Heini; Papritz, Lukas

    2018-02-01

    Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

  17. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  18. Variations of Ground-level Ozone Concentration in Malaysia: A Case Study in West Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hashim Nur Izzah Mohamad

    2017-01-01

    Full Text Available Hourly ground ozone concentration, measured from the monitoring stations in the West Coast of Peninsular Malaysia for the period of 10 years (2003-2012 were used to analyse the ozone characteristic in Nilai, Melaka and Petaling Jaya. The prediction of tropospheric ozone concentrations is very important due to the negative impacts of ozone on human health, climate and vegetation. The mean concentration of ozone at the studied areas had not exceeded the recommended value of Malaysia Ambient Air Quality Guideline (MAAQG for 8-hour average (0.06 ppm, however some of the measurements exceeded the hourly permitted concentration by MAAQG that is 0.1 ppm. Higher concentration of ozone can be observed during the daytime since ozone needs sunlight for the photochemical reactions. The diurnal cycle of ozone concentration has a mid-day peak (14:00-15:00 and lower night-time concentrations. The ozone concentration slowly rises after the sun rises (08:00, reaching a maximum during daytime and then decreases until the next morning.

  19. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  20. Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, Maren, E-mail: maren.olbrich@helmholtz-muenchen.d [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany); Gerstner, Elke; Bahnweg, Guenther [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany); Haeberle, Karl-Heinz; Matyssek, Rainer [Technische Universitaet Muenchen, Ecophysiology of Plants, Am Hochanger 13, 85354 Freising (Germany); Welzl, Gerhard [Institute of Developmental Genetics, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany); Heller, Werner; Ernst, Dieter [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany)

    2010-04-15

    Tropospheric ozone causes severe oxidative stress in plants. To investigate the transcriptional responsiveness of adult trees to ozone, fully-expanded sun and shade leaves of mature beech trees were harvested at four time points over the entire vegetation period in 2005 and 2006. Microarray analyses were conducted on leaves from trees grown in the field under ambient and twice-ambient ozone concentrations at Kranzberger Forst (Bavaria). Beech trees changed their transcript levels in response to ozone. In the years 2005 and 2006 different transcription patterns were observed; this may have been a result of different weather conditions and ozone uptake. Furthermore, we obtained differences in mRNA expression patterns between shade and sun leaves. In the ozone-treated sun leaves of 2005, slightly up- and down-regulated transcript levels were detected, particularly in the spring and autumn, whereas shade leaves clearly exhibited reduced mRNA levels, particularly at the end of the vegetation period. In 2006, this pattern could not be confirmed, and in the autumn, four other transcripts were slightly up-regulated in ozone-treated shade leaves. In addition, two other transcripts were found to be influenced in sun leaves in the spring/summer. While we detected changes in the levels of only a few transcripts, the observed effects were not identical in both years. In conclusion, elevated ozone exhibited very small influence on the transcription levels of genes of mature beech trees. - At the transcriptional level, leaves of mature beech trees barely react to double ambient ozone concentrations; differences are detected primarily between sun/shade leaves and between different growing seasons.

  1. Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting

    International Nuclear Information System (INIS)

    Olbrich, Maren; Gerstner, Elke; Bahnweg, Guenther; Haeberle, Karl-Heinz; Matyssek, Rainer; Welzl, Gerhard; Heller, Werner; Ernst, Dieter

    2010-01-01

    Tropospheric ozone causes severe oxidative stress in plants. To investigate the transcriptional responsiveness of adult trees to ozone, fully-expanded sun and shade leaves of mature beech trees were harvested at four time points over the entire vegetation period in 2005 and 2006. Microarray analyses were conducted on leaves from trees grown in the field under ambient and twice-ambient ozone concentrations at Kranzberger Forst (Bavaria). Beech trees changed their transcript levels in response to ozone. In the years 2005 and 2006 different transcription patterns were observed; this may have been a result of different weather conditions and ozone uptake. Furthermore, we obtained differences in mRNA expression patterns between shade and sun leaves. In the ozone-treated sun leaves of 2005, slightly up- and down-regulated transcript levels were detected, particularly in the spring and autumn, whereas shade leaves clearly exhibited reduced mRNA levels, particularly at the end of the vegetation period. In 2006, this pattern could not be confirmed, and in the autumn, four other transcripts were slightly up-regulated in ozone-treated shade leaves. In addition, two other transcripts were found to be influenced in sun leaves in the spring/summer. While we detected changes in the levels of only a few transcripts, the observed effects were not identical in both years. In conclusion, elevated ozone exhibited very small influence on the transcription levels of genes of mature beech trees. - At the transcriptional level, leaves of mature beech trees barely react to double ambient ozone concentrations; differences are detected primarily between sun/shade leaves and between different growing seasons.

  2. Licenciamento ambiental e sustentabilidade

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Valinhas

    2011-12-01

    Full Text Available A sustentabilidade está apoiada principalmente nas dimensões econômica, ambiental e social. No entanto, sem a dimensão política ela não se constrói. Um dos principais instrumentos de comando e controle da política nacional de meio ambiente, o licenciamento ambiental é um processo contínuo de gestão ambiental pública e privada. Analisou-se o processo de licenciamento ambiental como acoplamento estrutural entre os sistemas social, econômico e ambiental. Apesar da constatação de críticas aos mecanismos de comando e controle dos últimos anos, foi verificado que o Estado do Rio de Janeiro tem buscado integrar a política ambiental do Estado à gestão ambiental privada e que esta integração busca atender às demandas dos sistemas sociais e econômicos para as questões ambientais. Em linhas gerais, este caminho segue as estratégias e ações propostas na Agenda 21 brasileira.

  3. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  4. Persuasion in Ambient Intelligence

    NARCIS (Netherlands)

    Kaptein, M.C.; Markopoulos, P.; Ruyter, de B.E.R.; Aarts, E.H.L.

    2010-01-01

    Although the field of persuasive technologies has lately attracted a lot of attention, only recently the notion of ambient persuasive technologies was introduced. Ambient persuasive technologies can be integrated into every aspect of life, and as such have greater persuasive power than the

  5. Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range

    Directory of Open Access Journals (Sweden)

    B. C. Baier

    2017-09-01

    Full Text Available Chemical models must correctly calculate the ozone formation rate, P(O3, to accurately predict ozone levels and to test mitigation strategies. However, air quality models can have large uncertainties in P(O3 calculations, which can create uncertainties in ozone forecasts, especially during the summertime when P(O3 is high. One way to test mechanisms is to compare modeled P(O3 to direct measurements. During summer 2014, the Measurement of Ozone Production Sensor (MOPS directly measured net P(O3 in Golden, CO, approximately 25 km west of Denver along the Colorado Front Range. Net P(O3 was compared to rates calculated by a photochemical box model that was constrained by measurements of other chemical species and that used a lumped chemical mechanism and a more explicit one. Median observed P(O3 was up to a factor of 2 higher than that modeled during early morning hours when nitric oxide (NO levels were high and was similar to modeled P(O3 for the rest of the day. While all interferences and offsets in this new method are not fully understood, simulations of these possible uncertainties cannot explain the observed P(O3 behavior. Modeled and measured P(O3 and peroxy radical (HO2 and RO2 discrepancies observed here are similar to those presented in prior studies. While a missing atmospheric organic peroxy radical source from volatile organic compounds co-emitted with NO could be one plausible solution to the P(O3 discrepancy, such a source has not been identified and does not fully explain the peroxy radical model–data mismatch. If the MOPS accurately depicts atmospheric P(O3, then these results would imply that P(O3 in Golden, CO, would be NOx-sensitive for more of the day than what is calculated by models, extending the NOx-sensitive P(O3 regime from the afternoon further into the morning. These results could affect ozone reduction strategies for the region surrounding Golden and possibly other areas that do not comply with national ozone

  6. Mid-latitude tropospheric ozone columns from the MOZAIC program: climatology and interannual variability

    Directory of Open Access Journals (Sweden)

    R. M. Zbinden

    2006-01-01

    Full Text Available Several thousands of ozone vertical profiles collected in the course of the MOZAIC programme (Measurements of Ozone, Water Vapour, Carbon Monoxide and Nitrogen Oxides by In-Service Airbus Aircraft from August 1994 to February 2002 are investigated to bring out climatological and interannual variability aspects. The study is centred on the most frequently visited MOZAIC airports, i.e. Frankfurt (Germany, Paris (France, New York (USA and the cluster of Tokyo, Nagoya and Osaka (Japan. The analysis focuses on the vertical integration of ozone from the ground to the dynamical tropopause and the vertical integration of stratospheric-origin ozone throughout the troposphere. The characteristics of the MOZAIC profiles: frequency of flights, accuracy, precision, and depth of the troposphere observed, are presented. The climatological analysis shows that the Tropospheric Ozone Column (TOC seasonal cycle ranges from a wintertime minimum at all four stations to a spring-summer maximum in Frankfurt, Paris, and New York. Over Japan, the maximum occurs in spring presumably because of the earlier springtime sun. The incursion of monsoon air masses into the boundary layer and into the mid troposphere then steeply diminishes the summertime value. Boundary layer contributions to the TOC are 10% higher in New York than in Frankfurt and Paris during spring and summer, and are 10% higher in Japan than in New York, Frankfurt and Paris during autumn and early spring. Local and remote anthropogenic emissions, and biomass burning over upstream regions of Asia may be responsible for the larger low- and mid-tropospheric contributions to the tropospheric ozone column over Japan throughout the year except during the summer-monsoon season. A simple Lagrangian analysis has shown that a minimum of 10% of the TOC is of stratospheric-origin throughout the year. Investigation of the short-term trends of the TOC over the period 1995–2001 shows a linear increase 0.7%/year in

  7. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States.

    Science.gov (United States)

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R

    2015-08-01

    Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 μm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001-2008 from the U.S. Environmental Protection Agency's down-scaled estimates and obtained 2007-2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01-1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99-1.14). This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains.

  8. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Sant'Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa; Souza, Silvia R.

    2008-01-01

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R 2 = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R 2 = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil

  9. Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide

    International Nuclear Information System (INIS)

    Skalny, J D; Orszagh, J; MatejcIk, S; Mason, N J

    2008-01-01

    The effect of humidity on ozone generation of positive and negative corona discharges fed by O 2 and CO 2 has been studied in the humidity range of 100-20 000 ppm. The experiments were carried out at an ambient temperature and pressure of 100 kPa. The increase in humidity of CO 2 conspicuously suppressed the ozone generation in negative corona discharge at all values of the input energy densities into the discharge. The effect was less pronounced in oxygen. In contrast to decrease of ozone concentration observed in negative corona discharge, the presence of water both in O 2 and CO 2 acts catalytically. The ozone concentration has been found to increase remarkably (approximately 10 times) in oxygen, if the humidity was increased from 100 to 20 000 ppm. The dependence of ozone concentration on the gas humidity exhibited an extreme. The increase observed at humidity up to approximately 5000 ppm was followed by the marginal reduction in ozone concentration. Anyway, the values of this were considerably higher than those found in dry CO 2 . The effect of humidity on ozone concentration will be discussed in relation to plasma chemical processes in studied discharges and their macroscopic parameters.

  10. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    Ground-level ozone (O3) is an important pollutant that affects both global climate change and regional air quality, with the latter linked to detrimental effects on both human health and ecosystems. Ozone is not directly emitted in the atmosphere but is formed from chemical reactions involving volatile organic compounds (VOCs), nitrogen oxides (NOx = NO + NO2) and sunlight. The photochemical nature of ozone makes the implementation of reduction strategies challenging and a good understanding of its formation chemistry is fundamental in order to develop efficient strategies of ozone reduction from mitigation measures of primary VOCs and NOx emissions. An instrument for direct measurements of ozone production rates (OPRs) was developed and deployed in the field as part of the IRRONIC (Indiana Radical, Reactivity and Ozone Production Intercomparison) field campaign. The OPR instrument is based on the principle of the previously published MOPS instrument (Measurement of Ozone Production Sensor) but using a different sampling design made of quartz flow tubes and a different Ox (O3 and NO2) conversion-detection scheme composed of an O3-to-NO2 conversion unit and a cavity attenuated phase shift spectroscopy (CAPS) NO2 monitor. Tests performed in the laboratory and in the field, together with model simulations of the radical chemistry occurring inside the flow tubes, were used to assess (i) the reliability of the measurement principle and (ii) potential biases associated with OPR measurements. This publication reports the first field measurements made using this instrument to illustrate its performance. The results showed that a photo-enhanced loss of ozone inside the sampling flow tubes disturbs the measurements. This issue needs to be solved to be able to perform accurate ambient measurements of ozone production rates with the instrument described in this study. However, an attempt was made to investigate the OPR sensitivity to NOx by adding NO inside the instrument

  11. Air pollution and 2003 summertime. Situation and consequences; Pollution de l'air et canicule 2003. Bilan et consequences

    Energy Technology Data Exchange (ETDEWEB)

    Elichegaray, Ch.; Colosio, J.; Bouallala, S. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Manach, J. [Meteo France, 75 - Paris (France); Della Massa, J.P. [ORAMIP, 31 - Colomiers (France); Savanne, D. [AIRFOBEP, 13 - Martigues (France); Fiala, J. [European Environment Agency, Copenhagen (Denmark)

    2004-03-15

    Ground level ozone is one of the air pollutants of most concern in Europe since concentrations in the lower atmosphere continue to exceed thresholds established in Eu legislation to protect human health and prevent damage to ecosystems, agricultural crops and materials. While the climatic conditions of summer 2003 were exceptional, the problem of ozone pollution is a recurrent phenomenon. Tropospheric ozone is the main product of complex photochemical processes in the lower atmosphere involving oxides of nitrogen and volatile organic compounds as precursors of ozone formation. Ozone is a strong photochemical oxidant. In elevated concentrations it causes serious health problems and damage to ecosystems, agricultural crops and materials. Weather conditions during the first half of August 2003, characterized by exceptionally high temperatures even at night and covering large parts of southern, western and central Europe, caused a long lasting episode with elevated ozone concentration in these areas. The exceptionally long lasting period of high ozone concentrations exceeding 180 micrograms/m{sup 3} was reported by all except the Northern European countries. During this episode ozone concentrations exceeded at a large number of sites in Belgium, northern France and north western germany 240 micrograms/m{sup 3}. The threshold value for warning the public (1- hour concentration > 360 mg/m{sup 3}) was exceeded in August at one site in France and in Italy and Romania in june. most affected areas were those with the highest density of ozone precursor emissions from the traffic and industrial production. (N.C.)

  12. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  13. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  14. Experimental study of ozone synthesis

    International Nuclear Information System (INIS)

    Garamoon, A A; Elakshar, F F; Nossair, A M; Kotp, E F

    2002-01-01

    A silent discharge ozonizer has been constructed with a design that enables the study of ozone concentration behaviour as a function of different parameters when oxygen used as a working gas. The behaviour of ozone concentration as a function of discharge current density has four characteristic regions. The concentration is enhanced by more than threefold whenever gas pressure is reduced by a factor of two. The flow rate of the working gas is a more effective parameter on ozone concentration than the gas pressure. When the flow rate is kept constant, and the pressure is decreased by 100%, the ozone concentration increases by only 10%. On the other hand, when the flow rate is decreased by 13%, the ozone concentration increases by 200%, whenever the gas pressure is kept constant. The concentration is nearly doubled when the gap space is increased by four times under the same conditions. The length of the discharge region, the thickness and the dielectric constant of the insulating materials are found to have a considerable effect on the generated ozone concentration. Also, the ozone concentration is ten times less when air is used instead of oxygen as a working gas. A maximum efficiency of 185 g/kWh, is obtained for the present system

  15. Source attribution of tropospheric ozone

    Science.gov (United States)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  16. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  17. Modeling mechanisms of susceptibility in vitro: Differential activation of the MAP kinase ERK, but not p38, mediates variability and adaptation in the pro-inflammatory response to ozone

    Science.gov (United States)

    Ozone is a ubiquitous ambient air pollutant that causes pulmonary inflammation upon exposure. The ozone-induced inflammatory response varies by orders of magnitude and the range of variation in “healthy” individuals extends beyond that of “susceptible” po...

  18. Calibration of an integrated land surface process and radiobrightness (LSP/R) model during summertime

    Science.gov (United States)

    Judge, Jasmeet; England, Anthony W.; Metcalfe, John R.; McNichol, David; Goodison, Barry E.

    2008-01-01

    In this study, a soil vegetation and atmosphere transfer (SVAT) model was linked with a microwave emission model to simulate microwave signatures for different terrain during summertime, when the energy and moisture fluxes at the land surface are strong. The integrated model, land surface process/radiobrightness (LSP/R), was forced with weather and initial conditions observed during a field experiment. It simulated the fluxes and brightness temperatures for bare soil and brome grass in the Northern Great Plains. The model estimates of soil temperature and moisture profiles and terrain brightness temperatures were compared with the observed values. Overall, the LSP model provides realistic estimates of soil moisture and temperature profiles to be used with a microwave model. The maximum mean differences and standard deviations between the modeled and the observed temperatures (canopy and soil) were 2.6 K and 6.8 K, respectively; those for the volumetric soil moisture were 0.9% and 1.5%, respectively. Brightness temperatures at 19 GHz matched well with the observations for bare soil, when a rough surface model was incorporated indicating reduced dielectric sensitivity to soil moisture by surface roughness. The brightness temperatures of the brome grass matched well with the observations indicating that a simple emission model was sufficient to simulate accurate brightness temperatures for grass typical of that region and surface roughness was not a significant issue for grass-covered soil at 19 GHz. Such integrated SVAT-microwave models allow for direct assimilation of microwave observations and can also be used to understand sensitivity of microwave signatures to changes in weather forcings and soil conditions for different terrain types.

  19. Boundary layer height determination under summertime anticyclonic weather conditions over the coastal area of Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Nitis, T.; Moussiopoulos, N. [Aristotle Univ. Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering; Klaic, Z.B. [Univ. of Zagreb (Croatia). Andrija Mohorovicic Geophysical Inst., Faculty of Science; Kitsiou, D. [Univ. of the Aegean, Mytilene (Greece). Dept. of Marine Sciences

    2004-07-01

    The atmospheric boundary layer height is a fundamental parameter characterising the structure of the lower troposphere. The determination of this parameter is important in applications that range from meteorological modelling and forecasting to dispersion problems of atmospheric pollutants. Since substances emitted into the atmospheric boundary layer are dispersed horizontally and vertically through the action of turbulence, they are well-mixed over this layer that is widely known as ''mixing layer''. There are two basic approaches for the practical estimation of this height; the first approach suggests profile measurements, either in-situ or by remote sounding (sodar, clear-air radar, lidar) and the second one, the use of models with only a few measured parameters as input. As far as the second approach is concerned, the majority of the models use relatively crude estimates of the roughness length that is often based on constant values for land cover. Consequently, the model results are not quite accurate. The present work aims firstly to evaluate the effect of alternative calculations of the roughness length on the non-hydrostatic mesoscale model (MEMO) performance, based on the use of satellite data, and secondly, to estimate the mixing layer height and analyze its variability in relation to underlying topography and land use. Rijeka, a region with complex topography and several islands in its surroundings, offers the opportunity to examine the above mentioned relationships. The non-hydrostatic mesoscale model MEMO was applied under summertime anticyclonic weather conditions during two multi-day periods characterised by stagnant meteorological conditions. The results proved MEMO capable of simulating mesoscale wind flow reasonably well, however, the use of AVHRR satellite data for calculating the roughness length based on the calculation of the NDVI parameter, optimised the model performance and resulted to a more accurate determination of

  20. Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer

    Science.gov (United States)

    Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard

    2017-05-01

    Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.

  1. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    Science.gov (United States)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  2. Ambient air quality trends in Alberta

    International Nuclear Information System (INIS)

    2007-01-01

    This document provided an overview of ambient air pollutant trends in Alberta. The report discussed the following pollutants having effect on human and environmental health: carbon monoxide (CO), hydrogen sulphide (H2 S ), nitrogen dioxide (NO 2 ), sulphur dioxide (SO 2 ), ozone (O 3 ), fine particulate matter (PM 2 .5), benzene, and benzopyrene. Each of these pollutants was described. The report provided data on annual average concentration trends and annual 99th percentile concentration as an indicator of peak concentrations. A map illustrating air quality monitoring stations in 2006 was also provided. The findings revealed that mean annual CO levels were the lowest they have been since 1990; hydrogen sulphide concentrations have fluctuated in time since 1990; most Edmonton and Calgary area stations showed significant decreasing trends in annual average NO 2 levels since 1990; and higher SO 2 concentrations have been found in the industrial areas of Alberta, such as the Redwater and Scotford oil sands locations. tabs., figs

  3. Bacterial decontamination using ambient pressure nonthermal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  4. Total ozone changes in the 1987 Antarctic ozone hole

    Science.gov (United States)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  5. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  6. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Verhaegh, W.F.J.; Aarts, E.H.L.; Korst, J.H.M.

    2004-01-01

    In this chapter, we discuss the new paradigm for user-centered computing known as ambient intelligence and its relation with methods and techniques from the field of computational intelligence, including problem solving, machine learning, and expert systems.

  7. The effect of winter stress on Ilex aquifolium L.previously fumigated with ozone

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium) received either charcoal-filtered air (CFA) or CFA with 70 nl l -1 ozone added for 7 h day -1 over a 28 day period. Plants were then transferred into cooling incubators for hardening (4 o C day/2 o C night; day length 12 h) for 7 days and then to the frosting stage (2 o C day and -5, -10 or -15 o C night) for 4 days. The plants were then placed in ambient conditions. Treatment produced significant differences in chlorophyll fluorescence data. Stomatal conductance was significantly higher for the ozone treatments though both showed a general decline over all temperature regimes. Ozone also significantly increased electrolyte leakage and reduced winter survival. These results show that ambient concentrations of ozone can reduce the tolerance of I. aquifolium to freezing stress, which may have serious implications for its establishment and survival. - Exposure to ozone decreases the winter hardening capability and markedly increases the frost sensitivity of Ilex aquifolium

  8. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.

    Science.gov (United States)

    Anderson, Paul D; Palmer, Brent; Houpis, James L J; Smith, Mary K; Pushnik, James C

    2003-06-01

    Integrity of chloroplast membranes is essential to photosynthesis. Loss of thylakoid membrane integrity has been proposed as a consequence of ozone (O(3)) exposure and therefore may be a mechanistic basis for decreased photosynthetic rates commonly associated with ozone exposure. To investigate this hypothesis, Pinus ponderosa seedlings were exposed to ambient air or ozone concentrations maintained at 0.15 or 0.30 microliter l(-1) for 10 h day(-1) for 51 days during their second growing season. Over the course of the study, foliage samples were periodically collected for thylakoid membrane, chlorophyll and protein analyses. Additionally, gas-exchange measurements were made in conjunction with foliage sampling to verify that observed chloroplastic responses were associated with ozone-induced changes in photosynthesis. Needles exposed to elevated ozone exhibited decreases in chlorophyll a and b content. The decreases were dependent on the duration and intensity of ozone exposure. When based on equal amounts of chlorophyll, ozone-exposed sample tissue exhibited an increase in total protein. When based on equal amounts of protein, ozone-exposed samples exhibited an increase in 37 kDa proteins, possibly consisting of breakdown products, and a possible decrease in 68 kDa proteins, Rubisco small subunit. There was also a change in the ratio of Photosystem I protein complexes CPI and CPII that may have contributed to decreased photosynthesis. Net photosynthetic rates were decreased in the high ozone treatment suggesting that observed structural and biochemical changes in the chloroplast were associated with alterations of the photosynthetic process.

  9. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  10. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  11. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    Science.gov (United States)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  12. Determination of the Optimum Ozone Product on the Plasma Ozonizer

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    An experiment of the optimum ozone product determination on the cylindrical plasma ozonizer has been done. The experiment is carried out by using alternating high voltage power supply, oscilloscope CS-1577 A, flow meter and spectronik-20 instrument for the absorbance solution samples which produced by varying the physics parameter values of the discharge alternating high voltage and velocity of oxygen gas input. The plasma ozonizer is made of cylinder stainless steel as the electrode and cylinder glass as the dielectric with 1.00 mm of the discharge gap and 7.225 mm 3 of the discharge tube volume. The experiment results shows that the optimum ozone product is 0.360 mg/s obtained at the the discharge of alternating high voltage of 25.50 kV, the frequency of 1.00 kHz and the rate of oxygen gas input of 1.00 lpm. (author)

  13. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  14. Data based ambient lighting control

    NARCIS (Netherlands)

    2012-01-01

    In controlling an ambient lighting element, a category of data being rendered by a host is identified, ambient lighting data associated with the identified category is retrieved, and the retrieved ambient lighting data is rendered in correspondence with the rendered data. The retrieved ambient

  15. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Science.gov (United States)

    Fritsche, J.; Wohlfahrt, G.; Ammann, C.; Zeeman, M.; Hammerle, A.; Obrist, D.; Alewell, C.

    2013-01-01

    In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e.g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m−2 h−1 and mean deposition velocities up to 0.10 cm s−1 were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude. PMID:24348525

  16. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Directory of Open Access Journals (Sweden)

    J. Fritsche

    2008-12-01

    Full Text Available In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e.g. heavy rain, summer ozone on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m−2 h−1 and mean deposition velocities up to 0.10 cm s−1 were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude.

  17. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain

    Science.gov (United States)

    Fu, Pingqing; Kawamura, Kimitaka; Okuzawa, Kazuhiro; Aggarwal, Shankar Gopala; Wang, Gehui; Kanaya, Yugo; Wang, Zifa

    2008-10-01

    Total suspended particles (TSP) were collected at the summit of Mt. Tai (1534 m above sea level) on a daytime and nighttime basis during a summertime campaign (May-June 2006) and were characterized for organic molecular compositions using solvent extraction/derivatization and gas chromatography/mass spectrometry technique. The n-Alkanes, fatty acids, fatty alcohols, sugars, glycerol and polyacids, and phthalate esters were found as major organic compound classes, whereas lignin and resin products, sterols, aromatic acids, hopanes, and polycyclic aromatic hydrocarbons (PAHs) were detected as minor classes. Sugars (49.8-2115 ng m-3, average 640 ng m-3 in daytime; 18.1-4348 ng m-3, 799 ng m-3 in nighttime) were found to be the dominant compound class. Levoglucosan, a specific cellulose pyrolysis product, was detected as the most abundant single compound, followed by C28 fatty alcohol, diisobutyl and di-n-butyl phthalates, C29n-alkane, C16 and C28 fatty acids, and malic acid. By grouping organic compounds based on their sources, we found that emission of terrestrial plant waxes was the most significant source (30-34%) of the TSP, followed by biomass burning products (25-27%) (e.g., levoglucosan and lignin and resin products), soil resuspension (15-18%) due to agricultural activities, secondary oxidation products (8-10%), plastic emission (3-10%), marine/microbial sources (6%), and urban/industrial emissions from fossil fuel use (4%). However, low molecular weight dicarboxylic acids (such as oxalic acid) of photochemical origin were not included in this study. Malic acid was found to be much higher than those reported in the ground level, suggesting an enhanced photochemical production in the free troposphere over mountain areas. Temporal variations of biomass burning tracers (e.g., levoglucosan, galactosan, mannosan) and some higher plant wax derived compound classes suggested that there were two major (E1 and E2) and one minor (E3) biomass-burning events during this

  18. Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank

    Science.gov (United States)

    Lan, Kuo-Wei; Kawamura, Hiroshi; Lee, Ming-An; Chang, Yi; Chan, Jui-Wen; Liao, Cheng-Hsin

    2009-04-01

    It is well known that upwelling of subsurface water is dominant around the Taiwan Bank (TB) and the Penghu (PH) Islands in the southern Taiwan Strait in summertime. Sea surface temperature (SST) frontal features and related phenomena around the TB upwelling and the PH upwelling were investigated using long-term AVHRR (1996-2005) and SeaWiFS (1998-2005) data received at the station of National Taiwan Ocean University. SST and chlorophyll-a (Chl-a) images with a spatial resolution of 0.01° were generated and used for the monthly SST and Chl-a maps. SST fronts were extracted from each SST images and gradient magnitudes (GMs); the orientations were derived for the SST fronts. Monthly maps of cold fronts where the cooler SSTs were over a shallower bottom were produced from the orientation. Areas with high GMs (0.1-0.2 °C/km) with characteristic shapes appeared at geographically fixed positions around the TB/PH upwelling region where SSTs were lower than the surrounding waters. The well-shaped high GMs corresponded to cold fronts. Two areas with high Chl-a were found around the TB and PH Islands. The southern border of the high-Chl-a area in the TB upwelling area was outlined by the high-GM area. Shipboard measurements of snapshot vertical sections of temperature (T) and salinity (S) along the PH Channel showed a dome structure east of PH Islands, over which low SST and high GM in the maps of the corresponding month were present. Clear evidence of upwelling (vertically uniform distributions of T and S) was indicated at the TB edge in the T and S sections close to TB upwelling. This case of upwelling may be caused by bottom currents ascending the TB slope as pointed out by previous studies. The position of low SSTs in the monthly maps matched the upwelling area, and the high GMs corresponded to the area of eastern surface fronts in the T/S sections.

  19. The risk of melanoma associated with ambient summer ultraviolet radiation.

    Science.gov (United States)

    Pinault, Lauren; Bushnik, Tracey; Fioletov, Vitali; Peters, Cheryl E; King, Will D; Tjepkema, Michael

    2017-05-17

    Depletion of the ozone layer has meant that ambient ultraviolet radiation (UVR) has increased in recent decades. At the same time, the incidence of skin cancers, including melanoma, has risen. The relatively few large-scale studies that linked ambient UVR to melanoma found a trend toward rising incidence closer to the equator, where UVR estimates are highest. Similar research has not been conducted in Canada, where ambient UVR is generally lower than in countries further south. Modelled UVR data for the months of June through August during the 1980-to-1990 period were spatially linked in Geographic Information Systems to 2.4 million white members of the 1991 Canadian Census Health and Environment Cohort and tracked for melanoma diagnosis over an 18-year period (1992 to 2009). Standard Cox proportional hazards models were used to estimate melanoma risk associated with increases of ambient summer UVR, assigned by residence at baseline. Models were adjusted for age, sex and socioeconomic (SES) characteristics. Separate analyses by body site of melanoma were conducted. Effect modification of the association between ambient UVR and melanoma by sex, age, outdoor occupation and selected SES characteristics was evaluated. Differences of one standard deviation (446 J/m², or 7% of the mean) in average ambient summer UVR were associated with an increased hazard ratio (HR) for melanoma of 1.22 (95% CI: 1.19 to 1.25) when adjusting for sex, age and SES characteristics. The HR for melanoma in relative UVR (per 1 standard deviation) was larger for men (HR = 1.26; 95% CI: 1.21 to 1.30) than for women (HR = 1.17; 95% CI: 1.13 to 1.22). Ambient summer UVR is associated with a greater risk of melanoma among the white population, even in a country where most people live within a narrow latitudinal belt. A stronger association between melanoma and ambient UVR was evident among men and among people of lower SES.

  20. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  1. Ecosystem Effects of Ozone Pollution

    Science.gov (United States)

    Ground level ozone is absorbed by the leaves of plants, where it can reduce photosynthesis, damage leaves and slow growth. It can also make sensitive plants more susceptible to certain diseases, insects, harsh weather and other pollutants.

  2. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  3. Ozone modelling in Eastern Austria

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Wotawa, G.; Kromp-Kolb, H. [Univ. of Agriculture, Vienna (Austria). Inst. of Meteorology and Physics; Winiwater, W. [Austrian Research Centre, Seibersdorf (Austria); Baumann, R.; Spangl, W. [Federal Environmental Agency, Vienna (Austria)

    1995-12-31

    High ozone concentrations are frequently observed in Eastern Austria, often exceeding local as well as international health standards, both for short-term as well as for long-term exposures. The maximum concentrations are produced in urban plumes, e.g. of the city of Vienna, whereas regional-scale transport and production of ozone is more important for the long-term concentrations. The Pannonian Ozone Project (POP) is an Austrian research initiative to model photochemical processes on a regional as well as on a local scale with a Lagrangian model to better understand the mechanisms leading to the high ozone concentrations and to develop abatement strategies. Up to now, focus has been on the regional scale. Aircraft, tethered balloon, tetroon and intensified ground measurements are carried out to validate the model. Although the major measurement campaign will be held in summer 1995, first results from a measurement campaign in summer 1994 are already available

  4. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.J. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain)]. E-mail: mjose@ceam.es; Calatayud, V. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain); Sanchez-Pena, G. [Servicio de Proteccion de los Montes contra Agentes Nocivos, Direccion General para la Biodiversidad, Ministerio de Medio Ambiente, Gran Via de San Francisco, 4, E-28005, Madrid (Spain)

    2007-02-15

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude.

  5. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    International Nuclear Information System (INIS)

    Sanz, M.J.; Calatayud, V.; Sanchez-Pena, G.

    2007-01-01

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude

  6. Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms.

    Science.gov (United States)

    Croze, Marine L; Zimmer, Luc

    2018-01-01

    Atmospheric pollution is a well-known environmental hazard, especially in developing countries where millions of people are exposed to airborne pollutant levels above safety standards. Accordingly, several epidemiological and animal studies confirmed its role in respiratory and cardiovascular pathologies and identified a strong link between ambient air pollution exposure and adverse health outcomes such as hospitalization and mortality. More recently, the potential deleterious effect of air pollution inhalation on the central nervous system was also investigated and mounting evidence supports a link between air pollution exposure and neurodegenerative pathologies, especially Alzheimer's disease (AD). The focus of this review is to highlight the possible link between ozone air pollution exposure and AD incidence. This review's approach will go from observational and epidemiological facts to the proposal of molecular mechanisms. First, epidemiological and postmortem human study data concerning residents of ozone-severely polluted megacities will be presented and discussed. Then, the more particular role of ozone air pollution in AD pathology will be described and evidenced by toxicological studies in rat or mouse with ozone pollution exposure only. The experimental paradigms used to reproduce in rodent the human exposure to ozone air pollution will be described. Finally, current insights into the molecular mechanisms through which ozone inhalation can affect the brain and play a role in AD development or progression will be recapitulated.

  7. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.

  8. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    Science.gov (United States)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend

  9. Ozone as an ecotoxicological problem

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L. [National Environmental Research Inst., Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Ozone is quantitatively the dominating oxidant in photochemical air pollution. Other compounds like hydrogen peroxide, aldehydes, formate, peroxyacetyl nitrate (PAN) and nitrogen dioxide are present too, and several of these are known to be phytotoxic, but under Danish conditions the concentration of these gases are without significance for direct effects on vegetation. Therefore, it is the effects of ozone on plant growth that will be described below. (EG) 65 refs.

  10. Multi-scale model analysis of boundary layer ozone over East Asia

    Directory of Open Access Journals (Sweden)

    M. Lin

    2009-05-01

    Full Text Available This study employs the regional Community Multiscale Air Quality (CMAQ model to examine seasonal and diurnal variations of boundary layer ozone (O3 over East Asia. We evaluate the response of model simulations of boundary layer O3 to the choice of chemical mechanisms, meteorological fields, boundary conditions, and model resolutions. Data obtained from surface stations, aircraft measurements, and satellites are used to advance understanding of O3 chemistry and mechanisms over East Asia and evaluate how well the model represents the observed features. Satellite measurements and model simulations of summertime rainfall are used to assess the impact of the Asian monsoon on O3 production. Our results suggest that summertime O3 over Central Eastern China is highly sensitive to cloud cover and monsoonal rainfall over this region. Thus, accurate simulation of the East Asia summer monsoon is critical to model analysis of atmospheric chemistry over China. Examination of hourly summertime O3 mixing ratios from sites in Japan confirms the important role of diurnal boundary layer fluctuations in controlling ground-level O3. By comparing five different model configurations with observations at six sites, the specific mechanisms responsible for model behavior are identified and discussed. In particular, vertical mixing, urban chemistry, and dry deposition depending on boundary layer height strongly affect model ability to capture observed behavior. Central Eastern China appears to be the most sensitive region in our study to the choice of chemical mechanisms. Evaluation with TRACE-P aircraft measurements reveals that neither the CB4 nor the SAPRC99 mechanisms consistently capture observed behavior of key photochemical oxidants in springtime. However, our analysis finds that SAPRC99 performs somewhat better in simulating mixing ratios of H2O2 (hydrogen peroxide

  11. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  12. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  13. Summertime diurnal variations in the isotopic composition of atmospheric nitrogen dioxide at a small midwestern United States city

    Science.gov (United States)

    Walters, Wendell W.; Fang, Huan; Michalski, Greg

    2018-04-01

    The nitrogen and oxygen stable isotopes (δ15N & δ18O) of nitrogen oxides (NOx = nitric oxide (NO) + nitrogen dioxide (NO2)) may be a useful tool for partitioning NOx emission sources and for evaluating NOx photochemical cycling, but few measurements of in situ NOx exist. In this study, we have collected and characterized the diurnal variability in δ15N and δ18O of NO2 from ambient air at a small Midwestern city (West Lafayette, IN, USA, 40.426° N, 86.908° W) between July 7 to August 5, 2016, using an active sampling technique. Large variations were observed in both δ15N(NO2) and δ18O(NO2) that ranged from -31.4 to 0.4‰ and 41.5-112.5‰, respectively. Daytime averages were -9.2 ± 5.7‰ (x̅ ± 1σ) and 86.5 ± 14.1‰ (n = 11), while nighttime averages were -13.4 ± 7.3‰ and 56.3 ± 7.1‰ (n = 12) for δ15N(NO2) and δ18O(NO2), respectively. The large variability observed in δ15N(NO2) is predicted to be driven by changing contributions of local NOx emission sources, as calculated isotope effects predict a minor impact on δ15N(NO2) relative to δ15N(NOx) that is generally less than 2.5‰ under the sample collection conditions of high ozone concentration ([O3]) relative to [NOx]. A statistical δ15N mass-balance model suggests that traffic-derived NOx is the main contributor to the sampling site (0.52 ± 0.22) with higher relative contribution during the daytime (0.58 ± 0.19) likely due to higher traffic volume than during the nighttime (0.47 ± 0.22). The diurnal cycle observed in δ18O(NO2) is hypothesized to be a result of the photochemical cycling of NOx that elevates δ18O(NO2) during the daytime relative to the nighttime. Overall, this data suggests the potential to use δ15N(NO2) for NOx source partitioning under environmental conditions of high [O3] relative to [NOx] and δ18O(NO2) for evaluating VOC-NOx-O3 chemistry.

  14. Ambient ionization mass spectrometry

    International Nuclear Information System (INIS)

    Lebedev, A T

    2015-01-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references

  15. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  16. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  17. Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA

    Science.gov (United States)

    S.B. McLaughlin; S.D. Wullschleger; G. Sun

    2007-01-01

    A lack of data on responses of mature tree growth and water use to ambient ozone (O3) concentrations has been a major limitation in efforts to understand and model responses of forests to current and future changes in climate.Here, hourly to seasonal patterns of stem growth and sap flow velocity were...

  18. The Variable Effects of Ozone and/or Diesel Particulate Inhalation Exposure on Allergic Airways Responses in Mice

    Science.gov (United States)

    Exposure to diesel exhaust particle matter (DEP) associated with the combustion of diesel fuel exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (O3). Since levels of both pollutants in ambient air are e...

  19. Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study

    Science.gov (United States)

    The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3/ can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phas...

  20. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. M. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China); Graduate Univ. of Chinese Academy of Sciences, Beijing (China)); Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Shen, X. J. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China)), e-mail: xiaoye@cams.cma.gov.cn; Gong, S. L. (Air Quality Research Div., Science and Technology Branch, Environment Canada, Toronto (Canada)); Yang, S. (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Inst. of Atmospheric Physics, CAS, Beijing (China))

    2011-07-15

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O{sub 3} and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM{sub 1}) and sulphate; nitrate and ammonium were more minor contributors

  1. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    Science.gov (United States)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM1) and sulphate; nitrate and ammonium were more minor contributors.

  2. Chemical processes related to net ozone tendencies in the free troposphere

    Science.gov (United States)

    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst

    2017-09-01

    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).

  3. Tobacco clones derived from tissue culture with supersensitivity to ozone

    International Nuclear Information System (INIS)

    Sun, E.J.; Kang, H.W.

    2003-01-01

    New tobacco clones supersensitive to ozone were obtained from tissue culture. - At least two supersensitive tobacco somaclones were obtained from tissue culture (TC) , when this approach was used to asexually propagate Bel-W3 tobacco indicator plants. These somaclones can detect as low as 30 ppb ozone for a 4-h exposure duration both within CSTR exposure chambers and in ambient air. Comparison of the injury index and their coefficient of variance showed that the TC plantlets usually have more uniform performance in response to ozone in addition to their higher sensitivity. A quick regeneration procedure was established to preserve the supersensitive germplasm immediately when it was found. The TC plantlets will flower and produce seed similar to seed-grown tobacco. The TC approach proved to be a better propagation system for valuable indicator plant species. The mechanism that causes the variation and the possible difference in their genome from seed-grown tobacco is still unknown. Further studies are needed in the future to determine if factors in the TC system may be responsible for the sensitivity difference

  4. Effects Of Elevated Ozone On Leaf {delta} {sup 13} C And Leaf Conductance Of Plant Species Grown In Semi-Natural Grassland With Or Without Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Saurer, M.; Volk, M. [Agroscope-FAL (Switzerland); Fuhrer, J. [Agroscope-FAL (Switzerland)

    2005-03-01

    At the Swiss prealpine site Le Mouret (754 m a.s.l. 46deg 45min N / 7deg 10min E), semi-natural grassland species were kept under ambient or elevated ozone, paired with or without additional irrigation. Two of the four investigated grassland species showed an additive increase in {sup 13}C-values under drought and elevated ozone conditions. (author)

  5. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  6. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  7. Classroom Temperature, Clothing and Thermal Comfort -- A Study of Secondary School Children in Summertime. Building Research Establishment Current Paper 22/74.

    Science.gov (United States)

    Humphreys, M. A.

    1974-01-01

    This article describes a study of summertime classroom temperature and its relationship to the clothing worn by English secondary school children. Data on classroom temperatures and children's clothing were recorded during one summer for a total of 987 lessons. Analysis of the data showed that the strong clothing-temperature correlation could be…

  8. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults.

    Science.gov (United States)

    Chen, Jiu-Chiuan; Schwartz, Joel

    2009-03-01

    In vivo animal experiments demonstrate neurotoxicity of exposures to particulate matter (PM) and ozone, but only one small epidemiological study had linked ambient air pollution with central nervous system (CNS) functions in children. To examine the neurobehavioral effects associated with long-term exposure to ambient PM and ozone in adults. We conducted a secondary analysis of the Neurobehavioral Evaluation System-2 (NES2) data (including a simple reaction time test [SRTT] measuring motor response speed to a visual stimulus; a symbol-digit substitution test [SDST] for coding ability; and a serial-digit learning test [SDLT] for attention and short-term memory) from 1764 adult participants (aged 37.5+/-10.9 years) of the Third National Health and Nutrition Examination Survey in 1988-1991. Based on ambient PM(10) (PM with aerodynamic diameter SDLT, but not in SRTT. Each 10-ppb increase in annual ozone was associated with increased SDST and SDLT scores by 0.16 (95%CI: 0.01, 0.23) and 0.56 (95%CI: 0.07, 1.05), equivalent to 3.5 and 5.3 years of aging-related decline in cognitive performance. Our study provides the first epidemiological data supporting the adverse neurobehavioral effects of ambient air pollutants in adults.

  9. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    Science.gov (United States)

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  10. Ozone and Botrytis interactions in onion-leaf dieback: open-top chamber studies

    Energy Technology Data Exchange (ETDEWEB)

    Wukasch, R.T.; Hofstra, G.

    1977-09-01

    Paired open-top chambers were used to study interactions between Botrytis spp. and ozone in field-grown onions. Charcoal filters removed 35 to 65% of the ambient ozone, resulting in six-fold reduction of onion leaf dieback and a 28% increase in onion yield compared with unfiltered chambers. Symptoms of leaf injury appeared soon after ozone levels exceeded 294 ..mu..g/m/sup 3/ (0.15 ppm) for 4 hr. Lesions caused by Botrytis were few because no dew formed in the chambers. However, when leaves were wetted with foggers, inoculation with mycelial suspensions of B. sauamosa in late August produced significantly more lesions and leaf dieback in the unfiltered chamber. Botrytis squamosa, B. cinerea, B. allii, and several genera of secondary fungi were isolated from these lesions. Botrytis squamosa was recovered from lesions only, whereas B. cinerea and B. allii were associated more generally with onion leaf tissue regardless of lesions. 25 references, 1 figure, 2 tables.

  11. OZONE GENERATORS IN INDOOR AIR SETTINGS

    Science.gov (United States)

    The report gives information on home/office ozone generators. It discusses their current uses as amelioratives for environmental tobacco smoke, biocontaminants, volatile organic compounds, and odors and details the advantages and disadvantages of each. Ozone appears to work well ...

  12. Cryptosporidiosis associated with ozonated apple cider.

    Science.gov (United States)

    Blackburn, Brian G; Mazurek, Jacek M; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie; Jones, Jeffrey L

    2006-04-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  13. Cryptosporidiosis Associated with Ozonated Apple Cider

    OpenAIRE

    Blackburn, Brian G.; Mazurek, Jacek M.; Hlavsa, Michele; Park, Jean; Tillapaw, Matt; Parrish, MaryKay; Salehi, Ellen; Franks, William; Koch, Elizabeth; Smith, Forrest; Xiao, Lihua; Arrowood, Michael; Hill, Vince; da Silva, Alex; Johnston, Stephanie

    2006-01-01

    We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.

  14. Ambient air pollution and pregnancy-induced hypertensive disorders

    DEFF Research Database (Denmark)

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy

    2014-01-01

    to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December.......5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting...... on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta...

  15. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  16. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sant' Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Souza, Silvia R. [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)], E-mail: souzasrd@terra.com.br

    2008-01-15

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R{sup 2} = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R{sup 2} = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil.

  17. Nitrogen oxides transport from La Cygne Station, KS: A study for assessing its influence on urban ozone. Final report

    International Nuclear Information System (INIS)

    Blumenthal, D.L.

    1998-02-01

    As a result of the new ozone and PM 2.5 national ambient air quality standards, it appears that the Kansas City metropolitan area will be classified as nonattainment with respect to ozone. The Kansas Department of Health and Environment (KDHE) is planning to develop a new Kansas State Implementation Plan (SIP) to address this issue between 1997 and 2000 with implementation scheduled for 2004. Some Ozone Transport Assessment Group (OTAG) related air quality analyses have indicated that the Kansas City area is subject to surface and aloft windfields that could carry ozone or ozone precursors into Kansas City from outside the region, including from other parts of the state of Kansas. But questions have arisen whether or not local emission reductions would be more effective in achieving ozone standards. To better understand the causes of high ozone in the region and, specifically, to understand the role of emissions from certain power generating stations, the NO x Steering Committee was formed. The Committee includes representatives of the Kansas Department of Health and Environment and two local utility companies (Kansas City Power and Light (KCPL) and Western Resources). Input was also solicited from the US Environmental Protection Agency (EPA). This report presents the results of a scoping study commissioned by the Committee

  18. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    Science.gov (United States)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  19. Indicadores de salud ambiental

    Directory of Open Access Journals (Sweden)

    Manuel Posada de la Paz

    2004-12-01

    Full Text Available Esta ponencia presenta una visión general del proyecto de Indicadores de Salud Ambiental, coordinado por la OMS a nivel internacional y liderado por el Centro de Investigación sobre el Síndrome del Aceite Tóxico y Enfermedades Raras (CISATER en España. En ella se describen los objetivos del proyecto, las gestiones realizadas y los resultados obtenidos durante la fase de viabilidad de este proyecto. El proyecto consiste en el establecimiento de un sistema de información sobre salud ambiental que permita desarrollar una vigilancia de los factores ambientales determinantes de los estados de salud, realizar comparaciones internacionales, elaborar políticas de acción, así como facilitar la comunicación con la ciudadanía. La OMS desarrolló una metodología para el desarrollo de estos indicadores dentro del marco conceptual de información ambiental DPSEEA (Fuerzas impulsoras, Presión, Estado, Exposición, Efecto, Acción y seleccionó un total de 55 indicadores (que incluyen 168 variables sobre 10 áreas de la salud ambiental. Durante la fase de viabilidad se predijo que podrían obtenerse el 89% de los indicadores. Sin embargo la recolección de los datos supuso muchas dificultades debido a la incompatibilidad de algunas variables en los sistemas de información españoles con las variables definidas por la OMS. A nivel de gestión del proyecto, la mayor dificultad radica en la disparidad de responsabilidades en materia de medio ambiente y salud entre las instituciones españolas. Además de la aportación técnica a la salud ambiental en España, un valor añadido de este proyecto ha sido el establecimiento de líneas de colaboración estrechas con los responsables de los diferentes Ministerios implicados.

  20. Comparative ozone responses of cutleaf coneflowers (Rudbeckia laciniata var. digitata, var. ampla) from Rocky Mountain and Great Smoky Mountains National Parks, USA.

    Science.gov (United States)

    Neufeld, Howard S; Johnson, Jennifer; Kohut, Robert

    2018-01-01

    Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species. Variety ampla, whose ozone sensitivity is less well known, is native to Rocky Mountain National Park (ROMO). In the early 2000s, researchers found putative ozone symptoms on var. ampla and rhizomes were sent to Appalachian State University to verify that the symptoms were the result of ozone exposure. In 2011, potted plants were exposed to ambient ozone from May to August. These same plants were grown in open-top chambers (OTCs) in 2012 and 2013, and exposed to charcoal-filtered (CF), non-filtered (NF), elevated ozone (EO), NF+50ppb in 2012 for 47days and NF+30/NF+50ppb ozone in 2013 for 36 and 36days, respectively. Ozone symptoms similar to those found in ROMO (blue-black adaxial stippling) were reproduced both in ambient air and in the OTCs. Both varieties exhibited foliar injury in the OTCs in an exposure-dependent manner, verifying that symptoms resulted from ozone exposure. In two of the three study years, var. digitata appeared more sensitive than var. ampla. Exposure to EO caused reductions in ambient photosynthetic rate (A) and stomatal conductance (g s ) for both varieties. Light response curves indicated that ozone reduced A, g s , and the apparent quantum yield while it increased the light compensation point. In CF air, var. ampla had higher light saturated A (18.2±1.04 vs 11.6±0.37μmolm -2 s -1 ), higher light saturation (1833±166.7 vs 1108±141.7μmolm -2 s -1 ), and lower Ci/Ca ratio (0.67±0.01 vs 0.77±0.01) than var. digitata. Coneflowers in both Parks are adversely affected by exposure to ambient ozone and if ozone concentrations increase in the Rocky Mountains, greater amounts of injury on var. ampla can be expected. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  2. The holes in the ozone scare

    Energy Technology Data Exchange (ETDEWEB)

    Maduro, R.; Schauerhamer, R.

    1992-05-01

    For the authors, the ozone hole is more politic than scientific, and is caused by anthropogenic CFC, the ozone concentration reduction measured in the antarctic stratosphere is a natural phenomena: ozone destruction by chlorides and bromides coming from volcanos and oceans. The ozone hole was discovered in 1956 and not in 1985. For the greenhouse effect, the CO[sub 2] part is very small in comparison with the atmospheric water vapour part. (A.B.). refs., figs., tabs.

  3. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    Science.gov (United States)

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  4. Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey

    Science.gov (United States)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.

  5. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  6. Ozone, Climate, and Global Atmospheric Change.

    Science.gov (United States)

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  7. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  8. Medio ambiente urbano

    OpenAIRE

    Rodríguez-Chaves Mimbrero, Blanca

    2007-01-01

    El estudio  y análisis  de las interacciones  entre  ambiente  y desarrollo y  su inserción  en los procesos  de  planificación del crecimiento  social y económico  de  los  países  de América Latina, reviste especial interés para proponer alternativas de acción que  conduzcan  al  logro  de  una mejor  calidad de  vida.  El impacto  que las conferencias sobre  el  Medio Ambiente Humano Estocolmo (1972),  Cocoyoc  (1974) o de documentos como "Nuestro Futuro Común" o "Nuestra Propia Agenda" ha...

  9. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  10. Case study of stratospheric ozone affecting ground-level oxidant concentrations

    International Nuclear Information System (INIS)

    Lamb, R.G.

    1977-01-01

    During the predawn hours of 19 November 1972, the air pollution monitoring station at Santa Rosa, Calif., recorded five consecutive hours of oxidant concentrations in excess of the present National Ambient Air Quality Standard. The highest of the hourly averages was 0.23 ppm. From a detailed analysis of the meteorological conditions surrounding this incident, it is shown that the ozone responsible for the anomalous concentrations originated in the stratosphere and not from anthropogenic sources

  11. Contribution of atmospheric processes affecting the dynamics of air pollution in South-Western Europe during a typical summertime photochemical episode

    Directory of Open Access Journals (Sweden)

    M. Gonçalves

    2009-02-01

    Full Text Available The southern Mediterranean region frequently experiences critical levels of photochemical pollutants during summertime. In order to account for the contribution of different atmospheric processes during this type of episodes, the WRF-ARW/HERMES/CMAQ modelling system was applied with high resolution (1 km2, 33 sigma vertical layers, 1 h to assess the different dynamics in a coastal environment and an inland-continental zone: the North-Eastern and Central Iberian Peninsula (NEIP and CIP, respectively. The former is characterized by a very complex terrain, while the latter behaves as a flat area, which clearly affects the pattern of local flows. A representative type of photochemical pollution episode (occurring over 78% of summer days which occurred during 17–18 June, 2004 is selected as the study period. The CMAQ Integrated Process Rate provides the hourly contributions of atmospheric processes to net O3, NOx and NMVOCs concentrations. The O3 photochemical formation occurs mainly in downwind areas from the main NOx emission sources during midday. At surface level it accounts for 50 to 75 μg m−3 h−1. The urban areas and main roads, as main sources of NOx emissions, act as O3 sinks, quenching up to −200 μg m−3 per hour during the traffic circulation peaks. The O3 concentration gradient generated, larger during daytime, increases the contribution of diffusion processes to ground-level O3 (up to 200 μg m−3 h−1 fluxes, mainly from upper vertical layers. The maximum positive contributions of gas-phase chemistry to O3 occur in the coastal domain at high levels (around 500 to 1500 m a.g.l., while in the continental domain they take place in the whole atmospheric column under the PBL. The transport of ozone precursors by advective flows determines the location of the maximum O

  12. Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation

    International Nuclear Information System (INIS)

    Díaz-de-Quijano, Maria; Schaub, Marcus; Bassin, Seraina; Volk, Matthias; Peñuelas, Josep

    2012-01-01

    Concentrations of ozone often exceed the thresholds of forest protection in the Pyrenees, but the effect of ozone on Pinus uncinata, the dominant species in subalpine forests in this mountainous range, has not yet been studied. We conducted an experiment of free-air ozone fumigation with saplings of P. uncinata fumigated with ambient O 3 (AOT40 May–Oct: 9.2 ppm h), 1.5 × O 3amb (AOT40 May–Oct: 19.2 ppm h), and 1.8 × O 3amb (AOT40 May–Oct: 32.5 ppm h) during two growing seasons. We measured chlorophyll content and fluorescence, visible injury, gas exchange, and above- and below-ground biomass. Increased exposures to ozone led to a higher occurrence and intensity of visible injury from O 3 and a 24–29% reduction of root biomass, which may render trees more susceptible to other stresses such as drought. P. uncinata is thus a species sensitive to O 3 , concentrations of which in the Pyrenees are already likely affecting this species. - Highlights: ► We assessed sensitivity to O 3 in Pinus uncinata using a free-air O 3 fumigation system. ► Occurrence and intensity of visible injury from O 3 correlated with exposure to O 3 . ► Increased O 3 reduced root biomass 24–29%. ► O 3 weakens P. uncinata, making it more susceptible to other stresses. ► Ambient [O 3 ] in the Pyrenees is thus likely to already be affecting P. uncinata stands. - Ozone concentrations similar to those in the Pyrenees affect Pinus uncinata by reducing root biomass and possibly increasing susceptibility to other stresses.

  13. Future climate change drives increases in forest fires and summertime OC concentrations in the Western U.S.

    Science.gov (United States)

    Spracklen, D. V.; Logan, J. A.; Mickley, L. J.; Park, R. J.; Flannigan, M. D.; Westerling, A. L.

    2006-12-01

    Increased forest fire activity in the Western United States appears to be driven by increasing spring and summer temperatures. Here we make a first estimate of how climate-driven changes in fire activity will influence summertime organic carbon (OC) concentrations in the Western US. We use output from a general circulation model (GCM) combined with area burned regressions to predict how area burned will change between present day and 2050. Calculated area burned is used to create future emission estimates for the Western U.S. and we use a global chemical transport model (CTM) to predict future changes in OC concentrations. Stepwise linear regression is used to determine the best relationships between observed area burned for 1980- 2004 and variables chosen from temperature, relative humidity, wind speed, rainfall and drought indices from the Candaian Fire Weather Index Model. Best predictors are ecosytem dependent but typically include mean summer temperature and mean drought code. In forest ecosystems of the Western U.S. our regressions explain 50-60% of the variance in annual area burned. Between 2000 and 2050 increases in temperature and reductions in precipitation, as predicted by the GISS GCM, cause mean area burned in the western U.S. to increase by 30-55%. We use the GEOS-Chem CTM to show that these increased emissions result in an increase in summertime western U.S. OC concentrations by 55% over current concentrations. Our results show that the predicted increase in future wild fires will have important consequences for western US air quality and visibility.

  14. MEIO AMBIENTE E DESENVOLVIMENTO

    Directory of Open Access Journals (Sweden)

    Suely Salgueiro Chacon

    2009-12-01

    Full Text Available O objetivo deste artigo é resgatar elementos para subsidiar uma reflexão crítica sobre o modelo de desenvolvimento econômico prevalente na sociedade e as relações com o meio ambiente, sob a ameaça que ronda o destino da espécie humana, conforme afirmação de Lovelock (2006, p. 20 sobre o conceito de desenvolvimento sustentável: “uma ideia adorável se a tivéssemos aplicado 200 anos atrás, quando havia um bilhão de pessoas no mundo. Agora é tarde demais. Não há mais espaço para nenhum tipo de desenvolvimento. A humanidade tem que regredir”. Este artigo apresenta a evolução do conceito de desenvolvimento econômico sob a ótica da sustentabilidade, e interliga temas como: o ambientalismo, aglutinador de distintos pensamentos sobre as relações entre a sociedade e a natureza; o movimento ambiental, a fundamentar a disseminação do conceito de desenvolvimento sustentável, e a gestão ambiental, abordada como prática orientada pelo conceito de desenvolvimento sustentável.

  15. Slow electrons kill the ozone

    International Nuclear Information System (INIS)

    Maerk, T.

    2001-01-01

    A new method and apparatus (Trochoidal electron monochromator) to study the interactions of electrons with atoms, molecules and clusters was developed. Two applications are briefly reported: a) the ozone destruction in the atmosphere is caused by different reasons, a new mechanism is proposed, that slow thermal electrons are self added to the ozone molecule (O 3 ) with a high frequency, then O 3 is destroyed ( O 3 + e - → O - + O 2 ); b) another application is the study of the binding energy of the football molecule C60. (nevyjel)

  16. OZONE CONCENTRATION ATTRIBUTABLE PREMATURE DEATH IN POLAND

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2010-03-01

    Full Text Available Ozone in the lower part of the atmosphere (troposphere, strong photochemical oxidant, is not directly emitted to the atmosphere but formed through a series of complex reactions. Ozone concentrations depends on ozone precursors air contamination (mainly nitrogen dioxide and non-methane volatile organic compounds and meteorological conditions (temperature and solar radiation. The main sectors emitted ozone precursors are road transport, power and heat generation plants, household (heating, industry, and petrol storage and distribution. Ozone and some of its precursors are also transported long distances in the atmosphere and are therefore considered a transboundary problem. As a result, the ozone concentrations are often low in busy urban areas and higher in suburban and rural areas. Nowadays, instead of particulate matter, ozone is one of the most widespread global air pollution problems. In and around urban areas, relatively large gradients of ozone can be observed. Because of its high reactivity in elevated concentrations ozone causes serious health problems and damage to ecosystems, agricultural crops and materials. Main ill-health endpoints as a results of ozone concentrations can be characterised as an effect of pulmonary and cardiovascular system, time morbidity and mortality series, development of atherosclerosis and asthma and finally reduction in life expectancy. The associations with increased daily mortality due to ozone concentrations are confirmed by many researches and epidemiological studies. Estimation of the level selected ill-health endpoints (mortality in total and due to cardiovascular and respiratory causes as a result of the short-term ozone exposure in Poland was the main aim of the project. Final results have been done based on estimation method elaborated by WHO, ozone measurements from National Air Quality Monitoring System and statistical information such as mortality rate and populations. All analysis have been done in

  17. Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.).

    Science.gov (United States)

    Singh, Satyavan; Bhatia, Arti; Tomer, Ritu; Kumar, Vinod; Singh, B; Singh, S D

    2013-08-01

    Field experiments were conducted in open top chamber during rabi seasons of 2009-10 and 2010-11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80-85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5-10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF + CO2, NF air and 550 ± 50 ppm CO2), elevated ozone (EO, NF air and 25-35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO + CO2, NF air, 25-35 ppb O3 and 550 ± 50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18-20 %. Elevated CO2 (500 ± 50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.

  18. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    Science.gov (United States)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  19. Ozone Control Strategies | Ground-level Ozone | New ...

    Science.gov (United States)

    2017-09-05

    The Air Quality Planning Unit's primary goal is to protect your right to breathe clean air. Guided by the Clean Air Act, we work collaboratively with states, communities, and businesses to develop and implement strategies to reduce air pollution from a variety of sources that contribute to the ground-level ozone or smog problem.

  20. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  1. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  2. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  3. Ozone exposure and pulmonary effects in panel and human clinical studies: Considerations for design and interpretation.

    Science.gov (United States)

    Rohr, Annette C

    2018-04-01

    A wealth of literature exists regarding the pulmonary effects of ozone, a photochemical pollutant produced by the reaction of nitrogen oxide and volatile organic precursors in the presence of sunlight. This paper focuses on epidemiological panel studies and human clinical studies of ozone exposure, and discusses issues specific to this pollutant that may influence study design and interpretation as well as other, broader considerations relevant to ozone-health research. The issues are discussed using examples drawn from the wider literature. The recent panel and clinical literature is also reviewed. Health outcomes considered include lung function, symptoms, and pulmonary inflammation. Issues discussed include adversity, reversibility, adaptation, variability in ozone exposure metric used and health outcomes evaluated, co-pollutants in panel studies, influence of temperature in panel studies, and multiple comparisons. Improvements in and standardization of panel study approaches are recommended to facilitate comparisons between studies as well as meta-analyses. Additional clinical studies at or near the current National Ambient Air Quality Standard (NAAQS) of 70 ppb are recommended, as are clinical studies in sensitive subpopulations such as asthmatics. The pulmonary health impacts of ozone exposure have been well documented using both epidemiological and chamber study designs. However, there are a number of specific methodological and related issues that should be considered when interpreting the results of these studies and planning additional research, including the standardization of exposure and health metrics to facilitate comparisons among studies.

  4. Products and mechanisms of the reaction of gas phase ozone with organic colorants

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, D. (DGA, Inc., Ventura, CA (USA)); Druzik, J.R. (Getty Conservation Institute, Marina del Rey, CA (USA)); Sensharma, D.K. (Univ. of California, Los Angeles (USA)); Whitmore, P.M.; DeMoor, C.P.; Cass, G.R. (California Institute of Technology, Pasadena (USA))

    1988-09-01

    Studies carried out in this laboratory have shown that many artists organic colorants fade substantially when exposed to ozone in the dark. These studies typically involved pigment exposure for 12 weeks to purified air containing 0.3-0.4 ppm of ozone at ambient temperature and humidity. These laboratory conditions are equivalent to about six years of exposure inside a typical air-conditioned building in Los Angeles, and the observed fading is therefore directly relevant to possible damage to works of arts in museum settings. Organic colorants that were most ozone-fugitive included natural colorants, such as curcumin and indigo, as well as modern synthetic colorants such as alizarin lakes and triphenylmethane dyes. Thus, these colorants were selected for further study with emphasis on the nature of the reaction products. Exposures were carried out on different substrates including watercolor paper, cellulose, silica gel, and Teflon. The experiments involved long-term exposure to low levels of ozone (e.g. {approximately} 0.3 ppm for 90 days) or shorter-term exposure to higher ozone concentrations (e.g. 10 ppm for 24 hours). Exposed and control samples, along with solvent and substrate blanks, were analyzed by mass spectrometry using a Kratos Scientific Instruments MS25 hexapole mass spectrometer operated in either methane chemical ionization (CI) or electron impact (EI) modes.

  5. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    Science.gov (United States)

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  6. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Science.gov (United States)

    Patil, Jagadish G.; Vijayan, T.

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  7. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Jagadish G; Vijayan, T, E-mail: jagdishlove@gmail.co [Mahatma Education Society' s ' Pillai' s Institute of Information Technology, Engineering, Media Studies and Research' Dr. K M Vasudevan Pillai' s Campus, Sector 16, New Panvel, Navi Mumbai - 410 206 (India)

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over {mu}A) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10{sup 2}-10{sup 6} m{sup -3} are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  8. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    International Nuclear Information System (INIS)

    Patil, Jagadish G; Vijayan, T

    2010-01-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10 2 -10 6 m -3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  9. Ozone production, nitrogen oxides, and radical budgets in Mexico City: observations from Pico de Tres Padres

    Science.gov (United States)

    Wood, E. C.; Herndon, S. C.; Onasch, T. B.; Kroll, J. H.; Canagaratna, M. R.; Kolb, C. E.; Worsnop, D. R.; Neuman, J. A.; Seila, R.; Zavala, M.; Knighton, W. B.

    2008-08-01

    Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, the nitrogen oxide budget, and the radical budget during the MILAGRO campaign. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz) For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3-(PM)) accounted for 20% 70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3-(PM) decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  10. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    Science.gov (United States)

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures

  11. Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign

    Directory of Open Access Journals (Sweden)

    J. Song

    2010-04-01

    Full Text Available The sensitivity of ozone production to precursor emissions was investigated under five different meteorological conditions in the Mexico City Metropolitan Area (MCMA during the MCMA-2006/MILAGRO field campaign using the gridded photochemical model CAMx driven by observation-nudged WRF meteorology. Precursor emissions were constrained by the comprehensive data from the field campaign and the routine ambient air quality monitoring network. Simulated plume mixing and transport were examined by comparing with measurements from the G-1 aircraft during the campaign. The observed concentrations of ozone precursors and ozone were reasonably well reproduced by the model. The effects of reducing precursor emissions on urban ozone production were performed for three representative emission control scenarios. A 50% reduction in VOC emissions led to 7 to 22 ppb decrease in daily maximum ozone concentrations, while a 50% reduction in NOx emissions leads to 4 to 21 ppb increase, and 50% reductions in both NOx and VOC emission decrease the daily maximum ozone concentrations up to 10 ppb. These results along with a chemical indicator analysis using the chemical production ratios of H2O2 to HNO3 demonstrate that the MCMA urban core region is VOC-limited for all meteorological episodes, which is consistent with the results from MCMA-2003 field campaign; however the degree of the VOC-sensitivity is higher during MCMA-2006 due to lower VOCs, lower VOC reactivity and moderately higher NOx emissions. Ozone formation in the surrounding mountain/rural area is mostly NOx-limited, but can be VOC-limited, and the range of the NOx-limited or VOC-limited areas depends on meteorology.

  12. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    Science.gov (United States)

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  13. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...... a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic...

  14. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  15. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  16. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  17. Carryover effects of acid rain and ozone on the physiology of multiple flushes of loblolly pine seedlings

    International Nuclear Information System (INIS)

    Sasek, T.W.; Richardson, C.J.; Fendick, E.A.; Bevington, S.R.; Kress, L.W.

    1991-01-01

    The effects of acid rain and ozone exposure on loblolly pine (Pinus taeda L.) seedlings in the Piedmont of North Carolina were assessed over two exposure seasons (1987-1988). Direct effects and carryover effects of long-term exposure on the photosynthetic potential and photopigment concentrations of different needle age-classes were studied. Three half-sib families were grown in open-top field chambers and exposed two acid rain treatments and five ozone exposures delivered in proportion to ambient concentrations in a complete factorial design. Ozone significantly affected photosynthesis but there were no statistically significant effects of acid rain nor any ozone x acid rain interactions. In 1987, photosynthesis of the 1987 first-flush progressively diverged among the ozone treatments except between charcoal-filtered and nonfiltered air (NF). At the end of the first season, photosynthesis was reduced 24% at 1.5x compared to CF and more than 80% at 2.25x and 3.0x. Chlorophyll and carotenoid concentrations were similarly reduced at elevated ozone exposures. In 1988, photosynthesis of the 1987 first-flush in the elevated ozone treatments remained lower. Early in the second season, the 1988 first-flush had a 25% to 50% lower photosynthetic potential at 2.25x and 3.0x compared to CF. This carryover effect on the photosynthetic potential before significant cumulative exposure was progressively smaller in the later 1988 flushes. In the late season flushes in the highest ozone treatments, photosynthesis was significantly higher than in the lower ozone treatments

  18. Satellite Ozone Analysis Center (SOAC)

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Knox, J.B.; Korver, J.A.

    1976-08-01

    Many questions have been raised during the 1970's regarding the possible modification of the ozonosphere by aircraft operating in the stratosphere. Concern also has been expressed over the manner in which the ozonosphere may change in the future as a result of fluorocarbon releases. There are also other ways by which the ozonosphere may be significantly altered, both anthropogenic and natural. Very basic questions have been raised, bearing upon the amount of ozone which would be destroyed by the NO/sub x/ produced in atmospheric nuclear explosions. Studies of the available satellite data have suggested that the worldwide increase of ozone during the past decade, which was observed over land stations, may have been biased by a poor distribution of stations and/or a shift of the planetary wave. Additional satellite data will be required to resolve this issue. Proposals are presented for monitoring of the Earth's ozone variability from the present time into the 1980's to establish a baseline upon which regional, as well as global, ozone trends can be measured

  19. Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris.

    OpenAIRE

    Dab, W; Medina, S; Quénel, P; Le Moullec, Y; Le Tertre, A; Thelot, B; Monteil, C; Lameloise, P; Pirard, P; Momas, I; Ferry, R; Festy, B

    1996-01-01

    STUDY OBJECTIVE: To quantify the short term respiratory health effects of ambient air pollution in the Paris area. DESIGN: Time series analysis of daily pollution levels using Poisson regression. SETTING: Paris, 1987-92. MEASUREMENTS AND MAIN RESULTS: Air pollution was monitored by measurement of black smoke (BS) (15 monitoring stations), sulphur dioxide (SO2), nitrogen dioxide (NO2), particulate matter less than 13 microns in diameter (PM13), and ozone (O3) (4 stations). Daily mortality and ...

  20. Observed ozone exceedances in Italy: statistical analysis and modelling in the period 2002-2015

    Science.gov (United States)

    Falasca, Serena; Curci, Gabriele; Candeloro, Luca; Conte, Annamaria; Ippoliti, Carla

    2017-04-01

    Local ambient air quality is strongly influenced by anthropogenic emissions and meteorological conditions. The year 2015 is considered by NASA scientists as one of the hottest at the global scale since 1880. Furthermore, in Europe it was the first summer after the introduction of Euro6 regulation, the latest emission standard for passenger vehicles. The goal of this study is twofold: (1) the investigation of the impact of the heat wave occurred in the summer of 2015 on ozone levels and (2) the exploration of the weight of temperature as driver of high-level ozone events with respect to other variables. We performed a quantitative examination of the ozone seasons (May-September) for the period 2002-2015 using ozone concentration and weather data from 24 stations across Italy. The number of exceedances of limit values set by the European directive was calculated for each year, and compared with the trend of ozone concentration and temperature. Furthermore, the data were grouped in clusters of consecutive days of ozone exceedances in order to characterize the duration and the intensity of high ozone events. Finally, we developed a multivariate logistic regression model to investigate the role of a set of independent variables (meteorological, and temporal variables, altitude, number of inhabitants, vehicle emission standard) on the probability of exceedances. Results show that 2015 is one of the hottest years after 2003. During the period 2002-2015, the average number of exceedances per station of the daily maximum 8-hour average is often higher than the limit established by the European directive (25 per year). The highest number of exceedances was 65 per station, reached in 2003. The Po Valley is confirmed as a hot spot for pollution, with more frequent exceedances and a higher sensitivity to temperature, especially at urban sites. Ozone events in 2015 were fewer than recent years, but of longer duration (on average 4 days against 3 days), and with similar mean

  1. Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.

  2. Associations between ozone and morbidity using the Spatial Synoptic Classification system

    Directory of Open Access Journals (Sweden)

    Arora Gurmeet

    2011-05-01

    Full Text Available Abstract Background Synoptic circulation patterns (large-scale tropospheric motion systems affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses on the association between ozone and hospital admissions for asthma and myocardial infarction (MI among adults in North Carolina. Methods Daily surface meteorology data (including precipitation, wind speed, and dew point for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS, which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. Results Ozone was associated with asthma under dry tropical (1- to 5-day lags, transitional (3- and 4-day lags, and extreme moist tropical (0-day lag air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag air masses. Conclusions Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain

  3. Dioxinas y medio ambiente

    Directory of Open Access Journals (Sweden)

    María Teresa Frejo Moya

    2011-12-01

    Full Text Available Con el término genérico dioxinas se designa al grupo de las dibenzo-p-dioxinas policloradas (PCDD y de los dibenzofuranos policlorados (PCDF, representantes típicos de los compuestos orgánicos persistentes (COPs. Se obtienen como productos secundarios no deseados de diversos procesos industriales en los que se emplea cloro en alguna de sus etapas. Las dioxinas han centrado en la última década una parte importante de la investigación médica en salud ambiental debido a su notable toxicidad, ya que son las sustancias químicas peligrosas más potentes creadas por el hombre, afectando al sistema nervioso e inmunitario, estando implicadas en la aparición de distintos tipos de cáncer y provocando la aparición de alteraciones hormonales, clasificándose actualmente como disruptores endocrinos. Por otra parte, su persistencia en el medio ambiente, resistencia a la degradación, bioacumulación y capacidad de transporte atmosférico entre las diversas fases medioambientales hace que sean considerados actualmente como compuestos peligrosos para el ser humano.

  4. Medio ambiente y salud.

    Directory of Open Access Journals (Sweden)

    Tomás Franco Aliaga

    1997-01-01

    Full Text Available La salud es el resultado de un equilibrio dinámico entre los organismos y el medio del que forma parte. Esta armonía puede romperse de forma natural, pero cada vez es mayor la injerencia humana tanto en el ritmo de los fenómenos (efecto invernadero, capa de ozono o lluvia acida como en el reparto de los recursos. El desequilibrio económico es la epidemia más letal entre los grupos humanos, cuyo antídoto está sólo en nuestras manos.Health is the result of a dynamic equilibrium between organisms and the environment of which they are part. This harmony can be broken in a natural way but human interference is growing in the rhythm of phenomena (greenhouse effect, the ozone layer or the acid rain as well as in the distribution of resources. The economic imbalance is the most lethal epidemic among human beings, the antidote of which is only in our hands.

  5. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  6. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  7. Types for BioAmbients

    Directory of Open Access Journals (Sweden)

    Sara Capecchi

    2010-02-01

    Full Text Available The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues. Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour.

  8. An Expanded UV Irradiance Database from TOMS Including the Effects of Ozone, Clouds, and Aerosol Attenuation

    Science.gov (United States)

    Herman, J.; Krotkov, N.

    2003-01-01

    The TOMS UV irradiance database (1978 to 2003) has been expanded to include five new products (noon irradiance at 305,310,324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, that permit direct comparisons with ground-based measurements from spectrometers and broadband instruments. The new data are available on http://toms.gsfc.nasa.gov/>http://toms.gsfc.nasa.gov. Comparisons of the TOMS estimated irradiances with ground-based instruments are given along with a review of the sources of known errors, especially the recent improvements in accounting for aerosol attenuation. Trend estimations from the new TOMS irradiances permit the clear separation of changes caused by ozone and those caused by aerosols and clouds. Systematic differences in cloud cover are shown to be the most important factor in determining regional differences in UV radiation reaching the ground for locations at the same latitude (e.g., the summertime differences between Australia and the US southwest).

  9. Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons

  10. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability

    Directory of Open Access Journals (Sweden)

    W. Xu

    2018-01-01

    summertime ozone measured at WLG shows no significant trend despite ozone increases in eastern China. Analysis of the Trajectory-mapped Ozonesonde data set for the Stratosphere and Troposphere (TOST and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the quasi-biennial oscillation (QBO, the East Asian summer monsoon (EASM, and the sunspot cycle. Our results suggest that the 2–3-, 3–7-, and 11-year periodicities are linked to the QBO, EASM index, and sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.

  11. Passive Adsorption of Volatile Monoterpene in Pest Control: Aided by Proximity and Disrupted by Ozone.

    Science.gov (United States)

    Mofikoya, Adedayo O; Kim, Tae Ho; Abd El-Raheem, Ahmed M; Blande, James D; Kivimäenpää, Minna; Holopainen, Jarmo K

    2017-11-08

    Plant volatiles mediate a range of interactions across and within trophic levels, including plant-plant interactions. Volatiles emitted by a plant may trigger physiological responses in neighboring plants or adhere to their surfaces, which, in turn, may affect the responses of the neighboring plant to herbivory. These volatiles are subject to chemical reactions during transport in air currents, especially in a polluted atmosphere. We conducted a field experiment to test for the adsorption of dispenser-released myrcene on the surfaces of cabbage plants and the effects of distance from the dispenser and elevated ozone levels (1.4× ambient) on the process. We also tested the effects of the same treatments on oviposition on cabbage plants by naturally occurring Plutella xylostella. Under low ambient ozone conditions of central Finland, there was evidence for the adsorption and re-release of myrcene by cabbage plants growing at a distance of 50 cm from myrcene dispensers. This effect was absent at elevated ozone levels. The number of eggs deposited by P. xylostella was generally lower in plots under elevated ozone compared to ambient control plots. Our results indicate that passive adsorption and re-release of a volatile monoterpene can occur in nature; however, this process is dependent upon the distance between emitter source and receiver plants as well as the concentration of atmospheric pollutants in the air. We conclude that, in the development of field-scale use of plant volatiles in modern pest control, the effects of distances and air pollution should be considered.

  12. Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2016-09-01

    Full Text Available Observations addressing effects of aerosol particles on summertime Arctic clouds are limited. An airborne study, carried out during July 2014 from Resolute Bay, Nunavut, Canada, as part of the Canadian NETCARE project, provides a comprehensive in situ look into some effects of aerosol particles on liquid clouds in the clean environment of the Arctic summer. Median cloud droplet number concentrations (CDNC from 62 cloud samples are 10 cm−3 for low-altitude cloud (clouds topped below 200 m and 101 cm−3 for higher-altitude cloud (clouds based above 200 m. The lower activation size of aerosol particles is  ≤  50 nm diameter in about 40 % of the cases. Particles as small as 20 nm activated in the higher-altitude clouds consistent with higher supersaturations (S for those clouds inferred from comparison of the CDNC with cloud condensation nucleus (CCN measurements. Over 60 % of the low-altitude cloud samples fall into the CCN-limited regime of Mauritsen et al. (2011, within which increases in CDNC may increase liquid water and warm the surface. These first observations of that CCN-limited regime indicate a positive association of the liquid water content (LWC and CDNC, but no association of either the CDNC or LWC with aerosol variations. Above the Mauritsen limit, where aerosol indirect cooling may result, changes in particles with diameters from 20 to 100 nm exert a relatively strong influence on the CDNC. Within this exceedingly clean environment, as defined by low carbon monoxide and low concentrations of larger particles, the background CDNC are estimated to range between 16 and 160 cm−3, where higher values are due to activation of particles  ≤  50 nm that likely derive from natural sources. These observations offer the first wide-ranging reference for the aerosol cloud albedo effect in the summertime Arctic.

  13. Quantification of ozone uptake at the stand level in a Pinus canariensis forest in Tenerife, Canary Islands: An approach based on sap flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, Gerhard [Division of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Rennweg 1, A-6020 Innsbruck (Austria)]. E-mail: gerhard.wieser@uibk.ac.at; Luis, Vanessa C. [Department of Plant Biology, Plant Physiology, University of La Laguna, Avda. Astrofisico Francisco Sanchez s/n, E-38207 La Laguna, Tenerife (Spain); Cuevas, Emilio [Izana Atmospheric Observatory, National Institute of Meteorology, La Marina, E-38071 Santa Cruz de Tenerife (Spain)

    2006-04-15

    Ozone uptake was studied in a pine forest in Tenerife, Canary Islands, an ecotone with strong seasonal changes in climate. Ambient ozone concentration showed a pronounced seasonal course with high concentrations during the dry and warm period and low concentrations during the wet and cold season. Ozone uptake by contrast showed no clear seasonal trend. This is because canopy conductance significantly decreased with soil water availability and vapour pressure deficit. Mean daily ozone uptake averaged 1.9 nmol m{sup -2} s{sup -1} during the wet and cold season, and 1.5 nmol m{sup -2} s{sup -1} during the warm and dry period. The corresponding daily mean ambient ozone concentrations were 42 and 51 nl l{sup -1}, respectively. Thus we conclude that in Mediterranean type forest ecosystems the flux based approach is more capable for risk assessment than an external, concentration based approach. - Sap flow measurements can be used for estimating ozone uptake at the stand level and for parameterisation of O{sub 3} uptake models.

  14. Quantification of ozone uptake at the stand level in a Pinus canariensis forest in Tenerife, Canary Islands: An approach based on sap flow measurements

    International Nuclear Information System (INIS)

    Wieser, Gerhard; Luis, Vanessa C.; Cuevas, Emilio

    2006-01-01

    Ozone uptake was studied in a pine forest in Tenerife, Canary Islands, an ecotone with strong seasonal changes in climate. Ambient ozone concentration showed a pronounced seasonal course with high concentrations during the dry and warm period and low concentrations during the wet and cold season. Ozone uptake by contrast showed no clear seasonal trend. This is because canopy conductance significantly decreased with soil water availability and vapour pressure deficit. Mean daily ozone uptake averaged 1.9 nmol m -2 s -1 during the wet and cold season, and 1.5 nmol m -2 s -1 during the warm and dry period. The corresponding daily mean ambient ozone concentrations were 42 and 51 nl l -1 , respectively. Thus we conclude that in Mediterranean type forest ecosystems the flux based approach is more capable for risk assessment than an external, concentration based approach. - Sap flow measurements can be used for estimating ozone uptake at the stand level and for parameterisation of O 3 uptake models

  15. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    International Nuclear Information System (INIS)

    Liu, X.; Rennenberg, H.; Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R.

    2004-01-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs

  16. Competition modifies effects of enhanced ozone/carbon dioxide concentrations on carbohydrate and biomass accumulation in juvenile Norway spruces and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Rennenberg, H. [University of Freiburg, Inst. of Forest Botany and Tree Physiology, Freiburg (Germany); Kozovits, A. R.; Grams, T. E.; Blaschke, H.; Matyssek, R. [Technische Universitat Munchen, Dept. of Ecology and Ecophysiology of Plants, Freising (Germany)

    2004-09-01

    Potential interactions of carbon dioxide and ozone on carbohydrate concentrations and contents were studied in Norway spruce and European beech saplings to test the hypotheses that (1) prolonged exposure to elevated carbon dioxide does not compensate for the limiting effects of ozone on the accumulation of sugars and starches, or biomass partitioning to the root; and (2) growth of mixed-species planting will repress plant responses to elevated ozone and carbon dioxide. Norway spruce and European beech saplings were acclimated for one year to ambient and elevated carbon dioxide, followed by exposure to factorial combinations of ambient and elevated ozone and carbon dioxide during the next two years. In spruce trees, sugar and starch content was greater in saplings exposed to elevated carbon dioxide; in beech, the response was the opposite. The overall conclusion was that the results did not support Hypothesis One, because the adverse effects were counteracted by elevated carbon dioxide. Regarding Hypothesis Two, it was found to be supportive for beech but not for spruce. In beech, the reduction of sugars and starch by elevated ozone and stimulation by elevated carbon dioxide were repressed by competitive interaction with spruce, whereas in spruce saplings elevated concentrations of carbon dioxide resulted in higher concentrations of sugar and starch, but only in leaves and coarse roots and only when grown in combination with beech. Elevated ozone in spruce saplings produced no significant effect on sugar or starch content either in intra- or interspecific competition. 57 refs., 1 tab., 5 figs.

  17. Reforma constitucional y ambiente

    Directory of Open Access Journals (Sweden)

    Teodoro Bustamante

    2013-09-01

    Full Text Available América Latina está atravesada por una ola de reformas constitucionales. Sus causas, las expectativas que ellas despiertan, los riesgos que se han asociado al proceso de lucha política en su entorno, son temas de un análisis fundamentalmente político; pero hay algunos aspectos en los cuales ese debate tiene una directa repercusión sobre el tema ambiental. En el caso del Ecuador, esto se refleja en el hecho de que una de las innovaciones que se proponen, se refieren a una nueva forma de abordar los temas ambientales, básicamente se establecen Derechos de la Naturaleza.

  18. The Unique OMI HCHO/NO2 Feature During the 2008 Beijing Summer Olympics: Implications for Ozone Production Sensitivity

    Science.gov (United States)

    Witte, J. C.; Duncan, B. N.; Douglass, A. R.; Kurosu, T. P.; Chance, K.; Retscher, C.

    2010-01-01

    In preparation of the Beijing Summer Olympic and Paralympics Games, strict controls were imposed between July and September 2008 on motor vehicle traffic and industrial emissions to improve air quality for the competitors. We assessed chemical sensitivity of ozone production to these controls using Ozone Monitoring Instrument (OMI) column measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2), where their ratio serves as a proxy for the sensitivity. During the emission controls, HCHO/NO2 increased and indicated a NOx-limited regime, in contrast to the same period in the preceding three years when the ratio indicates volatile organic carbon (VOC)-limited and mixed NOx-VOC-limited regimes. After the emission controls were lifted, observed NO2 and HCHO/NO2 returned to their previous values. The 2005-2008 OMI record shows that this transition in regimes was unique as ozone production in Beijing was rarely NOx-limited. OMI measured summertime increases in HCHO of around 13% in 2008 compared to prior years, the same time period during which MODIS vegetation indices increased. The OMI HCHO increase may be due to higher biogenic emissions of HCHO precursors, associated with Beijing's greening initiative for the Olympics. However, NO2 and HCHO were also found to be well-correlated during the summer months. This indicates an anthropogenic VOC contribution from vehicle emissions to OMI HCHO and is a plausible explanation for the relative HCHO minimum observed in August 2008, concurrent with a minimum in traffic emissions. We calculated positive trends in 2005-2008 OMI HCHO and NO2 of about +1 x 10(exp 14) Molec/ square M-2 and +3 x 10(exp 13) molec CM-2 per month, respectively. The positive trend in NO2 may be an indicator of increasing vehicular traffic since 2005, while the positive trend in HCHO may be due to a combined increase in anthropogenic and biogenic emissions since 2005.

  19. Effect of ozone on leaf cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, E S; Thomson, W W; Mudd, J B

    1973-01-01

    The objective of this study was to determine the effects of ozone on membrane lipids and on the electron-density patterns of cell membranes in electron micrographs. Analysis of fatty acids from tobacco leaves fumigated with ozone indicated that there was no significant difference between the ozone-treated and the control plants in the relative amounts of the fatty acids. This suggests that if the primary site of ozone action is unsaturated lipids in membranes then the amounts of affected unsaturated fatty acids are too small to be detected by gas chromatography. In support of this, characteristic electron-microscopic images of membranes are observed in cells of fumigated leaves. However, measurements of the length and width of the chloroplasts and the determination of axial ratios indicated that the ozone treatment resulted in a shrinkage of the chloroplasts. In contrast, mitochondrial changes are apparently explained in terms of ozone-induced swelling. 33 references, 3 figures, 1 table.

  20. A 3 D regional scale photochemical air quality model application to a 3 day summertime episode over Paris; Un modele photochimique 3D de qualite de l`air a l`echelle regionale. Application a un episode de 3 jours a Paris en ete

    Energy Technology Data Exchange (ETDEWEB)

    Jaecker-Voirol, A.; Lipphardt, M.; Martin, B.; Quandalle, Ph.; Salles, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Carissimo, B.; Dupont, P.M.; Musson-Genon, L.; Riboud, P.M. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Aumont, B.; Bergametti, G.; Bey, I.; Toupanse, G. [Paris-12 Univ., 94 - Creteil (France). Laboratoire interuniversitaire des systemes atmospheriques]|[Paris-7 Univ., 75 (France)

    1998-03-01

    This paper presents AZUR, a 3D Eulerian photochemical air quality model for the simulation of air pollution in urban and semi-urban areas. The model tracks gas pollutant species emitted into the atmosphere by transportation and industrial sources, it computes the chemical reactions of these species under varying meteorological conditions (photolysis, pressure, temperature, humidity), their transport by wind and their turbulent diffusion as a function of air stability. It has a modular software structure which includes several components dedicated to specific processes: MERCURE, a meso-scale meteorological model to compute the wind field, turbulent diffusion coefficients, and other meteorological parameters; MIEL, an emission inventory model describing the pollutant fluxes from automotive transportation, domestic and industrial activities; MoCA a photochemical gas phase model describing the chemistry of ozone, NO{sub x}, an hydrocarbon compounds; AIRQUAL, a 3D Eulerian model describing the transport by mean wind flux and air turbulent diffusion of species in the atmosphere, associated with a Gear type chemical equation solver. The model has been applied to a 3-day summertime episode over Paris area. Simulation results are compared to ground level concentration measurements performed by the local monitoring network (Airparif). (authors) 22 refs.

  1. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  2. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity

    Science.gov (United States)

    E. Oksanen; E. Häikiö; J. Sober; D.F. Karnosky

    2003-01-01

    Saplings of three aspen (Populus tremuloides) genotypes and seedlings of paper birch (Betula papyrifera) were exposed to elevated ozone (1.5x ambient) and 560 p.p.m. CO2, singly and in combination, from 1998 at the Aspen-FACE (free-air CO2 enrichment) site (Rhinelander, USA).

  3. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  4. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres

    International Nuclear Information System (INIS)

    Golota, V.I.; Manuilenko, O.V.; Taran, G.V.; Dotsenko, Yu.V.; Pismenetskii, A.S.; Zamuriev, A.A.; Benitskaja, V.A.

    2011-01-01

    The ozone decay kinetics in the chemical reactor intended for used tyres disintegration is investigated experimentally and theoretically. Ozone was synthesized in barrierless ozonizers based on the streamer discharge. The chemical reactor for tyres disintegration in the ozone-air environment represents the cylindrical chamber, which feeds from the ozonizer by ozone-air mixture with the specified rate of volume flow, and with known ozone concentration. The output of the used mixture, which rate of volume flow is also known, is carried out through the ozone destructor. As a result of ozone decay in the volume and on the reactor walls, and output of the used mixture from the reactor, the ozone concentration in the reactor depends from time. In the paper, the analytical expression for dependence of ozone concentration in the reactor from time and from the parameters of a problem such as the volumetric feed rate, ozone concentration on the input in the reactor, volume flow rate of the used mixture, the volume of the reactor and the area of its internal surface is obtained. It is shown that experimental results coincide with good accuracy with analytical ones.

  5. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NARCIS (Netherlands)

    Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Frate, Del F.; Erbertseder, T.; Felder, M.D.; Flynn, L.E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O.P.; Kaifel, A.; Kelder, H.M.; Kerridge, B.J.; Lambert, J.-C.; Landgraf, J.; Latter, B.G.; Liu, X.; McDermid, I.S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; A, van der R.J.; Oss, van R.F.; Weber, M.; Zehner, C.

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information

  6. Towards the retrieval of tropospheric ozone with the ozone monitoring instrument (OMI)

    NARCIS (Netherlands)

    Mielonen, T.; De Haan, J.F.; Van Peet, J.C.A.; Eremenko, M.; Veefkind, J.P.

    2015-01-01

    We have assessed the sensitivity of the operational Ozone Monitoring Instrument (OMI) ozone profile retrieval algorithm to a number of a priori and radiative transfer assumptions. We studied the effect of stray light correction, surface albedo assumptions and a priori ozone profiles on the retrieved

  7. Ozone depletion potentials of halocarbons

    International Nuclear Information System (INIS)

    Karol, I.L.; Kiselev, A.A.

    1992-01-01

    The concept of ozone depletion potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacements for effects on ozone, but the methods, model assumptions and conditions of ODP calculation have not been analyzed adequately. In this paper, a model study of effects on ozone after the instantaneous releases of various amounts of CH 3 CCl 3 and of CHF 2 Cl(HCFC-22) in the several conditions of the background atmosphere are presented, aimed to understand the main connections of ODP values with the methods of their calculations. To facilitate the ODP computation in numerous versions for long after the releases, the above rather short-lived gases have been used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase atmosphere. The same variations are analyzed for the CFC-free atmosphere of 1960s conditions for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC- A scenario (business as usual). Recommendations of proper ways of ODP calculations are proposed for practically important cases

  8. Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures

    International Nuclear Information System (INIS)

    Amirov, R.H.; Asinovsky, E.I.; Samoilov, I.S.

    1996-01-01

    Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures was experimentally examined. The average ozone concentration in the volume of the discharge tube was less at cryogenic temperatures than at room temperatures. The production of condensed ozone have been determined by measuring the ozone concentration when the walls was heated and ozone evaporated. The energy yield of ozone generation at cryogenic temperatures has been calculated. The maximum value was 200 g/kWh

  9. Chromosome breakage in Vicia faba by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Fetner, R H

    1958-02-15

    Meristem cells of Vicia faba roots were exposed to an atmosphere of ozone and the fraction of cells showing chromosome aberrations were recorded. Chromosome aberrations were observed on a dose-response basis after exposing the seeds to 0.4 wt. percent ozone for 15, 30, and 60 minutes. The results of ozone, x-rays, and ozone and x-ray treatments are presented. A small number of root tips from each group was treated with colchicine and an analysis made of metaphase aberrations. These observations confirmed that the aberrations were all of the chromosome-type.

  10. Solar dynamics influence on the atmospheric ozone

    International Nuclear Information System (INIS)

    Gogosheva, T.; Grigorieva, V.; Mendeva, B.; Krastev, D.; Petkov, B.

    2007-01-01

    A response of the atmospheric ozone to the solar dynamics has been studied using the total ozone content data, taken from the satellite experiments GOME on ERS-2 and TOMS-EP together with data obtained from the ground-based spectrophotometer Photon operating in Stara Zagora, Bulgaria during the period 1999-2005. We also use data from surface ozone observations performed in Sofia, Bulgaria. The solar activity was characterized by the sunspot daily numbers W, the solar radio flux at 10.7 cm (F10.7) and the MgII wing-to-core ratio solar index. The impact of the solar activity on the total ozone has been investigated analysing the ozone response to sharp changes of these parameters. Some of the examined cases showed a positive correlation between the ozone and the solar parameters, however, a negative correlation in other cases was found. There were some cases when the sharp increases of the solar activity did not provoke any ozone changes. The solar radiation changes during an eclipse can be considered a particular case of the solar dynamics as this event causes a sharp change of irradiance within a comparatively short time interval. The results of both - the total and surface ozone measurements carried out during the eclipses on 11 August 1999, 31 May 2003 and 29 March 2006 are presented. It was found that the atmospheric ozone behavior shows strong response to the fast solar radiation changes which take place during solar eclipse. (authors)

  11. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    DEFF Research Database (Denmark)

    Klumpp, A.; Ansel, W.; Klumpp, G.

    2006-01-01

    within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone...... pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships...

  12. Validating Firewalls in Mobile Ambients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Hansen, René Rydhof

    1999-01-01

    The ambient calculus is a calculus of computation that allows active processes (mobile ambients) to move between sites. A firewall is said to be protective whenever it denies entry to attackers not possessing the required passwords. We devise a polynomial time algorithm for rejecting proposed...

  13. Modelling of individual subject ozone exposure response kinetics.

    Science.gov (United States)

    Schelegle, Edward S; Adams, William C; Walby, William F; Marion, M Susan

    2012-06-01

    A better understanding of individual subject ozone (O(3)) exposure response kinetics will provide insight into how to improve models used in the risk assessment of ambient ozone exposure. To develop a simple two compartment exposure-response model that describes individual subject decrements in forced expiratory volume in one second (FEV(1)) induced by the acute inhalation of O(3) lasting up to 8 h. FEV(1) measurements of 220 subjects who participated in 14 previously completed studies were fit to the model using both particle swarm and nonlinear least squares optimization techniques to identify three subject-specific coefficients producing minimum "global" and local errors, respectively. Observed and predicted decrements in FEV(1) of the 220 subjects were used for validation of the model. Further validation was provided by comparing the observed O(3)-induced FEV(1) decrements in an additional eight studies with predicted values obtained using model coefficients estimated from the 220 subjects used in cross validation. Overall the individual subject measured and modeled FEV(1) decrements were highly correlated (mean R(2) of 0.69 ± 0.24). In addition, it was shown that a matrix of individual subject model coefficients can be used to predict the mean and variance of group decrements in FEV(1). This modeling approach provides insight into individual subject O(3) exposure response kinetics and provides a potential starting point for improving the risk assessment of environmental O(3) exposure.

  14. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  15. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    Science.gov (United States)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  16. Study of ozone gas formed in the industrial radiation process with cobalt-60 and its impact on the environment

    International Nuclear Information System (INIS)

    Uzueli, Daniel Henrique

    2013-01-01

    The radiation processing is present in various products such as foods, medical disposable, electrical cables, gems, among others. This process aims to improve the properties, sterilize or sanitize irradiated products. In industrial irradiators facilities, electromagnetic radiation (gamma and X-rays) or electrons before they interact with the products in processing, there are a layer of air. To interact with this air layer, it causes radiolytic effects on the molecules present in the ambient atmosphere, and the main interaction are with the oxygen molecules that have their bonds broken, separating them into two highly reactive atoms that recombine with the other molecule of oxygen to form ozone gas. In this work it was studied the formation, decay and dispersion of ozone in industrial gamma irradiators facilities that use cobalt-60 as a source of radiation. The monitoring of ozone concentration was performed by optical absorption method in a commercial monitor. (author)

  17. Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement

    International Nuclear Information System (INIS)

    Wieser, G.; Matyssek, R.; Koestner, B.; Oberhuber, W.

    2003-01-01

    Sap-flow based measurements can be used to estimate ozone uptake at whole-tree and stand levels. - Micro-climatic and ambient ozone data were combined with measurements of sap flow through tree trunks in order to estimate whole-tree ozone uptake of adult Norway spruce (Picea abies), cembran pine (Pinus cembra), and European larch (Larix decidua) trees. Sap flow was monitored by means of the heat balance approach in two trees of each species during the growing season of 1998. In trees making up the stand canopy, the ozone uptake by evergreen foliages was significantly higher than by deciduous ones, when scaled to the ground area. However, if expressed per unit of whole-tree foliage area, ozone flux through the stomata into the needle mesophyll was 1.09, 1.18 and 1.40 nmol m -2 s -1 in Picea abies, Pinus cembra and Larix decidua, respectively. These fluxes are consistent with findings from measurements of needle gas exchange, published from the same species at the study site. It is concluded that the sap flow-based approach offers an inexpensive, spatially and temporally integrating way for estimating ozone uptake at the whole-tree and stand level, intrinsically covering the effect of boundary layers on ozone flux

  18. Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system

    International Nuclear Information System (INIS)

    Hofer, Nora; Alexou, Maria; Heerdt, Christian; Loew, Markus; Werner, Herbert; Matyssek, Rainer; Rennenberg, Heinz; Haberer, Kristine

    2008-01-01

    The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2 x O 3 ), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate. - Antioxidant defence in sun and shade needles of Picea abies under free-air ozone fumigation in the seasonal course of two consecutive years

  19. Deactivation of Legionella Pneumophila in municipal wastewater by ozone generated in arrays of microchannel plasmas

    Science.gov (United States)

    Dong, Shengkun; Li, Jun; Kim, Min-Hwan; Cho, Jinhoon; Park, Sung-Jin; Nguyen, Thanh H.; Eden, J. Gary

    2018-06-01

    A greater than four log10 reduction in the concentration of Legionella pneumophila in municipal wastewater has been achieved in 1 min with ozone produced by a microchannel plasma reactor. Requiring less than 22 W of electrical power, and ambient air as the feedstock gas, the microplasma ozone generator is robust and a promising alternative to conventional corona and dielectric barrier discharge (DBD) technologies. Contrary to previous studies, the Ct model for pathogen deactivation (i.e. rate proportional to the product of the available disinfectant concentration and the exposure duration) is found to be valid for L. pneumophila. Accordingly, wastewater-specific Ct equations have been developed to predict the deactivation of L. pneumophila in the secondary wastewater environment. Inactivation of this pathogen was found to be dependent on temperature only in the absence of wastewater organic matter (WOM). In the presence of WOM, pathogen deactivation is controlled by the disinfection contact time, initial ozone concentration (varied between 15 and 281 µg l‑1), and initial WOM loading. The data reported here will assist in the implementation of plasma ozone generators for L. pneumophila deactivation in cooling towers, point-of-use systems, and wastewater reclamation facilities.

  20. [Reactivity of several classes of pesticides with UV, ozone and permanganate].

    Science.gov (United States)

    Liu, Chao; Qiang, Zhi-min; Tian, Fang; Zhang, Tao

    2009-01-01

    The reactivity of eight classes of 26 extensively used pesticides, namely, organochlorines, thiadiazole, dinitroanaline, acetamides, triazines, uracil and carbamates, with three common disinfectants or oxidants including UV254 (average intensity of 10.8 mW x cm(-2)), ozone (dosage of 4.1 - 6.2 mg x L(-1)) and permanganate (dosage of 15.8 mg x L(-1)) was investigated. The reactions were allowed to proceed for 30 min at pH 7.0 and ambient temperature (25 degrees C +/- 3 degrees C). Results indicate that under the applied experimental conditions, more than 95% of chlorobenzilate, etridiazole, alachlor, butachlor, metolachlor, propachlor, atrazine, simazine, aldicarb, oxamyl and methiocarb could be effectively removed by UV254; and the removal efficiencies of other pesticides were in a range of 12.9%-77.7%. Ozone could completely degrade chloroneb, dichlorvos, bromacil, aldicarb, carbaryl, carbofuran, oxamyl and methiocarb; prometon and aldicarb sulfone were resistant to ozonation; and the removal efficiencies of other pesticides varied from 19.0% to 93.1%. Permanganate could fully degrade dichlorvos, aldicarb and methiocarb; organochlorines, dinitroanaline, thiadiazole, acetamides and other carbamates were resistant to permanganate oxidation; and the removal efficiencies of other pesticides ranged from 16.0% to 88.2%. If the practical dosage applied in drinking water treatment is considered, it is expected that most of the pesticides will be completely degraded by ozone, a few by permanganate, but probably none by UV254 .

  1. Trends in Pinus ponderosa foliar pigment concentration due to chronic exposure of ozone and acid rain

    International Nuclear Information System (INIS)

    Neuman, L.; Houpis, J.; Anderson, P.

    1991-01-01

    To determine the effects of ozone and acid rain on mature Ponderosa pine trees, Lawrence Livermore National Lab. has collaborated with University of California Berkeley, University of California Davis, California State University Chico, and the US Forest Service at the latter's Chico Tree Improvement Center. Foliar tissue from mature grafted scions of Pinus ponderosa were exposed to two times ambient ozone for ten months and to acid rain (3.0 pH) weekly for 10 weeks using branch exposure chambers. Pigment extracts were analyzed spectrophotometrically for concentrations of chlorophylls a and b, and carotenoid pigments, at 662 nm, 644 nm, and 470 nm, respectively. Pigment concentrations were expressed on a surface area basis. Preliminary results revealed that chlorophyll a showed a downward trend due to the ozone treatment. Acid rain caused no effects on these three pigments, however, chlorophyll b showed an upward trend due to the interaction of ozone and acid rain. The carotenoid pigments showed no changes due to the treatments either singly, or in combination

  2. Leachate Treatment from Sarimukti Landfill Using Ozone with Sludge from Water Treatment Plant as a Catalyst

    Directory of Open Access Journals (Sweden)

    Yudha Ramdhani Muhammad

    2018-01-01

    Full Text Available Leachate is the liquid waste from anaerobic decomposition in a landfill. The ozonation process can be used for leachate treatment. Sludge from sedimentation in water treatment plant contains 5.96% of Al and 9.35% of Si which can affect of its cation exchange capacity and affects the active site in the catalyst. This study aims to determine the effectivity of sludge in the ozonation process to treat leachate. A 1,5 L semi-batch reactor containing 1 L sample was used in this experiment with the rate of oxygen supply was at 4 L/min taken from ambient air. Two groups of sludge weighing 1.5 grams, 3.0 grams and 4.5 grams were used and activate with physically and chemically activated. The best result was obtained by the physically activated sludge with mass of 4.5 gram O3-L-4,5 AF. The differences of removal efficiency between O3-L-4,5 AF with the control (O3 for turbidity were respectively 13.02% and 7.81%, for EC were 10.57% and 8.29%, for COD were 49.44% and 37.50%, and for residual ozone concentration at the end of contact time were 7.6 mg/L and 9.7 mg/L. It can be concluded that activaed sludge and ozonation can be used as a catalyst in leachate treatment.

  3. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  4. Ozone and NOx chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI data

    Directory of Open Access Journals (Sweden)

    T. P. Canty

    2015-10-01

    Full Text Available Regulatory air quality models, such as the Community Multiscale Air Quality model (CMAQ, are used by federal and state agencies to guide policy decisions that determine how to best achieve adherence with National Ambient Air Quality Standards for surface ozone. We use observations of ozone and its important precursor NO2 to test the representation of the photochemistry and emission of ozone precursors within CMAQ. Observations of tropospheric column NO2 from the Ozone Monitoring Instrument (OMI, retrieved by two independent groups, show that the model overestimates urban NO2 and underestimates rural NO2 under all conditions examined for July and August 2011 in the US Northeast. The overestimate of the urban to rural ratio of tropospheric column NO2 for this baseline run of CMAQ (CB05 mechanism, mobile NOx emissions from the National Emissions Inventory; isoprene emissions from MEGAN v2.04 suggests this model may underestimate the importance of interstate transport of NOx. This CMAQ simulation leads to a considerable overestimate of the 2-month average of 8 h daily maximum surface ozone in the US Northeast, as well as an overestimate of 8 h ozone at AQS sites during days when the state of Maryland experienced NAAQS exceedances. We have implemented three changes within CMAQ motivated by OMI NO2 as well as aircraft observations obtained in July 2011 during the NASA DISCOVER-AQ campaign: (a the modeled lifetime of organic nitrates within CB05 has been reduced by a factor of 10, (b emissions of NOx from mobile sources has been reduced by a factor of 2, and (c isoprene emissions have been reduced by using MEGAN v2.10 rather than v2.04. Compared to the baseline simulation, the CMAQ run using all three of these changes leads to considerably better simulation of column NO2 in both urban and rural areas, better agreement with the 2-month average of daily 8 h maximum ozone in the US Northeast, fewer number of false positives of an ozone exceedance

  5. Salud ambiental: conceptos y actividades

    Directory of Open Access Journals (Sweden)

    Gonzalo A. Ordóñez

    2000-03-01

    Full Text Available La finalidad del trabajo es aportar información y propuestas conceptuales que faciliten la tarea de quienes tienen a su cargo la sistematización institucional de la salud ambiental. Se hace un análisis de la noción de "ambiente" para la cual se sugiere una definición, y se examina el lugar de la salud ambiental en el contexto de los problemas ambientales y sus vertientes "verde" y "azul". Se examinan denominaciones equivalentes de salud ambiental y se introducen los servicios de salud ambiental. Se proporcionan varias definiciones y se da la oficial de salud ambiental adoptada por la OMS en Sofía, Bulgaria (1993. A continuación se transcriben las áreas básicas que a la salud ambiental le han asignado diversas organizaciones o reuniones, como la OPS, la OMS, el Programa 21 y otros. A partir de aquí se construye un repertorio bastante completo de áreas y subáreas y se encuentra que todos los listados son, en realidad, una reunión asistemática de tres tipos de constituyentes: determinantes (factores o hechos de la realidad física, procesos (conjuntos de intervenciones y funciones (conjuntos de acciones de gestión, los cuales pueden enfocarse matricialmente y llevan a individualizar actividades de los servicios de salud ambiental. Se proponen unas reglas de operación que permiten, en una especie de álgebra, construir expresiones para especificar con precisión las actividades y sus agregados. De este modo se logra disponer de un lenguaje simbólico común que puede ayudar a la intercomunicación, enseñanza e investigación en el ámbito de la salud ambiental.

  6. Ozone measurements 2010. [EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hjellbrekke, Anne-Gunn; Solberg, Sverre; Fjaeraa, Ann Mari

    2012-07-01

    From the Introduction: Ozone is a natural constituent of the atmosphere and plays a vital role in many atmospheric processes. However, man-made emissions of volatile organic compounds and nitrogen oxides have increased the photochemical formation of ozone in the troposphere. Until the end of the 1960s the problem was basically believed to be one of the big cities and their immediate surroundings. In the 1970s, however, it was found that the problem of photochemical oxidant formation is much more widespread. The ongoing monitoring of ozone at rural sites throughout Europe shows that episodes of high concentrations of ground-level ozone occur over most parts of the continent every summer. During these episodes the ozone concentrations can reach values above ambient air quality standards over large regions and lead to adverse effects for human health and vegetation. Historical records of ozone measurements in Europe and North America indicate that in the last part of the nineteenth century the values were only about half of the average surface ozone concentrations measured in the same regions during the last 10-15 years (Bojkov, 1986; Volz and Kley, 1988).The formation of ozone is due to a large number of photochemical reactions taking place in the atmosphere and depends on the temperature, humidity and solar radiation as well as the primary emissions of nitrogen oxides and volatile organic compounds. Together with the non-linear relationships between the primary emissions and the ozone formation, these effects complicates the abatement strategies for ground-level ozone and makes photochemical models crucial in addition to the monitoring data. The 1999 Gothenburg Protocol is designed for a joint abatement of acidification, eutrophication and ground-level ozone. It has been estimated that once the Protocol is implemented, the number of days with excessive ozone levels will be halved and that the exposure of vegetation to excessive ozone levels will be 44% down on 1990

  7. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  8. 21 CFR 173.368 - Ozone.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and processing of foods, including meat and poultry (unless such use is precluded by standards of identity in 9...

  9. Tropospheric ozone. Formation, properties, effects. Expert opinion

    International Nuclear Information System (INIS)

    Elstner, E.F.

    1996-01-01

    The formation and dispersion of tropospheric ozone are discussed only marginally in this expert opinion; the key interest is in the effects of ground level ozone on plants, animals, and humans. The expert opinion is based on an analysis of the available scientific publications. (orig./MG) [de

  10. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  11. 21 CFR 184.1563 - Ozone.

    Science.gov (United States)

    2010-04-01

    ...: Category of food Maximum treatment level in food Functional use Bottled water that prior to ozonation meets... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ozone. 184.1563 Section 184.1563 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  12. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    International Nuclear Information System (INIS)

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  13. Information content of ozone retrieval algorithms

    Science.gov (United States)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  14. Ozone Gardens for the Citizen Scientist

    Science.gov (United States)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  15. Computational analysis of ozonation in bubble columns

    International Nuclear Information System (INIS)

    Quinones-Bolanos, E.; Zhou, H.; Otten, L.

    2002-01-01

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  16. Ozone reaction on slime mold. [Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, F.

    1972-01-01

    To determine the effect of ozone, the motive force responsible for protoplasmic streaming in the slime mold, Physarum polycephalum was measured by the Double chamber method which was developed by Kamiya. The effects of ozone on the motive force were investigated by comparison of the Dynamoplasmogram of controls with that of ozone exposure. In the case of high concentration exposure, thickening of plasmagel, inversion of the period of flow and reduction of the extreme point were observed. Succinoxidase of exposed homogenates showed stronger activity than that of controls. It is certain that the Pasteur reaction takes place when plasmodium is kept under high ozone exposure condition. It appears that ozone inhibited a part of the process of glycolysis. 32 references, 8 figures.

  17. The depletion of the stratospheric ozone layer

    International Nuclear Information System (INIS)

    Sabogal Nelson

    2000-01-01

    The protection of the Earth's ozone layer is of the highest importance to mankind. The dangers of its destruction are by now well known. The depletion of that layer has reached record levels. The Antarctic ozone hole covered this year a record area. The ozone layer is predicted to begin recovery in the next one or two decades and should be restored to pre-1980 levels by 2050. This is the achievement of the regime established by the 1985 Vienna Convention for the Protection of the Ozone Layer and the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer. The regime established by these two agreements has been revised, and made more effective in London (1990), Copenhagen (1992), Vienna (1995), and Beijing (1999)

  18. Ozone sensitivity of plants in natural communities

    Energy Technology Data Exchange (ETDEWEB)

    Treshow, M; Stewart, D

    1973-07-01

    Field fumigation studies conducted in grassland, oak, aspen, and conifer, communities established the injury threshold of prevalent plant species to ozone. Several important species, including Bromus tectorum, Quercus gambelii, and Populus tremuloides, were injured by a single 2-hours exposure to 15 pphM ozone. Over half the perennial forbs and woody species studied were visibly injured at concentrations of 30 pphM ozone or less. It is postulated that lower concentrations at prolonged or repeated exposures to ozone may impair growth and affect community vigor and stability. Continued exposure of natural plant communities to ozone is expected to initiate major shifts in the plant composition of communities. 10 references, 4 figures, 1 table.

  19. Limitations of ambient air quality standards in evaluating indoor environments

    International Nuclear Information System (INIS)

    Peterson, J.E.

    1992-01-01

    Analysis of the kinds of data used for the derivation of ambient air quality standards (AAQSs) for carbon monoxide and ozone shows that these values are based on the toxicology of the materials and thus are suitable for evaluating potential health effects of indoor environments, especially on the very young, the aged, and the infirm. A similar analysis shows that the AAQSs for suspended particulate matter, nitrogen dioxide, and sulfur dioxide are strictly empirical and that they should not be used for any but their first, intended purpose. The AAQSs for non-methane hydrocarbons are based on photochemical smog production, not injury of any kind, and have no utility for indoor environment evaluation

  20. CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site

    Science.gov (United States)

    Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon

    2018-03-01

    All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.

  1. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations

    International Nuclear Information System (INIS)

    Liu Xiaodong; Bai Aijuan; Liu Changhai

    2009-01-01

    The diurnal patterns of variation of summertime precipitation over the Tibetan Plateau were first investigated using the TRMM multi-satellite precipitation analysis product for five summer seasons (i.e. June to August for 2002-2006). Both hourly precipitation amount and precipitation frequency exhibit pronounced daily variability with an overall late-afternoon-evening maximum and a dominant morning minimum. A notable exception is the prevalent nocturnal maximum around the periphery of the Plateau. In terms of the normalized harmonic amplitude, the diurnal signal shows significant regional contrast with the strongest manifestation over the central Plateau and the weakest near the periphery. This remarkable spatial dependence in daily rainfall cycles is clear evidence of orographic and heterogeneous land-surface impacts on convective development. Using six-hourly NCEP FNL data, we then examined the diurnal variability in the atmospheric circulation and thermodynamics in this region. The results show that the Plateau heats (cools) the overlying atmosphere during the day (night) more than the surrounding areas, and as a consequence a relatively stronger confluent circulation in this region occurs during the day than during the night, consistent with the diurnal rainfall cycles. Moreover, the regions with large low-level convergence and upper-level divergence correspond to the strong diurnal rainfall variations. The reversed daily alterations of convergence-divergence patterns in the vicinity of the Plateau edges are in agreement with the observed nighttime rainfall peak therein. This study further demonstrates the importance of the Tibetan Plateau in regulating regional circulation and precipitation.

  2. Photosynthesis, chloroplast pigments, and antioxidants in Pinus canariensis under free-air ozone fumigation

    International Nuclear Information System (INIS)

    Then, Ch.; Herbinger, K.; Luis, V.C.; Heerdt, C.; Matyssek, R.; Wieser, G.

    2009-01-01

    High O 3 levels, driving uptake and challenging defense, prevail on the Canary Islands, being associated with the hot and dry summers of the Mediterranean-type climate. Pinus canariensis is an endemic conifer species that forms forests across these islands. We investigated the effects of ozone on photosynthesis and biochemical parameters of P. canariensis seedlings exposed to free-air O 3 fumigation at Kranzberg Forest, Germany, where ambient O 3 levels were similar to those at forest sites in the Canary Islands. The twice-ambient O 3 regime (2xO 3 ) neither caused visible injury-like chlorotic or necrotic spots in the needles nor significantly affected violaxanthin, antheraxanthin and zeaxanthin levels and the de-epoxidation state of the xanthophyll cycle. In parallel, stomatal conductance for water vapour, net photosynthesis, intercellular CO 2 concentration, chlorophyll fluorescence parameters, as well as antioxidant levels were hardly affected. It is concluded that presently prevailing O 3 levels do not impose severe stress on P. canariensis seedlings. - Twice-ambient ozone does not significantly affect the physiological behavior of Pinus canariensis seedlings

  3. ACCOUNTABILITY WITHIN NEW OZONE STANDARDS

    Science.gov (United States)

    Over the past two decades, as part of the effort to develop the National Ambient Air Quality Standards (NAAQS), researchers have been using real human exposure data to help analyze the magnitude and extent of the risks from specific or multiple pollutants. Surrogates for exposur...

  4. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  5. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  6. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery?

    Directory of Open Access Journals (Sweden)

    J.-U. Grooß

    2011-12-01

    Full Text Available Balloon-borne observations of ozone from the South Pole Station have been reported to reach ozone mixing ratios below the detection limit of about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios increase to above 1 ppmv on the 70 hPa level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes determining how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS. As ozone falls below about 0.5 ppmv, a balance is maintained by gas phase production of both HCl and HOCl followed by heterogeneous reaction between these two compounds in these simulations. Thereafter, a very rapid, irreversible chlorine deactivation into HCl can occur, either when ozone drops to values low enough for gas phase HCl production to exceed chlorine activation processes or when temperatures increase above the polar stratospheric cloud (PSC threshold. As a consequence, the timing and mixing ratio of the minimum ozone depends sensitively on model parameters, including the ozone initialisation. The subsequent ozone increase between October and December is linked mainly to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  7. Ozone therapy and restorative dentistry: a literature review ...

    African Journals Online (AJOL)

    This approach is being further reinforced with the emergence of ozone therapy in the management of tooth decay. Ozone therapy is the treatment of the tooth with a mixture of oxygen and ozone. The aim of this review was to provide a comprehensive literature on ozone therapy and on the different areas of restorative dental ...

  8. Study: Ozone Layer's Future Linked Strongly to Changes in Climate

    Science.gov (United States)

    balloon to measure of the vertical profile of the ozone layer. NOAA scientists launch an ozonesonde via balloon to measure of the vertical profile of the ozone layer. NOAA releases ozonesondes at eight sites to continuously monitor stratospheric ozone. Download here. (Credit: NOAA) The ozone layer - the thin

  9. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Evora Univ. (PT). Goephysics Centre of Evora (CGE); Lopez, M.; Banon, M. [Agenica Estatal de Meteorologia (AEMET), Madrid (Spain); Costa, M.J.; Silva, A.M. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Evora Univ. (Portugal). Dept. of Physics; Serrano, A. [Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica; Bortoli, D. [Evora Univ. (PT). Goephysics Centre of Evora (CGE); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75 . In addition, the relative differences remain lower than 2% at 85 . These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7{+-}1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80 . Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes. (orig.)