WorldWideScience

Sample records for sulfur colloid scans

  1. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by {sup 99m} technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian [Dept. of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore (Singapore)

    2014-06-15

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a {sup 99m}technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of {sup 99m} technetium sulfur colloid SPECT/CT imaging in this rare condition.

  2. Reversible functional asplenia in chronic aggressive hepatitis. [/sup 99m/Tc-sulfur colloid

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, V.M.; Spencer, R.P.; Sziklas, J.J.

    1979-01-01

    A 61-year-old man was presented with aggressive hepatitis. Howell--Jolly bodies were present in circulating erythrocytes and the spleen failed to accumulate intravenously administered Tc-99m sulfur colloid. The patient thus demonstrated functional asplenia. He was treated with high doses of steroids. Four years later, Howell--Jolly bodies were no longer present in circulating erythrocytes. In addition, the spleen had regained the ability to accumulate intravenously injected radiocolloid. Hence, the patient had reversed his functional asplenia. The reported cases of this disorder (reversible functional asplenia) were reviewed and a preliminary classification was proposed.

  3. Comparison of technetium-99m sulfur colloid and technetium-99m albumin colloid labeled solid meals for gastric emptying studies.

    Science.gov (United States)

    Taillefer, R; Douesnard, J M; Beauchamp, G; Guimond, J

    1987-08-01

    A Tc-99m albumin colloid (Tc-AC) kit has been introduced as an alternative to Tc-99m sulfur colloid (Tc-SC) for liver-spleen imaging. Since there is no need for boiling, the use of Tc-AC reduces preparation time and manipulation. Tc-SC is one of the most commonly used radiopharmaceuticals for the labeling of solid-phase markers in gastric emptying studies. In vitro studies were performed to evaluate the labeling efficiency and stability in hydrochloric acid and in human gastric juice of intracellularly labeled chicken liver and scrambled eggs labeled with Tc-SC and Tc-AC. Gastric emptying studies also were performed on 20 healthy volunteers with both Tc-SC and Tc-AC labeled scrambled egg sandwiches. There was no significant difference between Tc-SC and Tc-AC in the labeling efficiency of chicken liver (98% +/- 1% for Tc-SC, 96% +/- 2% for Tc-AC) and scrambled eggs (92% +/- 2% for Tc-SC, 91% +/- 3% for Tc-AC). However, both Tc-SC and Tc-AC labeled scrambled eggs showed a lower stability than chicken liver, particularly in human gastric juice. Gastric emptying curves from both meals in 20 normal subjects were also similar, with a mean half-emptying time of 85 +/- 13 minutes and 87 +/- 16 minutes for the meals containing Tc-SC and Tc-AC respectively. Tc-AC is a reliable alternative to Tc-SC as a radiotracer for solid-phase gastric emptying studies.

  4. Estimation of Residual Peritoneal Volume Using Technetium-99m Sulfur Colloid Scintigraphy.

    Science.gov (United States)

    Katopodis, Konstantinos P; Fotopoulos, Andrew D; Balafa, Olga C; Tsiouris, Spyridon Th; Triandou, Eleni G; Al-Bokharhli, Jichad B; Kitsos, Athanasios C; Dounousi, Evagelia C; Siamopoulos, Konstantinos C

    2015-01-01

    Residual peritoneal volume (RPV) may contribute in the development of ultrafiltration failure in patients with normal transcapillary ultrafiltration. The aim of this study was to estimate the RPV using intraperitoneal technetium-99m Sulfur Colloid (Tc). Twenty patients on peritoneal dialysis were studied. RPV was estimated by: 1) intraperitoneal instillation of Tc (RPV-Tc) and 2) classic Twardowski calculations using endogenous solutes, such as urea (RPV-u), creatinine (RPV-cr), and albumin (RPV-alb). Each method's reproducibility was assessed in a subgroup of patients in two consecutive measurements 48 h apart. Both methods displayed reproducibility (r = 0.93, p = 0.001 for RPVTc and r = 0.90, p = 0.001 for RPV-alb) between days 1 and 2, respectively. We found a statistically significant difference between RPV-Tc and RPV-cr measurements (347.3 ± 116.7 vs. 450.0 ± 67.8 ml; p =0.001) and RPV-u (515.5 ± 49.4 ml; p < 0.001), but not with RPV-alb (400.1 ± 88.2 ml; p = 0.308). A good correlation was observed only between RPV-Tc and RPV-alb (p < 0.001). The Tc method can estimate the RPV as efficiently as the high molecular weight endogenous solute measurement method. It can also provide an imaging estimate of the intraperitoneal distribution of RPV.

  5. Unfiltered sulfur colloid and sentinel node biopsy for breast cancer: technical and kinetic considerations.

    Science.gov (United States)

    Moffat, F L; Gulec, S A; Sittler, S Y; Serafini, A N; Sfakianakis, G N; Boggs, J E; Franceschi, D; Pruett, C S; Pop, R; Gurkok, C; Livingstone, A S; Krag, D N

    1999-12-01

    There are few clinical data on technical limitations and radiocolloid kinetics related to sentinel lymph node (SLN) biopsy for breast cancer. In 70 clinical node-negative patients, unfiltered 99mTc sulfur-colloid was injected peritumorally and cutaneous hot spots were mapped with a gamma probe. SLN biopsy was performed followed by axillary lymph node dissection. Missed radioactive nodes (nodes not under hot spots) were removed from axillary lymph node dissection specimens and submitted separately. At least one hot spot was mapped in 69 patients (98%) and SLNs were retrieved in 62 (89%). No radiolabeled nodes were found in five (7%) and only nodes not under hot spots were retrieved in three patients (4%). Residual nodes not under hot spots were retrieved in 17 patients (24%) in whom at least one SLN specimen had been found. Diffuse radioactivity around the radiocolloid injection site impeded identification of all radiolabeled nodes during SLN biopsy, and was responsible for one of two false negatives (20 node-positive patients; false-negative rate 10%). Hot spot radioactivity, number of radiolabeled nodes, and nodal radioactivity did not change with time interval from radiocolloid injection to surgery (0.75-6.25 hours). Although SLN localization rate is high, intraparenchymal injection may predispose to failure of radiocolloid migration, failure to identify SLNs because of high radiation background, and false-negative outcomes. Alternative routes of radiocolloid administration should be explored.

  6. Assessment of gastric motility using meal labeled with technetium-99m sulfur colloid

    Energy Technology Data Exchange (ETDEWEB)

    Matolo, N.M.; Stadalnik, R.C.

    1983-12-01

    During a 2 year period, 83 patients with gastric motility problems were evaluated using radionuclide imaging. The patients presented with epigastric distress, postprandial fullness, pain, nausea, vomiting, and diarrhea; signs and symptoms suggestive of either gastroparesis or gastric outlet obstruction. Upper gastrointestinal series or endoscopy, or both, demonstrated no mechanical obstruction. After oral administration of a 300 g meal labeled with 600 muCi of technetium-99m sulfur colloid, a gastric emptying study consisting of serial images and data acquisition was performed. Of the patients studied, 52 had had peptic ulcer surgery, 17 were suspected of having gastroesophageal reflux, 8 were diabetic and suspected of having visceral enteropathy, and 6 had a history of irritable bowel syndrome. The normal mean gastric half emptying time was 77 +/- 16 minutes. Of the patients who had had gastric surgery, 90.4 percent had abnormal emptying: 69.2 percent had delayed gastric emptying and 21.2 percent had rapid gastric emptying time; 9.6 percent had normal emptying time. Of the gastroesophageal reflux group, all but two had normal gastric emptying time; 65 percent demonstrated gastroesophageal reflux within 15 minutes. Two of the patients with irritable bowel syndrome had prolonged emptying; the rest had normal emptying. All diabetic patients with gastroparesis had prolonged gastric emptying time, and all responded favorably to metoclopramide. Of the patients who previously had peptic ulcer surgery and had prolonged emptying time, 72 percent also responded favorably to metoclopramide. We conclude that radionuclide gastric imaging is a useful diagnostic test for the measurement of gastric emptying in patients with a variety of gastrointestinal motility disorders and may be helpful in assessing medical therapy and selecting those who may be candidates for surgery.

  7. Filtered versus unfiltered technetium sulfur colloid in lymphatic mapping: a significant variable in a pig model.

    Science.gov (United States)

    Tafra, L; Chua, A N; Ng, P C; Aycock, D; Swanson, M; Lannin, D

    1999-01-01

    Lymphatic mapping with sentinel node biopsy is becoming a standard diagnostic test for melanoma and is being extensively investigated for use with other soft tissue tumors. Both filtered and unfiltered technetium sulfur colloid (Tc 99) have been used for preoperative lymphoscintigraphy, as well as intraoperative lymphatic mapping, and it is not clear if one is preferable over the other. The purpose of this study was to compare these two preparations to determine whether the form of Tc 99 used affects the results of lymphatic mapping. Mock skin sites were placed on each extremity of 12 domestic pigs totaling 48 skin sites. Twenty-four of the lesions were injected with unfiltered Tc 99; the remaining 24 were injected with Tc 99 passed over a 0.2-microm filter. Both preparations of Tc 99 were mixed with 1 mL of isosulfan blue before injection. Sentinel node dissection was performed using a gamma probe, with counts recorded over a 10-second period and timed to begin 5 minutes after injection. Sentinel nodes were identified in all 48 lymph node basins draining the mock sites and characterized as hot (10x background), blue, or both. Significantly more sentinel nodes were found in the filtered (105 total, X = 4.4/basin), than in the unfiltered group (total 53, X = 2.2/basin, P unfiltered group (P unfiltered group (X = 2670+/-1829 vs. X = 6027+/-4333; P = .003). Use of filtered Tc 99 results in more sentinel nodes (both hot/blue and hot non-blue) and a higher proportion of secondary lymph nodes. These findings indicate that the Tc 99 preparation used is a significant variable in the results of lymphatic mapping. It is critical that future clinical studies document which preparation of Tc 99 was used. Only large clinical trials will be able to determine whether the additional nodes found with filtered Tc 99 increase the sensitivity of the technique or merely increase the number of nodes that must be removed unnecessarily.

  8. TU-F-12A-04: Differential Radiation Avoidance of Functional Liver Regions Defined by 99mTc-Sulfur Colloid SPECT/CT with Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, S; Miyaoka, R; Kinahan, P; Sandison, G; Vesselle, H; Nyflot, M; Apisarnthanarax, S [University of Washington, Seattle, WA (United States); Saini, J; Wong, T [SCCA Proton Therapy: A Procure Center, Seattle, WA (United States)

    2014-06-15

    Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined by liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with proton

  9. Particle-size and radiochemical purity evaluations of filtered 99mTc-sulfur colloid prepared with different heating times.

    Science.gov (United States)

    Michenfelder, Maggie M; Bartlett, Lucas J; Mahoney, Douglas W; Herold, Thomas J; Hung, Joseph C

    2014-12-01

    Sentinel node lymphoscintigraphy using colloidal particles has become common practice at many institutions. The ideal particle size for colloids such as filtered (99m)Tc-sulfur colloid ((99m)Tc-FSC) in sentinel node studies is 15-100 nm. It is reported that the use of a reduced heating time during the reconstitution process results in an increased number of smaller particles (15 nm) would be of benefit in sentinel node studies. This study sought to better define particle size by using electron microscopy, as well as to evaluate the radiochemical purity (RCP) of (99m)Tc-FSC at various time points after filtration. One group of (99m)Tc-sulfur colloid ((99m)Tc-SC) preparations was reconstituted using the standard heating time of 5 min, and another group was prepared using a reduced heating time of 3 min. The (99m)Tc-SC preparations were passed through a 0.2-μm filter, and retained filter activity was measured. RCP values were collected at 0, 1, 3, and 6 h after filtration, and the particle sizes were measured at 0 and 6 h after filtration. Average RCP values (± SD) for (99m)Tc-FSC with 5-min heating were 98.4% ± 3.0% and 98.3% ± 1.8% for 0 h and 6 h, respectively (n = 6). Average RCP values for (99m)Tc-FSC with 3-min heating were 98.4% ± 4.1% and 96.9% ± 3.1% for 0 h and 6 h, respectively (n = 6). Electron microscopy data showed that median particle sizes for the 3-min heating at 0 and 6 h were 24 and 35 nm, respectively. Median particle sizes for the 5-min heating at 0 and 6 h were 29 and 27 nm, respectively. The proportion of particles within the ideal range for sentinel node lymphoscintigraphy was similar between the heating methods (91.1% for 3-min heating at 0 h and 88.8% for 5-min heating at 0 h, P = 0.1851). Our results indicate that although there are slight significant differences in RCP value, particle size, and particle number for (99m)Tc-FSC prepared using either a standard or a reduced heating time, both methods produce particles within the optimum

  10. Scanning electron and atomic force microscopy investigation of extracellular polymeric substances, hematite and EPS-hematite colloids and aggregates

    Science.gov (United States)

    Wieczorek, Arkadiusz K.; Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Natural colloids are involved in a multitude of biogeochemical and physicochemical processes in aqueous systems. However, the chemical composition, mineralogical diversity and morphological variability of natural colloids are the reasons for the difficulty to understand their formation, stability and mechanisms of interaction with other solutes. In this study we explore the effects of different amount of extracellular polymeric substances (EPS) of Bacillus subtilis on the aggregation and stability of hematite colloids. The hematite colloids were synthesized using Schwertmann and Cornell method [1], where ferric nitrite solution slowly drops into the boiling water. Bacillus subtilis EPS was obtained using Omoike and Chorover method [2], where EPS was precipitated from the supernatant solution by using three volumes of cold ethanol. Then the mixture was centrifuged and dialyzed to remove ethanol and residual media components and stored at -20C. Synthetic hematite was mixed with different amounts of EPS resulting in solutions with EPS/hematite ratios of 1:5, 1:2, 1:0.5 and 1:0.2. Droplets of the colloidal suspension were put on silicon wafer and subject to air drying. The wafers were then analyzed by Scanning Electron Microscopy (SEM) with energy-dispersive Xray spectroscopy and Atomic Force Microscopy (AFM). A control sample with pure synthetic hematite colloid was also prepared and analyzed. Pure hematite colloids form homogenic distribution of relatively small aggregates of 40 to 100 nm size. Theses aggregates loosely connect to each other creating skeletal or fisher-net like structures. The smallest amount of EPS results in coagulation of hematite in very large (up to 80 µm) islands/aggregates of tightly packed hematite nanoparticles. Adding EPS decreases the size of islands to the point where again only 40 to 100 nm size aggregates are visible, but they are strictly separated in comparison to the pure hematite colloid. Although separation of hematite aggregates

  11. Measuring total liver function on sulfur colloid SPECT/CT for improved risk stratification and outcome prediction of hepatocellular carcinoma patients.

    Science.gov (United States)

    Bowen, Stephen R; Chapman, Tobias R; Borgman, Joshua; Miyaoka, Robert S; Kinahan, Paul E; Liou, Iris W; Sandison, George A; Vesselle, Hubert J; Nyflot, Matthew J; Apisarnthanarax, Smith

    2016-12-01

    Assessment of liver function is critical in hepatocellular carcinoma (HCC) patient management. We evaluated parameters of [(99m)Tc] sulfur colloid (SC) SPECT/CT liver uptake for association with clinical measures of liver function and outcome in HCC patients. Thirty patients with HCC and variable Child-Turcotte-Pugh scores (CTP A5-C10) underwent [(99m)Tc]SC SPECT/CT scans for radiotherapy planning. Gross tumor volume (GTV), anatomic liver volume (ALV), and spleen were contoured on CT. SC SPECT image parameters include threshold-based functional liver volumes (FLV) relative to ALV, mean liver-to-spleen uptake ratio (L/Smean), and total liver function (TLF) ratio derived from the product of FLV and L/Smean. Optimal SC uptake thresholds were determined by ROC analysis for maximizing CTP classification accuracy. Image metrics were tested for rank correlation to composite scores and clinical liver function parameters. Image parameters of liver function were tested for association to overall survival with Cox proportional hazard regression. Optimized thresholds on SC SPECT were 58 % of maximum uptake for FLV, 38 % for L/Smean, and 58 % for TLF. TLF produced the highest CTP classification accuracy (AUC = 0.93) at threshold of 0.35 (sensitivity = 0.88, specificity = 0.86). Higher TLF was associated with lower CTP score: TLFA = 0.6 (0.4-0.8) versus TLFB = 0.2 (0.1-0.3), p  0.63). Only TLF >0.30 was independently associated with overall survival when adjusting for CTP class (HR = 0.12, 95 % CI = 0.02-0.58, p = 0.008). SC SPECT/CT liver uptake correlated with differential liver function. TLF was associated with improved overall survival and may aid in personalized oncologic management of HCC patients.

  12. Assessment of Spleen Filtrate Function in Renal Transplant Recipients Using Technetium-99m Stannous Colloid Liver-Spleen Scan.

    Science.gov (United States)

    Araújo, N C; Neves, M B; Mandarim-de-Lacerda, C A; Orlando, M M C

    Functional hyposplenism (FH) is indicated by an anatomically present spleen that fails to take up radiolabeled colloid. The occurrence of FH has been reported in a small group of renal transplant recipients based on hematologic parameters. The aim of this study was to replicate this association in a larger group of renal transplant recipients with the use of technetium-99m-stannous colloid liver-spleen scan to assess the spleen function. This survey based on single samples enrolled 101 unselected adult patients with functional kidney grafts >180 days after transplantation. All patients underwent (99m)Tc-stannous colloid scan to assess spleen function as well as bone marrow uptake of radiocolloid along with an anatomic and blood flow study of the spleen and kidney with the use of Doppler sonography. The prevalence of hyposplenism was 32.7% (33/101) for the cohort, and increased uptake of radiocolloid by the bone marrow was seen in 9.9% (10/101). According to the multivariate analysis, the frequency of hyposplenism was significantly influenced by indirect bilirubin and hemoglobin, and direct bilirubin and neutrophil count remained as independent predictors of bone marrow uptake. This study demonstrated that a group of renal transplant recipients has FH. In addition, bone marrow uptake might be interpreted as liver dysfunction. In this situation, the small amount of contrast (spleen compared with liver) would leave hyposplenism undiagnosed. Further prospective and longitudinal clinical studies are needed to determine the clinical impact of this condition on the management of renal transplant recipients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Intraoperative Injection of Technetium-99m Sulfur Colloid for Sentinel Lymph Node Biopsy in Breast Cancer Patients: A Single Institution Experience

    Directory of Open Access Journals (Sweden)

    Julian Berrocal

    2017-01-01

    Full Text Available Background. Most institutions require a patient undergoing sentinel lymph node biopsy to go through nuclear medicine prior to surgery to be injected with radioisotope. This study describes the long-term results using intraoperative injection of radioisotope. Methods. Since late 2002, all patients undergoing a sentinel lymph node biopsy at the Yale-New Haven Breast Center underwent intraoperative injection of technetium-99m sulfur colloid. Endpoints included number of sentinel and nonsentinel lymph nodes obtained and number of positive sentinel and nonsentinel lymph nodes. Results. At least one sentinel lymph node was obtained in 2,333 out of 2,338 cases of sentinel node biopsy for an identification rate of 99.8%. The median number of sentinel nodes found was 2 and the mean was 2.33 (range: 1–15. There were 512 cases (21.9% in which a sentinel node was positive for metastatic carcinoma. Of the patients with a positive sentinel lymph node who underwent axillary dissection, there were 242 cases (54.2% with no additional positive nonsentinel lymph nodes. Advantages of intraoperative injection included increased comfort for the patient and simplification of scheduling. There were no radiation related complications. Conclusion. Intraoperative injection of technetium-99m sulfur colloid is convenient, effective, safe, and comfortable for the patient.

  14. Intraoperative Injection of Technetium-99m Sulfur Colloid for Sentinel Lymph Node Biopsy in Breast Cancer Patients: A Single Institution Experience.

    Science.gov (United States)

    Berrocal, Julian; Saperstein, Lawrence; Grube, Baiba; Horowitz, Nina R; Chagpar, Anees B; Killelea, Brigid K; Lannin, Donald R

    2017-01-01

    Background. Most institutions require a patient undergoing sentinel lymph node biopsy to go through nuclear medicine prior to surgery to be injected with radioisotope. This study describes the long-term results using intraoperative injection of radioisotope. Methods. Since late 2002, all patients undergoing a sentinel lymph node biopsy at the Yale-New Haven Breast Center underwent intraoperative injection of technetium-99m sulfur colloid. Endpoints included number of sentinel and nonsentinel lymph nodes obtained and number of positive sentinel and nonsentinel lymph nodes. Results. At least one sentinel lymph node was obtained in 2,333 out of 2,338 cases of sentinel node biopsy for an identification rate of 99.8%. The median number of sentinel nodes found was 2 and the mean was 2.33 (range: 1-15). There were 512 cases (21.9%) in which a sentinel node was positive for metastatic carcinoma. Of the patients with a positive sentinel lymph node who underwent axillary dissection, there were 242 cases (54.2%) with no additional positive nonsentinel lymph nodes. Advantages of intraoperative injection included increased comfort for the patient and simplification of scheduling. There were no radiation related complications. Conclusion. Intraoperative injection of technetium-99m sulfur colloid is convenient, effective, safe, and comfortable for the patient.

  15. Scanning tunneling microscopy of sulfur and benzenethiol chemisorbed on Ru(0001) in 0.1 M HClO4.

    Science.gov (United States)

    Yang, Liang-Yueh Ou; Yau, Shueh-lin; Itaya, Kingo

    2004-05-25

    In situ scanning tunneling microscopy (STM) combined with linear sweep voltammetry was used to examine spatial structures of sulfur adatoms (SA) and benzenethiol (BT) molecules adsorbed on an ordered Ru(0001) electrode in 0.1 M HClO4. The Ru(0001) surface, prepared by mechanical polishing and electrochemical reduction at -1.5 V (vs RHE) in 0.1 M HClO4, contained atomically flat terraces with an average width of 20 nm. Cyclic voltammograms obtained with an as-prepared Ru(0001) electrode in 0.1 M HClO4 showed characteristics nearly identical to those of Ru(0001) treated in high vacuum. High-quality STM images were obtained for SA and BT to determine their spatial structures as a function of potential. The structure of the SA adlayer changed from (2 x mean square root of 3)rect to domain walls to (mean square root of 7 x mean square root of 7)R19.1 degrees and then to disordered as the potential was scanned from 0.3 to 0.6 V. In contrast, molecules of BT were arranged in (2 x mean square root of 3)rect between 0.1 and 0.4 V, while they were disordered at all other potentials. Adsorption of BT molecules was predominantly through the sulfur headgroup. Sulfur adatoms and adsorbed BT molecules were stable against anodic polarization up to 1.0 V (vs RHE). These two species were adsorbed so strongly that their desorption did not occur even at the onset potential for the reduction of water in 0.1 M KOH.

  16. Technetium Tc 99m sulfur colloid phenotypic probe for the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin in women with ovarian cancer.

    Science.gov (United States)

    Giovinazzo, Hugh; Kumar, Parag; Sheikh, Arif; Brooks, Kristina M; Ivanovic, Marija; Walsh, Mark; Caron, Whitney P; Kowalsky, Richard J; Song, Gina; Whitlow, Ann; Clarke-Pearson, Daniel L; Brewster, Wendy R; Van Le, Linda; Zamboni, Beth A; Bae-Jump, Victoria; Gehrig, Paola A; Zamboni, William C

    2016-03-01

    Significant variability in the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin (PLD) exists. PLD undergoes clearance via the mononuclear phagocyte system (MPS). Technetium Tc 99m sulfur colloid (TSC) is approved for imaging MPS cells. We investigated TSC as a phenotypic probe of PLD pharmacokinetics and pharmacodynamics in women with epithelial ovarian cancer. TSC 10 mCi IVP was administered and followed by dynamic planar and SPECT/CT imaging and blood pharmacokinetics sampling. PLD 30-40 mg/m(2) IV was administered with or without carboplatin, followed by plasma pharmacokinetics sampling. There was a linear relationship between TSC clearance and encapsulated doxorubicin clearance (R(2) = 0.61, p = 0.02), particularly in patients receiving PLD alone (R(2) = 0.81, p = 0.04). There was a positive relationship (ρ = 0.81, p = 0.01) between maximum grade palmar-plantar erythrodysesthesia toxicity developed and estimated encapsulated doxorubicin concentration in hands. TSC is a phenotypic probe for PLD pharmacokinetics and pharmacodynamics and may be used to individualize PLD therapy in ovarian cancer and for other nanoparticles in development.

  17. The role of {sup 99m}Tc-labelled stannous colloid white blood cells scanning in the evaluation of and differentiation between cellulitis and osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.; Chu, J.M.G. [Liverpool Health Services, Liverpool, NSW (Australia). Department of Nuclear Medicine

    1998-03-01

    Full text: Sequential {sup 99m}Tc-MDP and {sup 67}Ga-citrate scanning have been extensively used in the evaluation of infection. {sup 99m}Tc-labelled stannous colloid white blood cell (Tc-WBC) is not widely reported. A prospective study was undertaken in 92 patients to assess Tc-WBC and Tc-MDP scanning in this clinical application. Labelling efficiency (LE) was calculated with a mean {+-} SD of 94 {+-} 4.8 %. Patients (6) who were treated with gentamycin had an LE {+-} SD of 70 {+-} 9%. Twenty six patients treated as osteomyelitis had congruent abnormalities on Tc-WBC and Tc-MDP scans. Twenty one patients treated as cellulitis had abnormalities demonstrated on Tc-WBC but not on Tc-MDP scans. Tc-WBC appeared to define areas of inflammation of bone and soft-tissue in the hands or feet more distinctly than Tc-MDP. Fourteen patients had progress Tc-WBC scans 4-6 weeks following antibiotic treatment. Changes in scan appearances seemed to mirror the clinical course of the patients. Tc-WBC and Tc-MDP scans were useful complementary studies in the diagnosis, evaluation and assessment of treatment in patients with cellulitis and osteomyelitis.

  18. Chalcopyrite dissolution: Scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite

    Science.gov (United States)

    Li, Yubiao; Qian, Gujie; Brown, Paul L.; Gerson, Andrea R.

    2017-09-01

    Dissolution and oxidation of sulfide minerals play key roles in both acid and metalliferous rock drainage and supergene enrichment. Surface speciation heterogeneity, critical to understanding mechanisms of mineral sulfide dissolution, has to date largely not been considered. To this end synchrotron scanning photoelectron microscopy (SPEM) was employed to examine freshly fractured and partially dissolved chalcopyrite (CuFeS2) surfaces (pH 1.0 HClO4 solution, redox potential 650 mV relative to a standard hydrogen electrode, 75 °C). S2- (bulk), S22- and Sn2- were found to be present on all samples at varying concentrations. Oxidation was observed to take place heterogeneously at the sub-micron scale. As compared to chalcopyrite partially dissolved for 5 days, extended dissolution to 10 days did not show appreciably enhanced oxidation of surface species; however surface roughness increased markedly due to the growth/overlap of oxidised sulfur species. On addition of 4 mM iron both S0 and SO42- were observed but not SO32-, indicating that the greater Fe3+ activity/concentration promotes heterogeneous sulfur oxidation. On contact of pyrite (FeS2) with chalcopyrite, significantly greater chalcopyrite surface oxidation was observed than for the other systems examined, with S0, SO32- and SO42- being identified heterogeneously across the surface. It is proposed that chalcopyrite oxidative dissolution is enhanced by increasing its cathodic area, e.g. contacting with pyrite, while increased Fe3+ activity/concentration also contributes to increased dissolution rates. The high degree of surface heterogeneity of these surface products indicates that these surfaces are not passivated by their formation. These results suggest that chalcopyrite dissolution will be accelerated when in contact with pyrite at solution redox potential intermediate between the rest potentials of chalcopyrite and pyrite (560 mV and 660 mV, respectively) and/or iron rich acidic waters with resulting

  19. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    Science.gov (United States)

    Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin

    2015-11-01

    Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.

  20. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    Directory of Open Access Journals (Sweden)

    Dominika Wawrzynczyk

    2015-11-01

    Full Text Available Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.

  1. Bone marrow scan evaluation of arthropathy in sickle cell disorders

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, A.; Schumacher, H.R.; Dorwart, B.; Kuhl, D.E.

    1976-04-01

    Twelve patients with sickle cell hemoglobinopathies and arthropathy were studied, using technetium Tc 99m sulfur colloid bone marrow scans. Eight of 12 had decreased marrow radionuclide activity adjacent to painful joints, suggesting obliteration of vessels supplying bone marrow. Four patients without marrow defects on scanning had causes other than infarction for their joint symptoms, viz, small fractures, postinfectious synovitis, degenerative arthritis, and osteochondromas. Roentgenograms never showed bony abnormalities in five patients with marrow infarctions, and, in three others, showed defects several months later than did the marrow scans. Bone marrow scans offer a sensitive and early diagnostic aid in sickle cell hemoglobinopathies with arthropathy.

  2. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  3. {sup 99} {sup m}Tc-sulphur-colloid and heat-denatured {sup 99} {sup m}Tc-labelled red cell scans demonstrating a giant intrapelvic spleen in a girl after splenectomy

    Energy Technology Data Exchange (ETDEWEB)

    Kao, P.F. [Dept. of Nuclear Medicine, Chang Gung Memorial Hospital and Chang Gung University School of Medicine, Tauyuan, Taiwan (Taiwan); Dept. of Nuclear Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan (Taiwan); Tzen, K.Y.; Tsai, M.F. [Dept. of Nuclear Medicine, Chang Gung Memorial Hospital and Chang Gung University School of Medicine, Tauyuan, Taiwan (Taiwan); Lin, J.N. [Dept. of Paediatric Surgery, Chang Gung Childrens Hospital and Chang Gung University School of Medicine, Tauyuan, Taiwan (Taiwan)

    2001-04-01

    A 17 x 12 x 5-cm giant intrapelvic mass in a 14-year-old girl is reported. This mass developed 6 years after a splenectomy for splenic torsion. The heat-denatured {sup 99} {sup m}Tc-labelled red cell scan and {sup 99} {sup m}Tc- sulphur-colloid scan confirmed the specific red cell sequestration function and reticuloendothelial activity in the giant intrapelvic spleen. The size and development of the giant intrapelvic spleen are unusual. The usefulness of functional images to diagnosis the nature of the intrapelvic mass is well demonstrated. (orig.)

  4. A scanning tunneling microscopy investigation of the phases formed by the sulfur adsorption on Au(100) from an alkaline solution of 1,4-piperazine(bis)-dithiocarbamate of potassium

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Javier A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Valenzuela B, José [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM) , km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Cao Milán, R. [Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Herrera, José [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Farías, Mario H. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM) , km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Hernández, Mayra P., E-mail: mayrap@fisica.uh.cu [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba)

    2014-11-30

    Highlights: • New phases of sulfur on gold: hexamer and (√(2)×√(2)) were observed by STM. • Hexamers and (√(2)×√(2)) structures coexist with well-known octomers. • Formation of sulfur multilayer by K{sub 2}DTC{sub 2}pz hydrolysis under alkaline condition. • Top octomer layer have dynamic behavior while (√(2)×√(2)) and hexamer were static. • A model is presented to explain sulfur multilayer formation on Au(100). - Abstract: Piperazine-dithiocarbamate of potassium (K{sub 2}DTC{sub 2}pz) was used as a new precursor for the spontaneous deposition of sulfur on the Au(100) surface in alkaline solution. Two new sulfur phases were studied by scanning tunneling microscopy (STM). These phases were formed by six sulfur atoms (S{sub 6} phase, hexamer) and by four sulfur atoms (S{sub 4} phase, tetramer with (√(2)×√(2)) structure), and they were observed in coexistence with the well-known quasi-square patterns formed by eight sulfur atoms (S{sub 8} phase, octomer). A model was proposed where sulfur multilayers were formed by a (√(2)×√(2)) phase adsorbed directly on the gold surface while one of the other structures: hexamers or octomers were deposited on top. Sulfur layers were formed on gold terraces, vacancies and islands produced by lifting reconstructed surface. Sequential high-resolution STM images allowed the direct observation of the dynamic of the octomers, while the (√(2)×√(2)) structure remained static. Images also showed the reversible association/dissociation of the octomer.

  5. Hexadecapolar colloids

    Science.gov (United States)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  6. Colloidal polypyrrole

    Science.gov (United States)

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  7. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  8. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  9. Colloidal glasses

    Indian Academy of Sciences (India)

    ... state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the concentration of the jamming entity above random loose packing threshold leading to a disordered state. Common examples: toothpaste, hair gel, shaving foam, concentrated suspensions, emulsions, etc.

  10. Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    Abstract. Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic com- position. The distinction lies in the phase distribution of the impurity-ion species. ... near the driven electrode by use of video laser scanning. Moreover, many workers for solid particles termed as the dust grains or grains reported ...

  11. Soil colloidal behavior

    Science.gov (United States)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  12. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  13. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  14. Sulfur Cycle

    Science.gov (United States)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  15. Properties of Sulfur Concrete.

    Science.gov (United States)

    1979-07-06

    sulfur 19 11 Effect of H2 S on compressive strength of sulfur concretes 21 12 Modulus of rupture vs. temperature for raw sulfur and a sulfur mortar 22 13...sulfur, Jordaan investigated the effects of hydrogen sulfide on sulfur concrete. Concretes were made with different mixtures of pyrrhotite and flyash ...temperature for raw sulfur and a sulfur mortar (Ref. 19). eabove results were obtained with a sulfur mortar and raw sulfur; however, sulfur concrete could be

  16. Colloidal Dispersions

    Science.gov (United States)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  17. Magnetic nanostructures obtained by colloidal crystallization onto patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O.; Angelakeris, M. E-mail: agelaker@auth.gr; Vouroutzis, N.; Crisan, A.D.; Pavlidou, E.; Kostic, I.; Sobal, N.; Giersig, M.; Flevaris, N.K

    2004-05-01

    Colloidal solutions of magnetic nanoparticles are regularly dispersed onto patterned substrates in order to form novel magnetic nanostructures. The morphology of these nanostructures is investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and their structure is correlated with magnetic properties. It is shown that, depending on the nature of the substrate, different nanoparticle growth modes are identified during the colloidal crystallization.

  18. What Is a Colloid?

    Science.gov (United States)

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  19. Sulfur Mustard

    Science.gov (United States)

    ... and HT. Sulfur mustard sometimes smells like garlic, onions, or mustard and sometimes has no odor. It ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure ...

  20. Transport of barrel and spherical shaped colloids in unsaturated porous media.

    Science.gov (United States)

    Knappenberger, Thorsten; Aramrak, Surachet; Flury, Markus

    2015-09-01

    Model colloids are usually spherical, but natural colloids have irregular geometries. Transport experiments of spherical colloids may not reflect the transport characteristics of natural colloids in porous media. We investigated saturated and unsaturated transport of colloids with spherical and angular shapes under steady-state, flow conditions. A pulse of negatively-charged colloids was introduced into a silica sand column at three different effective water saturations (Se = 0.31, 0.45, and 1.0). Colloids were introduced under high ionic strength of [106]mM to cause attachment to the secondary energy minimum and later released by changing the pore water to low ionic strength. After the experiment, sand was sampled from different depths (0, -4, and -11 cm) for scanning electron microscopy (SEM) analysis and colloid extraction. Water saturation affected colloid transport with more retention under low than under high saturation. Colloids were retained and released from a secondary energy minimum with more angular-shaped colloids being retained and released. Colloids extracted from the sand revealed highest colloid deposition in the top layer and decreasing deposition with depth. Pore straining and grain-grain wedging dominated colloid retention. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Sulfite (SO 3 2– ) þ4 Sulfur trioxide (SO 3 ) þ6 Sulfate (SO 4 2– ) þ8 and reductive mode, each fueling the other, either in a dynamic instantaneous manner in space or sequentially over time. Sulfur and its species are important geochem- Organic S (R–SH) C... be too specific. It is argued that many microbes could be facultative, autotrophic at times, and hetero- trophic at other, assimilating simple organic substrates that are available. Thus microbes like Pseudomonas sp. and Alcaligenes sp. have also been...

  2. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  3. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    Science.gov (United States)

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  4. Manipulation of colloidal crystallization

    NARCIS (Netherlands)

    Vermolen, E.C.M.

    2008-01-01

    Colloidal particles (approximately a micrometer in diameter) that are dispersed in a fluid, behave thermodynamically similar to atoms and molecules: at low concentrations they form a fluid, while at high concentrations they can crystallize into a colloidal crystal to gain entropy. The analogy with

  5. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  6. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    Book Description: Colloidal science and technology is one of the fastest growing research and technology areas. This book explores the cutting edge research in colloidal science and technology that will be usefull in almost every aspect of modern society. This book has a depth of information rela...

  7. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.; Sahore, Ritu; Nguyen, Kayla X.; Han, Yimo; Xie, Baoquan; Ma, Lin; Archer, Lynden A.; Giannelis, Emmanuel P.; Wiesner, Ulrich; Kourkoutis, Lena F.; Muller, David A.

    2017-02-01

    Abstract

    Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

  8. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts.

    Science.gov (United States)

    Levin, Barnaby D A; Zachman, Michael J; Werner, Jörg G; Sahore, Ritu; Nguyen, Kayla X; Han, Yimo; Xie, Baoquan; Ma, Lin; Archer, Lynden A; Giannelis, Emmanuel P; Wiesner, Ulrich; Kourkoutis, Lena F; Muller, David A

    2017-02-01

    Lithium sulfur (Li-S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li-S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon-sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon-sulfur composites synthesized for use as Li-S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

  9. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  10. Colloidal Plasmas: Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various ...

  11. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  12. Unilateral palpebral colloid milia

    Directory of Open Access Journals (Sweden)

    Kachhawa Dilip

    1992-01-01

    Full Text Available A 55-year old male presented with innumerable lesions of colloid millium unilaterally over eyelids of left eye. This case is reported because of unilateral distribution of lesions on sun protected area.

  13. Colloids: A microscopic army

    Science.gov (United States)

    Tierno, Pietro

    2017-04-01

    Ensembles of magnetic colloids can undergo an instability triggering the formation of clusters that move faster than the particles themselves. The many-body process relies on hydrodynamics alone and may prove useful for load delivery in fluidics.

  14. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  15. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  16. Sulfuric acid-sulfur heat storage cycle

    Science.gov (United States)

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  17. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils...... not associated with organic C (r > 0.89, P colloid release rates were highly correlated with the total clay content (r > 0.84, P ... content measured using a more classical end-over-end method (r > 0.89, P 0.89, P colloids and colloid-facilitated transport...

  18. Fabrication of anisotropic multifunctional colloidal carriers

    Science.gov (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  19. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira

    2009-01-01

    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  20. Observed Dependence of Colloid Detachment on the Concentration of Initially Attached Colloids and Collector Surface Heterogeneity in Porous Media.

    Science.gov (United States)

    Li, Tiantian; Jin, Yan; Huang, Yuanfang; Li, Baoguo; Shen, Chongyang

    2017-03-07

    Sand column experiments were conducted to examine the effects of the concentration of attached colloids (CAC) on their subsequent detachment upon decreasing solution ionic strength (IS). Different pore volumes of latex microparticle suspensions were injected into the columns to allow different amounts of colloids to attach at ISs of 0.001, 0.01, and 0.2 M. Then, deionized water was introduced to release the attached colloids. Results show that the fraction of attachments that were reversible to reduction of IS (FRA) increased with increasing CAC at a given IS if the sand was extensively treated using acids to reduce surface charge heterogeneity. This indicates that colloids were preferentially immobilized in sites favoring irreversible attachment and then gradually occupied reversible sites. In contrast, the FRA decreased with increasing CAC at 0.001 M in sand without the acid treatment, illustrating the opposite attachment sequence. Scanning electron microscope examinations reveal that the concave regions favored irreversible colloid attachment. Reversible attachment is likely due to immobilization on flat surfaces with charge heterogeneities, retention in stagnation point regions via secondary minimum association, ripening in the acid-treated sand, and capture of colloids by protruding asperities with charge heterogeneity in the untreated sand. At ISs of 0.01 and 0.2 M, the FRA was essentially independent of CAC in the untreated sand because the colloids were randomly attached on the sand surfaces over time.

  1. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  2. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  3. Nucleation in food colloids

    Science.gov (United States)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  4. Thoracic splenosis: noninvasive diagnosis using Technetium-99 sulfur colloid.

    Science.gov (United States)

    Bhalani, Viraj V; Hecht, Harvey; Sachs, Paul; King, Michael

    2012-01-01

    Splenosis is the autotransplantation of splenic tissue to abnormal sites, either the abdomen or thorax, following traumatic injury of the spleen. For splenic tissue to reach the thorax, there must be concomitant diaphragmatic injury. Thoracic splenosis is usually discovered incidentally on routine thoracic imaging as single or multiple, indeterminate pleural-based masses limited to the left hemithorax. Traditionally, diagnosis required invasive procedures and/or surgery to acquire tissue samples in order to rule out other causes of lung masses, ie, cancer. We report a case in which nuclear imaging was used to make the diagnosis of thoracic splenosis, thus preventing the need for invasive procedures and avoiding unnecessary patient apprehension.

  5. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    Directory of Open Access Journals (Sweden)

    Anika C. Juhl

    2016-08-01

    Full Text Available Hollow carbon spheres (HCS with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles.

  6. Solubility of Sulfur Dioxide in Sulfuric Acid

    Science.gov (United States)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  7. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian [Laboratory of Computational and Theoretical Chemistry (LQCT), Faculty of Chemistry, Havana University, Havana 10400 (Cuba); Pujals, Daniel Codorniu [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana 10400 (Cuba); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); Hernández, Mayra P., E-mail: mayrap@imre.oc.uh.cu [Instituto de Ciencias y Tecnologías de Materiales (IMRE), Havana 10400 (Cuba)

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  8. Colloidal Thermal Fluids

    Science.gov (United States)

    Lotzadeh, Saba

    In this dissertation, a reversible system with a well controlled degree of particle aggregation was developed. By surface modification of colloidal silica with aminosilanes, interactions among the particles were tuned in a controlled way to produce stable sized clusters at different pH values ranges from well-disposed to a colloidal gel. N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMPE) monolayer on particle surface not only removes all the reactive sites to prevent chemical aggregation, also provides steric stabilization in the absence of any repulsion. After surface modification, electrokinetic behavior of silica particles were changed to that of amino groups, positive in acidic pH and neutral at basic pH values. By tuning the pH, the balance between electrostatic repulsion and hydrophobic interactions was reversibly controlled. As a result, clusters with different sizes were developed. The effect of clustering on the thermal conductivity of colloidal dispersions was quantified using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. Thermal conductivity of this system was measured by transient hot wire, the standard method of thermal conductivity measurements in liquids. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory. Numerical calculations were performed to evaluate the importance of structural properties of particles/aggregates on thermal conduction in colloidal particles. Thermal conductivity of non-spherical particles including hollow particles, cubic particles and rods was studied using a Monte Carlo algorithm. We show that anisotropic shapes, increase conductivity above that of isotropic

  9. The Sulfur Cycle

    Science.gov (United States)

    Kellogg, W. W.; And Others

    1972-01-01

    A model estimating the contributions of sulfur compounds by natural and human activities, and the rate of removal of sulfur from the atmosphere, is based on a review of the existing literature. Areas requiring additional research are identified. (AL)

  10. A confocal laser scanning microscopic study on thermoresponsive ...

    Indian Academy of Sciences (India)

    CdTe QDs composites using a fluorescence confocal laser scanning microscope. These composites have potential applications both in material science and biology. Keywords. Confocal ... of binary colloidal alloys and other soft matter systems.

  11. Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus

    Directory of Open Access Journals (Sweden)

    Xiaolei Hao

    2003-01-01

    Full Text Available Staphylothermus marinus is an anaerobic hyperthermophilic archaeon that uses peptides as carbon and energy sources. Elemental sulfur (S° is obligately required for its growth and is reduced to H2S. The metabolic functions and mechanisms of S° reduction were explored by examining S°-dependent growth and activities of key enzymes present in this organism. All three forms of S° tested—sublimed S°, colloidal S° and polysulfide—were used by S. marinus, and no other sulfur-containing compounds could replace S°. Elemental sulfur did not serve as physical support but appeared to function as an electron acceptor. The minimal S° concentration required for optimal growth was 0.05% (w/v. At this concentration, there appeared to be a metabolic transition from H2 production to S° reduction. Some enzymatic activities related to S°-dependent metabolism, including sulfur reductase, hydrogenase, glutamate dehydrogenase and electron transfer activities, were detected in cell-free extracts of S. marinus. These results indicate that S° plays an essential role in the heterotrophic metabolism of S. marinus. Reducing equivalents generated by the oxidation of amino acids from peptidolysis may be transferred to sulfur reductase and hydrogenase, which then catalyze the production of H2S and H2, respectively.

  12. Fractal nematic colloids

    Science.gov (United States)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  13. Colloidal capsules: nano- and microcapsules with colloidal particle shells.

    Science.gov (United States)

    Bollhorst, Tobias; Rezwan, Kurosch; Maas, Michael

    2017-04-18

    Utilizing colloidal particles for the assembly of the shell of nano- and microcapsules holds great promise for the tailor-made design of new functional materials. Increasing research efforts are devoted to the synthesis of such colloidal capsules, by which the integration of modular building blocks with distinct physical, chemical, or morphological characteristics in a capsule's shell can result in novel properties, not present in previous encapsulation structures. This review will provide a comprehensive overview of the synthesis strategies and the progress made so far of bringing nano- and microcapsules with shells of densely packed colloidal particles closer to application in fields such as chemical engineering, materials science, or pharmaceutical and life science. The synthesis routes are categorized into the four major themes for colloidal capsule formation, i.e. the Pickering-emulsion based formation of colloidal capsules, the colloidal particle deposition on (sacrificial) templates, the amphiphilicity driven self-assembly of nanoparticle vesicles from polymer-grafted colloids, and the closely related field of nanoparticle membrane-loading of liposomes and polymersomes. The varying fields of colloidal capsule research are then further categorized and discussed for micro- and nano-scaled structures. Finally, a special section is dedicated to colloidal capsules for biological applications, as a diverse range of reports from this field aim at pharmaceutical agent encapsulation, targeted drug-delivery, and theranostics.

  14. Efficacy of Re-188-labelled sulphur colloid on prolongation of survival time in melanoma-bearing animals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.D.; Hsieh, B.T. E-mail: bthsieh@iner.gov.tw; Wang, H.E.; Ou, Y.H.; Yang, W.K.; Whang-Peng, J.; Liu, R.S.; Knapp, F.F.; Ting, G.; Yen, S.H

    2001-10-01

    In this study, the effectiveness of a {sup 188}Re labeled sulfur colloid with two particle size ranges was used to evaluate the effectiveness of this agent on melanoma tumors in mice in terms of animal lifespan. Methods: Two separate group of animals were used for investigating biodistribution and survival time. A total of 188 B16F10-melanoma-bearing BDF{sub 1} mice were injected intraperitoneally with 3.7 MBq (0.1mCi)/2mL of radiolabeled sulfur colloid ten days after intraperitoneal inoculation of 5x10{sup 5} B16F10 melanoma cells/2ml. For group 1, 30 mice were sacrificed at 1, 4, 24, 48 and 72 hours for biodistribution studies. In group 2, 158 mice were divided into 9 groups (n=16{approx}18/groups)each receiving respectively tumor alone, tumor with normal saline, cold colloid or hot colloid with 16, 23, 31, 46, 62, or 124 MBq activity. Each of these colloid groups was further divided into two groups, one receiving smaller particle sizes (<3{mu}m:80.4 {+-}7.2%, colloid 1) and the other receiving larger particle sizes (<3{mu}m:12.3{+-}1.0%, colloid 2). The animals were checked daily until death and their survival recorded. Results: Colloid 2 showed higher accumulation in almost all tissues, the highest accumulation organ was tumor ({approx} 40%), then spleen ({approx}20%), stomach ({approx}15%), diaphragm ({approx}3%), and liver ({approx}2%). There was a significant increase in survival time with increasing amount of the larger-particle-size colloid. Administered levels of 16-31 MBq/mouse were most efficacious and with higher amounts the survival times decreased significantly below that of the controls. There was a significant difference in the dose-response curves for the two preparations. Protection factors (1/Relative-risk) of nearly 5 were achieved using the larger colloid size, and nearly 30 using the smaller colloid size. An amount of 16-31 MBq of the colloid 2 was the optimal activity in these studies. On the one hand, the survival data agreed well with the

  15. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  16. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohui; Kim, Dul-Sun [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Hyo-Jun; Kim, Ki-Won [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Cho, Kwon-Koo, E-mail: kkcho66@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{sup 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.

  17. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Gomez, Iñaki; Leonet, Olatz; Blazquez, J Alberto; Mecerreyes, David

    2016-12-20

    Lithium-sulfur batteries are among the most promising next-generation battery systems due to the high capacity of sulfur as cathodic material. Beyond its interesting intrinsic properties, sulfur possesses a very low conductivity and complex electrochemistry, which involves the high solubility of the lithium sulfides in the electrolyte. These two characteristics are at the core of a series of limitations of its performance as active cathode material, which leads to batteries with low cyclability. Recently, inverse vulcanized sulfur was shown to retain capacity far better than elemental sulfur, leading to batteries with excellent cyclability. Nevertheless, the diene co-monomers used so far in the inverse vulcanization process are man-made molecules. Herein, a tentative work on exploring inverse vulcanization using two naturally available monomers, diallyl sulfide and myrcene, is presented. The inverse vulcanization of sulfur was successfully completed, and the resulting polymers were characterized by FTIR, NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Afterwards these polymers were tested as cathodic materials in lithium-sulfur cells. The sulfur-natural dienes materials exhibited high capacity at different C rates and high lifetime over 200 cycles with very high capacity retention at a moderate C rate of C/5. Altogether, these materials made from inexpensive and abundant chemicals are an excellent option as sustainable materials for electrochemical energy storage. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  19. Photophysics of C60 Colloids

    Science.gov (United States)

    2012-11-28

    of C60 Colloids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew Clements 5d. PROJECT NUMBER 5e. TASK...to C60 Colloids • Desired NLO Response • Overview of Nonlinear Scattering and Absorption • Previous Scholarship/Context • Thesis Question...Computer Modeling • Conclusions 2 UNCLASSIFIED UNCLASSIFIED Description of C60 Colloids C60 Molecules • Cage molecules composed of 60

  20. Sulfur tolerant anode materials

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  1. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  2. Colloid thruster technology

    Science.gov (United States)

    Perel, J.

    1971-01-01

    A program is described for attaining control, reproducibility, and predictability of operation for the annular colloid emitter. A thruster of an improved design was used for a 1000 hour test. The thruster was operated with a neutralizer for 1023 hours at 15 kV with an average thrust of 25 micropound and specific impulse of 1160 sec. The performance was stable, and the beam was vectored periodically. The clean condition of the emitter edge at the end of the test coupled with no degradation in performance during the test indicated that the lifetime could be extrapolated by at least an order of magnitude over the test time.

  3. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  4. Spontaneous haemorrhage and rupture of third ventricular colloid cyst.

    LENUS (Irish Health Repository)

    Ogbodo, Elisha

    2012-01-01

    Acute bleeding within a colloid cyst of the third ventricle represents a rare event causing sudden increase in the cyst volume that may lead to acute hydrocephalus and rapid neurological deterioration. We report a case of spontaneous rupture of haemorrhagic third ventricular colloid cyst and its management. A 77-year-old ex-smoker presented with unsteady gait, incontinence and gradually worsening confusion over a 3-week period. Brain CT scan findings were highly suggestive of a third ventricular colloid cyst with intraventricular rupture. He underwent cyst excision and histopathology, which confirmed the radiological diagnosis with evidence of haemorrhage within the cyst. A ventriculo peritoneal shunt was performed for delayed hydrocephalus. Surgical management of these patients must include emergency ventriculostomy followed by prompt surgical removal of the haemorrhagic cyst.

  5. Colloidal friction: Kinks in motion

    Science.gov (United States)

    Vanossi, Andrea; Tosatti, Erio

    2012-02-01

    The ability of laser interference potentials to trap and control colloidal particles opens up a new potential area of 'toy systems' displaying real physics. A beautiful example is the study of friction between colloidal crystals and a variety of artificially created surface potentials.

  6. Colloid Adsorption onto Responsive Membranes

    Science.gov (United States)

    Dias, Rita S.; Linse, Per

    2008-01-01

    The adsorption of colloids of varying sizes and charges onto a surface that carries both negative and positive charges, representing a membrane, has been investigated using a simple model employing Monte Carlo simulations. The membrane is made of positive and negative charges (headgroups) that are allowed to move along the membrane, simulating the translational diffusion of the lipids, and are also allowed to protrude into the solution, giving rise to a fluid and soft membrane. When an uncharged colloid is placed in the vicinity of the membrane, a short-range repulsion between the colloid and the membrane is observed and the membrane will deflect to avoid coming into contact with the colloid. When the colloid is charged, the membrane response is twofold: the headgroups of the membrane move toward the colloid, as if to partly embrace it, and the positive headgroups of the membrane approach the oppositely charged colloid, inducing the demixing of the membrane lipids (polarization). The presence of protrusions enhances the polarization of the membrane. Potential of mean force calculations show that protrusions give rise to a more long-range attractive colloid-membrane potential which has a smaller magnitude at short separations. PMID:18234818

  7. Colloidal heat engines: a review.

    Science.gov (United States)

    Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A

    2016-12-21

    Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.

  8. Monolayer Assemblies of a De Novo Designed 4-alpha-Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy

    DEFF Research Database (Denmark)

    Brask, Jesper; Wackerbarth, Hainer; Jensen, Knud J.

    2003-01-01

    for the synthesis of a new 4-R-helix bundle carboprotein built on a galactopyranoside derivative with a thiol anchor aglycon suitable for surface immobilization on gold. The carboprotein with thiol anchor in monomeric and dimeric (disulfide) form, the thiol anchor alone, and a sulfur-free 4-R-helix bundle...... carboprotein without thiol anchor have been prepared and investigated for comparison. Cyclic and differential pulse voltammetry (DPV) of the proteins show desorption peaks around -750 mV (SCE), whereas the thiol anchor desorption peak is at -685 mV. The peaks are by far the highest for thiol monomeric 4-R......-helix bundle carboprotein and the thiol anchor. This pattern is supported by capacitance data. The DPV and capacitance data for the thiolated 4-R-helix bundle carboproteins and the thiol anchor hold a strong Faradaic reductive desorption component as supported by X-ray photoelectron spectroscopy...

  9. Site-specific retention of colloids at rough rock surfaces.

    Science.gov (United States)

    Darbha, Gopala Krishna; Fischer, Cornelius; Luetzenkirchen, Johannes; Schäfer, Thorsten

    2012-09-04

    The spatial deposition of polystyrene latex colloids (d = 1 μm) at rough mineral and rock surfaces was investigated quantitatively as a function of Eu(III) concentration. Granodiorite samples from Grimsel test site (GTS), Switzerland, were used as collector surfaces for sorption experiments. At a scan area of 300 × 300 μm(2), the surface roughness (rms roughness, Rq) range was 100-2000 nm, including roughness contribution from asperities of several tens of nanometers in height to the sample topography. Although, an increase in both roughness and [Eu(III)] resulted in enhanced colloid deposition on granodiorite surfaces, surface roughness governs colloid deposition mainly at low Eu(III) concentrations (≤5 × 10(-7) M). Highest deposition efficiency on granodiorite has been found at walls of intergranular pores at surface sections with roughness Rq = 500-2000 nm. An about 2 orders of magnitude lower colloid deposition has been observed at granodiorite sections with low surface roughness (Rq colloids at intergranular pores is induced by small scale protrusions (mean height = 0.5 ± 0.3 μm). These protrusions diminish locally the overall DLVO interaction energy at the interface. The protrusions prevent further rolling over the surface by increasing the hydrodynamic drag required for detachment. Moreover, colloid sorption is favored at surface sections with high density of small protrusions (density (D) = 2.6 ± 0.55 μm(-1), asperity diameter (φ) = 0.6 ± 0.2 μm, height (h) = 0.4 ± 0.1 μm) in contrast to surface sections with larger asperities and lower asperity density (D = 1.2 ± 0.6 μm(-1), φ = 1.4 ± 0.4 μm, h = 0.6 ± 0.2 μm). The study elucidates the importance to include surface roughness parameters into predictive colloid-borne contaminant migration calculations.

  10. The global sulfur cycle

    Science.gov (United States)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  11. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe

    Science.gov (United States)

    Iwata, F.; Nagami, S.; Sumiya, Y.; Sasaki, A.

    2007-03-01

    We describe a novel technique of local electrophoretic deposition of colloidal particles using a scanning probe microscope with a nanopipette probe filled with a colloidal solution. The colloidal solution including nanometre-scale particles was put into the nanopipette probe. A thin metal wire was inserted into the nanopipette probe as an electrode for the electrophoretic deposition. With the probe edge nearly in contact with the conductive surface and with an electric potential applied between the electrode and the surface, the colloidal particles migrated toward the edge of the probe, causing them to be deposited on the surface. It was possible for nanometre-scale Au colloidal particles in an aqueous solution to be deposited on Si surfaces. The size of the Au dots could be modified by adjusting the deposition time and voltage. Dot array and line patterns were successfully plotted on the surface. This technique of local deposition should provide the possibility for fabricating nanostructures such as nanomachines and nanoelectronics.

  12. A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source

    Science.gov (United States)

    Cai, Rongsheng; Jian, Nan; Murphy, Shane; Bauer, Karl; Palmer, Richard E.

    2017-05-01

    A new method for the production of colloidal suspensions of physically deposited clusters is demonstrated. A cluster source has been used to deposit size-controlled clusters onto water-soluble polymer films, which are then dissolved to produce colloidal suspensions of clusters encapsulated with polymer molecules. This process has been demonstrated using different cluster materials (Au and Ag) and polymers (polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene glycol). Scanning transmission electron microscopy of the clusters before and after colloidal dispersion confirms that the polymers act as stabilizing agents. We propose that this method is suitable for the production of biocompatible colloids of ultraprecise clusters.

  13. Electric field mediated colloidal assembly and control

    Science.gov (United States)

    Juarez, Jaime Javier

    2011-12-01

    This dissertation presents video microscopy measurements and computer simulations of colloidal particle interactions in inhomogeneous, high-frequency AC electric fields. The interactions of particles with each other and inhomogeneous electric fields are quantified as a function of concentration, field amplitude, and frequency. Visual state diagrams show that these interactions in concentrated systems produce quasi-two dimensional microstructures including confined hard disk fluids, oriented dipolar chains, and oriented hexagonal close packed crystals. The interaction of a particle interacting with an electric field is directly measured with analyses of a single diffusing colloid within electric fields in the absence of many body effects. Concentrated systems are characterized in terms of density profiles across the electrode gap and angular pair distribution functions. An inverse Monte Carlo analysis extracted the induced dipole-induced dipole interaction from concentrated measurements. A single adjustable parameter consistently modified the induced dipole-field potential and the induced dipole-induced dipole potential to account for modification of the local electric field as the result of the local particle concentration, frequency and configuration. Confocal laser scanning microscopy (CLSM) perform sensitive measurements of internal three dimensional structure of crystals assembled in an interfacial quadrupole electrode device. Radial distributions as functions of elevation are used to characterize the equilibrium structure. A single adjustable parameter modified known potentials to match Monte Carlo simulations with experiment. The local density from experiment and simulation matched the expected density calculated from a balance of osmotic pressure and dielectrophoretic compression. Simulations qualitatively matched experimental observations of microstructure as a function of field amplitude. Programmable assembly for colloidal crystals is implemented in the

  14. Colloidal epitaxy : a real-space analysis

    NARCIS (Netherlands)

    Hoogenboom, Jacob Pieter

    2002-01-01

    In colloidal epitaxy a patterned substrate is used to manipulate colloidal crystallization. The technique on the one hand serves as a model system to study the effects of interfaces and defects on (colloidal) crystallization and on the other hand as a means to direct colloidal self-assembly for

  15. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  16. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.

    Science.gov (United States)

    van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K

    2009-04-09

    We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.

  17. Colloids in Acute Burn Resuscitation.

    Science.gov (United States)

    Cartotto, Robert; Greenhalgh, David

    2016-10-01

    Colloids have been used in varying capacities throughout the history of formula-based burn resuscitation. There is sound experimental evidence that demonstrates colloids' ability to improve intravascular colloid osmotic pressure, expand intravascular volume, reduce resuscitation requirements, and limit edema in unburned tissue following a major burn. Fresh frozen plasma appears to be a useful and effective immediate burn resuscitation fluid but its benefits must be weighed against its costs, and risks of viral transmission and acute lung injury. Albumin, in contrast, is less expensive and safer and has demonstrated ability to reduce resuscitation requirements and possibly limit edema-related morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  19. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  20. Nanostructured sulfur cathodes.

    Science.gov (United States)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-07

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes.

  1. Mechanical Failure in Colloidal Gels

    Science.gov (United States)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  2. Emergent behavior in active colloids

    OpenAIRE

    Zöttl, Andreas; Stark, Holger

    2016-01-01

    Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how articial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk and in confinement, as well as in the presence of gravity, field gradients, and fluid flow. In the thi...

  3. Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity.

    Science.gov (United States)

    Shamsijazeyi, Hadi; Kaghazchi, Tahereh

    2014-01-01

    As an inexpensive method for modification of activated carbons (ACs), sulfurization has attracted significant attention. However, the resulting sulfurized activated carbons (SACs) often are less porous than the original ACs. In this work, we propose a new method for concurrent sulfurization/activation that can lead to preparation of SACs with more porosity than the corresponding non-sulfurized ACs. By using scanning electron microscopy, nitrogen adsorption/desorption, and iodine number experiments, the porous structure of the SACs has been compared with that of non-sulfurized ACs. The specific surface areas of SACs are higher than the corresponding ACs, regardless of the type of activation agents used. For instance, the specific surface area of SAC and AC activated with phosphoric acid is 1,637 and 1,338 m(2)/g, respectively. Additionally, sulfur contents and surface charges (pHpzc) of the SACs and non-sulfurized ACs are compared. In fact, the SACs have higher sulfur contents and more acidic surfaces. Furthermore, the Hg(II) adsorption capacity of SACs has been compared with the corresponding non-sulfurized ACs. The Hg(II) adsorption isotherms on a selected SAC is measured at different pH values and temperatures. Hg(II) adsorptions as high as 293 mg/g are observed by using SACs prepared by the method proposed in this study.

  4. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.

    Science.gov (United States)

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela

    2014-01-15

    Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., 0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.

  5. Confocal imaging of confined quiescent and flowing colloid-polymer mixtures.

    Science.gov (United States)

    Pandey, Rahul; Spannuth, Melissa; Conrad, Jacinta C

    2014-05-20

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly(1-3), drug delivery(4), improved hydrocarbon recovery(5-7), and flowable electrodes for energy storage(8). Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained(9). Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems(10). Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions(11-16,37). In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol

  6. Primary Shape and Nanomechanical Properties of Colloids studied by AFM and SEM

    Science.gov (United States)

    Wieczorek, A. K.; Fritzsche, A.; Totsche, K. U.

    2012-04-01

    Colloids are involved in a multitude of biogeochemical and physicochemical processes in natural soil systems. They may act as mobile reactive carriers, resulting in either reduced or enhanced solute mobility [1]. Interactions of colloids with themselves and with the immobile solid phase not only affect the hydraulic properties, but severely change geometric, mechanic and physicochemical properties of interfaces. Particularly important are the mineral-organic mixed colloidal phases. They form from complex natural solutions either by the way of sorption or co-precipitation [2][3]. The presence of organic substances during development of colloid may not only affect mineral formation and growth, but also colloid stability by additional steric stabilization forces [4]. Thus, these nanoparticulate mixed phases may be much more stable and mobile than classical mineral, organic, or biotic colloids. To be able to understand complicated system of natural colloids it is necessary to understand the interactions between single elements of this system. Therefore, in this study artificial colloidal ferrihydrites were obtained through alkalization of Fe(III)-citrate and Fe(III)-nitrate solution and subjected to incremental addition of humic acid as organic substance. Thus created mixed colloidal phases were then thoroughly analyzed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX) and Atomic Force Microscopy (AFM). Comparison of changes between pure mineral and mineral-organic colloids in chemical composition and geometric features like particle size, shape, surface area and roughness, was possible. Furthermore, changes in nanomechanical properties of sample material including adhesion, elastic modulus, hardness and energy dissipation were observed and analyzed, using new features of our AFM system. [1] Totsche & Kögel-Knabner (2004) Vadose Zone Journal 3(2), 352-367. [2] Eusterhues et al. (2008) Environ. Sci. Technol. 42, 7891-7897. [3

  7. Electroanalytical methods in characterization of sulfur species in aqueous environment

    Directory of Open Access Journals (Sweden)

    Irena Ciglenečki

    2014-12-01

    Full Text Available Electroanalytical (voltammetric, polarographic, chronoamperometric methods on an Hg electrode were applied for studying of different sulfur compounds in model and natural water systems (anoxic lakes, waste water, rain precipitation, sea-aerosols. In all investigated samples typical HgS reduction voltammetric peak, characteristic for many different reduced sulfur species (RSS: sulfide, elemental sulfur, polysulfide, labile metal sulfide and organosulfur species was recorded at about -0.6 V vs. Ag/AgCl reference electrode. In addition, in anoxic waters which are enriched with sulfide and iron species, voltammetric peaks characteristic for the presence of free Fe(II and FeS nanoparticles (NPs were recorded at -1.4 V and around -0.45 V, respectively. Depending on the used electroanalytical method and experimental conditions (varying deposition potential, varying time of oxidative and/or reductive accumulation, sample pretreatment i.e. acidification followed by purging it is possible to distinguish between different sulfur species. This work clearly shows a large potential of the electrochemistry as a powerful analytical technique for screening water quality regarding presence of different reduced sulfur species and their speciation between dissolved and colloidal/nanoparticle phases.

  8. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available are reversible, implying that the gel is fluxional. It decomposes at higher temperatures as chain scission competes with branching. The hypervalent structure provides an essential insight into the chemistry of elemental sulfur....

  9. Thermo-Optical Properties of Colloids Enhanced by Gold Nanoparticles

    Science.gov (United States)

    Aleali, Hoda; Sarkhosh, Leila; Eslamifar, Mina; Karimzadeh, Rouhollah; Mansour, Nastaran

    2010-08-01

    This work presents a study on the thermo-optical properties of colloidal gold nanoparticles (AuNPs) under a low power laser irradiation at 532 nm. Samples of various gold volume fractions, ranging from 2.5×10-4 to 19.5×10-4%, are synthesized by nanosecond pulsed laser ablation of a pure gold plate in the distilled water. The formation of the AuNPs has been evidenced by optical absorption spectra and transmission electron microscopy. We investigate the effect of the gold nanoparticle concentration on thermo-optical properties of the colloids using the Z-scan technique. The nonlinear optical measurements exhibit a very large nonlinear refraction close to the surface plasmon resonance frequency of the nanoparticles. Our results reveal that the heat diffusion in the colloids is due to nonlocal thermal process. As the gold concentration increases, the temperature change within and around gold nanoparticles greatly enlarges the thermo-optic and thermal nonlinear refractive index coefficients of the samples. This work suggests that thermal nonlinear refraction will play an important role in development of photonic applications involving metal nanoparticles colloids.

  10. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  11. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.

    Science.gov (United States)

    D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-07-15

    Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  13. Metallic Colloid Wavelength-Ratiometric Scattering Sensors

    Science.gov (United States)

    Roll, David; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-01-01

    Gold and silver colloids display strong colors as a result of electron oscillations induced by incident light, which are referred to as the plasmon absorption. This absorption is dependent on colloid–colloid proximity, which has been the basis of absorption assays using colloids. We now describe a new approach to optical sensing using the light scattering properties of colloids. Colloid aggregation was induced by avidin–biotin interactions, which shifted the plasmon absorption to longer wavelengths. We found the spectral shift results in changes in the scattering at different incident wavelengths. By measuring the ratio of scattered intensities at two incident wavelengths, this measurement was made independent of the total colloid concentration. The high scattering efficiency of the colloids resulted in intensities equivalent to fluorescence when normalized by the optical density of the fluorophore and colloid. This approach can be used in a wide variety of assay formats, including those commonly used with fluorescence detection. PMID:14570195

  14. Crack formation and prevention in colloidal drops.

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook

    2015-08-17

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  15. Colloids near phase transition lines under shear

    NARCIS (Netherlands)

    Lenstra, T.A.J.

    2001-01-01

    The aim of this thesis is to investigate the structure formation and deformation in colloidal systems due to an externally applied shear flow. The focus is on two different kind of colloidal systems: suspensions of attractive spherical colloidal particles in the neighbourhood of a gas-liquid

  16. Synthesis and Characterization of Supramolecular Colloids.

    Science.gov (United States)

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-04-22

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.

  17. Radiolysis of NaCl at high and low temperatures: development of size distribution of bubbles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Turkin, A A [National Science Centre Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine); Sugonyako, A V [Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh 9747 AG Groningen, The (Netherlands); Vainshtein, D I [Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh 9747 AG Groningen, The (Netherlands); Hartog, H W den [Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh 9747 AG Groningen, The (Netherlands)

    2006-06-21

    New experimental results are presented on low temperature irradiation (18 deg, C) of rock-salt samples which had been exposed to initial doses up to 320 GRad at 100 deg, C. Differential scanning calorimetry (DSC) shows that the latent heat of melting (LHM) of sodium colloids decreases during subsequent low-temperature irradiation, whereas the stored energy (SE) increases slowly, indicating that the process of radiolysis continues. The decrease of the LHM is due to dissolution of large colloids, because the intensities of the melting peaks decrease during the second stage irradiation at low temperature. The model is formulated to describe the nucleation kinetics and the evolution of the size distribution of chlorine precipitates and sodium colloids in NaCl under high dose irradiation. It is shown that the mechanism of dissolution of large Na colloids during low temperature irradiation can be related to melting of sodium colloids.

  18. Colloids and Nucleation

    Science.gov (United States)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  19. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  20. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  1. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  2. Colloid characterization and quantification in groundwater samples

    Energy Technology Data Exchange (ETDEWEB)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  3. Sodium sulfur battery seal

    Science.gov (United States)

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  4. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  5. Supramolecular perspectives in colloid science

    NARCIS (Netherlands)

    Cohen Stuart, M.A.

    2008-01-01

    Supramolecular chemistry puts emphasis on molecular assemblies held together by non-covalent bonds. As such, it is very close in spirit to colloid science which also focuses on objects which are small, but beyond the molecular scale, and for which other forces than covalent bonds are crucial. We

  6. Microbial effects on colloidal agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  7. Colloidal aspects of texture perception

    NARCIS (Netherlands)

    Vliet, van T.

    2010-01-01

    The perception of complex textures in food is strongly related to the way food is processed during eating, and is modulated by other basic characteristics, such as taste and aroma. An understanding at the colloidal level of the basic processes in the mouth is essential in order to link the

  8. Colloidal liquid crystal reinforced nanocomposites

    NARCIS (Netherlands)

    Ozdilek, C.

    2006-01-01

    The main objective of this research is to investigate the use of colloidal Boehmite rods as reinforcement filler for polymer nanocomposites and to introduce them as an alternative to the well-known clay systems. Since Boehmite rods have been studied for many years as a model nematic system, the

  9. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  10. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  11. Zeolites Remove Sulfur From Fuels

    Science.gov (United States)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  12. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  13. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yuan Tian

    2018-01-01

    Full Text Available An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites.

  14. Contact line of adsorbed colloid-polymer droplets in theory and experiment

    NARCIS (Netherlands)

    Koning, J.; Hennequin, Y.; Bonn, D.; Indekeu, J.O.

    2016-01-01

    The contact line between the colloid-rich bulk liquid and an adsorbed thin film in colloid–polymer mixtures (CPM) is studied by means of an interface displacement model. The interface displacement profiles are compared to laser scanning confocal microscopy (LSCM) images. The mixtures consist of

  15. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  16. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling

    DEFF Research Database (Denmark)

    Pellerin, André; Bui, Thi Hao; Rough, Mikaella

    2015-01-01

    The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits the disti......The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits......, informed by the chemistry of sulfur intermediate compounds in Mangrove Lake, reveals that sulfate reduction produces a relatively small intrinsic fractionation and that an active reoxidative sulfur cycle increases the fractionation of the measured values. Based on the model results, the reoxidative cycle...... of Mangrove Lake appears to include sulfide oxidation to elemental sulfur followed by the disproportionation of the elemental sulfur to sulfate and sulfide. This model also indicates that the reoxidative sulfur cycle of Mangrove Lake turns over from 50 to 80% of the sulfide produced by microbial sulfate...

  17. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  18. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  19. Initiating fibro-proliferation through interfacial interactions of myoglobin colloids with collagen in solution.

    Science.gov (United States)

    Dhanasekaran, Madhumitha; Dhathathreyan, Aruna

    2017-08-01

    This work examines fibro-proliferation through interaction of myoglobin (Mb), a globular protein with collagen, an extracellular matrix fibrous protein. Designed colloids of Mb at pH 4.5 and 7.5 have been mixed with collagen solution at pH 7.5 and 4.5 in different concentrations altering their surface charges. For the Mb colloids, 100-200nm sizes have been measured from Transmission electron micrographs and zeta sizer. CD spectra shows a shift to beta sheet like structure for the protein in the colloids. Interaction at Mb/Collagen interface studied using Dilational rheology, Quartz crystal microbalance with dissipation and Differential Scanning calorimetry show that the perturbation is not only by the charge compensation arising from the difference in pH of the colloids and collagen, but also by the organized assembly of collagen at that particular pH. Results demonstrate that positive Mb colloids at pH 4.5, having more% of entrained water stabilize the collagen fibrils (pH 7.5) around them. Ensuing dehydration leads to effective cross-linking and inherently anisotropic growth of fibrils/fibres of collagen. In the case of Mb colloids at pH 7.5, the fibril formation seems to supersede the clustering of Mb suggesting that the fibro-proliferation is both pH and hydrophilic-hydrophobic balance dependent at the interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microhardness and Penetration of Artificial White Spot Lesions Treated with Resin or Colloidal Silica Infiltration.

    Science.gov (United States)

    Mandava, Jyothi; Reddy, Y Shilpa; Kantheti, Sirisha; Chalasani, Uma; Ravi, Ravi Chandra; Borugadda, Roopesh; Konagala, Ravi Kumar

    2017-04-01

    Infiltration of early enamel lesions by materials having remineralizing capacity seems to improve aesthetics and arrests caries progression. To evaluate and compare the surface microhardness and penetration depth of a low viscosity resin and colloidal silica nanoparticle infiltrates into artificially created white spot lesions. Forty extracted human central incisors were embedded in acrylic resin blocks exposing the labial surfaces of the crowns. The specimens were immersed in demineralizing solution for 96 hours to create white spot lesions on labial surfaces. The samples were then divided into two groups (n=20 each), where in Group 1-resin infiltration (ICON DMG, Hamburg, Germany) and Group 2-colloidal silica infiltration (Arrow Fine chemicals, Rajkot, Gujarat, India) was done. Samples were subjected to vicker's microhardness testing at baseline, after demineralization and after treatment with resin or colloidal silica infiltrates. Then, the crowns were sectioned longitudinally and penetration depth of the infiltrants was measured using confocal laser scanning microscope and compared the readings to lesion depth. All the collected data was subjected to statistical analysis using t-test. Resin infiltration group showed significantly greater increase in microhardness compared to colloidal silica infiltration (p=0.001). The percentage of penetration of the resin group was 67.14% and that of colloidal silica group was 54.53% indicating significant difference between the two. Resin infiltrates performed better in regaining the baseline microhardness and penetrating deep into the porous white spot lesions, when compared to colloidal silica infiltrates.

  1. Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, V.I.; Turkin, A.A.; Abyzov, A.S. [National Science Center, Kharkov Institute of Physics and Technology, 310108 Kharkov (Ukraine); Sugonyako, A.V.; Vainshtein, D.I.; Hartog, H.W. den [Solid State Physics Laboratory, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands)

    2005-01-01

    A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Colloid dispersion on the pore scale.

    Science.gov (United States)

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. What happens when pharmaceuticals meet colloids.

    Science.gov (United States)

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  4. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  5. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  6. Chancellor Water Colloids: Characterization and Radionuclide Association

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Amr I. [Los Alamos National Laboratory

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  7. Electrokinetic properties of polymer colloids

    Science.gov (United States)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  8. Colloid solutions for fluid resuscitation.

    Science.gov (United States)

    Bunn, Frances; Trivedi, Daksha

    2012-06-13

    Colloids are widely used in the replacement of fluid volume. However doubts remain as to which colloid is best. Different colloids vary in their molecular weight and therefore in the length of time they remain in the circulatory system. Because of this and their other characteristics, they may differ in their safety and efficacy. To compare the effects of different colloid solutions in patients thought to need volume replacement. We searched the Cochrane Injuries Specialised Register (searched 1 Dec 2011), Cochrane Central Register of Controlled Trials 2011, issue 4 (The Cochrane Library); MEDLINE (Ovid) (1948 to November Week 3 2011); EMBASE (Ovid) (1974 to 2011 Week 47); ISI Web of Science: Science Citation Index Expanded (1970 to 1 Dec 2011); ISI Web of Science: Conference Proceedings Citation Index-Science (1990 to 1 Dec 2011); CINAHL (EBSCO) (1982 to 1 Dec 2011); National Research Register (2007, Issue 1) and PubMed (searched 1 Dec 2011). Bibliographies of trials retrieved were searched, and for the initial version of the review drug companies manufacturing colloids were contacted for information (1999). Randomised controlled trials comparing colloid solutions in critically ill and surgical patients thought to need volume replacement. Two authors independently extracted the data and assessed the quality of the trials. The outcomes sought were death, amount of whole blood transfused, and incidence of adverse reactions. Ninety trials, with a total of 5678 participants, met the inclusion criteria. Quality of allocation concealment was judged to be adequate in 35 trials and poor or uncertain in the rest.Deaths were obtained in 61 trials. For albumin or PPF versus hydroxyethyl starch (HES) 32 trials (n = 1769) reported mortality. The pooled relative risk (RR) was 1.07 (95% CI 0.87 to 1.32). When the trials by Boldt were removed from the analysis the pooled RR was 0.90 (95% CI 0.68 to 1.20). For albumin or PPF versus gelatin, nine trials (n = 824) reported

  9. Colloidal liquid crystal reinforced nanocomposites

    OpenAIRE

    Ozdilek, C.

    2006-01-01

    The main objective of this research is to investigate the use of colloidal Boehmite rods as reinforcement filler for polymer nanocomposites and to introduce them as an alternative to the well-known clay systems. Since Boehmite rods have been studied for many years as a model nematic system, the motivation was to explore some additional properties which could arise from their nematic behaviour in a polymer matrix. The Boehmite system was expected to retain the nematic behavior in the polymer m...

  10. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  11. Colloids removal from water resources using natural coagulant: Acacia auriculiformis

    Science.gov (United States)

    Abdullah, M.; Roslan, A.; Kamarulzaman, M. F. H.; Erat, M. M.

    2017-09-01

    All waters, especially surface waters contain dissolved, suspended particles and/or inorganic matter, as well as several biological organisms, such as bacteria, algae or viruses. This material must be removed because it can affect the water quality that can cause turbidity and colour. The objective of this study is to develop water treatment process from Seri Alam (Johor, Malaysia) lake water resources by using natural coagulant Acacia auriculiformis pods through a jar test experiment. Jar test is designed to show the effectiveness of the water treatment. This process is a laboratory procedure that will simulate coagulation/flocculation with several parameters selected namely contact time, coagulant dosage and agitation speed. The most optimum percentage of colloids removal for each parameter is determined at 0.2 g, 90 min and 80 rpm. FESEM (Field-emission Scanning Electron Microscope) observed the small structures of final floc particles for optimum parameter in this study to show that the colloids coagulated the coagulant. All result showed that the Acacia auriculiformis pods can be a very efficient coagulant in removing colloids from water.

  12. In situ hydrodynamic lateral force calibration of AFM colloidal probes.

    Science.gov (United States)

    Ryu, Sangjin; Franck, Christian

    2011-11-01

    Lateral force microscopy (LFM) is an application of atomic force microscopy (AFM) to sense lateral forces applied to the AFM probe tip. Recent advances in tissue engineering and functional biomaterials have shown a need for the surface characterization of their material and biochemical properties under the application of lateral forces. LFM equipped with colloidal probes of well-defined tip geometries has been a natural fit to address these needs but has remained limited to provide primarily qualitative results. For quantitative measurements, LFM requires the successful determination of the lateral force or torque conversion factor of the probe. Usually, force calibration results obtained in air are used for force measurements in liquids, but refractive index differences between air and liquids induce changes in the conversion factor. Furthermore, in the case of biochemically functionalized tips, damage can occur during calibration because tip-surface contact is inevitable in most calibration methods. Therefore, a nondestructive in situ lateral force calibration is desirable for LFM applications in liquids. Here we present an in situ hydrodynamic lateral force calibration method for AFM colloidal probes. In this method, the laterally scanned substrate surface generated a creeping Couette flow, which deformed the probe under torsion. The spherical geometry of the tip enabled the calculation of tip drag forces, and the lateral torque conversion factor was calibrated from the lateral voltage change and estimated torque. Comparisons with lateral force calibrations performed in air show that the hydrodynamic lateral force calibration method enables quantitative lateral force measurements in liquid using colloidal probes.

  13. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  14. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  15. Crystallization of DNA-coated colloids.

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  16. Does colloid shape affect detachment of colloids by a moving air-water interface?

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  17. Transformative Colloidal Nanomaterials for Mid- Infrared Devices

    Science.gov (United States)

    2015-06-11

    Distribution Unlimited Final Report: Transformative Colloidal Nanomaterials for Mid- Infrared Devices The views, opinions and/or findings contained in this...reviewed journals: Final Report: Transformative Colloidal Nanomaterials for Mid-Infrared Devices Report Title The grant focused on the Photoluminescence...explored for mid-infrared photoluminescence, in view of applying it to LEDs, lasers or negative luminescence devices. Colloidal nanomaterials are already

  18. Binary Colloidal Alloy Test Conducted on Mir

    Science.gov (United States)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  19. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    Science.gov (United States)

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  20. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  1. Colloidal paradigm in supercapattery electrode systems

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2018-01-01

    Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.

  2. High carrier mobility in single ultrathin colloidal lead selenide nanowire field effect transistors.

    Science.gov (United States)

    Graham, Rion; Yu, Dong

    2012-08-08

    Ultrathin colloidal lead selenide (PbSe) nanowires with continuous charge transport channels and tunable bandgap provide potential building blocks for solar cells and photodetectors. Here, we demonstrate a room-temperature hole mobility as high as 490 cm(2)/(V s) in field effect transistors incorporating single colloidal PbSe nanowires with diameters of 6-15 nm, coated with ammonium thiocyanate and a thin SiO(2) layer. A long carrier diffusion length of 4.5 μm is obtained from scanning photocurrent microscopy (SPCM). The mobility is increased further at lower temperature, reaching 740 cm(2)/(V s) at 139 K.

  3. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria

    Science.gov (United States)

    Marinova, Irina; Ganev, Valentin; Titorenkova, Rositsa

    2014-01-01

    We studied both colloform-banded macro- and micro-textures as well as the composition of electrum from the epithermal Khan Krum (or Ada Tepe) gold deposit, Bulgaria (5 Mt at 5.1 g/t Au + 2.7 g/t Ag) using optical and electron scanning microscopy, vibration spectroscopy, electron micro-probe analysis, and LA-ICP-MS. The individual textural bands differ in grain size, porosity, quartz-to-adularia ratio, and abundance of electrum, pyrite, and scattered dusty opaque micro-inclusions. The individual macro-bands have formed successively via intermittent fault dilation from episodic hydrothermal pulses, as a result of regional extension and most likely originated from colloidal solutions formed by vigorous boiling during rapid pressure drop and supersaturation with respect to amorphous silica in a closed or quasi-closed hydrothermal system. Electrum is highly concentrated in the finest quartz-adularia colloform micro-bands, which fill joints with widths up to 1-2 mm. We presume that the joints have filled in with more concentrated colloidal solutions than those in the macro-bands, most likely due to extreme boiling of fluids in open or quasi-open hydrothermal system. Electrum in the micro-bands forms transverse dendrite- and chain-like aggregates as well as oval clots along the banding, all of globular morphology. We explain these locations of electrum with reorientation of aggregated electrum globules during plastic deformation of a mixed electrum-silicate gel and in result from the consequent crystallization of silicates. At the same time, electrum is not present in pores and cracks of syneresis, which indicates that it had not been a soluble phase at the time of syneresis, rather colloidal particles. Electrum also forms dense sprinkles of globular morphology deposited in open space on the surfaces of some quartz-adularia bands, due to a condensation of gaseous phase, separated during the boiling of fluids. We found that the electrum-rich quartz-adularia micro

  4. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries.

    Science.gov (United States)

    Zhou, Weidong; Xiao, Xingcheng; Cai, Mei; Yang, Li

    2014-09-10

    To better confine the sulfur/polysulfides in the electrode of lithium-sulfur (Li/S) batteries and improve the cycling stability, we developed a double-layered core-shell structure of polymer-coated carbon-sulfur. Carbon-sulfur was first prepared through the impregnation of sulfur into hollow carbon spheres under heat treatment, followed by a coating polymerization to give a double-layered core-shell structure. From the study of scanning transmission electron microscopy (STEM) images, we demonstrated that the sulfur not only successfully penetrated through the porous carbon shell but also aggregated along the inner wall of the carbon shell, which, for the first time, provided visible and convincing evidence that sulfur preferred diffusing into the hollow carbon rather than aggregating in/on the porous wall of the carbon. Taking advantage of this structure, a stable capacity of 900 mA h g(-1) at 0.2 C after 150 cycles and 630 mA h g(-1) at 0.6 C after 600 cycles could be obtained in Li/S batteries. We also demonstrated the feasibility of full cells using the sulfur electrodes to couple with the silicon film electrodes, which exhibited significantly improved cycling stability and efficiency. The remarkable electrochemical performance could be attributed to the desirable confinement of sulfur through the unique double-layered core-shell architectures.

  5. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    OpenAIRE

    Luigjes, B.

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a specially adapted centrifuge for measuring heavy and strongly light absorbing colloids. Magnetic composite colloids can be prepared from thermodynamically stable Pickering emulsions of 3-methacrylox...

  6. Utilization of 'elemental' sulfur by different phototrophic sulfur bacteria (Chromatiaceae, Ectothiorhodospiraceae): A sulfur K-edge XANES spectroscopy study

    Science.gov (United States)

    Franz, B.; Lichtenberg, H.; Dahl, C.; Hormes, J.; Prange, A.

    2009-11-01

    Phototrophic sulfur bacteria are generally able to use elemental sulfur as an electron donor for anoxygenic photosynthesis. Elemental sulfur is mainly a mixture of cyclo-octasulfur and polymeric sulfur. The purple sulfur bacterium Allochromatium vinosum strongly prefers the polymeric sulfur fraction showing that sulfur speciation has a strong influence on availability of elemental sulfur. X-ray absorption near edge structure (XANES) spectroscopy was used to investigate whether polymeric sulfur is also the preferred sulfur species in other purple sulfur bacteria belonging to the families Chromatiaceae and Ecothiorodospiraceae. The cultures were fed with 50 mM of elemental sulfur consisting of 68% polymeric sulfur and 30% cyclo-octasulfur. In all cultures, elemental sulfur was converted into intra- or extracellular sulfur globules, respectively, and further oxidized to sulfate. Sulfate concentrations were determined by HPLC and turbidometric assays, respectively. However, the added elemental sulfur was only partly used by the bacteria, one part of the 'elemental sulfur' remained in the cultures and was not taken up. XANES spectroscopy revealed that only the polymeric sulfur fraction was taken up by all cultures investigated. This strongly indicates that polymeric 'chain-like' sulfur is the form preferably used by phototrophic sulfur bacteria.

  7. Speciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover

    Science.gov (United States)

    2015-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600–800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS). Biochars produced under pyrolysis conditions at 500–600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77–100%. Biochars produced in gasification conditions at 850 °C contain 73–100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix. PMID:25003702

  8. Electrochemistry in Colloids and Dispersions. Volume 3. Colloidal Semiconductors

    Science.gov (United States)

    1992-02-04

    Technique’ Generation electrochemically RuO2 /polybrene rapid mixing 1-12 11 colloid & stopped flow I r electrochemically RuO./ TiO2 rapid mixing 1-12 11...8217OOOO1 92-06924 9 2i~ 1111 -1,llNi(ilI~l 11 Best Available Copy ~ REDOX MECHANISMS IN HETEROGENEOUS PHOTOCATALYSIS . THE CASE OF HOLES vs. OH*RADICAL...CONTENTS ABSTRACT p.i Volume III 21. Redox mechanisms in heterogeneous photocatalysis . The case of holes vs OH radical oxidation and free vs. surface-bound

  9. Self-Assembly at the Colloidal Scale

    Science.gov (United States)

    Zhong, Xiao

    The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.

  10. Colloid transport in dual-permeability media.

    Science.gov (United States)

    Leij, Feike J; Bradford, Scott A

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  12. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  13. Engineering Entropy for Colloidal Design

    Science.gov (United States)

    Geng, Yina; Anders, Greg Van; Dodd, Paul M.; Glotzer, Sharon C.; Glotzer group Collaboration

    The inverse design of target material structures is a fundamental challenge. Here, we demonstrate the direct inverse design of soft materials for target crystal structures using entropy alone. Our approach does not require any geometric ansatz. Instead, it efficiently samples 92- or 188-dimensional building-block parameter spaces to determine thermodynamically optimal shapes. We present detailed data for optimal particle characteristics and parameter tolerances for six target structures. Our results demonstrate a general, rational, and precise method for engineering new colloidal materials, and will guide nanoparticle synthesis to realize these materials.

  14. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  15. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  16. Colloidal Electrolytes and the Critical Micelle Concentration

    Science.gov (United States)

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  17. Manipulating colloids with charges and electric fields

    NARCIS (Netherlands)

    Leunissen, M.E.

    2007-01-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their

  18. Colloid transport in dual-permeability media

    Science.gov (United States)

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the incre...

  19. Dynamics of colloidal crystals in shear flow

    NARCIS (Netherlands)

    Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal

  20. Structure and Dynamics at Colloidal Boundaries

    NARCIS (Netherlands)

    de Villeneuve, V.W.A.

    2008-01-01

    This thesis is made up of several studies of boundaries occurring in colloidal hard sphere crystals and phase separated colloid-polymer mixtures. These boundaries can be studied on the particle level, in real space and in real time by confocal microscopy. A general introduction on the experimental

  1. Colloidal iron(III) pyrophosphate particles

    NARCIS (Netherlands)

    Rossi, L.; Velikov, K. P.; Philipse, A.P.

    2014-01-01

    Ferric pyrophosphate is a widely used material in the area of mineral fortification but its synthesis and properties in colloidal form are largely unknown. In this article, we report on the synthesis and characterisation of colloidal iron(III) pyrophosphate particles with potential for application

  2. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    Science.gov (United States)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  4. Thyroid Scan and Uptake

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  5. Colloidal astaxanthin: preparation, characterisation and bioavailability evaluation.

    Science.gov (United States)

    Anarjan, Navideh; Tan, Chin Ping; Nehdi, Imededdine Arbi; Ling, Tau Chuan

    2012-12-01

    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (ppowder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Colloid-Associated Radionuclide Concentration Limits: ANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Mertz

    2000-12-21

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types.

  7. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  8. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  9. Investigation of a colloidal damper.

    Science.gov (United States)

    Suciu, C V; Iwatsubo, T; Deki, S

    2003-03-01

    A novel application of nanotechnology in the field of mechanical engineering, called colloidal damper (CD), is investigated. This device is complementary to the hydraulic damper (HD), having a cylinder-piston construction. Particularly for CD, the hydraulic oil is replaced by a colloidal suspension, which consists of a mesoporous matrix and a lyophobic fluid. In this work, the porous matrix is from silica gel modified by linear chains of n-alkylchlorosilanes and water is considered as an associated working fluid. A design solution from a practical point of view of the CD test rig and the measuring technique of the hysteresis are described. A brief review of the water physical properties relative to the CD concept is presented. Influence of the bonding density, length of the grafted molecule, pore diameter, and particle diameter on the CD hysteresis is investigated for distinctive types and mixtures of silica gels. Temperature variation during functioning is recorded and the CD cycle is interpreted from a thermodynamic standpoint. Variation of the CD dissipated energy and efficiency with pressure, water quantity, and relaxation time is illustrated. Experimental results are justified by the analysis of the water flow into the porous matrix, CD thermodynamics, and the mechanism of the energy dissipation. Our findings agree with the previously published data.

  10. Magnetic colloids as drug vehicles.

    Science.gov (United States)

    Durán, J D G; Arias, J L; Gallardo, V; Delgado, A V

    2008-08-01

    This review article is a description of the present status of magnetic drug delivery systems (DDS). These are colloidal dispersions of composite nanoparticles consisting of a (polymeric or inorganic) biocompatible matrix and magnetic units, and designed to load and release therapeutic drugs. The matrix, together perhaps with adsorbed polymers or polyelectrolytes, provides the DDS with additional colloidal stability and eventually control of the immune response, and the magnetic inclusions have the goal of providing magnetic guidance. The techniques used in the production of the particles are described. The large surface/volume ratio of the particles brings about a superlative importance of the interface aspects, which are depicted in some detail. Attention is also paid to the possibilities that magnetic DDS offer to be guided by magnetic fields, and to their fate upon entering in contact with the blood proteins and the tumor cells. A description of in vitro and in vivo biodistribution experiments helps in this description. The number of animal experiments performed using magnetic DDS is rather large, but results in humans are far from being sufficient in number, something easily understood. The hopes for improvement and the challenges that must be overcome are described in the closing section.

  11. Lithium-Sulfur Capacitors.

    Science.gov (United States)

    Kim, Mok-Hwa; Kim, Hyun-Kyung; Xi, Kai; Kumar, R Vasant; Jung, Dae Soo; Kim, Kwang-Bum; Roh, Kwang Chul

    2017-12-22

    Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg-1 and power densities of 72.2-4097.3 W kg-1, which are the highest reported values for an asymmetric system to date. This approach involved the use of a pre-lithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.

  12. Liquid sulfur mustard exposure.

    Science.gov (United States)

    Newmark, Jonathan; Langer, Janice M; Capacio, Benedict; Barr, John; McIntosh, Roger G

    2007-02-01

    A 35-year-old active duty service member sustained a 6.5% body surface area burn as a result of exposure to the chemical warfare agent sulfur mustard, which is the most severe mustard exposure of a U.S. military member since World War II that is known to us. New techniques were used to demonstrate the detectable persistence of mustard metabolites in the patient's blood for at least 41 days after exposure, validating these techniques for the first time for a human mustard patient; they were also used for the first time with human mustard blister fluid. The techniques extend eightfold the period of time that mustard exposure can be definitively diagnosed, compared with previous techniques. Although this patient's lesions were never life-threatening, he required 2 weeks of intensive burn care. He has been left with ongoing posttraumatic stress disorder and has had an incomplete dermatological recovery. In a major terrorist attack involving many patients exposed to sulfur mustard, care resources would be depleted quickly.

  13. Volume efficient sodium sulfur battery

    Science.gov (United States)

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  14. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.

    Science.gov (United States)

    Zhang, Wei; Morales, Verónica L; Cakmak, M Ekrem; Salvucci, Anthony E; Geohring, Larry D; Hay, Anthony G; Parlange, Jean-Yves; Steenhuis, Tammo S

    2010-07-01

    Colloids play an important role in facilitating transport of adsorbed contaminants in soils. Recent studies showed that under saturated conditions colloid retention was a function of its concentration. It is unknown if this is the case under unsaturated conditions. In this study, the effect of colloid concentration on colloid retention was investigated in unsaturated columns by increasing concentrations of colloid influents with varying ionic strength. Colloid retention was observed in situ by bright field microscopy and quantified by measuring colloid breakthrough curves. In our unsaturated experiments, greater input concentrations resulted in increased colloid retention at ionic strength above 0.1 mM, but not in deionized water (i.e., 0 mM ionic strength). Bright field microscope images showed that colloid retention mainly occurred at the solid-water interface and wedge-shaped air-water-solid interfaces, whereas the retention at the grain-grain contacts was minor. Some colloids at the air-water-solid interfaces were rotating and oscillating and thus trapped. Computational hydrodynamic simulation confirmed that the wedge-shaped air-water-solid interface could form a "hydrodynamic trap" by retaining colloids in its low velocity vortices. Direct visualization also revealed that colloids once retained acted as new retention sites for other suspended colloids at ionic strength greater than 0.1 mM and thereby could explain the greater retention with increased input concentrations. Derjaguin-Landau-Verwey-Overbeek (DLVO) energy calculations support this concept. Finally, the results of unsaturated experiments were in agreement with limited saturated experiments under otherwise the same conditions.

  15. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  16. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    NARCIS (Netherlands)

    Luigjes, B.|info:eu-repo/dai/nl/31412330X

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a

  17. [The colloid milium: An observation associated with trichinosis].

    Science.gov (United States)

    Okhremchuk, Ilona; Abed, Safia; Nguyen, Anh Tuan; Brandone, Nicolas; Morand, Jean-Jacques

    2016-04-01

    The colloid milium has four clinical forms: adult colloid milium, juvenile colloid milium, paracolloid (or nodular colloid degeneration) and pigmented colloid milium. We report the case of an adult colloid milium in a man of 56, who presented episodes of diffuse pruritus associated with myalgia and digestive disorders, indicative of trichinosis. He also developed gradually over the past 10 years, yellowish injuries in the mandibles and neck for whom histology objectified a colloid milium. Etiology and treatment are still unknown; association with a trichinosis is probably coincidental. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules

    DEFF Research Database (Denmark)

    Li, Fan; Yoo, Won Cheol; Beernink, Molly B

    2009-01-01

    Multipodal nanoparticles (NPs) with controlled tethers are promising principal building blocks, useful for constructing more complex materials, much like atoms are connected into more complex molecules. Here we report colloidal sphere templating as a viable means to create tetrapodal NPs with site......-specific tethers. Amorphous sol-gel materials were molded by the template into shaped NPs that mimic tetravalent atoms but on the length scale of colloids. Synthetic methods were developed to modify only the tips of the tetrapods with a range of possible functional groups to generate anisotropic NPs capable...... of directional bonding to other NPs. We also illustrate that sets of tethered "colloidal atoms" can assemble themselves into "colloidal molecules" with precise placement of the modifying colloids. The templating and tethering approaches to these anisotropic colloidal building blocks and the assembly methods...

  19. Oxyhydroxy Silicate Colloids: A New Type of Waterborne Actinide(IV) Colloids

    Science.gov (United States)

    Weiss, Stephan; Hennig, Christoph; Brendler, Vinzenz; Ikeda‐Ohno, Atsushi

    2016-01-01

    Abstract At the near‐neutral and reducing aquatic conditions expected in undisturbed ore deposits or in closed nuclear waste repositories, the actinides Th, U, Np, and Pu are primarily tetravalent. These tetravalent actinides (AnIV) are sparingly soluble in aquatic systems and, hence, are often assumed to be immobile. However, AnIV could become mobile if they occur as colloids. This review focuses on a new type of AnIV colloids, oxyhydroxy silicate colloids. We herein discuss the chemical characteristics of these colloids and the potential implication for their environmental behavior. The binary oxyhydroxy silicate colloids of AnIV could be potentially more mobile as a waterborne species than the well‐known mono‐component oxyhydroxide colloids. PMID:27957406

  20. The Ongoing Controversy: Crystalloids Versus Colloids.

    Science.gov (United States)

    Pierce, Janet D; Shen, Qiuhua; Thimmesch, Amanda

    2016-01-01

    There is still much debate over the optimal fluid to use for resuscitation. Different studies have indicated either crystalloid or colloid is the ideal intravenous solution to administer, based on mortality or various physiological parameters. Older studies found differences between crystalloids and colloids. However, with the evolving science of fluid administration, more recent studies have shown no differences in patient outcomes. This review article will provide an overview of these substances and discuss the advantages, disadvantages, and implications for giving crystalloids and colloids in clinical practice.

  1. Systematic investigation of the synthesis of core-shell poly(styrene-co-acrylic acid) colloids with varying shell thickness and core diameter

    DEFF Research Database (Denmark)

    Hinge, Mogens; Keiding, Kristian

    2006-01-01

    by titration, dynamic light scattering (DLS), scanning electron microscopy (SEM) and transition electron microscopy (TEM).   The acrylic acid was fully incorporated into the poly(ST-co-AA) colloids in blocks and/or clusters and the purified poly(ST-co-AA) colloids swelled when pH was changed from low (4......) to high (10). There was a linear correlation between the incorporated amount of acrylic acid and the swelling for the purified poly(ST-co-AA) colloids. The swelling is thus ascribed to ionization of poly(acrylic acid). Samples were taken during synthesis and the fractional conversion and size...

  2. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  3. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  4. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-05-31

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments.

  5. Coverage evolution of the unoccupied Density of States in sulfur superstructures on Ru(0001)

    Science.gov (United States)

    Pisarra, M.; Bernardo-Gavito, R.; Navarro, J. J.; Black, A.; Díaz, C.; Calleja, F.; Granados, D.; Miranda, R.; Martín, F.; Vázquez de Parga, A. L.

    2018-03-01

    Sulfur adsorbed on Ru(0001) presents a large number of ordered structures. This characteristic makes S/Ru(0001) the ideal system to investigate the effect of different periodicities on the electronic properties of interfaces. We have performed scanning tunneling microscopy/spectroscopy experiments and density functional theory calculations showing that a sulfur adlayer generates interface states inside the Γ directional gap of Ru(0001) and that the position of such states varies monotonically with sulfur coverage. This is the result of the interplay between band folding effects arising from the new periodicity of the system and electron localization on the sulfur monolayer. As a consequence, by varying the amount of sulfur in S/Ru(0001) one can control the electronic properties of these interfacial materials.

  6. Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability

    Science.gov (United States)

    Li, Zihao; Li, Xiaogang; Liao, Youhao; Li, Xiaoping; Li, Weishan

    2016-12-01

    We report a novel composite of sulfur loaded in micropore-rich carbon aerogel (CA-S), as cathode of lithium-sulfur battery. Carbon aerogel (CA) is synthesized through phenol-formaldehyde reaction with a low catalyst concentration and carbonization under high temperature, and loaded with sulfur via chemical deposition and heat treatment. The physical properties of the resulting CA and the electrochemical performances of the resulting CA-S are investigated by scanning electron microscopy, thermal gravimetric analysis, Brunauer-Emmett-Teller characterization, electrochemical impedance spectroscopy, and galvanostatic discharge/charge test, with a comparison of a common carbon material, acetylene black (AB), and sulfur loaded in AB (AB-S). It is found that the CA is micropore-rich with micropore volume over 66% of total pore volume, and the CA-S exhibits significantly improved cyclic stability compared with AB-S. The improved performance of CA-S is attributed to the confinement of the micropores in CA to small sulfur allotropes and corresponding lithium sulfides.

  7. Fossilization of melanosomes via sulfurization.

    Science.gov (United States)

    McNamara, Maria E; van Dongen, Bart E; Lockyer, Nick P; Bull, Ian D; Orr, Patrick J

    2016-05-01

    Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur-bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur-rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py-GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF-SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non-sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur-rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... top of page What are some common uses of the procedure? The thyroid scan is used to ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... of page What are some common uses of the procedure? The thyroid scan is used to determine ...

  10. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower ... The lumbar CT scan is good for evaluating large herniated disks, ... smaller ones. This test can be combined with a myelogram to get ...

  11. Arm CT scan

    Science.gov (United States)

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... stopping.) A computer creates separate images of the arm area, called slices. These images can be stored, ...

  12. Thoracic spine CT scan

    Science.gov (United States)

    CAT scan - thoracic spine; Computed axial tomography scan - thoracic spine; Computed tomography scan - thoracic spine; CT scan - ... Philadelphia, PA: Elsevier Mosby; 2013:chap 44. US Food and Drug Administration. Computed tomography (CT). Updated August ...

  13. Colloidal Stabilization of Neurofilaments and Microtubules

    National Research Council Canada - National Science Library

    Hoh, Jan

    2000-01-01

    ... in what has been called colloidal stabilization. We suggest that failure of such stabilization may be related to, and even causal, in neuropathologies such as amyotrophic lateral sclerosis (ALS...

  14. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  15. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  16. Solid colloids with surface-mobile linkers.

    Science.gov (United States)

    van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-06-17

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.

  17. Synthesis and characterization of colloidal gold particles as labels for antibodies as used in lateral flow devices.

    Science.gov (United States)

    Cvak, Barbara; Pum, Dietmar; Molinelli, Alexandra; Krska, Rudolf

    2012-04-21

    Based on well established citrate reduction protocols for the synthesis of colloidal gold particles, this work focuses on the characterization of these colloids for further use as color labels in lateral flow devices. A reproducible production method has been developed for the synthesis of well characterized colloidal gold particles to be employed in Lateral Flow Devices (LFDs). It has been demonstrated that when undertaking chemical reduction of gold salts with sodium citrate, the amount of reducing agent employed could be used to directly control the size of the resultant particles. A protocol was thereby developed for the synthesis of colloidal gold particles of pre-defined diameters in the range of 15 to 60 nm and of consistent size distribution. The absorption maxima (λ(max)) of the reaction solutions were analyzed by UV/VIS measurements to determine approximate particle sizes, which were confirmed with transmission electron microscopy (TEM) measurements. Colloidal gold particles of about 40 nm in diameter were synthesized and used for labeling monoclonal anti-mycotoxin antibodies (e.g. zearalenone). To deduce the extent of antibody coupling to these particles, smaller colloids with 15 nm diameter were labeled with anti-species specific antibodies. Both solutions were mixed and then scanned by TEM to obtain information about the success of coupling.

  18. Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations.

    Science.gov (United States)

    Xu, Huacheng; Yang, Changming; Jiang, Helong

    2016-12-01

    The stability/aggregation propensity of inorganic colloids in eutrophic shallow lakes is of great essence in governing the water transparency and contaminant behavior. In this study, time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of Al2O3 inorganic colloids over a wide range of cyanobacterial extracellular polymeric substance (EPS) concentrations in the absence and presence of electrolyte cations. The results showed that EPS adsorption alone greatly decreased the hydrodynamic diameters of colloidal particles, whose stability behavior followed closely the predictions of the classical DLVO theory. Electrolyte cations, however, can induce the aggregation of colloidal particles, and divalent Ca(2+) were found to be more efficient in destabilizing the colloids than monovalent Na(+), as indicated by the considerably lower critical coagulation concentrations (2.5 mM for Ca(2+) vs. 170 mM for Na(+)). Further addition of Ca(2+), i.e., >2.5 mM, caused an extremely high aggregation degree and rate. High resolution transmission electron microscopy revealed that this enhanced aggregation should be attributed to the gel-like bridging between colloidal particles, which were verified to be the amorphous EPS-Ca(2+) complexes. Field-emission scanning electron microscopy coupled with elemental mapping provided additional evidence that the bridging interaction of EPS with Ca(2+) was the predominant mechanism for the aggregation enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  20. Equilibrium gels of limited valence colloids

    OpenAIRE

    Sciortino, Francesco; Zaccarelli, Emanuela

    2017-01-01

    Gels are low-packing arrested states of matter which are able to support stress. On cooling, limited valence colloidal particles form open networks stabilized by the progressive increase of the interparticle bond lifetime. These gels, named equilibrium gels, are the focus of this review article. Differently from other types of colloidal gels, equilibrium gels do not require an underlying phase separation to form. Oppositely, they form in a region of densities deprived of thermodynamic instabi...

  1. Design and fabrication of colloidal polymer nanocomposites

    OpenAIRE

    Wang, T.; Keddie, JL

    2009-01-01

    It is well established that colloidal polymer particles can be used to create organised structures by methods of horizontal deposition, vertical deposition, spin-casting, and surface pattern-assisted deposition. Each particle acts as a building block in the structure. This paper reviews how two-phase (or hybrid) polymer colloids can offer an attractive method to create nanocomposites. Structure in the composite can be controlled at the nanoscale by using such particles. Methods to create armo...

  2. Coarse-graining polymers as soft colloids

    OpenAIRE

    Louis, A.A.; Bolhuis, P. G.; Finken, R.; Krakoviack, V.; de Meijer, E. J.; Hansen, J. P.

    2001-01-01

    We show how to coarse grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid-points or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.

  3. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  4. Tunable Time-Dependent Colloidal Interactions

    Science.gov (United States)

    Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.

  5. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  6. Self-replication with magnetic dipolar colloids

    Science.gov (United States)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  7. Colloidal oatmeal: history, chemistry and clinical properties.

    Science.gov (United States)

    Kurtz, Ellen S; Wallo, Warren

    2007-02-01

    Oatmeal has been used for centuries as a soothing agent to relieve itch and irritation associated with various xerotic dermatoses. In 1945, a ready to use colloidal oatmeal, produced by finely grinding the oat and boiling it to extract the colloidal material, became available. Today, colloidal oatmeal is available in various dosage forms from powders for the bath to shampoos, shaving gels, and moisturizing creams. Currently, the use of colloidal oatmeal as a skin protectant is regulated by the U.S. Food and Drug Administration (FDA) according to the Over-The-Counter Final Monograph for Skin Protectant Drug Products issued in June 2003. Its preparation is also standardized by the United States Pharmacopeia. The many clinical properties of colloidal oatmeal derive from its chemical polymorphism. The high concentration in starches and beta-glucan is responsible for the protective and water-holding functions of oat. The presence of different types of phenols confers antioxidant and anti-inflammatory activity. Some of the oat phenols are also strong ultraviolet absorbers. The cleansing activity of oat is mostly due to saponins. Its many functional properties make colloidal oatmeal a cleanser, moisturizer, buffer, as well as a soothing and protective anti-inflammatory agent.

  8. Colloids with high-definition surface structures

    Science.gov (United States)

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  9. Self-replication with magnetic dipolar colloids.

    Science.gov (United States)

    Dempster, Joshua M; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  10. Light driven assembly of active colloids

    Science.gov (United States)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of act

  11. Optimization of high-concentration endostatin formulation: Harmonization of excipients' contributions on colloidal and conformational stabilities.

    Science.gov (United States)

    Wang, Shujing; Zhang, Xinyi; Wu, Guoliang; Tian, Zhou; Qian, Feng

    2017-09-15

    Recently, increasing research efforts have been devoted into developing high-concentration protein drugs for subcutaneous injection, especially for those with short half-lives and high-dose requirement. Proteins at high concentrations normally present increased colloidal and structural instability, such as aggregation, fibrillation and gelation, which significantly challenges the high-concentration formulation development of protein drugs. Here we used endostatin, a 20kD recombinant protein, as a model drug for high-concentration formulation optimization. The colloidal and conformational stability of endostatin at high concentration of 30mg/mL were investigated in formulations containing various excipients, including saccharides (mannitol, sorbitol and sucrose), salts (ArgHCl and NaCl), and surfactants (tween 20 and 80). Protein fibrillation was characterized and semi-quantified by optical polarized light microscopy and transmission electron microscopy, and the amount of fiber formation at elevated temperature of 40°C was determined. The soluble protein aggregates were characterized by dynamic and static light scattering before and after dilution. The conformational stability were characterized by polyacrylamide gel electrophoresis, fluorescence, circular dichroism, and differential scanning calorimetry. We observed that the soluble aggregation, fibrillation and gelation, induced by conformational and colloidal instabilities of the protein solution, could be substantially optimized by using suitable stabilizers such as combinations of saccharides and surfactants; while formation of gel and soluble aggregates at high protein concentration (e.g., 30mg/mL) and elevated temperature (40°C) could be prevented by avoiding the usage of salts. It's worth emphasizing that some stabilizers, such as salts and surfactants, could show opposite contributions in conformational and colloidal stabilities of endostatin. Therefore, cautions are needed when one attempts to correlate

  12. Experimental Study of Effect of Graphene Oxide Colloid on the Critical Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Ahn, Ho Seon [Incheon National Univ., Incheon (Korea, Republic of)

    2013-10-15

    We carried out the pool boiling CHF experiments in GO colloids. For analysis of surface characteristics, we conducted scanning electron microscopy (SEM) observation and contact angle (CA) measurement. The CHF enhancement of GO colloids was investigated in this study. To control the surface condition of GO deposition layer, the concentration was changed. As the concentration increased, the CHF performance was enhanced. In order to explain the CHF enhancement, we conducted morphology analysis and contact angle measurement. The deposition layer, however, showed 2D smooth surface and no wettability enhancement. Nucleate boiling is one of most efficient mode for heat transfer in real application such as power plants and chip cooling devices. In the heat flux controlled systems, its operating conditions are limited by the critical heat flux (CHF), where vapor film covers entire heating surface so that the surface temperature rapidly increases and melts down, resulting in a severe accident. In order to delay the CHF phenomena, nanofluids as working fluid are well-known as a possible method. Graphene is a new material having extraordinary thermal property and the method to synthesize the graphene as colloid was developed. Park et al. firstly reported the CHF performance of the graphene oxide (GO) and the reduced graphene oxide (RGO) colloid. The GO and RGO colloid showed about 200% and 100% enhancement of CHF, respectively. Ahn et al. reported the boiling performance of RGO colloid and unique structure formation of RGO flakes, so called self-assembled three-dimensional foam-like graphene network (SFG), on the heating surface. The important point of boiling study on the graphene based material is that their CHF enhancement could not be explained by existing theory based on wetting analysis.

  13. Characterization and Significance of Sub-Visible Particles and Colloids in a Submerged Anaerobic Membrane Bioreactor (SAnMBR).

    Science.gov (United States)

    Zhou, Zhongbo; Tan, Yiting; Xiao, Yeyuan; Stuckey, David C

    2016-12-06

    The distribution, composition and morphological structure of subvisible particles and colloids (0.01-10 μm) in the supernatant of a lab-scale submerged anaerobic membrane bioreactor (SAnMBR), and their role in membrane fouling, was investigated. Photometric analysis showed that the supernatant and membrane foulants were dominated by particles and colloids (0.45-10 μm), which accounted for over 90% of the total organics (proteins and polysaccharides). Excitation-emission matrix (EEM) fluorescence spectra and monosaccharide analysis showed that these particles and colloids were rich in fluorescent proteins, rhamnose, ribose and arabinose, all of which could be related to cellular and extracellular substances. Fluorescence and scanning electron microscopy confirmed the presence of bacterial cells in/on the subvisible particles and colloids. The microparticles (5-10 μm) were primarily composed of Streptobacilli and/or filamentous bacteria in the form of microcolonies, while the submicrometer particles and colloids (1-5 μm and 100 kDa-1 μm) had more free/single cocci and bacilli. The ratio of live/dead cells varied in different size-fractions, and the particles (1-10 μm) contained more live cells compared with the colloids (100 kDa-1 μm). Our findings suggest that bacterial cells in/on the particles and colloids could have an important effect on fouling in SAnMBRs as they represent pioneering species attaching to membranes to form fouling layers/biofilm. Such insights reveal that previous foulant-characterization studies in MBRs tended to overestimate organic fouling, while the biofouling induced by these bacteria in/on the particles and colloids was overlooked.

  14. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHzinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Sulfur diagenesis in marine sediments

    Science.gov (United States)

    Goldhaber, M.

    1985-01-01

    Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.

  16. Molecular Recognition in the Colloidal World.

    Science.gov (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  17. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.

    Science.gov (United States)

    Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau

    2017-09-01

    Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.

  18. Colloids in the intensive care unit.

    Science.gov (United States)

    Kruer, Rachel M; Ensor, Christopher R

    2012-10-01

    The most recent published evidence on the use of colloids versus crystalloids in critical care is reviewed, with a focus on population-dependent differences in safety and efficacy. Colloids offer a number of theoretical advantages over crystalloids for fluid resuscitation, but some colloids (e.g., hydroxyethyl starch solutions, dextrans) can have serious adverse effects, and albumin products entail higher costs. The results of the influential Saline Versus Albumin Fluid Evaluation (SAFE) trial and a subsequent SAFE subgroup analysis indicated that colloid therapy should not be used in patients with traumatic brain injury and other forms of trauma due to an increased mortality risk relative to crystalloid therapy. With regard to patients with severe sepsis, two meta-analyses published in 2011, which collectively evaluated 82 trials involving nearly 10,000 patients, indicated comparable outcomes with the use of either crystalloids or albumins. For patients requiring extracorporeal cardiopulmonary bypass (CPB) during heart surgery, the available evidence supports the use of a colloid, particularly albumin, for CPB circuit priming and postoperative volume expansion. In select patients with burn injury, the published evidence supports the use of supplemental colloids if adequate urine output cannot be maintained with a crystalloid-only rescue strategy. The results of the SAFE trial and a subgroup analysis of SAFE data suggest that colloids should be avoided in patients with trauma and traumatic brain injury. There are minimal differences in outcome between crystalloids and hypo-oncotic or iso-oncotic albumin for fluid resuscitation in severe sepsis; in select populations, such as patients undergoing cardiac surgery, the use of iso-oncotic albumin may confer a survival advantage and should be considered a first-line alternative.

  19. Brain PET scan

    Science.gov (United States)

    ... have false results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  20. Coronary Calcium Scan

    Science.gov (United States)

    ... Back To Health Topics / Coronary Calcium Scan Coronary Calcium Scan Also known as Calcium Scan Test A coronary calcium scan is a CT scan of your heart that detects and measures the amount of calcium in the walls of your coronary arteries. Overview ...

  1. Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles

    Science.gov (United States)

    Sarkhosh, L.; Mansour, N.

    2015-06-01

    In nanoparticle colloidal systems, the thermal nonlinearity is affected by the thermal parameters of the surrounding solution. Having a low temperature gradient rate solution may be a key factor in producing high thermal nonlinear properties in colloids. In this manuscript, the effect of the thermal conductivity of the surrounding liquid environment on the thermal nonlinear refraction of gold nanoparticles (AuNPs) synthesized by laser ablation of a gold target in different solutions is investigated. Gold nanoparticles colloids have been fabricated by the nanosecond pulsed laser ablation of a pure gold plate in different liquid environments with a thermal conductivity range of 0.14-0.60 W mK-1 including cyclohexanone, castor oil, dimethyl sulfoxide, ethylene glycol, glycerin and water. The AuNPs colloids exhibit a UV-Vis absorption spectrum with a surface plasmon absorption peak at about 540  ±  20 nm. The thermal nonlinear optical responses of the gold colloids are measured using the Z-scan technique under low power CW laser irradiation at 532 nm near the surface plasmon peak of the nanoparticles. Our results show that the nonlinear refractive index of the nanoparticle colloids is considerably affected by the thermal conductivity of liquid medium. The largest nonlinear refractive index of -3.1  ×  10-7 cm2 W-1 is obtained for AuNP in cyclohexanone with the lowest thermal conductivity of 0.14 W mK-1 whereas the lowest one of -0.1  ×  10-7 cm2 W-1 is obtained for AuNP in water with the highest thermal conductivity of 0.60 W mK-1. This study shows that the nonlinear refractive index value of colloids can be controlled by the thermal conductivity of the used liquid’s environment. This allows us to design low threshold optical limiters by choosing a solution with low thermal conductivity for colloidal nanoparticles.

  2. Antibacterial Activity of Electrochemically Synthesized Colloidal Silver Nanoparticles Against Hospital-Acquired Infections

    Science.gov (United States)

    Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc

    2017-06-01

    This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.

  3. Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhang

    2010-01-01

    Full Text Available The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W and reverse saturable absorption coefficient (β=4.32 cm/GW. The data fitting result of optical limiting (OL response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed.

  4. Preparation of Three-Dimensional Photonic Crystals of Zirconia by Electrodeposition in a Colloidal Crystals Template

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-07-01

    Full Text Available Three-dimensional photonic crystals of zirconia were prepared by electrodeposition in a colloidal crystals template following calcination at 500 °C. Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and reflectance spectroscopy were employed to characterize the photonic crystals of zirconia. It was found that hydrated zirconium ions could penetrate the colloidal crystals template and reach the substrate easily by electrodeposition, which resulted in stronger bonding between the substrate and the as-deposited membrane. Moreover, the electrodeposited membrane had low water content, leading to a low amount of shrinkage during calcination. Both these properties could suppress detachment from the substrate upon removal of the colloidal crystals template. Therefore, the three-dimensional photonic crystals of zirconia synthesized in this study exhibited very good preservation of the ordered structures of the colloidal crystals template with a high density. A peak of reflection higher than 70% was formed in the reflectance spectrum because of the strong diffraction of the ordered structures.

  5. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    Science.gov (United States)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  6. Surface chemical effects on colloid stability and transport through natural porous media

    Science.gov (United States)

    Puls, Robert W.; Paul, Cynthia J.; Clark, Donald A.

    1993-01-01

    Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was retrieved from a sand and gravel aquifer on Cape Cod, MA. Previous studies have indicated enhanced stability and transport of iron oxide particles due to specific adsorption of some inorganic anions on the iron oxide surface. This phenomenon was further evaluated with an anionic surfactant, sodium dodecyl sulfate. Surfactants constitute a significant mass of the contaminant loading at the Cape Cod site and their presence may contribute to colloidal transport as a significant transport mechanism at the site. Other studies at the site have previously demonstrated the occurrence of this transport mechanism for iron phosphate particles. Photon correlation spectroscopy, micro-electrophoretic mobility, and scanning electron microscopy were used to evaluate particle stability, mobility and size. Adsorption of negatively charged organic and inorganic species onto the surface of the iron oxide particles was shown to significantly enhance particle stability and transport through alterations of the electrokinetic properties of the particle surface. Particle breakthrough generally occurred simultaneously with tritiated water, a conservative tracer. The extent of particle breakthrough was primarily dependent upon colloidal stability and surface charge.

  7. Lignin and ash balances of sulfur dioxide-ethanol-water fractionation of sugarcane straw.

    Science.gov (United States)

    You, Xiang; van Heiningen, Adriaan; Sixta, Herbert; Iakovlev, Mikhail

    2017-11-01

    Lignin and ash material balances of SO 2 -ethanol-water (AVAP®) fractionation of sugarcane (SC) straw were thoroughly studied at various conditions. Most of straw lignin and ash dissolve in the liquor and 40-80% of lignin is precipitated after ethanol removal as a pure (∼99%) and sulfur-lean (ethanol removal. Variation in fractionation conditions did not have significant effect on lignin properties, while post-sulfonation was capable of changing its form from char-like to colloidal precipitate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Colloidal spirals in nematic liquid crystals.

    Science.gov (United States)

    Senyuk, Bohdan; Pandey, Manoj B; Liu, Qingkun; Tasinkevych, Mykola; Smalyukh, Ivan I

    2015-12-07

    One of the central experimental efforts in nematic colloids research aims to explore how the interplay between the geometry of particles along with the accompanying nematic director deformations and defects around them can provide a means of guiding particle self-assembly and controlling the structure of particle-induced defects. In this work, we design, fabricate, and disperse low-symmetry colloidal particles with shapes of spirals, double spirals, and triple spirals in a nematic fluid. These spiral-shaped particles, which are controlled by varying their surface functionalization to provide tangential or perpendicular boundary conditions of the nematic molecular alignment, are found inducing director distortions and defect configurations with non-chiral or chiral symmetry. Colloidal particles also exhibit both stable and metastable multiple orientational states in the nematic host, with a large number of director configurations featuring both singular and solitonic nonsingular topological defects accompanying them, which can result in unusual forms of colloidal self-assembly. Our findings directly demonstrate how the symmetry of particle-generated director configurations can be further lowered, or not, as compared to the low point group symmetry of solid micro-inclusions, depending on the nature of induced defects while satisfying topological constraints. We show that achiral colloidal particles can cause chiral symmetry breaking of elastic distortions, which is driven by complex three-dimensional winding of induced topological line defects and solitons.

  9. Colloids with continuously tunable surface charge.

    Science.gov (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K

    2014-09-09

    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  10. Sulfur-doped ordered mesoporous carbons: A stability-improving sulfur host for lithium-sulfur battery cathodes

    Science.gov (United States)

    Nitze, Florian; Fossum, Kjell; Xiong, Shizhao; Matic, Aleksandar; Palmqvist, Anders E. C.

    2016-06-01

    We report on sulfur-functionalized ordered mesoporous carbons aimed for lithium-sulfur battery electrode applications with improved charge capacity retention. The carbons were obtained by a hard-template strategy using a mixture of furfuryl alcohol and furfuryl mercaptan. For the application as electrode material in lithium-sulfur batteries, the carbons were additionally loaded with sulfur following a traditional melt-diffusion approach. It was found that the sulfur interacts stronger with the sulfur-functionalized carbon matrix than with the non-functionalized material. Electrodes showed very high capacity in the second discharge-charge cycle amounting to approximately 1500, 1200 and 1400 mAh/g (sulfur) for carbon materials with no, medium and high degrees of sulfur functionalization, respectively. More importantly, the sulfur-functionalization of the carbon was found to increase the capacity retention after 50 discharge-charge cycles by 8 and 5% for the carbons with medium and high degrees of sulfur-functionalization, respectively, compared to carbon with no sulfur-functionalization. We attribute this significant improvement to the presence of covalently bound sulfur groups at the internal surface of the functionalized carbon providing efficient anchoring sites for catenation to the sulfur loaded into the pores of the carbons and provide experimental support for this in the form of results from cyclic voltammetry and X-ray photoelectron spectroscopy.

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  12. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  14. Liquid crystal phase behaviour of colloidal platelets in external fields

    NARCIS (Netherlands)

    Beek, David van der

    2005-01-01

    In this thesis, the liquid crystal phase behaviour of colloidal platelets in external fields is studied. We have specifically investigated the influence of morphological, gravitational, magnetic and centrifugal fields. Part I of this thesis involves sterically stabilised colloidal gibbsite

  15. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  16. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  17. Anisotropic self-assembly of colloidal particles in polymer-colloid composites: A simulation study

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2010-03-01

    The self-assembly of colloidal particles has potential applications in optical fibers, sensors and photovoltaic cells. In this work we have carried out stochastic molecular dynamics simulations of colloid-polymer composites in order to investigate the fundamental self-assembly processes of the particles, in an effort to design more optimal materials for the applications stated above. Results were obtained for spherical colloidal particles of different screening lengths dispersed in a polymer matrix at melt density. By tuning the screening length and interaction strengths between the colloid and polymer, self-assembly into structures that generate anisotropy in the composite material is demonstrated. This phenomenon in colloid-polymer mixtures is analogous to the previously observed self-assembly of grafted nanoparticles in polymer nanocomposites. Our results show a potentially easier way of producing anisotropic self-assembly in polymer-nanocomposites based on colloidal particles as fillers. We also discuss the dynamics of the polymer chains and colloidal particles for different screening lengths and polymer-filler interaction strengths.

  18. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  19. Crack opening: from colloidal systems to paintings.

    Science.gov (United States)

    Léang, Marguerite; Giorgiutti-Dauphiné, Frédérique; Lee, Lay-Theng; Pauchard, Ludovic

    2017-08-30

    Shrinkage cracks are observed in many materials, particularly in paintings where great interest lies in deducing quantitative information on the material with the aim of proposing authentication methods. We present experimental measurements on the crack opening induced by the drying of colloidal layers and compare these results to the case of a pictorial layer. We propose a simple model to predict the crack width as a function of the thickness of the drying layer, based on the balance between the drying stress buildup and the shear frictional stress with the substrate. Key parameters of the model include the mechanical properties that are measured experimentally using micro-indentation testing. A good agreement between theory and experimental data for both colloidal layers and the real painting is found. These results, by comparing the shrinkage cracks in model layers and in pictorial layers, validate the method based on the use of colloidal systems to simulate and to reproduce drying cracks in paintings.

  20. Dynamics of colloidal particles with capillary interactions.

    Science.gov (United States)

    Domínguez, Alvaro; Oettel, Martin; Dietrich, S

    2010-07-01

    We investigate the dynamics of colloids at a fluid interface driven by attractive capillary interactions. At submillimeter length scales, the capillary attraction is formally analogous to two-dimensional gravity. In particular it is a nonintegrable interaction and it can be actually relevant for collective phenomena in spite of its weakness at the level of the pair potential. We introduce a mean-field model for the dynamical evolution of the particle number density at the interface. For generic values of the physical parameters the homogeneous distribution is found to be unstable against large-scale clustering driven by the capillary attraction. We also show that for the instability to be observable, the appropriate values for the relevant parameters (colloid radius, surface charge, external electric field, etc.) are experimentally well accessible. Our analysis contributes to current studies of the structure and dynamics of systems governed by long-ranged interactions and points toward their experimental realizations via colloidal suspensions.

  1. Targeted delivery of colloids by swimming bacteria

    Science.gov (United States)

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  2. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  3. Shape-shifting colloids via stimulated dewetting

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  4. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  5. Effect of midgap defect states on the optical properties of Ge20Se70Te10 nano colloids

    Science.gov (United States)

    Cheruvalath, Ajina; Sebastian, Indu; Sebastian, Mathew; Nampoori, V. P. N.; Thomas, Sheenu

    2017-10-01

    In this work, we report the linear and nonlinear optical studies on a pseudo binary chalcogenide glass of composition Ge20 Se70 Te10 in its nano colloidal form. The possibility of tuning the band gap, nonlinear refractive index and nonlinear absorption of the material by changing the glass loading in the colloid has been revealed. A red shift in the band edge along with an intermediate peak in the band tail due to defect states is observed with increasing concentration. Photoluminescence studies confirm the existence of intermediate defect states in the bandgap. Nonlinear properties analyzed with open and closed aperture z scan technique reveal that the nonlinear refraction enhances due to resonant effects as the band gap of the colloid gets near the one photon absorption edge. The nonlinear absorption is prominent in the concentrated sample due to the presence of defect states which acts as an intermediate level in two step photon absorption.

  6. Phosphate binding by natural iron-rich colloids in streams.

    Science.gov (United States)

    Baken, Stijn; Moens, Claudia; van der Grift, Bas; Smolders, Erik

    2016-07-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biochemistry of Dissimilatory Sulfur Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Blake II, R.

    2003-05-30

    The long term goals of this research were to define the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during the dissimilatory oxidation of sulfur practiced by various species of the thiobacilli. Specific adhesion of the thiobacilli to elemental sulfur was studied by electrical impedance, dynamic light scattering, laser Doppler velocimetry, and optical trapping methods. The conclusion is that the thiobacilli appear to express specific receptors that enable the bacteria to recognize and adhere to insoluble sulfur. The enzyme tetrathionate oxidase was purified from two species of the thiobacilli. Extensive structural and functional studies were conducted on adenosine 5'-phosphosulfate reductase purified from cell-free extracts of Thiobacillus denitrificans. The kinetic mechanism of rhodanese was studied.

  8. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte.

    Science.gov (United States)

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-03-21

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization.

  9. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  10. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  11. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  12. Separation of plutonium oxide nanoparticles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-11-18

    Oil and vinegar: Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity (Li{sub 2}[Pu{sub 38}O{sub 56}Cl{sub 42}(H{sub 2}O){sub 20}].15H{sub 2}O). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Neutron diffraction from superparamagnetic colloidal crystals

    Science.gov (United States)

    Ličen, M.; Drevenšek-Olenik, I.; Čoga, L.; Gyergyek, S.; Kralj, S.; Fally, M.; Pruner, C.; Geltenbort, P.; Gasser, U.; Nagy, G.; Klepp, J.

    2017-11-01

    We fabricated a superparamagnetic ordered structure via self-assembly of a colloidal crystal from a suspension of maghemite nanoparticles and polystyrene beads. Such crystals are potential candidates for novel polarizing beam-splitters for cold neutrons, complementing the available methods of neutron polarization. Different bead sizes and nanoparticle concentrations were tested to obtain a crystal of reasonable quality. Neutron diffraction experiments in the presence of an external magnetic field were performed on the most promising sample. We demonstrate that the diffraction efficiency of such crystals can be controlled by the magnetic field. Our measurements also indicate that the Bragg diffraction regime can be reached with colloidal crystals.

  14. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  15. Colloids in the River Inn

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  16. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.

    Science.gov (United States)

    Wang, Jiulin; Yin, Lichao; Jia, Hao; Yu, Haitao; He, Yushi; Yang, Jun; Monroe, Charles W

    2014-02-01

    Composite materials of porous pyrolyzed polyacrylonitrile-sulfur@graphene nanosheet (pPAN-S@GNS) are fabricated through a bottom-up strategy. Microspherical particles are formed by spray drying of a mixed aqueous colloid of PAN nanoparticles and graphene nanosheets, followed by a simple heat treatment with elemental sulfur. The pPAN-S primary nanoparticles are wrapped homogeneously and loosely within a three-dimensional network of graphene nanosheets (GNS). The hierarchical pPAN-S@GNS composite shows a high reversible capacity of 1449.3 mAh g(-1) sulfur or 681.2 mAh g(-1) composite in the second cycle; after 300 cycles at a 0.2 C charge/discharge rate the capacity retention is 88.8 % of its initial reversible value. Additionally, the coulombic efficiency (CE) during cycling is near 100 %, apart from in the first cycle, in which CE is 81.1 %. A remarkable capacity of near 700 mAh g(-1) sulfur is obtained, even at a high discharge rate of 10 C. The superior performance of pPAN-S@GNS is ascribed to the spherical secondary GNS structure that creates an electronically conductive 3D framework and also reinforces structural stability. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  18. Nd3+-doped colloidal SiO2 composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers

    Science.gov (United States)

    Liu, Tingting; Lei, Hong

    2017-08-01

    Abrasive is one of the most important factors in chemical mechanical polishing (CMP). In order to improve the polishing qualities of sapphire substrates, the novel Nd3+-doped colloidal SiO2 composite abrasives were prepared by seed-induced growth method. In this work, there were a series of condensation reactions during the synthesis process of Nd3+-doped colloidal SiO2 composite abrasives and the silica cores were coated by shells (which contains SiO2, Nd2Si2O7 and Nd(OH)3) via chemical bonds and hydrogen bonds in the Nd3+-doped colloidal SiO2 composite abrasives, which made the composite abrasives' core-shell structure more sTable Scanning electron microscopy (SEM) showed that Nd3+-doped colloidal SiO2 composite abrasives were spherical and uniform in size. And the acting mechanisms of Nd3+-doped colloidal SiO2 composite abrasives on sapphire in CMP were investigated. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the solid-state chemical reactions between the shells (which contained SiO2, Nd2Si2O7 and Nd(OH)3) of Nd3+-doped colloidal SiO2 composite abrasives and the sapphire occurred during the CMP process. Furthermore, Nd3+-doped colloidal SiO2 composite abrasives exhibited lower surface roughness and higher material removal rate (MRR) than the pure colloidal SiO2 abrasives in the same polishing conditions, which was attributed to the solid-state chemical reactions between shells of Nd3+-doped colloidal SiO2 composite abrasives and sapphire.

  19. The sulfur cycle in the marine atmosphere

    Science.gov (United States)

    Toon, Owen B.; Kasting, James F.; Turco, Richard P.; Liu, May S.

    1987-01-01

    The simulation of the sulfur cycle in the marine atmosphere using a one-dimensional photochemical model is described and evaluated. Theoretical uncertainties concerning the operation of the marine sulfur cycle are examined, and measurements of sulfur gases in the marine atmosphere necessary for developing the model are derived. Previous modeling studies are reviewed, and the data from these studies are compared to the model simulations. Recommendations for improving the simulation of the sulfur cycle in the marine atmosphere are discussed.

  20. Efficient Electrolytes for Lithium–Sulfur Batteries

    OpenAIRE

    Natarajan eAngulakshmi; Arul Manuel Stephan

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polyme...

  1. Antibotulinal efficacy of sulfur dioxide in meat.

    OpenAIRE

    Tompkin, R. B.; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulf...

  2. Behavior of sulfur during coal pyrolysis

    Science.gov (United States)

    Shao, D.; Hutchinson, E.J.; Heidbrink, J.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of sulfur in Illinois coals during pyrolysis was evaluated by thermogravimetry/ Fourier transform-infrared spectroscopy (TG/FT-IR) techniques. SO2, COS, and H2S were major gaseous sulfur-containing products observed during coal pyrolysis. The release rates of the gaseous sulfur species showed several peaks within the temperature ranges, which were due to the emission of different forms of sulfur in coal. ?? 1994.

  3. Sulfur Doping of InAs

    Science.gov (United States)

    2015-06-04

    results were also observed with co-implantation of gallium with selenium , which sits on the group-V site [10]. Consequently, the sulfur dose was...wavelength equivalent to the plasma frequency to >4 µm. Glazov and co-workers studied several alternative n-type dopants (sulfur, selenium , and...Wafers were then ion-implanted with varying sulfur doses at peak concentration depths of 50 nm, providing ~100 nm of sulfur-doped InAs. This was

  4. Measuring colloidal osmotic compressibility of a polymer-crowded colloidal suspension by optical trapping

    Science.gov (United States)

    Fu, Jinxin; Kara, Vural; Ou-Yang, H. Daniel

    2013-03-01

    Particle interactions determine the stability of nanoparticle suspensions and the phase separation of particle-polymer mixtures. However, due to the small sizes of the dispersed nanoparticles, it is not easy to directly measure interaction forces between particles in a colloidal suspension. In this paper, we propose an ``Optical Bottle'' approach to quantify these particle interactions in a suspension by measuring the colloidal osmotic compressibility of the nanoparticles. Virial expansion of the colloidal osmotic compressibility yields virial coefficients of different orders. The second order virial coefficient of aqueous suspensions of colloidal polystyrene nanospheres in the presence of high-salt (KCl) and polyethylene glycol (PEG) is found to decrease with increasing PEG concentration, suggesting an attractive depletion interaction between the PEG-crowed polystyrene particles.

  5. Influence of biofilms on colloid transport: investigations with laponite as a model colloid

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Morales, C.F.; Flemming, H.C.; Leis, A. [Duisburg Univ. (Germany). Inst. for Interface Biotechnology

    2003-07-01

    The synthetic clay mineral laponite RD was used as a model compound to investigate colloid transport in the presence of bacterial biofilms. A complex but pronounced delay in the transport of laponite was observed in colonised porous media, clearly demonstrating the influence of attached bacterial biomass on colloid transport. The transport of laponite under conditions which promoted laponite aggregation was associated with release of attached bacteria; this effect was shown to be independent of ionic strength, indicating that the colloids caused detachment of bacteria. Two major mechanisms are proposed to account for the different colloid transport patterns obtained in the presence or absence of biomass: (1) hydrodynamic effects due to aggregation of laponite and subsequent blockage of a proportion of the flow channels, and (2) sorption of laponite by bacterial biomass. (orig.)

  6. Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles.

    Science.gov (United States)

    Mori, Hideharu; Müller, Axel H E; Klee, Joachim E

    2003-04-02

    We present novel intelligent colloidal polymer/silica nanocomposites, in which the complexation of cationic silica nanoparticles and a weak anionic polyelectrolyte can be manipulated simply by pH change through a hydrogen-bonding interaction and ionic complexation caused by hydrogen-transfer interactions between the constituents. Special silica particles which have nanometer size (diameter approximately 3.0 nm) and two independent proton-accepting sites were developed in this study. Both the silica and poly(acrylic acid) form transparent colloidal solutions in water, while a white turbid dispersion was obtained just after mixing the two solutions due to the complexation. The pH-induced association-dissociation behavior was confirmed by the turbidity and potentiometric titration measurements. The assembled structures of the hybrids were visualized by scanning force microscopy.

  7. Characterization of Sulfur Compounds in MTBE

    Directory of Open Access Journals (Sweden)

    Mingqing Wu

    2015-01-01

    Full Text Available A study is carried out on chemical constitution of sulfur compounds in MTBE and their formation mechanisms. These sulfur compounds are classified into three types: common sulfur compounds, newly formed sulfur compounds, and high boiling sulfur compounds. Common sulfur compounds which include mercaptans, low molecule sulfides and disulfides, are directly from C4, one of the stocks for production of MTBE. The newly formed sulfur compounds, with one sulfur atom and five or more total carbon atoms in one molecule, are mainly tert-butyl methyl sulfide and tert-butyl ethyl sulfide, thioetherification products of thiols with butenes. Many high boiling sulfur compounds, including polysulfides such as dimethyl trisulfide, multisulfur heterocyclic compounds such as 3,5-dimethyl-1,2,4-trithiolane, and oxygen-containing sulfur compounds such as 2-methoxy-3-methylthio-butane, are also found newly formed in the processes of LPG refining and succedent etherification reaction for producing MTBE. Polysulfides are additional products of elemental sulfur to disulfides, and other high boiling sulfur compounds may be formed by thiols reacting with dienes.

  8. Eagle-Picher Industries Sodium Sulfur Program

    Science.gov (United States)

    Silvey, Ronald L.

    1993-02-01

    Viewgraphs of the sodium sulfur program are presented. Sodium sulfur low earth orbit (LEO) cells are described. Topics covered include cell sizes, areas of improvement, and NaS cell testing. Sodium sulfur cell and battery designs continue to evolve with significant improvement demonstrated in resistance, rechargeability, cycle life, energy density, and electrolyte characterization.

  9. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  10. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  11. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  12. Seal for sodium sulfur battery

    Science.gov (United States)

    Topouzian, Armenag; Minck, Robert W.; Williams, William J.

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  13. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  14. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  15. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  16. Advanced Colloids Experiment (ACE-T1)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  17. Advanced Colloids Experiment (ACE-H-2)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  18. Colloidal photonic crystals: from lasing to microfluidics

    Science.gov (United States)

    Clays, Koen; Zhong, Kuo; Song, Kai

    2017-08-01

    Colloidal photonic crystals are photonic crystals made by bottom-up physical chemistry strategies from monodisperse colloidal particles. The self-assembly process is automatically leading to inherently three-dimensional structures with their optical properties determined by the periodicity, induced by this ordering process, in the dielectric properties of the colloidal material. The best-known optical effect is the photonic band gap, the range of energies, or wavelengths, that is forbidden for photons to exist in the structure. This photonic band gap is similar to the electronic band gap of electronic semiconductor crystals. We have previously shown how with the proper photonic band gap engineering, we can insert allowed pass band defect modes and use the suppressing band gap in combination with the transmitting pass band to induce spectral narrowing of emission. We show now how with a high-quality narrow pass band in a broad stop band, it is possible to achieve photonic crystal lasing in self-assembled colloidal photonic crystals with a planar defect. In addition, with proper surface treatment in combination with patterning, we prepare for addressable integrated photonics. Finally, by incorporating a water in- and outlet, we can create optomicrofluidic structures on a photonic crystal allowing the optical probing of microreactors or micro-stopped-flow in the lab-on-an-optical-chip.

  19. Electroneutrality and phase behavior of colloidal suspensions.

    Science.gov (United States)

    Denton, A R

    2007-11-01

    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-Hückel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Lower-dimensional systems (e.g., monolayers, clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining the observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.

  20. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  1. Morphology of colloidal metal pyrophosphate salts

    NARCIS (Netherlands)

    van Leeuwen, Y.M.; Velikov, K.; Kegel, W.K.

    2012-01-01

    We report the preparation and characterization of colloidal particles of several pyrophosphate metal salts, including, for the first time, salts containing multiple metals. These materials are compared in order to determine the influence of the composition and experimental conditions on particle

  2. Non-Fickian diffusion in colloidal glasses

    NARCIS (Netherlands)

    Hagen, M.H.J.; Frenkel, D.; Lowe, C.P.

    1998-01-01

    We have studied numerically the decay of the self-dynamic structure factor (SDSF) for a small particle diffusing in a colloidal glass. We show that, in line with theoretical predictions, the super-Burnett coefficient (characterizing the deviation of the fourth moment of the single particle

  3. Repeptization and the theory of electrocratic colloids

    NARCIS (Netherlands)

    Frens, G.; Overbeek, J.Th.G.

    The coagulation and the repeptization of electrocratic colloids can be treated in one theory provided that the appropriate boundary conditions are chosen. From this version of the DLVO theory it follows that for each sol there exists a critical value Z∞c of the double layer parameter Z∞, Z∞ =

  4. Hydrodynamic flow induced anisotropy in colloid adsorption

    NARCIS (Netherlands)

    Loenhout, Marijn T.J.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2009-01-01

    The possibility to induce structure in layers of colloid particles by using the hydrodynamic blocking effect is investigated both experimentally and by using Monte Carlo simulations. Latex particles with diameters of 1.1 m and 0.46 m are deposited on 3-amino-propyltriethoxysilane (APTES)

  5. Patchy particles made by colloidal fusion

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  6. The colloidal chemistry of ceramic clays

    Science.gov (United States)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  7. Natural and Synthetic Colloids in Veterinary Medicine.

    Science.gov (United States)

    Brooks, Aimee; Thomovsky, Elizabeth; Johnson, Paula

    2016-06-01

    This review article covers basic physiology underlying the clinical use of natural and artificial colloids as well as provide practice recommendations. It also touches on the recent scrutiny of these products in human medicine and how this may have an effect on their use in veterinary medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Binary Colloidal Superlattices Assembled by Magnetic Fields

    Science.gov (United States)

    Yellen, Benjamin

    2013-03-01

    Colloidal particle superlattices represent a fascinating class of complex materials which in many cases have corollary structures at the atomic scale. These complex systems thus not only help elucidate the principles of materials assembly in nature, but further provide design criteria for fabrication of novel materials at the macroscopic scale. Methods for assembling colloidal particle superlattices include controlled drying, ionic interactions, and dipolar interactions. However, a general pathway for producing a wider variety of colloidal crystals remains a fundamental challenge. Here we demonstrate a versatile colloidal assembly system in which the design rules can be tuned to yield over 20 different pre-programmed lattice structures, including kagome, honeycomb, square tiles, as well as a variety of chain and ring configurations. We tune the crystal type by controlling the relative concentrations and interaction strengths between spherical superparamagnetic and diamagnetic particles. An external magnetic field causes like particles to repel and unlike particles to attract. The combination of our experimental observations with potential energy calculations of various lattice structures suggest that the lowest energy lattice configuration is determined by two parameters, namely the dipole moment and relative concentration of each particle type. Triangle MRSEC DMR-1121107, NSFC 51150110161

  9. Design and fabrication of colloidal polymer nanocomposites.

    Science.gov (United States)

    Wang, Tao; Keddie, Joseph L

    2009-01-01

    It is well established that colloidal polymer particles can be used to create organised structures by methods of horizontal deposition, vertical deposition, spin-casting, and surface pattern-assisted deposition. Each particle acts as a building block in the structure. This paper reviews how two-phase (or hybrid) polymer colloids can offer an attractive method to create nanocomposites. Structure in the composite can be controlled at the nanoscale by using such particles. Methods to create armored particles, such as via methods of hetero-flocculation and Pickering polymerization, are of particular interest here. Polymer colloids can also be blended with other types of nanoparticles, e.g. nanotubes and clay platelets, to create nanocomposites. Structure can be controlled over length scales approaching the macroscopic through the assembly of hybrid particles or particle blends via any of the various deposition methods. Colloidal nanocomposites can offer unprecedented long-range 2D or 3D order that provides a periodic modulation of physical properties. They can also be employed as porous templates for further nanomaterial fabrication. Challenges in the design and control of the macroscopic properties, especially mechanical, are considered. The importance of the internal interfacial structure (e.g. between inorganic and polymer particles) is highlighted.

  10. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark

    2007-01-01

    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these

  11. Colloidal models. A bit of history

    NARCIS (Netherlands)

    Lyklema, J.

    2015-01-01

    This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro’s number, development in the insight into driving forces for double layer

  12. Patchy particles made by colloidal fusion.

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-12

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or 'patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  13. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  14. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  15. Colloid-Mediated Transport of PPCPs through Porous Media

    Science.gov (United States)

    Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie

    2017-04-01

    Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.

  16. Colloid Bound Transport of Contaminats In The Unsaturated Zone

    Science.gov (United States)

    Hofmann, T.; Christ, A.

    Colloids can play a major role in the relocation of contaminants in the unsaturated zone. The amount of colloid driven transport is defined by soil chemistry, soil water chemistry and water flow velocity as well as colloid composition and formation. In a current research project we investigate the filtration and mobilization of colloids in unsaturated column studies. We use different soil types, chosen by a wide range of mean grain size and heterogeneity. Particle tracers are polystyrene solids with a de- fined negative surface charge and defined size from 50 nm to 10 µm. In addition, we use natural colloids extracted from a wide range of contaminated and uncontaminated land. Experimental conditions are exactly controlled throughout all the time. We alter mainly flow velocity ionic strength in order to study the filtration behaviour of the soils. In addition, Pyrene and Lead are are used as model contaminants. First results show the colloids are not retarded in many coarse structured soil types. Preferential colloid flow shows a major impact in breakthrough behaviour. Colloid bound lead is relocated significant through the unsaturated zone, whereas non colloid bound lead species are strongly retarded. In the presentation we will show results of contami- nant processes and present new results on the filtration behaviour of colloids in the unsaturated zone depending on flow velocity, soil type and colloid size.

  17. Preferences for colloid use in Scandinavian intensive care units

    DEFF Research Database (Denmark)

    Perner, A.; Aneman, A.; Guttormsen, A.B.

    2008-01-01

    BACKGROUND: Fluid resuscitation is a frequent intervention in intensive care. Colloids are widely used, but recent data suggest harm by some of these solutions. This calls for more clinical studies on this matter, but the current preferences for colloid use in Scandinavian intensive care units...... (ICUs) are unknown. METHODS: In March-May 2007, 120 Scandinavian ICUs were invited to answer a web-based survey consisting of 18 questions on types of colloids, indications, contraindications and rationale of use. RESULTS: Seventy-three ICUs, of which 31 were university hospital units, answered...... the questionnaire. Most ICUs used both synthetic and natural colloids, and hydroxyethyl starch (HES) 130/0.4 was the preferred colloid in 59 units. Eleven ICUs had protocols for colloid use. The most frequent indication was second-line fluid for hypovolaemia, but one in three ICUs used colloids as first-line fluid...

  18. Study of sulfur adlayers on Au(1 1 1) from basic hydrolysis of piperazine bis(dithiocarbamate) sodium salt

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Javier A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Valenzuela, José [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Hernandez-Tamargo, Carlos E. [Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Cao-Milán, Roberto [Laboratorio de Bioinorgánica (LBI), Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Herrera, José A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Díaz, Jesús A.; Farías, Mario H. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); and others

    2015-08-01

    Highlights: • S adlayer formation from descomposition of piperazine bis(dithiocarbamate) sodium salt under alkaline conditions. • Quasi-rectangular octomers (eight sulfur atoms) coexist with another phase. • A DFT surface model of four S-dimers arranged as octomers reproduced real STM images. - Abstract: Sulfur adlayers on Au(1 1 1) were obtained after the interaction of a gold substrate with an alkaline solution of piperazine bis(dithiocarbamate) sodium salt. Characterization of the sulfur modified gold surface was performed by means of X-Ray Photoelectron Spectroscopy (XPS), Scanning Tunneling Microscopy (STM) and Density Functional Theory (DFT) calculations. XPS signals indicated the presence of S–Au bonds, monomeric and polymeric sulfur, and absence of nitrogen and sodium. Images from STM showed the formation of quasi-rectangular octomers in coexistence with another phase. A DFT model using the arrangement of sulfur dimers on the Au(1 1 1) surface effectively reproduced the experimental STM images.

  19. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    Science.gov (United States)

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  20. Atomic and Electronic Structure of Quantum Dots Measured with Scanning Probe Techniques

    NARCIS (Netherlands)

    Sun, Z.|info:eu-repo/dai/nl/314075674

    2012-01-01

    This thesis deals with low temperature scanning tunneling microscopy/spectroscopy and atomic force microscopy (LT-STM/STS and AFM) studies on colloidal semiconductor and graphene quantum dots (g-QDs). These nanostructures are interesting because they show tunable electrical and optical properties

  1. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  2. Quantitative uptake of colloidal particles by cell cultures.

    Science.gov (United States)

    Feliu, Neus; Hühn, Jonas; Zyuzin, Mikhail V; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif; Said, Alaa Hassan; Escudero, Alberto; Pelaz, Beatriz; Gonzalez, Elena; Duarte, Miguel A Correa; Roy, Sathi; Chakraborty, Indranath; Lim, Mei L; Sjöqvist, Sebastian; Jungebluth, Philipp; Parak, Wolfgang J

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  3. Utilization of 'elemental' sulfur by different phototrophic sulfur bacteria (Chromatiaceae, Ectothiorhodospiraceae): A sulfur K-edge XANES spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Franz, B; Prange, A [Niederrhein University of Applied Sciences, Competence Center for Microbiology and Biotechnology (CCMB), Rheydter Strasse 277, 41065 Moenchengladbach (Germany); Lichtenberg, H; Hormes, J [Louisiana State University, Center for Advanced Microstructures and Devices (CAMD), 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Dahl, C, E-mail: A.Prange@gmx.d [University of Bonn, Institute for Microbiology and Biotechnology, Meckenheimer Allee 168, 53115 Bonn (Germany)

    2009-11-15

    Phototrophic sulfur bacteria are generally able to use elemental sulfur as an electron donor for anoxygenic photosynthesis. Elemental sulfur is mainly a mixture of cyclo-octasulfur and polymeric sulfur. The purple sulfur bacterium Allochromatium vinosum strongly prefers the polymeric sulfur fraction showing that sulfur speciation has a strong influence on availability of elemental sulfur. X-ray absorption near edge structure (XANES) spectroscopy was used to investigate whether polymeric sulfur is also the preferred sulfur species in other purple sulfur bacteria belonging to the families Chromatiaceae and Ecothiorodospiraceae. The cultures were fed with 50 mM of elemental sulfur consisting of 68% polymeric sulfur and 30% cyclo-octasulfur. In all cultures, elemental sulfur was converted into intra- or extracellular sulfur globules, respectively, and further oxidized to sulfate. Sulfate concentrations were determined by HPLC and turbidometric assays, respectively. However, the added elemental sulfur was only partly used by the bacteria, one part of the 'elemental sulfur' remained in the cultures and was not taken up. XANES spectroscopy revealed that only the polymeric sulfur fraction was taken up by all cultures investigated. This strongly indicates that polymeric 'chain-like' sulfur is the form preferably used by phototrophic sulfur bacteria.

  4. Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Lei, Hong, E-mail: hong_lei2005@aliyun.com

    2017-08-15

    Highlights: • The novel Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives were synthesized by seed-introduced method. • The Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives exhibited lower Ra and higher MRR on sapphire during CMP. • The cores SiO{sub 2} were coated by the shells (SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) via chemical bonds and hydrogen bonds. • XPS analysis revealed the solid-state chemical reaction between Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives and sapphire during CMP. - Abstract: Abrasive is one of the most important factors in chemical mechanical polishing (CMP). In order to improve the polishing qualities of sapphire substrates, the novel Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives were prepared by seed-induced growth method. In this work, there were a series of condensation reactions during the synthesis process of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives and the silica cores were coated by shells (which contains SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) via chemical bonds and hydrogen bonds in the Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives, which made the composite abrasives’ core-shell structure more sTable Scanning electron microscopy (SEM) showed that Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives were spherical and uniform in size. And the acting mechanisms of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives on sapphire in CMP were investigated. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the solid-state chemical reactions between the shells (which contained SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives and the sapphire occurred during the CMP process. Furthermore, Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives exhibited lower surface roughness and

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... concern for you. If you had an intravenous line inserted for the procedure, it will usually be ... procedure that same day that requires an intravenous line. Actual scanning time for a thyroid scan is ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid ... body converts food to energy. top of page What are some common uses of the procedure? The ...

  7. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  8. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  9. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during the Per...... of widespread euxinic conditions, posing a sustained threat to marine life during the Early Triassic.......Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... the Permian-Triassic transition can provide insights into the role of ocean chemistry change in the largest mass extinction in Earth history. In this study, we constrain marine dissolved sulfate concentrations using the MSR-trend method of Algeo et al. [Algeo, T.J., Luo, G.M., Song, H.Y., Lyons, T...

  10. Colloid mobilization and seasonal variability in a semiarid headwater stream

    Science.gov (United States)

    Mills, Taylor J.; Suzanne P. Ancerson,; Bern, Carleton; Aguirre, Arnulfo; Derry, Louis A.

    2017-01-01

    Colloids can be important vectors for the transport of contaminants in the environment, but little is known about colloid mobilization at the watershed scale. We present colloid concentration, composition, and flux data over a large range of hydrologic conditions from a small watershed (Gordon Gulch) in the foothills of the Colorado Front Range. Colloids, consisting predominantly of Si, Fe, and Al, were present in most stream samples but were not detected in groundwater samples. Mineralogical and morphological analysis indicated that the colloids were composed of kaolinite and illite clays with lesser amounts of amorphous Fe-hydroxides. Although colloid composition remained relatively constant over the sampled flow conditions, colloid concentrations varied considerably and increased as ionic strength of stream water decreased. The highest concentrations occurred during precipitation events after extended dry periods. These observations are consistent with laboratory studies that have shown colloids can be mobilized by decreases in pore-water ionic strength, which likely occurs during precipitation events. Colloidal particles constituted 30 to 35% of the Si mass flux and 93 to 97% of the Fe and Al mass fluxes in the Colloids are therefore a significant and often overlooked component of mass fluxes whose temporal variations may yield insight into hydrologic flowpaths in this semiarid catchment.

  11. Mobile linkers on DNA-coated colloids: valency without patches.

    Science.gov (United States)

    Angioletti-Uberti, Stefano; Varilly, Patrick; Mognetti, Bortolo M; Frenkel, Daan

    2014-09-19

    Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.

  12. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    Science.gov (United States)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Colloidal interactions between Langmuir-Blodgett bitumen films and fine solid particles.

    Science.gov (United States)

    Long, Jun; Zhang, Liyan; Xu, Zhenghe; Masliyah, Jacob H

    2006-10-10

    In oil sand processing, accumulation of surface-active compounds at various interfaces imposes a significant impact on bitumen recovery and bitumen froth cleaning (i.e., froth treatment) by altering the interfacial properties and colloidal interactions among various oil sand components. In the present study, bitumen films were prepared at toluene/water interfaces using a Langmuir-Blodgett (LB) upstroke deposition technique. The surface of the prepared LB bitumen films was found to be hydrophobic, comprised of wormlike aggregates containing a relatively high content of oxygen, sulfur, and nitrogen, indicating an accumulation of surface-active compounds in the films. Using an atomic force microscope, colloidal interactions between the LB bitumen films and fine solids (model silica particles and clay particles chosen directly from an oil sand tailing stream) were measured in industrial plant process water and compared with those measured in simple electrolyte solutions of controlled pH and divalent cation concentrations. The results show a stronger long-range repulsive force and weaker adhesion force in solutions of higher pH and lower divalent cation concentration. In plant process water, a moderate long-range repulsive force and weak adhesion were measured despite its high electrolyte content. These findings provide more insight into the mechanisms of bitumen extraction and froth treatment.

  14. Successful sulfur recovery in low sulfurate compounds obtained from the zinc industry: Evaporation-condensation method.

    Science.gov (United States)

    Suárez-Gómez, Sergio Luis; Sánchez, Maria Luisa; Blanco, Francisco; Ayala, Julia; de Cos Juez, Francisco Javier

    2017-08-15

    The improvement of an evaporation-condensation method allows for successful recovery of elemental sulfur from sulfide concentrates from the zinc industry. Elemental sulfur can be obtained with this method in samples with a low (60%) sulfur content. The effects of heating temperature between 150°C and 250°C and heating time up to 120min on the recovery of sulfur are also studied. Elemental sulfur obtained in this way is of high purity and therefore, there is no need for further purification. The treatment of these industrial residues would help removing sulfur from the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system

    DEFF Research Database (Denmark)

    Holkenbrink, Carina; Ocón Barbas, Santiago; Mellerup, Anders

    2011-01-01

    Green sulfur bacteria oxidize sulfide and thiosulfate to sulfate with extracellular globules of elemental sulfur as intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show...... that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245 or the two dsrCABL clusters (CT0851-CT0854, CT2247-2250) abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsr...

  16. Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach.

    Science.gov (United States)

    He, Bin; Li, Wen-Cui; Yang, Chao; Wang, Si-Qiong; Lu, An-Hui

    2016-01-26

    We have developed an electrolysis approach that allows effective and uniform incorporation of sulfur inside the micropores of carbon nanosheets for advanced lithium-sulfur batteries. The sulfur-carbon hybrid can be prepared with a 70 wt % sulfur loading, in which no nonconductive sulfur agglomerations are formed. Because the incorporated sulfur is electrically connected to the carbon matrix in nature, the hybrid cathode shows excellent electrochemical performance, including a high reversible capacity, good rate capability, and good cycling stability, as compared to one prepared using the popular melt-diffusion method.

  17. Colloidal Dancers: Designing networks of DNA-functionalized colloids for non-random walks

    Science.gov (United States)

    Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.

    2014-03-01

    We present experimental developments of a system of DNA-functionalized colloidal particles with the goal of creating directed motion (`dancing') along patterned substrates in response to temperature cycling. We take advantage of toehold exchange in the design of the DNA sequences that mediate the colloidal interactions to produce broadened, flat, or even re-entrant binding and unbinding transitions between the particles and substrate. Using this new freedom of design, we devise systems where, by thermal ratcheting, we can externally control the direction of motion and sequence of steps of the colloidal dancer. In comparison to DNA-based walkers, which move autonomously and whose motion is controlled by the substrate, our colloidal dancers respond to external driving, and their motion can be controlled in situ. Our use of DNA-functionalized colloidal particles instead of pure DNA systems also enables walking on the mesoscale in contrast to the molecular length scales previously demonstrated, allowing for the future prospect of directed transport over larger distances.

  18. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  19. Polydopamine Based Colloidal Materials: Synthesis and Applications.

    Science.gov (United States)

    Deng, Ziwei; Shang, Bin; Peng, Bo

    2017-11-10

    Polydopamine is a synthetic analogue of natural melanin (eumelanin) produced from oxidative polymerization of dopamine. Owing to its strong adhesion ability, versatile chemical reactivity, biocompatibility and biodegradation, polydopamine is commonly applied as a versatile linker to synthesize colloidal materials with diverse structures, unique physicochemical properties and tunable functions, which allow for a broad scope of applications including biomedicine, sensing, catalysis, environment and energy. In this personal account, we discuss first about the different synthetic approaches of polydopamine, as well as its polymerization mechanism, and then with a comprehensive overview of recent progress in the synthesis and applications of polydopamine-based colloidal materials. Finally, we summarize this personal account with future perspectives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  1. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  2. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  3. Anisotropic hydrodynamic function of dense confined colloids

    Science.gov (United States)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  4. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    of the total clay not associated with organic matter. No significant difference in release rate was found for air-dry aggregates. The low-carbon soils initially had a higher content of WSA but were more susceptible to disaggregation than the high-carbon soils. Furthermore, the application of NPK fertilizer had......The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchstadt long-term static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA...

  5. Ultrasonic wave interactions with magnetic colloids

    CERN Document Server

    Chapman, J R

    2001-01-01

    fluids have been performed in an effort to determine the relative stability of the fluids. The experimental results have been compared with a combined scattering and hydrodynamic model (Allegra and Hawley 1972) and the ultrasonic anisotropy theory of Skumiel (1997). An on-line quality assurance process is proposed. Originally invented as a method for moving spacecraft fuel in weightless conditions, magnetic colloids or ferrofluids are now used in applications as diverse as the dissipation of heat in the voice coils of a loudspeaker, and for the separation of scrap metal. It has been found that aqueous ferrofluids become unstable after a period of time and with dilution. Therefore, there is a need to characterize the colloidal fluid to study the effects of degradation. Additionally, due to the high cost of ferrofluids and the large volumes required for some applications, the fluid is recycled. It is therefore necessary to develop a system for quality assurance for the fluid reclamation process. Ultrasonic meth...

  6. Synthesis and Characterization of Novel Sulfur-Functionalized Silica Gels as Mercury Adsorbents

    Science.gov (United States)

    Johari, Khairiraihanna; Saman, Norasikin; Mat, Hanapi

    2014-03-01

    This paper describes the synthesis, functionalization, and characterization of silica gels as mercury adsorbents. The synthesis was carried out according to the modified Stöber method using tetraethyl orthosilicate [TEOS], 3-mercaptopropyl trimethoxysilane [MPTMS] and bis(triethoxysilylpropyl) tetrasulfide [BTEPST] as precursors. The functionalization was carried out via co-condensation and impregnation methods using MPTMS, BTESPT, elemental sulfur [ES], and carbon disulfide [CS2] as sulfur ligands. The choice of the sulfur ligands as precursors and functionalization agents was due to the existence of sulfur active groups in their molecular structures which were expected to have high affinity toward Hg(II) ions. The synthesized adsorbents were characterized by using scanning electron microscope, fourier transform infrared spectrophotometer, nitrogen adsorption/desorption, and energy dispersive X-ray diffractometer. The batch Hg(II) adsorption experiments were employed to evaluate the Hg(II) adsorption performances of the synthesized adsorbents under different pH values. The results revealed that the highest Hg(II) adsorption capacity was obtained for the SG-MPTMS(10) which was 47.83 mg/g at pH 8.5. In general, the existence of sulfur functional groups, especially MPTMS in the silica matrices, gave a significant enhancement of Hg(II) adsorption capacity and the sulfur functionalization via co-condensation method, which is potential as a superior approach in the mercury adsorbent synthesis.

  7. Gray Correlation Analysis on the Relationship Between Colloidal Structure and Chemical Component of Asphalt Colloid and Performance

    Directory of Open Access Journals (Sweden)

    X. J. Cao

    2015-01-01

    Full Text Available Asphalt is considered a colloidal material and it is important to study the relationship between its colloidal structure, chemical components and performance. The aromatic nucleus content of asphalt at different depth analysed by attenuated total reflection (ATR was taken as the index of colloid structure. The gray correlation was used to analyse the relationship between colloidal structure and chemical components of asphalt gel and performance. The results show that the correlation degree between the index of colloidal structure and saturates and resins is high, which proves that saturates and resins play an important role in asphalt colloid structure. With regard to the asphalt performance indexes, the complex modulus G* and the tangent of the phase angle (tan δ have good correlation with the index of colloidal structure at the temperature of 30 – 70 °C but poor correlation at the temperature of 70 – 90 °C. Low temperature performance has a good correlation with colloid structure index, and tg can better reflect the characteristics of colloidal structure. The analysis shows that the colloidal structure of asphalt is a complex system and it is necessary to use more than one index to characterize the performance.

  8. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  11. Light scattering from aqueous solutions of colloid metal nanoparticles stabilized by natural polysaccharide arabinogalactan.

    Science.gov (United States)

    Gasilova, Ekaterina R; Toropova, Anna A; Bushin, Stanislav V; Khripunov, Albert K; Grischenko, Ludmila A; Aleksandrova, Galina P

    2010-04-01

    Colloids of metal nanoparticles (NPs) of Au, Ag, Pd, and Pt protected by natural polymer arabinogalactan (ARB) extracted from Larix sibirica were studied. The nanocomposites were prepared by reduction of metal salts in the water solutions of ARB. We carried out dynamic (DLS) and static light scattering resonantly enhanced by the NP plasmons. The translational diffusion was examined via DLS and a polarized interferometer. The virgin ARB was shown to form aggregates in dilute aqueous solutions. The introduction of NPs reduced the size of the virgin ARB aggregates. The aggregate forms as viewed by the scanning electron microscopy support the light scattering results.

  12. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  13. C-cells in colloid goiter

    Directory of Open Access Journals (Sweden)

    Lima Marcus A.

    2003-01-01

    Full Text Available PURPOSE: The aim of this investigation was to quantitatively evaluate C-cells in colloid goiters, analyzing 36 thyroids that were obtained through thyroidectomy from 24 patients with goiter and 12 normal glands from adult patients without thyroid disease, which were used as the control group. MATERIAL AND METHODS: On average, 6 different thyroid areas were sampled and labeled by immunohistochemistry with a monoclonal anticalcitonin antibody, utilizing the avidin-biotin-peroxidase complex. C-cells were counted in fields measuring 1 square centimeter, and the mean number of cells per field was then calculated. Data were statistically analyzed using the Mann-Whitney test. RESULTS: In the colloid goiter group, the number of C-cells ranged from 0 to 23 per field, while in normal controls they ranged from 20 to 148 per field. CONCLUSIONS: These results demonstrate a significant decrease of C-cell number in the colloid goiter group compared with control group, indicating that the hyperplastic process is restricted to follicular cells, to the detriment of C-cells, which probably cease to receive trophic stimuli.

  14. Dense colloidal fluids form denser amorphous sediments.

    Science.gov (United States)

    Liber, Shir R; Borohovich, Shai; Butenko, Alexander V; Schofield, Andrew B; Sloutskin, Eli

    2013-04-09

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, ϕRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, ϕRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed.

  15. Patchy polymer colloids with tunable anisotropy dimensions.

    Science.gov (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  16. Flow of colloidal suspensions through small orifices

    Science.gov (United States)

    Hidalgo, R. C.; Goñi-Arana, A.; Hernández-Puerta, A.; Pagonabarraga, I.

    2018-01-01

    In this work, we numerically study a dense colloidal suspension flowing through a small outlet driven by a pressure drop using lattice-Boltzmann methods. This system shows intermittent flow regimes that precede clogging events. Several pieces of evidence suggest that the temperature controls the dynamic state of the system when the driving force and the aperture size are fixed. When the temperature is low, the suspension's flow can be interrupted during long time periods, which can be even two orders of magnitude larger than the system's characteristic time (Stokes). We also find that strong thermal noise does not allow the formation of stable aggregate structures avoiding extreme clogging events, but, at the same time, it randomizes the particle trajectories and disturbs the advective particle flow through the aperture. Moreover, examining the particle velocity statistics, we obtain that in the plane normal to the pressure drop the colloids always move as free particles regardless of the temperature value. In the pressure drop direction, at high temperature the colloids experience a simple balance between advective and diffusive transport, but at low temperature the nature of the flow is much more complex, correlating with the occurrence of very long clogging events.

  17. An evaporation model of colloidal suspension droplets

    Science.gov (United States)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  18. Surface molecular view of colloidal gelation

    Science.gov (United States)

    Roke, Sylvie; Berg, Otto; Buitenhuis, Johan; van Blaaderen, Alfons; Bonn, Mischa

    2006-01-01

    We investigate the phase behavior of surface-functionalized silica colloids at both the molecular and macroscopic levels. This investigation allows us to relate collective properties such as aggregation, gelation, and aging directly to molecular interfacial behavior. By using surface-specific vibrational spectroscopy, we reveal dramatic changes in the conformation of alkyl chains terminating submicrometer silica particles. In fluid suspension at high temperatures, the interfacial molecules are in a liquid-like state of conformational disorder. As the temperature is lowered, the onset of gelation is identified by macroscopic phenomena, including changes in turbidity, heat release, and diverging viscosity. At the molecular level, the onset of this transition coincides with straightening of the carbon–carbon backbones of the interfacial molecules. In later stages, their intermolecular crystalline packing improves. It is the increased density of this ordered boundary layer that increases the van der Waals attraction between particles, causing the colloidal gas to aggregate. The approach presented here can provide insights into phase transitions that occur through surface modifications in a variety of colloidal systems. PMID:16938857

  19. Shear Driven Aggregation in Latex Colloids

    Science.gov (United States)

    Ahuja, Suresh

    2013-03-01

    Reynolds number is small in colloidal flow and therefore, colloidal volume fraction and Peclet number are important. AS the volume fraction and attractive coupling between particles increase, relaxation time and Weisenberg number become significant. Shear-induced aggregation of latex colloids is due to the interplay between the shear-induced formation and breakage of latex.particles. While particle size is limited by breakage, their number density increases with the shearing-time. Upon cessation of shear, the particles interconnect into an assembly held by grainy bonds. It results in increase in yield stress and dynamic modulus. A contact model enables aggregates maintaining their structures under low stress while being restructured under high stress. Modeling involves solution of Navier- Stokes equation with moving particles as boundary condition for the flow like using the Lattice Boltzmann approach or by using (accelerated) Stokesian Dynamics. Alternate approach is to model the fluid phase by soft repulsive particles with pair-wise noise and friction, known as dissipative particle dynamics (DPD). This method by construction produces full inertial hydrodynamics, but applying the correct fluid-particle boundary condition is non-trivial. Both particle to particle and particle to wall collisions can be considered using Johnson-Kendall- Roberts (JKR) analysis of collision dynamics of dissipative forces using a soft-sphere modeling technique. Our experimental work used emulsion polymerized latex that was subjected to steady and dynamic shear. Yield stress, dynamic modulus and relaxation time increased on shearing in conjunction with changes in aggregate size.

  20. Colloquium: Toward living matter with colloidal particles

    Science.gov (United States)

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  1. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  2. Electrophoretic ``Equilibrium'' Profile of Charged Colloids

    Science.gov (United States)

    Planques, Romain; Chaikin, Paul

    2008-03-01

    We perform an electrophoresis experiment of a concentrated colloid against a semipermeable membrane. The electric field forces the charged particles against the membrane and sets up a concentration profile similar to that of a colloid in gravitational sedimentation equilibrium where gravitational forces compete against the osmotic pressure gradient. In the present case there is a current which flows through the electrolyte so the system reaches a steady state profile rather than equilibrium. The electric field, colloid and ionic concentrations adjust self consistently to produce the profile. We use 91 nm polystyrene spheres with sufficient charge that they crystallize and observe their Bragg scattering as a function of height to determine the lattice spacing and particle concentration. We also use 700nm spheres and obtain their concentration profile with X-ray absorption. The fluid flow is zero for a capped system. Connecting a return tube from the supernatant side above the electrophoretic sediment to below the filter yields an electroosmotic flow and circulation. The profile changes substantially and allows us to study the hydrodynamic interactions as a function of concentration for the electrophoresing particles.

  3. Adhesive-free colloidal probes for nanoscale force measurements: production and characterization.

    Science.gov (United States)

    Indrieri, M; Podestà, A; Bongiorno, G; Marchesi, D; Milani, P

    2011-02-01

    We describe novel approaches for the production and characterization of epoxy- and adhesive-free colloidal probes for atomic force microscopy (AFM). Borosilicate glass microspheres are strongly attached to commercial AFM cantilevers exploiting the capillary adhesion force due to the formation of a water meniscus, and then a thermal annealing of the sphere-cantilever system at a temperature slightly below the softening point of borosilicate glass. Controlling the wettability of the surfaces involved turned out to be a crucial element for the control of surface adhesion and for the implementation of a completely adhesive-free production method of colloidal probes. Moreover, we present a statistical characterization protocol of the probe dimensions and roughness based on the AFM inverse imaging of colloidal probes on spiked gratings. We have assessed the influence of defects of the grating on the characterization of the probe, and discussed the accuracy of our characterization technique in comparison to the methods based on scanning electron or optical microscopy, or on the manual analysis of AFM inverse images.

  4. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    Science.gov (United States)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  5. Local elastic response measured near the colloidal glass transition

    Science.gov (United States)

    Anderson, D.; Schaar, D.; Hentschel, H. G. E.; Hay, J.; Habdas, Piotr; Weeks, Eric R.

    2013-03-01

    We examine the response of a dense colloidal suspension to a local force applied by a small magnetic bead. For small forces, we find a linear relationship between the force and the displacement, suggesting the medium is elastic, even though our colloidal samples macroscopically behave as fluids. We interpret this as a measure of the strength of colloidal caging, reflecting the proximity of the samples' volume fractions to the colloidal glass transition. The strain field of the colloidal particles surrounding the magnetic probe appears similar to that of an isotropic homogeneous elastic medium. When the applied force is removed, the strain relaxes as a stretched exponential in time. We introduce a model that suggests this behavior is due to the diffusive relaxation of strain in the colloidal sample.

  6. Design and elaboration of colloidal molecules: an overview.

    Science.gov (United States)

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references).

  7. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    Science.gov (United States)

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  8. [Indications and limitations for colloids in interventions and surgery].

    Science.gov (United States)

    Artmann, Thorsten; Gan, Tong Joo; Kranke, Peter

    2015-04-01

    Over the last few decades colloids have played an important part in the stabilisation of patients with acute need of intravascular volume replacement. After the 6S and the CHEST trials were published in 2012 and the subsequent recommendations of the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) there has been some uncertainty about the current clinical relevance and routine use of colloids. This article summarizes the current evidence and relevance of colloids in the perioperative environment and in the interventional setting on the basis of the recently published German S3-guidelines for volume therapy in adults. In situations of acute volume resuscitation colloids are still appropriate. Only colloids in balanced solutions should be used. Possible side effects, contraindications and the maximum daily dose have to be taken into consideration when administering colloids.

  9. Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics

    Science.gov (United States)

    Zhao, J.; Papadopoulos, P.; Roth, M.; Dobbrow, C.; Roeben, E.; Schmidt, A.; But, H.-J. t.; Auernhammer, G. K.; Vollmer, D.

    2013-11-01

    The motion of dilute and concentrated dispersions of colloids by external electric or magnetic fields is discussed. Electrokinetics is studied for colloids in confinement, where the confining walls can be flat or rough. As an example for a rough wall superhydrophobic surfaces are chosen. It is shown that the reduced friction at the water-air interface is insufficient to enhance electro-osmosis. Magnetic particles are pulled through a crystalline matrix formed by nonmagnetic colloids to investigate local melting and recrystallization of a crystalline matrix. The average strain field is calculated and the reorganization processes are compared to those induced by shear fields. Using single domain, magnetically blocked particles of different shape and surface characteristics, the interplay between particles, their environment and an external field is investigated.

  10. Shape Separation of Colloidal Metal Nanoparticles via Size Exclusion Chromatography

    OpenAIRE

    Marvi, Sarrah

    2016-01-01

    The inherent polydispersity of solution-based, colloidal nanoparticle syntheses has necessitated the development of facile post-processing methods for the purification of anisotropic nanoparticles. Here, the use of size exclusion chromatography is explored for the shape separation of colloidal silver nanocube and colloidal gold bipyramid solutions. Multiple column packing materials, pore sizes, and mobile phases were tested to address the prevalent issues of metal adsorption to the high surfa...

  11. Experimental verification of morphological instability in freezing aqueous colloidal suspensions.

    Science.gov (United States)

    Peppin, S S L; Wettlaufer, J S; Worster, M G

    2008-06-13

    We describe an experimental test of a new theory of the unidirectional freezing of aqueous colloidal suspensions. At low freezing speeds a planar ice lens completely rejects the particles, forming a steady-state compacted boundary layer in the liquid region. At higher speeds the planar interface becomes thermodynamically unstable and breaks down geometrically to trap bulk regions of colloid within. The theoretical stability threshold is determined experimentally, thereby demonstrating that colloidal suspensions can be treated analogously to atomic or molecular alloys.

  12. Colloidal rods and spheres in partially miscible binary liquids

    OpenAIRE

    Hijnen, Niek

    2013-01-01

    Different scenarios for assembling rod-like and spherical colloidal particles using binary mixtures of partially miscible liquids were investigated experimentally. Suitable rod-like colloids were developed first. The subsequent studies of colloids in binary liquids consisted, on one hand, of systems where particles were partially wetted by both phases and, on the other hand, of systems where particles were completely wetted by the minority phase. A simple method to prepare l...

  13. Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries

    Science.gov (United States)

    Reed, L.

    1978-01-01

    The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.

  14. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  15. 21 CFR 184.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also... ingredient is used in food at levels not to exceed good manufacturing practice in accordance with § 184.1(b...

  16. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ . Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis.

  17. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  18. Colloid mobilization by fluid displacement fronts in channels.

    Science.gov (United States)

    Lazouskaya, Volha; Wang, Lian-Ping; Or, Dani; Wang, Gang; Caplan, Jeffrey L; Jin, Yan

    2013-09-15

    Understanding colloid mobilization during transient flow in soil is important for addressing colloid and contaminant transport issues. While theoretical descriptions of colloid detachment exist for saturated systems, corresponding mechanisms of colloid mobilization during drainage and imbibition have not been considered in detail. In this work, theoretical force and torque analyses were performed to examine the interactive effects of adhesion, drag, friction, and surface tension forces on colloid mobilization and to outline conditions corresponding to the mobilization mechanisms such as lifting, sliding, and rolling. Colloid and substrate contact angles were used as variables to determine theoretical criteria for colloid mobilization mechanisms during drainage and imbibition. Experimental mobilization of hydrophilic and hydrophobic microspheres with drainage and imbibition fronts was investigated in hydrophilic and hydrophobic channels using a confocal microscope. Colloid mobilization differed between drainage and imbibition due to different dynamic contact angles and interfacial geometries on the contact line. Experimental results did not fully follow the theoretical criteria in all cases, which was explained with additional factors not included in the theory such as presence of aggregates and trailing films. Theoretical force and torque analyses resulted in similar mobilization predictions and suggested that all mobilization mechanisms contributed to the observed colloid mobilization. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    National Research Council Canada - National Science Library

    Beskok, Ali; Bevan, Michael; Lagoudas, Dimitris; Ounaies, Zoubeida; Bahukudumbi, Pradipkumar; Everett, William

    2007-01-01

    This research addresses the tunable assembly of reversible colloidal structures within microfluidic networks to engineer multifunctional materials that exhibit a wide range of electrical properties...

  20. Giant Leaking Colloid Cyst Presenting with Aseptic Meningitis

    DEFF Research Database (Denmark)

    Bakhtevari, Mehrdad Hosseinzadeh; Sharifi, Guive; Jabbari, Reza

    2015-01-01

    BACKGROUND: Colloid cysts are benign third ventricle lesions that need to be diagnosed correctly because of their association with sudden death. Chemical or aseptic meningitis is a rare presentation of a colloid cyst. METHODS: We present a case of a 69-year-old man with fever, alteration of mental...... status, and meningismus. Microbiological examination of the cerebrospinal fluid revealed aseptic meningitis. Brain imaging revealed a third ventricular colloid cyst with hydrocephalus. RESULTS: The tumor was resected via endoscopic intervention. There were no persistent operative complications related...... to the endoscopic procedure. CONCLUSIONS: Chemical or aseptic meningitis is an unusual clinical manifestation of a colloid cyst, complicating the differential diagnosis, especially in the elderly....

  1. Morphological deformation during evaporation induced assembly of mixed colloidal suspension

    Science.gov (United States)

    Sen, D.; Melo, J. S.; Bahadur, J.; Mazumder, S.; Bhattacharya, S.; D'Souza, S. F.

    2010-12-01

    Sphere to deformed doughnut type transformation of colloidal droplets during evaporation induced assembly of colloidal silica and E. coli was observed. Distortion modulations get amplified with increase in volume fraction of anisotropic soft colloidal component. Reduction in elastic constants of formed shell, at the boundary of a drying droplet, and the anisotropic nature of bacterial component facilitate the deformation process. The charge modification of E. coli surface by Poly cationic Polytheleneimine ceases the morphological transformation and results spherical assembled grains. Hierarchical structures of these assembled colloidal grains have been probed using electron microscopy and small- angle neutron scattering techniques.

  2. Study of the stability coated and uncoated nanosilver colloid

    Science.gov (United States)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  3. Statics and dynamics of colloidal particles on optical tray arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory

    2009-01-01

    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  4. Internal Dynamics of Equilibrium Colloidal Clusters

    Science.gov (United States)

    Perry, Rebecca Wood

    Colloidal clusters, aggregates of a few micrometer-sized spherical particles, are a model experimental system for understanding the physics of self-assembly and processes such as nucleation. Colloidal clusters are well suited for studies on these topics because they are the simplest colloidal system with internal degrees of freedom. Clusters made from particles that weakly attract one another continually rearrange between different structures. By characterizing these internal dynamics and the structures connected by the rearrangement pathways, we seek to understand the statistical physics underlying self-assembly and equilibration. In this thesis, we examine the rearrangement dynamics of colloidal clusters and analyze the equilibrium distributions of ground and excited states. We prepare clusters of up to ten microspheres bound by short-range depletion interactions that are tuned to allow equilibration between multiple isostatic arrangements. To study these clusters, we use bright-field and digital holographic microscopy paired with computational post-processing to amass ensemble-averaged and time-averaged probabilities. We study both two-dimensional (2D) and three-dimensional (3D) clusters composed of either one or two species of particles. To learn about geometrical nucleation barriers, we track rearrangements of particles within freely rotating and translating 3D clusters. We show that rearrangements occur on a timescale of seconds, consistent with diffusion-dominated internal dynamics. To better understand excited states and transition pathways, we track hundreds of rearrangements between degenerate ground states in 2D clusters. We show that the rearrangement rates can be understood using a model with two parameters, which account for the diffusion coefficient along the excited-state rearrangement pathways and the interaction potential. To explore new methods to control self-assembly, we analyze clusters of two species with different masses and different

  5. Active Colloids in Isotropic and Anisotropic Electrolytes

    Science.gov (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  6. Charles H. Winston and Confederate Sulfuric Acid

    Science.gov (United States)

    Reithmiller, Steven

    1995-07-01

    Sulfuric acid turned out to be one of the critical chemicals made in the South during the Civil War. It was necessary for the manufacture of mercury fulminate which was used in the production of percussion caps and sulfuric acid was used in the Daniells cell to produce electricity. Charles H. Winston, president of the Richmond Female Institute and later professor at the University of Richmond (VA) was instrumental in the establishment of a plant to manufacture sulfuric acid in Charlotte, North Carolina. His patent and method of manufacture plus the uses of sulfuric acid during the Civil War are discussed.

  7. Elemental sulfur in Eddy County, New Mexico

    Science.gov (United States)

    Hinds, Jim S.; Cunningham, Richard R.

    1970-01-01

    Sulfur has been reported in Eddy County, N. Mex., in rocks ranging from Silurian to Holocene in age at depths of 0-15,020 feet. Targets of present exploration are Permian formations in the Delaware Basin and northwest shelf areas at depths of less than 4,000 feet. Most of the reported sulfur occurrences in the shelf area are in the 'Abo' (as used by some subsurface geologists), Yeso, and San Andres Formations and the Artesia Group. Sulfur deposition in the dense dolomites of the 'Abo,' Yeso, and San Andres Formations is attributed to the reduction of ionic sulfate by hydrogen sulfide in formation waters in zones of preexisting porosity and permeability. A similar origin accounts for most of the sulfur deposits in the formations of the Artesia Group, but some of the sulfur in these formations may have originated in place through the alteration of anhydrite to carbonate and sulfur by the metabolic processes of bacteria in the presence of hydrocarbons. Exploration in the Delaware Basin area is directed primarily toward the Castile Formation. Sulfur deposits in the Castile Formation are found in irregular masses of cavernous brecciated secondary carbonate rock enveloped by impermeable anhydrite. The carbonate masses, or 'castiles,' probably originated as collapse features resulting from subsurface solution and upward stopping. Formation of carbonate rock and sulfur in the castiles is attributed to the reduction of brecciated anhydrite by bacteria and hydrocarbons in the same process ascribed to the formation of carbonate and sulfur in the caprocks of salt domes.

  8. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75 parts...

  9. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.

    Science.gov (United States)

    Giansante, Carlo; Infante, Ivan; Fabiano, Eduardo; Grisorio, Roberto; Suranna, Gian Paolo; Gigli, Giuseppe

    2015-02-11

    Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inferred by density functional theory calculations; in addition, our findings suggest that the optical band gap reduction commonly observed for PbS QD solids treated with thiol-terminating ligands can be prevalently ascribed to 3p orbitals localized on anchoring sulfur atoms, which mix with the highest occupied states of the QDs. More broadly, we provide evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components.

  10. Size fractionation and characterisation of fresh water colloids and particles: split-flow thin-cell and electron microscopy analyses.

    Science.gov (United States)

    De Momi, Anna; Lead, Jamie R

    2006-11-01

    Split-flow thin-cell (SPLITT) was employed in conventional mode (CSF), to size-fractionate colloids and particles from a selected freshwater. Imaging and quantification by calculations of particle size distributions (PSDs) and shape factors were performed on sample analyzed by conventional high vacuum scanning electron microscopy (SEM) and environmental SEM (ESEM), to investigate the ability of SPLITT to make accurate and nonperturbing separations. SEM and ESEM images of unperturbed and SPLITT-generated fractions were used in order to obtain qualitative and quantitative information about the properties of colloids and particles. Particle size distributions (PSDs) showed that separations were very good, agreeing with theoretical behavior. ESEM PSDs showed that up to 87-88% of the material in the a fraction (expected to be 1 microm) 87-95% of the material was the expected size. The SEM data indicated a slightly higher contamination of the b fraction with the presence of submicron colloids. Moreover, analysis of conformations indicated significant nonsphericity in unfractionated colloids and particles, but after SPLITT fractionation, shape factors showed that particles were significantly more spherical than before separation.

  11. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chung, Meng-Yun; Chang, Chaur-Yang

    2017-06-02

    In this study, the Electric Spark Discharge Method (ESDM) was employed with micro-electrical discharge machining (m-EDM) to create an electric arc that melted two electrodes in deionized water (DW) and fabricated nano-Au colloids through pulse discharges with a controlled on-off duration (T ON -T OFF ) and a total fabrication time of 1 min. A total of six on-off settings were tested under normal experimental conditions and without the addition of any chemical substances. Ultraviolet-visible spectroscopy (UV-Vis), Zetasizer Nano measurements, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analyses suggested that the nano-Au colloid fabricated at 10-10 µs (10 µs on, 10 µs off) had higher concentration and suspension stability than products made at other T ON -T OFF settings. The surface plasmon resonance (SPR) of the colloid was 549 nm on the first day of fabrication and stabilized at 532 nm on the third day. As the T ON -T OFF period increased, the absorbance (i.e., concentration) of all nano-Au colloids decreased. Absorbance was highest at 10-10 µs. The SPR peaks stabilized at 532 nm across all T ON -T OFF periods. The Zeta potential at 10-10 µs was -36.6 mV, indicating that no nano-Au agglomeration occurred and that the particles had high suspension stability.

  12. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    Science.gov (United States)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  13. Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

    National Research Council Canada - National Science Library

    Wang, Lilin; You, Jiaxue; Wang, Zhijun; Wang, Jincheng; Lin, Xin

    2016-01-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions...

  14. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    Science.gov (United States)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  15. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    Science.gov (United States)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  16. The Relationship Between Corrosion and the Biological Sulfur Cycle

    National Research Council Canada - National Science Library

    Little, Brenda

    2000-01-01

    .... Sulfur and sulfur compounds, including sulfides, bisulfides, hydrogen sulfide (H2S), thiosulfates, polythionates and sulfuric acid, may be trapped or bound up in biofilms causing direct corrosion of materials...

  17. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  18. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  19. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  20. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  1. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  2. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Science.gov (United States)

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  3. Geochemistry of Sulfur and Sulfur Compounds of the Cambrian Kuonamka Complex (Eastern Siberian Platform)

    OpenAIRE

    T.M. Parfenova

    2017-01-01

    New results of research of sulfur from rocks and organic matter (OM) for the Kuonamka complex of the Lower and Middle Cambrian in the eastern Siberian platform have been demonstrated. It has been shown that in the rocks enriched in organic matter the amount of organic carbon controls not only the total content of sulfur and sulfide sulfur, but also the content of sulphate sulfur. It has been revealed that the sulfur content in bitumen extracts of Cambrian black shales in the northeastern Sibe...

  4. Sustainable steric stabilization of colloidal titania nanoparticles

    Science.gov (United States)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  5. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  6. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  7. Sulfur in Distillers Grains for Dairy Cattle

    Science.gov (United States)

    Sulfur is an essential element needed by animals for many functions. About 0.15% of the body weight is sulfur. It is found in the amino acids methionine, cysteine, cystine, homocysteine, and taurine; in chondroitin sulfate of cartilage; and in the B-vitamins, thiamin and biotin. Methionine, thiam...

  8. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  9. The adsorption of sulfur by microporous materials

    NARCIS (Netherlands)

    Steijns, M.; Mars, P.

    1976-01-01

    The sorption of sulfur by the zeolites NaX (= 13X) and CaA (= 5A) and an activated charcoal prepared from sugar was investigated at temperatures between 150 and 350°C and relative sulfur pressures between 10−4 and 10−1. The adsorbate-adsorbate interaction indicated by the S-shaped isotherm for the

  10. METHOD OF PREPARING SULFUR-CONTAINING COMPOUNDS

    NARCIS (Netherlands)

    De Graaf, W.; de Leeuw, J.W.

    1994-01-01

    Abstract of WO 9412450 (A1) The invention relates to a method of preparing sulfur-containing compounds, comprising reacting a sulfur compound with a compound containing unsaturated carbon-carbon bonds, wherein in a solvent one or more compounds containing non-activated unsaturated carbon-carbon

  11. Heterogeneous photocatalytic reactions of sulfur aromatic compounds.

    Science.gov (United States)

    Samokhvalov, Alexander

    2011-11-18

    Sulfur aromatic compounds, such as mono-, di-, tri-, and tetraalkyl-substituted thiophene, benzothiophenes, dibenzothiophenes, are the molecular components of many fossils (petroleum, oil shale, tar sands, bitumen). Structural units of natural, cross-linked heteroaromatic polymers present in brown coals, turf, and soil are similar to those of sulfur aromatic compounds. Many sulfur aromatic compounds are found in the streams of petroleum refining and upgrading (naphthas, gas oils) and in the consumer products (gasoline, diesel, jet fuels, heating fuels). Besides fossils, the structural fragments of sulfur aromatic compounds are present in molecules of certain organic semiconductors, pesticides, small molecule drugs, and in certain biomolecules present in human body (pheomelanin pigments). Photocatalysis is the frontier area of physical chemistry that studies chemical reactions initiated by absorption of photons by photocatalysts, that is, upon electronic rather than thermal activation, under "green" ambient conditions. This review provides systematization and critical review of the fundamental chemical and physicochemical information on heterogeneous photocatalysis of sulfur aromatic compounds accumulated in the last 20-30 years. Specifically, the following topics are covered: physicochemical properties of sulfur aromatic compounds, major classes of heterogeneous photocatalysts, mechanisms and reactive intermediates of photocatalytic reactions of sulfur aromatic compounds, and the selectivity of these reactions. Quantum chemical calculations of properties and structures of sulfur aromatic compounds, their reactive intermediates, and the structure of adsorption complexes formed on the surface of the photocatalysts are also discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrostatic Complexation between Membrane and Colloid

    Science.gov (United States)

    Wang, Jiafang; Muthukumar, M.

    2006-03-01

    As a primary model of endocytosis, the electrostatic complexation between membrane and colloid is studied. Using a simple approximation, the membrane shape can be determined easily without solving the nonlinear differential shape equation, which facilitates the consideration of electrostatic effects. The phase diagram for the electrostatic complexes can be constructed in terms of the rescaled stretching tension, adhesion strength, and the screening length. By referring to the phase diagram, the possible phase transitions due to the variations of the electrostatic factors (including the charge density, and the screening length) are discussed.

  13. Chiral edge fluctuations of colloidal membranes

    Science.gov (United States)

    Jia, Leroy; Zakhary, Mark; Dogic, Zvonimir; Pelcovits, Robert; Powers, Thomas

    Using experiments and theory we study chiral fluctuations of the edge of a nearly flat colloidal membrane, consisting of rod-like viruses held together by the depletion interaction. Our measurements show an anomalous peak in the power spectrum around 1 inverse micron. Using an effective theory to describe the liquid crystal degrees of freedom by geometric properties of the edge, such as length, geodesic torsion, and curvature, we calculate the spectrum of out-of-plane edge fluctuations. The peak arises for sufficiently strong chirality, and corresponds to the instability of a flat membrane to a shape with helical, rippled edges.

  14. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    on water. Food companies want to develop healthy, tasty but also long-lasting food products which appeal to the environmental authorities and the consumer. Detergent and enzyme companies are working to develop improved formulations which clean more persistent stains, at lower temperatures and amounts......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  15. Dips and rims in dried colloidal films.

    Science.gov (United States)

    Parneix, C; Vandoolaeghe, P; Nikolayev, V S; Quéré, D; Li, J; Cabane, B

    2010-12-31

    We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Immediately after the film deposition, an obstacle is positioned above its free surface, minimizing evaporation at this location. In a first stage, the film dries everywhere but under the obstacle, where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the obstacle. This turns out to be a simple technique for structuring films of nanometric thickness.

  16. Size determinations of colloidal fat emulsions

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...... but a slightly smaller size was indicated by all methods for Lipidem. Sub-micron resolution was best in the Coulter LS but the fraction of larger particles in the upper nm-range was presumably underestimated. The emulsions could be analyzed in a highly reproducible manner by asymmetrical flow field...

  17. Colloid research for the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site.

  18. Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farbman, G.H.; Krasicki, B.R.; Hardman, C.C.; Lin, S.S.; Parker, G.H.

    1978-06-01

    An evaluation of the relative economics of hydrogen production using two advanced techniques was performed. The hydrogen production systems considered were the Westinghouse Sulfur Cycle Water Decomposition System and a water electrolysis system employing a sulfuric acid electrolyte. The former is a hybrid system in which hydrogen is produced in an electrolyzer which uses sulfur dioxide to depolarize the anode. The electrolyte is sulfuric acid. Development and demonstration efforts have shown that extremely low cell voltages can be achieved. The second system uses a similar sulfuric acid electrolyte technology in water electrolysis cells. The comparative technoeconomics of hydrogen produced by the hybrid Sulfur Cycle and by water electrolysis using a sulfuric acid electrolyte were determined by assessing the performance and economics of 380 million SCFD plants, each energized by a very high temperature nuclear reactor (VHTR). The evaluation concluded that the overall efficiencies of hydrogen production, for operating parameters that appear reasonable for both systems, are approximately 41% for the sulfuric acid electrolysis and 47% for the hybrid Sulfur Cycle. The economic evaluation of hydrogen production, based on a 1976 cost basis and assuming a developed technology for both hydrogen production systems and the VHTRs, indicated that the hybrid Sulfur Cycle could generate hydrogen for a total cost approximately 6 to 7% less than the cost from the sulfuric acid electrolysis plant.

  19. Photoelectrochemical studies on colloidal copper (I) oxide/modified ...

    Indian Academy of Sciences (India)

    ... of the organic monomer such as ionization potential (IP), electron affinity (EA) and energy bandgap (Eg), and the barrier height at the IOI interface. Stability of the colloidal system is attributed to the physical dimensions of the photoactive system. The nano-colloidal particle offers a condition where its size is less than √.

  20. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  1. Preferences for colloid use in Scandinavian intensive care units

    DEFF Research Database (Denmark)

    2008-01-01

    Fluid resuscitation is a frequent intervention in intensive care. Colloids are widely used, but recent data suggest harm by some of these solutions. This calls for more clinical studies on this matter, but the current preferences for colloid use in Scandinavian intensive care units (ICUs...

  2. Comparison of intravenous colloid and colloid‑crystalloid ...

    African Journals Online (AJOL)

    2013-09-25

    Sep 25, 2013 ... Context: Many studies comparing different intravenous fluid types usually do not use equipotent volumes of three to one crystalloid to colloid ratio in such comparisons. Conflicting results emanate from such studies. Aim: This study was designed to compare the efficacy of equipotent volumes of colloid and ...

  3. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes

    Science.gov (United States)

    McLaughlin, Christopher K.; Duan, Da; Ganesh, Ahil N.; Torosyan, Hayarpi

    2016-01-01

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the co-aggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, co-formulating them with bis-azo dyes. The co-formulation reduced colloid sizes to colloid formulations are more stable than previous aggregator particles. Specifically, co-aggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT) or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase and trypsin. Unlike traditional aggregates, the co-formulated colloid-protein particles could be centrifuged and re-suspended multiple times, and from re-suspended particles, active trypsin could be released up to 72 hours after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension and release. PMID:26741163

  4. Gas-liquid phase coexistence in colloidal suspensions

    NARCIS (Netherlands)

    Gruenberg, H.H.; Roij, R. van; Klein, G.

    2001-01-01

    We describe a charge-stabilized colloidal suspension within a Poisson-Boltzmann cell model and calculate the free energy as well as the compressibility as a function of colloidal density. The same quantities are also calculated from the linearized Poisson-Boltzmann equation. Comparing nonlinear

  5. Predicting colloid transport through saturated porous media: A critical review

    National Research Council Canada - National Science Library

    Molnar, Ian L; Johnson, William P; Gerhard, Jason I; Willson, Clinton S; O'Carroll, Denis M

    2015-01-01

    ... of field‐scale predictions may be constrained by the simplifying assumptions built into mechanistic models, correlation equations, and their relationship to our growing understanding of actual, pore‐scale colloid behavior. Prediction of colloid transport through the subsurface is important for a wide range of environmental and human‐health...

  6. Fabrication and Characterization of Colloidal Crystal Thin Films

    Science.gov (United States)

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  7. Highly Elastic and Self-Healing Composite Colloidal Gels.

    NARCIS (Netherlands)

    Diba, M.; Wang, H.; Kodger, T.E.; Parsa, S.; Leeuwenburgh, S.C.G.

    2017-01-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new,

  8. Self-Assembly of Magnetic Colloids in Soft Confinement

    NARCIS (Netherlands)

    Liu, P.

    2016-01-01

    The central theme in this thesis is the effect of the soft confinements consisting of molecular microtubes and fluid interfaces, on the self-assembly of colloids. We have specially focused on the synthesis of magnetic colloids and the magnetic responses of self-assembled structures including

  9. Iron-rich colloids as carriers of phosphorus in streams

    NARCIS (Netherlands)

    Baken, Stijn; Regelink, Inge C.; Comans, Rob N.J.; Smolders, Erik; Koopmans, Gerwin F.

    2016-01-01

    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of

  10. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  11. Experiments in which oil, water and colloidal particles meet

    NARCIS (Netherlands)

    Elbers, N.A.

    2015-01-01

    In this thesis, the results are reported of experimental studies in which oil, water and colloidal particles meet. Colloidal particles are particles that have at least one characteristic length scale in the range between a few nanometers (nm) and several micrometers (μm). Mixtures of oil and water,

  12. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    Abstract. We review theoretical and experimental work on colloidal interactions in two- dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions ...

  13. Characterisation of colloidal drug delivery systems from the naked eye to Cryo-FESEM

    DEFF Research Database (Denmark)

    Krauel, Karen; Girvan, Liz; Hook, Sarah

    2007-01-01

    microscopy. Using freeze-fracture transmission electron microscopy and Cryo-field emission scanning electron microscopy the type of microemulsion (w/o droplet, bicontinuous, solution) was characterised. Nanoparticles prepared from the different types of microemulsion were additionally observed......Poly(ethylcyanoacrylate) nanoparticles prepared by interfacial polymerisation on the basis of microemulsions were prepared in this study and both colloidal systems, nanoparticles and microemulsions, were analysed by visual observation and several microscopic techniques. Phase boundaries...... by conventional scanning electron microscopy. The size of the nanoparticles obtained from electron microscopy was in good agreement with particle sizing techniques (photon correlation spectroscopy) from earlier studies and no morphological differences could be observed in particles prepared from the different...

  14. STXM and LSLM investigation of Eu(III) induced humic acid colloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Plaschke, M; Rothe, J; Klenze, R [Forschungszentrum Karlsruhe, Institut fuer Nukleare Entsorgung, Postfach 3640, D-76021 Karlsruhe (Germany); Wissler, J; Naber, A, E-mail: plaschke@ine.fzk.d [Universitaet Karlsruhe, Institut fuer Angewandte Physik, Wolfgang-Gaede-Strasse 1, D-76131 Karlsruhe (Germany)

    2009-09-01

    Humic acids (HA) are potentially important in binding traces of actinides or lanthanides, thus affecting their transport in aquatic systems. Eu(III) induced HA colloid aggregation has been investigated by a combination of Scanning Transmission X-ray Microscopy (STXM) and Laser Scanning Luminescence Microscopy (LSLM). Both methods reveal the same aggregate morphology - optically dense zones embedded in a matrix of less dense material observed by STXM correspond to areas with increased Eu(III) luminescence yield in the LSLM micrographs. From these comparative measurements we infer the enrichment of Eu(III) cations in the optically dense zones. These areas also exhibit a C 1s-NEXAFS signature strongly differing from the signal extracted from the less dense areas. Spectral filtering of Eu(III) luminescence lines corresponding to valence transitions affected by organic acid complexation indicates that Eu(III) cations are more strongly bound in the dense zones.

  15. Biocatalytic synthesis of polypyrrole powder, colloids, and films using horseradish peroxidase.

    Science.gov (United States)

    Cruz-Silva, R; Amaro, E; Escamilla, A; Nicho, M E; Sepulveda-Guzman, S; Arizmendi, L; Romero-Garcia, J; Castillon-Barraza, F F; Farias, M H

    2008-12-15

    Polypyrrole was synthesized in high yield by a biocatalytic method in mild aqueous media using hydrogen peroxide as oxidizer. A redox mediator, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) diammonium salt, was used to oxidize the pyrrole. ABTS is a very effective peroxidase substrate, which was enzymatically oxidized to generate a radical cation that in turn was able to chemically oxidize pyrrole. This indirect biocatalytic method was implemented because pyrrole is not a substrate of horseradish peroxidase, however, the polymerization process was successfully optimized and later adapted to prepare also polypyrrole thin films and water dispersible polypyrrole colloids. The polypyrrole powder and colloids were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, electrical conductivity, and thermogravimetric analysis. In addition, the deposition of the polypyrrole thin film was monitored using a quartz-crystal microbalance and its morphology studied by optical and scanning electron microscopy. The biocatalytic polymerization of pyrrole results in a polymer spectroscopically very similar to chemically synthesized polypyrrole.

  16. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawmoto, Ken; Møldrup, Per

    2012-01-01

    A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters volcanic-ash soil from Nishi-Tokyo (referred to here as VAS colloids) and a red-yellow soil from...... Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed....... Breakthrough curves and deposition profiles for soil colloids were strong functions of the hydrodynamics, solution pH, and surface charge of the colloids and sand grains. Greater deposition was typical for lower flow rates and lower pH. The deposition of VAS colloids in both sands under low-pH conditions...

  17. Predicting colloid transport through saturated porous media: A critical review

    Science.gov (United States)

    Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-09-01

    Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities

  18. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    Science.gov (United States)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  19. Nonlinear machine learning and design of reconfigurable digital colloids.

    Science.gov (United States)

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  20. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  1. Occurrence and fate of colloids and colloid-associated metals in a mining-impacted agricultural soil upon prolonged flooding.

    Science.gov (United States)

    Xia, Bing; Qiu, Hao; Knorr, Klaus-Holger; Blodau, Christian; Qiu, Rongliang

    2018-04-15

    Colloids formed during soil flooding can potentially facilitate the mobilization of metal contaminants. Here, laboratory batch incubations with a contaminated soil were performed to monitor temporal changes in the porewater dynamics of metals, the morphology and composition of colloids, and the speciation of colloids-associated metals during 30 days of flooding. The concentrations of colloidal and dissolved metals increased initially and peaked at a certain time, but then decreased with the on-going sulfate reduction. The combined analysis of spectrometric, spectroscopic, and size-fractionation results revealed that the dynamics of Cu were dominated by microbe-associated colloids and were mediated largely by Cu(0) biomineralization and subsequent sulfidation, while the microbe-associated and freely dispersed colloids were equally relevant for governing the dynamics of Cd and Pb. Mobilization of Zn, on the other hand, was dominated by its dissolved form, probably due to the low thermodynamic stability of Zn-sulfide. Additionally, adsorption via organic functional groups was another mechanism for metal incorporation into colloids. We also provided direct spectroscopic evidence for the formation and persistence of dispersed heterocolloids consisting of Cu x S and CdS during flooding. Our findings suggest that colloids-induced metal mobilization should be considered in assessing bioavailability and risks of metals in contaminated soils upon flooding. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Noelia; Caballero, Alvaro [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Morales, Julián, E-mail: iq1mopaj@uco.es [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Agostini, Marco [Department of Chemistry, SapienzaUniversity, P.zzale Aldo Moro 5, 00185, Rome (Italy); Hassoun, Jusef, E-mail: jusef.hassoun@unife.it [Università di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Fossato di Mortara 17, Ferrara (Italy)

    2016-09-01

    Three dimensional, flower-like hierarchical porous carbon (FPC) and its CO{sub 2}-activation (AFPC) are reported as sulfur-hosting matrixes in Li/S battery. The composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms as well as by galvanostatic cycling and electrochemical impedance spectroscopy (EIS) in lithium-cell. Both samples show well defined micrometric morphology and a sulfur content as high as 66% expected to reflect into rather high practical energy density of the electrode in lithium-sulfur battery. The lithium sulfur cell using the FPC-S composite exhibits at 25 °C a moderate cycling stability with delivered capacity ranging from 1000 to about 610 mAh g{sup −1} upon 50 cycles at 100 mA g{sup −1}. The AFPC-S composite reveals increased cycling stability and delivers a capacity ranging from 1000 to 680 mAh g{sup −1}. Improved capacity is achieved by slightly increasing the temperature, as demonstrated by cycling the FPC-S at 35 °C using a current as high as 500 mA g{sup −1}. The excellent rate capability of the electrode is associated to the carbon texture and morphology that significantly lower the cell resistance, as indeed demonstrated by EIS measurement upon cycling. - Highlights: • Sulfur electrode basing on activated, flower-like hierarchical porous carbon is reported. • Defined micrometric morphology and a sulfur content as high as 66% are obtained. • Lithium sulfur cell using the composite exhibits remarkable performances. • A specific capacity of about 1000 mAh g{sup −1} is obtained at high current rate. • The resulting Li/S battery has relevant energy content.

  3. Mesoporous binary metal oxide nanocomposites: Synthesis, characterization and decontamination of sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, J., E-mail: praveenjella10@gmail.com; Prasad, G.K.; Ramacharyulu, P.V.R.K.; Singh, Beer; Gopi, T.; Krishna, R.

    2016-04-15

    Mesoporous MnO{sub 2}–ZnO, Fe{sub 2}O{sub 3}–ZnO, NiO–ZnO, and CeO{sub 2}–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard. They were synthesized by precipitation pyrolysis method and characterized by means of transmission electron microscopy, scanning electron microscopy coupled with energy dispersive analysis of X rays, X ray diffraction, and nitrogen adsorption techniques. The transmission electron microscopy and nitrogen adsorption data indicated the presence of pores with diameter ranging from 10 to 70 nm in the binary metal oxide nanocomposites and these materials exhibited surface area values in the range of 76–134 m{sup 2}/g. These binary metal oxide nanocomposites demonstrated large decontamination efficiencies against sulfur mustard when compared to their single component metal oxide nanoparticles. The binary metal oxide nanocomposites effectively decontaminated sulfur mustard into relatively non toxic products such as chloro ethyl vinyl sulfide, divinyl sulfide, 1,4-oxathiane, etc. The promising decontamination properties of binary metal oxide nanocomposites against sulfur mustard were attributed to the basic sites, Lewis acid sites, and the presence of these sites was confirmed by CO{sub 2} and NH{sub 3} temperature programmed desorption. - Graphical abstract: Mesoporous MnO{sub 2}–ZnO, Fe{sub 2}O{sub 3}–ZnO, NiO–ZnO, and CeO{sub 2}–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard. - Highlights: • Binary metal oxide nanocomposites were synthesized by co-precipitation method. • They were studied as sorbent decontaminants against sulfur mustard. • They decontaminated sulfur mustard into non toxic products. • MnO{sub 2}–ZnO and CeO{sub 2}–ZnO nanocomposites showed greater decontamination efficiency.

  4. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  5. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  6. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  7. Investigation into the role of silica in lithium polysulfide adsorption for lithium sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miso; Kang, Sung-Hwan [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Manuel, James; Zhao, Xiaohui [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Cho, Kwon Koo, E-mail: kkcho66@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou Hyeon, E-mail: jhahn@gnu.ac [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2015-09-15

    Highlights: • Amine functionalized silica nanoparticles (AFSN) were prepared. • Polysulfide adsorption studies were carried out with silica nanoparticles and AFSN. • Sulfur cathodes were prepared with SN and AFSN for Li–S batteries. • AFSN showed excellent polysulfide adsorption. - Abstract: A new type of sulfur electrodes with the ability for polysulfide adsorption was prepared by incorporating silica nanoparticles (SN) or amine functionalized silica nanoparticles (AFSN). AFSN was synthesized by a simple and cost-effective method. The functionalization and surface morphology of silica were confirmed with Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Polysulfide adsorption studies were carried out using UV–vis spectrometer, which confirmed the excellent adsorption of polysulfides by AFSN. Interaction of polysulfides with SN or AFSN was studied using FTIR and FT-Raman spectroscopy. The effective polysulfide adsorption by SN and AFSN leads to good and stable cycle performance of lithium sulfur cells. The results show that the incorporation of SN or AFSN with sulfur is a promising method to prepare cathode material for lithium sulfur batteries.

  8. The effect of combined colloidal nano silver-hydrothermal treatment on weight changes and chemical structure of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available Synthesis of colloidal silver nano-particles, as well as the effect of combined colloidal nano-silver and hydrothermal modification, on weight and chemical changes of wood particles through spectroscopic FTIR were investigated. Treatment levels were divided in 4 groups namely, control, nano- impregnated, hydrothermal and nano-hydrothermal. Hydrothermal and nano-hydrothermal treatments were separated in two temperatures (150 and 170 °C and two times (30 and 45 min with total of 10 treatment levels. Colloidal Nano silver with 100 ppm concentration was prepared. The scanning electron microscope images proved the presence, size and appropriate distribution of colloidal nanoparticles silver in wood particles clearly. With regard to the results, increasing time and temperature hydrothermal treatment had significant effect on weight changes. Also, colloidal nano silver intensified weight loss, that maximum weight loss was measured at 170°C. The FTIR spectra indicated that increase in the temperature and time of hydrothermal treatment, declined absorbance intensities in wave numbers of 3422.25, 2922.38, 1740.55, 1330.50, 1243.39 and 1053.05cm-1 due to breakdown of acetyl groups in hemicelluloses and decrease in hydrophilic sites. These reduction in nano hydrothermal treatment were more obvious than those for hydrothermal.

  9. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  10. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein-Lecithin Composite Colloidal Nanoparticles.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can

  11. Silver electrodeposition catalyzed by colloidal gold on carbon paste electrode: application to biotin-streptavidin interaction monitoring.

    Science.gov (United States)

    González-García, M B; Costa-García, A

    2000-01-01

    A new electrochemical method to monitor biotin-streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin-streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at + 0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at -0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0 x 10(-5) M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25 x 10(-15) to 2.24 x 10(-12) M and a limit of detection of 2.0 x 10(15) M were obtained.

  12. A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunji; Zhao, Xiaohui; Kim, Dul-Sun [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Hyo-Jun; Kim, Ki-Won [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Cho, Kwon-Koo, E-mail: kkcho66@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time, sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g{sup −1} at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g{sup −1} at 0.1 C and 578 mA h g{sup −1} at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries.

  13. Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching.

    Science.gov (United States)

    Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong

    2013-08-23

    Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.

  14. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Science.gov (United States)

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... gland evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to ... tells you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special ...

  17. Body CT (CAT Scan)

    Science.gov (United States)

    ... Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special ... the Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and uptake uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... last two months that used iodine-based contrast material. Your doctor will instruct you on how to ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a ... any. Nuclear medicine is less expensive and may yield more precise information than exploratory surgery. Risks Because ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry and ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... iodine, medications and anesthetics. are breastfeeding. In the days prior to your examination, blood tests may be ... are scheduled for an additional procedure that same day that requires an intravenous line. Actual scanning time ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... liquid or capsule form, it is typically swallowed up to 24 hours before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior to the test. When ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... regulates the rate at which the body converts food to energy. top of page What are some ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... body. top of page How does the procedure work? With ordinary x-ray examinations, an image is ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... a special camera or imaging device that produces pictures and provides molecular information. The thyroid scan and ... and with the help of a computer, create pictures offering details on both the structure and function ...

  11. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  13. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  15. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan you are undergoing. top of page What does the equipment look like? The special camera and ... area of your body. top of page How does the procedure work? With ordinary x-ray examinations, ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  19. Slow Scan Telemedicine

    Science.gov (United States)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? The thyroid scan is used to determine ... you are undergoing. top of page What does the equipment look like? The special camera and imaging ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic interventions. ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... medical tests that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or radiotracers . Depending on the type of nuclear medicine exam, the radiotracer is either injected into the body, ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... are noninvasive and, with the exception of intravenous injections, are usually painless medical tests that help physicians ... before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior ...

  6. Sodium sulfur battery flight experiment definition study

    Science.gov (United States)

    Chang, Rebecca R.; Minck, Robert

    1989-01-01

    Sodium-sulfur batteries were identified as the most likely successor to nickel-hydrogen batteries for space applications. One advantage of the Na/S battery system is that the usable specific energy is two to three times that of nickel-hydrogen batteries. This represents a significant launch cost savings or increased payload mass capabilities. Sodium-sulfur batteries support NASA OAST's proposed Civil Space Technology Initiative goal of a factor of two improvement in spacecraft power system performance, as well as the proposed Spacecraft 2000 initiative. The sodium-sulfur battery operates at between 300 and 400 C, using liquid sodium and sulfur/polysulfide electrodes and solid ceramic electrolyte. The transport of the electrode materials to the surface of the electrolyte is through wicking/capillary forces. These critical transport functions must be demonstrated under actual microgravity conditions before sodium-sulfur batteries can be confidently utilized in space. Ford Aerospace Corporation, under contract to NASA Lewis Research Center, is currently working on the sodium-sulfur battery space flight experiment definition study. The objective is to design the experiment that will demonstrate operation of the sodium-sulfur battery/cell in the space environment with particular emphasis on evaluation of microgravity effects. Experimental payload definitions were completed and preliminary designs of the experiment were defined.

  7. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.

    Science.gov (United States)

    Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey

    2016-03-01

    Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Scanning ultrafast electron microscopy

    OpenAIRE

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for whic...

  9. Depletion controlled surface deposition of uncharged colloidal spheres from stable bulk dispersions

    NARCIS (Netherlands)

    Ouhajji, Samia; Nylander, Tommy; Piculell, Lennart; Tuinier, Remco; Linse, Per; Philipse, Albert P.

    2016-01-01

    The competition between surface adsorption and bulk aggregation was investigated for silica colloids dispersed in cyclohexane in contact with hydrophobized silica substrates. Central to this study is that the colloids and surfaces have the same material and surface properties. Colloid-colloid and

  10. Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2009-01-01

    A fabrication method of colloidal crystals possessing the BCC crystal structure is described. BCC colloidal crystals with a thickness of up to seven colloidal layers were grown in the direction of the (100) crystal plane. Defect free colloidal crystals with a homogeneous surface coverage were

  11. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  12. Colloid-borne forms of tetravalent actinides: a brief review.

    Science.gov (United States)

    Zänker, Harald; Hennig, Christoph

    2014-02-01

    Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Structure and Stability of Colloid-Nanoparticle Mixtures

    Science.gov (United States)

    Weight, Braden M.; Denton, Alan R.

    Colloidal particles can acquire charge through dissociation of counterions in a polar solvent. The resulting electrostatic interactions between particles stabilize the suspension against aggregation due to van der Waals forces and can affect physical properties. We explore the influence of added nanoparticles on structure and phase behavior of charge-stabilized colloidal suspensions. To reduce complexity, we model electrostatic interparticle interactions via effective Yukawa (screened-Coulomb) pair potentials, which implicitly include counterions and salt ions in the Debye screening constant. Within this coarse-grained model, we perform molecular dynamics simulations of mixtures of charged colloids and nanoparticles. Over ranges of parameters (charges, sizes, and concentrations of the two species), we analyze particle configurations to compute radial distribution functions and static structure factors. These structural properties reveal that nanoparticles tend to weaken correlations between colloids, thus destabilizing colloidal crystals. We further show that nanoparticles may be implicitly incorporated into an effective colloid-colloid pair potential to facilitate modeling of complex multicomponent systems and to guide experiments and applications to nanocomposite materials. This research was supported by the National Science Foundation (Grant No. DMR-1106331).

  14. Multifunctional assembly of micrometer-sized colloids for cell sorting.

    Science.gov (United States)

    Nie, Chenyao; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Lv, Fengting; Liu, Libing; Wang, Shu

    2015-06-03

    Compared to the extensively studied nanometer-sized colloids, less attention has been paid to the assembly of micrometer-sized colloids with multifunctional characteristics. To address this need, a bottom-up approach is developed for constructing self-assemblies of micrometer-sized magnetic colloids possessing multifunctionality, including magnetic, optical, and biological activities. Biotinylated oligo (p-phenylene vinylene) (OPV) derivatives are designed to mediate the self-assembly of streptavidin-modified magnetic beads. The optical element OPV derivatives provide a fluorescence imaging ability for tracing the assembly process. Target cells can be recognized and assembled by the colloidal assembly with bioactive element antibodies. The colloidal assembly reveals better cell isolation performance by its amplified magnetic response in comparison to monodisperse colloids. The self-assembly of micrometer-sized magnetic colloids through a combination of different functional ingredients to realize multifunction is conceptually simple and easy to achieve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  16. Electrochemistry in Colloids and Dispersions. Volume 2. Solute Distribution, Diffusion, and Transport Colloidal Metals

    Science.gov (United States)

    1992-02-04

    Electrochemical methods and physico-chemical structures of liquid disperse systems Alain Berthod Laboratoire des Sciences Analytique , Universite...Catalyse et Chimie des Surfaces, UA. 423 du CNRS, 4 Rue Blaise Pascal, F-67070 trasbourg, France 5 pp. 11-195 to 11-216 - 20. Modern aspects of colloidal...Electrochemical Methods and Physicochemical 3I Structures of Uquid Disperse Systems I I I I Alain Berthod Laboratoire des Sciences Analytiques , UA CNRS 435

  17. The Colloid Controversy: Are Colloids Bad and What Are the Options?

    Science.gov (United States)

    Wong, Christine; Koenig, Amie

    2017-03-01

    Biologic and synthetic colloid solutions are frequently used to increase oncotic pressure and to treat shock. Research has shown that each product has both risks and benefits. Hydroxyethyl starches have gained a reputation for increasing risk of death, acute kidney injury, and coagulation abnormalities in people, but additional studies are needed to see whether these concerns hold true in veterinary patients. This article reviews the risks and benefits of currently available products. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Modeling of the Sulfuric Acid and Sulfur Trioxide Decomposer using Aspen Plus

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Un; Park, G. C. [Seoul National University, Seoul (Korea, Republic of); Kim, C. S.; Yoo, T. H.; Hong, S. D.; Kim, Y. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    A hydrogen production system using VHTR, which was combined with a Sulfur-Iodine (SI) thermochemical cycle, is a good candidate for massive hydrogen production. It is being investigated for Nuclear Hydrogen Development and Demonstration (NHDD) project in Korea Atomic Energy Research Institute. The SI thermo-chemical cycle is a good promise for the economical and eco-friendly hydrogen production. In SI cycle, the decomposition of a sulfuric acid is main concern for the material corrosion and mechanical stress on high temperature and pressure operation condition. KAERI has designed and constructed a small-scale gas loop that included sulfuric acid experimental facilities as a secondary loop. The main objectives of the loop are to monitor and validate the performances of NHDD component such as the Process Heat Exchanger (PHE) and sulfuric acid decomposer. In this paper, we discussed the results of the modeling of the sulfuric acid and sulfur trioxide decomposer using Aspen plus process simulator

  19. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  20. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.