WorldWideScience

Sample records for sulfur bacteria evidence

  1. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  2. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence......, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster...

  3. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    Science.gov (United States)

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria. PMID:9572936

  4. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  5. Physiology and genetics of sulfur-oxidizing bacteria.

    Science.gov (United States)

    Friedrich, C G

    1998-01-01

    Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved

  6. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  7. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Bryant, Donald A.; Frigaard, Niels-Ulrik

    2011-01-01

    Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains...... product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two...... in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic...

  8. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  9. MATHEMATICAL SIMULATION OF THE INTERACTIONS AMONG CYANOBACTERIA, PURPLE SULFUR BACTERIA AND CHEMOTROPIC SULFUR BACTERIA IN MICROBIAL MAT COMMUNITIES

    NARCIS (Netherlands)

    DEWIT, R; VANDENENDE, FP; VANGEMERDEN, H

    A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur

  10. Physiology of alkaliphilic sulfur-oxidizing bacteria from soda lakes

    NARCIS (Netherlands)

    Banciu, H.L.

    2004-01-01

    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  11. Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) utilize various combinations of sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for anaerobic photoautotrophic growth. Genome sequence data is currently available for 12 strains of GSB. We present here a genome-based survey of the distribution...... and phylogenies of genes involved in oxidation of sulfur compounds in these strains. Sulfide:quinone reductase, encoded by sqr, is the only known sulfur-oxidizing enzyme found in all strains. All sulfide-utilizing strains contain the dissimilatory sulfite reductase dsrABCEFHLNMKJOPT genes, which appear...... to be involved in elemental sulfur utilization. All thiosulfate-utilizing strains have an identical sox gene cluster (soxJXYZAKBW). The soxCD genes found in certain other thiosulfate-utilizing organisms like Paracoccus pantotrophus are absent from GSB. Genes encoding flavocytochrome c (fccAB), adenosine-5...

  12. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes.

    Science.gov (United States)

    Poser, Alexander; Lohmayer, Regina; Vogt, Carsten; Knoeller, Kay; Planer-Friedrich, Britta; Sorokin, Dimitry; Richnow, Hans-H; Finster, Kai

    2013-11-01

    Microbial disproportionation of elemental sulfur to sulfide and sulfate is a poorly characterized part of the anoxic sulfur cycle. So far, only a few bacterial strains have been described that can couple this reaction to cell growth. Continuous removal of the produced sulfide, for instance by oxidation and/or precipitation with metal ions such as iron, is essential to keep the reaction exergonic. Hitherto, the process has exclusively been reported for neutrophilic anaerobic bacteria. Here, we report for the first time disproportionation of elemental sulfur by three pure cultures of haloalkaliphilic bacteria isolated from soda lakes: the Deltaproteobacteria Desulfurivibrio alkaliphilus and Desulfurivibrio sp. AMeS2, and a member of the Clostridia, Dethiobacter alkaliphilus. All cultures grew in saline media at pH 10 by sulfur disproportionation in the absence of metals as sulfide scavengers. Our data indicate that polysulfides are the dominant sulfur species under highly alkaline conditions and that they might be disproportionated. Furthermore, we report the first organism (Dt. alkaliphilus) from the class Clostridia that is able to grow by sulfur disproportionation.

  13. The role of bacteria and mycorrhiza in plant sulfur supply

    Directory of Open Access Journals (Sweden)

    Jacinta Mariea Gahan

    2014-12-01

    Full Text Available Plant growth is highly dependent on bacteria, saprophytic and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.

  14. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  15. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  16. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    Science.gov (United States)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  17. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  18. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  19. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction.

    Science.gov (United States)

    Sekowska, A; Kung, H F; Danchin, A

    2000-04-01

    Living organisms are composed of macromolecules made of hydrogen, carbon, nitrogen, oxygen, phosphorus and sulfur. Much work has been devoted to the metabolism of the first five elements, but much remains to be understood about sulfur metabolism. We review here the situation in Escherichia coli and related bacteria, where more than one hundred genes involved in sulfur metabolism have already been discovered in this organism. Examination of the genome suggests that many more will be found, especially genes involved in regulation, scavenging of sulfur containing molecules and synthesis of coenzymes or prosthetic groups. Furthermore, the involvement of methionine as the universal start of proteins as well as that of its derivative S-adenosylmethionine in a vast variety of cell processes argue in favour of a major importance of sulfur metabolism in all organisms.

  20. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  1. Sulfur bacteria in wastewater stabilization ponds periodically affected by the 'red-water' phenomenon

    NARCIS (Netherlands)

    Belila, A.; Abbas, B.; Fazaa, I.; Saidi, N.; Snoussi, M.; Hassen, A.; Muyzer, G.

    2013-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El

  2. Quantification of two forms of green sulfur bacteria in their natural habitat using bacteriochlorophyll fluorescence spectra

    Science.gov (United States)

    Kharcheva, Anastasia V.; Zhiltsova, Anna A.; Lunina, Olga N.; Savvichev, Alexander S.; Patsaeva, Svetlana V.

    2016-04-01

    Detection of phototropic organisms in their natural habitat using optical instruments operating under water is urgently needed for many tasks of ecological monitoring. While fluorescence methods are widely applied nowadays to detect and characterize phytoplankton communities, the techniques for detection and recognition of anoxygenic phototrophs are considered challenging. Differentiation of the forms of anoxygenic green sulfur bacteria in natural water using spectral techniques remains problematic. Green sulfur bacteria could be found in two forms, green-colored (containing BChl d in pigment compound) and brown-colored (containing BChl e), have the special ecological niche in such reservoirs. Separate determination of these microorganisms by spectral methods is complicated because of similarity of spectral characteristics of their pigments. We describe the novel technique of quantification of two forms of green sulfur bacteria directly in water using bacteriochlorophyll fluorescence without pigment extraction. This technique is noninvasive and could be applied in remote mode in the water bodies with restricted water circulation to determine simultaneously concentrations of two forms of green sulfur bacteria in their natural habitat.

  3. Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale samples

    International Nuclear Information System (INIS)

    Sajjad, W.; Bhatti, T. M.; Hasan, F.; Khan, S.; Badshah, M.

    2016-01-01

    Acid mine drainage (AMD) and black shale (BS) are the main habitats of sulfur-oxidizing bacteria. The aim of this study was to isolate and characterize sulfur-oxidizing bacteria from extreme acidic habitats (AMD and BS). Concentration of metals in samples from AMD and BS varied significantly from the reference samples and exceeded the acceptable limits set by the Environmental Protection Agency (EPA) and the World Health Organization (WHO). A total of 24 bacteria were isolated from these samples that were characterized both morphologically as well as through biochemical tests. All the bacteria were gram-negative rods that could efficiently oxidize sulfur into sulfate ions (SO/sub 4/-2), resulted into decrease in pH up to 1.0 when grown in thiosulfate medium with initial pH 4.0. Out of 24, only 06 isolates were selected for phylogenetic analysis through 16S rRNA sequencing, on the basis of maximum sulfur-oxidizing efficiency. The isolates were identified as the species from different genera such as Alcaligenes, Pseudomonas, Bordetella, and Stenotrophomonas on the basis of maximum similarity index. The concentration of sulfate ions produced was estimated in the range of 179-272 mg/L. These acidophiles might have various potential applications such as biological leaching of metals from low-grade ores, alkali soil reclamation and to minimize the use of chemical S-fertilizers and minimize environmental pollution. (author)

  4. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments

    DEFF Research Database (Denmark)

    Mussmann, Marc; Hu, Fen Z.; Richter, Michael

    2007-01-01

    Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur......Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical...

  5. Sulfur bacteria in wastewater stabilization ponds periodically affected by the ‘red-water’ phenomenon

    NARCIS (Netherlands)

    Belila, A.; Abbas, B.; Fazaa, I.; Saidi, N.; Snoussi, M.; Hassen, A.; Muyzer, G.

    2012-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El

  6. The usage of sulfide and thiosulfate ions by purple non-sulfur bacteria Rhodopseudomonas yavorovii

    Directory of Open Access Journals (Sweden)

    O. V. Tarabas

    2017-07-01

    Full Text Available This article covers the patterns of oxidation of sulfide and thiosulfate ions by bacteria Rhodopseudomonas yavorovii Ya-2016 under different cultivation conditions. In the environments with 1.4–5.6 мМ Na2S2O3, R. yavorovii Ya-2016 bacteria accumulated biomass of 1.4–1.6 g/l, which was higher than biomass (1.2-0.6 g/l accumulated by the bacteria with the same concentrations of Na2S × 9H2O. The efficiency of oxidation of 1.4, 2.8, 5.6 мМ sulfide- and thiosulfate-ions as donors of electrons by the bacteria equaled 97.4, 42.6, 18.7 and 68.8, 28.0, 3.7%, respectively. As a result of bacterial oxidation of 1.4 мМ hydrogen sulfide and sodium thiosulphate in the environment accumulation of 0.13–1.30 мМ sulfate-ions occurs, and the element sulfur becomes an intermediate metabolite in the environment with Na2S×9H2O. R. yavorovii Ya-2016 bacteria are capable of using sulfate-ions as a single source of sulfate at increase in photptrophs. In the environment with 2.5 мМ sulfate-ions concentration the bacteria biomass was 1.4 g/l, the bacteria assimilated 17.7% of sulfates. Because purple non-sulfur bacteria R. yavorovii Ya-2016 are capable of using sulfide-ions as donors of electrons of anoxygenic photosynthesis and using sulfate-ions as a single source of sulfate, they could be successfully used in the technologies of remediating the environment from compounds of sulfur.

  7. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic...

  8. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin.

    Science.gov (United States)

    Sharrar, Allison M; Flood, Beverly E; Bailey, Jake V; Jones, Daniel S; Biddanda, Bopaiah A; Ruberg, Steven A; Marcus, Daniel N; Dick, Gregory J

    2017-01-01

    Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H 2 -based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H 2 oxidation via Ni-Fe hydrogenases, and the use of O 2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction ( sat, apr , and dsr ) and hydrogen oxidation (Ni-Fe hydrogenases). Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic and sulfate

  9. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin

    Directory of Open Access Journals (Sweden)

    Allison M. Sharrar

    2017-05-01

    Full Text Available Little is known about large sulfur bacteria (LSB that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H2-based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H2 oxidation via Ni-Fe hydrogenases, and the use of O2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction (sat, apr, and dsr and hydrogen oxidation (Ni-Fe hydrogenases. Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic

  10. FiveS rRNA sequences and fatty acid profiles of colourless sulfur-oxidising bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Ortiz-conde, B.A.; Nair, S.; Chandramohan, D.; Colwell, R.R.

    Colourless sulfur-oxidising bacteria have been encountered extensively in the oxygen minimum layers of the Arabian Sea. These oligotrophs have been known to mediate nitrogen cycle reductively even under autotrophic conditions. Some...

  11. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    Science.gov (United States)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  12. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments

    Directory of Open Access Journals (Sweden)

    Tomo eAoyagi

    2015-05-01

    Full Text Available Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25°C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas spp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. They also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2−96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine

  13. Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    Science.gov (United States)

    Janosch, Claudia; Remonsellez, Francisco; Sand, Wolfgang; Vera, Mario

    2015-01-01

    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant. PMID:27682113

  14. Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria.

    Science.gov (United States)

    Edwardson, Christian F; Planer-Friedrich, Britta; Hollibaugh, James T

    2014-12-01

    Thioarsenates are the dominant arsenic species in arsenic-rich, alkaline, and sulfidic waters, but bacterial interactions with these compounds have only recently been examined. Previous studies have shown that microorganisms play a role in the transformation of monothioarsenate to arsenate, including use of monothioarsenate as a chemolithotrophic electron donor coupled with oxygen as an electron acceptor. We obtained enrichment cultures from two saline, alkaline lakes (Mono Lake, CA and Big Soda Lake, NV) that are able to use monothioarsenate as the sole electron donor for anoxygenic photosynthesis. These anoxic cultures were able to convert a 1 mM mixture of thioarsenates completely to arsenate in c. 13 days and 4 mM monothioarsenate to arsenate in c. 17 days. This conversion was light dependent; thus, monothioarsenate can be used as the sole electron donor for anoxygenic photosynthesis. Both of the Mono Lake and Big Soda Lake enrichment cultures were dominated by an organism closely related to Ectothiorhodospira species. We tested additional strains of purple sulfur bacteria and found widespread ability to use monothioarsenate as an electron donor. The ability of bacteria to transform thioarsenates directly via anoxygenic photosynthesis adds a new perspective to the well-studied arsenic and sulfur cycles. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  16. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    NARCIS (Netherlands)

    Janssen, A.J.H.; Lens, P.N.L.; Stams, A.J.M.; Plugge, C.M.; Sorokin, D.Y.; Muyzer, G.; Dijkman, H.; Zessen, van E.; Luimes, F.J.T.; Buisman, C.J.N.

    2009-01-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and

  17. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population...... dynamics. The Thioploca population was described by its biomass, total number and diameter of sheaths, number of trichomes and species per sheath, and abundance and depth distribution of different morphological forms, e.g. trichome diameters and ratios of cell-length to diameter. Throughout the summer...... of Thioploca spp, changed strongly with seasonal variations, but the population structure remained mainly unchanged. During the 'El Nino' event in 1998, with high oxygen and low primary production the biomass was very low. In the Bay of Concepcion 2 populations of filamentous sulfur bacteria were observed...

  18. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...

  20. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp, off the coast of Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB; Fossing, HA

    1996-01-01

    The filamentous sulfur bacteria Thioploca spp, produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm dean into the sediment, The structure of the Thioploca communities off the Bay...

  1. Chemical protection of bacteria and cultured mammalian cells by sulfur--containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, S [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1975-03-01

    Protection by sulfur-containing compounds was studied using bacteria E. coli Bsub(H) and cultured mouse leukemic cells, L 5178 Y. The protective mechanisms are discussed. The dose reduction factors of non-sulfhydryl compounds observed in the bacteria were the same as those observed in mammalian cells, and the protective activity of these compounds was proportional to their reaction rates with hydroxyl radicals. On the other hand, sulfhydryl compounds, with the exception of glutathione, offered a much greater protection than was anticipated from their radical scavenging activity. From studies under anoxia, the protection of cysteine was explained by its OH scavenging and competition with oxygen. In addition, for MEA, protection against the direct action of radiation was suggested. This was supported by the significant protection in the frozen state.

  2. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  3. Microbial pathways in colonic sulfur metabolism and links with health and disease

    Directory of Open Access Journals (Sweden)

    Franck eCarbonero

    2012-11-01

    Full Text Available Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites or organic (e.g., dietary amino acids and host mucins origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria, which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to sulfate-reducing bacteria or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the sulfate-reducing bacteria. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies.

  4. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction

    Science.gov (United States)

    Moser, D. P.; Nealson, K. H.

    1996-01-01

    The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.

  5. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  6. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population dynam......, filaments with short cells in sheaths, populating the upper 7 cm of the sediment, and filaments without sheaths living at the sediment surface....

  7. Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes.

    Science.gov (United States)

    Saga, Yoshitaka; Akai, Sho; Miyatake, Tomohiro; Tamiaki, Hitoshi

    2006-01-01

    Naturally occurring bacteriochlorophyll(BChl)s-c, -d, and -e from green sulfur photosynthetic bacteria were self-assembled in an aqueous solution in the presence of octadecyltriethoxysilane and tetraethoxysilane, followed by polycondensation of the alkoxysilanes by incubation for 50 h at 25 degrees C. The resulting BChl self-assemblies in silicate capsules exhibited visible absorption and circular dichroism spectra similar to the corresponding natural light-harvesting systems (chlorosomes) of green sulfur bacteria. Dynamic light scattering measurements indicated that the silicate capsules had an average hydrodynamic diameter of several hundred nanometers. BChl self-aggregates in silicate capsules were significantly stable to a nonionic surfactant Triton X-100, which was apt to decompose the BChl aggregates to their monomeric form, compared with conventional micelle systems. BChls in silicate capsules were more tolerant to demetalation of the central magnesium under acidic conditions than the natural systems.

  8. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  9. Growth of Thiobacillus ferrooxidans on elemental sulfur

    International Nuclear Information System (INIS)

    Espejo, R.T.; Romero, P.

    1987-01-01

    Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-live of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day -1 , both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources

  10. Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate

    OpenAIRE

    Weissgerber, Thomas; Watanabe, Mutsumi; Hoefgen, Rainer; Dahl, Christiane

    2014-01-01

    Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to ...

  11. Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France

    NARCIS (Netherlands)

    Schaub, B E M; van Gemerden, H

    1996-01-01

    Enumeration of the functional groups of sulfur bacteria was performed in the sediments in the Bassin d'Arcachon, a mesotidal lagoon with strong tidal currents and dominant populations of seagrass (Zostera noltii), and in the Etang du Prevost, a shallow lagoon with moderate tidal fluctuations and

  12. Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria and enzyme

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Ogawa, Takahiro; Toyoda, Sakae; Kato, Hiromi; Katayama, Yoko; Yoshida, Naohiro

    2017-04-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that possess great potential for tracer of carbon cycle (Campbell et al., 2008). COS is taken up by vegetation during photosynthesis like absorption of carbon dioxide but COS can not emit by respiration of vegetation, suggesting possible tracer for gross primary production. However, some studies show the COS-derived GPP is larger than the estimates by using carbon dioxide flux because COS flux by photolysis and soil flux are not distinguished (e.g. Asaf et al., 2013). Isotope analysis is a useful tool to trace sources and transformations of trace gases. Recently our group developed a promising new analytical method for measuring the stable sulfur isotopic compositions of COS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ enabling us to easily analyze sulfur isotopes in COS (Hattori et al., 2015). Soil is thought to be important as both a source and a sink of COS in the troposphere. In particular, soil has been reported as a large environmental sink for atmospheric COS. Bacteria isolated from various soils actively degrade COS, with various enzymes such as carbonic anhydrase and COSase (Ogawa et al., 2013) involved in COS degradation. However, the mechanism and the magnitude of bacterial contribution in terms of a sink for atmospheric COS is still uncertain. Therefore, it is important to quantitatively evaluate this contribution using COS sulfur isotope analysis. We present isotopic fractionation constants for COS by laboratory incubation experiments during degradation by soil bacteria and COSase. Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, Cupriavidus, and Thiobacillus, isolated from natural soil or activated sludge and enzyme purified from a bacteria. As a result, the isotopic compositions of OCS were increased during degradation of

  13. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    -term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  14. Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria

    International Nuclear Information System (INIS)

    Harada, K.; Burnett, W.C.; LaRock, P.A.; Cowart, J.B.

    1989-01-01

    The last radioactive member of the 238 U natural decay-series, 210 Po is normally considered a very particle-reactive isotope. Analysis of most natural waters shows that 210 Po is present at very low activities, usually even lower than its insoluble precursor, 210 Pb. The authors have recently discovered, however, that 210 Po exists at very high concentrations in groundwaters of some shallow aquifers in west central Florida. These waters tend to be fairly acidic (pH 222 Rn. Detailed study of one well with extraordinary levels of 210 Po (∼ 1000 dpm/l) indicates that: (1) 210 Po in this water is in great excess of radioactive equilibrium with its predecessors 210 Pb and 210 Bi; (2) most Po in this water exists in a form which does not coprecipitate with an iron hydroxide scavenge; and (3) the conversion of soluble (0.2 μm filter) to particulate Po occurs over a time scale of a few days during sulfide oxidation. The authors suspect that Po cycling in this environment is related to the sulfur cycle and may, therefore, be influenced by sulfur bacteria

  15. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp, off the coast of Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB; Fossing, HA

    1996-01-01

    of Concepcion was investigated,vith respect to biomass, species distribution, and three-dimensional orientation of the sheaths, Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone, The maximum wet weight of sheaths, 800 g m(-2), was found at a depth of 90 m......The filamentous sulfur bacteria Thioploca spp, produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm dean into the sediment, The structure of the Thioploca communities off the Bay...

  16. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Co-Inoculation Effects of Thiobacillus thiooxidans Bacteria and Mycorrhiza (Glomus spp. on Maize Nutrition at Different Levels of Sulfur

    Directory of Open Access Journals (Sweden)

    A. Gholami

    2016-02-01

    Full Text Available Introduction: Sulfur is the key element for higher crops and plays an important role in the formation of proteins, vitamins, and enzymes. It is a constituent of amino acids such as cysteine and methionine, which act for the synthesis of other compounds containing reduced sulfur, such as chlorophyll and utilization of phosphorus and otheressential nutrients.Deficiency of this nutrient in soil is usually compensated by using chemical fertilizers. However, these fertilizers have harmful effects on the environment and decrease the quality of the agriculture products. Therefore, biological fertilizers are more useful for using in agricultural ecosystems.Sulfurshould be addedto the soil, usually in a reduced form such as elemental sulfur. Use of S oxidizers enhances the rate of natural oxidation of S and speeds up the production of sulfates and makes them available to plants consequently resulting in an increased plant yield. The role of chemolithotrophic bacteria of the genus Thiobacillus through oxidation process in the soil is usually emphasized. Sulfur oxidation is the most important step of sulfur cycle, which improves soil fertility. The result is formation of sulfate, which can be used by the plants, while the acidity produced by oxidation helps to solubilize nutrients in alkaline soils. These bacteria can solubilise the soil minerals through the production of H2SO4 that reacts with these non-soluble minerals and oxidised them to be available nutrients to the cultivated plants. Arbuscular MycorrhizalFungi isan important component ofthe microbiota, mutualistic symbioticsoilfungithatcolonizesthe rootsofmost cropplants.The AM symbiosis involves an about 80% of land plant species and 92% of plant families. They have theability to enhance host uptake of relativelyimmobile nutrientsparticularly phosphorus (P andzinc (Zn,Manganese (Mn andiron(Fe.Arbuscular mycorrhizal fungi increased plant uptake of phosphorus, nitrogen and water absorption

  18. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    Science.gov (United States)

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  19. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno

    DEFF Research Database (Denmark)

    Posth, Nicole Rita Elisabeth; Bristow, L. A.; Cox, R. P.

    2017-01-01

    carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C......Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2. In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive...

  20. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin

    OpenAIRE

    Allison M. Sharrar; Beverly E. Flood; Jake V. Bailey; Daniel S. Jones; Daniel S. Jones; Bopaiah A. Biddanda; Steven A. Ruberg; Daniel N. Marcus; Gregory J. Dick

    2017-01-01

    Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits i...

  1. Physiology and application of sulfur-reducing microorganisms from acidic environments

    NARCIS (Netherlands)

    Florentino, Anna Patrícya

    2017-01-01

    Sulfur cycle is one of the main geochemical cycles on Earth. Oxidation and reduction reactions of sulfur are mostly biotic and performed by microorganisms. In anaerobic conditions – marine and some freshwater systems, dissimilatory sulfur- and sulfate-reducing bacteria and archaea are key players

  2. A Nanoscale Study of Carbon and Nitrogen Fluxes in Mats of Purple Sulfur Bacteria: Implications for Carbon Cycling at the Surface of Coastal Sediments

    Directory of Open Access Journals (Sweden)

    Cédric Hubas

    2017-10-01

    Full Text Available Mass blooms of purple sulfur bacteria growing seasonally on green stranded macroalgae have a major impact on the microbial composition and functionality of intertidal mats. To explore the active anoxygenic phototrophic community in purple bacterial mats from the Roscoff Aber Bay (Brittany, France, we conducted a combined approach including molecular and high-resolution secondary ion mass spectrometry (NanoSIMS analyses. To investigate the dynamics of carbon and nitrogen assimilation activities, NanoSIMS was coupled with a stable isotope probing (SIP experiment and a compound specific isotope analysis (CSIA of fatty acid methyl ester (FAME. Sediment samples were incubated with 13C- and/or 15N-labeled acetate, pyruvate, bicarbonate and ammonium. NanoSIMS analysis of 13C - and 15N -incubated samples showed elevated incorporations of 13C - and 15N in the light and of 13C -acetate in the dark into dense populations of spherical cells that unambiguously dominated the mats. These results confirmed CSIA data that ranked vaccenic acid, an unambiguous marker of purple sulfur bacteria, as the most strongly enriched in the light after 13C -acetate amendment and indicated that acetate uptake, the most active in the mat, was not light-dependent. Analysis of DNA- and cDNA-derived pufM gene sequences revealed that Thiohalocapsa-related clones dominated both libraries and were the most photosynthetically active members of the mat samples. This study provides novel insights into the contribution of purple sulfur bacteria to the carbon cycle during their seasonal developments at the sediment surface in the intertidal zone.

  3. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...

  4. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  5. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    International Nuclear Information System (INIS)

    Mishra, Debaraj; Kim, Dong J.; Ralph, David E.; Ahn, Jong G.; Rhee, Young H.

    2008-01-01

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO 3 . Bioleach residues were characterized by EDX and XRD

  6. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  7. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria.

    Science.gov (United States)

    de Matos, Letícia Paiva; Costa, Patrícia Freitas; Moreira, Mariana; Gomes, Paula Cristine Silva; de Queiroz Silva, Silvana; Gurgel, Leandro Vinícius Alves; Teixeira, Mônica Cristina

    2018-04-01

    Data presented here are related to the original paper "Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB) mixed culture and alternative low-cost carbon sources" published by same authors (Matos et al., 2018) [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L - 1 . Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format. Refers to https://doi.org/10.1016/j.cej.2017.11.035.

  8. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  9. INFLUENCE OF ELEMENTAL SULFUR AND/OR INOCULATION WITH SULFUR OXIDIZING BACTERIA ON GROWTH, AND NUTRIENT CONTENT OF SORGHUM PLANTS GROWN ON DIFFERENT SOILS

    Directory of Open Access Journals (Sweden)

    Hala Kandil

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur(E.S rates (300 and 600 ppm and/or sulfur oxidizing bacteria (S.O.B. ATCC 8158 on growth and nutrients content of sorghum plants grown on different soils (sandy soils(I & II and clay loam soil.The obtained results could be summarized in the followings:Sorghum plants:Significant increases over the control were observed in fresh and dry weights of sorghum plant as well as its content of SO4=, N, P, K, Fe, Mn, Zn and Cu by using all the sulfur and/or the oxidizing bacteria treatments. Addition of E.S (300 & 600 ppm in combination with S.O.B. ATCC 8158 significantly increased both fresh and dry weights as well as SO4=, N, P, K, Fe, Mn, Zn and Cu contents of sorghum plants grown on the used soils as compared with either of them alone.E.S rates (300 & 600 ppm significantly increased the fresh and dry weights as well as all the studied nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the different soils as compared with S.O.B. ATCC 8158 treatment alone. The highest rate of E.S (600 ppm significantly increased all the previous parameters under study as compared with the lower rate (300 ppm. The highest values of fresh and dry weights as well as nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the used soils were obtained by 600 ppm E.S + S.O.B. ATCC 8158 treatment followed by 600 ppm E.S; 300 ppm E.S + S.O.B. ATCC 8158; 300 ppm E.S; S.O.B. ATCC 8158 and control treatments in decreasing order.The used soils:E.S rates (300 & 600 ppm and/or S.O.B. ATCC 8158 decreased pH values of the used soils after 3, 6 and 9 weeks from sowing as compared with their corresponding control treatments. The values of pH of sand soil (I and clay loam soil slightly decreased by time i.e they decreased from 3 weeks to 9 weeks from plantation. E.S rates (300 & 600 ppm with or without inoculation the used soils with S.O.B. ATCC 8158 significantly

  10. A study on the selection of indigenous leaching-bacteria for effective bioleaching

    Science.gov (United States)

    Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  11. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    sequence data, these bacteria are closely related to the marine filamentous sulfur bacteria Thioploca, abundant in the upwelling area off Chile and Peru. Similar to Thioploca, the giant bacteria oxidize sulfide with nitrate that is accumulated to less than or equal to 800 millimolar in a central vacuole....

  12. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  13. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  14. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    Science.gov (United States)

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  15. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria

    Directory of Open Access Journals (Sweden)

    Letícia Paiva de Matos

    2018-04-01

    Full Text Available Data presented here are related to the original paper “Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB mixed culture and alternative low-cost carbon sources” published by same authors (Matos et al., 2018 [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L−1. Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format.Refers to https://doi.org/10.1016/j.cej.2017.11.035 Keywords: Arsenite, Sulfate reduction, Bioremediation, Immobilized cells, Acid pH

  16. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  17. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    Science.gov (United States)

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Regulation of dsr genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum.

    Science.gov (United States)

    Grimm, Frauke; Dobler, Nadine; Dahl, Christiane

    2010-03-01

    Sulfur globules are formed as obligatory intermediates during the oxidation of reduced sulfur compounds in many environmentally important photo- and chemolithoautotrophic bacteria. It is well established that the so-called Dsr proteins are essential for the oxidation of zero-valent sulfur accumulated in the globules; however, hardly anything is known about the regulation of dsr gene expression. Here, we present a closer look at the regulation of the dsr genes in the phototrophic sulfur bacterium Allochromatium vinosum. The dsr genes are expressed in a reduced sulfur compound-dependent manner and neither sulfite, the product of the reverse-acting dissimilatory sulfite reductase DsrAB, nor the alternative electron donor malate inhibit the gene expression. Moreover, we show the oxidation of sulfur to sulfite to be the rate-limiting step in the oxidation of sulfur to sulfate as sulfate production starts concomitantly with the upregulation of the expression of the dsr genes. Real-time RT-PCR experiments suggest that the genes dsrC and dsrS are additionally expressed from secondary internal promoters, pointing to a special function of the encoded proteins. Earlier structural analyses indicated the presence of a helix-turn-helix (HTH)-like motif in DsrC. We therefore assessed the DNA-binding capability of the protein and provide evidence for a possible regulatory function of DsrC.

  20. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  1. Dynamics of biogeochemical sulfur cycling in Mono Lake

    Science.gov (United States)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in May of 2017 of sulfate reducing bacteria across the oxycline. Additionally, no sulfide was detectable in lake bottom waters despite oxygen below 6.25 µM. Preliminary results suggest a dynamic interplay between sulfide oxidation, sulfate reduction, and the onset of lake stratification. Additional

  2. Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Anika M. Pohlabeln

    2017-11-01

    Full Text Available Dissolved organic sulfur (DOS is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20°C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50°C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.

  3. Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron-sulfur clusters in green sulfur bacteria.

    Science.gov (United States)

    Jagannathan, Bharat; Golbeck, John H

    2008-12-01

    The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. Mössbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.

  4. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.

    Science.gov (United States)

    Zauhar, R J; Colbert, C L; Morgan, R S; Welsh, W J

    2000-03-01

    We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS

  5. Long-distance electron transfer by cable bacteria in aquifer sediments

    DEFF Research Database (Denmark)

    Müller, Hubert; Bosch, Julian; Griebler, Christian

    2016-01-01

    recycling of sulfate by electron transfer over 1–2-cm distance. Sediments were taken from a hydrocarbon-contaminated aquifer, amended with iron sulfide and saturated with water, leaving the sediment surface exposed to air. Steep geochemical gradients developed in the upper 3 cm, showing a spatial separation...... recently been discovered in marine sediments to couple spatially separated redox half reactions over centimeter scales. Here we provide primary evidence that such sulfur-oxidizing cable bacteria can also be found at oxic–anoxic interfaces in aquifer sediments, where they provide a means for the direct...

  6. In Situ Detection, Isolation, and Physiological Properties of a Thin Filamentous Microorganism Abundant in Methanogenic Granular Sludges: a Novel Isolate Affiliated with a Clone Cluster, the Green Non-Sulfur Bacteria, Subdivision I

    OpenAIRE

    Sekiguchi, Yuji; Takahashi, Hiroki; Kamagata, Yoichi; Ohashi, Akiyoshi; Harada, Hideki

    2001-01-01

    We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280–1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non...

  7. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  8. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions.

    Science.gov (United States)

    Kodama, Yumiko; Watanabe, Kazuya

    2003-01-01

    Molecular approaches have shown that a group of bacteria (called cluster 1 bacteria) affiliated with the epsilon subclass of the class Proteobacteria constituted major populations in underground crude-oil storage cavities. In order to unveil their physiology and ecological niche, this study isolated bacterial strains (exemplified by strain YK-1) affiliated with the cluster 1 bacteria from an oil storage cavity at Kuji in Iwate, Japan. 16S rRNA gene sequence analysis indicated that its closest relative was Thiomicrospira denitrificans (90% identity). Growth experiments under anaerobic conditions showed that strain YK-1 was a sulfur-oxidizing obligate chemolithotroph utilizing sulfide, elemental sulfur, thiosulfate, and hydrogen as electron donors and nitrate as an electron acceptor. Oxygen also supported its growth only under microaerobic conditions. Strain YK-1 could not grow on nitrite, and nitrite was the final product of nitrate reduction. Neither sugars, organic acids (including acetate), nor hydrocarbons could serve as carbon and energy sources. A typical stoichiometry of its energy metabolism followed an equation: S(2-) + 4NO(3)(-) --> SO(4)(2-) + 4NO(2)(-) (Delta G(0) = -534 kJ mol(-1)). In a difference from other anaerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 1% NaCl was negligible. When YK-1 was grown anaerobically in a sulfur-depleted inorganic medium overlaid with crude oil, sulfate was produced, corresponding to its growth. On the contrary, YK-1 could not utilize crude oil as a carbon source. These results suggest that the cluster 1 bacteria yielded energy for growth in oil storage cavities by oxidizing petroleum sulfur compounds. Based on its physiology, ecological interactions with other members of the groundwater community are discussed.

  9. Acquisition of a Novel Sulfur-Oxidizing Symbiont in the Gutless Marine Worm Inanidrilus exumae

    Science.gov (United States)

    2018-01-01

    ABSTRACT Gutless phallodrilines are marine annelid worms without a mouth or gut, which live in an obligate association with multiple bacterial endosymbionts that supply them with nutrition. In this study, we discovered an unusual symbiont community in the gutless phallodriline Inanidrilus exumae that differs markedly from the microbiomes of all 22 of the other host species examined. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization revealed that I. exumae harbors cooccurring gamma-, alpha-, and deltaproteobacterial symbionts, while all other known host species harbor gamma- and either alpha- or deltaproteobacterial symbionts. Surprisingly, the primary chemoautotrophic sulfur oxidizer “Candidatus Thiosymbion” that occurs in all other gutless phallodriline hosts does not appear to be present in I. exumae. Instead, I. exumae harbors a bacterial endosymbiont that resembles “Ca. Thiosymbion” morphologically and metabolically but originates from a novel lineage within the class Gammaproteobacteria. This endosymbiont, named Gamma 4 symbiont here, had a 16S rRNA gene sequence that differed by at least 7% from those of other free-living and symbiotic bacteria and by 10% from that of “Ca. Thiosymbion.” Sulfur globules in the Gamma 4 symbiont cells, as well as the presence of genes characteristic for autotrophy (cbbL) and sulfur oxidation (aprA), indicate that this symbiont is a chemoautotrophic sulfur oxidizer. Our results suggest that a novel lineage of free-living bacteria was able to establish a stable and specific association with I. exumae and appears to have displaced the “Ca. Thiosymbion” symbionts originally associated with these hosts. IMPORTANCE All 22 gutless marine phallodriline species examined to date live in a highly specific association with endosymbiotic, chemoautotrophic sulfur oxidizers called “Ca. Thiosymbion.” These symbionts evolved from a single common ancestor and represent the ancestral trait for

  10. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    Science.gov (United States)

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  11. Sulfur cycling in contaminated aquifers: What can we learn from oxygen isotopes in sulfate? (Invited)

    Science.gov (United States)

    Knoeller, K.; Vogt, C.; Hoth, N.

    2009-12-01

    abandoned lignite mine. Due to the heterogeneous isotopic composition of the sulfate source (oxidation of sedimentary sulfide), sulfur isotopes alone are inappropriate for the recognition of BSR. Only the application of oxygen isotopes in sulfate provides clear evidence for the activity of sulfate reducing bacteria. However, the obtained small θ value indicates a significant influence of sulfide re-oxidation. In the second example we applied the dual isotope system to investigate the relevance of BSR for natural biodegradation in an aquifer contaminated with BTEX. Isotope fractionation parameters were determined in column experiments operated under near in situ conditions. The differences between field derived and experimental fractionation parameters revealed essential information on the occurrence of sulfur transformations competing with the actual biodegradation reactions. Most important of those processes is the re-oxidation of reduced sulfur species consuming electron acceptors that would be relevant for contaminant oxidation.

  12. Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Caroline Morini Calil

    2014-06-01

    Full Text Available Little is known about the effects of stress hormones on the etiologic agents of halitosis. Thus, the aim of this study was to evaluate in vitro the effects of adrenaline (ADR, noradrenaline (NA and cortisol (CORT on bacteria that produce volatile sulfur compounds (VSC, the major gases responsible for bad breath. Cultures of Fusobacterium nucleatum (Fn, Porphyromonas endodontalis (Pe, Prevotella intermedia (Pi and Porphyromonas gingivalis (Pg were exposed to 50 µM ADR, NA and CORT or equivalent volumes of sterile water as controls for 12 and 24 h. Growth was evaluated based on absorbance at 660 nm. Portable gas chromatography was used to measure VSC concentrations. Kruskal-Wallis and the Dunn post-hoc test were used to compare the groups. For Fn, ADR, NA and CORT significantly reduced bacterial growth after 12 h and 24 h (p 0.05. In the Pi cultures, ADR, NA and CORT increased H2S (p < 0.05. Catecholamines and cortisol can interfere with growth and H2S production of sub-gingival species in vitro. This process appears to be complex and supports the association between stress and the production of VSC.

  13. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  14. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    Science.gov (United States)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  15. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline Lake Grevelingen

    Directory of Open Access Journals (Sweden)

    Yvonne A. Lipsewers

    2016-10-01

    Full Text Available Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution at three different locations before (March and during summer hypoxia (August. The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen- and sulfur cycling in Lake Grevelingen sediments.

  16. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    Science.gov (United States)

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  17. Typing of the sausage-shaped bacteria forming A-type sulfur-turf according to cell length distributions of natural populations and physico-chemical conditions of hot spring waters; Saibo chobunpu to seiiku kankyo kara mita A gata io shiba shizen kotaigun ni okeru okamagata saikin no katabetsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Y. [Iwate University, Iwate (Japan). Faculty of Humanities and Social Sciences

    1996-01-25

    In order to type the sausage-shaped bacteria forming A-type sulfur-turf, cell length distributions and physics-chemical conditions of hot spring waters were investigated on twelve samples collected from all over Japan. The frequency distributions of the cell length of eight samples were bimodal, while the other four samples were unimodal. In seven samples with bimodal distributions, two types (large and small) of the sausage-shaped bacteria could be differentiated. The cell length of the large-type was between 10.1 and 31.9{mu}m, while that of the small-type ranged 2.2 to 6.6{mu}m. The pH of seven hot spring waters were between 6 and 8, and the two types (large and small) formed together sulfur-turf. In contrast, pH of the three hot springs were over 8, and the two types of the sausage-shaped bacteria could not be detected in the sulfur-turf. Therefore, it is reasonable to set a third type of the sausage-shaped bacteria which prefers high-pH (over 8) and low calcium condition. The cell lengths of the third type were in the range of 5.5 to 8.6{mu}m, which correspond to the sausage-shaped bacteria of medium size. 20 refs., 5 figs., 2 tabs.

  18. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    International Nuclear Information System (INIS)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans; Hernández, Mayra P.

    2014-01-01

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO 2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage

  19. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian [Laboratory of Computational and Theoretical Chemistry (LQCT), Faculty of Chemistry, Havana University, Havana 10400 (Cuba); Pujals, Daniel Codorniu [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana 10400 (Cuba); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); Hernández, Mayra P., E-mail: mayrap@imre.oc.uh.cu [Instituto de Ciencias y Tecnologías de Materiales (IMRE), Havana 10400 (Cuba)

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  20. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    International Nuclear Information System (INIS)

    Janssen, Albert J.H.; Lens, Piet N.L.; Stams, Alfons J.M.; Plugge, Caroline M.; Sorokin, Dimitri Y.; Muyzer, Gerard; Dijkman, Henk; Van Zessen, Erik; Luimes, Peter; Buisman, Cees J.N.

    2009-01-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual COD organic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH 4 (80-90 vol.%), CO 2 (10-20 vol.%) and H 2 S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H 2 S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass

  1. Banking behavior under uncertainty: Evidence from the US Sulfur Dioxide Emissions Allowance trading program

    International Nuclear Information System (INIS)

    Rousse, Olivier; Sevi, Benoit

    2006-02-01

    The aim of this paper is to examine portfolio management of emission allowances in the US Sulfur Dioxide Emissions Allowance Trading Program, to determine whether utilities have a real motive to bank when risk increases. We test a theoretical model linking the motivation of the firm to accumulate permits in order to prepare itself to face a risky situation in the future. Empirical estimation using data for years 2001 to 2004 provides evidence of a relationship between banking behavior and uncertainty the utility is facing with. (authors)

  2. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite; Aislamiento y caracterizacion de bacterias en aguas de la mina de ratones y su comportamiento con pirita

    Energy Technology Data Exchange (ETDEWEB)

    Merino, J L; Saez, R M

    1974-07-01

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs.

  3. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  5. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  6. Interactions among sulfide-oxidizing bacteria

    Science.gov (United States)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  7. Characterization of chemosynthetic microbial mats associated with intertidal hydrothermal sulfur vents in White Point, San Pedro, CA, USA

    Directory of Open Access Journals (Sweden)

    Priscilla J Miranda

    2016-07-01

    Full Text Available The shallow-sea hydrothermal vents at White Point (WP in Palos Verdes (PV on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and activity of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic activity of the mat community via sequence analysis of 16S rRNA and aprA genes, Fluorescence in situ Hybridization (FISH microscopy and sulfate-reduction rate (SRR measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon- and deltaproteobacterial lineages such as Marithrix, Sulfurovum and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur vent microbial mat community is similar, but distinct from other hydrothermal vent communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea hydrothermal vent communities.

  8. Energy generation and the sulfur-carbon cycles: Final technical report for period March 1981 thru February 1985

    International Nuclear Information System (INIS)

    Zeikus, J.G.

    1987-05-01

    The aim of this research was to understand the role of anaerobic bacteria in natural and man-influenced carbon cycles in nature. The major goal was to elucidate how sulfur metabolism influenced organic decomposition in aquatic sediments. The research compared these processes in two different anaerobic ecosystems: the sulfate-depleted sediments of Lake Mendota, Wisconsin and the sulfate-saturated sediments of Great Salt Lake, Utah. The approach was both ecological and physiological, and employed both in situ characterization of carbon and sulfur metabolism with radiotracers and laboratory species isolation-characterization studies with pure and defined mixed cultures to demonstrate the prevalent environmental paths of carbon electrons, and sulfur during the anaerobic decomposition of organic matter. The significance of this research encompassed fundamental knowledge of the carbon sulfur cycles, applied knowledge on the microbial genesis of flammable gas and oil and extended knowledge on the diversity and metabolic activity of obligately anaerobic bacteria in nature. 13 refs

  9. Interactions between phototrophic bacteria in marine sediments

    NARCIS (Netherlands)

    de Wit, Rutger

    1989-01-01

    Phototrophic bacteria are the most consicious organisms occuring in laminated microbial sediment ecosystems (microbial mats). In the Waddensea area ecosystems consisting of a toplayer of the cyanobacterium Microleus chthonoplastes overlying a red layer of the purple sulfur bacterium Thiocapsa

  10. Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall

    Directory of Open Access Journals (Sweden)

    Frederick T. Guilford

    2010-02-01

    Full Text Available Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans. One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  11. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Albert J.H. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Shell Global Solutions Int. B.V., Amsterdam (Netherlands)], E-mail: albert.janssen@wur.nl; Lens, Piet N.L. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Stams, Alfons J.M.; Plugge, Caroline M. [Laboratory of Microbiology, Wageningen University, Wageningen (Netherlands); Sorokin, Dimitri Y. [Department of Biotechnology, Delft (Netherlands); Institute of Microbiology, Russian Academy of Science, Moscow (Russian Federation); Muyzer, Gerard [Department of Biotechnology, Delft (Netherlands); Dijkman, Henk; Van Zessen, Erik [Paques B.V., Balk (Netherlands); Luimes, Peter [Industriewater Eerbeek B.V. Eerbeek (Netherlands); Buisman, Cees J.N. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands)

    2009-02-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual COD{sub organic} and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH{sub 4} (80-90 vol.%), CO{sub 2} (10-20 vol.%) and H{sub 2}S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H{sub 2}S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.

  12. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  13. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Rao, A. Gangagni; Ravichandra, P.; Joseph, Johny; Jetty, Annapurna; Sarma, P.N.

    2007-01-01

    Mixed cultures of sulfate reducing bacteria (SRB) were isolated from anaerobic cultures and enriched with SRB media. Studies on batch and continuous reactors for the removal of SO 2 with bulk drug industry wastewater as an organic source using isolated mixed cultures of SRB revealed that isolation and enrichment methodology adopted in the present study were apt to suppress the undesirable growth of anaerobic bacteria other than SRB. Studies on anaerobic reactors showed that process was sustainable at COD/S ratio of 2.2 and above with optimum sulfur loading rate (SLR) of 5.46 kg S/(m 3 day), organic loading rate (OLR) of 12.63 kg COD/(m 3 day) and at hydraulic residence time (HRT) of 8 h. Free sulfide (FS) concentration in the range of 300-390 mg FS/l was found to be inhibitory to mixed cultures of SRB used in the present studies

  14. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite

    International Nuclear Information System (INIS)

    Merino, J. L.; Saez, R. M.

    1974-01-01

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs

  15. Prediction of periodontopathic bacteria in dental plaque of periodontal healthy subjects by measurement of volatile sulfur compounds in mouth air.

    Science.gov (United States)

    Kishi, Mitsuo; Ohara-Nemoto, Yuko; Takahashi, Masahiro; Kishi, Kayo; Kimura, Shigenobu; Aizawa, Fumie; Yonemitsu, Masami

    2013-03-01

    The aim of this study was to determine whether measurements of volatile sulfur compounds (VSCs) are useful to predict colonization of periodontopathic bacteria. For this purpose, we assessed the relationships among distributions of 4 species of periodontopathic bacteria in tongue coating and dental plaque, oral conditions including VSC concentration in mouth air, and smoking habit of periodontal healthy young subjects. The subjects were 108 young adults (mean age, 23.5±2.56 years) without clinical periodontal pockets. Information regarding smoking habit was obtained by interview. After VSC concentration in mouth, air was measured with a portable sulfide monitor (Halimeter(®)), non-stimulated saliva flow and dental caries status were assessed, and tongue coating and dental plaque samples were collected from the subjects. The tongue coating samples were weighed to determine the amount. The colonization of Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Treponema denticola in both tongue coating and plaque samples was investigated using species-specific polymerase chain reaction assays. Significant relationships were observed between the colonization of periodontopathic bacteria in tongue coating and plaque samples, especially that of P. gingivalis. VSC concentration showed the most significant association with colonization of P. gingivalis in both tongue coating and dental plaque. Logistic regression analysis demonstrated that the adjusted partial correlation coefficient [Exp(B)] values for VSC concentration with the colonization of P. gingivalis, P. intermedia, and T. denticola in dental plaque were 135, 35.4 and 10.4, respectively. In addition, smoking habit was also shown to be a significant variable in regression models [Exp(B)=6.19, 8.92 and 2.53, respectively]. Therefore, receiver operating characteristic analysis was performed to predict the colonization of periodontal bacteria in dental plaque in the subjects divided by smoking

  16. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    Science.gov (United States)

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Variable sulfur isotope composition of sulfides provide evidence for multiple sources of contamination in the Rustenburg Layered Suite, Bushveld Complex

    Science.gov (United States)

    Magalhães, Nivea; Penniston-Dorland, Sarah; Farquhar, James; Mathez, Edmond A.

    2018-06-01

    The Rustenburg Layered Suite (RLS) of the Bushveld Complex (BC) is famous for its platinum group element (PGE) ore, which is hosted in sulfides. The source of sulfur necessary to generate this type of mineralization is inferred to be the host rock of the intrusion. The RLS has a sulfur isotopic signature that indicates the presence of Archean surface-derived material (Δ33 S ≠ 0) in the magma. This signature, with an average value of Δ33 S = 0.112 ± 0.024 ‰, deviates from the expected Δ33 S value of the mantle of 0 ± 0.008 ‰. Previous work suggested that this signature is uniform throughout the RLS, which contrasts with radiogenic isotopes which vary throughout the igneous stratigraphy of the RLS. In this study, samples from key intervals within the igneous stratigraphy were analyzed, showing that Δ33 S values vary in the same stratigraphic levels as Sr and Nd isotopes. However, the variation is not consistent; in some levels there is a positive correlation and in others a negative correlation. This observation suggests that in some cases distinct magma pulses contained assimilated sulfur from different sources. Textural analysis shows no evidence for late addition of sulfur. These results also suggest that it is unlikely that large-scale assimilation and/or efficient mixing of host rock material in a single magma chamber occurred during emplacement. The data do not uniquely identify the source of sulfur in the different layers of the RLS, but the variation in sulfur isotope composition and its relationship to radiogenic isotope data calls for a reevaluation of the models for the formation and evolution of the RLS, which has the potential to impact the knowledge of how PGE deposits form.

  18. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at consumed resulting in lighter CO2 in the headspace. 16S rRNA sequences confirm that heterotrophic sulfur-reducing bacteria dominate the community within this reactor. When both acetate and CO2 were supplied the heterotrophic behavior appeared to dominate the system which resulted in a significant drop (15‰) in δ13C and a correlative drop in limestone dissolution rate. These results suggest that chemoautotrophy increases the rate of SAS and CO2 flux within the cave environment while heterotrophy leads to slower SAS or even calcite precipitation. Furthermore, changes in carbon substrate (CO2 vs. Acetate) or sulfur substrate concentrations caused an immediate microbial response that could be observed in all measured chemical variables.

  19. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  20. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase–rhodanese fusion protein functions in sulfur assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Nicole; Skiba, Meredith A.; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma

    2017-07-06

    Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO–rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans. The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.

  1. Isolation and characterization of ferrous- and sulfur-oxidizing bacteria from Tengchong solfataric region, China.

    Science.gov (United States)

    Jiang, Chengying; Liu, Ying; Liu, Yanyang; Guo, Xu; Liu, Shuang-Jiang

    2009-01-01

    Microbial oxidation and reduction of iron and sulfur are important parts of biogeochemical cycles in acidic environments such as geothermal solfataric regions. Species of Acidithiobacillus and Leptospirillum are the common ferrous-iron and sulfur oxidizers from such environments. This study focused on the Tengchong sofataric region, located in Yunnan Province, Southwest China. Based on cultivation, 9 strains that grow on ferrous-iron and sulfuric compounds were obtained. Analysis of 16S rRNA genes of the 9 strains indicated that they were affiliated to Acidithiobacillus, Alicyclobacillus, Sulfobacillus, Leptospirillum and Acidiphilium. Physiological and phylogenetic studies indicated that two strains (TC-34 and TC-71) might represent two novel members of Alicyclobacillus. Strain TC-34 and TC-71 showed 94.8%-97.1% 16S rRNA gene identities to other species of Alicyclobacillus. Different from the previously described Alicyclobacillus species, strains TC-34 and TC-71 were mesophilic and their cellular fatty acids do not contain omega-cyclic fatty acids. Strain TC-71 was obligately dependent on ferrous-iron for growth. It was concluded that the ferrous-iron oxidizers were diversified and Alicyclobacillus species were proposed to take part in biochemical geocycling of iron in the Tengchong solfataric region.

  2. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  3. Elective culture of bacteria used in bioleaching on pyrrhotite

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 覃文庆; 蓝卓越; 黎维中

    2003-01-01

    Elective culture of bacteria on pyrrhotite was researched, and the selected bacteria were tested on bi-oleaching of marmatite and zinc sulfide ore. The results show that the microorganism cultured on pyrrhotite with va-rious S/Fe ratios is a mixed culture of thiobacillus ferrooxidans and thiobacillus thiooxidans, of which the integral ac-tivity and the oxidation capability of Fe2+ and S are enhanced. With the high Fe and low S content of pyrrhotite, the oxida-tion capacity of ferrous ion is improved; on the contrary, the oxidation capacity of sulfur is advanced. The bioleaching ca-pacity of bacteria cultured on marmatite is better than that of the bacteria cultivated by conventional methods.

  4. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  5. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  6. Preliminary study of varietal susceptibility to sulfur dioxide

    International Nuclear Information System (INIS)

    Miller, J.E.; Xerikos, P.B.

    1976-01-01

    The injury response of plants to air pollutants, such as sulfur dioxide, is known to vary in severity and type for different varieties or cultivars of a species. Differences in the susceptibility of soybean varieties to sulfur dioxide have previously been noted, but sufficient information is not available concerning the sulfur dioxide resistance of varieties commonly grown in the Midwest. Results are reported from preliminary experiments concerning acute sulfur dioxide effects on 12 soybean varieties. The injury symptoms ranged from cream colored necrotic lesions (generally on younger leaves) to a reddish brown necrotic stipling (on older leaves). Differences in the severity of symptom development for the varieties was evident on both the younger and older leaves. No injury was apparent with three of the varieties

  7. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  8. Repeatedly evolved host-specific ectosymbioses between sulfur-oxidizing bacteria and amphipods living in a cave ecosystem.

    Directory of Open Access Journals (Sweden)

    Jan Bauermeister

    Full Text Available Ectosymbioses between invertebrates and sulfur-oxidizing bacteria are widespread in sulfidic marine environments and have evolved independently in several invertebrate phyla. The first example from a freshwater habitat, involving Niphargus ictus amphipods and filamentous Thiothrix ectosymbionts, was recently reported from the sulfide-rich Frasassi caves in Italy. Subsequently, two new Niphargus species, N. frasassianus and N. montanarius, were discovered within Frasassi and found to co-occur with N. ictus. Using a variety of microscopic and molecular techniques, we found that all three Frasassi-dwelling Niphargus species harbor Thiothrix ectosymbionts, which belong to three distinct phylogenetic clades (named T1, T2, and T3. T1 and T3 Thiothrix dominate the N. frasassianus ectosymbiont community, whereas T2 and T3 are prevalent on N. ictus and N. montanarius. Relative distribution patterns of the three ectosymbionts are host species-specific and consistent over different sampling locations and collection years. Free-living counterparts of T1-T3 are rare or absent in Frasassi cave microbial mats, suggesting that ectosymbiont transmission among Niphargus occurs primarily through inter- or intraspecific inoculations. Phylogenetic analyses indicate that the Niphargus-Thiothrix association has evolved independently at least two times. While ectosymbioses with T1 and T2 may have been established within Frasassi, T3 ectosymbionts seem to have been introduced to the cave system by Niphargus.

  9. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  10. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    Science.gov (United States)

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals.

  11. Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Chew, Aline Gomez Maqueo; Li, Hui

    2003-01-01

    Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative...

  12. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Kilic, Adem [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Calimlioglu, Beste; Toker, Yasemin [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey)

    2013-11-15

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased <50 μg/L when the influent Cr(VI) was ≤5 mg/L. -- Abstract: This study aims at evaluating simultaneous chromate and nitrate reduction using sulfur-based mixotrophic denitrification process in a column reactor packed with elemental sulfur and activated carbon. The reactor was supplemented with methanol at C/N ratio of 1.33 or 2. Almost complete denitrification was achieved at influent NO{sub 3}{sup −}–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO{sub 3}{sup −}–N/(L.d) when the bioreactor was fed with 75 mg/L NO{sub 3}{sup −}–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 μg/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed.

  13. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    Directory of Open Access Journals (Sweden)

    Mina eAziz

    2016-04-01

    Full Text Available Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03 transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm. In contrast, a previously-characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against beet armyworm feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  14. Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy

    Science.gov (United States)

    Kargel, J.S.; Delmelle, P.; Nash, D.B.

    1999-01-01

    The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found

  15. Sulfur impacts on forest health in west-central Alberta

    International Nuclear Information System (INIS)

    Maynard, D.G.; Stadt, J.J.; Mallett, K.I.; Volney, W.J.A.

    1994-01-01

    A study was conducted to evaluate forest health and tree growth in relation to sulfur deposition in mature and immature lodgepole pine and mature trembling aspen. Soil samples were taken in forests near two sour gas processing plants in west-central Alberta. The soil sample sites were classified into high, medium and low deposition classes. The impact of sulfur deposition on soil and foliar chemistry, tree growth, and forest health was evaluated. The analysis of tree growth, using radial increments, revealed no impact associated with the sulfur deposition class. The only indicators of extensive sulfur impacts on major forest communities detected to date are elevated sulfur concentrations in the surface organic horizon and foliage, the proportion of healthy lodgepole pines, and a depression in the annual specific volume increment. No evidence of widespread forest decline has been found. 42 refs., 35 tabs., 29 figs

  16. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  17. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act.

    Science.gov (United States)

    Thomas, Richard B; Spal, Scott E; Smith, Kenneth R; Nippert, Jesse B

    2013-09-17

    Using dendroisotopic techniques, we show the recovery of Juniperus virginiana L. (eastern red cedar) trees in the Central Appalachian Mountains from decades of acidic pollution. Acid deposition over much of the 20th century reduced stomatal conductance of leaves, thereby increasing intrinsic water-use efficiency of the Juniperus trees. These data indicate that the stomata of Juniperus may be more sensitive to acid deposition than to increasing atmospheric CO2. A breakpoint in the 100-y δ(13)C tree ring chronology occurred around 1980, as the legacy of sulfur dioxide emissions declined following the enactment of the Clean Air Act in 1970, indicating a gradual increase in stomatal conductance (despite rising levels of atmospheric CO2) and a concurrent increase in photosynthesis related to decreasing acid deposition and increasing atmospheric CO2. Tree ring δ(34)S shows a synchronous change in the sources of sulfur used at the whole-tree level that indicates a reduced anthropogenic influence. The increase in growth and the δ(13)C and δ(34)S trends in the tree ring chronology of these Juniperus trees provide evidence for a distinct physiological response to changes in atmospheric SO2 emissions since ∼1980 and signify the positive impacts of landmark environmental legislation to facilitate recovery of forest ecosystems from acid deposition.

  18. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  19. Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

    Directory of Open Access Journals (Sweden)

    Nelson L. Brock

    2013-05-01

    Full Text Available Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP via competing pathways releasing either methanethiol (MeSH or dimethyl sulfide (DMS. Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC–MS. Feeding experiments with [2H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [2H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [2H3]methionine and 34SO42−, synthesized from elemental 34S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction.

  20. Microbial interactions involving sulfur bacteria : implications for the ecology and evolution of bacterial communities

    NARCIS (Netherlands)

    Overmann, J; van Gemerden, H

    2000-01-01

    A major goal of microbial ecology is the identification and characterization of those microorganisms which govern transformations in natural ecosystems. This review summarizes our present knowledge of microbial interactions in the natural sulfur cycle. Central to the discussion is the recent

  1. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – A review

    International Nuclear Information System (INIS)

    Ghosh, Shiladitya; Dairkee, Umme Kulsoom; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2017-01-01

    Highlights: • Food processing wastes/wastewaters are potential feedstocks for PNSB-bioH_2 systems. • Several bottlenecks exist in efficient usage of food processing wastes/wastewaters by PNSBs. • Pretreatment of feedstocks is a challenging issue. • Genetic modification significantly enhances the H_2 outcome of PNSBs. • Food waste/wastewater - PNSB is a sustainable combination for production of H_2. - Abstract: Purple non-sulfur bacteria (PNSB) mediated production of biohydrogen utilizing solid food waste and food processing wastewater possess enormous potential to be implemented as an ideal “green energy technology”. This paper reviews the current state-of-the-art utilization of solid wastes and wastewaters of several food and beverage processing industries in photofermentative H_2 production systems. Detailed accounts of the complex composition of various solid food wastes and food processing wastewaters along with the pretreatments used for enhancement of H_2 production by PNSBs have been presented. Factors like compositional complexity, presence of inhibitory compounds and resistance to light penetration are identified as the prime bottlenecks hindering the efficient utilization of food waste and wastewaters in photofermentative H_2 production. Genetic manipulation of the PNSBs to overcome the inherent metabolic complications has been discussed as a probable amelioration strategy for enhancement of H_2 yield. Based on profound discussions the scopes for upgradation of the photofermentative biohydrogen systems using food waste/wastewater have been highlighted and recommended for the overall enhancement of the sustainability of the processes.

  2. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  3. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  4. Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence

    DEFF Research Database (Denmark)

    Thar, Roland; Kühl, Michael

    2003-01-01

    By analyzing the chemotactic behavior of a recently described marine bacterial species, we provide experimental evidence that bacteria are not too small for sensing chemical gradients spatially. The bipolar flagellated vibrioid bacteria (typical size 2 × 6 µm) exhibit a unique motility pattern...... as they translate along as well as rotate around their short axis, i.e., the pathways of the cell poles describe a double helix. The natural habitat of the bacteria is characterized by steep oxygen gradients where they accumulate in a band at their preferred oxygen concentration of ˜2 µM. Single cells leaving...... the band toward the oxic region typically return to the band within 16 s following a U-shaped track. A detailed analysis of the tracks reveals that the cells must be able to sense the oxygen gradient perpendicular to their swimming direction. Thus, they can detect oxygen gradients along a distance of ˜5 µm...

  5. Analysis of magnetite crystals and inclusion bodies inside magnetotactic bacteria from different environmental locations

    Science.gov (United States)

    Oestreicher, Z.; Lower, B.; Lower, S.; Bazylinski, D. A.

    2011-12-01

    Biomineralization occurs throughout the living world; a few common examples include iron oxide in chiton teeth, calcium carbonate in mollusk shells, calcium phosphate in animal bones and teeth, silica in diatom shells, and magnetite crystals inside the cells of magnetotactic bacteria. Biologically controlled mineralization is characterized by biominerals that have species-specific properties such as: preferential crystallographic orientation, consistent particle size, highly ordered spatial locations, and well-defined composition and structure. It is well known that magnetotactic bacteria synthesize crystals of magnetite inside of their cells, but how they mineralize the magnetite is poorly understood. Magnetosomes have a species-specific morphology that is due to specific proteins involved in the mineralization process. In addition to magnetite crystals, magnetotactic bacteria also produce inclusion bodies or granules that contain different elements, such as phosphorus, calcium, and sulfur. In this study we used the transmission electron microscope to analyze the structure of magnetite crystals and inclusion bodies from different species of magnetotactic bacteria in order to determine the composition of the inclusion bodies and to ascertain whether or not the magnetite crystals contain elements other than iron and oxygen. Using energy dispersive spectroscopy we found that different bacteria from different environments possess inclusion bodies that contain different elements such as phosphorus, calcium, barium, magnesium, and sulfur. These differences may reflect the conditions of the environment in which the bacteria inhabit.

  6. Sulfur-Kβ /sub emission studies on sulfur-bearing heterocycles

    International Nuclear Information System (INIS)

    Phillips, D.R.; Andermann, G.G.; Fujiwara, F.

    1986-01-01

    Sulfur-K/β /sub x-ray fluorescence spectroscopy (XFS) has been used to study the electronic structure and bonding in sulfur-bearing heterocycles. XFS not only has the capability of experimentally measuring valence electron energies in molecular species, but can also provide intensity data which can help define the nature of the molecular orbitals defined by the electrons. This report discusses the feasibility of using XFS as an analytical tool for the determination of total and specific sulfur heterocycle content in samples. A variety of compounds were studied. These include thiophene, thiophene derivatives, tetranydrothiophene, several more complex saturated and unsaturated sulfur heterocycles, and heterocycles containing both sulfur and nitrogen. The sulfur-K/β /sub spectra were obtained using a double crystal spectrometer which provided an instrumental resolution of about 0.7 eV

  7. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  8. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  9. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  10. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  11. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Ye, Huan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-01

    Highlights: • A cost-effective chemical activation method to prepare porous carbon nanospheres. • Carbon nanospheres with bimodal microporous structure show high specific area and large micropore volume. • The S/C composite cathodes with in-situformed S−C bond exhibit high sulfur activity with a reversible capacity of 1000 mA h g −1 . • S−C bond enables well confinement on sulfur and polysulfides. - Abstract: Lithium–sulfur batteries are highly desired because of their characteristics such as high energy density. However, the applications of Li-S batteries are limited because they exist dissolution of polysulfides into electrolytes. This study reports the preparation of sulfur cathodes by using bimodal microporous (0.5 nm and 0.8 nm to 2.0 nm) carbon spheres with high specific area (1992 m 2 g −1 ) and large micropore volume (1.2 g cm −1 ), as well as the encapsulation of polysulfides via formation of carbon–sulfur bonds in a sealed vacuum glass tube at high temperature. Given that sulfur and polysulfides are well confined by the S−C bond, the shuttle effect is effectively suppressed. The prepared S/C cathodes with a sulfur loading of up to 75% demonstrate high sulfur activity with reversible capacity of 1000 mA h g −1 at the current density of 0.1 A g −1 and good cycling stability (667 mA h g −1 after 100 cycles).

  12. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  13. Extraction of manganese from electrolytic manganese residue by bioleaching.

    Science.gov (United States)

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Evaluation of Thiobacillus Bacteria and Mycorrhizal Symbiosis on Yield and Yield Components of Garlic (Allium sativum at Different Levels of Sulfur

    Directory of Open Access Journals (Sweden)

    parvin Hejazi rad

    2017-09-01

    Full Text Available Introduction Most researchers believe that good management and proper use of biofertilizers are the ways for preparation of better nutritional conditions for the medicinal plant. Garlic is one of the most important medicinal crops. Allicin is the main active ingredient in this plant. Biofertilizers contain beneficial soil microorganisms or the metabolic products. Mycorrhizal symbiosis improves the soil physical, chemical and biological properties. Mycorrhizae increase crop resistance to pathogens, nutrient and water uptake, also reduce the negative effects of environmental stress and improve the quality of their host plants. Adding sulfur to the soil to improve the nutritional status of the plant by the release of nutrients will be effective when that the oxidation of sulfur in the soil is significant. For sulfur uptake by the plant, it is necessary that this element convert to sulfate by soil microorganisms. If elemental sulfur distribute in the soil and mix with the organic material, conversion of sulfur-oxidizing microorganisms be faster in wet conditions. Materials and methods The experiment was conducted as randomized complete block design with three replications in 2012. Treatments were included control plot, mycorrhizal inoculation (M, Thiobacillus (T, M + T, 75 kg sulfur per hectare (75S, 75S + M, 75S + T, 75S + M + T, 150 kg sulfur per hectare (150S, 150S + M, 150S + T, 150S + M + T. Each plot consisted of four rows with a spacing of 40 cm and row length of 10 m. In treatments with 75 and 150 kg sulfur per hectare, 48 and 96 g of sulfur were used, respectively. Thiobacillus at the recommended dose was added to the soil a week before planting. Percent of fungal colonization obtained with Gridline Intersect Method. HPLC method was used to extract allicin content. Data were analyzed with the MSTAT-C software; the means were compared with LSD test at the 5% level of probability. Results and discussion The results showed that tuber dry

  15. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  16. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  17. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    Science.gov (United States)

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.

  18. An Experimental Study of Low-Temperature Sulfurization of Carbohydrates Using Various Sulfides Reveals Insights into Structural Characteristics and Sulfur Isotope Compositions of Macromolecular Organic Matter in the Environment

    Science.gov (United States)

    OBeirne, M. D.; Werne, J. P.; Van Dongen, B.; Gilhooly, W., III

    2017-12-01

    Sulfurization of carbohydrates has been suggested as an important mechanism for the preservation of organic matter in anoxic/euxinic depositional environments. In this study, glucose was sulfurized under laboratory conditions at room temperature (24°C) using three commercially available sulfides - ammonium sulfide ([NH4]2S), sodium sulfide (Na2S), and sodium hydrosulfide (NaHS), each mixed with elemental sulfur to produce polysulfide solutions. The reaction products were analyzed using Fourier transform infrared spectroscopy (FTIR), which revealed structural differences among the products formed via the three sulfide reactants. Additionally, analysis of the bulk sulfur isotope compositions of reactants and products was used to determine the fractionation(s) associated with abiotic sulfur incorporation into organic matter. Samples from both modern (Mahoney Lake, British Colombia, Canada) and ancient (Jurassic aged Blackstone Band from the Kimmeridge Clay Formation, Dorset, United Kingdom) euxinic systems were also analyzed for comparison to laboratory samples. Results from this study provide experimental evidence for the structural and sulfur isotopic relationships of sulfurized organic matter in the geosphere.

  19. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I.

    Science.gov (United States)

    Sekiguchi, Y; Takahashi, H; Kamagata, Y; Ohashi, A; Harada, H

    2001-12-01

    We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280-1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non-sulfur bacteria (GNSB) subdivision I, which contains a number of 16S rDNA clone sequences from various environmental samples but no cultured representatives. To investigate their function in the community and physiological traits, we attempted to isolate the yet-to-be-cultured microbes from the original granular sludge. The first attempt at isolation from the granules was, however, not successful. In the other thermophilic reactor that had been treating fried soybean curd-manufacturing wastewater, we found filamentous microorganisms to outgrow, resulting in the formation of projection-like structures on the surface of granules, making the granules look like sea urchins. 16S rDNA-cloning analysis combined with fluorescent in situ hybridization revealed that the projections were comprised of the uncultured filamentous cells affiliated with the GNSB subdivision I and Methanothermobacter-like cells and the very ends of the projections were comprised solely of the filamentous cells. By using the tip of the projection as the inoculum for primary enrichment, a thermophilic, strictly anaerobic, filamentous bacterium, designated strain UNI-1, was successfully isolated with a medium supplemented with sucrose and yeast extract. The strain was a very slow growing bacterium which is capable of utilizing only a limited range of carbohydrates in the presence of yeast extract and produced hydrogen from these substrates. The growth was found to be significantly stimulated when the strain was

  20. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  1. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Nurgul Balci

    2017-08-01

    Full Text Available Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62− and elemental sulfur (S° to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6 by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4 from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2. During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4

  2. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    Directory of Open Access Journals (Sweden)

    Harle Arti

    2008-01-01

    Full Text Available AbstractSulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD, transmission electron microscope (TEM, energy dispersive spectroscopy (EDS, diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm and narrow particle size distribution (in range of 5–15 nm as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%. Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi than that of colloidal sulfur.

  3. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  4. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    Science.gov (United States)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  5. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  6. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central chile

    Science.gov (United States)

    Zopfi, Jakob; Böttcher, Michael E.; Jørgensen, Bo Barker

    2008-02-01

    The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S 0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H 2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S 0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ 34S-values of pyrite down to -38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the

  7. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  8. Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds

    Science.gov (United States)

    Hartgers, Walter A.; Lòpez, Jordi F.; Sinninghe Damsté, Jaap S.; Reiss, Christine; Maxwell, James R.; Grimalt, Joan O.

    1997-11-01

    Speciation of iron and sulfur species was determined for two recent sediments (La Trinitat and Lake Cisó) which were deposited in environments with a high biological productivity and sulfate-reducing activity. In sediments from calcite ponds of La Trinitat an excess of reactive iron species (iron monosulfides, iron hydroxides) results in a depletion of reactive sulfur which is accompanied by a virtual absence of organo-sulfur compounds, both in low (LMW) and high molecular-weight (HMW) fractions. Small amounts of phytanyl and highly branched isoprenoid (HBI) thiophenes in the extract demonstrate that these molecules exhibit a higher reactivity towards reduced sulfur species as compared to detrital iron. Euxinic sediments from Lake Cisó are characterised by an excess of reduced sulfur species which can rapidly trap reactive iron. High concentrations of H 2S results in the formation of organo-sulfur compounds which were encountered in both LMW and HMW fractions. The major part of the organic sulfur is bound to the carbohydrate portion of woody tissues, whose presence was revealed by a specific alkylthiophene distribution in the flash pyrolysate and by Li/EtNH 2 desulfurisation of the kerogen which resulted in the solubilisation of the sulfur-enriched hemicellulose fraction. Relatively high amounts of sulfurised C 25 HBI compounds in the sediment extract of Lake Cisó reflect the incorporation of sulfur into algal derived organic matter upon early diagenesis. The combined approach of the speciation of iron and sulfur species and the molecular analysis of sedimentary fractions demonstrates that abiotic sulfur binding to organic matter occurs at the earliest stages of diagenesis under specific depositional conditions (anoxic, stratified water column) in which an excess of reduced sulfur species relative to the amount of reactive iron is a controlling factor.

  9. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and the Sword

    Science.gov (United States)

    Fors, Yvonne; Grudd, Håkan; Rindby, Anders; Jalilehvand, Farideh; Sandström, Magnus; Cato, Ingemar; Bornmalm, Lennart

    2014-02-01

    Sulfur and iron concentrations in wood from three 17th century shipwrecks in the Baltic Sea, the Ghost wreck, the Crown and the Sword, were obtained by X-ray fluorescence (XRF) scanning. In near anaerobic environments symbiotic microorganisms degrade waterlogged wood, reduce sulfate and promote accumulation of low-valent sulfur compounds, as previously found for the famous wrecks of the Vasa and Mary Rose. Sulfur K-edge X-ray absorption near-edge structure (XANES) analyses of Ghost wreck wood show that organic thiols and disulfides dominate, together with elemental sulfur probably generated by sulfur-oxidizing Beggiatoa bacteria. Iron sulfides were not detected, consistent with the relatively low iron concentration in the wood. In a museum climate with high atmospheric humidity oxidation processes, especially of iron sulfides formed in the presence of corroding iron, may induce post-conservation wood degradation. Subject to more general confirmation by further analyses no severe conservation concerns are expected for the Ghost wreck wood.

  10. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  11. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  12. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  13. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  14. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  15. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  17. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  18. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    Science.gov (United States)

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    Science.gov (United States)

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determining total sulfur content in coal by MSC radiometric sulfur meter

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T; Golebiowski, W

    1976-01-01

    The MSC radiometric sulfur meter is used to determine total sulfur content in brown and black coals. Sulfur content is determined by measuring intensity of radiation beam which has travelled through a coal sample with the optimum constant surface mass. Construction of the MSC, consisting of a measuring head and the electronic measuring system, is shown in a scheme. AM-241 (with activity of 50 mCi) is the source of radiation. Energy of 25.3 keV (tin disc) is selected as the optimum. The SSU-70 probe with NaJ/Tl crystal is the radiation detector. The black coal sample weighs 10 g and the brown coal sample weighs 18 g. Duration of sulfur determination is 10 min. Error of sulfur determination ranges from plus or minus 0.2% to 0.3%. The results of operational tests of MSC radiometric sulfur meters in black and brown coal mines are discussed. Accuracy of measurement is shown in 5 tables. (8 refs.)

  2. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  3. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  4. The Role of System-Specific Molecular Chaperones in the Maturation of Molybdoenzymes in Bacteria

    Directory of Open Access Journals (Sweden)

    Meina Neumann

    2011-01-01

    Full Text Available Biogenesis of prokaryotic molybdoenzymes is a complex process with the final step representing the insertion of a matured molybdenum cofactor (Moco into a folded apoenzyme. Usually, specific chaperones of the XdhC family are required for the maturation of molybdoenzymes of the xanthine oxidase family in bacteria. Enzymes of the xanthine oxidase family are characterized to contain an equatorial sulfur ligand at the molybdenum center of Moco. This sulfur ligand is inserted into Moco while bound to the XdhC-like protein and before its insertion into the target enzyme. In addition, enzymes of the xanthine oxidase family bind either the molybdopterin (Mo-MPT form of Moco or the modified molybdopterin cytosine dinucleotide cofactor (MCD. In both cases, only the matured cofactor is inserted by a proofreading process of XdhC. The roles of these specific XdhC-like chaperones during the biogenesis of enzymes of the xanthine oxidase family in bacteria are described.

  5. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  6. In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content

    Science.gov (United States)

    Zhao, Bing; Yang, Yaqing; Wang, Zhixuan; Huang, Shoushuang; Wang, Yanyan; Wang, Shanshan; Chen, Zhiwen; Jiang, Yong

    2018-02-01

    SnS is widely studied as anode materials since of its superior structural stability and physicochemical property comparing with other Sn-based composites. Nevertheless, the inconvenience of phase morphology control and excessive consumption of sulfur sources during synthesis hinder the scalable application of SnS nanocomposites. Herein, we report a facile in-situ sulfuration strategy to synthesize sandwiched spherical SnS/sulfur-doped graphene (SnS/S-SG) composite. An ultra-low sulfur content with approximately stoichiometric ratio of Sn:S can effectively promote the sulfuration reaction of SnO2 to SnS and simultaneous sulfur-doping of graphene. The as-prepared SnS/S-SG composite shows a three-dimensional interconnected spherical structure as a whole, in which SnS nanoparticles are sandwiched between the multilayers of graphene sheets forming a hollow sphere. The sandwiched sphere structure and high S doping amount can improve the binding force between SnS and graphene, as well as the structural stability and electrical conductivity of the composite. Thus, a high reversibility of conversion reaction, promising specific capacity (772 mAh g-1 after 100 cycles at 0.1 C) and excellent rate performance (705 and 411 mAh g-1 at 1 C and 10 C, respectively) are exhibited in the SnS/S-SG electrode, which are much higher than that of the SnS/spherical graphene synthesized by traditional post-sulfuration method.

  7. Purification of water polluted with oil and sulfurous closed-ring and aromatic compounds contained in oil and oil products using bacteria relating to thiosphaera

    International Nuclear Information System (INIS)

    Kurashov, V.M.; Sakhno, T.V.; Gavrilov, V.S.; Zijatdinov, R.N.

    2005-01-01

    The intensity of natural purification (self-purification) of reservoirs polluted with oil and oil products is determined by microorganisms. Hydrocarbon-oxidizing microorganisms are constant natural constituent of biocenose in reservoirs. However, as a result of outflows, the oil and oil products concentration exceeds maximum values allowing normal vital functions of microorganisms resulting in breaking micro-biocenose suppression of vital functions of bacteria. In this regard, elective anaerobic microorganisms of Thiosphaera are worthy of notice. We found out that bacteria belonging to Thiosphaera pantotropha decomposed oil at high oil concentrations in water (at oil concentration like 1 liter of oil in 1 liter of water). And this is when aerobic microorganisms lose their vital functions at maximum concentration of 20 g of oil in 1 liter of water. To intensify the process of oil decomposition we emulsified oil with aqueous solutions of salts. Thiosphaera pantotropha are found out to decompose oil in a wide range of ratio between oil and aqueous solutions of salts: from 1:10 to 10:1. The water solutions salinity made from 20 g/l to 80 g/l. It must be noticed that, since the Thiosphaera pantotropha are elective anaerobes and decompose oil both in presence and in absence of oxygen, it is not necessary anymore to conduct the process under strictly anaerobic conditions and to supply additional oxygen. This makes it possible to simplify the process of biodegradation of oil and to make this process practically more feasible and economically more profitable being compared to the processes based on the use of other species of bacteria. We found out that Thiosphaera decompose sulfurous closed-ring and aromatic compounds in oil which are chemically and thermally stable and can be hardly decomposed, and possess extremely poisonous properties, as well. The use of microorganisms of Thiosphaera pantotropha allows to purify waters polluted with oil and oil products both during

  8. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  9. A Microsensor Study of the Interaction between Purple Sulfur and Green Sulfur Bacteria in Experimental Benthic Gradients

    DEFF Research Database (Denmark)

    Pringault, O.; de Wit, R.; Kühl, Michael

    1999-01-01

    culture experiment with those of the respective axenic cultures using the same inoculation densities and experimental conditions. Densities of bacteria were deduced from radiance microprofiles, and the chemical microenvironment was investigated with O2, H2S, and pH microelectrodes. P. aestuarii always....... roseopersicina was actually higher in the mixed culture than in the corresponding axenic culture, indicating a higher growth yield on sulfide in the mixed culture experiment. Several hypotheses are proposed to explain the effects of the interaction....

  10. The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries

    NARCIS (Netherlands)

    Harks, Peter Paul R.M.L.; Robledo, Carla B.; Verhallen, Tomas W.; Notten, Peter H.L.; Mulder, Fokko M.

    2017-01-01

    It is shown that the dissolution of elemental sulfur into, and its diffusion through, the electrolyte allows cycling of lithium–sulfur batteries in which the sulfur is initially far removed and electrically insulated from the current collector. These findings help to understand why liquid

  11. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  12. Self-assembled peptides for coating of active sulfur nanoparticles in lithium–sulfur battery

    International Nuclear Information System (INIS)

    Jewel, Yead; Yoo, Kisoo; Liu, Jin; Dutta, Prashanta

    2016-01-01

    Development of lithium–sulfur (Li–S) battery is hindered by poor cyclability due to the loss of sulfur, although Li–S battery can provide high energy density. Coating of sulfur nanoparticles can help maintain active sulfur in the cathode of Li–S battery, and hence increase the cyclability. Among myriad of coating materials, synthetic peptides are very attractive because of their spontaneous self-assembly as well as electrical conductive characteristics. In this study, we explored the use of various synthetic peptides as a coating material for sulfur nanoparticles. Atomistic simulations were carried out to identify optimal peptide structure and density for coating sulfur nanoparticles. Three different peptide models, poly-proline, poly(leucine–lysine) and poly-histidine, are selected for this study based on their peptide–peptide and peptide-sulfur interactions. Simulation results show that both poly-proline and poly(leucine–lysine) can form self-assembled coating on sulfur nanoparticles (2–20 nm) in pyrrolidinone, a commonly used solvent for cathode slurry. We also studied the structural integrity of these synthetic peptides in organic [dioxolane (DOL) and dimethoxyethane (DME)] electrolyte used in Li–S battery. Both peptides show stable structures in organic electrolyte (DOL/DME) used in Li–S battery. Furthermore, the dissolution of sulfur molecules in organic electrolyte is investigated in the absence and presence of these peptide coatings. It was found that only poly(leucine–lysine)-based peptide can most effectively suppress the sulfur loss in electrolyte, suggesting its potential applications in Li–S battery as a coating material.Graphical abstract

  13. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  14. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  15. Acquisition of useful and high ability genes for acidophilic bacteria; Kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Energy Technology Data Exchange (ETDEWEB)

    Senda, T; Inoue, C; Shinbori, Y [Tohoku University, Sendai (Japan)

    1997-02-01

    This effort aims at the development of high-performance bacteria usable in bio-leaching in metal smelting by acquiring genes capable of realizing such. A method is used of choosing some isolated strains exhibiting high-performance traits and acquiring target genes therefrom by use of genetic engineering. Approximately 200 kinds in the aggregate of acidophilic bacteria are currently available for the study, including isolated iron-oxidizing and sulfur-oxidizing bacteria, standard species acquired for the study, and strains previously isolated by the laboratory. The bacteria are tested with respect to their Fe{sup 2+}-oxidizing rates, sulfur-oxidizing capabilities, and strength to withstand inhibiting substances (Ag{sup +}, Cl{sup -}, Mo{sup 6+}, etc.), which results in the nomination of 8 strains. The study planned to follow includes processes involving the extraction of chromosome DNAs from the 8 strains and their refinement, gene cloning by the Southern hybridization method, determination of their base sequences, determination of the difference between the strains in point of gene expression, and investigations of the relations that the results of these processes bear toward the said high-performance traits. Also under way is a study about the infuence-exerting factors revealed during the evaluation of the abilities of acidphlic bacteria. 2 refs., 2 tabs.

  16. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  17. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  18. Biocorrosion of dental alloys due to Desulfotomaculum nigrificans bacteria.

    Science.gov (United States)

    Mystkowska, Joanna

    2016-01-01

    Degradation processes of metallic biomaterials in the oral cavity limit the stability and reliability of dental materials. The influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of Co-Cr-Mo and Ti-6Al-4V alloys was assessed. After 28 and 56 days of contact of the materials with the bacterial environment, the surfaces of the biomaterials tested were observed by means of confocal scanning laser microscopy (CSLM), and their chemical composition was studied using X-Ray Photoelectron Spectrometry (XPS). Corrosive changes and the presence of sulfur (with medium atomic concentration of 0.5% for Co-Cr-Mo and 0.3% for Ti-6AL-4V) were observed on the surface of the biomaterials. Image analysis conducted using Aphelion software indicated that corrosion pits took up approx. 2.3% and 1.8% (after 28 days) and 4.2% and 3.1% (after 56 days) of the total test surfaces of cobalt and titanium alloys respectively. The greatest number of corrosion pits had a surface area within the range of 1-50 m2. They constituted from 37% up to 83% of all changes, depending on the type of material. An evident influence of the SRB on the surfaces of cobalt and titanium alloys was observed. Significant corrosive losses caused by the activity of microorganisms were observed on the metallic surfaces under study. The results of this study have much cognitive and utilitarian significance.

  19. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    Isotope exchange reactions between S-35-labeled sulfur compounds were studied in anoxic estuarine sediment slurries at 21-degrees-C and pH 7.4-7.7. Two experiments labeled with radioactive elemental sulfur (S-35-degrees) and one labeled with radioactive sulfate ((SO42-)-S-35) were performed as time......% of the total S-35 was recovered in the SIGMA-HS- pool in less than 1.5 h. With no detectable SIGMA-HS- (less than 1-mu-M) in the slurry, 58% of the total S-35 was observed in the pyrite pool within 1.5 h. The FeS pool received up to 31% of all S-35 added. The rapid S-35 incorporation from S-35-degrees...... into SIGMA-HS- and FeS pools was explained by isotope exchange reactions. In contrast, there was evidence that the radioactivity observed in the 'pyrite pool' was caused by adhesion of the added S-35-degrees to the FeS2 grains. In all S-35-degrees-labeled experiments we also observed oxidation...

  20. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  1. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.

    Science.gov (United States)

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-09-07

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.

  2. Performance of a pilot-scale packed bed reactor for perchlorate reduction using a sulfur oxidizing bacterial consortium.

    Science.gov (United States)

    Boles, Amber R; Conneely, Teresa; McKeever, Robert; Nixon, Paul; Nüsslein, Klaus R; Ergas, Sarina J

    2012-03-01

    A novel sulfur-utilizing perchlorate reducing bacterial consortium successfully treated perchlorate (ClO₄⁻) in prior batch and bench-scale packed bed reactor (PBR) studies. This study examined the scale up of this process for treatment of water from a ClO ₄⁻ and RDX contaminated aquifer in Cape Cod Massachusetts. A pilot-scale upflow PBR (∼250-L) was constructed with elemental sulfur and crushed oyster shell packing media. The reactor was inoculated with sulfur oxidizing ClO₄⁻ reducing cultures enriched from a wastewater seed. Sodium sulfite provided a good method of dissolved oxygen removal in batch cultures, but was found to promote the growth of bacteria that carry out sulfur disproportionation and sulfate reduction, which inhibited ClO₄⁻ reduction in the pilot system. After terminating sulfite addition, the PBR successfully removed 96% of the influent ClO₄⁻ in the groundwater at an empty bed contact time (EBCT) of 12 h (effluent ClO₄⁻ of 4.2 µg L(-1)). Simultaneous ClO₄⁻ and NO₃⁻ reduction was observed in the lower half of the reactor before reactions shifted to sulfur disproportionation and sulfate reduction. Analyses of water quality profiles were supported by molecular analysis, which showed distinct groupings of ClO₄⁻ and NO₃⁻ degrading organisms at the inlet of the PBR, while sulfur disproportionation was the primary biological process occurring in the top potion of the reactor. Copyright © 2011 Wiley Periodicals, Inc.

  3. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  4. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    Science.gov (United States)

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  6. Early steroid sulfurization in surface sediments of a permanently stratified lake (Ace Lake, Antarctica)

    Science.gov (United States)

    Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.

    2000-04-01

    Surface sediments (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from Δ 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the sediment. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these sediments that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface sediments at low temperatures and in the absence of light.

  7. The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization

    Science.gov (United States)

    Konnunaho, J. P.; Hanski, E. J.; Bekker, A.; Halkoaho, T. A. A.; Hiebert, R. S.; Wing, B. A.

    2013-12-01

    Archean komatiites host important resources of Ni, Cu, Co, and PGE, particularly in Western Australia and Canada. In Finland, several small, low-grade sulfide deposits have been found in komatiites, including the ca. 2.8 Ga Vaara deposit in the Archean Suomussalmi greenstone belt. It occurs in the central part of the serpentinized olivine cumulate zone of a komatiitic extrusive body and is composed of disseminated interstitial sulfides consisting of pyrite, pentlandite, millerite, violarite, and chalcopyrite accompanied by abundant magnetite. Although currently subeconomic, the mineralization is interesting due to the very high chalcophile element contents of the sulfide fraction (38 wt% Ni, 3.4 wt% Cu, 0.7 wt% Co, 22.4 ppm Pd, and 9.5 ppm Pt). The sulfides occur in relatively Cr-poor olivine cumulates suggesting involvement of a chromite-undersaturated magma. The parental magma was an Al-undepleted komatiite with an estimated MgO content of at least 24 wt%. In contrast to the common komatiite types in the eastern Finland greenstone belts, the Vaara rocks are moderately enriched in LREE relative to MREE, suggesting that crustal contamination played an important role in the genesis of the Vaara deposit. Multiple sulfur isotope data reveal considerable mass-independent sulfur isotope fractionation both in country rock sedimentary sulfides (Δ33S ranges from -0.50 to +2.37 ‰) and in the Vaara mineralization (Δ33S ranges from +0.53 to +0.66 ‰), which provides strong evidence for incorporation of crustal sulfur. Extensive replacement of interstitial sulfides by magnetite and the presence of millerite- and violarite-bearing, pyrrhotite-free sulfide assemblages indicate significant post-magmatic, low-temperature hydrothermal oxidation of the primary magmatic pyrrhotite-pentlandite-chalcopyrite assemblages and associated sulfur loss that led to a significant upgrading of the original metal tenors of the Vaara deposit.

  8. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  9. An investigation of sulfur concentrations in soils and pine needles in Bandelier National Monument, New Mexico

    International Nuclear Information System (INIS)

    Gladney, E.S.; Ferenbaugh, R.W.; Jones, E.A.; Bell, M.G.; Morgan, J.D.; Stallings, E.A.; Nelson, L.A.; Lundstrom, C.; Bowker, R.G.

    1993-03-01

    Sulfur measurements in different age groups of pinon pine needles and adjacent soil samples from ten sampling sites at Bandelier National Monument were determined using combustion elemental analysis and chromatographic techniques. The primary goal was to establish base-line levels for elemental sulfur in the Monument. Sulfur levels in foliage and soils were evaluated using analysis of variance techniques. Foliage sulfur concentrations differed significantly among the 10 sampling sites and among trees within sites; however, needles of different ages did not differ significantly in sulfur content. Average soil concentrations were very low, approximately 12% of the average needle concentrations. Soil sulfur concentrations also differed significantly among the 10 sampling sites and at different depths in the soil. No statistical differences were evident in soils sampled at the four compass points (N,S,E,W) around each tree. These differences imply that large numbers of samples are needed to identify small effects from anthropogenic inputs of sulfur into the system or that the effects must be large relative to the differences among sampling sites and individual trees in order to be detected

  10. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor

    OpenAIRE

    Fadhlaoui, K.; Ben Hania, W.; Armougom, Fabrice; Bartoli, M.; Fardeau, Marie-Laure; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; Dolla, A.; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspeci...

  11. Durability of incinerator ash waste encapsulated in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs

  12. An investigation of sulfur concentrations in soils and pine needles in Canyonlands National Park, Utah

    International Nuclear Information System (INIS)

    Gladney, E.S.; Ferenbaugh, R.W.; Jones, E.A.; Bell, M.G.; Morgan, J.D.; Nelson, L.A.; Lundstrom, C.; Bowker, R.G.

    1993-03-01

    Sulfur measurements in different age groups of pinon pine needles and adjacent soil samples from ten sampling sites at Canyonlands National Park were determined using combustion elemental analysis and chromatographic techniques. The primary goal was to establish base-line levels for elemental sulfur in the Park. Sulfur levels in foliage and soils were evaluated using analysis of variance techniques. No significant differences were found in foliage sulfur concentrations among the 10 sampling sites; however, trees within sites were significantly different. Needles of different ages did not differ significantly in sulfur content. Average soil concentrations were very low, approximately 4% of the average needle concentrations. Soil sulfur concentrations also differed significantly among the 10 sampling sites and at different depths in the soil. No statistical differences were evident in soils sampled at the four compass points (N,S,E,W) around each tree. These differences imply that large numbers of samples are needed to identify small effects from anthropogenic inputs of sulfur into the system, or that the effects must be large relative to the differences among sampling sites and individual trees in order to be detected

  13. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  14. The Function of Gas Vesicles in Halophilic Archaeaand Bacteria: Theories and Experimental Evidence

    Science.gov (United States)

    Oren, Aharon

    2012-01-01

    A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms. PMID:25371329

  15. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  16. Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries

    Science.gov (United States)

    Yan, Jianhua; Liu, Xingbo

    2016-01-01

    Rechargeable lithium–sulfur (Li–S) batteries are receiving ever‐increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S‐cathodes include low electrical conductivity of S and sulfides, precipitation of nonconductive Li2S2 and Li2S, and poly‐shuttle effects. To determine these degradation factors, a comprehensive study of sulfur cathodes with different amounts of electrolytes is presented here. A survey of the fundamentals of Li–S chemistry with respect to capacity fade is first conducted; then, the parameters obtained through electrochemical performance and characterization are used to determine the key causes of capacity fade in Li–S batteries. It is confirmed that the formation and accumulation of nonconductive Li2S2/Li2S films on sulfur cathode surfaces are the major parameters contributing to the rapid capacity fade of Li–S batteries. PMID:27981001

  17. Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications

    Science.gov (United States)

    Anilkumar, K. M.; Jinisha, B.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S.

    2018-06-01

    Lithium-Sulfur (Li-S) cells are emerging as the next generation energy storage devices owing to their impressive electrochemical properties with high theoretical specific capacity of 1675 mAh/g. Lack of electronic conductivity of sulfur, its volume expansion during high lithium intake and the shuttling effect due to the formation of soluble polysulfides are the main limitations, delaying the commercialization of this technology. To address these challenges, in the present work, the conducting polymer PEDOT:PSS is used as the covering matrix over the sulfur particles to improve their Li storage properties. The sulfur/PEDOT:PSS nanocomposite is synthesised using the hydrothermal process and its formation with the polymer coating over sulfur nanoparticles is established from the XRD, Raman spectroscopy, FE-SEM and TEM studies. The electrochemical studies show that the cells assembled using the sulfur/PEDOT:PSS nanocomposite as the cathode, with the components taken in the weight ratio of 9:1, offer a reversible capacity of 1191 mAh g-1 at 0.1C rate. These cells display stable electrochemical capacities over 200 cycles at gradually increasing current rates. The polymer layer facilitates electronic conduction and suppresses the polysulfide formation and the volume expansion of sulfur. A reversible capacity of 664 mAh g-1 is observed after 200 cycles at 1C rate with the capacity retention of 75 % of the initial stable capacity. The highlight of the present work is the possibility to achieve high discharge capacities at high C rates and the retention of a good percentage of the initial capacity over 200 cycles, for these Li-S cells.

  18. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  19. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  20. Confine sulfur in mesoporous metal–organic framework @ reduced graphene oxide for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Qu, Yaohui; Zhou, Chengkun; Wang, Xiwen; Li, Jie

    2014-01-01

    Highlights: • Metal organic framework @ reduced graphene oxide was applied for sulfur cathode. • MIL-101(Cr)@rGO/S composites are synthesized by a facile two-step liquid method. • Cycling stability of MIL-101(Cr)@rGO/S sulfur cathode was improved. -- Abstract: Mesoporous metal organic framework @ reduced graphene oxide (MIL-101(Cr)@rGO) materials have been used as a host material to prepare the multi-composite sulfur cathode through a facile and effective two-step liquid phase method successfully, which is different from the simple MIL-101(Cr)/S mixed preparation method. The successful reduced graphene oxide coating in the MIL-101(Cr)@rGO improve the electronic conductivity of meso-MOFs effectively. The discharge capacity and capacity retention rate of MIL-101(Cr)@rGO/S composite sulfur cathode are as high as 650 mAh g −1 and 66.6% at the 50th cycle at the current density of 335 mA g −1 . While the discharge capacity and capacity retention rate of MIL-101(Cr)/S mixed sulfur cathode is 458 mAh g −1 and 37.3%. Test results indicate that the MIL-101(Cr)@rGO is a promising host material for the sulfur cathode in the lithium–sulfur battery applications

  1. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  2. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  3. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Science.gov (United States)

    Hackley, Keith C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

    1990-01-01

    Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

  4. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria.

    Science.gov (United States)

    Rezzonico, Fabio; Duffy, Brion

    2008-09-20

    Great excitement accompanied discoveries over the last decade in several Gram-negative and Gram-positive bacteria of the LuxS protein, which catalyzes production of the AI-2 autoinducer molecule for a second quorum sensing system (QS-2). Since the luxS gene was found to be widespread among the most diverse bacterial taxa, it was hypothesized that AI-2 may constitute the basis of a universal microbial language, a kind of bacterial Esperanto. Many of the studies published in this field have drawn a direct correlation between the occurrence of the luxS gene in a given organism and the presence and functionality of a QS-2 therein. However, rarely hathe existence of potential AI-2 receptors been examined. This is important, since it is now well recognized that LuxS also holds a central role as a metabolic enzyme in the activated methyl cycle which is responsible for the generation of S-adenosyl-L-methionine, the major methyl donor in the cell. In order to assess whether the role of LuxS in these bacteria is indeed related to AI-2 mediated quorum sensing we analyzed genomic databases searching for established AI-2 receptors (i.e., LuxPQ-receptor of Vibrio harveyi and Lsr ABC-transporter of Salmonella typhimurium) and other presumed QS-related proteins and compared the outcome with published results about the role of QS-2 in these organisms. An unequivocal AI-2 related behavior was restricted primarily to organisms bearing known AI-2 receptor genes, while phenotypes of luxS mutant bacteria lacking these genes could often be explained simply by assuming deficiencies in sulfur metabolism. Genomic analysis shows that while LuxPQ is restricted to Vibrionales, the Lsr-receptor complex is mainly present in pathogenic bacteria associated with endotherms. This suggests that QS-2 may play an important role in interactions with animal hosts. In most other species, however, the role of LuxS appears to be limited to metabolism, although in a few cases the presence of yet unknown

  5. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria

    Directory of Open Access Journals (Sweden)

    Duffy Brion

    2008-09-01

    Full Text Available Abstract Background Great excitement accompanied discoveries over the last decade in several Gram-negative and Gram-positive bacteria of the LuxS protein, which catalyzes production of the AI-2 autoinducer molecule for a second quorum sensing system (QS-2. Since the luxS gene was found to be widespread among the most diverse bacterial taxa, it was hypothesized that AI-2 may constitute the basis of a universal microbial language, a kind of bacterial Esperanto. Many of the studies published in this field have drawn a direct correlation between the occurrence of the luxS gene in a given organism and the presence and functionality of a QS-2 therein. However, rarely hathe existence of potential AI-2 receptors been examined. This is important, since it is now well recognized that LuxS also holds a central role as a metabolic enzyme in the activated methyl cycle which is responsible for the generation of S-adenosyl-L-methionine, the major methyl donor in the cell. Results In order to assess whether the role of LuxS in these bacteria is indeed related to AI-2 mediated quorum sensing we analyzed genomic databases searching for established AI-2 receptors (i.e., LuxPQ-receptor of Vibrio harveyi and Lsr ABC-transporter of Salmonella typhimurium and other presumed QS-related proteins and compared the outcome with published results about the role of QS-2 in these organisms. An unequivocal AI-2 related behavior was restricted primarily to organisms bearing known AI-2 receptor genes, while phenotypes of luxS mutant bacteria lacking these genes could often be explained simply by assuming deficiencies in sulfur metabolism. Conclusion Genomic analysis shows that while LuxPQ is restricted to Vibrionales, the Lsr-receptor complex is mainly present in pathogenic bacteria associated with endotherms. This suggests that QS-2 may play an important role in interactions with animal hosts. In most other species, however, the role of LuxS appears to be limited to metabolism

  6. Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence.

    Science.gov (United States)

    Nishi, Eiji; Tashiro, Yukihiro; Sakai, Kenji

    2015-05-01

    DNA typing from forensic evidence is commonly used to identify individuals. However, when the quantity of the forensic evidence is insufficient, successful identification using DNA typing is impossible. Such evidence may also contain DNA from bacteria that occur naturally on the skin. In this study, we aimed to establish a profiling method using terminal restriction fragment length polymorphisms (T-RFLPs) of the amplified bacterial 16S ribosomal RNA (rRNA) gene. First, the extraction and digestion processes were investigated, and the T-RFLP profiling method using the 16S rRNA gene amplicon was optimized. We then used this method to compare the profiles of bacterial flora from the hands of 12 different individuals. We found that the T-RFLP profiles from one person on different days displayed higher similarity than those between individuals. In a principal component analysis (PCA), T-RFLPs from each individual were closely clustered in 11 out of 12 cases. The clusters could be distinguished from each other, even when the samples were collected from different conditions. No major change of the profile was observed after six months except in two cases. When handprints on glass plates were compared, 11 of 12 individuals were assigned to a few clusters including the cluster corresponding to the correct individual. In conclusion, a method for reproducible T-RFLP profiling of bacteria from trace amounts of handprints was established. The profiles were obtained for particular individuals clustered in PCA and were experimentally separable from other individuals in most cases. This technique could provide useful information for narrowing down a suspect in a criminal investigation.

  7. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  8. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  9. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

    2002-12-01

    Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

  10. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in Fe0/GAC reactor using the acclimated bacteria

    International Nuclear Information System (INIS)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Wang, Juling; Yang, Jinghui; Li, Huiqiang

    2012-01-01

    Highlights: ► Fe 3 (PO 4 ) 2 and FePO 4 crystals would weaken treatment efficiency of Fe 0 /GAC reactor. ► Fe 3 (PO 4 ) 2 and FePO 4 crystals could be removed by the acclimated bacteria. ► FeS and sulfur in the passive film would be removed by the sulfur-oxidizing bacteria. ► Develop a cost-effective bio-regeneration technology for the passive fillers. - Abstract: As past studies presented, there is obvious defect that the fillers in the Fe 0 /GAC reactor begin to be passive after about 60 d continuous running, although the complicated, toxic and refractory ABS resin wastewater can be pretreated efficiently by the Fe 0 /GAC reactor. During the process, the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film are formed by the reaction between PO 4 3− and Fe 2+ /Fe 3+ . Meanwhile, they obstruct the formation of macroscopic galvanic cells between Fe 0 and GAC, which will lower the wastewater treatment efficiency of Fe 0 /GAC reactor. In this study, in order to remove the Fe 3 (PO 4 ) 2 and FePO 4 crystals on the surface of the passive fillers, the bacteria were acclimated in the passive Fe 0 /GAC reactor. According to the results, it can be concluded that the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film could be decomposed or removed by the joint action between the typical propionic acid type fermentation bacteria and sulfate reducing bacteria (SRB), whereas the PO 4 3− ions from the decomposition of the Fe 3 (PO 4 ) 2 and FePO 4 crystals were released into aqueous solution which would be discharged from the passive Fe 0 /GAC reactor. Furthermore, the remained FeS and sulfur (S) in the passive film also can be decomposed or removed easily by the oxidation of the sulfur-oxidizing bacteria. This study provides some theoretical references for the further study of a cost-effective bio-regeneration technology to solve the passive problems of the fillers in the zero-valent iron (ZVI) or Fe 0 /GAC reactor.

  11. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, K.C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W. (Eastern Illinois University, Charleston, IL (USA). Chemistry Dept.)

    1990-01-01

    Hot tetrachloroethene (perchloroethylen PCE) extracts significant amounts of elemental sulfur (S{sup o}) from weathered coals but not from pristine coals. The objective of this study was to determine whether S{sup o} extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted S{sup o} was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The S{sup o} was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, S{sup o} and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. 21 refs., 2 tabs.

  12. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  13. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania

    Directory of Open Access Journals (Sweden)

    Krevs A.

    2011-08-01

    Full Text Available Physical-chemical parameters and the vertical distribution of bacteria and organic matter production-destruction processes were studied during midsummer stratification in two karst lakes (Kirkilai and Ramunelis located in northern Lithuania. The lakes were characterized by high sulfate concentrations (369–1248 mg·L-1. The O2/H2S intersection zone formed at 2–3 m depth. In Lake Kirkilai, the highest bacterial densities (up to 8.7 × 106 cell·mL-1 occurred at the O2/H2S intersection zone, whereas in Lake Ramunelis the highest densities were observed in the anoxic hypolimnion (up to 11 × 106 cell·mL-1. Pigment analysis revealed that green sulfur bacteria dominated in the microaerobic–anaerobic water layers in both lakes. The most intensive development of sulfate-reducing bacteria was observed in the anaerobic layer. Photosynthetic production of organic matter was highest in the upper layer. Rates of sulfate reduction reached 0.23 mg S2−·dm3·d-1 in the microaerobic-anaerobic water layer and 1.97 mg S2−·dm3·d-1 in sediments. Karst lakes are very sensitive to organic pollution, because under such impact in the presence of high sulfate amounts, sulfate reduction may become very intensive and, consequently, the increase in hydrogen sulfide and development of sulfur cycle bacteria may reduce the variety of other hydrobionts.

  14. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Z. [Lab. de Chimie Physique, UMR, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS{sup .}, RSS{sup .}, RS{sup .+}, (RSSR){sup .+}] and their implications for biological systems. (author)

  15. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.

    2001-01-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS . , RSS . , RS .+ , (RSSR) .+ ] and their implications for biological systems. (author)

  16. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  17. Proteomic analysis of the purple sulfur bacterium Candidatus "Thiodictyon syntrophicum" strain Cad16T isolated from Lake Cadagno

    DEFF Research Database (Denmark)

    Storelli, Nicola; Saad, Maged M.; Frigaard, Niels-Ulrik

    2014-01-01

    Lake Cadagno is characterised by a compact chemocline with high concentrations of purple sulfur bacteria (PSB). 2D-DIGE was used to monitor the global changes in the proteome of Candidatus "Thiodictyon syntrophicum" strain Cad16T both in the presence and absence of light. This study aimed to disc...

  18. The role of iron-sulfides on cycling of organic carbon in the St Lawrence River system: Evidence of sulfur-promoted carbon sequestration?

    Science.gov (United States)

    Balind, K.; Barber, A.; Gélinas, Y.

    2017-12-01

    The biogeochemical cycle of sulfur is intimately linked with that of carbon, as well as with that of iron through the formation of iron-sulfur complexes. Iron-sulfide minerals such as mackinawite (FeS) and greigite (Fe3S4) form below the oxic/anoxic redox boundary in marine and lacustrine sediments and soils. Reactive iron species, abundant in surface sediments, can undergo reductive dissolution leading to the formation of soluble Fe(II) which can then precipitate in the form of iron sulfur species. While sedimentary iron-oxides have been thoroughly explored in terms of their ability to sorb and sequester organic carbon (OC) (Lalonde et al.; 2012), the role of FeS in the long-term preservation of OC remains undefined. In this study, we present depth profiles for carbon, iron, and sulfur in the aqueous-phase, along with data from sequential extractions of sulfur speciation in the solid-phase collected from sediment cores from the St Lawrence River and estuarine system, demonstrating the transition from fresh to saltwater sediments. Additionally, we present synthetic iron sulfur sorption experiments using both model and natural organic molecules in order to assess the importance of FeS in sedimentary carbon storage.

  19. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  20. The impact of the Cretaceous-Paleogene (K-Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica

    Science.gov (United States)

    Witts, James D.; Newton, Robert J.; Mills, Benjamin J. W.; Wignall, Paul B.; Bottrell, Simon H.; Hall, Joanna L. O.; Francis, Jane E.; Alistair Crame, J.

    2018-06-01

    The Cretaceous-Paleogene (K-Pg) mass extinction event 66 million years ago led to large changes to the global carbon cycle, primarily via a decrease in primary or export productivity of the oceans. However, the effects of this event and longer-term environmental changes during the Late Cretaceous on the global sulfur cycle are not well understood. We report new carbonate associated sulfate (CAS) sulfur isotope data derived from marine macrofossil shell material from a highly expanded high latitude Maastrichtian to Danian (69-65.5 Ma) succession located on Seymour Island, Antarctica. These data represent the highest resolution seawater sulfate record ever generated for this time interval, and are broadly in agreement with previous low-resolution estimates for the latest Cretaceous and Paleocene. A vigorous assessment of CAS preservation using sulfate oxygen, carbonate carbon and oxygen isotopes and trace element data, suggests factors affecting preservation of primary seawater CAS isotopes in ancient biogenic samples are complex, and not necessarily linked to the preservation of original carbonate mineralogy or chemistry. Primary data indicate a generally stable sulfur cycle in the early-mid Maastrichtian (69 Ma), with some fluctuations that could be related to increased pyrite burial during the 'mid-Maastrichtian Event'. This is followed by an enigmatic +4‰ increase in δ34SCAS during the late Maastrichtian (68-66 Ma), culminating in a peak in values in the immediate aftermath of the K-Pg extinction which may be related to temporary development of oceanic anoxia in the aftermath of the Chicxulub bolide impact. There is no evidence of the direct influence of Deccan volcanism on the seawater sulfate isotopic record during the late Maastrichtian, nor of a direct influence by the Chicxulub impact itself. During the early Paleocene (magnetochron C29R) a prominent negative excursion in seawater δ34S of 3-4‰ suggests that a global decline in organic carbon burial

  1. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  2. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  3. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  4. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    International Nuclear Information System (INIS)

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Liu, Chen-Wuing; Wang, Pei-Ling; Wang, Chung-Ho; Maji, Sanjoy Kumar

    2011-01-01

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using δ 34 S [SO 4 ] and δ 18 O [SO 4 ] sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of 34 S [SO 4 ] and 18 O [SO 4 ] present in Type A, caused by microbial-mediated reduction of sulfate, and high 18 O enrichment factor (ε [SO 4 -H 2 O] ), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high δ 18 O [SO 4 ] and low δ 34 S [SO 4 ] values under mildly reducing conditions. Base on 18 O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O 2 , caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: → Seawater intrusion and elevated As are the main issues of groundwater in Taiwan. → Sulfur and oxygen isotopes of sulfate were analyzed to evaluate the As mobility. → Reductive dissolution of Fe minerals and

  5. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  6. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    International Nuclear Information System (INIS)

    Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay

    2015-01-01

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  7. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  8. Effect of commercial activated carbons in sulfur cathodes on the electrochemical properties of lithium/sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Icpyo [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo; Ahn, Jou-Hyeon [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Ryu, Ho-Suk [Department of Material and Energy Engineering, Gyeongwoon University, 730, Gangdong-ro, Sandong-myeon, Gumi, Gyeongbuk, 39160 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of)

    2016-10-15

    Highlights: • The sulfur/activated carbon composite is fabricated using commercial activated carbons. • The sulfur/activated carbon composite with coal shows the best performance. • The Li/S battery has capacities of 1240 mAh g{sup −1} at 1 C and 567 mAh g{sup −1} at 10 C. - Abstract: We prepared sulfur/active carbon composites via a simple solution-based process using the following commercial activated carbon-based materials: coal, coconut shells, and sawdust. Although elemental sulfur was not detected in any of the sulfur/activated carbon composites based on Thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy, Energy-dispersive X-ray spectroscopy results confirmed its presence in the activated carbon. These results indicate that sulfur was successfully impregnated in the activated carbon and that all of the activated carbons acted as sulfur reservoirs. The sulfur/activated carbon composite cathode using coal exhibited the highest discharge capacity and best rate capability. The first discharge capacity at 1 C (1.672 A g{sup −1}) was 1240 mAh g{sup −1}, and a large reversible capacity of 567 mAh g{sup −1} was observed at 10 C (16.72 A g{sup −1}).

  9. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  10. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  11. Proteome Remodeling in Response to Sulfur Limitation in “ Candidatus Pelagibacter ubique”

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Daniel P.; Nicora, Carrie D.; Carini, Paul; Lipton, Mary S.; Norbeck, Angela D.; Smith, Richard D.; Giovannoni, Stephen J.; Wilmes, Paul

    2016-07-12

    The alphaproteobacterium “CandidatusPelagibacter ubique” strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all “Ca. Pelagibacter ubique” genes downstream from the previously confirmedS-adenosyl methionine (SAM) riboswitchesbhmT,mmuM, andmetY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the hemecshuttle-encoding geneccmCand two small genes of unknown function (SAR11_1163andSAR11_1164). This bacterium’s strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes,ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch.

  12. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  13. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    Science.gov (United States)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  14. An investigation of sulfur concentrations in soils and pine needles in Chaco Culture National Historical Park, New Mexico

    International Nuclear Information System (INIS)

    Gladney, E.S.; Ferenbaugh, R.W.; Jones, E.A.; Bell, M.G.; Morgan, J.D.; Nelson, L.A.; Bowker, R.G.

    1993-03-01

    Sulfur measurements in different age groups of pinon pine needles and adjacent soil samples from ten sampling sites at Chaco Culture National Historical Park were determined using combustion elemental analysis and chromatographic techniques. The primary goal was to establish base-line levels for elemental sulfur in the Park. Sulfur levels in foliage and soils were evaluated using analysis of variance techniques. No significant differences were found in foliage sulfur concentrations among the 10 sampling sites; however, trees within sites were significantly different. Needles of different ages did not differ significantly in sulfur content. Average soil concentrations were low, approximately 30% of the average needle concentrations. Soil sulfur concentrations did not differ significantly among the 10 sampling sites; however, different depths in the soil had statistically different concentrations of sulfur. No statistical differences were evident in soils sampled at the four compass points (N,S,E,W) around each tree. These differences imply that large numbers of samples are needed to identify small effects from anthropogenic inputs of sulfur into the system or that the effects must be large relative to the differences among sampling sites and individual trees in order to be detected

  15. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  16. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  17. Genomic features of "Candidatus Venteria ishoeyi", a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile.

    Directory of Open Access Journals (Sweden)

    Alexis Fonseca

    Full Text Available The Humboldt Sulfuretum (HS, in the productive Humboldt Eastern Boundary Current Upwelling Ecosystem, extends under the hypoxic waters of the Peru-Chile Undercurrent (ca. 6°S and ca. 36°S. Studies show that primeval sulfuretums held diverse prokaryotic life, and, while rare today, still sustain species-rich giant sulfur-oxidizing bacterial communities. We here present the genomic features of a new bacteria of the HS, "Candidatus Venteria ishoeyi" ("Ca. V. ishoeyi" in the family Thiotrichaceae.Three identical filaments were micro-manipulated from reduced sediments collected off central Chile; their DNA was extracted, amplified, and sequenced by a Roche 454 GS FLX platform. Using three sequenced libraries and through de novo genome assembly, a draft genome of 5.7 Mbp, 495 scaffolds, and a N50 of 70 kbp, was obtained. The 16S rRNA gene phylogenetic analysis showed that "Ca. V. ishoeyi" is related to non-vacuolate forms presently known as Beggiatoa or Beggiatoa-like forms. The complete set of genes involved in respiratory nitrate-reduction to dinitrogen was identified in "Ca. V. ishoeyi"; including genes likely leading to ammonification. As expected, the sulfur-oxidation pathway reported for other sulfur-oxidizing bacteria were deduced and also, key inorganic and organic carbon acquisition related genes were identified. Unexpectedly, the genome of "Ca. V. ishoeyi" contained numerous CRISPR repeats and an I-F CRISPR-Cas type system gene coding array. Findings further show that, as a member of an eons-old marine ecosystem, "Ca. V. ishoeyi" contains the needed metabolic plasticity for life in an increasingly oxygenated and variable ocean.

  18. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries

    Science.gov (United States)

    Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao

    2017-07-01

    Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.

  19. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  20. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  1. Sulfur isotope evidence for the contemporary formation of pyrite in a coastal acid sulfate soil

    International Nuclear Information System (INIS)

    Bush, R.T.; Sullivan, L.A.; Prince, K.; White, I.

    2000-01-01

    The sulfur isotopic composition of pyrite (FeS 2 ), greigite (Fe 3 S 4 ) and pore-water sulfate was determined for a typical coastal acid sulfate soil (ASS). Greigite occurs only in the partially oxidised upper-most pyrite sediments as blackish clusters within vertical fissures and other macro-pores. The concentration of pyrite was an order of magnitude greater than greigite in this layer, continuing through the underlying reduced estuarine sediments. δ 34 S of pyrite (0.45 per mil) associated with greigite accumulations were distinctly different to the bulk average for pyrite (-3.7 per mil), but similar to greigite (0.9 per mil). Greigite is meta-stable under reducing conditions, readily transforming to pyrite. The transformation of iron monosulfides (including greigite) to pyrite is a sulfur-isotope conservative process and therefore, these observations indicate that pyrite is forming from greigite at the oxic/anoxic boundary

  2. Understanding chemistry behind secondary aerosol production from nitrogen and sulfur compounds from agriculture

    Science.gov (United States)

    Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...

  3. Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries

    Science.gov (United States)

    Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei

    2017-10-01

    Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.

  4. Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column.

    Science.gov (United States)

    Bertagnolli, Anthony D; Padilla, Cory C; Glass, Jennifer B; Thamdrup, Bo; Stewart, Frank J

    2017-11-01

    Marinimicrobia bacteria are widespread in subeuphotic areas of the oceans and particularly abundant in oxygen minimum zones (OMZs). Information on Marinimicrobia metabolism is sparse, making the biogeochemical influence of this group challenging to predict. Here, metagenome-assembled genomes representing Marinimicrobia subgroups PN262000N21 and ARCTIC96B-7 were retrieved to near completion (97% and 94%) from OMZ metagenomes, with contamination (14.1%) observed only in ARCTIC96B-7. Genes for aerobic carbon monoxide (CO) oxidation, polysulfide metabolism and hydrogen utilization were identified only in PN262000N21, while genes for partial denitrification occurred in both genomes. Transcripts mapping to these genomes increased from utilizing proteins, including sulfur transferases, were enriched at sulfidic depths. PN262000N21 transcripts encoding a protein with fibronectin domains similar to those in cellulosome-producing bacteria were also abundant, suggesting a potential for high molecular weight carbon cycling. These data provide omic-level descriptions of metabolic potential and activity in OMZ-associated Marinimicrobia, suggesting differentiation between subgroups with roles in carbon and dissimilatory inorganic nitrogen and sulfur cycling. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers.

    Science.gov (United States)

    Biderre-Petit, Corinne; Boucher, Delphine; Kuever, Jan; Alberic, Patrick; Jézéquel, Didier; Chebance, Brigitte; Borrel, Guillaume; Fonty, Gérard; Peyret, Pierre

    2011-02-01

    Geochemical researches at Lake Pavin, a low-sulfate-containing freshwater lake, suggest that the dominant biogeochemical processes are iron and sulfate reduction, and methanogenesis. Although the sulfur cycle is one of the main active element cycles in this lake, little is known about the sulfate-reducer and sulfur-oxidizing bacteria. The aim of this study was to assess the vertical distribution of these microbes and their diversities and to test the hypothesis suggesting that only few SRP populations are involved in dissimilatory sulfate reduction and that Epsilonproteobacteria are the likely key players in the oxidative phase of sulfur cycle by using a PCR aprA gene-based approach in comparison with a 16S rRNA gene-based analysis. The results support this hypothesis. Finally, this preliminary work points strongly the likelihood of novel metabolic processes upon the availability of sulfate and other electron acceptors.

  6. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  7. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  8. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  9. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Science.gov (United States)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  10. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    Science.gov (United States)

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A primer on sulfur for the planetary geologist

    Science.gov (United States)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  12. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  13. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  14. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    Science.gov (United States)

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  15. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment

    Directory of Open Access Journals (Sweden)

    Lijing Jiang

    2017-12-01

    Full Text Available Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7–6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C, alkaline pH (optimal pH 8.0, microaerobic conditions (optimal 4% O2, and reduced sulfur compounds (e.g., sulfide, optimal 100 μM. Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep

  17. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Yu-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Sheng-Wei [Agricultural Engineering Research Center, Chungli 320, Taiwan, ROC (China); Liu, Chen-Wuing, E-mail: lcw@gwater.agec.ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Pei-Ling [Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Maji, Sanjoy Kumar [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2011-10-15

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using {delta}{sup 34}S{sub [SO{sub 4]}} and {delta}{sup 18}O{sub [SO{sub 4]}} sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of {sup 34}S{sub [SO{sub 4]}} and {sup 18}O{sub [SO{sub 4]}} present in Type A, caused by microbial-mediated reduction of sulfate, and high {sup 18}O enrichment factor ({epsilon}{sub [SO{sub 4-H{sub 2O]}}}), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high {delta}{sup 18}O{sub [SO{sub 4]}} and low {delta}{sup 34}S{sub [SO{sub 4]}} values under mildly reducing conditions. Base on {sup 18}O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O{sub 2}, caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: {yields} Seawater intrusion and elevated As are the main issues of groundwater in Taiwan

  18. Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance.

    Science.gov (United States)

    Ghosh, Semanti; Bagchi, Angshuman

    2015-12-01

    Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio

  19. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster.

    Science.gov (United States)

    Vicente, Cláudia S L; Nascimento, Francisco X; Barbosa, Pedro; Ke, Huei-Mien; Tsai, Isheng J; Hirao, Tomonori; Cock, Peter J A; Kikuchi, Taisei; Hasegawa, Koichi; Mota, Manuel

    2016-10-01

    Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.

  20. Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Alejandro A. Murillo

    2014-07-01

    Full Text Available Sulfur-oxidizing Gamma-proteobacteria are abundant in marine oxygen-deficient waters, and appear to play a key role in a previously unrecognized cryptic sulfur cycle. Metagenomic analyses of members of the uncultured SUP05 lineage in the Canadian seasonally anoxic fjord Saanich Inlet (SI, hydrothermal plumes in the Guaymas Basin (GB and single cell genomics analysis of two ARCTIC96BD-19 representatives from the South Atlantic Sub-Tropical Gyre (SASG have shown them to be metabolically versatile. However, SI and GB SUP05 bacteria seem to be obligate chemolithoautotrophs, whereas ARCTIC96BD-19 has the genetic potential for aerobic respiration. Here, we present results of a metagenomic analysis of sulfur-oxidizing Gamma-proteobacteria (GSO, closely related to the SUP05/ARCTIC96BD-19 clade, from a coastal ecosystem in the eastern South Pacific (ESP. This ecosystem experiences seasonal anoxia and accumulation of nitrite and ammonium at depth, with a corresponding increase in the abundance of GSO representatives. The ESP-GSOs appear to have a significantly different gene complement than those from Saanich Inlet, Guaymas Basin and SASG. Genomic analyses of de novo assembled contigs indicate the presence of a complete aerobic respiratory complex based on the cytochrome bc1 oxidase. Furthermore, they appear to encode a complete TCA cycle and several transporters for dissolved organic carbon species, suggesting a mixotrophic lifestyle. Thus, the success of sulfur-oxidizing Gamma-proteobacteria in oxygen-deficient marine ecosystems appears due not only to their previously recognized anaerobic metabolic versatility, but also to their capacity to function under aerobic conditions using different carbon sources. Finally, members of ESP-GSO cluster also have the genetic potential for reducing nitrate to ammonium based on the nirBD genes, and may therefore facilitate a tighter coupling of the nitrogen and sulfur cycles in oxygen-deficient waters.

  1. 46 CFR 151.50-21 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity) (59.8...

  2. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Science.gov (United States)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  3. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  4. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  5. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  7. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  8. Quantification of Discrete Oxide and Sulfur Layers on Sulfur-Passivated InAs by XPS

    National Research Council Canada - National Science Library

    Petrovykh, D. Y; Sullivan, J. M; Whitman, L. J

    2005-01-01

    .... The S-passivated InAs(001) surface can be modeled as a sulfur-indium-arsenic layer-cake structure, such that characterization requires quantification of both arsenic oxide and sulfur layers that are at most a few monolayers thick...

  9. Sulfur and Oxygen Isotope Fractionation During Bacterial Sulfur Disproportionation Under Anaerobic Haloalkaline Conditions

    NARCIS (Netherlands)

    Poser, Alexander; Vogt, Carsten; Knöller, Kay; Sorokin, Dimitry Y.; Finster, Kai W.; Richnow, Hans H.

    2016-01-01

    Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were −0.9‰ to −1‰ for

  10. Sorbic acid interaction with sulfur dioxide in model food systems

    Energy Technology Data Exchange (ETDEWEB)

    Namor, O G

    1987-01-01

    The first chapter deals with the chemistry of sorbic acid and sulfur dioxide. The second chapter describes a study of the degradation products of sorbic acid, in aqueous systems, in the presence of sulfur dioxide and a possible mechanism for the occurrence of these products is proposed. Chapter three deals with the preparation and degradation of 6-(/sup 13/C)sorbic acid in order to find evidence for, or against, the mechanism proposed in chapter two. It also gives details of syntheses attempted in order to obtain 6- (/sup 13/C)sorbic acid. The interaction of sorbic acid and sulfur dioxide in real food systems is the subject of the fourth chapter. The food systems studied were mayonnaise, tomato puree, orange juice and cottage cheese. The effect of packaging on the rate of degradation of sorbic acid was also investigated. The final chapter deals with a microbiological study of two homologues of sorbic acid, 2,4-heptadienoic acid, 2,4-octadienoic acid. The fungicidal activity of these two compounds, towards selected fungi, was analyzed. 4-Oxobut-2-enoic acid, a degradation product of sorbic acid in aqueous systems, was also analyzed as a possible fungistat.

  11. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  12. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling

    DEFF Research Database (Denmark)

    Wasmund, Kenneth; Cooper, Myriel; Schreiber, Lars

    2016-01-01

    The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affilia......The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene...... that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi. The presence of genes encoding...... dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many...

  13. Model Prebiotic Iron-Sulfur Peptides

    Science.gov (United States)

    Bonfio, C.; Scintilla, S.; Shah, S.; Evans, D. J.; Jin, L.; Szostak, J. W.; Sasselov, D. D.; Sutherland, J. D.; Mansy, S. S.

    2017-07-01

    Iron-sulfur clusters form easily in aqueous solution in the presence of thiolates and iron ions. Polymerization of short, iron-sulfur binding tripeptide sequences leads to ferredoxin-like ligand spacing and activity.

  14. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    Science.gov (United States)

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-05-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.

  15. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  16. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.

    Science.gov (United States)

    Medenbach, Lukas; Adelhelm, Philipp

    2017-09-29

    There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium-sulfur and sodium-sulfur batteries, we also comment on recent results on potassium-sulfur and magnesium-sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

  17. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses.

    Science.gov (United States)

    Beinart, R A; Gartman, A; Sanders, J G; Luther, G W; Girguis, P R

    2015-05-07

    Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera-the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior-when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.

  18. Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    Science.gov (United States)

    Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.

    2016-01-01

    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling

  19. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  20. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  1. 21 CFR 184.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also...

  2. Dew point of gases with low sulfuric acid content

    Energy Technology Data Exchange (ETDEWEB)

    Fieg, J.

    1981-07-01

    Discusses control of air pollution caused by sulfur compounds in solid fuels during combustion. Excessive amount of oxygen during combustion leads to formation of sulfur trioxide. Sulfur trioxide reacts with water vapor and forms sulfuric acid. Chemical reactions which lead to formation of sulfuric acid are described. Conditions for sulfuric acid condensation are analyzed. Several methods for determining dew point of flue gases with low sulfuric acid content are reviewed: methods based on determination of electric conductivity of condensed sulfuric acid (Francis, Cheney, Kiyoure), method based on determination of sulfuric acid concentration in the gaseous phase and in the liquid phase after cooling (Lee, Lisle and Sensenbaugh, Ross and Goksoyr). (26 refs.) (In Polish)

  3. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  4. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis

    Science.gov (United States)

    Pfaff, Katharina; Koenig, Alan; Wenzel, Thomas; Ridley, Ian; Hildebrandt, Ludwig H.; Leach, David L.; Markl, Gregor

    2011-01-01

    Various models have been proposed to explain the formation mechanism of colloform sphalerite, but the origin is still under debate. In order to decipher influences on trace element incorporation and sulfur isotope composition, crystalline and colloform sphalerite from the carbonate-hosted Mississippi-Valley Type (MVT) deposit near Wiesloch, SW Germany, were investigated and compared to sphalerite samples from 52 hydrothermal vein-type deposits in the Schwarzwald ore district, SW Germany to study the influence of different host rocks, formation mechanisms and fluid origin on trace element incorporation. Trace and minor element incorporation in sphalerite shows some correlation to their host rock and/or origin of fluid, gangue, paragenetic minerals and precipitation mechanisms (e.g., diagenetic processes, fluid cooling or fluid mixing). Furthermore, crystalline sphalerite is generally enriched in elements like Cd, Cu, Sb and Ag compared to colloform sphalerite that mainly incorporates elements like As, Pb and Tl. In addition, sulfur isotopes are characterized by positive values for crystalline and strongly negative values for colloform sphalerite. The combination of trace element contents, typical minerals associated with colloform sphalerite from Wiesloch, sulfur isotopes and thermodynamic considerations helped to evaluate the involvement of sulfate-reducing bacteria in water-filled karst cavities. Sulfate-reducing bacteria cause a sulfide-rich environment that leads in case of a metal-rich fluid supply to a sudden oversaturation of the fluid with respect to galena, sphalerite and pyrite. This, however, exactly coincides with the observed crystallization sequence of samples involving colloform sphalerite from the Wiesloch MVT deposit.

  5. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  6. Determination of sulfur content in fuels

    International Nuclear Information System (INIS)

    Daucik, P.; Zidek, Z.; Kalab, P.

    1998-01-01

    The sulfur content in fuels, Diesel fuels, and in the solutions of dibutylsulfide in a white oil was determined by various methods. The results obtained by elemental analysis have shown that the method is not advisable for the determination of sulfur in fuels. A good agreement was found by comparing the results in the determination of the sulfur by Grote-Krekeler's and Hermann-Moritz's methods and by the energy-dispersive X-ray fluorescence analysis. The last method is the modern, comfortable, and timesaving method enabling the fast and precise determination of sulfur contents in the various types of samples. (authors)

  7. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  8. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  9. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  10. Influence of sulfurous oxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J

    1872-01-01

    It has been determined that of the trees living in an atmosphere containing sulfurous oxide, the conifers suffer more injuries than ordinary foliaged trees. Experiments were conducted to find the causes of injuries and their relation in these two kinds of plants. Pine and alder were chosen as test plants. It was found that 1000 square centimeters of pine leaves had absorbed 1.6 c.c. of sulfurous oxide and the same surface area of alder leaves had accumulated 7.9 c.c. of sulfurous oxide. Experiments were also conducted to determine the effects of sulfurous oxide on transpiration in plants. Two similar twigs of a sycamore were arranged so that the water transpired could be weighed. Results indicate that the ratio between the total amount of water transpired by the leaves not acted on by the sulfurous oxide and those under its influence was 3.8:1. The author concludes that the amount of sulfurous oxide absorbed by pine leaves is smaller than that absorbed by trees with ordinary foliage for equal surfaces. Since its effect on transpiration is less in the case of pine, the cause of the greater injury to pine trees in nature must be due to the accumulation of sulfur. In trees annual leaves the damage to one year's foliage would have only an indirect influence on that of the following year.

  11. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Directory of Open Access Journals (Sweden)

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  12. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    of isotope exchange, specific radioactivities of the reduced sulfur pools were poorly defined and could not be used to calculate their rates of formation. Such isotope exchange reactions between the reduced inorganic sulfur compounds will affect the stable isotope distribution and are expected to decrease...

  13. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renjie, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Zhao, Teng [Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tian, Tian; Fairen-Jimenez, David [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Cao, Shuai; Coxon, Paul R.; Xi, Kai, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Vasant Kumar, R.; Cheetham, Anthony K. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-12-01

    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C{sub ZIF8-D}) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C{sub ZIF8-D}) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C{sub ZIF8-D} sample, Li-S batteries with the GS-S/C{sub ZIF8-D} composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  14. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Directory of Open Access Journals (Sweden)

    Renjie Chen

    2014-12-01

    Full Text Available A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D composite for use in a cathode for a lithium sulfur (Li-S battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8, a typical zinc-containing metal organic framework (MOF, which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  15. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  16. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Complete Oxidation of Propionate, Valerate, Succinate, and Other Organic Compounds by Newly Isolated Types of Marine, Anaerobic, Mesophilic, Gram-Negative, Sulfur-Reducing Eubacteria

    Science.gov (United States)

    Finster, Kai; Bak, Friedhelm

    1993-01-01

    Anaerobic enrichment cultures with either propionate, succinate, lactate, or valerate and elemental sulfur and inocula from shallow marine or deep-sea sediments were dominated by rod-shaped motile bacteria after three transfers. By application of deep-agar dilutions, five eubacterial strains were obtained in pure culture and designated Kyprop, Gyprop, Kysw2, Gylac, and Kyval. All strains were gram negative and grew by complete oxidation of the electron donors and concomitant stoichiometric reduction of elemental sulfur to hydrogen sulfide. The isolates used acetate, propionate, succinate, lactate, pyruvate, oxaloacetate, maleate, glutamate, alanine, aspartate, and yeast extract. All isolates, except strain Gylac, used citrate as an electron donor but valerate was oxidized only by strain Kyval. Fumarate and malate were degraded by all strains without an additional electron donor or acceptor. Kyprop, Gyprop, and Gylac utilized elemental sulfur as the sole inorganic electron acceptor, while Kysw2 and Kyval also utilized nitrate, dimethyl sulfoxide, or Fe(III)-citrate as an electron acceptor. Images PMID:16348934

  18. [Bacteriophages in the battle against multidrug resistant bacteria

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Vandenbroucke-Grauls, C.

    2018-01-01

    Bacteriophages are viruses that infect bacteria. They are highly specific for a bacterial species. The so-called 'lytic phages' can lyse bacteria when they infect them; these phages can be used to treat bacterial infections. Despite a century of experience with phage therapy, the evidence for

  19. Biodesulfurization of Naphthothiophene and Benzothiophene through Selective Cleavage of Carbon-Sulfur Bonds by Rhodococcus sp. Strain WU-K2R

    Science.gov (United States)

    Kirimura, Kohtaro; Furuya, Toshiki; Sato, Rika; Ishii, Yoshitaka; Kino, Kuniki; Usami, Shoji

    2002-01-01

    Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2′-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2′-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria. PMID:12147483

  20. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  1. An examination of sulfur polymer cement as a waste encapsulation agent

    International Nuclear Information System (INIS)

    McNew, E.B.

    1995-01-01

    Sulfur polymer cement (SPC) is a unique material having potential applications for hazardous and radioactive waste encapsulation. This material was originally developed by the US Bureau of Mines as an acid and chemical resistant construction cement and has since been applied in tie waste encapsulation field. The material is easily prepared from elemental sulfur and organic dienes. It is an easy to use low-viscosity thermoplastic, and has many favorable properties such as low porosity, high compressive strength, and resistance to chemical attack. The results of several invetigations on this material will be discussed, and include: (1) the chemical form and physical structure of the material, (2) the compressive strength of cylindrical test samples after gamma radiation testing, (3) the aqueous leaching behavior of lead, cerium, cesium, cobalt, and strontium from SPC-ash mixtures at room and elevated temperatures, (4) the casting compatibility of mixtures of SPC with different waste materials, (5) the ability of SPC to encapsulate elemental mercury contaminated soils, (6) laboratory and field studies of SPC biocorrosion by Thiobacillus bacteria, (7) small scale (10 kg) SPC-ash monolith casting studies, and (8) methods for the formulation of a grade of SPC more applicable to the encapsulation of aggregate waste materials

  2. Efficient Electrolytes for Lithium–Sulfur Batteries

    International Nuclear Information System (INIS)

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  3. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  4. Efficient Electrolytes for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Angulakshmi, Natarajan [Department of Materials Science and Engineering, Politecnico di Torino, Turin (Italy); Stephan, Arul Manuel, E-mail: arulmanuel@gmail.com [Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi (India)

    2015-05-21

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  5. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu; Hu, Pengfei; Zhao, Bing

    2015-01-01

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g −1 after 50 cycles at 100 mA g −1 . • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g −1 after 50 cycles at a current density of 100 mA g −1 and reversible capacity of 517.9 mA h g −1 at 1 A g −1 . The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems

  6. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    J. Lengyel

    2017-11-01

    Full Text Available We investigate the mixed sulfuric acid–water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT calculations. The microhydration of (H2SO4m(H2On clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4m(H2OnHSO4− and (H2OnH2SO4−. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4−  ⋅  ⋅  ⋅  H3O+ formation in the neutral H2SO4(H2On clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO42(H2On this process starts as early as n ≥ 2 water molecules. The (H2SO4m(H2OnHSO4− clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4−  ⋅  ⋅  ⋅  H3O+ ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2OnH2SO4− cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid–water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid–water aerosols are discussed.

  7. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Science.gov (United States)

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  8. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    International Nuclear Information System (INIS)

    Kordoghli, Bessem; Khiari, Ramzi; Mhenni, Mohamed Farouk; Sakli, Faouzi; Belgacem, Mohamed Naceur

    2012-01-01

    Highlights: ► In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. ► The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. ► We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO 3 H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  9. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent......, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through...... reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly...

  10. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    Science.gov (United States)

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  11. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-08-01

    Full Text Available The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4 x(HSO4 x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4 (H2SO4 x] clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition

  12. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ma, Lianbo; Yuan, Hao; Zhang, Wenjun; Zhu, Guoyin; Wang, Yanrong; Hu, Yi; Zhao, Peiyang; Chen, Renpeng; Chen, Tao; Liu, Jie; Hu, Zheng; Jin, Zhong

    2017-12-13

    Lithium-sulfur (Li-S) batteries hold great promise for the applications of high energy density storage. However, the performances of Li-S batteries are restricted by the low electrical conductivity of sulfur and shuttle effect of intermediate polysulfides. Moreover, the areal loading weights of sulfur in previous studies are usually low (around 1-3 mg cm -2 ) and thus cannot fulfill the requirement for practical deployment. Herein, we report that porous-shell vanadium nitride nanobubbles (VN-NBs) can serve as an efficient sulfur host in Li-S batteries, exhibiting remarkable electrochemical performances even with ultrahigh areal sulfur loading weights (5.4-6.8 mg cm -2 ). The large inner space of VN-NBs can afford a high sulfur content and accommodate the volume expansion, and the high electrical conductivity of VN-NBs ensures the effective utilization and fast redox kinetics of polysulfides. Moreover, VN-NBs present strong chemical affinity/adsorption with polysulfides and thus can efficiently suppress the shuttle effect via both capillary confinement and chemical binding, and promote the fast conversion of polysulfides. Benefiting from the above merits, the Li-S batteries based on sulfur-filled VN-NBs cathodes with 5.4 mg cm -2 sulfur exhibit impressively high areal/specific capacity (5.81 mAh cm -2 ), superior rate capability (632 mAh g -1 at 5.0 C), and long cycling stability.

  13. Evaporite-hosted native sulfur in Trans-Pecos Texas: Relation to late-phase basin and range deformation

    International Nuclear Information System (INIS)

    Hentz, T.F.; Henry, C.D.

    1989-01-01

    Major deposits of biogenic native sulfur are associated with narrow, northeast-trending grabens and normal faults that disrupt the gently tilted, east-dipping Upper Permian evaporite succession of the western Delaware Basin in Trans-Pecos Texas. Orebodies are restricted to geologic traps in the fractured and dissolution-modified downfaulted blocks of the grabens. Other parallel, regionally distributed grabens and normal faults are commonly the sites of noncommercial sulfur deposits and genetically related secondary-replacement (diagenetic) limestone bodies. The sulfur-bearing structures probably formed during the later of two episodes of Basin and Range extension that have not previously been differentiated in Texas but are well defined elsewhere in the western United States. In Texas several lines of evidence collectively support the existence of late-phase, northwest-directed extension that was initiated in the middle Miocene

  14. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  15. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Hu, Pengfei [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Zhao, Bing, E-mail: bzhao@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2015-10-05

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g{sup −1} after 50 cycles at 100 mA g{sup −1}. • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g{sup −1} after 50 cycles at a current density of 100 mA g{sup −1} and reversible capacity of 517.9 mA h g{sup −1} at 1 A g{sup −1}. The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems.

  16. Sulfur impregnated in tunable porous N-doped carbon as sulfur cathode: effect of pore size distribution

    International Nuclear Information System (INIS)

    Wang, Sha; Zhao, Zhenxia; Xu, Hui; Deng, Yuanfu; Li, Zhong; Chen, Guohua

    2015-01-01

    Highlights: •Effects of pore size were investigated on electrochemistry for S cathode. •Activation energy of sulfur desorption from the PDA-C was estimated. •Strong interaction was formed between sulfur and porous N-doped carbon. •PDA-C@S showed good cycling performance of 608 mA h g −1 at 2 C over 300 cycles. •PDA-C@S showed good rate stability and high rate capacity. -- Abstract: A novel porous N-doped carbon microsphere (polymer-dopamine derived carbon, PDA-C) with high specific surface area was synthesized as sulfur host for high performance of lithium-sulfur batteries. We used KOH to adjust the pore size and surface area of the PDA-C materials, and then impregnated sulfur into the PDA-C samples by vapor-melting diffusion method. Effects of pore size of the PDA-C samples on the electrochemical performance of the PDA-C@sulfur cathodes were systematically investigated. Raman spectra indicated an enhanced trend of the degree of graphitization of the PDA-C samples with increasing calcination temperature. The surface area of the PDA-C samples increases with amount of the KOH in the pore-creating process. The graphitized porous N-doped carbon provides the high electronic conductive network. Meanwhile, the PDA-C with high surface area and uniform micropores ensures a high interaction toward sulfur as well as the high dispersion of nanoscale sulfur layer on it. The microporous PDA-C@S cathode material exhibits the excellent high rate discharge capability (636 mA h g −1 at 2.0 C) and good low/high-rate cycling stability (893 mA h g −1 (0.5 C) and 608 mA h g −1 (2.0 C) over 100 and 300 cycles). Cyclic voltammogram curves and electrochemical impedance plots show that both the impedance and polarization of the cells increase with decreasing pore size

  17. Sulfur containing nanoporous materials, nanoparticles, methods and applications

    Science.gov (United States)

    Archer, Lynden A.; Navaneedhakrishnan, Jayaprakash

    2018-01-30

    Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or "bulk" shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.

  18. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  19. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio.

    Science.gov (United States)

    Arshad, Arslan; Dalcin Martins, Paula; Frank, Jeroen; Jetten, Mike S M; Op den Camp, Huub J M; Welte, Cornelia U

    2017-12-01

    Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate-reducing microbial community in a laboratory-scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty-three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87-89% 16S rRNA gene identity, 52-54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Lina eRuss

    2013-08-01

    Full Text Available Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA. All clones retrieved were closely associated to the ‘Candidatus Scalindua’ genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II. Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5’-phosphosulfate (APS reductase (aprA. Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as

  1. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin.

    Science.gov (United States)

    Russ, Lina; Kartal, Boran; Op den Camp, Huub J M; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S; Jetten, Mike S M

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the "Candidatus Scalindua" genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers.

  2. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Science.gov (United States)

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  3. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  4. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  5. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  6. Reduced graphene oxide encapsulated sulfur spheres for the lithium-sulfur battery cathode

    Directory of Open Access Journals (Sweden)

    Feiyan Liu

    Full Text Available Reduced graphene oxide (rGO encapsulated sulfur spheres for the Li-S batteries were prepared via the redox reaction between sodium polysulfide. XRD spectra showed that the diffraction peak of graphite oxide (GO at 10° disappeared, while the relatively weak diffraction peak at 27° belongs to graphene emerged. FT-IR spectra showed that the vibrations of the functional groups of GO, such as 3603 cm−1, 1723 cm−1and 1619 cm−1 which contributed from OH, COC and CO respectively, disappeared when compared to the spectra of GSC. SEM observations indicated that the optimum experimental condition followed as: mass ratio of GO and S was 1:1, 10% NaOH was used to adjust the pH. EDX analysis showed that the sulfur content reached at 68.8% of the composite material. The resultant electric resistance was nearly less than GO’s resistance in three orders of magnitude under same condition. Further electrochemical performance tests showed a coulombic efficiency was 96% from the first cycle capacity was 827 mAh g−1, to 388 mAh g−1 in the 100 cycles. This study carries substantial significance to the development of Li-S battery cathode materials. Keywords: Lithium-sulfur battery, Graphene, Sulfur spheres, Cathode material

  7. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    Science.gov (United States)

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  8. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  9. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  10. Study on the Influence of Sulfur Fumigation on Chemical ...

    African Journals Online (AJOL)

    Purpose: To study the influence of different sulfur fumigation time and ... after sulfur fumigation though sulfur fumigation time and dosage were at low levels – 2 h ... Conclusion: Sulfur fumigation is not a desirable method for field processing of ...

  11. Nitrogen-doped graphene nanosheets/sulfur composite as lithium–sulfur batteries cathode

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yong [Department of Mechanical and Materials Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Li, Xifei; Sun, Xueliang [Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Chunlei, E-mail: wangc@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States)

    2016-11-15

    Highlights: • NGNSs are synthesized with amino-N and pyridine-N-oxide groups. • NGNSs provide a matrix with high surface area and conductivity. • N groups facilitate immobilization of polysulfides for Li–S batteries. - Abstract: Lithium–sulfur batteries have been receiving unprecedented attentions in recent years due to their exceptional high theoretical capacity and energy density, low cost and environmental friendliness. Yet their practical applications are still hindered by short cycle life, low efficiency and poor conductivity which are mainly caused by the insulating nature of sulfur and dissolution of polysulfides. Here, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs was employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g{sup −1} and a reversible capacity of 319.3 mAh g{sup −1} at 0.1 C with good recoverable rate capability.

  12. Amino acid composition of rumen bacteria and protozoa in cattle.

    Science.gov (United States)

    Sok, M; Ouellet, D R; Firkins, J L; Pellerin, D; Lapierre, H

    2017-07-01

    Because microbial crude protein (MCP) constitutes more than 50% of the protein digested in cattle, its AA composition is needed to adequately estimate AA supply. Our objective was to update the AA contributions of the rumen microbial AA flowing to the duodenum using only studies from cattle, differentiating between fluid-associated bacteria (FAB), particle-associated bacteria (PAB), and protozoa, based on published literature (53, 16, and 18 treatment means were used for each type of microorganism, respectively). In addition, Cys and Met reported concentrations were retained only when an adequate protection of the sulfur groups was performed before the acid hydrolysis. The total AA (or true protein) fraction represented 82.4% of CP in bacteria. For 10 AA, including 4 essential AA, the AA composition differed between protozoa and bacteria. The most noticeable differences were a 45% lower Lys concentration and 40% higher Ala concentration in bacteria than in protozoa. Differences between FAB and PAB were less pronounced than differences between bacteria and protozoa. Assuming 33% FAB, 50% PAB, and 17% of protozoa in MCP duodenal flow, the updated concentrations of AA would decrease supply estimates of Met, Thr, and Val originating from MCP and increase those of Lys and Phe by 5 to 10% compared with those calculated using the FAB composition reported previously. Therefore, inclusion of the contribution of PAB and protozoa to the duodenal MCP flow is needed to adequately estimate AA supply from microbial origin when a factorial method is used to estimate duodenal AA flow. Furthermore, acknowledging the fact that hydrolysis of 1 kg of true microbial protein yields 1.16 kg of free AA substantially increases the estimates of AA supply from MCP. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    Science.gov (United States)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  14. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic-Jurassic boundary mass extinction

    Science.gov (United States)

    Luo, Genming; Richoz, Sylvain; van de Schootbrugge, Bas; Algeo, Thomas J.; Xie, Shucheng; Ono, Shuhei; Summons, Roger E.

    2018-06-01

    The cause of the Triassic-Jurassic (Tr-J) boundary biotic crisis, one of the 'Big Five' mass extinctions of the Phanerozoic, remains controversial. In this study, we analyzed multiple sulfur-isotope compositions (δ33S, δ34S and δ36S) of pyrite and Spy/TOC ratios in two Tr-J successions (Mariental, Mingolsheim) from the European Epicontinental Seaway (EES) in order to better document ocean-redox variations during the Tr-J transition. Our results show that upper Rhaetian strata are characterized by 34S-enriched pyrite, low Spy/TOC ratios, and values of Δ33Spy (i.e., the deviation from the mass-dependent array) lower than that estimated for contemporaneous seawater sulfate, suggesting an oxic-suboxic depositional environment punctuated by brief anoxic events. The overlying Hettangian strata exhibit relatively 34S-depleted pyrite, high Δ33Spy, and Spy/TOC values, and the presence of green sulfur bacterial biomarkers indicate a shift toward to euxinic conditions. The local development of intense marine anoxia thus postdated the Tr-J mass extinction, which does not provide support for the hypothesis that euxinia was the main killing agent at the Tr-J transition. Sulfur and organic carbon isotopic records that reveal a water-depth gradient (i.e., more 34S-, 13C-depleted with depth) in combination with Spy/TOC data suggest that the earliest Jurassic EES was strongly stratified, with a chemocline located at shallow depths just below storm wave base. Shallow oceanic stratification may have been a factor for widespread deposition of black shales, a large positive shift in carbonate δ13C values, and a delay in the recovery of marine ecosystems following the Tr-J boundary crisis.

  15. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...

  16. Transformation of sulfur during pyrolysis and hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Yang, J.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1998-05-01

    It is reported that the transformation of sulfur during pyrolysis (Py) under nitrogen and hydropyrolysis (HyPy) of Chinese Yanzhou high sulfur bituminous coal and Hongmiao lignite was studied in a fixed-bed reactor. The volatile sulfur-containing products were determined by gas chromatography with flame photometric detection. The sulfur in initial coal and char (mainly aliphatic and thiophenic sulfur forms) was quantitatively analyzed using X-ray photoelectron spectroscopy (XPS). The desulfurization yield was calculated by elemental analysis. The main volatile sulfur-containing gas was H{sub 2}S in both Py and HyPy. Both the elemental analysis and XPS results indicated that more sulfur was removed in HyPy than in Py under nitrogen. Thiophenic sulfur can be partially hydrogenated and removed in HyPy. Pyrite can be reduced to a ferrous sulfide completely even as low as 400{degree}C in HyPy while in Py the reduction reaction continues up to 650{degree}C. Mineral matter can not only fix H{sub 2}S produced in Py and HyPy to form higher sulfur content chars but also catalyses the desulfurization reactions to form lower sulfur content tars in HyPy. 24 refs., 8 figs., 4 tabs.

  17. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  18. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  19. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet.

    Science.gov (United States)

    McSweeney, C S; Denman, S E

    2007-11-01

    To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.

  20. The Chicxulub event - sulfur-bearing minerals and lithologies

    Science.gov (United States)

    Strauss, H.; Deutsch, A.

    2003-04-01

    Evaporates form a major target lithology at the Chicxulub impact site. One of the postulated effects of the impact event at the Cretaceous/Tertiary boundary is the impact-induced dissociation of anhydrite to form sulfur-oxides and a solid residue; large isotope fractionation effects in sulfur should accompany this process. We have analyzed the sulfur isotope composition of (i) annealed anhydrite clasts in impact melt breccias of PEMEX core Yucatan-6 N 19, (ii) unshocked anhydrite from the CSDP well Yaxcopoil-1, which belong to the megabreccia below the suevite layer (YAX-1 1369, and 1376 m depth), and (iii) sulfide grains of hydrothermal origin in a finest-grained breccia, which transects a large limestone block of this megabreccia at a depth of 1369 m. Samples of groups (i) and (ii) yielded δ34S values between 18.0 and 19.8 ppm CDT (unweighted mean is 18.3 ppm, n=7), with one slightly lower value of 15.3 ppm for an anhydrite clast in Y-6 N19/Part 6. These data are in agreement with the δ34S value for the Late Cretaceous seawater (Strauss 1999). The δ34S obviously remained unchanged despite the fact that textural features indicate a severe annealing of the clasts in the impact melt. Sulfides of group (iii) show δ34S values around 41 ppm CDT (n=7), which are quite unusual values if these minerals are of non-biogenic origin. In contrast, δ34S for the yellow glass from the K/T boundary at Haiti range from 1.5 to 13.2 ppm (Chaussidon et al. 1996). Using this preliminary evidence, we conclude that only distant ejecta lithologies, and probably secondary material inside the crater, may display impact-related fractionation of sulfur isotopes. This observation is consistent with petrologic data, modeling results as well as of shock recovery and annealing experiments: anhydrite obviously is quite resistant to shock-related dissociation.

  1. Preparation of sulfur/multiple pore size porous carbon composite via gas-phase loading method for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Long-Yan; Chen, Yan-Xiao; Guo, Xiao-Dong; Zhong, Ben-He; Zhong, Yan-Jun

    2014-01-01

    A porous carbon with multiple pore size distribution was synthesized, and regarded as a carrier to obtain the sulfur/carbon (S/C) composite via a gas-phase loading method. We proposed this novel gas-phase loading method by using a specially designed fluid-bed reactor to encapsulate and sequester gas-phase sulfur molecules into the porous carbon in current study. The nitrogen Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) characterizations were investigated on both the porous carbon and the sulfur/carbon composite. The results show that the gas-phase loading method contributes to the combination of sulfur molecules and matrix porous carbon. Furthermore, the sulfur/multiple pore size distribution carbon composite based on the gas-phase loading method demonstrate an excellent electrochemical property. The initial specific discharge capacity is 795.0 mAh g −1 at 800 mA g −1 , with a capacity retention of 86.3% after 100 cycles

  2. Phylogenetic evidence of noteworthy microflora from the subsurface of the former Homestake gold mine, Lead, South Dakota

    Science.gov (United States)

    Waddell, Evan J.; Elliott, Terran J.; Sani, Rajesh K.; Vahrenkamp, Jefferey M.; Roggenthen, William M.; Anderson, Cynthia M.; Bang, Sookie S.

    2013-01-01

    Molecular characterization of subsurface microbial communities in the former Homestake gold mine, South Dakota, was carried out by 16S rDNA sequence analysis using a water sample and a weathered soil–like sample. Geochemical analyses indicated that both samples were high in sulfur, rich in nitrogen and salt, but with significantly different metal concentrations. Microbial diversity comparisons unexpectedly revealed three distinct operational taxonomic units (OTUs) belonging to the archaeal phylum Thaumarchaeota typically identified from marine environments, and one OTU to a potentially novel phylum that falls sister to Thaumarchaeota. To our knowledge this is only the second report of Thaumarchaeota in a terrestrial environment. The majority of the clones from Archaea sequence libraries fell into two closely related OTUs and grouped most closely to an ammonia–oxidizing, carbon–fixing and halophilic thaumarchaeote genus, Nitrosopumilus. The two samples showed neither Euryarchaeota nor Crenarchaeota members that were often identified from other subsurface terrestrial ecosystems. Bacteria OTUs containing the highest percentage of sequences were related to sulfur-oxidizing bacteria of the orders Chromatiales and Thiotrichales. Community members of Bacteria from individual Homestake ecosystems were heterogeneous and distinctive to each community with unique phylotypes identified within each sample. PMID:20662386

  3. Current status and emerging role of glutathione in food grade lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Pophaly Sarang

    2012-08-01

    Full Text Available Abstract Lactic acid bacteria (LAB have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms.

  4. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  5. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  6. Annotated bibliography of methods for determining sulfur and forms of sulfur in coal and coal-related materials

    Energy Technology Data Exchange (ETDEWEB)

    Chriswell, C.D.; Norton, G.A.; Akhtar, S.S.; Straszheim, W.E.; Markuszewski, R.

    1993-01-01

    Over 400 published papers, presentations at scientific meetings, and reports relating to the determination of sulfur and sulfur forms in coal-related materials have been accumulated, classified, and an evaluation made of their content.

  7. Relationship between corrosion and the biological sulfur cycle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Little, B.J.; Ray, R.I.; Pope, R.K.

    2000-04-01

    Sulfur and sulfur compounds can produce pitting, crevice corrosion, dealloying, stress corrosion cracking, and stress-oriented hydrogen-induced cracking of susceptible metals and alloys. Even though the metabolic by-products of the biological sulfur cycle are extremely corrosive, there are no correlations between numbers and types of sulfur-related organisms and the probability or rate of corrosion, Determination of specific mechanisms for corrosion caused by microbiologically mediated oxidation and reduction of sulfur and sulfur compounds is complicated by the variety of potential metabolic-energy sources and by-products; the coexistence of reduced and oxidized sulfur species; competing reactions with inorganic and organic compounds; and the versatility and adaptability of microorganisms in biofilms. The microbial ecology of sulfur-rich environments is poorly understood because of the association of aerobes and anaerobes and the mutualism or succession of heterotrophs to autotrophs. The physical scale over which the sulfur cycle influences corrosion varies with the environment. The complete sulfur cycle of oxidation and reduction reactions can take place in macroenvironments, including sewers and polluted harbors, or within the microenvironment of biofilms. In this review, reactions of sulfur and sulfur compounds resulting in corrosion were discussed in the context of environmental processes important to corrosion.

  8. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  9. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Yuan, Lixia; Yi, Ziqi; Liu, Yang; Xin, Ying; Zhang, Zhaoliang; Huang, Yunhui

    2014-01-01

    Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG), i.e. MWCNTs@S/NPC@PEG nanocable, as a cathode material for Li-S batteries. In such a coaxial structure, the middle N-doped carbon with hierarchical porous structure provides a nanosized capsule to contain and hold the sulfur particles; the inner MWCNTs and the outer PEG layer can further ensure the fast electronic transport and prevent the dissolution of the polysulfides into the electrolyte, respectively. The as-designed MWCNT@S/NPC@PEG composite shows good cycling stability and excellent rate capability. The capacity is retained at 527 mA h g(-1) at 1 C after 100 cycles, and 791 mA h g(-1) at 0.5 C and 551 mA h g(-1) at 2 C after 50 cycles. Especially, the high-rate capability is outstanding with 400 mA h g(-1) at 5 C.

  10. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kordoghli, Bessem [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Khiari, Ramzi, E-mail: khiari_ramzi2000@yahoo.fr [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France); Mhenni, Mohamed Farouk [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Sakli, Faouzi [Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Belgacem, Mohamed Naceur [LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. Black-Right-Pointing-Pointer The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. Black-Right-Pointing-Pointer We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO{sub 3}H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  11. Sulfur isotope signatures in New Zealand

    International Nuclear Information System (INIS)

    Cainey, J.

    2001-01-01

    The role of sulfur in cloud formation makes it a crucial ingredient in the global climate change debate. So it is important to be able to measure sulfur in the atmosphere and identify where it came from. (author)

  12. Carbon/Sulfur Composite Cathodes for Flexible Lithium/Sulfur Batteries: Status and Prospects

    International Nuclear Information System (INIS)

    Zhao, Yan; Zhang, Yongguang; Bakenova, Zagipa; Bakenov, Zhumabay

    2015-01-01

    High specific energy and low cost flexible lithium/sulfur batteries have attracted significant attention as a promising power source to enable future flexible and wearable electronic devices. Here, we review recent progress in the development of free-standing sulfur composite cathodes, with special emphasis on electrode material selectivity and battery structural design. The mini-review is organized based on the dimensionality of different scaffold materials, namely one-dimensional carbon nanotube (CNT), two-dimensional graphene, and three-dimensional CNT/graphene composite, respectively. Finally, the opportunities and perspectives of the future research directions are discussed.

  13. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Barchasz, Céline; Leprêtre, Jean-Claude; Patoux, Sébastien; Alloin, Fannie

    2013-01-01

    Highlights: ► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. -- Abstract: The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g −1 . However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation

  14. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  15. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  16. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar

    2016-05-01

    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is

  17. Sulfur K-edge absorption spectroscopy on selected biological systems

    International Nuclear Information System (INIS)

    Lichtenberg, Henning

    2008-07-01

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H 2 S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  18. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  19. X-ray photoelectron spectroscopic evidence for bacteria-enhanced dissolution of hornblende

    Science.gov (United States)

    Kalinowski, B. E.; Liermann, L. J.; Brantley, S. L.; Barnes, A.; Pantano, C. G.

    2000-04-01

    An Arthrobacter species capable of extracting Fe from hornblende was isolated from a soil from the Adirondacks, NY (USA). This bacteria isolate, used in batch experiments with hornblende, accelerated the release of Fe from hornblende without measurably affecting Al release. The isolate produces both low molecular weight organic acids (LMWOA) and a catecholate siderophore. Polished hornblende (glass and crystal) discs were analyzed with X-ray photoelectron spectroscopy (XPS) before and after incubation with growing Arthrobacter sp. to investigate whether the bacteria caused a distinguishable chemical signature on the upper 100 Å of mineral surface. After removal of the arthrobacter grown on hornblende crystal or glass substrates using lysozyme, XPS revealed surface depletion of Fe for samples grown for several days in buffered (crystal) and unbuffered (crystal and glass) media. Fe/Si ratios of hornblende surfaces dissolved under biotic conditions are significantly lower than Fe/Si ratios on surfaces dissolved under abiotic conditions for similar amounts of time. Enhanced Fe release and the formation of Fe-depleted surfaces is inferred to be caused by catechol complexation at the mineral surface. Because natural siderophore was not isolated in sufficient quantities to run bacteria-free leaching experiments, parallel investigations were run with a commercially available siderophore (desferrioxamine B). Desferrioxamine B was observed to enhance release of Fe, Si, and Al from hornblende both with and without added bacteria. Formation of desferrioxamine-Fe surface complexes were probed by studying the multiple splitting and shift in intensities of the N 1s line analyzed by XPS on siderophore ± Fe on gold surfaces and siderophore + hornblende crystal surfaces. Based upon the observed formation of an hydroxamate (desferrioxamine) surface complex on hornblende, we infer that catecholate siderophores, such as those produced by the arthrobacter, also complex on the

  20. Use of sulfur concrete for radioecological problems solution in Kazakhstan

    International Nuclear Information System (INIS)

    Takibaev, Zh.; Belyashov, D.; Vagin, S.

    2001-01-01

    At present during intensive development of oil and gas fields in Kazakhstan a lot amount of sulfur is extracting. The problem of sulfur utilization demands its immediate solution. One of the perspective trends of sulfur utilization is use it in production of sulfur polymer concrete. It is well known, that encapsulation of low level radioactive and toxic wastes in sulfur polymer concrete and design from it radiation protection facilities have good perspectives for solution of radioecological problems. Sulfur concrete has high corrosion and radiation stability, improved mechanical and chemical properties. Unique properties of sulfur concrete allow to use it in materials ensuring protection from external irradiation

  1. Sulfur and Its Role In Modern Materials Science.

    Science.gov (United States)

    Boyd, Darryl A

    2016-12-12

    Although well-known and studied for centuries, sulfur continues to be at the center of an extensive array of scientific research topics. As one of the most abundant elements in the Universe, a major by-product of oil refinery processes, and as a common reaction site within biological systems, research involving sulfur is both broad in scope and incredibly important to our daily lives. Indeed, there has been renewed interest in sulfur-based reactions in just the past ten years. Sulfur research spans the spectrum of topics within the physical sciences including research on improving energy efficiency, environmentally friendly uses for oil refinery waste products, development of polymers with unique optical and mechanical properties, and materials produced for biological applications. This Review focuses on some of the latest exciting ways in which sulfur and sulfur-based reactions are being utilized to produce materials for application in energy, environmental, and other practical areas. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  3. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  4. Neoproterozoic sulfur-isotope variation in Australia

    International Nuclear Information System (INIS)

    Gorjan, P.; Walter, M.R.

    2000-01-01

    A number of stages are apparent in sulfur-isotope geochemistry throughout the Neoproterozoic. Prior to the Sturtian glaciation (840-700 Ma) δ 34 S sulfate varied little (19 to 17.5 per mil), and δ 34 S sulfide ranged from -20 to +23 per mil. In the Bitter Springs Formation δ 34 S sulfide is greater in the non-marine portion compared to the marine portion. This can be explained by a paucity of sulfate in the non-marine waters, and is consistent with mineralogical evidence (Southgate, 1991). In the Sturtian glacial sediments δ 34 S sulfide starts below 0 per mil and rises to >30 per mil at the top of the glacial sediments. After the Sturtian glaciation δ 34 S sulfide averages ∼30 per mil (and 34 per mil for δ 34 S organic ) for the extent of silt deposition. This increase in δ 34 S sulfide also appears in China, Canada and Namibia (Gorjan et al., 2000). δ 34 S sulfate also rises but is lower than the average δ 34 S sulfate (5 sulfate nodules in the Tapley Hill Formation average 26 per mil). However, the sulfate nodules may not be preserving the original seawater δ 34 S sulfate 34 S enrichment in sulfides usually occurs in freshwater or euxinic settings, but all evidence points to a sulfate-rich and non-euxinic environment in the Sturtian post-glacial deposits (linear %C vs. %S plots; high FeS 2 :FeS ratios; low degree of pyritisation; Gorjan et al. 2000, Gorjan, 1998). Such a situation points to sulfides being formed from extremely 34 S enriched sulfate (perhaps up to 45 per mil). This global rise in δ 34 S of both sulfur fractions in the Sturtian postglacial has led us to speculate that 34 S enriched sulfate was formed beneath a stagnant, ice-covered ocean, an environment postulated by Hoffman (1998), during the Sturtian glaciation and was brought to shallower waters in an ocean-upwelling event. Sulfide depleted in 34 S may have been deposited on abyssal plains. δ 34 S sulfide and δ 34 S sulfate falls sharply at the conclusion of siltstone deposition

  5. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  6. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  7. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    Science.gov (United States)

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  8. Prebiotics mitigate in vitro sulfur-containing odour generation in caecal content of pigs

    Directory of Open Access Journals (Sweden)

    Yuan Fan Deng

    2015-03-01

    Full Text Available The objective of this study was to examine the effects and role of prebiotics, such as inulin, fructo-oligosaccharides (FOS and galactooligosaccharides (GAS, to mitigate sulfur-containing odour gases, hydrogen sulfide (H2S and methyl mercaptan (CH3SH using pigs as in vitro study model. Inocula obtained from pigs were incubated at 39°C for 24 h using 550 mg sterilised substrate (caecal contents supplemented with or without 50 mg prebiotics. Production of total gas, H2S and CH3SH were determined. The results showed that total gas production for the caecal content of pigs was 57.3 mL, and that for H2S and CH3SH was 220.2 and 15.2 μL, respectively. The total gas production increased (P<0.05, whereas concentrations of H2S and CH3SH decreased (P<0.05 with supplementation of prebiotics. Among the prebiotics, inulin was the most effective in mitigating H2S and CH3SH productions, reducing the two malodorous gases by 14.7 and 19.8%, respectively. The reduction of the above two sulfur- containing gases was supported by lower sulfate-reducing bacteria population and higher sulfate radical concentrations in the prebiotics, particularly that of inulin supplementation group.

  9. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  10. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    Science.gov (United States)

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  11. Identifying parameter windows for sulfur removal by direct limestone injection in the rich zone of staged heat engine combustors

    International Nuclear Information System (INIS)

    Colaluca, M.A.

    1990-01-01

    Recent experimental evidence suggests the possibility of sulfur cleanup by direct injection at gas temperatures that do not thermodynamically favor the absorption of sulfur by the limestone. The purpose of this paper is to analytically investigate possible mechanistic explanations of this observed sulfur capture with the goal of evaluating the potential for limestone injection sulfur capture in direct coal fired gas turbine and diesel engine (heat engines) combustion applications. The method was to use current available data on the physical properties of limestone, and the rates of the pertinent reactions, and to develop mathematical models of the processes experienced by the sorbent particles. The models were then used to predict extent of capture at the high-pressure, high-temperature, short residence time conditions of interest. The goal was to first investigate capture in a single-pulse reactor (combustion bomb) and then to extrapolate these results to advanced coal-fired heat engine combustion environments. Model predictions were in good agreement with observed sulfur capture in cold wall combustion bomb studies and suggest that efficient sulfur capture (in excess of 80 percent calcium utilization) may b e possible when limestone sorbents are injected into high-temperature combustion products, even when the gas temperatures exceed the thermodynamically favored temperature window by several hundred kelvins. This behavior is possible because particle temperatures are moderated and held at levels that favor sulfur capture due to the strongly endothermic calcination reaction

  12. Sulfur in zircons: A new window into melt chemistry

    Science.gov (United States)

    Tang, H.; Bell, E. A.; Boehnke, P.; Barboni, M.; Harrison, T. M.

    2017-12-01

    The abundance and isotopic composition of sulfur are important tools for exploring the photochemistry of the atmosphere, the thermal history of mantle and igneous rocks, and ancient metabolic processes on the early Earth. Because the oldest terrestrial samples are zircons, we developed a new in-situ procedure to analyze the sulfur content of zircons using the CAMECA ims 1290 at UCLA. We analyzed zircons from three metaluminous/I-type granites (reduced and oxidized Peninsular range and Elba), which exhibit low sulfur abundance with the average of 0.5ppm, and one peraluminous/S-type zircon (Strathbogie Range), which shows an elevated sulfur level with the average of 1.5ppm. Additionally, we found that sulfur content ranges between 0.4 and 2.3 ppm in young volcanic zircons (St. Lucia). Our analyses of zircons from the Jack Hills, Western Australia, whose ages range between 3.4 and 4.1 Ga, show a variety of sulfur contents. Three out of the ten zircons are consistent with the sulfur contents of S-type zircons; the rest have low sulfur contents, which are similar to those of I-type zircons. The high sulfur content in some of these Jack Hills zircons can be interpreted as indicating their origin in either a S-type granite or a volcanic reservoir. We favor the former interpretation since the Ti-in-zircon temperatures of our Jack Hills zircons is lower than those of volcanic zircons. Future work will be undertaken to develop a systematic understanding of the relationship between melt volatile content, melt chemistry, and zircon sulfur content.

  13. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  14. Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies

    International Nuclear Information System (INIS)

    Ganesan, Aswathi; Varzi, Alberto; Passerini, Stefano; Shaijumon, Manikoth M.

    2016-01-01

    Highlights: • Graphene-derived carbon (GDC) with distinctive porosity characteristics are prepared. • Effect of micro-/mesoporosity of GDC for improved Li-S battery performance is studied. • Impedance studies reveal insights into Li-S redox reactions and capacity fading phenomena. - Abstract: Sulfur nanocomposites are prepared by using graphene derived carbon (GDC), with controlled porosity characteristics, as confining matrix and are studied as efficient cathodes for lithium-sulfur (Li-S) batteries. To understand the effect of micro-/mesoporosity in porous carbon for the effective encapsulation of sulfur and polysulfides towards improved Li-S battery performance, two different GDC samples with controlled porosity characteristics, one with predominantly micropores (GDC-1) and a surface area of 1970 m 2 g −1 and the other with a surface area of 3239 m 2 g −1 , having more or less equal contribution of micro- and mesopores (GDC-2), are used to synthesize nanocomposite sulfur electrodes following melt diffusion process. Electrochemical studies are carried out by using cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). EIS spectra collected at different depth of discharge (DOD) in the first cycle as well as upon cycling give valuable insights into the Li-S redox reactions and capacity fading phenomena in these electrodes. The impedance response of GDC-S electrodes suggests a detrimental effect of the mesopores, where insoluble reaction products can easily accumulate, resulting in the loss of active material leading to capacity fading of Li-S cells.

  15. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines

    Directory of Open Access Journals (Sweden)

    Renxing eLiang

    2014-03-01

    Full Text Available Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55 oC. Most-probable number (MPN analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy, while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  16. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  17. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  18. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  19. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  20. Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    An, Yanling; Wei, Pan; Fan, Meiqiang, E-mail: fanmeiqiang@126.com; Chen, Da; Chen, Haichao; Ju, QiangJian; Tian, Guanglei; Shu, Kangying

    2016-07-01

    Highlights: • A dual core-shell hPANI/S/PANI composite was prepared in situ synthesis. • Cycle performance of the hPANI/S/PANI composite was enhanced. • The improvement was due to fine sulfur particles wrapped by two PANI films. • Some positive effects were elaborated. - Abstract: In this study, a dual-shell hollow polyaniline/sulfur-core/polyaniline (hPANI/S/PANI) composite was prepared by successively depositing PANI, S, and PANI on the surface of a template silicon sphere. The electrochemical properties of this composite were evaluated using a lithium plate as an anode in lithium/sulfur cells. The hPANI/S/PANI composite showed a discharge capacity of 572.2 mAh g{sup −1} after 214 cycles at 0.1 C, and the Coulombic efficiency was above 87% in the whole charge/discharge cycle. The improved cycle property of the hPANI/S/PANI composite can be ascribed to the fine sulfur particles homogeneously deposited on the PANI surface and sprawled inside the two PANI layers during the charge/discharge cycle. This behavior stabilized the nanostructure of sulfur and enhanced its conductivity.

  1. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  2. Sulfur sources in protein supplements for ruminants

    Directory of Open Access Journals (Sweden)

    Cássio José da Silva

    2014-10-01

    Full Text Available The present study evaluates the efficiency of different sulfur sources for ruminant nutrition. The fiber digestibility and the amino acid profile were analyzed in the duodenal digesta of crossbred steers fed Brachiaria dictyoneurahay. The sources utilized were elemental sulfur (ES70S, elemental sulfur (ES98S; calcium sulfate in hydrated (HCS, CaSO4.2H2O, and anhydrous (ACS, CaSO4, forms; and ammonium sulfate (AS, (NH42SO4, keeping a nitrogen:sulfur ratio of 11:1. The iso-protein supplements had 50% of protein in the total dry matter (DM. Five Holstein × Zebu steers, which were fistulated in the rumen and abomasum, were distributed in a 5 × 5 Latin square. The different sulfur sources in the supplement did not affect any of the evaluated nutritional factors, such as intake of hay dry matter and protein supplement, crude protein (CP, neutral detergent fiber corrected for ash and protein (NDFap, organic matter (OM, non-fibrous carbohydrate (NFC, ether extract (EE, total digestible nutrients (TDN, NDFap and CP digestibility coefficients, ruminal pH, and ruminal ammonia concentration. The concentrations of amino acids available in the abomasal digesta did not differ significantly in the tested diets. The sulfur sources evaluated in the present study are suitable as supplement for cattle, and their employment may be important to avoid environmental contaminations.

  3. Sub-aqueous sulfur volcanos at Waiotapu, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, S.; Rickard, D. [University of Wales, Cardiff (United Kingdom). Dept. of Earth Sciences; Browne, P.; Simmons, S. [University of Auckland (New Zealand). Geothermal Institute and Geology Dept.; Jull, T. [University of Arizona, Tucson (United States). AMS Facility

    1999-12-01

    Exhumed, sub-aqueous sulfur mounds occur in the Waiotapu geothermal area, New Zealand. The extinct mounds are < 2 m high and composed of small (< 0.5 cm) hollow spheres, and occasional teardrop-shaped globules. They are located within a drained valley that until recently was connected to Lake Whangioterangi. They were formed a maximum of 820 {+-} 80 years BP as a result of the rapid sub-aqueous deposition of sulfur globules, formed when fumarolic gases discharged through molten sulfur pools. Similar globules are now being formed by the discharge of fumarolic gases through a sub-aqueous molten sulfur pool in Lake Whangioterangi. (author)

  4. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-01-01

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc -1 .

  5. The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-junctions to Sea Urchin?like Structures

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Romo Herrera, Jose M [ORNL; Cruz Silva, Eduardo [ORNL; Meunier, Vincent [ORNL; Terrones Maldonado, Humberto [ORNL; Smith, David J [Arizona State University; Cullen, David A [Arizona State University; Terrones Maldonado, Mauricio [ORNL

    2009-01-01

    In this paper we show how sulfur-assisted CVD synthesis of carbon nanostructures is very sensitive to local conditions (such as the local amount of S or the feeding rate) during chemical reaction. Sulfur not only acts on the catalyst but also on its diffusion and incorporation into the resulting carbon nanostructure. A detailed synthesis study with extensive analytical and microscopy evidence for a wide range of morphologies reveals the presence of sulfur in the metallic catalyst and even in the carbon body of nanostructures obtained under the same CVD conditions. These drastic changes can be correlated to carrier gas flux, sulfur content, temperature and catalyst composition. Five different types of covalent Y-junctions ranging from Y-junctions with arms of micrometers in diameter, Y-junctions of cone-stacked carbon cylinders to concentric cylinders multi-walled CNTs Y-junctions can be obtained. In addition, unique sea urchin shaped nanostructures are observed under specific synthesis conditions.

  6. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  7. Environmental behavior and analysis of agricultural sulfur.

    Science.gov (United States)

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. © 2015 Society of Chemical Industry.

  8. Purification of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Saavedra, Lucila; Castellano, Patricia; Sesma, Fernando

    2004-01-01

    Bacteriocins are antibacterial substances of a proteinaceous nature that are produced by different bacterial species. Lactic acid bacteria (LAB) produce biologically active peptides or protein complexes that display a bactericidal mode of action almost exclusively toward Gram-positive bacteria and particularly toward closely related species. Generally they are active against food spoilage and foodborne pathogenic microorganisms including Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. There is an increased tendency to use natural occurring metabolites to prevent the growth of undesirable flora in foodstuffs. These metabolites could replace the use of chemical additives such as sorbic acid, sulfur dioxide, nitrite, nitrate, and others. For instance, bacteriocins produced by LAB may be promising for use as bio-preservaties. Bacteriocins of lactic acid bacteria are typically cationic, hydrophobic peptides and differ widely in many characteristics including molecular weight, presence of particular groups of amino acids, pI, net positive charge, and post-translational modifications of certain amino acids. This heterogeneity within the LAB bacteriocins may explain the different procedures for isolation and purification developed so far. The methods most frequently used for isolation, concentration, and purification involve salt precipitation of bacteriocins from culture supernatants, followed by various combinations of gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). In this chapter, a protocol is described that combines several methods used in our laboratory for the purification of two cationic bacteriocins, Lactocin 705AL and Enterocin CRL10, produced by Lactobacillus casei CRL705 and Enterococcus mundtii CRL10, respectively.

  9. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium

  10. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  11. New uses of sulfur - update

    Energy Technology Data Exchange (ETDEWEB)

    Almond, K.P.

    1995-07-01

    An update to an extensive bibliography on alternate uses of sulfur was presented. Alberta Sulphur Research Ltd., previously compiled a bibliography in volume 24 of this quarterly bulletin. This update provides an additional 44 new publications. The information regarding current research focusses on topics regarding the use of sulfur in oil and gas applications, mining and metallurgy, concretes and other structural materials, waste management, rubber and textile products, asphalts and other paving and highway applications.

  12. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  13. The Quantitation of Sulfur Mustard By-Products, Sulfur-Containing Herbicides, and Organophosphonates in Soil and Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.A., Sega, G.A. [Oak Ridge National Lab., TN (United States)], Macnaughton, S.J. [Microbial Insights, Inc., Rockford, TN (United States)

    1997-12-31

    Over the past fifty years, the facilities at Rocky Mountain Arsenal have been used for the manufacturing, bottling, and shipping sulfur- containing herbicides, sulfur mustard, and Sarin. There is a need for analytical methods capable of determining these constituents quickly to determine exactly how specific waste structural materials should be handled, treated, and landfilled.These species are extracted rapidly from heated samples of soil or crushed concrete using acetonitrile at elevated pressure, then analyzed using a gas chromatograph equipped with a flame photometric detector. Thiodiglycol, the major hydrolysis product of sulfur mustard, must be converted to a silylated derivative prior to quantitation. Detection limits, calculated using two statistically-unbiased protocols, ranged between 2-13 micrograms analyte/g soil or concrete.

  14. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  15. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  16. Effects of elemental sulfur and sulfur-containing waste on nutrient ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... grown twice on the same soils to determine initial and residual effects of applied S. Results showed that applications of ... Key words: Calcareous soil, plant growth, plant nutrition, sulfur application. ...... Colombia. Can. J. Soil ...

  17. Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices.

    Science.gov (United States)

    Luong, J; Gras, R; Shellie, R A; Cortes, H J

    2013-07-05

    The detection of sulfur compounds in different hydrocarbon matrices, from light hydrocarbon feedstocks to medium synthetic crude oil feeds provides meaningful information for optimization of refining processes as well as demonstration of compliance with petroleum product specifications. With the incorporation of planar microfluidic devices in a novel chromatographic configuration, sulfur compounds from hydrogen sulfide to alkyl dibenzothiophenes and heavier distributions of sulfur compounds over a wide range of matrices spanning across a boiling point range of more than 650°C can be characterized, using one single analytical configuration in less than 25min. In tandem with a sulfur chemiluminescence detector for sulfur analysis is a flame ionization detector. The flame ionization detector can be used to establish the boiling point range of the sulfur compounds in various hydrocarbon fractions for elemental specific simulated distillation analysis as well as profiling the hydrocarbon matrices for process optimization. Repeatability of less than 3% RSD (n=20) over a range of 0.5-1000 parts per million (v/v) was obtained with a limit of detection of 50 parts per billion and a linear range of 0.5-1000 parts per million with a correlation co-efficient of 0.998. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effects of sulfur dioxide pollution on bark epiphytes

    Energy Technology Data Exchange (ETDEWEB)

    Coker, P D

    1967-01-01

    The destructive effects of sulfur dioxide pollution on epiphytic bryophytes is seen to be due to chlorophyll degradation and the impairment of cell structure and function through plasmolysis. Morphological changes noted by Pearson and Skye (1965) in lichens were not seen, although stunting and infertility are evident in epiphyte remnants in polluted areas. The investigation of the ion exchange and buffer capacities of sycamore bark indicates a loss of both in approximate proportion to the degree of pollution. Smoke and aerosol particles are not considered to be of particular importance at the present time although they may well have been important in the past.

  19. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Environmental aspects of the combustion of sulfur-bearing fuels

    International Nuclear Information System (INIS)

    Manowitz, B.; Lipfert, F.W.

    1990-01-01

    This paper describes the origins of sulfur in fossil fuels and the consequences of its release into the environment after combustion, with emphasis on the United States. Typical sulfur contents of fuels are given, together with fuel uses and the resulting air concentrations of sulfur air pollutants. Atmospheric transformation and pollutant removal processes are described, as they affect the pathways of sulfur through the environment. The environmental effects discussed include impacts on human health, degradation of materials, acidification of ecosystems, and effects on vegetation and atmospheric visibility. The paper concludes with a recommendation for the use of risk assessment to assess the need for regulations which may require the removal of sulfur from fuels or their combustion products

  1. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels

    Directory of Open Access Journals (Sweden)

    Kanokwan Mukkata

    2016-07-01

    Full Text Available This research aimed to study the diversity of purple nonsulfur bacteria (PNSB and to investigate the effect of Hg concentrations in shrimp ponds on PNSB diversity. Amplification of the pufM gene was detected in 13 and 10 samples of water and sediment collected from 16 shrimp ponds in Southern Thailand. In addition to PNSB, other anoxygenic phototrophic bacteria (APB were also observed; purple sulfur bacteria (PSB and aerobic anoxygenic phototrophic bacteria (AAPB although most of them could not be identified. Among identified groups; AAPB, PSB and PNSB in the samples of water and sediment were 25.71, 11.43 and 8.57%; and 27.78, 11.11 and 22.22%, respectively. In both sample types, Roseobacter denitrificans (AAPB was the most dominant species followed by Halorhodospira halophila (PSB. In addition two genera, observed most frequently in the sediment samples were a group of PNSB (Rhodovulum kholense, Rhodospirillum centenum and Rhodobium marinum. The UPGMA dendrograms showed 7 and 6 clustered groups in the water and sediment samples, respectively. There was no relationship between the clustered groups and the total Hg (HgT concentrations in the water and sediment samples used (<0.002–0.03 μg/L and 35.40–391.60 μg/kg dry weight for studying the biodiversity. It can be concluded that there was no effect of the various Hg levels on the diversity of detected APB species; particularly the PNSB in the shrimp ponds.

  2. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Science.gov (United States)

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  3. Digestion of Bangka monazite with sulfuric acid

    International Nuclear Information System (INIS)

    Riesna Prassanti

    2012-01-01

    Technology of Bangka monazite processing with alkaline method has been mastered by PPGN BATAN with the product in the form of RE (Rare Earth) which is contain U < 2 ppm and Th 12 - 16 ppm. Hence, as comparator, the research of Bangka monazite processing with acid method using sulfuric acid has been done. The aim of this research is to obtain the optimal condition of Bangka monazite's digestion using sulfuric acid so that all elements contained in the monazite that are U, Th, RE, PO 4 dissolved as much as possible. The research parameter's arc monazite particle's size, sulfuric acid consumption (weight ratio of monazite ore : sulfuric acid), digestion temperature, digestion time and consumption of wash water. The results showed that the optimal conditions of digestion are 250+ 325 mesh of monazite particle's size, 1 : 2.5 of weight ratio of monazite ore: sulfuric acid, 190°C of digestion temperature, 3 hours of digestion time and 8 times of weight monazite's feed of wash water with the recovery of digested U = 99.90 %, Th = 99.44 %, RE = 98.64 % and PO 4 = 99.88 %. (author)

  4. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  6. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de, E-mail: margaretha.deloos@ugent.be [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands); Ghent University, Department of Analytical Chemistry, Krijgslaan 281 - S12, 9000 Ghent (Belgium); Mora, Juan, E-mail: juan.mora@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain)

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w{sup −1}) have been compared with the corresponding signals for a 1% w w{sup −1−} nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for {sup 128}Te{sup +}, {sup 78}Se{sup +} and {sup 75}As{sup +} were significantly higher when using sulfuric acid matrices (up to 2.2-fold for {sup 128}Te{sup +} and {sup 78}Se{sup +} and 1.8-fold for {sup 75}As{sup +} in the presence of 5 w w{sup -1} sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for {sup 31}P{sup +} is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for {sup 128}Te{sup +}, {sup 78}Se{sup +}, {sup 75}As{sup +} and {sup 31}P{sup +} are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S{sup +} species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These

  8. Resistance of Bacteria to Biocides.

    Science.gov (United States)

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  9. Design and cost of the sulfuric acid decomposition reactor for the sulfur based hydrogen processes - HTR2008-58009

    International Nuclear Information System (INIS)

    Hu, T. Y.; Connolly, S. M.; Lahoda, E. J.; Kriel, W.

    2008-01-01

    The key interface component between the reactor and chemical systems for the sulfuric acid based processes to make hydrogen is the sulfuric acid decomposition reactor. The materials issues for the decomposition reactor are severe since sulfuric acid must be heated, vaporized and decomposed. SiC has been identified and proven by others to be an acceptable material. However, SiC has a significant design issue when it must be interfaced with metals for connection to the remainder of the process. Westinghouse has developed a design utilizing SiC for the high temperature portions of the reactor that are in contact with the sulfuric acid and polymeric coated steel for low temperature portions. This design is expected to have a reasonable cost for an operating lifetime of 20 years. It can be readily maintained in the field, and is transportable by truck (maximum OD is 4.5 meters). This paper summarizes the detailed engineering design of the Westinghouse Decomposition Reactor and the decomposition reactor's capital cost. (authors)

  10. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these

  11. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for...

  12. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  13. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass.

    Science.gov (United States)

    Wright, Katherine E; Williamson, Charles; Grasby, Stephen E; Spear, John R; Templeton, Alexis S

    2013-01-01

    We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S(0)) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and [Formula: see text] oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S(0) was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and [Formula: see text] oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for [Formula: see text] oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic

  14. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass

    Directory of Open Access Journals (Sweden)

    Katherine E Wright

    2013-04-01

    Full Text Available We combined free energy calculations and metagenomic analyses of an elemental sulfur (S0 deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification or nitrite (anammox. The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-hour sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can

  15. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  16. Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia

    Science.gov (United States)

    Arndt, Richard L.; Carmichael, Gregory R.; Streets, David G.; Bhatti, Neeloo

    Anthropogenic and volcanic emissions of SO 2 in Asia for 1987-1988 are estimated on a 1° × 1° grid. Anthropogenic sources are estimated to be 31.6 Tg of SO 2 with the regions' volcanoes emitting an additional 3.8 Tg. For Southeast Asia and the Indian sub-continent, the emissions are further partitioned into biomass, industrial, utilities, and non-specific sources. In these regions emissions from biomass, utilities and industrial sources account for 16.7, 21.7, and 12.2%, respectively. In Bangladesh, ˜ 90% of the SO 2 emissions result from biomass burning and nearly 20% of India's 5 Tg of SO 2 emissions are due to biomass burning. Malaysia and Singapore's emissions are dominated by the utilities with 42 and 62% of their respective emissions coming from that sector. The spatial distribution of sulfur deposition resulting from these emissions is calculated using an atmospheric transport and deposition model. Sulfur deposition in excess of 2 g m -2 yr -1 is predicted in vast regions of east Asia, India, Thailand, Malaysia, Taiwan, and Indonesia with deposition in excess of 5 g m -2 yr -1 predicted in southern China. For the Indian sub-continent and Southeast Asia the contribution of biomass burning, industrial activities, and utilities to total sulfur emissions and deposition patterns are evaluated. Biomass burning is found to be a major source of sulfur deposition throughout southeast Asia. Deposition in Bangladesh and northern India is dominated by this emissions sector. Deposition in Thailand, the Malay Peninsula and the island of Sumatra is heavily influenced by emissions from utilities. The ecological impact of the deposition, in 1988 and in the year 2020, is also estimated using critical loads data developed in the RAINS-ASIA projects. Much of eastern China, the Korean Peninsula, Japan, Thailand, and large regions of India, Nepal, Bangladesh, Taiwan, the Philippines, Malaysia, Indonesia, and sections of Vietnam are at risk due to deposition in excess of their

  17. Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates.

    Science.gov (United States)

    Ruiz-Guerrero, Rosario; Vendeuvre, Colombe; Thiébaut, Didier; Bertoncini, Fabrice; Espinat, Didier

    2006-10-01

    The monitoring of total sulfur content and speciation of individual sulfur-containing compounds in middle distillates is required for efficient catalyst selection and for a better understanding of the kinetics of the reactions involved in hydrotreament processes. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GCxGC) hyphenated to sulfur chemiluminescence detection (SCD) has recently evolved as a powerful tool for improving characterization and identification of sulfur compounds. The aim of this paper is to compare quantitatively GCxGC-SCD and various other methods commonly employed in the petroleum industry, such as X-ray fluorescence, conventional GC-SCD, and high-resolution mass spectrometry, for total sulfur content determination and speciation analysis. Different samples of middle distillates have been analyzed to demonstrate the high potential and important advantages of GCxGC-SCD for innovative and quantitative analysis of sulfur-containing compounds. More accurate and detailed results for benzothiophenes and dibenzothiophenes are presented, showing that GCxGC-SCD should become, in the future, an essential tool for sulfur speciation analysis.

  18. Adaptations of indigenous bacteria to fuel contamination in karst aquifers in south-central Kentucky

    Science.gov (United States)

    Byl, Thomas D.; Metge, David W.; Agymang, Daniel T.; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  19. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  20. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  1. Plutonium oxides analysis. Sulfur potentiometric analysis

    International Nuclear Information System (INIS)

    Anon.

    Total sulfur determination (sulfur, sulfates, sulfides ...) in plutonium oxides, suitable for sulfate ion content between 0.003 percent to 0.2 percent, by dissolution in nitric hydrofluoric acid, nitrates elimination, addition of hydrochloric acid and reduction in hydrogen sulfide which is carried by an inert gas and neutralized by sodium hydroxide. Sodium sulfide is titrated with mercuric acetate by constant intensity potentiometry [fr

  2. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  3. Estimation of sulfur in coal by fast neutron activation

    International Nuclear Information System (INIS)

    Das, G.C.; Bhattacharyya, P.K.

    1995-01-01

    A simple method is described for estimation of sulfur in coal using fast neutron activation of sulfur, i.e. 32 S(n,p) 32 P and subsequent measurement of 32 P β-activity (1.72 MeV) by a Geiger-Mueller counter. Since the sulfur content of Indian coal ranges from 0.25 to 3%, simulated samples of coal containing sulfur in the range from 0.25 to 3% and common impurities like oxides of aluminium, calcium, iron and silicon have been used to establish the method. (author). 6 refs., 2 figs., 1 tab

  4. Experiments on contrail formation from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Busen, R; Kuhn, M; Petzold, A; Schroeder, F; Schumann, U [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany); Baumgardner, D [National Center for Atmospheric Research, Boulder, CO (United States); Borrmann, S [Mainz Univ. (Germany); Hagen, D; Whitefield, Ph [Missouri Univ., Rolla, MO (United States). Bureau of Mines; Stroem, J [Stockholm Univ. (Sweden)

    1998-12-31

    A series of both flight tests and ground experiments has been performed to evaluate the role of the sulfur contained in kerosene in condensation trail (contrail) formation processes. The results of the first experiments are compiled briefly. The last SULFUR 4 experiment dealing with the influence of the fuel sulfur content and different appertaining conditions is described in detail. Different sulfur mass fractions lead to different particle size spectra. The number of ice particles in the contrail increases by about a factor of 2 for 3000 ppm instead of 6 ppm sulfur fuel content. (author) 10 refs.

  5. Experiments on contrail formation from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Busen, R.; Kuhn, M.; Petzold, A.; Schroeder, F.; Schumann, U. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany); Baumgardner, D. [National Center for Atmospheric Research, Boulder, CO (United States); Borrmann, S. [Mainz Univ. (Germany); Hagen, D.; Whitefield, Ph. [Missouri Univ., Rolla, MO (United States). Bureau of Mines; Stroem, J. [Stockholm Univ. (Sweden)

    1997-12-31

    A series of both flight tests and ground experiments has been performed to evaluate the role of the sulfur contained in kerosene in condensation trail (contrail) formation processes. The results of the first experiments are compiled briefly. The last SULFUR 4 experiment dealing with the influence of the fuel sulfur content and different appertaining conditions is described in detail. Different sulfur mass fractions lead to different particle size spectra. The number of ice particles in the contrail increases by about a factor of 2 for 3000 ppm instead of 6 ppm sulfur fuel content. (author) 10 refs.

  6. Release of sulfur- and oxygen-bound components from a sulfur-rich kerogen during simulated maturation by hydrous pyrolysis

    Science.gov (United States)

    Putschew, A.; Schaeffer-Reiss, C.; Schaeffer, P.; Koopmans, M.P.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.; Maxwell, J.R.

    1998-01-01

    An immature sulfur-rich marl from the Gessosso-solfifera Formation of the Vena del Gesso Basin (Messinian, Italy) has been subjected to hydrous pyrolysis (160 to 330??C) to simulate maturation under natural conditions. The kerogen of the unheated and heated samples was isolated and the hydrocarbons released by selective chemical degradation (Li/EtNH2 and HI/LiAIH4) were analysed to allow a study of the fate of sulfur- and oxygen-bound species with increasing temperature. The residues from the chemical treatments were also subjected to pyrolysis-GC to follow structural changes in the kerogens. In general, with increasing hydrous pyrolysis temperature, the amounts of sulfide- and ether-bound components in the kerogen decreased significantly. At the temperature at which the generation of expelled oil began (260??C), almost all of the bound components initially present in the unheated sample were released from the kerogen. Comparison with an earlier study of the extractable organic matter using a similar approach and the same samples provides molecular evidence that, with increasing maturation, solvent-soluble macromolecular material was initially released from the kerogen, notably as a result of thermal cleavage of weak Carbon-heteroatom bonds (sulfide, ester, ether) even at temperatures as low as 220??C. This solvent-soluble macromolecular material then underwent thermal cleavage to generate hydrocarbons at higher temperatures. This early generation of bitumen may explain the presence of unusually high amounts of extractable organic matter of macromolecular nature in very immature S-rich sediments.

  7. The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from a coal fired power plant

    International Nuclear Information System (INIS)

    Newman, L.; Forrest, J.; Manowitz, B.

    1975-01-01

    The extent of oxidation of sulfur dioxide to sulfate in the plume of a coal fired plant has been studied by using sampling with a single engine aircraft. A technique employing isotopic ratio measurements was utilized in conjunction with simultaneous concentration measurements of sulfur dioxide and sulfate. The use of sulfur hexafluroide as a conservative tracer was explored. The heterogeneous mechanism postulated in an oil fired plume study appears to pertain to the coal fired plume. However, the extent of oxidation seldom exceeded 5% and is limited by the relatively low particulate content of the coal fired plume. Evidence is presented for the apparent dropping out of sulfate from the plume. Implications pertaining to the ambient oxidation of sulfur dioxide are presented. (author)

  8. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  9. Yolk-Shelled C@Fe3 O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    He, Jiarui; Luo, Liu; Chen, Yuanfu; Manthiram, Arumugam

    2017-09-01

    Owing to the high theoretical specific capacity (1675 mA h g -1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe 3 O 4 (YSC@Fe 3 O 4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe 3 O 4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe 3 O 4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe 3 O 4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm -2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Research on the Composition and Distribution of Organic Sulfur in Coal.

    Science.gov (United States)

    Zhang, Lanjun; Li, Zenghua; Yang, Yongliang; Zhou, Yinbo; Li, Jinhu; Si, Leilei; Kong, Biao

    2016-05-13

    The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.

  11. Standard practice for preparing sulfur prints for macrostructural evaluation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice provides information required to prepare sulfur prints (also referred to as Baumann Prints) of most ferrous alloys to reveal the distribution of sulfide inclusions. 1.2 The sulfur print reveals the distribution of sulfides in steels with bulk sulfur contents between about 0.010 and 0.40 weight percent. 1.3 Certain steels contain complex sulfides that do not respond to the test solutions, for example, steels containing titanium sulfides or chromium sulfides. 1.4 The sulfur print test is a qualitative test. The density of the print image should not be used to assess the sulfur content of a steel. Under carefully controlled conditions, it is possible to compare print image intensities if the images are formed only by manganese sulfides. 1.5 The sulfur print image will reveal details of the solidification pattern or metal flow from hot or cold working on appropriately chosen and prepared test specimens. 1.6 This practice does not address acceptance criteria based on the use of the method. ...

  12. A Universal Strategy To Prepare Sulfur-Containing Polymer Composites with Desired Morphologies for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zeng, Shao-Zhong; Zeng, Xierong; Tu, Wenxuan; Huang, Haitao; Yu, Liang; Yao, Yuechao; Jin, Nengzhi; Zhang, Qi; Zou, Jizhao

    2018-06-19

    Lithium-sulfur (Li-S) batteries are probably the most promising candidates for the next-generation batteries owing to their high energy density. However, Li-S batteries face severe technical problems where the dissolution of intermediate polysulfides is the biggest problem because it leads to the degradation of the cathode and the lithium anode, and finally the fast capacity decay. Compared with the composites of elemental sulfur and other matrices, sulfur-containing polymers (SCPs) have strong chemical bonds to sulfur and therefore show low dissolution of polysulfides. Unfortunately, most SCPs have very low electron conductivity and their morphologies can hardly be controlled, which undoubtedly depress the battery performances of SCPs. To overcome these two weaknesses of SCPs, a new strategy was developed for preparing SCP composites with enhanced conductivity and desired morphologies. With this strategy, macroporous SCP composites were successfully prepared from hierarchical porous carbon. The composites displayed discharge/charge capacities up to 1218/1139, 949/922, and 796/785 mA h g -1 at the current rates of 5, 10, and 15 C, respectively. Considering the universality of this strategy and the numerous morphologies of carbon materials, this strategy opens many opportunities for making carbon/SCP composites with novel morphologies.

  13. Diversity and community composition of tributyltin-resistant bacteria under different conditions

    International Nuclear Information System (INIS)

    Lee, Y. H.; Park, S.; Park, H.; Choi, Y

    2009-01-01

    Tributyltin (TBT) is an organometallic compound used as anti fouling agent in marine paints. this compound is toxic not only for eukaryotes, but also for bacteria. Based on the literature review, a few researchers have reported evidence for the presence of TBT-resistant bacteria in natural seawater and marine sediment. (Author)

  14. Diversity and community composition of tributyltin-resistant bacteria under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Park, S.; Park, H.; Choi, Y

    2009-07-01

    Tributyltin (TBT) is an organometallic compound used as anti fouling agent in marine paints. this compound is toxic not only for eukaryotes, but also for bacteria. Based on the literature review, a few researchers have reported evidence for the presence of TBT-resistant bacteria in natural seawater and marine sediment. (Author)

  15. Chemical signaling between plants and plant-pathogenic bacteria.

    Science.gov (United States)

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  16. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation.

    Science.gov (United States)

    Sakpirom, Jakkapan; Kantachote, Duangporn; Nunkaew, Tomorn; Khan, Eakalak

    2017-04-01

    This study was aimed at selecting purple non-sulfur bacteria (PNSB) isolated from various paddy fields, including Cd- and Zn-contaminated paddy fields, based on their biofertilizer properties. Among 235 PNSB isolates, strain TN110 was most effective in plant growth-promoting substance (PGPS) production, releasing 3.2 mg/L of [Formula: see text] , 4.11 mg/L of 5-aminolevulinic acid (ALA) and 3.62 mg/L of indole-3-acetic acid (IAA), and reducing methane emission up to 80%. This strain had nifH, vnfG and anfG, which are the Mo, V and Fe nitrogenase genes encoded for key enzymes in nitrogen fixation under different conditions. This strain provided 84% and 55% removal of Cd and Zn, respectively. Another isolate, TN414, not only produced PGPS (1.30 mg/L of [Formula: see text] , 0.94 mg/L of ALA and 0.65 mg/L of IAA), but was also efficient in removing both Cd and Zn at 72% and 74%, respectively. Based on 16S rDNA sequencing, strain TN110 was identified as Rhodopseudomonas palustris, while strain TN414 was Rubrivivax gelatinosus. A combination of TN110 and TN414 could potentially provide a biofertilizer, which is a greener alternative to commercial/chemical fertilizers and an agent for bioremediation of heavy metals and greenhouse gas mitigation in paddy fields. Copyright © 2016 Institut Pasteur. All rights reserved.

  17. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  18. Chemotaxis by natural populations of coral reef bacteria.

    Science.gov (United States)

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  19. Methane oxidation in presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Mantashyan, A.A.; Avetisyan, A.M.; Makaryan, E.M.; Wang, H.

    2006-01-01

    The emission of sulfurous gases including SO 2 from stationary power generation remains to be a serious environmental and ecological problem. Sulfurous gases are almost entirely produced from the combustion of sulfur-containing fuels. While fuel desulfurization and flue gas scrubbing is a viable solution, in the developing countries it remains to be an economical challenge to implement these SO x reduction technologies. The oxidation of methane in presence of sulfurous gas (SO 2 ) addition was studied experimentally. Te experiments were conducted in a static reactor at temperature of 728-786 K, and for mixture of C 4 /O 2 ≡ 1/2 at a pressure of 117 Torr with varying amount of SO 2 addition. It was observed that SO 2 addition accelerated the oxidation process, reduced the induction period and increased the extent of methane consumption. At the relatively short resident time (less than 50 sec) SO 3 was detected, but at longer residence time SO 3 was reduced spontaneously to SO 2

  20. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  1. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    Science.gov (United States)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    not expected to reflect the tetranucleotide frequency signature of the host genome. Four unknown tetranucleotide frequency clusters with significant sequence (6 Mb total) were noted and analyzed further. Based on phylogenetic markers and BLAST results, these clusters represent low abundance bacteria including Acintobacteria, Firmicutes, and Proteobacteria. Functional analysis of these clusters revealved that the low- abundance bacteria harbor genes that could potentially encode important ecosystem functions such as sulfur utilization (e.g. polysulfide reductase) and polymer degradation (e.g. chitinase and glycoside hydrolase). We conclude that ESOM clustering of tetranucleotide frequency patterns is an effective method for rapidly binning shotgun community genomic sequences and a valuable tool for analyzing minor community members, which despite their low abundance may play crucial ecological roles.

  2. Effect of sulfur removal on scale adhesion to PWA 1480

    International Nuclear Information System (INIS)

    Smialek, J.L.; Tubbs, B.K.

    1995-01-01

    A commercial superalloy, PWA 1480, was annealed in hydrogen at 1,000 C to 1,300 C in order to remove a 10 ppmw sulfur impurity. This treatment was very successful above 1,200 C, resulting in residual sulfur contents below 0.1 ppmw. The degree of scale adhesion in subsequent 1,100 C cyclic oxidation tests was inversely related to residual sulfur content. Control of adhesion by desulfurization in the absence of reactive elements supports an adhesion mechanism based on oxide-metal bonding weakened by sulfur segregation. Attempts at sulfur purging and improving adhesion by repeated oxidation/polishing were not successful, in contrast to previous studies on NiCrAl

  3. Functional structure of laminated microbial sediments from a supratidal sandy beach of the German Wadden Sea (St. Peter-Ording)

    Science.gov (United States)

    Bühring, Solveig I.; Kamp, Anja; Wörmer, Lars; Ho, Stephanie; Hinrichs, Kai-Uwe

    2014-01-01

    Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.

  4. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    Science.gov (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  5. 46 CFR 151.50-55 - Sulfur (molten).

    Science.gov (United States)

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a.... Heat transfer media shall be steam, and alternate media will require specific approval of the... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping...

  6. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli

    Science.gov (United States)

    Hoff, Kevin G.; Silberg, Jonathan J.; Vickery, Larry E.

    2000-01-01

    The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron–sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron–sulfur complex (IscU–Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent Km for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron–sulfur cluster proteins. PMID:10869428

  7. Damage caused to vegetation by sulfurous and sulfuric acids in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tatlock, R R; Thomson, R T

    1914-05-01

    This report, written in 1914, documents injuries to trees and shrubs in the United Kingdom which are attributed to sulfur compounds in air pollutions. Sampling, analytical and experimental procedures are discussed.

  8. Effects on the forest of sulfur dioxide from a sulfur fire near Edson, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, D

    1975-01-01

    Sulfur was burnt in a sanitary landfill during August 9 and 10, 1974. Resulting sulfur dioxide impinged on the surrounding mixed forest for 29 h. About 4 ha of forest displayed visible injury symptoms of varying intensity soon after. However, only .4 ha remained permanently injured the next season. Here, white spruce (Picea glauca (Moench) Voss) and scattered individuals of balsam poplar (Populus balsamifera L.), alder (Alnus tenuifolia Nutt.), and trembling aspen (Populus tremuloides Michx.) were killed. This report describes the extent of injury, relative sensitivities of affected plant species, and recovery in the spring in 1975.

  9. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  10. Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation

    Science.gov (United States)

    Diekrup, David; Hannington, Mark D.; Strauss, Harald; Ginley, Stephen J.

    2018-05-01

    Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic-hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S-33S-34S-36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic-hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.

  11. New treating processes for sulfur-containing natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Kislenko, N.; Aphanasiev, A.; Nabokov, S.; Ismailova, H. [VNIIGAS, Moscow (Russian Federation)

    1996-12-31

    The traditional method of removing H{sub 2}S from sour natural gases is first to treat the gas with a solvent and then to recover the H{sub 2}S from the sour stream in a Claus plant. This method recovers up to 97% of the sulfur when a three-stage Claus unit is employed. Amine/Claus units have operating difficulties for small sulfur capacities (up to 5 tons/day) because the operation of the fired equipment (reaction furnace) is much more difficult. Therefore, for small scale sulfur recovery plants redox processes which exhibit a significant reduction in investment and operating costs are normally used. Many different factors influence the choice of gas desulfurization technology--composition and gas flow, environmental sulfur recovery requirements and CO{sub 2}/H{sub 2}S ratio.

  12. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  13. Some information needs for air quality modeling. [Environmental effects of sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B

    1975-09-01

    The following topics were considered at the workshop: perturbation of the natural sulfur cycle by human activity; ecosystem responses to a given environmental dose of sulfur compounds; movement of sulfur compounds within the atmosphere; air quality models; contribution of biogenic sulfur compounds to atmospheric burden of sulfur; production of acid rain from sulfur dioxide; meteorological processes; and rates of oxidation of SO/sub 2/ via direct photo-oxidation, oxidation resulting from photo-induced free radical chemistry, and catalytic oxidation in cloud droplets and on dry particles. (HLW)

  14. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Zhang, Yun, E-mail: y_zhang@scu.edu.cn [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Wu, Hao [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Li, Xiaodong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Bin, E-mail: edward.bwang@gmail.com [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2017-08-15

    Graphical abstract: Flexible three-dimensional electrode comprised of stringed N-doped hollow carbon spheres shows a synergistic sulfur confinement mechanism and a higher energy/power density for the promising lithium-sulfur batteries compared with traditional electrodes. - Highlights: • Hollow carbon beads on string structure was first prepared. • Flexible 3D electrodes as graded reservoirs for polysulfides were conducted. • Synergistic effect for enhanced polysulfides storage was claimed. - Abstract: Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li–S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li{sup +} ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g{sup −1} at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg{sup −1} and power density of 1901 Wh kg{sup −1}, which greatly improve the energy/power density of traditional lithium–sulfur batteries and will be promising for further commercial applications.

  15. Effect of sulfur removal on Al2O3 scale adhesion

    Science.gov (United States)

    Smialek, James L.

    1991-03-01

    If the role of reactive element dopants in producing A12O3 scale adhesion on NiCrAl alloys is to getter sulfur and prevent interfacial segregation, then eliminating sulfur from undoped alloys should also produce adherence. Four experiments successfully produced scale adhesion by sulfur removal alone. (1) Repeated oxidation and polishing of a pure NiCrAl alloy lowered the sulfur content from 10 to 2 parts per million by weight (ppmw), presumably by removing the segregated interfacial layer after each cycle. Total scale spallation changed to total retention after 13 such cycles, with no changes in the scale or interfacial morphology. (2) Thinner samples became adherent after fewer oxidation polishing cycles because of a more limited supply of sulfur. (3) Spalling in subsequent cyclic oxidation tests of samples from experiment (1) was a direct function of the initial sulfur content. (4) Desulfurization to 0.1 ppmw levels was accomplished by annealing melt-spun foil in 1 arm H2. These foils produced oxidation weight change curves for 500 1-hour cycles at 1100 °C similar to those for Y- or Zr-doped NiCrAl. The transition between adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  16. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  17. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  18. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    Science.gov (United States)

    Kletzin, Arnulf; Urich, Tim; Müller, Fabian; Bandeiras, Tiago M; Gomes, Cláudio M

    2004-02-01

    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.

  19. Stabilized sulfur as cathodes for room temperature sodium-ion batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yunhua [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yang [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Zhu, Yujie [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Zheng, Shiyou [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Liu, Yihang [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Luo, Chao [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering; Gaskell, Karen [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Eichhorn, Bryan [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wang, Chunsheng [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering

    2013-05-01

    Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.

  20. Development of enhanced sulfur rejection processes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  1. Effect of ionizing radiation on the antigenic composition of typhoid bacteria

    International Nuclear Information System (INIS)

    Sinilova, N.G.; Nikolaeva, L.A.; Tumanyan, M.A.

    1978-01-01

    Changes in the antigenic composition of typhoid bacteria occurring during the exposure of microbial suspension to different doses of gamma radiation ( 60 Co) ranging between 0.5 and 3.0 Mrad were studied. Immunoelectrophoresis in agar was used to determine the antigenic composition of different samples of irradiated bacteria. The antigenic composition of bacteria irradiated with doses up to 2.5 Mrad was found to be similar to that of non-irradiated bacteria. Antigens demonstrated by means of Vi, H and O antisera are preserved in these bacteria. However, all irradiated bacteria in general slightly differ from non-irradiated bacteria; this is manifest in a different configuration and position of the precipitation lines in the cathodic part of the immunophoreograms. The content of the component migrating rapidly towards the cathode, evidently the O antigen in the R form, in the irradiated bacteria increases with the dose of radiation. No new serologically active substances, non-existent in non-irradiated bacteria, were found to appear in the process of irradiation. (author)

  2. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.

    Science.gov (United States)

    Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-14

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

  3. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  4. Method of simultaneous recovery of oil and sulfur from bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    1919-02-25

    The method consists of means for dry distillation of bituminous shales in furnaces heated from inside to recover simultaneously oil and sulfur, and is characterized by obtaining the sulfur partly in the form of sulfuretted hydrogen as a direct distillation product produced in the upper part of the furnace and partly in the form of free sulfur formed in the reduction zone of the furnace by the reduction of the sulfur dioxide formed in the burning zone. It is also characterized by the recovery of sulfur--in so far as the reduction and formation of sulfur dioxide are concerned--being regulated by means of the corresponding regulation of the proportion of the speed of discharging to the amount of air introduced into the process.

  5. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  6. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease

    OpenAIRE

    Mikihito Kajiya; Gabriela Giro; Martin A. Taubman; Xiaozhe Han; Marcia P.A. Mayer; Toshihisa Kawai

    2010-01-01

    Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, ...

  7. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Qiu Linlin; Zhang Shichao; Zhang Lan; Sun, Mingming; Wang Weikun

    2010-01-01

    Poly(pyrrole-co-aniline) (PPyA) copolymer nanofibers were prepared by chemical oxidation method with cetyltrimethyl ammonium chloride (CTAC) as template, and the nano-sulfur/poly(pyrrole-co-aniline) (S/PPyA) composite material in lithium batteries was achieved via co-heating the mixture of PPyA and sublimed sulfur at 160 deg. C for 24 h. The component and structure of the materials were characterized by FTIR, Raman, XRD, and SEM. PPyA with nanofiber network structure was employed as a conductive matrix, adsorbing agent and firm reaction chamber for the sulfur cathode materials. The nano-dispersed composite exhibited a specific capacity up to 1285 mAh g -1 in the initial cycle and remained 866 mAh g -1 after 40 cycles.

  9. Determination of sulfur dioxide by a radiorelease method

    Energy Technology Data Exchange (ETDEWEB)

    Sriman Narayanan, S.; Rao, V.R.S. (Indian Inst. of Tech., Madras. Dept. of Chemistry)

    1983-04-13

    A radiorelease technique for the determination of sulfur dioxide using radiochlor /sup 36/Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined.

  10. Determination of sulfur dioxide by a radiorelease method

    International Nuclear Information System (INIS)

    Sriman Narayanan, S.; Rao, V.R.S.

    1983-01-01

    A radiorelease technique for the determination of sulfur dioxide using radiochlor 36 Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined. (author)

  11. Effects of mineral matter on products and sulfur distributions in hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1999-05-01

    The effects of the mineral matter on the product yield and sulfur distribution in hydropyrolysis and pyrolysis of Chinese Hongmiao lignite were investigated using a fixed-bed reactor. The volatile sulfur-containing gases (H{sub 2}S, COS, CH{sub 3}SH) were also analyzed as a function of pyrolysis temperature. Coal samples were treated with HCl/HF or HCl/HF and CrCl{sub 2} solution to eliminate minerals and pyrite respectively. In hydropyrolysis, demineralized Hongmiao lignite showed lower yields of tar and water than the raw coal. Demineralization cannot only minimize the fixation effect of basic mineral matter on sulfur-containing gases, but also increase the sulfur distribution of the tar. Further, from the evolution profiles of sulfur-containing gases, it is possible to elucidate the contribution of minerals, pyrite and organic sulfur to the sulfur evolution. Pyrite may not be the only source of COS formation. 32 refs., 14 figs., 3 tabs.

  12. Supply, storage and handling of elemental sulfur derived from sour gas

    International Nuclear Information System (INIS)

    Clark, P.D.; Davis, P.M.; Dowling, N.I.; Calgary Univ., AB

    2003-01-01

    This presentation reviews the supply picture for solid elemental sulfur. It also assesses methods for its storage as well as the disposal of the precursor hydrogen sulfide (H 2 S) by acid gas injection. Both above and below ground block storage is considered environmentally acceptable for sulfur storage as long as measures are taken to minimize the physical and biological breakdown of the sulfur. The preferred option is to store solid elemental sulfur underground, particularly if it is to remain in storage for a prolonged period. Future changes in supply of sulfur will likely be controlled by incremental production of sour gas and utilization of oil sands bitumen. It is expected that future sulfur production from conventional crude oil will remain static or will slowly decrease. The degree to which acid gas injection is applied to large sour gas developments in the Middle East and the Caspian regions will have a significant impact on world sulfur supply. 9 refs., 1 tab., 5 figs

  13. Bioleaching of metals from soils or sediments using the microbial sulfur cycle

    NARCIS (Netherlands)

    Tichy, R.

    1998-01-01

    Reduced inorganic sulfur species like elemental sulfur or sulfide are sensitive to changes in oxidative environments. Generally, inorganic reduced sulfur exists in natural environments in a solid phase, whereas its oxidation leads to sulfur solubilization and a production of acidity. This

  14. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    Science.gov (United States)

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The references considered for inclusion in or cited in the external review draft ISA are available at https://hero.epa.gov/hero/sulfur-oxides. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes an assessment of scientific research from atmospheric sciences, exposure sciences, dosimetry, mode of action, animal and human toxicology, and epidemiology. Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for sulfur oxides (SOx) are included; Annexes provide additional details supporting the ISA. Together, the ISA and Annexes serve to update and revise the last SOx ISA which was published in 2008.

  15. Isotope effects of sulfur in chemical reactions

    International Nuclear Information System (INIS)

    Mikolajczuk, A.

    1999-01-01

    Sulfur is an important component of organic matter because it forms compounds with many elements. Due to high chemical activity of sulfur, it takes part in biological and geological processes in which isotope effects are occurring. It has been shown during last years research of isotope effects that we have take into account not only mass difference but also many other physical properties of nuclides e.g. even or odd number of neutrons in nuclei, shape and distribution of charge, turn of nuclear spin etc. The factor remains that new theoretical ideas have been formed on the base of data, being obtained in fractionation processes of heavy element isotope, particularly uranium. Now it is being well known that effects unconnected with vibration energy have also caused an effect on fractionation of considerably lighter elements like iron and magnesium. The important question is, if these effects would come to light during the separation of sulfur isotopes. Sulfur have three even isotopes M = (32, 34, 36) and one odd M 33). This problem is still open. (author)

  16. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  17. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  18. Behaviour of organic sulfur compounds in HPLC

    International Nuclear Information System (INIS)

    Freyholdt, T.

    1982-01-01

    The retention behaviour of organic sulfur compounds in the reverse-bonded-phase chromatography is characterized by determining the retention indices according to Kovats. The results of these studies show that the solubility of organic compounds in the eluting agent and the molar sorption surfaces of the solutes are the main factors determining the retention behaviour. Knowledge of the retention indices of above-mentioned compounds allows a quick interpretation of chromatograms obtained through a product analysis of γ-irradiated aqueous solutions of organic sulfur compounds. Dithia compounds of the type CH 3 -S-(CH 2 )sub(n)-S-Ch 3 (1 1. 2,4-Dithiapentane (n = 1) however will yield primarily monothio-S-methyl formate as a stable end product. The formation of oxygenic reaction products proceeds via sulfur-centred radical kations. Spin trapping experiments with nitroxyl radicals show that it is possible to trap radiation-chemically produced radicals of sulfurous substrates, but the thus obtained adducts with half-life periods of 4-5 min. cannot be identified by means of NMR, IR or mass spectroscopy. (orig.) [de

  19. Assessing historical global sulfur emission patterns for the period 1850--1990

    Energy Technology Data Exchange (ETDEWEB)

    Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  20. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting