WorldWideScience

Sample records for sulfonylimide-litfsi electrolyte incorporating

  1. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    Science.gov (United States)

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents.

  2. Effects of oxide incorporation in proton conducting organic electrolytes

    OpenAIRE

    Sörgel, Seniz

    2009-01-01

    In this work, the effects of incorporation of various types of oxide particles (e.g. ZrO2, TiO2, Al2O3) into proton conducting organic electrolytes is investigated. As a weak liquid model electrolyte, moderately proton conducting imidazole is chosen. As a highly proton conducting strong polymer electrolyte, and simultaneously practically very important electrolyte, Nafion® is selected for the second part of the work. In the first part of this work, for the first time, the applicabilit...

  3. Improved properties of LiBOB-based solid polymer electrolyte by additive incorporation

    Science.gov (United States)

    Ratri, C.; Sabrina, Q.; Lestariningsih, T.; Wigayati, E.

    2017-04-01

    Solid polymer electrolytes comprising of poly(vinylidene fluoride) (PVdF) and lithium bis (oxalato) borate (LiBOB) have been prepared using solution casting technique. Having an important role in lithium-ion battery system, electrolyte is required to have high ability to transfer lithium ions between electrodes. Safety aspect is the main reason for the development of solid polymer electrolyte as advancement from conventional liquid electrolyte. Nevertheless, solid polymer electrolyte generally has lower conductivities compared to liquid electrolyte. In this research, ceramic additives, as well as plasticiser materials, have been incorporated within the solid polymer electrolyte system to improve its conductivity. Addition of TiO2 filler has proven to increase ionic conductivity by two orders of magnitude. Further improvement was seen in the incorporation of PEG plasticiser, where ionic conductivity was enhanced by three orders of magnitude.

  4. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan

    2009-10-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  5. Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Zhao, Yun

    2014-08-01

    Three-dimensional (3D) gel electrolytes are versatile in elevating encapsulation of liquid electrolyte in dye-sensitized solar cells (DSSCs), however, the poor contact at gel electrolyte/Pt counter electrode interface is unfavorable in electrocatalyzing triiodide ions. In the current work, we report the multifunctions of graphene, graphene oxide, or nanographite incorporated microporous poly(acrylic acid)-cetyltrimethylammonium bromide (PAA-CTAB) conducting gel electrolytes in both sealing liquid electrolyte and conducting refluxed electrons (electrons from external circuit to Pt counter electrode) into 3D framework of the conducting gel electrolyte, aiming at elevating liquid electrolyte content in per unit volume of gel electrolyte, increasing electrocatalytic area toward triiodide ions and diminishing charge-transfer resistance. The electrical and electrochemical performances of the resultant conducting gel electrolytes are thoroughly characterized. Light-to-electric power conversion efficiencies of 7.06%, 6.35%, and 6.17% are determined from DSSCs using graphene, graphene oxide, and nanographite incorporated PAA-CTAB conducting gel electrolytes in comparison with 6.07% from pure PAA-CTAB based DSSC.

  6. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  7. Sol-Gel Electrolytes Incorporated by Lanthanide Luminescent Materials and Their Photophysical Properties

    Science.gov (United States)

    Yu, Chufang; Zhang, Zhengyang; Fu, Meizhen; Gao, Jinwei; Zheng, Yuhui

    2017-10-01

    A group of silica gel electrolytes with lanthanide luminescent hybrid materials were assembled and investigated. Photophysical studies showed that terbium and europium hybrids displayed characteristic green and red emissions within the electrolytes. The influence of different concentration of the lanthanide hybrids on the electrochemical behavior of a gelled electrolyte valve-regulated lead-acid battery were studied through cyclic voltammograms, electrochemical impedance spectroscopy, water holding experiments and mobility tests. The morphology and particle size were analyzed by scanning electron microscopy. The results proved that lanthanide (Tb3+/Eu3+) luminescent materials are effective additives which will significantly improve the electrochemical properties of lead-acid batteries.

  8. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  9. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  10. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingtao; Yue, Xiujun; Zhang, Zizhuo; Yang, Zheng; Li, Yifan; Wu, Hong; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Han; Yang, Xinlin [Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071 (China)

    2012-11-07

    Design and fabrication of hierarchically structured membranes with high proton conductivity is crucial to many energy-relevant applications including proton exchange membrane fuel cell (PEMFC). Here, a series of imidazole microcapsules (IMCs) with tunable imidazole group loading, shell thickness, and lumen size are synthesized and incorporated into a sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. The IMCs play two roles: i) Improving water retention properties of the membrane. The IMCs, similar to the vacuoles in plant cells, can render membrane a stable water environment. The lumen of the IMCs acts as a water reservoir and the shell of IMCs can manipulate water release. ii) They form anhydrous proton transfer pathways and low energy barrier pathways for proton hopping, imparting an enhanced proton transfer via either a vehicle mechanism or Grotthuss mechanism. In particular, at the relative humidity (RH) as low as 20%, the composite membrane exhibits an ultralow proton conductivity decline and the proton conductivity is one to two orders of magnitude higher than that of SPEEK control membrane. The enhanced proton conductivity affords the composite membrane an elevated peak power density from 69.5 to 104.5 mW cm{sup -2} in a single cell. Moreover, the application potential of the composite membrane for CO{sub 2} capture is explored. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Thiourea incorporated poly(ethylene oxide) as transparent gel polymer electrolyte for dye sensitized solar cell applications

    Science.gov (United States)

    Pavithra, Nagaraj; Velayutham, David; Sorrentino, Andrea; Anandan, Sambandam

    2017-06-01

    A new series of transparent gel polymer electrolytes are prepared by adding various weight percent of thiourea coupled with poly(ethylene oxide) for the application of dye-sensitized solar cells. Coupling of thiourea in the presence of iodine undergoes dimerization reaction to produce formamidine disulfide. Fourier Transform Infrared spectroscopy shows that the interactions of thiourea and formamidine disulfide with electronegative ether linkage of poly(ethylene oxide) results in conformational changes of gel polymer electrolytes. Electrochemical impedance spectroscopy and linear sweep voltammetry experiments reveal an increment in ionic conductivity and tri-iodide diffusion coefficient, for thiourea modified gel polymer electrolytes. Finally, the prepared electrolytes are used as a redox mediator in dye-sensitized solar cells and the photovoltaic properties were studied. Apart from transparency, the gel polymer electrolytes with thiorurea show higher photovoltaic properties compared to bare gel polymer electrolyte and a maximum photocurrent efficiency of 7.17% is achieved for gel polymer electrolyte containing 1 wt% of thiourea with a short circuit current of 11.79 mA cm-2 and open circuit voltage of 834 mV. Finally, under rear illumination, almost 90% efficiency is retained upon compared to front illumination.

  12. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors

    Science.gov (United States)

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-04-01

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg-1 at the current density of 1Ag-1 and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors.

  13. Structural and ionic conductivity studies on proton conducting solid biopolymer electrolyte based on 2hydroxyethyl cellulose incorporated DTAB

    Science.gov (United States)

    Ahmad, N. H.; Bakar, N. Y.; Isa, M. I. N.

    2017-09-01

    Solid biopolymer electrolytes (SBEs) based on 2hydroxyethyl cellulose (2HEC) complexes with dodecyltrimethyl ammonium bromide (DTAB) salt in various composition (wt. %) were successfully prepared by using solution casting technique. The ion - polymer interaction and structural studies have been reported by Fourier transform infrared spectroscopy (FTIR) supported with X - ray diffraction (XRD) and Electrical impedance spectroscopy (EIS). FTIR spectral shows interaction of 2HEC with DTAB happen at peak 2914cm-1, 2848cm-1, 2353cm-1, 2328cm-1, 1720cm-1, 1437cm-1, 1344cm-1, 1198cm-1 1095cm-1 1051cm-1, 912cm-1 and 872cm-1. The interaction of complexes leads to an increase in number of ion jump into neighboring vacant sites until it reaches the highest conductivity at room temperature which is 2.80 x 10-5 Scm-1 for sample containing 9wt. % of DTAB. The temperature dependence of the SBEs system exhibits Arrhenius behavior and the XRD spectral analysis shows the higher salt loading the crystallinity of the SBEs which also increased.

  14. Morphological, mechanical and thermo-kinetic characterization of coal ash incorporated high performance PEO/PMMA thin film electrolyte composites

    Science.gov (United States)

    Sultana, Sabiha; Saleem Khan, Mohammad; Rehan, Imran; Rehan, Kamran; Amin, Noor-ul-; Humayun, Muhammad; Tabassum, Safia; Minhaz, Aaliya

    2017-11-01

    In the present work indigenous coal ash of Pakistan was used to prepare polymeric nanocomposites with Poly (ethylene oxide) (PEO)/Poly (methyl methacrylate) (PMMA)/lithium perchlorate (LiClO4). The coal ash was first characterized by various advanced spectroscopic techniques. The coal ash loading into the polymeric blend composites was considered by Thermo gravimetric/differential thermal analysis (TG/DTA), universal testing machine (UTM) and scanning electron microscopy (SEM)/energy dispersive x-rays (EDX) analysis. From TG/DTA data detailed kinetic analysis was performed. By applying various kinetic models, a range of kinetic parameters like ▵E, ▵G, ▵H, ▵S and A were successfully calculated for the first time for the studied system. Based upon aforementioned characterization it was established that coal ash incorporation into the polymeric blend composites improves its thermal and mechanical performance.

  15. Surfactant-Assisted Perovskite Nanofillers Incorporated in Quaternized Poly (Vinyl Alcohol Composite Membrane as an Effective Hydroxide-Conducting Electrolyte

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2017-05-01

    Full Text Available Perovskite LaFeO3 nanofillers (0.1% are incorporated into a quaternized poly(vinyl alcohol (QPVA matrix for use as hydroxide-conducting membranes in direct alkaline methanol fuel cells (DAMFCs. The as-synthesized LaFeO3 nanofillers are amorphous and functionalized with cetyltrimethylammonium bromide (CTAB surfactant. The annealed LaFeO3 nanofillers are crystalline without CTAB. The QPVA/CTAB-coated LaFeO3 composite membrane shows a defect-free structure while the QPVA/annealed LaFeO3 film has voids at the interfaces between the soft polymer and rigid nanofillers. The QPVA/CTAB-coated LaFeO3 composite has lower methanol permeability and higher ionic conductivity than the pure QPVA and QPVA/annealed LaFeO3 films. We suggest that the CTAB-coated LaFeO3 provides three functions to the polymeric composite: increasing polymer free volume, ammonium group contributor, and plasticizer to enhance the interfacial compatibility. The composite containing CTAB-coated LaFeO3 results in superior cell performance. A maximum power density of 272 mW cm−2 is achieved, which is among the highest power outputs reported for DAMFCs in the literature.

  16. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C{sub 3}N{sub 4}/TiO{sub 2} photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Senthil, R.A.; Theerthagiri, J. [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Madhavan, J., E-mail: jagan.madhavan@gmail.com [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Murugan, K. [Department of Zoology, Bharathiar University, Coimbatore 641046 (India); Arunachalam, Prabhakarn [Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Arof, A.K. [Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-10-15

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I{sub 2}) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C{sub 3}N{sub 4}/TiO{sub 2} composite as photoanode. The g-C{sub 3}N{sub 4} was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C{sub 3}N{sub 4}/TiO{sub 2} composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C{sub 3}N{sub 4}/TiO{sub 2} composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10{sup −5} and 1.87×10{sup −4} Scm{sup −1} respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C{sub 3}N{sub 4}/TiO{sub 2} composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO{sub 2} (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a

  17. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Murugan, K.; Arunachalam, Prabhakarn; Arof, A. K.

    2016-10-01

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I2) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C3N4/TiO2 composite as photoanode. The g-C3N4 was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C3N4/TiO2 composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C3N4/TiO2 composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10-5 and 1.87×10-4 Scm-1 respectively. The UV-vis absorption spectroscopy was carried out for the pure and different wt% of g-C3N4/TiO2 composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C3N4/TiO2 composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C3N4/TiO2 as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO2 (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C3N4/TiO2 as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a successful attempt to provide a new pathway to enhance the performance of DSSCs.

  18. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  19. Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid

    Science.gov (United States)

    Zulkepeli, Nik A. S. Nik; Winie, Tan; Subban, R. H. Y.

    2017-09-01

    In this work, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMCF3SO3) is employed as ionic liquid in PVC-based polymer electrolyte system with lithium triflate (LiCF3SO3) as doping salt. The samples in film form were prepared by quantitatively varying the concentration of BMIMCF3SO3 to a fixed ratio of PVC-LiCF3SO3 using solution cast technique. The highest room temperature ionic conductivity of 1.120 × 10-7 Scm-1 was exhibited by PVC-LiCF3SO3-BMIMCF3SO3 containing 3 wt. % BMIMCF3SO3. FTIR spectra of the polymer electrolytes were examined to study the complexation of the PVC-based polymer electrolytes. Intensity of free ions, ion pairs, and ion aggregates were obtained from FTIR deconvolution in an attempt to correlate with ionic conductivity results. The intensity of free ions was found to be high for sample with 3 wt. % BMIMCF3SO3.

  20. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  1. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    Science.gov (United States)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  2. Electrolyte Racers

    Science.gov (United States)

    Kellie, Shawn; Kellie, Tonya; Corbin-Tipton, Elizabeth

    2006-01-01

    A fast way to teach investigative skills in science is to tie them to NASCAR using Hot Wheels Formula Fuelers Race Cars. These inexpensive toy cars travel different distances based on the strength of the "electrolyte" (a substance that conducts electricity when dissolved in water) in their "fuel" tanks. Advertisements for these race cars urge kids…

  3. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  5. Electrolyte salts for nonaqueous electrolytes

    Science.gov (United States)

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  6. Lithium ion conducting electrolytes

    Science.gov (United States)

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  7. Lithium ion conducting electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Angell, C.A.; Liu, C.; Xu, K.; Skotheim, T.A.

    1999-10-05

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  8. Impact resistant electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M.; Armstrong, Beth L.; Tenhaeff, Wyatt E.; Dudney, Nancy J.

    2017-03-07

    A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 2M of an electrolyte salt, and shear thickening ceramic particles having a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 .mu.m, and an absolute zeta potential of greater than .+-.40 mV.

  9. PEO nanocomposite polymer electrolyte for solid state symmetric ...

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  10. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  11. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  12. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    vity at ambient temperature (Wright 1975; Martuscelli et al 1984). Generally solid polymer electrolytes have many advantages, viz. high ionic conductivity, high specific energy, wide electrochemical stability windows, light and easy processibility. Apart from this, polymer electrolyte studies have been carried out in poly(vinyl ...

  13. Human Water and Electrolyte Balance

    National Research Council Canada - National Science Library

    Montain, S. J; Cheuvront, S. N; Carter, R; Sawka, M. N

    2006-01-01

    .... Sweat losses, if not replaced, reduce body water volume and electrolyte content. Excessive body water or electrolyte losses can disrupt physiological homeostasis and threaten both health and performance...

  14. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications...

  15. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  16. Electrolyte for batteries with regenerative solid electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  17. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  19. Anion exchange polymer electrolytes

    Science.gov (United States)

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  20. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  2. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yingliang, E-mail: chengyingliang@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Matykina, Enzhe [Dpt. Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Madrid 28040 (Spain); Skeldon, Peter; Thompson, George [Corrosion and Protection Centre, School of Materials, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom)

    2011-10-01

    Highlights: > ZrO{sub 2} coatings are grown on Zircaloy-4 by AC plasma electrolytic oxidation. > Tetragonal and monoclinic ZrO{sub 2} are formed using silicate electrolyte. > Pyrophosphate electrolyte results in flawed coatings of monoclinic ZrO{sub 2}. > Silicate favours formation of tetragonal ZrO{sub 2}, with coating hardness {approx}8 GPa. > Microstructures are related to temperature gradients and solidification rates. - Abstract: Plasma electrolytic oxidation was undertaken on Zircaloy-4 in alkaline silicate and pyrophosphate electrolytes, with a square waveform AC current regime. The resultant coatings were examined using scanning electron spectroscopy, X-ray diffraction and nanoindentation. The coatings formed in silicate electrolyte comprised mainly a porous inner layer and a more compact outer layer, with characteristic solidification structures being evident following prolonged treatment. The coatings contained monoclinic and tetragonal ZrO{sub 2}, the latter being mainly present in the outer layer, which was of hardness up to {approx}8 GPa. In contrast, extensively cracked coatings resulted from use of pyrophosphate electrolyte; the coating integrity was improved by the addition of silicate to the pyrophosphate electrolyte. The different morphologies of the coatings appeared to be related to the differing nature of the microdischarges and to the incorporation of silicon species that enhanced the formation of t-ZrO{sub 2}.

  3. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  4. Seebeck effect in electrolytes.

    Science.gov (United States)

    Chikina, I; Shikin, V; Varlamov, A A

    2012-07-01

    We study Seebeck effect in liquid electrolytes, starting from its simple neutral analog--thermodiffusion (so-called Ludwig-Soret or Soret effect). It is observed that when two or more subsystems of mobile particles are subjected to the temperature gradient, various types of them respond to it differently. In the case when these fractions, with different mobility parameters (Soret coefficients), are oppositely charged (a case typical for electrolytes), the nonhomogeneous internal electric field is generated. The latter field prevents these fractions from space separation and determines the intensity of the appearing Seebeck effect.

  5. Spin coating of electrolytes

    Science.gov (United States)

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  6. PVC-PBMA nanocomposite polymer electrolytes for lithium battery applications

    Science.gov (United States)

    Arunkumar, R.; Rani, M. Usha; Babu, Ravishanker

    2017-05-01

    Polyvinyl chloride (PVC)-Poly (butyl methacrylate) (PBMA) composite polymer electrolytes with incorporation of different ratio of ZrO2 doped was prepared by solution casting technique. The ionic conductivity, dielectric behavior, ionic transference number and surface morphology of the composite polymer electrolytes were characterized by using ac impedance, dielectric, DC polarization method and SEM studies respectively. The best room temperature ionic conductivity (0.520mScm-1 at 303 K), high dielectric constant (27340 ± 10 at 50 Hz) and high pore size obtained for 10 wt% of ZrO2 doped composite polymer electrolytes. DC polarization method confirms the occurrences of conduction in composite PVC-PBMA blend polymer electrolytes predominantly due to ions.

  7. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aliasghari, S.; Skeldon, P., E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E.

    2014-10-15

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti{sub 3}O{sub 5}, and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti{sub 2}O{sub 5} and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short.

  8. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  9. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  10. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  11. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  12. Ice electrode electrolytic cell

    Science.gov (United States)

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  13. Non-electrolytic microelectroporation.

    Science.gov (United States)

    Lyu, Chenang; Wang, Jianping; Rubinsky, Boris

    2017-09-01

    Micro and nano technologies are of increasing importance in microfluidics devices used for electroporation (electroporation - the permeabilization of the cell membrane with brief high electric field pulses). Electrochemical reactions of electrolysis occur whenever an electric current flows between an electrode and an ionic solution. It can have substantial detrimental effects, both on the cells and solutions during the electroporation. As electrolysis is a surface phenomenon, between electrodes and solution, the extent of electrolysis is increased in micro and nano electroporation over macro-electroporation, because the surface area of the electrodes in micro and nano electroporation is much larger. A possible way to eliminate the electrolytic effect is to develop non-electrolytic microelectroporation by coating the microelectroporation devices with a dielectric insulating layer. In this study, we examine the effect of a dielectric insulating layer on the performance of a singularity microelectroporation device that we have recently designed. Using numerical analysis, we study the effects of various design parameters including, input sinusoidal voltage amplitude and frequency, geometrical configuration and material electrical properties on the electroporation performance of the non-electrolytic microelectroporation device. In the simulation, we used properties of four real dielectric materials and four solutions of interest for microelectroporation. We characterized the effect of various design parameters of relevance to singularity based microelectroporation, on non-electrolytic microelectroporation. Interestingly, we found that the system behaves in some aspects as a filter and in many circumstances saturation of performance is reached. After saturation is reached, changes in parameters will not affect the performance of the device.

  14. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  15. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  16. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  17. Plasma electrolytic polishing of metalized carbon fibers

    Directory of Open Access Journals (Sweden)

    Falko Böttger-Hiller

    2016-02-01

    Full Text Available Efficient lightweight structures require intelligent materials that meet versatile functions. Especially, carbon-fiber-reinforced polymers (CFRPs are gaining relevance. Their increasing use aims at reducing energy consumption in many applications. CFRPs are generally very light in weight, while at the same time being extremely stiff and strong (specific strength: CFRPs: 1.3 Nm kg–1, steel: 0.27 Nm kg–1; specific stiffness: CFRPs: 100 Nm kg–1, steel: 25 Nm kg–1. To increase performance and especially functionality of CFRPs, the integration of microelectronic components into CFRP parts is aspired. The functionalization by sensors, actuators and electronics can enable a high lightweight factor and a new level of failure-safety. The integration of microelectronic components for this purpose requires a working procedure to provide electrical contacts for a reliable connection to energy supply and data interfaces. To overcome this challenge, metalized carbon fibers are used. Metalized fibers are, similar to the usual reinforcing fibers, able to be soldered and therefore easy to incorporate into CFRPs. Unfortunately, metalized fibers have to be pre-treated by flux-agents. Until now, there is no flux which is suitable for mass production without destroying the polymer of the CFRP. The process of plasma electrolytic polishing (PeP could be an option, but is so far not available for copper. Thus, in this study, plasma electrolytic polishing is transferred to copper and its alloys. To achieve this, electrolytic parameters as well as the electrical setup are adapted. It can be observed that the gloss and roughness can be adjusted by means of this procedure. Finally, plasma electrolytic polishing is used to treat thin copper layers on carbon fibers.

  18. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    CERN Document Server

    Webster, M I

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) sub 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) sub 1 sub 0 and LiClO sub 4.P(EO) sub 1 sub 0 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stabl...

  19. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  20. High Energy Density Electrolytic Capacitor

    Science.gov (United States)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  1. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells

    Science.gov (United States)

    Xia, Jian; Petibon, Remi; Xiong, Deijun; Ma, Lin; Dahn, J. R.

    2016-10-01

    Some of the problems of current electrolytes for high voltage Li-ion cells originate from ethylene carbonate (EC) which is thought to be an essential electrolyte component for Li-ion cells. Ethylene carbonate-free electrolytes containing 1 M LiPF6 in ethylmethyl carbonate (EMC) with small loadings of vinylene carbonate, fluoroethylene carbonate, or (4R,5S)-4,5-Difluoro-1,3-dioxolan-2-one acting as ;enablers; were developed. These electrolytes used in Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch type Li-ion cells tested at 4.2 V and 4.5 V yielded excellent charge-discharge cycling and storage properties. The results for cells containing linear alkyl carbonate electrolytes with no EC were compared to those of cells with EC-containing electrolytes incorporating additives proven to enhance cyclability of cells. The combination of EMC with appropriate amounts of these enablers yields cells with better performance than cells with EC-containing electrolytes incorporating additives tested to 4.5 V. Further optimizing these linear alkyl carbonate electrolytes with appropriate co-additives may represent a viable path to the successful commercial utilization of NMC/graphite Li-ion cells operated to 4.5 V and above.

  2. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  3. Electrolytes and thermoregulation

    Science.gov (United States)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  4. Hybrid materials and polymer electrolytes for electrochromic device applications.

    Science.gov (United States)

    Thakur, Vijay Kumar; Ding, Guoqiang; Ma, Jan; Lee, Pooi See; Lu, Xuehong

    2012-08-08

    Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated. Copyright © 2012 WILEY

  5. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  6. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  7. Non-aqueous electrolytes for electrochemical cells

    Science.gov (United States)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  8. Antireduction Insulator For Solid-Electrolyte Cell

    Science.gov (United States)

    Shlichta, Paul J.

    1990-01-01

    Depletion of oxygen from electrolyte prevented. Proposed to add layer of electrical insulation between solid electrolyte and portion of porous negative electrode under negative metal contact in solid-electrolyte cell. Helps maintain efficiency of cell by preventing "shadow" effect degrading portion of electrolyte under negative contact and sometimes near seals.

  9. [Electrolyte metabolism and emergency].

    Science.gov (United States)

    Nakao, I; Ito, T; Kasai, N

    1983-02-01

    In outlining the pathology of various electrolyte metabolism abnormalities in cancer patients we considered the main clinical points between pathologies and emergency treatment. In regard to sodium (Na+) metabolism, one pathologic state that requires our attention is hypernatremia. Hypernatremia is accompanied with dehydration and is due to water loss, vomiting, diarrhea and renal insufficiency. One of the major causes of this condition is lack of the antidiuretic hormone due to intracranial metastasis of the tumor. When hypernatremia becomes severe, it is accompanied with circulatory failure, muscular asthenia, disorientation, convulsions, coma and other cerebral symptoms. Treatment consists of replenishing the water content by infusion of electrolyte solutions which should be carefully conducted after complete diagnose of the severity of the patient's pathological condition. Hyponatremia, like sick cell syndrome, is observed relatively frequently in cancer patients. When the serum Na level falls markedly, it induces cerebral edema and causes disorders of consciousness. The major treatment consists of providing both water and sodium supplements. Hyperkalemia is observed at the time of renal insufficiency, tissue lesions, vomiting, and diarrhea. When serum potassium level rises, it causes bradycardia, ventricular fibrillation, or cardiac arrest. It is important to diagnostically apprehend the severity of this condition using EKG and determining the serum K1+ level. For emergency treatment injection of calcium gluconate is very effective. Hypokalemia is often manifested by the loss of intestinal fluids due to diarrhea or during administration of diuretic agents. Clinical symptoms include neural paralysis but emergencies occur relatively infrequently. K C1 injections are used in treating this condition. Hypercalcemia is manifested in cancer patients during hyperparathyroidism. Its clinical symptoms include lassitude, tachycardia, nausea, vomiting, and renal dys

  10. Composite solid polymer electrolyte membranes

    Science.gov (United States)

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  11. Composite solid polymer electrolyte membranes

    Science.gov (United States)

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  12. Electrolytic formation of carbon nanostructures

    Science.gov (United States)

    Hsu, W. K.; Terrones, M.; Hare, J. P.; Terrones, H.; Kroto, H. W.; Walton, D. R. M.

    1996-11-01

    Carbon nanotubes (with and without encapsulated material) as well as nanoparticles and onion-like structures have been generated by electrolysis in molten alkali halide salts using carbon electrodes under an argon atmosphere. The nature of the products depends upon several factors including the electrolysis voltage and current, depth of electrode immersion in the electrolyte, the length of time the current is maintained and the electrolyte.

  13. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  14. Cosolvent electrolytes for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-02-13

    A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  15. Cosolvent electrolytes for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-01-23

    A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  16. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  17. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  18. [Cancer and electrolytes imbalance].

    Science.gov (United States)

    Shibata, Hiroyuki

    2010-06-01

    The electrolyte imbalance in advanced cancer patients, including hyperkalemia, hypercalcemia and hyponatremia, can be induced by various factors. Hyperkalemia is occasionally induced by chemotherapy for very large malignant tumors, due to tumor lysis syndrome. Hypercalcemia and hyponatremia are often observed in patients with breast cancer, renal cancer, prostate cancer, and the like, as a paraneoplastic syndrome. Some part of hypercalcemia results from osteolysis, but the majority is induced by hormonal factors, such as parathyroid hormone-related protein. One of the paraneoplastic causes of hyponatremia is antidiuretic hormone-producing tumor. These disorders could be morbid or even motile, resulting from encephalopathy or arrhythmia in some cases. However, it should be kept in mind that they could be improved or cured by prompt treatment. Recently, after approval of the molecular targeted drugs for epidermal growth factor receptors, such as cetuximab and panitumumab, the incidence of hypomagnesia with use of these monoclonal antibodies, is relatively frequent. In addition, small molecular targeted drugs, such as m-TORinhibitors and ABL kinase inhibitors, also exert adverse reactions including hypomagnesia and hypophosphatemia. Careful monitoring of the serum concentration of magnesium and phosphate ions, to which little attention was paid previously, is a key issue in these cases.

  19. Electrolytes: Sodium Disorders.

    Science.gov (United States)

    Braun, Michael M; Mahowald, Megan

    2017-08-01

    Sodium disorders (ie, hyponatremia, hypernatremia) are common electrolyte disturbances in clinical medicine and are associated with increased rates of morbidity and mortality. Etiologies of hyponatremia are classified into four categories. The first is pseudohyponatremia, in which the sodium level is low due to hyperproteinemia, hyperlipidemia, or hyperglycemia. The other three categories are based on overall patient fluid status and include hypovolemic (commonly due to fluid loss), hypervolemic (commonly due to fluid retention from heart failure, cirrhosis, or renal failure), and euvolemic (most often because of syndrome of inappropriate secretion of antidiuretic hormone). Hypovolemic hyponatremia is managed by rehydration with isotonic saline. Hypervolemic hyponatremia is managed by addressing the underlying cause. Euvolemic hyponatremia is managed by restricting free water intake, addressing the underlying cause, and occasionally with drugs (eg, vasopressin receptor antagonists). Patients with severe or acutely symptomatic hyponatremia (eg, altered mental status, seizures), including those with acute symptomatic exercise-induced hyponatremia, require urgent treatment. This should consist of hypertonic saline administration along with monitoring of sodium levels to avoid overly rapid correction. Hypernatremia most often occurs because of water loss or inadequate water intake. Depending on severity, management involves oral or intravenous hypotonic fluids and addressing the underlying cause. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  20. Solid lithium ion conducting electrolytes and methods of preparation

    Science.gov (United States)

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  1. Electrochemical Impedance Spectroscopy of Polyvinylalcohol Based Gel Electrolyte

    National Research Council Canada - National Science Library

    Nirwan Syarif; Nurlisa Hidayanti; Edy Herianto Majlan; Monica Sari Jayanti

    2017-01-01

    Research on the effect of electrolyte ammonium salt, concentration electrolyte with plasticizer to ionic and electronic conductivity of polymer gel electrolyte has been conducted with the variations...

  2. Multivalent weak electrolytes - risky background electrolytes for capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Beckers, J. L.; Boček, Petr

    2002-01-01

    Roč. 23, č. 12 (2002), s. 1942-1946 ISSN 0173-0835 R&D Projects: GA ČR GA203/99/0044; GA ČR GA203/02/0023; GA ČR GA203/01/0401; GA AV ČR IAA4031703; GA AV ČR IAA4031103 Institutional research plan: CEZ:AV0Z4031919 Keywords : background electrolytes * capillary zone electrophoresis * multivalent electrolytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  3. Hermetically Sealed Aluminum Electrolytic Capacitor

    Science.gov (United States)

    Alwitt, Robert S.; Liu, Yanming; Elias, William

    1996-01-01

    Aluminum electrolytic capacitors are presently not allowed on NASA missions because they outgas water and organic vapors, as well as H2. As a consequence, for some applications, much larger and heavier packages of tantalum capacitors must be used. A hermetically sealed aluminum capacitor has been developed. This contains a nongassing electrolyte that was developed for this application so internal pressure would remain low. Capacitors rated from 250 V to 540 V have been operated under full load for thousands of hours at 85 and 105 C with good electrical performance and absence of gas generation. Electrolyte chemistry and seal engineering will be discussed, as well as the extension of this design concept to lower voltage ratings.

  4. High elastic modulus polymer electrolytes

    Science.gov (United States)

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  5. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  6. Geometry and Composition of Interstitial Fluids in Frozen Electrolyte Solutions

    Science.gov (United States)

    Cheng, J.; Colussi, A. J.; Hoffmann, M. R.

    2009-12-01

    The composition and morphology of the fluid microchannels threading polycrystaline ice affects the integrity of ice core records and the strength of ice-atmosphere interactions. These fluids owe their existence to impurities and curvature depression. Electrolyte impurities induce bulk colligative effects, but also charge ice surfaces, while screening the resulting electrostatic repulsion. A non-monotonic rather than positive dependence of channel width δ on electrolyte concentration has thus been predicted. Herein we report the first time-resolved, confocal microscopy study of freezing water and electrolyte solutions doped with 10 μM of C-SNARF-1, a fluorescent pH probe. The freezing of doped water concentrates the probe into discrete δ = (12 ± 2) μm channels embedded in pristine ice, whereas ice fronts advancing (at < 5 μm/s) into 1 mM electrolytes destabilize and engulf them into < 1 μm fluid occlusions distributed over the sample. These findings are consistent with a non-monotonic dependence of δ on ion concentration. pH increases by less than 0.4 unit within the occlusions formed in freezing NaCl solutions, and by over 1 unit upon subsequent thawing, revealing that hydroxide ion slowly produced via the dissociation of water molecule in ice seeps from ice to relieve the excess charge generated by chloride inclusion. In contrast, the preferential incorporation of the ammonium ions over the acetate anions into ice leads to the acidification of partially frozen ammonium acetate solutions.

  7. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  8. Structural and electrical properties of lithio-borate solid electrolyte thin films

    Science.gov (United States)

    Dzwonkowski, P.; Julien, C.; Balkanski, M.

    1988-09-01

    The effect of deposition conditions on the growth structure of amorphous thin films of lithio-borate solid electrolyte was investigated by means of infrared absorption and complex impedance spectroscopies. Thin films of vitreous solid electrolyte in the alkali-oxide/borate-oxide system were grown by vacuum quasi-flash evaporation. The complex impedance measurements of the thin solid films in the sandwich geometry show a high ionic conductivity. Incorporation of lithium salt dopant has been also studied. The structure was determined using infrared absorption spectra which are sensitive to deposition conditions and to the amount of lithium incorporated.

  9. Efficient Electrolytes for Lithium–Sulfur Batteries

    OpenAIRE

    Natarajan eAngulakshmi; Arul Manuel Stephan

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polyme...

  10. Polymer Electrolytes for Lithium/Sulfur Batteries

    OpenAIRE

    The Nam Long Doan; Denise Gosselink; Yongguang Zhang; Mikhail Sadhu; Ho-Jae Cheang; Pu Chen; Yan Zhao

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  11. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  12. Polymer Electrolytes for Lithium/Sulfur Batteries

    Science.gov (United States)

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  13. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  14. Rechargeable solid polymer electrolyte battery cell

    Science.gov (United States)

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  15. Electrolytes for magnesium electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  16. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsu, Naofumi, E-mail: nohtsu@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Kozuka, Taro; Hirano, Mitsuhiro [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Arai, Hirofumi [Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan)

    2015-09-15

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO{sub 2} layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH{sub 4}){sub 2}O·5B{sub 2}O{sub 3}, (NH{sub 4}){sub 2}SO{sub 4}, or (NH{sub 4}){sub 3}PO{sub 4}, after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO{sub 2}), while incorporation from electrolyte was only observed for (NH{sub 4}){sub 3}PO{sub 4}. Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO{sub 2} formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials.

  17. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen......, as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity....

  18. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  19. Electrical, dielectric and electrochemical characterization of novel poly(acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate

    Science.gov (United States)

    Ngai, Koh Sing; Ramesh, S.; Ramesh, K.; Juan, Joon Ching

    2018-01-01

    A series of novel poly(acrylic acid)-based polymer electrolytes with high conductivities at room temperature has been prepared and studied. Polymer electrolytes composed of poly(acrylic acid) (PAA) and lithium tetrafluoroborate (LiBF4) were prepared by means of solution casting. The effect of the addition of LiBF4 on the properties of the PAA-based electrolyte matrices was analysed and investigated using impedance spectroscopy. The optimized PAA-based solid electrolyte showed an electrochemical stability window of 3.2 V. Thermogravimetric analysis indicated that the incorporation of LiBF4 into PAA matrix enhances the thermal stability. The structural properties of polymer electrolytes were studied by using X-ray diffraction analysis.

  20. Improved Electrolytic Hydrogen Peroxide Generator

    Science.gov (United States)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  1. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  2. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  3. Investigation of polymer electrolyte based on agar and ionic liquids

    Directory of Open Access Journals (Sweden)

    M. M. Silva

    2012-12-01

    Full Text Available The possibility to use natural polymer as ionic conducting matrix was investigated in this study. Samples of agarbased electrolytes with different ionic liquids were prepared and characterized by physical and chemical analyses. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][C2SO4], 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc] and trimethyl-ethanolammonium acetate, [Ch][OAc]. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction, scanning electron microscopy and Fourier Transform infrared spectroscopy. Electrolyte samples are thermally stable up to approximately 190°C. All the materials synthesized are semicrystalline. The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. The preliminary studies carried out with electrochromic devices (ECDs incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of ‘smart windows’, as well as ECD-based devices.

  4. 16th Polymer Electrolyte Fuel Cell Symposium

    Science.gov (United States)

    2016-11-29

    SECURITY CLASSIFICATION OF: The 16th Polymer Electrolyte Fuel Cell Symposium was devoted to all aspects of research, development, and engineering of...polymer electrolyte fuel cells (PEFCs), as well as low-temperature direct-fuel cells using either anion or cation exchange membranes. The symposium...29-11-2016 1-Sep-2016 28-Feb-2017 Final Report: 16th Polymer Electrolyte Fuel Cell Symposium The views, opinions and/or findings contained in this

  5. Electrolytic cell. [For separating anolyte and catholyte

    Science.gov (United States)

    Bullock, J.S.; Hale, B.D.

    1984-09-14

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  6. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  7. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium–nickel chloride (ZEBRA) battery is operated at relatively high temperature (250–350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β"-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. Finally, the cells also exhibited stable cycling performance even at 150 °C.

  8. Electrolyte chemistry control in electrodialysis processing

    Science.gov (United States)

    Hayes, Thomas D.; Severin, Blaine F.

    2017-12-26

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  9. Distribution of electrolytes in a flow battery

    Science.gov (United States)

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  10. Electrodeposition of Fe powder from acid electrolytes

    Directory of Open Access Journals (Sweden)

    VESNA M. MAKSIMOVIC

    2008-08-01

    Full Text Available Polarization characteristics of the electrodeposition processes of Fe powders from sulfate and chloride electrolytes and the morphology of the obtained powders were investigated. The morphology depended on the anion presence in the electrolyte but not on the current density in the investigated range. A characteristic feature of the dendritic powder with cauliflower endings obtained from sulfate electrolyte is the presence of cone-like cavities and the crystallite morphology of the powders surface. On the other hand, Fe powders electrodeposited from chloride electrolyte appear in the form of agglomerates. A soap solution treatment applied as a method of washing and drying provides good protection from oxidation of the powders.

  11. Plasma electrolytic oxidation of tantalum

    Directory of Open Access Journals (Sweden)

    Petković Marija

    2012-01-01

    Full Text Available This paper is a review of our research on the plasma electrolytic oxidation (PEO process of tantalum in 12-tungstosilicic acid. For the characterization of microdischarges during PEO, real-time imaging and optical emission spectroscopy (OES were used. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDS and XRD. Oxide coating morphology is strongly dependent on PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO3, Ta2O5 and SiO2.

  12. Therapeutic approach to electrolyte emergencies.

    Science.gov (United States)

    Schaer, Michael

    2008-05-01

    Hypokalemia, hyperkalemia, hyponatremia, hypernatremia, hypocalcemia, and hypercalcemia are commonly seen in emergency medicine. Severe abnormalities in any of these electrolytes can cause potentially life-threatening consequences to the patient. It is essential that the clinician understand and correct (if possible) the underlying cause of each disorder and recognize the importance of the rates of correction, especially with serum sodium disorders. The recommended doses in this article might have to be adjusted to the individual patient, and these modifications must be adjusted again to the pathophysiology of the primary underlying disorder.

  13. New electrolyte systems for capillary zone electrophoresis of metal cations and non-ionic organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Youchun [Iowa State Univ., Ames, IA (United States)

    1995-06-19

    Excellent separations of metal ions can be obtained very quickly by capillary electrophoresis provided a weak complexing reagent is incorporated into the electrolyte to alter the effective mobilities of the sample ions. Indirect photometric detection is possible by also adding a UV-sensitive ion to the electrolyte. Separations are described using phthalate, tartrate, lactate or hydroxyisobutyrate as the complexing reagent. A separation of twenty-seven metal ions was achieved in only 6 min using a lactate system. A mechanism for the separation of lanthanides is proposed for the hydroxyisobutyrate system.

  14. Colloidal Electrolytes and the Critical Micelle Concentration

    Science.gov (United States)

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  15. Identifying acid-base and electrolyte imbalances.

    Science.gov (United States)

    Gooch, Michael D

    2015-08-15

    Acid-base and electrolyte imbalances often complicate patient management in acute care settings. Correctly identifying the imbalance and its cause is vital. This article will review the physiology of acid-base and electrolyte balance, their common disturbances, associated causes, clinical manifestations, and management implications for nurse practitioners.

  16. Response behaviour of oxygen sensing solid electrolytes

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Scharenborg, A.H.A.; Burggraaf, A.J.

    1985-01-01

    The response time (t r) after a step change in oxygen partial pressure was investigated for some solid electrolytes used in Nernst type oxygen sensors. The electrolyte as well as the (porous) electrode material affect the value oft r. Stabilized Bi2O3 materials exhibit slower response rates (largert

  17. Relationship between some serum electrolytes and ...

    African Journals Online (AJOL)

    The effect of Trypanosoma brucei infection on changes in concentration of some serum electrolytes and the consequence of these changes on electrocardiographic (ECG) indices were investigated in dogs. The nature of association between each of the electrolytes and the various ECG indices were studied at different days ...

  18. The charge transport in polymeric gel electrolytes

    CERN Document Server

    Reiche, A

    2001-01-01

    The aim of the present thesis consisted in the study of the charge transport in gel electrolytes, which were obtained by photopolymerization of oligo(ethylene glycol) sub n -dimethacrylates with n=3, 9, and 23, and the survey of structure and property relations for the optimization of the electrolyte composition. The pressure dependence of the electric conductivity was measured. (HSI)

  19. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  20. Solid polymer electrolyte from phosphorylated chitosan

    Science.gov (United States)

    Fauzi, Iqbal; Arcana, I. Made

    2014-03-01

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component's composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it's characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10-6 S/cm up to 6.01 × 10-4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10-3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  1. In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidation.

    Science.gov (United States)

    Whiteside, Paul; Matykina, Endzhe; Gough, Julie E; Skeldon, Peter; Thompson, George E

    2010-07-01

    Titania-based coatings produced by plasma electrolytic oxidation are being investigated as bioactive surfaces for titanium implants. In this study, plasma electrolytic oxidation was performed in calcium- and phosphorus-based electrolytes under DC conditions, resulting in coatings of thickness of approximately 8-15 mum. Coating morphologies, microstructures, and compositions were examined by scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, and electron probe microanalysis. The coatings revealed a cratered morphology, with incorporated calcium and phosphorus species. Proliferation rates of primary human osteoblasts cells on the coatings were up to approximately 37% faster than those for uncoated titanium and 316L stainless steel reference materials. Further, the coatings assisted cell adhesion and generation and anchorage of collagen. The amount of collagen was upto approximately 2.4 times greater than for the reference substrates. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  2. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro; Willey, Jason

    2017-08-08

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.

  3. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  4. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  5. Halothane anesthesia and serum electrolytes.

    Science.gov (United States)

    Alarcón, O M; Reinosa, J; Medina de Caraballo, M I; Silva, T

    1996-04-01

    The disparate observations on the effect of halothane anesthesia on the serum electrolyte levels in humans prompted us to carry out this work. In this study the levels of sodium, potassium, magnesium, calcium, chloride and inorganic phosphorus were determined in serum of 25 male and 15 female patients, with an age range of 15 to 40 years, who had various pathologies requiring surgery and who were given halothane anesthesia. Significant difference were detected in the concentrations of sodium, potassium, calcium and inorganic phosphorus between presurgical and post-anesthesia induction samples. The truly striking finding in the present study was the significant increase in serum inorganic phosphorus in the intra-operative period. It is suspected that this increase is due to a defect in phosphorylating mechanisms which leads to a rapid hydrolysis of stored and preformed ATP.

  6. Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents

    Science.gov (United States)

    Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar

    2010-01-01

    A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non

  7. Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C

    Science.gov (United States)

    McCleskey, R. Blaine

    2011-01-01

    The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) mol•kg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.

  8. Antibacterial efficiencies of TiO{sub 2} nanostructured layers prepared in organic viscous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, Cristina [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Popescu, Marian [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Ungureanu, Camelia [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Pirvu, Cristian, E-mail: c_pirvu@yahoo.com [University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2015-06-30

    Graphical abstract: - Highlights: • Ti substrate was covered with a nanostructured TiO{sub 2} layer in viscous electrolytes. • The formation mechanism and surface morphologies are very different. • The shielding covering the nanotubes incorporate the used electrolytes. • TiO{sub 2} nanostructured layers showed antibacterial efficiencies. - Abstract: Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO{sub 2} layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO{sub 2} nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

  9. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  10. Multi-layered proton-conducting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  11. [Cardiac arrhythmias caused by electrolyte imbalance].

    Science.gov (United States)

    Nishimura, M; Nakayama, K; Ishikawa, Y

    1996-08-01

    Cardiac arrhythmias are known to be caused by many factors. Among them, electrolyte imbalance is the most important because of electrical activity of the heart is composed of transmembrane fluxes of Na+, Ca2+ and K+. In this review article, we describe the effects of high or low concentrations of these electrolytes on the active and passive electrical properties of the membrane in the cardiac tissues, and the mechanisms by which these electrolytes cause abnormal impulse formation and conduction in the heart. Antagonism and synergism of electrolytes and pathological conditions such as digitalis intoxication and ischemia are discussed with respect to not only cardiac electrophysiology but also cellular metabolism. A pathophysiological role of Mg2+ to maintain normal excitation and conduction of the heart is also pointed out.

  12. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  13. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  14. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    OpenAIRE

    Chur Hoan Lim; Ji Hyun Han; Joon Jin; Ji Eun Yu; Jin Ook Chung; Dong Hyeok Cho; Dong Jin Chung; Min Young Chung

    2015-01-01

    Background We investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome. Methods In a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses. Results In patients with Sheehan's syndrome, the serum levels of sodiu...

  15. Hypercalcemia and electrolyte disturbances in malignancy.

    Science.gov (United States)

    Barri, Y M; Knochel, J P

    1996-08-01

    Hypercalcemia and electrolyte abnormalities are common problems in patients with malignancy. In this article we discuss the pathophysiology, clinical features, and management of hypercalcemia, which is the most common metabolic abnormality. We also analyze the electrolyte disturbances that occur in association with malignancy, including hyponatremia, hypokalemia, hypomagnesemia, hypophosphatemia, and hyperkalemia. Recognition and treatment of these disturbances are important parts of the management of patients with malignant disease.

  16. Magnesium removal in the electrolytic zinc industry

    OpenAIRE

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) or expensive. Therefore, an alternative process route is explored in which magnesium is removed from zinc electrolyte by selective precipitation of magnesium fluoride (sellaite). As standard applica...

  17. Handheld Microneedle-Based Electrolyte Sensing Platform.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Philip R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rivas, Rhiana [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, David [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Edwards, Thayne L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Koskelo, Markku [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Shawa, Luay [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chavez, Victor H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Polsky, Ronen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  18. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  19. A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid.

    Science.gov (United States)

    Jung, Kyu-Nam; Lee, Ji-In; Jung, Jong-Hyuk; Shin, Kyung-Hee; Lee, Jong-Won

    2014-05-28

    A quasi-solid-state lithium-oxygen battery constructed using a gel polymer electrolyte with an ionic liquid is proposed. The battery architecture incorporates a design feature that can be easily scaled up in size for use in large systems. The feasibility study demonstrates that the battery operates successfully for repeated discharge-charge cycles.

  20. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell : Dynamic Pore-Network Modeling

    NARCIS (Netherlands)

    Qin, C.

    2015-01-01

    The pore-scale modeling is a powerful tool for increasing our understanding of water transport in the fibrous gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In this work, a new dynamic pore-network model for air-water flow in the GDL is developed. It incorporates water vapor

  1. Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Krause, Frederick C.

    2011-01-01

    A number of future NASA missions involving the exploration of the Moon and Mars will be human-rated and thus require high-specific-energy rechargeable batteries that possess enhanced safety characteristics. Given that Li-ion technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) automotive applications. Therefore, extensive effort has been devoted recently to developing non-flammable electrolytes to reduce the flammability of the cells/battery. A number of electrolyte formulations have been developed, including systems that (1) incorporate greater concentrations of the flame-retardant additive (FRA); (2) use di-2,2,2-trifluoroethyl carbonate (DTFEC) as a co-solvent; (3) use 2,2,2- trifluoroethyl methyl carbonate (TFEMC); (4) use mono-fluoroethylene carbonate (FEC) as a co-solvent and/or a replacement for ethylene carbonate in the electrolyte mixture; and (5) utilize vinylene carbonate as a "SEI promoting" electrolyte additive, to build on the favorable results previously obtained. To extend the family of electrolytes developed under previous work, a number of additional electrolyte formulations containing FRAs, most notably triphenyl phosphate (TPP), were investigated and demonstrated in experimental MCMB (mesocarbon micro beads) carbon- LiNi(0.8)Co(0.2)O2 cells. The use of higher concentrations of the FRA is known to reduce the flammability of the electrolyte solution, thus, a concentration range was investigated (i.e., 5 to 20 percent by volume). The desired concentration of the FRA is the highest amount tolerable without adversely affecting the performance in terms of reversibility, ability to operate over a wide temperature range, and

  2. Effect of Poly(Ether Urethane) Introduction on the Performance of Polymer Electrolyte for All-Solid-State Dye-Sensitized Solar Cells

    Science.gov (United States)

    Zhou, Yan-Fang; Xiang, Wan-Chun; Fang, Shi-Bi; Chen, Shen; Zhou, Xiao-Wen; Zhang, Jing-Bo; Lin, Yuan

    2009-12-01

    The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I-3 diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage Voc by shifting the band edge of TiO2 to a negative value. Scanning electron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.

  3. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Directory of Open Access Journals (Sweden)

    W. Widanarto

    Full Text Available An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-xTeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6, monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10−7 S cm−1 at the frequency of 54 Hz and in the temperature range of 323–473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures. Keywords: Zinc-tellurite, Glass-ceramics, X-ray diffraction, Ionic conductivity, Lithium oxide

  4. Incorporating Feminist Standpoint Theory

    DEFF Research Database (Denmark)

    Ahlström, Kristoffer

    2005-01-01

    As has been noted by Alvin Goldman, there are some very interesting similarities between his Veritistic Social Epistemology (VSE) and Sandra Harding’s Feminist Standpoint Theory (FST). In the present paper, it is argued that these similarities are so significant as to motivate an incorporation...

  5. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.

    Science.gov (United States)

    Hu, Pu; Duan, Yulong; Hu, Deping; Qin, Bingsheng; Zhang, Jianjun; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2015-03-04

    LiMn2O4-based batteries exhibit severe capacity fading during cycling or storage in LiPF6-based liquid electrolytes, especially at elevated temperatures. Herein, a novel rigid-flexible gel polymer electrolyte is introduced to enhance the cyclability of LiMn2O4/graphite battery at elevated temperature. The polymer electrolyte consists of a robust natural cellulose skeletal incorporated with soft segment poly(ethyl α-cyanoacrylate). The introduction of the cellulose effectively overcomes the drawback of poor mechanical integrity of the gel polymer electrolyte. Density functional theory (DFT) calculation demonstrates that the poly(ethyl α-cyanoacrylate) matrices effectively dissociate the lithium salt to facilitate ionic transport and thus has a higher ionic conductivity at room temperature. Ionic conductivity of the gel polymer electrolyte is 3.3 × 10(-3) S cm(-1) at room temperature. The gel polymer electrolyte remarkably improves the cycling performance of LiMn2O4-based batteries, especially at elevated temperatures. The capacity retention after the 100th cycle is 82% at 55 °C, which is much higher than that of liquid electrolyte (1 M LiPF6 in carbonate solvents). The polymer electrolyte can significantly suppress the dissolution of Mn(2+) from surface of LiMn2O4 because of strong interaction energy of Mn(2+) with PECA, which was investigated by DFT calculation.

  6. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  7. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  8. The buffer effect in neutral electrolyte supercapacitors

    Science.gov (United States)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  9. Acute Symptomatic Seizures Caused by Electrolyte Disturbances.

    Science.gov (United States)

    Nardone, Raffaele; Brigo, Francesco; Trinka, Eugen

    2016-01-01

    In this narrative review we focus on acute symptomatic seizures occurring in subjects with electrolyte disturbances. Quite surprisingly, despite its clinical relevance, this issue has received very little attention in the scientific literature. Electrolyte abnormalities are commonly encountered in clinical daily practice, and their diagnosis relies on routine laboratory findings. Acute and severe electrolyte imbalances can manifest with seizures, which may be the sole presenting symptom. Seizures are more frequently observed in patients with sodium disorders (especially hyponatremia), hypocalcemia, and hypomagnesemia. They do not entail a diagnosis of epilepsy, but are classified as acute symptomatic seizures. EEG has little specificity in differentiating between various electrolyte disturbances. The prominent EEG feature is slowing of the normal background activity, although other EEG findings, including various epileptiform abnormalities may occur. An accurate and prompt diagnosis should be established for a successful management of seizures, as rapid identification and correction of the underlying electrolyte disturbance (rather than an antiepileptic treatment) are of crucial importance in the control of seizures and prevention of permanent brain damage.

  10. Negative Transference Numbers in Polymer Electrolytes

    Science.gov (United States)

    Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash

    Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.

  11. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  12. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  13. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  14. Multi component equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; de Hemptinne, Jean-Charles

    2007-01-01

    Four equations of state have been implemented and evaluated for multi component electrolyte solutions at 298.15K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three...... equations of state, Peng-Robinson, Soave-Redlich-Kwong, or Cubic-Plus-Association (CPA). Long range interactions are described by either the simplified mean spherical approximation (MSA) solution of the Ornstein–Zernicke equation or the simplified Debye-Hückel term. An optional Born term is added...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multi component test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. In order to describe the thermodynamics of this multi component system, ion specific parameters were...

  15. Multicomponent equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; Hemptinne, Jean-Charles de

    2007-01-01

    Four equations of state have been implemented and evaluated for multicomponent electrolyte solutions at 298.15 K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three...... equations of state, Peng-Robinson, Soave-Redlich-Kwong, or Cubic-Plus-Association (CPA). Long-range interactions are described by either the simplified mean spherical approximation (MSA) solution of the Ornstein-Zernicke equation or the simplified Debye-Huchel term. An optional Born term is added...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multicomponent test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. To describe the thermodynamics of this multicomponent system, ion specific parameters were determined...

  16. DNA Attraction in Monovalent and Divalent Electrolytes

    Science.gov (United States)

    Luan, Binquan; Aksimentiev, Aleksei

    2010-01-01

    The dependence of the effective force on the distance between two DNA molecules was directly computed from a set of extensive all-atom molecular dynamics simulations. The simulations revealed that in a monovalent electrolyte the effective force is repulsive at short and long distances, but can be attractive in the intermediate range. This attractive force is, however, too weak (~5pN per turn of a DNA helix) to induce DNA condensation in the presence of thermal fluctuations. In divalent electrolytes, DNA molecules were observed to form a bound state, where Mg2+ ions bridged minor groves of DNA. The effective force in divalent electrolytes was predominantly attractive, reaching a maximum of 42pN per one turn of a DNA helix. PMID:18975864

  17. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact...... of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  18. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    Science.gov (United States)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  19. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  20. Theory of electrohydrodynamic instabilities in electrolytic cells

    Science.gov (United States)

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  1. Small domain-size multiblock copolymer electrolytes

    Science.gov (United States)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  2. Solid electrolytes strengthened by metal dispersions

    Science.gov (United States)

    Lauf, R.J.; Morgan, C.S.

    1981-10-05

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  3. Classical thermodynamics of non-electrolyte solutions

    CERN Document Server

    Van Ness, H C

    1964-01-01

    Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for

  4. Doping Cu{sub 2}O in Electrolyte Solution: Dopant Incorporation, Atomic Structures and Electrical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Meng; Zhang, Qiming

    2013-11-24

    We have pursued a number of research activities between April 2010 and April 2011: A detailed study on n-type doping in Cu2O by Br; An analysis of natural resource limitations to terawatt-scale solar cells; Attempt to achieve a 1.4-eV direct band gap in Ni sulfides (NiSx); First-principles studies of doping in Cu2O and electronic structures of NiSx.

  5. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo...

  6. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  7. Synthesis and analysis of processes with electrolyte mixtures

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Gani, Rafiqul; Rasmussen, Peter

    1995-01-01

    A computer aided system for synthesis, design and simulation of crystallization and fractional crystallization processes with electrolyte mixtures is presented. The synthesis methodology is based on the use of computed solubility diagrams for the corresponding electrolyte systems....

  8. The use of anions with sulfate function in electrolyte for lithium battery. Study of transport mechanism; Utilisation d'anions a fonction sulfate dans des electrolytes pour batterie au lithium. Etude des mecanismes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Ch.

    2005-05-15

    Lithium salts based on oligo-ether sulfate were synthesized and characterised. They incorporate oxy-ethylene units which enable the lithium cation salvation and, potentially, their use as ionic liquids. Their properties as lithium salts dissolved in liquid or polymer electrolytes were evaluated. Their electrochemical and thermal stabilities are sufficient for lithium battery application. Due to their weak dissociation in POE, their conductivities are fairly low. On the other hand, they have high cationic transference numbers. In mixture with usual salts as LiTFSI, they provide a good compromise between conductivities/transference number/cost. The second part of this study deals with the synthesis and characterisation of an ionomer with sulfate function and polyether backbone. The electrochemical, physical and chemical properties of this material show that it could be used as polymer electrolyte. Its potential as cross-linked gelled polymer electrolyte is outstanding. Structural analyses on an ionomeric monocrystal have been corroborated with quantum chemistry calculations. (author)

  9. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  10. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  11. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...... for electrolyte conductivity from combinations of pressure, current density and electrolyte width among others....

  12. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 3 ... Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. ... Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction ...

  13. Performance characteristics of a gelled-electrolyte valve-regulated ...

    Indian Academy of Sciences (India)

    Unknown

    12 V/25 AH gelled-electrolyte valve-regulated lead-acid batteries have been assembled in-house ... 1997). In the technical literature, the debate over the rela- ... in-house. It is found that while the performance of the gelled-electrolyte VRLA battery is similar to both the. AGM–VRLA and flooded-electrolyte lead-acid batteries.

  14. EFFECT OF MULTIPARITY ON ELECTROLYTE COMPOSITION ...

    African Journals Online (AJOL)

    Daniel Owu

    Summary: Pregnancy affects the physiology of the pregnant woman particularly the endocrine, cardiovascular and the renal systems. This work was therefore set to ascertain the state of electrolytes in pregnancy and how it affects blood pressure using multiparity as a factor. One hundred and twenty (120) women were used ...

  15. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  16. Haematological and serum electrolyte responses in goats ...

    African Journals Online (AJOL)

    ADEYEYE

    2016-07-21

    Jul 21, 2016 ... 2000; Lobo et al., 2013). In addition to the neuro- endocrine and metabolic changes, acid-base and electrolyte status of animals are also altered peri- operatively (Andersen & Wang, 2000; Rassam &. Counsell, 2005; Kwak et al., 2010). Traumatic injuries such as fractures and their causative agents have ...

  17. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    Science.gov (United States)

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  18. Evaluation of electrolyte imbalance among tuberculosis patients ...

    African Journals Online (AJOL)

    Adebimpe Wasiu Olalekan

    2015-02-24

    Feb 24, 2015 ... a Department of Community Medicine, College of Health Sciences, Osun State University Osogbo, Osun State, Nigeria b Central ... were significantly decreased in TB patients on treatment compared to new case tuberculosis NCT ... electrolyte values in controls with pulmonary tuberculosis patients on ...

  19. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  20. Fuel cell electrolyte membrane with basic polymer

    Science.gov (United States)

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  1. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    Directory of Open Access Journals (Sweden)

    Chur Hoan Lim

    2015-12-01

    Full Text Available BackgroundWe investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome.MethodsIn a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses.ResultsIn patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46, 26.9% (n=21, 35.9% (n=28, 47.4% (n=37, and 23.1% (n=18, respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all P<0.05. Levels of potassium in serum were positively correlated with adrenocorticotrophic hormone (ACTH and growth hormone (GH levels (all P<0.05. Levels of inorganic phosphate in serum were positively correlated with levels of thyroid-stimulating hormone, prolactin, and GH (all P<0.05, and levels of magnesium in serum were positively correlated with delta ACTH (P<0.01.ConclusionElectrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease.

  2. Electrolytes in the cornea: a therapeutic challenge.

    Science.gov (United States)

    Schrage, N F; Flick, S; Redbrake, C; Reim, M

    1996-12-01

    Reported here are the results of electrolyte measurements in different layers of 70 apparently normal human corneas. Samples were examined by energy-dispersive X-ray analysis under calibrated conditions in a scanning electron microscope. The method allows the simultaneous quantitative analysis of, among others, sodium (Na), chloride (Cl), phosphorus (P) and potassium (K). The results are related to the dry weight of the analyzed samples. Four distinct layers, subepithelium, middle stroma, posterior stroma and Descemet's membrane, were analysed in each cornea. In the middle stroma we found concentrations of: sodium 0.609 +/- 0.13, chloride 0.557 +/- 0.115, potassium 0.058 +/- 0.02 and phosphorus 0.038 +/- 0.01 (mol/kg dry weight) [corrected]. The collation of normal electrolyte concentrations provides reference values for future studies on changes of the corneal electrolyte composition in diseased or injured eyes. The electrolyte composition of rinsing fluids or eye drops should be adjusted to that of the corneal stroma. Phosphate buffer, for example, is not a good vehicle for topical eye treatments and should be replaced by organic buffering systems.

  3. Electromagnetic excitation of ultrasound in electrolytes

    Science.gov (United States)

    Tankovsky, N. S.

    1996-11-01

    An electromagnetic explanation is given in earlier experimental evidence for the possibility of exciting acoustic signals by a transient electric field in an electrolyte. The theory is in agreement with experimental observations of acoustic signals excited by some elementary electric signals. The described mechanism can be applied to the construction of ultrasonic transducers operating in liquids or in living tissues.

  4. Fuel cell electrolyte membrane with basic polymer

    Energy Technology Data Exchange (ETDEWEB)

    Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  5. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum)

  6. International Symposium on Polymer Electrolytes (1st)

    Science.gov (United States)

    1987-06-01

    Laboratoire de Chimie Macromoldculaire et Papeti~re, Ecole Franfaise de Papeterie (INPG), BP 65, 38402 Saint Martin d’H~res cedex, France. INTRODUCTION The use...Ilo iii i 14J SOLID POLYMER ELECTROLYTES WITH STABLE ELECTROCHEMICAL PROPERTIES C. Carrb, T. Hamaide, A. Guyot. Laboratoire des.Natbriaux Organiques

  7. Polymeric Electrolytic Hygrometer For Harsh Environments

    Science.gov (United States)

    Lawson, Daniel D.; Shakkottai, Parthasarathy; Venkateshan, Shakkottai P.

    1989-01-01

    Design of polymeric electrolytic hygrometer improved to meet need for reliable measurements of relative humidity in harsh environments of pulpmills and papermills. Redesigned sensor head features shorter, more-rigidly-held sensing element, less vulnerable than previous version to swell and loss of electrical contact. Useful for control of batch dryers in food and pharmaceutical industries.

  8. Surface tension of aqueous electrolyte solutions. Thermodynamics

    NARCIS (Netherlands)

    Drzymala, J.; Lyklema, J.

    2012-01-01

    A thermodynamic theory is developed for obtaining the enthalpic and entropic contributions to the surface excess Gibbs energy of electrolyte solutions from the dependence of the surface tension on concentration and temperature. For elaboration, accurate activity coefficients in solution as functions

  9. Ultrasonic hydrometer. [Specific gravity of electrolyte

    Science.gov (United States)

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  10. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    We aimed to assess the effect of well known antioxidant carnosine on disturbed plasma and intraerythrocytes electrolytes and Na+-K+-ATPase activity by cisplatin. 24 male albino Wistar rats were selected and divided into 4 groups: Group I = untreated control; Group II = cisplatin control (received cisplatin at a dose of 3 mg/ ...

  11. Relationship between some serum electrolytes and ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-02-03

    Feb 3, 2014 ... Ajibola & Oyewale/Sokoto Journal of Veterinary Sciences (2014) 12(1): 36-44. http://dx.doi.org/10.4314/sokjvs.v12i1.6. Relationship between some serum electrolytes and electrocardiographic indices of Trypanosoma brucei infected dogs. ES Ajibola. 1*. & JO Oyewale. 2. 1. College of Veterinary Medicine, ...

  12. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P.B.; Roij, van R.; Bazant, M.Z.; Biesheuvel, P.M.

    2016-01-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which

  13. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P. B.; Roij, R. van; Bazant, M. Z.; Biesheuvel, P. M.

    2016-01-01

    We revisit the classical problem of the flow of an electrolyte solution through charged capillaries (nanopores). In the limit where the length of the capillary is much larger than its radius, the problem can be simplified to a one-dimensional averaged flux-force formalism that relates the relevant

  14. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  15. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  16. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

    Science.gov (United States)

    Yu, Xingwen; Manthiram, Arumugam

    2017-11-21

    Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li+-ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO3. The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li+-ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li

  17. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  18. SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the Anode/Electrolyte Interface

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.; Edwards, Danny J.; Coyle, Christopher A.; Cramer, Carolyn N.

    2010-04-09

    The ohmic resistance of anode-supported solid oxide fuel cells having a manganese-based cathode was lowered when operated in synthetic coal gas containing hydrogen chloride. This effect was not observed for cells with cathodes that did not contain manganese. Substantial amounts of Mn were found throughout the grain boundaries of the 8 mole% yttria-stabilized zirconia (8YSZ) electrolyte. Exposure to HCl partially removed Mn near the anode/electrolyte interface, presumably by volatilization as MnCl2(g). This work suggests that one of the underlying causes of higher than expected electrolyte resistance in anode-supported SOFCs is a lowering of the ionic conductivity of 8YSZ by incorporation of manganese.

  19. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  20. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    Science.gov (United States)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  1. Supersaturated Electrolyte Solutions: Theory and Experiment

    Science.gov (United States)

    Izmailov, Alexander F.; Myerson, Allan S.; Na, Han-Soo

    1995-01-01

    Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for electrolyte solutions is described in terms of the conserved order parameter omega(r,t) associated with fluctuations of the mean solute concentration n(sub 0). Parameters of the corresponding Ginzburg-Landau free energy functional which defines the dynamics of metastable state relaxation are determined and expressed through the experimentally measured quantities. A correspondence of 96-99 % between theory and experiment for all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin), and its calculation for various electrolyte solutions at 298 K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has allowed both analytical and numerical investigation of the number-size N(sub c) of nucleation monomers (aggregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also allowed estimations for the surface tension Alpha, and equilibrium bulk energy Beta per solute molecule in the nucleation monomers. The dependence of these properties on the temperature T and on the solute concentration n(sub 0) through the entire metastable zone (from saturation concentration n(sub sat) to spinodal n(sub spin) is examined. It has been demonstrated that there are the following asymptotics: N(sub c), = I at spinodal

  2. Plasma electrolytic oxidation of Titanium Aluminides

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  3. Number density of liquid inclusions formed in frozen aqueous electrolyte.

    Science.gov (United States)

    Hashimoto, Takuya; Harada, Makoto; Nojima, Shuichi; Okada, Tetsuo

    2013-10-07

    Frozen aqueous chlorides (≤50 mM) are characterized by using confocal fluorescence microscopy and small angel X-ray scattering (SAXS). The former method allows us to determine the size of a liquid inclusion formed in the ice matrix at temperatures above the eutectic point of the system (t(eu)). Isolated liquid inclusions of a uniform size are formed when the temperature of a frozen electrolyte increases past t(eu). The size of the liquid inclusions depends on the observation temperature as well as on the concentration (c(salt)) and type of salt dissolved in the original unfrozen solution. However, the number density of liquid inclusions is almost constant and independent of these experimental parameters, particularly when an electrolyte is frozen in liquid nitrogen. Salt accumulation can then occur at the imperfections of the ice crystals. The occurrence probability of the imperfections is independent of the nature of an incorporated salt. The amount of a salt confined in each inclusion ranges from 7 to 240 fmol, depending on c(salt). SAXS measurements provide information on the size of individual salt crystals formed at temperatures below t(eu). The radius of gyration of a salt crystal ranges from 2 to 2.8 nm, and does not depend significantly on c(salt). Thus, each inclusion is formed from 10(6)-10(9) nanocrystals, which can act as seeds. When doped ice is prepared at higher temperatures, for example -16 °C, the isolation of liquid inclusions is not sufficient and coalescence occurs more easily upon an increase in temperature or cs(alt). However, when c(salt) is lower than 10 mM, the number density of liquid inclusions is almost constant, irrespective of the freezing temperature. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    Science.gov (United States)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  5. Integration of UV-cured Ionogel Electrolyte with Carbon Paper Electrodes

    Directory of Open Access Journals (Sweden)

    Stephanie Flores Zopf

    2014-02-01

    Full Text Available A test bed with a coplanar architecture is employed to investigate the integration of an in situ cross-linked, polymer-supported ionogel with several commercially available, high surface area carbon paper electrodes. Specifically, a UV-cured poly(ethylene glycol diacrylate (PEGDA-supported ionogel electrolyte film is formed in situ against a variety of porous electrodes comprising: a carbon fiber paper, a carbon aerogel paper, and four carbon nanotube-based papers. Electrochemical impedance spectroscopy measurements reveal that the relative performance of a particular carbon paper with the neat ionic liquid is not necessarily indicative of its behavior when integrated with the solid ionogel electrolyte. The coplanar test bed can therefore serve as a useful tool to help guide the selection of suitable carbon-based electrode structures for supercapacitors that incorporate UV-cured ionogels created in situ for wearable energy storage applications.

  6. Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.; Li, W.; Wang, X.; Lin, Y.; Xiao, X.; Fang, S. [Chinese Academy of Sciences, Beijing (China). Institute of Chemistry

    2003-07-15

    Polymer electrolytes were prepared by blending high molecular weight poly(ethylene oxide) (PEO) and a series of novel quaternary ammonium iodides, the polysiloxanes with oligo (oxyethylene) side chains and quaternary ammonium groups. X-ray diffraction (XRD) measurements ensured relatively low crystallinity when the quaternary ammonium iodides were incorporated into the PEO host. The ionic conductivity of these complexes was improved with the addition of plasticizers. The improvement in the ionic conductivity was determined by the polarity, viscosity and amounts of plasticizers. A plasticized electrolyte containing the novel quaternary ammonium iodide was successfully used in fabricating a quasi-solid-state dye-sensitized solar cell for first time. The fill factor and energy conversion efficiency of the cell were calculated to be 0.68 and 1.39%, respectively. (author)

  7. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  8. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  9. A Comparative Study of Electrolyte Flow and Slime Particle Transport in a Newly Designed Copper Electrolytic Cell and a Laboratory-Scale Conventional Electrolytic Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2017-10-01

    An innovative copper electrolytic cell was designed with its inlet at the cell top and its outlet near the cell bottom, in opposite to conventional electrolytic cells. It was modeled in COMSOL Multiphysics to simulate copper electrorefining process. Unlike conventional electrorefining cells, downward electrolyte flows are more dominant in the fluid flow field in this cell, which leads to faster settlement of slime particles and less contamination to the cathode. Copper concentration profiles, electrolyte flow velocity field, slime particle movements, and slime particle distributions were obtained as simulation results, which were compared with those in a laboratory-scale conventional electrolytic cell. Advantages of the newly designed electrolytic cell were found: copper ions are distributed more uniformly in the cell with a thinner diffusion layer near the cathode; stronger convection exists in the inter-electrode domain with dominant downward flows; and slime particles have larger possibilities to settle down and are less likely to reach the cathode.

  10. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  11. Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. V. Gnedenkov

    2015-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and silica nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is two times higher than that for the sample with base PEO layer. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity (up to two orders of magnitude for ZrO2-containing coating of porousless sublayer in comparison with base PEO layer. Incorporation of silica and zirconia particles into the coating increases the mechanical performances. The layers containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the base electrolyte.

  12. Asymmetric adsorption in an open electrolytic cell

    Science.gov (United States)

    Bousiadi, S.; Lelidis, I.

    2018-01-01

    We investigate the effect of adsorption-desorption phenomenon of ions in an asymmetric electrolytic cell at open circuit conditions. Our approach is based on the Poisson-Nernst-Planck theory for electrolytes and the kinetic model of Langmuir for the description of adsorption-desorption phenomena on the electrodes. When the electrodes are immersed into the solution, selective ion adsorption takes place. It is shown, that the selective ion adsorption is responsible for generating an electrical potential difference between the electrodes of the cell. The analytical expressions for the potential difference and for the charge distribution are calculated. Finally, the time evolution of the system is investigated and the relaxation times of the problem are deduced numerically.

  13. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  14. Anti-perovskite solid electrolyte compositions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  15. Ion-Chain Dynamics in Polymer Electrolytes

    OpenAIRE

    Carlos, L. D.; Videira, A. L. L.

    1996-01-01

    Representing polyether-salt systems by chains of interacting coordination shells, defined by the cation and by its nearest ligands, we derive the interaction potential between closest shells -- the inter-shells potential -- in terms of two-electron polarization effects. Values are presented for monovalent-based crystalline poly(ethylene oxide), PEO, electrolytes. For the eutectic composition $\\text{PEO}_{12} \\text{EuBr}_3$, the inter-shells energy is evaluated also by relating the empirical v...

  16. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented....

  17. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  18. Fabrication of cylinder type solid electrolyte electrolytic cell. Entojo kotai denkaishitsugata denkai seru no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Kuru, C.; Nagata, K.; Sasai, T.

    1994-03-18

    With the conventional cylinder type solid electrolyte fuel cell (cylinder type SOFC), the fuel electrode is formed on a supporting tube, and then subjected to heat treatment after the electrolyte is formed. At this time, nickel of the fuel electrode melts to block up pores, and nickel of the fuel electrode must be once made to nickel oxide and reduced to nickel again to avoid blocking up. This invention is concerned with sequential formation of the air electrode having comparatively high conductivity in high temperature oxidizing atmosphere and solid electrolyte of perovskite oxide on the periphery of the cylindrical supporting tube of the cylinder type SOFC, densification of the said air electrode and the solid electrolyte by heat treatment under oxidation atmosphere, and the formation of the fuel electrode on the outermost layer. The oxidation and reduction processes of nickel of the fuel electrode can be eliminated by forming the air electrode and electrolyte in sequence on the supporting tube followed by heat treatment. 1 fig.

  19. Nonaqueous Electrolyte Development for Electrochemical Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    K. Xu; S. P. Ding; T. R. Jow

    1999-09-01

    The objectives of this project were to demonstrate and develop new nonaqueous electrolytes that enable the development of high power (in excess of 2 kW/kg) and high energy (in excess of 8 Wh/kg) capacitors. Electrochemical capacitors are attractive to use because of their long cycle life and inherent high-power (or fast charge/discharge) capabilities. To realize the inherent high-power nature of the capacitor, the resistance of the capacitor needs to be low. The main focus of this project is on the ionic part of capacitor resistance, which is largely determined by the electrolyte, especially the electrolyte's conductivity. To achieve the objectives of this project, two approaches were used. The first was to search for the proper solvent mixtures within the commercially available quaternary ammonium salts such as tetraethyl ammonium tetrafluoroborate (Et4NBF4) or tetraethyl ammonium hexafluorophosphate (Et4NPF6). The second approach was to use the commonly available solvent system s but develop new salts. Substantial advances were made in quaternary ammonium salts and solvent systems were identified that can withstand high voltage operations. However, improvement in the salt alone is not sufficient. Improvements in the low-temperature stability of a capacitor rely not only on the salts but also on the solvents. Likewise, the high-temperature stability of the capacitor will depend not only on the salts but also on the solvents and carbon electrode materials.

  20. Electrolyte Imbalance in Patients with Sheehan's Syndrome.

    Science.gov (United States)

    Lim, Chur Hoan; Han, Ji Hyun; Jin, Joon; Yu, Ji Eun; Chung, Jin Ook; Cho, Dong Hyeok; Chung, Dong Jin; Chung, Min Young

    2015-12-01

    We investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome. In a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses. In patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46), 26.9% (n=21), 35.9% (n=28), 47.4% (n=37), and 23.1% (n=18), respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all PElectrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease.

  1. Hindered Glymes for Graphite-Compatible Electrolytes.

    Science.gov (United States)

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nepal CRS project incorporates.

    Science.gov (United States)

    1983-01-01

    The Nepal Contraceptive Retail Sales (CRS) Project, 5 years after lauching product sales in June 1978, incorporated as a private, nonprofit company under Nepalese management. The transition was finalized in August 1983. The Company will work through a cooperative agreement with USAID/Kathmandu to complement the national family planning goals as the program continues to provide comtraceptives through retail channels at subsidized prices. Company objectives include: increase contraceptive sales by at least 15% per year; make CRS cost effective and move towards self sufficiency; and explore the possibility of marketing noncontraceptive health products to improve primary health care. After only5 years the program can point to some impressive successes. The number of retial shops selling family planning products increased from 100 in 1978 to over 8000, extending CRS product availability to 66 of the country's 75 districts. Retail sales have climbed dramatically in the 5-year period, from Rs 46,817 in 1978 to Rs 271,039 in 1982. Sales in terms of couple year protection CYP) have grown to 24,451 CYP(1982), a 36% increase over 1980 CYP. Since the beginning of the CRS marketing program, total distribution of contraceptives--through both CRS and the Family Planning Maternal and Child Haelth (FP/MCH) Project--has been increasing. While the FP/MCH program remains the largest distributor,contribution of CRS Products is increasing, indicating that CRS is creating new product acceptors. CRS market share in 1982 was 43% for condoms and 16% for oral contraceptives (OCs). CRS markets 5 products which are subsidized in order to be affordable to consumers as well as attractive to sellers. The initial products launched in June 1978 were Gulaf standard dose OCs and Dhaal lubricated colored condoms. A less expensive lubricates, plain Suki-Dhaal condom was introduced in June 1980 in an attempt to reach poorer rural populations, but rural distribution costs are excessive and Suki

  3. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  4. Effect of different electrolytes on the swelling properties of calyx[4]pyrrole-containing polyacrylamide membranes

    OpenAIRE

    Valente,Artur J. M.; Sobral, Abílio J. F. N.; Jiménez, Alfonso; Patachia, Sílvia; Oliveira, Ana R. C. B.; Lobo, Victor M. M.

    2006-01-01

    Calix[4]pyrrole (1) was synthesized and characterized and this macrocycle was incorporated in polyacrylamide gels. The presence of meso-octamethyl-porphyrinogen inside of gel was checked using infrared spectroscopy, differential scanning calorimetry, and swelling studies. The swelling degree of these hydrogels in equilibrium with different electrolytes (NaCl, LiCl, KCl, CaCl2 and AlCl3) was measured in a concentration range 0.1-0.5 mol dm-3. Although no significant alterations in the swelling...

  5. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  6. Break down of losses in thin electrolyte SOFCs

    DEFF Research Database (Denmark)

    Barfod, Rasmus; Hagen, Anke; Ramousse, S.

    2006-01-01

    The contributions of the individual components of the cell (anode, cathode, and electrolyte) to the cell resistance were determined experimentally, directly from impedance spectra obtained from a full cell. It was an anode supported thin electrolyte cell, consisting of a YSZ electrolyte, a Ni/YSZ.......1 eV, respectively, which is in relatively good agreement with literature values. The anode resistance was 0.24 Omega cm(2) and the cathode resistance was 0.58 Omega cm(2) at 700 degrees C, corresponding to 23% and 56% of the total resistance, respectively.......The contributions of the individual components of the cell (anode, cathode, and electrolyte) to the cell resistance were determined experimentally, directly from impedance spectra obtained from a full cell. It was an anode supported thin electrolyte cell, consisting of a YSZ electrolyte, a Ni...

  7. Flexible Li-CO2 Batteries with Liquid-Free Electrolyte.

    Science.gov (United States)

    Hu, Xiaofei; Li, Zifan; Chen, Jun

    2017-05-15

    Developing flexible Li-CO2 batteries is a promising approach to reuse CO2 and simultaneously supply energy to wearable electronics. However, all reported Li-CO2 batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO2 batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO4 -3 wt %SiO2 composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14×10-2  mS cm-1 ) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g-1 . Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg-1 , and long operation time of 220 h at different degrees of bending (0-360°) at 55 °C. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  9. Flexible Li-CO{sub 2} batteries with liquid-free electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaofei; Li, Zifan; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin (China)

    2017-05-15

    Developing flexible Li-CO{sub 2} batteries is a promising approach to reuse CO{sub 2} and simultaneously supply energy to wearable electronics. However, all reported Li-CO{sub 2} batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO{sub 2} batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO{sub 4}-3 wt %SiO{sub 2} composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14 x 10{sup -2} mS cm{sup -1}) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g{sup -1}. Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg{sup -1}, and long operation time of 220 h at different degrees of bending (0-360 ) at 55 C. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Morphology and Ionic Conductivity of Block Copolymer Electrolytes Containing Ionic Liquids

    Science.gov (United States)

    Park, Moon Jeong

    2015-03-01

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community towards the development of efficient electrochemical devices. Polymers containing charged species have the potential to serve as electrolytes in next-generation devices and achieving high ion transport properties in these electrolytes is the key to improving their efficiency. Although the synthesis and characterization of a wide variety of ion-containing polymers have been extensively reported over the last decade, quantitative understanding of the factors governing the ion transport properties of these materials is in its infancy. In this talk, I will present the current understanding of the diverse factors affecting the thermodynamics, morphologies and ion transport of ion-containing polymers by focusing on the use of ionic liquids (ILs). Various strategies for accessing improved transport properties of IL-containing polymers are elucidated by focusing on the role of IL-polymer interactions. The major accomplishment of obtaining well-defined morphologies for these IL-containing polymers by the use of block copolymer is particularly emphasized as a novel means of controlling the transport properties. The application of IL-incorporated polymer electrolytes in high temperature fuel cells and electro-active actuators is also enclosed.

  11. Chitosan-gold-Lithium nanocomposites as solid polymer electrolyte.

    Science.gov (United States)

    Begum, S N Suraiya; Pandian, Ramanathaswamy; Aswal, Vinod K; Ramasamy, Radha Perumal

    2014-08-01

    Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.

  12. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    Science.gov (United States)

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  13. DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)

    Science.gov (United States)

    2015-10-07

    AFRL-RX-WP-JA-2016-0302 DNA BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) Jitendra Kumar1, Fahima...BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c. PROGRAM...OH 45469 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 DNA based electrolyte/separator for lithium battery

  14. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    Science.gov (United States)

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI−) or bis(fluorosulfonyl)imide (FSI−) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  15. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    Directory of Open Access Journals (Sweden)

    Marija Kirchhöfer

    2014-08-01

    Full Text Available The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+ or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+, paired with bis(trifluoromethanesulfonylimide (TFSI− or bis(fluorosulfonylimide (FSI− anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes, while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies.

  16. Highly efficient solid-state dye-sensitized solar cells based on hexylimidazolium iodide ionic polymer electrolyte prepared by in situ low-temperature polymerization

    Science.gov (United States)

    Wang, Guiqiang; Yan, Chao; Zhang, Juan; Hou, Shuo; Zhang, Wei

    2017-03-01

    Solid-state dye-sensitized solar cells (DSCs) are fabricated using a novel ionic polymer electrolyte containing hexylimidazolium iodide (HII) ionic polymer prepared by in situ polymerization of N,N‧-bis(imidazolyl) hexane and 1,6-diiodohexane without an initiator at low temperature (40 °C). The as-prepared HII ionic polymer has a similar structure to alkylimidazolium iodide ionic liquid, and the imidazolium cations are contained in the polymer main chain; so, it can act simultaneously as the redox mediator in the electrolyte. By incorporating an appropriate amount of 1,3-dimethylimidazolium iodide (DMII) in HII ionic polymer (DMII/HII ionic polymer = 0.7:1, weight ratio), the conductivity of the ionic polymer electrolyte is greatly improved due to the formation of Grotthuss bond exchange. In addition, in situ synthesis of ionic polymer electrolyte guarantees a good pore-filling of the electrolyte in the TiO2 photoanode. As a result, the solid-state DSC based on the ionic polymer electrolyte containing HII ionic polymer and DMII without iodine achieves a conversion efficiency of 6.55% under the illumination of 100 mW cm-2 (AM 1.5), which also exhibits a good at-rest stability at room temperature.

  17. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2009-08-01

    Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.

  18. Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives

    Science.gov (United States)

    Smart, Marshall C.; Smith, Kiah A.; Bugga, Ratnakumar V.; Prakash, G. K. Surya

    2010-01-01

    Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this

  19. Design and synthesis of new electrolyte systems for lithium-ion batteries

    Science.gov (United States)

    Chakrabarti, Amartya

    Rechargeable lithium-ion batteries are extensively used in consumer electronic products, including laptop computers, cellular phones, cameras, camcorders, and medical devices. They have great potential for application in electric and hybrid electric vehicles by virtue of their high energy and power density. Research and development in this direction have been focused all around the globe. The major challenges include the higher cost, safety issues related to the solvents, and conductivities at lower ambient temperature of the solvent-free solid polymer electrolyte (SPE) systems. In this dissertation, three different approaches are presented to achieve an improved electrolyte system for lithium-ion batteries. A plasticizer was synthesized and incorporated into a conventional poly(ethylene oxide) (PEO)-based solid polymer electrolyte system. The ambient temperature ionic conductivity observed at room temperature was noteworthy, due to the decrease of the glass transition temperature of the polymer. Secondly, a branched polymer was synthesized and used as the base matrix in SPEs. Polymers with a higher order of branching remained undissolved in common organic solvents, thereby limiting the scope of their use for making films for the study. The ones with a lower order of branching exhibited ionic conductivities comparable to regular PEO-based electrolytes. The third and most successful approach involved the strategic design and synthesis of a series of low lattice energy lithium salts and their chemical, thermal and electrochemical characterization. In this methodology, the two-to-three step synthetic strategy involved chlorosulfonation of an activated aromatic ring, reaction of the corresponding sulfonyl chloride with trifluoromethanesulfonamide in the presence of triethylamine as a base, followed by lithiation of the resulting triethylammonium salt to generate monolithium, dilithium and scaffolded polylithium salts. The mono- and dilithium salts were tested in

  20. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  1. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  2. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  3. Polyethylene Glycol Without Electrolytes for Children With Constipation and Encopresis

    National Research Council Canada - National Science Library

    Loening-Baucke, Vera

    2002-01-01

    .... METHODSTwenty-eight children treated with polyethylene glycol without electrolytes were compared with 21 children treated with milk of magnesia to evaluate the efficiency, acceptability, side effects...

  4. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    Science.gov (United States)

    Sharp, Donald J.; Armstrong, Pamela S.; Panitz, Janda Kirk G.

    1998-01-01

    A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  5. Monitoring electrolyte concentrations in redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  6. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, D.J.; Armstrong, P.S.; Paintz, J.K.G.

    1998-04-01

    This report discusses the design of a solid electrolytic capacitor having a solid electrolyte comprised of manganese dioxide dispersed in an aromatic polyamide capable of to forming polyimide linkages. This solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  7. Aging Methodologies and Prognostic Health Management for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the ageing mechanisms of electronic components critical avionics systems such as the GPS and INAV are of critical importance. Electrolytic capacitors...

  8. Metal-air flow batteries using oxygen enriched electrolyte

    Science.gov (United States)

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie

    2017-08-01

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  9. Particle simulation of electrolytic ion motions for noise in electrolyte-insulator-semiconductor field-effect transistors

    Science.gov (United States)

    Chung, In-Young; Lee, Jungwoo; Seo, Munkyo; Park, Chan Hyeong

    2016-12-01

    We conduct particle simulation for drain current noise in electrolyte-insulator-semiconductor field-effect transistors, to simulate how the thermal motion of charged particles near the interface affects the electrical current noise in the channel. We consider three cases: bulk electrolytes without and with charged spheres located at two different distances from the electrolyte-dielectric interface. Our results show that the drain current noise from noise sources in the electrolyte can be modeled by the sum of Lorentzian spectra, whose corner frequencies are determined by the RC product of the resistances of the bulk electrolyte and the region between the charged spheres and the interface, and the capacitance of the dielectric. Also, as the charged spheres approach the electrolyte-dielectric interface, the noise level increases, in agreement with the published experimental results.

  10. Stability measurements of compost trough electrolytic respirometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-07-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  11. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  12. Electrolyte-plasma hardening of circular saws

    Science.gov (United States)

    Tyulyapin, A. N.; Tyurin, Yu. N.; Traino, A. I.; Yusupov, V. S.

    1998-01-01

    Cold circular saws with an external diameter of 600-900 mm and a disk thickness of 5-8 mm are used for cutting measured pieces of bent shapes and pipes in lines of shaping mills. Strict requirements are imposed on the quality of the circular saws, namely, they should possess high wear resistance of the teeth and withstand the loads exerted by the cut bent shapes in the direction perpendicular to the plane of the disk. A method of electrolyte-plasma hardening of circular saws with the use of pulse heating has been developed in order to meet these requirements.

  13. A new electrolytic magnesium production process

    Science.gov (United States)

    Sharma, Ram A.

    1996-10-01

    In this article, existing magnesium chloride electrolysis and thermal magnesium oxide reduction processes for producing magnesium are described and their limitations are pointed out. The theoretical background of a patented new process is outlined. In this process, magnesium oxide is dissolved in a rare-earth-chloride-containing electrolyte and electrolyzed to produce magnesium and oxygen like that of alumina in the Hall-Héroult process. It is also shown that the efficiency of the existing magnesium chloride electrolysis process should be improved greatly by adding a rare-earth chloride. In both cases, the magnesium produced is expected to be free from detrimental iron, nickel, copper, and boron impurities.

  14. Cantera and Cantera Electrolyte Thermodynamics Objects

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-19

    Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. It is a multi-organizational effort to create and formulate high quality 0D and 1D constitutive modeling tools for reactive transport codes.Institutions involved with the effort include Sandia, MIT, Colorado School of Mines, U. Texas, NASA, and Oak Ridge National Labs. Specific to Sandia's contributions, the Cantera Electrolyte Thermo Objects (CETO) packages is comprised of add-on routines for Cantera that handle electrolyte thermochemistry and reactions within the overall Cantera package. Cantera is a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. With this addition, Cantera can be extended to handle problems involving liquid phase reactions and transport in electrolyte systems, and phase equilibrium problemsinvolving concentrated electrolytes and gas/solid phases. A full treatment of molten salt thermodynamics and transport has also been implemented in CETO. The routines themselves consist of .cpp and .h files containing C++ objects that are derived from parent Cantera objects representing thermodynamic functions. They are linked unto the main Cantera libraries when requested by the user. As an addendum to the main thermodynamics objects, several utility applications are provided. The first is multiphase Gibbs free energy minimizer based on the vcs algorithm, called vcs_cantera. This code allows for the calculation of thermodynamic equilibrium in multiple phases at constant temperature and pressure. Note, a similar code capability exists already in Cantera. This version follows the same algorithm, but gas a different code-base starting point, and is used as a research tool for algorithm development. The second program, cttables, prints out tables of thermodynamic and kinetic information for thermodynamic and kinetic objects within Cantera. This program serves as a "Get the

  15. Electrolytic Valving Isolation for Cell Co-Culture Microenvironment with Controlled Cell Pairing Ratios

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341

  16. Electrolytic valving isolation of cell co-culture microenvironment with controlled cell pairing ratios.

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2014-12-21

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial-temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we have presented a cell-cell interaction microfluidic platform that can accurately control the co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We have verified that the electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we have performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays were successfully performed which showed that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells.

  17. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  18. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  19. Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    He, Daping; Tang, Haolin; Kou, Zongkui; Pan, Mu; Sun, Xueliang; Zhang, Jiujun; Mu, Shichun

    2017-05-01

    Engineered graphene materials (EGMs) with unique structures and properties have been incorporated into various components of polymer electrolyte membrane fuel cells (PEMFCs) such as electrode, membrane, and bipolar plates to achieve enhanced performances in terms of electrical conductivity, mechanical durability, corrosion resistance, and electrochemical surface area. This research news article provides an overview of the recent development in EGMs and EGM-based PEMFCs with a focus on the effects of EGMs on PEMFC performance when they are incorporated into different components of PEMFCs. The challenges of EGMs for practical PEMFC applications in terms of production scale, stability, conductivity, and coupling capability with other materials are also discussed and the corresponding measures and future research trends to overcome such challenges are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Skin irritation testing of antimicrobial conjugated electrolytes.

    Science.gov (United States)

    Wilde, Kristin N; Nguyen, Phuong A H; Whitten, David G; Canavan, Heather E

    2017-04-20

    Each year, the United States spends about $20 billion to treat people who have been infected with antibiotic resistant bacteria. Even so, the development of new antibiotics has slowed considerably since the mid-20th century. As a result, researchers are looking into developing synthetic compounds and materials with antimicrobial activities such as those made by the Schanze and Whitten groups [ACS Appl. Mater. Interfaces 3, 2820 (2011)]. Previously, they have demonstrated that poly(phenylene ethynylene) (PPE) based electrolytes and oligomeric end-only phenylene ethynylene (EO-OPE) based electrolytes possess strong biocidal activity. However, before the PPE and OPE can be used with humans, skin irritation tests are required to ensure their safety. In this work, in vitro skin assays are used to predict in vivo irritation. Tissues were conditioned for 24 h, exposed to test substances for 1 h, and then tested for viability using colorimetric and cytokine assays. Concentrations up to 50 μg/ml were tested. Viability assays and cytokine (IL-1α) assays demonstrated that the two polymers, three symmetric oligomers, and three "end only" oligomers were nonirritants. In addition, electrospun mats consisting of several promising compounds, including poly(caprolactone), were evaluated. Therefore, all test substances are conservatively classified as nonirritants after a 1 h exposure time period.

  1. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  2. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  3. Neurologic manifestations of major electrolyte abnormalities.

    Science.gov (United States)

    Diringer, M

    2017-01-01

    The brain operates in an extraordinarily intricate environment which demands precise regulation of electrolytes. Tight control over their concentrations and gradients across cellular compartments is essential and when these relationships are disturbed neurologic manifestations may develop. Perturbations of sodium are the electrolyte disturbances that most often lead to neurologic manifestations. Alterations in extracellular fluid sodium concentrations produce water shifts that lead to brain swelling or shrinkage. If marked or rapid they can result in profound changes in brain function which are proportional to the degree of cerebral edema or contraction. Adaptive mechanisms quickly respond to changes in cell size by either increasing or decreasing intracellular osmoles in order to restore size to normal. Unless cerebral edema has been severe or prolonged, correction of sodium disturbances usually restores function to normal. If the rate of correction is too rapid or overcorrection occurs, however, new neurologic manifestations may appear as a result of osmotic demyelination syndrome. Disturbances of magnesium, phosphate and calcium all may contribute to alterations in sensorium. Hypomagnesemia and hypocalcemia can lead to weakness, muscle spasms, and tetany; the weakness from hypophosphatemia and hypomagnesemia can impair respiratory function. Seizures can be seen in cases with very low concentrations of sodium, magnesium, calcium, and phosphate. © 2017 Elsevier B.V. All rights reserved.

  4. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  5. Functionality Selection Principle for High Voltage Lithium-ion Battery Electrolyte Additives

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung; He, Meinan [Department; Peebles, Cameron; Zeng, Li; Tornheim, Adam; Liao, Chen; Zhang, Lu; Wang, Jie; Wang, Yan [Department; Zhang, Zhengcheng

    2017-08-30

    A new class of electrolyte additives based on cyclic fluorinated phosphate esters was rationally designed and identified as being able to stabilize the surface of a LiNi0.5Mn0.3Co0.2O2 (NMC532) cathode when cycled at potentials higher than 4.6 V vs Li+/Li. Cyclic fluorinated phosphates were designed to incorporate functionalities of various existing additives to maximize their utilization. The synthesis and characterization of these new additives are described and their electrochemical performance in a NMC532/graphite cell cycled between 4.6 and 3.0 V are investigated. With 1.0 wt % 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane 2-oxide (TFEOP) in the conventional electrolyte the NMC532/graphite cell exhibited much improved capacity retention compared to that without any additive. The additive is believed to form a passivation layer on the surface of the cathode via a sacrificial polymerization reaction as evidenced by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonsance (NMR) analysis results. The rational pathway of a cathode-electrolyte-interface formation was proposed for this type of additive. Both experimental results and the mechanism hypothesis suggest the effectiveness of the additive stems from both the polymerizable cyclic ring and the electron-withdrawing fluorinated alkyl group in the phosphate molecular structure. The successful development of cyclic fluorinated phosphate additives demonstrated that this new functionality selection principle, by incorporating useful functionalities of various additives into one molecule, is an effective approach for the development of new additives.

  6. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  7. Active Colloids in Isotropic and Anisotropic Electrolytes

    Science.gov (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  8. Dissolution of Neptunium and Plutonium Oxides Using a Catalyzed Electrolytic Process

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, TD

    2004-10-25

    This report discusses the scoping study performed to evaluate the use of a catalyzed electrolytic process for dissolving {sup 237}Np oxide targets that had been irradiated to produce {sup 238}Pu oxide. Historically, these compounds have been difficult to dissolve, and complete dissolution was obtained only by adding hydrofluoric acid to the nitric acid solvent. The presence of fluoride in the mixture is undesired because the fluoride ions are corrosive to tank and piping systems and the fluoride ions cause interferences in the spectrophotometric analyses. The goal is to find a dissolution method that will eliminate these issues and that can be incorporated into a processing system to support the domestic production and purification of {sup 238}Pu. This study evaluated the potential of cerium(IV) ions, a strong oxidant, to attack and dissolve the oxide compounds. In the dissolution process, the cerium(IV) ions are reduced to cerium(III) ions, which are not oxidants. Therefore, an electrolytic process was incorporated to continuously convert cerium(III) ions back to cerium(IV) ions so that they can dissolve more of the oxide compounds. This study showed that the neptunium and plutonium oxides were successfully dissolved and that more development work should be performed to optimize the procedure.

  9. Short Term Comparative Analysis of Serum Electrolytes and ...

    African Journals Online (AJOL)

    This study was designed to assess the changes that occur in performance characteristics and serum electrolytes of Red Sokoto bucks within the first four weeks post-surgical castration. Changes in serum electrolytes (sodium, potassium, calcium, phosphate and chloride) and performance characteristics were investigated in ...

  10. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    Science.gov (United States)

    2015-10-05

    Sep-2014 Approved for Public Release; Distribution Unlimited Final Report: Ceramic Electrolyte Membrane Technology : Enabling Revolutionary...2601 30-Sep-2014 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Ceramic Electrolyte Membrane Technology : Enabling... technology to fabricate larger LLZO ceramic membranes . The goal of this work is to develop ceramic processing technology to fabricate LLZO membranes that

  11. Electrochemical Impedance Spectroscopy of Polyvinylalcohol Based Gel Electrolyte

    Directory of Open Access Journals (Sweden)

    Nirwan Syarif

    2017-02-01

    Full Text Available Research on the effect of electrolyte ammonium salt, concentration electrolyte with plasticizer to ionic and electronic conductivity of polymer gel electrolyte has been conducted with the variations of two electrolyte NH4Cl-PVA and NH4SCN-PVA at a concentration of 10, 30, 40 (wt%. The measurement of using ionic conductivity by using impedance spectroscopy method showed that the highest value was 0.0156 Scm-1 i.e. in the 54.6% propilen carbonate with 40% NH4Cl and PVA. The lowest value was 0.009 Scm-1 i.e. in the NH4SCN based electrolyte without propilene carbonate and electronic conductivity showed that the highest value was 0.0156 Scm-1 i.e. 40% NH4Cl-PVA and NH4SCN-PVA and the lowest value was 0.009 Scm-1, i.e. in the NH4SCN based electrolyte without propilene carbonate. Factorial analyses showed that the concentrations of electrolyte and the plasticizer affect conductivity value. FTIR (Fourier Transform Infrared measurement showed that the addition of propilene carbonate did not show new bond formation between electrolyte and PVA. It can be shown in absence of characteristic wave number for propilene carbonate and NH4+ ion.

  12. Performance characteristics of a gelled-electrolyte valve-regulated ...

    Indian Academy of Sciences (India)

    12 V/25 AH gelled-electrolyte valve-regulated lead-acid batteries have been assembled in-house and their performance studied in relation to the absorptive glass-microfibre valve-regulated and flooded-electrolyte counterparts at various discharge rates and temperatures between –40°C and 40°C. Although the ...

  13. Changes in Serum Electrolytes and Lipid Profile in Diabetes ...

    African Journals Online (AJOL)

    Background: Measurement of blood electrolytes level and lipid profile usually give good indications of the disease progression in a number of non communicable diseases. Objective: To investigate the effect of diabetes on electrolyte and lipid status of male and female diabetics in Freetown, Sierra Leone. Subjects and ...

  14. Nafion and modified-Nafion membranes for polymer electrolyte fuel ...

    Indian Academy of Sciences (India)

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article ...

  15. Understanding Ion Transport in Epoxy-based Polymer Electrolyte

    Science.gov (United States)

    Choi, U. Hyeok; Jang, Hyekyeong; Jung, Byung Mun; Lee, Sang-Bok

    We prepare epoxy-based networked polymer electrolytes including Li salts with either ionic liquids or plastic crystals. The epoxy resins are particularly attractive as polymer matrices for solid polymer electrolytes due to their high mechanical performance combined with good adhesive properties. The selected electrolyte components are allowed to boost ionic conductivity owing to solvating the Li cation and plasticizing the epoxy matrix. As a result, the curing of a homogeneous mixture of epoxy and electrolyte can generate a two-phase system in which the epoxy phase is selected to provide mechanical strength and the electrolyte phase is selected to maximize ionic conductivity. Here, we conduct an investigation of the effect of electrolyte types and their concentration on the conductometric, dielectric and rheological properties of epoxy-based networked polymer electrolytes, using dielectric relaxation spectroscopy and oscillatory shear. These results are complemented by morphology studies in order to understand structure-property relations. Our study leads to insight regarding optimal design of multifunctional electrolytes for energy storage devices.

  16. Lithium ion conducting solid polymer blend electrolyte based on bio ...

    Indian Academy of Sciences (India)

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance ...

  17. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.

    Science.gov (United States)

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh

    2012-03-14

    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties. © 2012 American Chemical Society

  18. Electrolytes concentration patterns in the three trimesters of pregnancy

    African Journals Online (AJOL)

    The physiologic adaptations of the pregnant woman involve the renal, cardiovascular and other systems of the body. This study aimed at evaluating electrolyte concentrations in the three trimesters of pregnancy. Blood samples were collected by aseptic techniques and the concentrations of electrolytes were determined ...

  19. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  20. The effect of Treculia africana African breadfruit on serum electrolyte ...

    African Journals Online (AJOL)

    A sub-chronic effect of diet of Treculia africana (Bread fruit BF) on serum electrolyte, enzyme and some haematological parameters in rats was studied. The test-diets were administered for 21 days after which, serum electrolyte enzyme and heamatological parameters were assayed. The control group were similarly treated ...

  1. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ze

    2012-07-01

    This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs. Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. It has been revealed that the higher iodine concentration required in IL-based electrolytes can be attributed to both triiodide mobility associated with the high viscosity of the IL, and chemical availability of triiodide. The concept of incompletely solvated ionic liquids (ISILs) has been introduced as a new type of electrolyte solvent for DSCs. It has been found that the photovoltaic performance of ISIL-based electrolytes can even rival that of organic solvent-based electrolytes. And most strikingly, ISIL-based electrolytes provide highly stable DSC devices under light-soaking conditions, as a result of the substantially lower vapor pressure of the ISIL system. A significant synergistic effect has been observed when both guanidinium thiocyanate and N-methylbenzimidazole are employed together in an IL-based electrolyte, exhibiting an optimal overall conversion efficiency. Tetrathiafulvalene (TTF) has been investigated as an organic iodine-free redox couple in electrolytes for DSCs. An unexpected worse performance has been observed for the TTF system, albeit it possesses a particularly attractive positive redox potential. An organic, iodine-free thiolate/disulfide system has also been adopted as a redox couple in electrolytes for organic DSCs. An impressive efficiency of 6.0 % has successfully been achieved by using this thiolate/disulfide redox couple in combination with a poly (3, 4-ethylenedioxythiophene) (PEDOT) counter electrode material under full sunlight illumination (AM

  2. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  3. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  4. Nonflammable perfluoropolyether-based electrolytes for lithium batteries.

    Science.gov (United States)

    Wong, Dominica H C; Thelen, Jacob L; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A; Battaglia, Vincent S; Balsara, Nitash P; DeSimone, Joseph M

    2014-03-04

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity.

  5. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  6. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  7. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  8. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  9. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    Science.gov (United States)

    Keller, Rudolf; Larimer, Kirk T.

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  10. Modeling the electromechanical behavior and instability threshold of NEMS bridge in electrolyte considering the size dependency and dispersion forces

    Science.gov (United States)

    Karimipour, I.; Kanani, A.; Koochi, A.; Keivani, M.; Abadyan, M.

    2015-11-01

    While few studies have been conducted on modeling the pull-in instability of cantilever nanoelectromechanical systems (NEMS) in electrolyte media, no researchers has investigated this phenomenon in double-clamped NEMS. Herein, the pull-in instability of the NEMS bridge immersed in ionic liquid electrolyte media is explored for the first time considering the size effect and dispersion forces. The strain gradient elasticity in conjunction with von-Karman strain is employed to incorporate the effect of size-dependency and beam stretching in the structural model. The presence of electrochemical force field and nano-scale attractions i.e. Casimir and van der Waals forces is incorporated in the model considering the presence of the liquid media. To solve the nonlinear constitutive equation of the system two different methods including the differential transformation method (DTM) and numerical solution are employed. The proposed model is validated by comparing with the results presented in literature. Impacts of various parameters i.e. the size dependency, dispersion forces, electrolyte ion concentration and potential ratio on the instability characteristics of the NEMS bridge are discussed. The results of present theory are compared with those predicted by the classic continuum theory as well as the modified couple stress theory.

  11. Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells.

    Science.gov (United States)

    An, Seong Jin; Li, Jianlin; Daniel, Claus; Meyer, Harry M; Trask, Stephen E; Polzin, Bryant J; Wood, David L

    2017-06-07

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF6 in ethylene carbonate:ethylmethyl carbonate with 10 wt % fluoroethylene carbonate. Single layer pouch cells (100 mA h) were constructed with 15 wt % Si-graphite/LiNi0.5Mn0.3CO0.2O2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times to the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendrites are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. Solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is nonuniform after cycling.

  12. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  13. Charge relaxation dynamics of an electrolytic nanocapacitor

    CERN Document Server

    Thakore, Vaibhav

    2013-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology based electrochemical energy storage, electrochemomechanical energy conversion and bioelectrochemical sensing devices besides controlled synthesis of nanostructured materials. Here, using Lattice Boltzmann (LB) method, we present results from the simulations of an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation to anion diffusivity and electrode separations. A continuously varying molecular speed dependent relaxation time, proposed for use with the LB equation, recovers the correct microscopic description of molecular collision phenomena and holds promise for enhancing the stability of the LB algorithm. Results for large EDL overlap showed oscillatory behavior for ionic current densities in contrast to monotonic relaxation to equilibrium for low EDL overlap. Further, at low solv...

  14. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  15. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian; Zhang, Zhengcheng; Amine, Khalil

    2016-07-12

    A electrolyte for a lithium battery includes a silane/siloxane compound represented by SiR.sub.4-x-yR'.sub.xR''.sub.y, by Formula II, or Formula III: ##STR00001## where each R is individually an alkenyl, alkynyl, alk(poly)enyl, alk(poly)ynyl, aryl; each R' is represented by; ##STR00002## each R'' is represented by Formula I-B; ##STR00003## R.sup.1 is an organic spacer; R.sup.2 is a bond or an organic spacer; R.sup.3 is alkyl or aryl; k is 1-15; m is 1-15; n is 1 or 2; p is 1-3; x' is 1-2; and y' is 0-2.

  16. Low Mach Number Fluctuating Hydrodynamics for Electrolytes

    CERN Document Server

    Péraud, Jean-Philippe; Chaudhri, Anuj; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2016-01-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm...

  17. Electrolytic Synthesis and Characterizations of Silver Nanopowder

    CERN Document Server

    Theivasanthi, T

    2011-01-01

    This work reports a simple, novel, cost effective and eco-friendly electrolytic synthesis of silver nanoparticles using AgNO3 as metal precursor. The synthesis rate is much faster than other methods and this approach is suitable for large scale production. They are characterized by XRD, SEM and FT-IR techniques to analyze size, morphology and functional groups. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles. Their particle size is found to be 24 nm and specific surface area (SSA) is 24 m2/g. Analysis of Ag nanoparticles SSA reports that increasing their SSA improves their antibacterial actions. Microbiology assay founds that Ag nanoparticles are effective against E.coli and B.megaterium bacteria. SSA of bacteria analysis reveals that it plays a major role while reacting with antimicrobial agents.

  18. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  19. Safeguard monitoring of direct electrolytic reduction

    Science.gov (United States)

    Jurovitzki, Abraham L.

    Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2

  20. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  1. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Thomas F. [Univ. of California, Berkeley, CA (United States)

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25°C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  2. Reactivity between La(Sr)FeO{sub 3} cathode, doped CeO{sub 2} interlayer and yttria-stabilized zirconia electrolyte for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Amesti, Ana; Larranaga, Aitor; Aguayo, Andres T.; Pizarro, Jose L.; No, Maria L.; Arriortua, Maria I. [University of the Basque Country (UPV/EHU), Faculty of Science and Technology, B. Sarriena S/N, 48940 Leioa, Vizcaya (Spain); Rodriguez-Martinez, Lide M.; Laresgoiti, Ander [Ikerlan-Energia, Centro Tecnologico, Parque Tecnologico de Alava, Juan de la Cierva 1, 01510 Minano (Spain)

    2008-10-15

    Detailed X-ray diffraction (XRD) analysis of two different Sr-doped LaFeO{sub 3} cathodes, YSZ electrolyte and two Sm/Gd-doped CeO{sub 2} interlayer and their mixtures were used to evaluate the formation of undesired secondary reaction compounds. The analysis of room temperature X-ray diffraction data of the mixtures indicates the crystallization of strontium and/or lanthanum zirconates between the cathode and the electrolyte materials and no detected reaction between the cathode and the interlayer materials. For all the ferrite mixtures a significant shift in the diffraction peaks is observed, which is the result of the unit cell volume expansion and contraction of the cathode (LSF) structures mixed with electrolyte (YSZ), and with interlayers (SDC, GDC), respectively. On the other hand, a complete solid solution was observed between the crystal structures of YSZ electrolyte and SDC or GDC interlayers. The observed cell modifications for the ferrite mixtures were the result of the incorporation of Zr and Ce, in the B and A type positions of the perovskite structure, respectively. The electrolyte/interlayer interface shows the presence of intermediate compositions at high temperature. The electrochemical studies show better results when a Sm-doped CeO{sub 2} is inserted between the cathode and electrolyte material. The best result obtained is for the half-cell prepared with LSF-40 and SDC interlayer on YSZ electrolyte. (author)

  3. Frequency response of electrolyte-gated graphene electrodes and transistors

    Science.gov (United States)

    Drieschner, Simon; Guimerà, Anton; Cortadella, Ramon G.; Viana, Damià; Makrygiannis, Evangelos; Blaschke, Benno M.; Vieten, Josua; Garrido, Jose A.

    2017-03-01

    The interface between graphene and aqueous electrolytes is of high importance for applications of graphene in the field of biosensors and bioelectronics. The graphene/electrolyte interface is governed by the low density of states of graphene that limits the capacitance near the Dirac point in graphene and the sheet resistance. While several reports have focused on studying the capacitance of graphene as a function of the gate voltage, the frequency response of graphene electrodes and electrolyte-gated transistors has not been discussed so far. Here, we report on the impedance characterization of single layer graphene electrodes and transistors, showing that due to the relatively high sheet resistance of graphene, the frequency response is governed by the distribution of resistive and capacitive circuit elements along the graphene/electrolyte interface. Based on an analytical solution for the impedance of the distributed circuit elements, we model the graphene/electrolyte interface both for the electrode and the transistor configurations. Using this model, we can extract the relevant material and device parameters such as the voltage-dependent intrinsic sheet and series resistances as well as the interfacial capacitance. The model also provides information about the frequency threshold of electrolyte-gated graphene transistors, above which the device exhibits a non-resistive response, offering an important insight into the suitable frequency range of operation of electrolyte-gated graphene devices.

  4. High performance MCFC using Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  5. Effects of electrolytes on virus inactivation by acidic solutions.

    Science.gov (United States)

    Nishide, Mitsunori; Tsujimoto, Kazuko; Uozaki, Misao; Ikeda, Keiko; Yamasaki, Hisashi; Koyama, A Hajime; Arakawa, Tsutomu

    2011-06-01

    Acidic pH is frequently used to inactivate viruses. We have previously shown that arginine synergizes with low pH in enhancing virus inactivation. Considering a potential application of the acid inactivation of viruses for the prevention and treatment of superficial virus infection at body surfaces and fixtures, herein we have examined the effects of various electrolytes on the acid-induced inactivation of the herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), the influenza A virus (IAV) and the poliovirus upon their incubation at 30˚C for 5 min. Eight electrolytes, i.e., phosphate, NaCl, glutamate, aspartate, pyrrolidone carboxylate, citrate, malate and acetate were tested. No detectable inactivation of the poliovirus was observed under the conditions examined, reflecting its acid-resistance. HSV-1 and HSV-2 responded similarly to the acid-treatment and electrolytes. Some electrolytes showed a stronger virus inactivation than others at a given pH and concentration. The effects of the electrolytes were virus-dependent, as IAV responded differently from HSV-1 and HSV-2 to these electrolytes, indicating that certain combinations of the electrolytes and a low pH can exert a more effective virus inactivation than other combinations and that their effects are virus-specific. These results should be useful in designing acidic solvents for the inactivation of viruses at various surfaces.

  6. Electric current-producing device having sulfone-based electrolyte

    Science.gov (United States)

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  7. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  8. The investigation of electrolytic surface roughening for PCB copper foil

    Science.gov (United States)

    Lee, Shuo-Jen; Liu, Chao-Kai

    2013-10-01

    This study is the application of the principle of electrochemical. The anodic dissolution has no concentration polarization. Hence, electrolyte life is substantially increased. The waste copper is high in ion concentration with a recovery value. As compared with the current PCB chemical pre-treatment method, it may have advantages of cost-saving, improvement of overall efficiency, reduction of production costs and reduction of the amount of waste generated. In the development of the copper foil for electrochemical roughening process, the use of electrolysis reaction affects the copper surface dissolution to form a unique bump coarsening. It will increase in the surface area of the copper foil to improve dry film solder mask and the adhesion between the copper surfaces. Four electrolytes, two neutral salts and two acids, were selected to explore the best of the electrolytic roughening parameters of temperature, time and voltage. The surface roughness and the surface morphology of the copper foil were measured before and after the electrolytic surface roughening. Finally, after repeated experiments, electrolytes A and B copper generates obvious inter-granular corrosion, resulting in a rough surface similar to the chemical pre-treatment. On the other hands, the surface morphology resulted from electrolytes C and D appears more like pitting. Both electrolytic could generate surface roughness of Ra 0.3 um roughened copper surface higher than industrial standard.

  9. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.

    Science.gov (United States)

    Moučka, Filip; Lísal, Martin; Smith, William R

    2012-05-10

    We extend the osmotic ensemble Monte Carlo (OEMC) molecular simulation method (Moučka et al. J. Phys Chem. B 2011, 115, 7849-7861) for directly calculating the aqueous solubility of electrolytes and for calculating their chemical potentials as functions of concentration to cases involving electrolyte hydrates and mixed electrolytes, including invariant points involving simultaneous precipitation of several solutes. The method utilizes a particular semigrand canonical ensemble, which performs simulations of the solution at a fixed number of solvent molecules, pressure, temperature, and specified overall electrolyte chemical potential. It avoids calculations for the solid phase, incorporating available solid chemical potential data from thermochemical tables, which are based on well-defined reference states, or from other sources. We apply the method to a range of alkali halides in water and to selected examples involving LiCl monohydrate, mixed electrolyte solutions involving water and hydrochloric acid, and invariant points in these solvents. The method uses several existing force-field models from the literature, and the results are compared with experiment. The calculated results agree qualitatively well with the experimental trends and are of reasonable accuracy. The accuracy of the calculated solubility is highly dependent on the solid chemical potential value and also on the force-field model used. Our results indicate that pairwise additive effective force-field models developed for the solution phase are unlikely to also be good models for the corresponding crystalline solid. We find that, in our OEMC simulations, each ionic force-field model is characterized by a limiting value of the total solution chemical potential and a corresponding aqueous concentration. For higher values of the imposed chemical potential, the solid phase in the simulation grows in size without limit.

  10. Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device

    Science.gov (United States)

    Katase, Takayoshi; Suzuki, Yuki; Ohta, Hiromichi

    2017-10-01

    The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO.7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ˜40 min, primarily due to the low σ [2.0 × 10-8 S cm-1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10-8 S cm-1 to 2.5 × 10-6 S cm-1 at RT by changing the x = 0.01-1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = -3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.

  11. Inorganic salt mixtures as electrolyte media in fuel cells

    Science.gov (United States)

    Angell, Charles Austen (Inventor); Belieres, Jean-Philippe (Inventor); Francis-Gervasio, Dominic (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  12. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active...

  13. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  14. Capacitance of semiconductor-electrolyte junction and its frequency dependence

    Science.gov (United States)

    Wang, Y.-B.; Yuan, R.-K.; Willander, M.

    1996-11-01

    The frequency dependent capacitance of semiconductor-electrolyte junction and its relationship to the surface roughness of the semiconductor and the ions in the electrolyte are discussed. Due to very low mobility of the ions, the observed capacitance can be dominated by the Helmholtz double-layer of the electrolyte rather than the space charge layer of the semiconductor. The capacitance will also depend on the frequency. This, often observed power-law frequency dependence of capacitance is ascribed to the contribution of constant phase angle impedance. The power-law exponent can easily be related to the fractal dimension if the semiconductor surface can be described by fractal geometry.

  15. Methods and electrolytes for electrodeposition of smooth films

    Science.gov (United States)

    Zhang, Jiguang; Xu, Wu; Graff, Gordon L; Chen, Xilin; Ding, Fei; Shao, Yuyan

    2015-03-17

    Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.

  16. Electrical properties of cellulose acetate-based polymer gel electrolytes

    Science.gov (United States)

    Abidin, S. Z. Z.; Ali, A. M.; Jaafar, N. K.; Yahya, M. Z. A.

    2017-09-01

    Polymer gel electrolytes based on cellulose acetate with lithium bis(oxalato)borate salt were prepared by dissolving in γ-butyrolactone solvent. The ionic conductivity and dielectric constant of the polymer gel electrolyte samples are investigated using electrochemical impedance spectroscopy over a frequency range from 100 Hz to 1 MHz. The ionic conductivity increased with increasing in the cellulose acetate concentration up to 2.4 wt.% (1.41 × 10-2 S cm-1) and thereafter decreased. The relationship between the dielectric constant and ionic conductivity has been interpreted. The optimum conducting polymer gel electrolyte shows electrochemical stability up to 4.7 V versus Li.

  17. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    Science.gov (United States)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals

  18. EFFECT OF INCORPORATING EXPANDED POLYSTYRENE ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Abstract. Incorporating expanded polystyrene granules in concrete matrix can produce lightweight polystyrene aggregate concrete of various densities. Workability which is an important property of concrete, affects the rate of placement and the degree of compaction of concrete. Inadequate compaction.

  19. Incorporating Argumentation through Forensic Science

    Science.gov (United States)

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Smetana, Lara K.

    2014-01-01

    This article outlines how to incorporate argumentation into a forensic science unit using a mock trial. Practical details of the mock trial include: (1) a method of scaffolding students' development of their argument for the trial, (2) a clearly outlined set of expectations for students during the planning and implementation of the mock…

  20. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    Directory of Open Access Journals (Sweden)

    J. Woods Halley

    2013-09-01

    Full Text Available I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries.

  1. Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions

    Science.gov (United States)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-01-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.

  2. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  3. Primary cell uses neither liquid nor fused electrolytes

    Science.gov (United States)

    Gutmann, F.; Herman, A. M.; Rembaum, A.

    1967-01-01

    Dry, solid state primary battery cell establishes an electrode reaction by a charge transfer mechanism without liquid phase ionization of electrolyte compounds. The charge transfer complex is sufficiently conductive to permit the passage of useful current.

  4. Nonlinear ion transport in liquid and solid electrolytes

    Science.gov (United States)

    Roling, B.; Patro, L. N.; Burghaus, O.; Gräf, M.

    2017-08-01

    This paper describes nonlinear ion transport properties of liquid and solid electrolytes. Typically, the relation between ionic current density and electric field becomes nonlinear at electric fields above 50-100 kV/cm. We review the 1st and 2nd Wien effect found in classical strong and weak electrolyte solutions as well as the strong nonlinear ion transport effects observed for inorganic glasses and for polymer electrolytes. Furthermore, we give an overview over models describing nonlinear ion transport in electrolyte solutions, in glasses and in polymers. Recent results are presented for the nonlinear ionic conductivity of supercooled ionic liquids. We show that supercooled ionic liquids exhibit anomalous Wien effects, which are clearly distinct from the classical Wien effects. We also discuss the frequency dependence of higher-order conductivity and permittivity spectra of these liquids.

  5. Modeling of Porous Insertion Electrodes with Liquid Electrolyte

    DEFF Research Database (Denmark)

    West, Keld; Jacobsen, Torben; Atlung, Sven

    1982-01-01

    The dynamics of porous insertion electrodes during charge or discharge is described by a simplified mathematicalmodel, accounting for the coupled transport in electrode and electrolyte phases. A numerical method to evaluate theresponse of this model to either controlled potential or controlled...... current is outlined, and numerical results for thedischarge of a porous TiS2-electrode in an idealized organic electrolyte are presented. It is demonstrated how electrolyte depletion is the principal limiting factor in the capacity obtained during discharge of this electrode system. Thisdepletion...... is a consequence of the mobility of the ions not inserted, hence the performance of this type of electrode isoptimized by choosing electrolytes with transport number as close to unity as possible for the inserted ion....

  6. Nanofilm processors controlled by electrolyte flows of femtoliter volume.

    Science.gov (United States)

    Nolte, Marius; Knoll, Meinhard

    2013-06-25

    Nanofilm processors are a new kind of smart system based on the lateral self-oxidation of nanoscale aluminum films. The time dependency of these devices is controlled by electrolyte flows of femtoliter volume which can be modulated by different mechanisms. In this paper, we provide a deeper investigation of the electrolyte transport in the nanofilm processor and the different possibilities to control the aluminum oxidation velocity. A method for the in situ investigation of the acidic characteristic of the channel electrolyte is demonstrated. The obtained results form a set of instruments for constructing more complex electrolyte circuits and should allow the creation of nanofilm processors of arbitrary time dependence. Because the nanofilm processor combines different functional blocks and can operate in a self-sustained manner, without requiring batteries, this smart system may serve as a basis for many potential applications.

  7. Evaluation of Electrolytes Imbalance and Dyslipidemia in Diabetic Patients.

    Science.gov (United States)

    Hasona, Nabil A; Elasbali, Abdulbaset

    2016-04-01

    Electrolytes and Lipids have always played significant roles, and changes in their concentrations gives good indications of disease progression in a number of non-communicable diseases. Diabetes mellitus is the most common metabolic disorder in the community. Diabetics may suffer from electrolyte disorders due to complications of diabetes mellitus and the medication they receive. Serum glucose, electrolytes (Na⁺, K⁺, Cl(-) and Ca(++)), and lipid profiles (total cholesterol, triglyceride, and HDL-c) were determined in 100 diabetics and in non-diabetic subjects. All the diabetic patients had a significant (p electrolytes found in diabetics may have great potential as a diagnostic tool in clinical practice and have a significant effect upon the risk of contracting many diseases.

  8. Operating a redox flow battery with a negative electrolyte imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  9. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  10. [Sialochemistry in nonneoplastic diseases of parotid gland: immunoglobulins and electrolytes].

    Science.gov (United States)

    Wang, S; Zhu, X; Zhu, J

    1996-07-01

    The concentration and total value of immunoglobulins (SIgA, IgG) and electrolytes (sodium, potassium, chlorine, calcium and phosphorus) in mixed saliva were examined in 28 patients with Sjögren's syndrome (SS), 25 with chronic obstructive parotitis (COP), 32 with sialadenosis and 32 normal controls. The results showed that in SS group, total saliva flow rate was decreased: concentration of SIgA, IgG, electrolytes was significantly elevated; but total value of SIgA, IgG, electrolytes was markedly decreased. Decreased total value of sodium, potassium, chlorine and calcium was revealed in COP group. Elevated concentration and total value of phosphorus was found in sialadenosis group. This study indicates that examination of total value of immunoglobins and electrolytes has greater value than that of concentration. The possible mechanism of changes observed is discussed.

  11. Thermodynamic studies of levitated microdroplets of highly supersaturated electrolyte solutions

    Science.gov (United States)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-09-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration nspin and its calculation for various electrolyte solutions at 298 K.

  12. Non-aqueous electrolytes for lithium-air batteries

    Science.gov (United States)

    Amine, Khalil; Chen, Zonghai; Zhang, Zhengcheng

    2016-06-07

    A lithium-air cell includes a negative electrode; an air positive electrode; and a non-aqueous electrolyte which includes an anion receptor that may be represented by one or more of the formulas. ##STR00001##

  13. Characterization of Pvp Based Solid Polymer Electrolytes Using Spectroscopic Techniques

    Science.gov (United States)

    Ramya, C. S.; Selvasekarapandian, S.; Bhuvaneswari, M. S.; Savitha, T.

    2006-06-01

    Polymer electrolytes based on poly (vinyl pyrrolidone) - ammonium thiocyanate have beeri prepared by solution cast technique. The interaction of salt with the polymer has been examined using Raman spectroscopy. Results revealed that the interaction of the salt has been found to be through the carbonyl group of the polymer matrix. Conductivity measurements showed that these systems conduct ionically. The possible correlation between the conductivity and the structure of these electrolytic systems was also investigated which shows that the conductivity values are directly related to the total "free anion" concentration. Conductivity analysis showed that the addition of ammonium thiocyanate as a dopant in the polymeric electrolyte system enhanced the ionic conductivity. 20 mol% ammonium thiocyanate doped polymer electrolyte exhibits high ionic conductivity and has been found to be 1.7 × 10-4 S cm-1, at room temperature.

  14. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  15. Graphene quantum dots as the electrolyte for solid state supercapacitors

    National Research Council Canada - National Science Library

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitor...

  16. Poly(arylene)-based anion exchange polymer electrolytes

    Science.gov (United States)

    Kim, Yu Seung; Bae, Chulsung

    2015-06-09

    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  17. Temperature and concentration dependences of the activity coefficients of electrolytes

    Science.gov (United States)

    Tikhonov, N. A.; Sidel'nikov, G. B.

    2017-10-01

    A model has been suggested that describes the interaction of hydrated ions in electrolytes and allows the calculation of the main physical effects. The model explains the character of the curves of the activity coefficients. Binary solutions of uni-univalent electrolytes at concentrations from zero to several moles per liter and at temperatures from zero to a few dozens of degrees were studied. The results of simulation were verified by comparing them with many literature data.

  18. Detailed electrical measurements on sago starch biopolymer solid electrolyte

    Science.gov (United States)

    Singh, Rahul; Baghel, Jaya; Shukla, S.; Bhattacharya, B.; Rhee, Hee-Woo; Singh, Pramod K.

    2014-12-01

    The biopolymer solid electrolyte has been synthesized and characterized. Potassium iodide (KI) has been added in polymer matrix to develop solid polymer electrolyte. Relationships between electrical, ionic transport parameter and mechanism have been studied in detail. Impedance spectroscopy reveals the detailed electrical studies and ion transport mechanism. The ion dissociation factor is compared with a measured dielectric constant at a fixed frequency. The dielectric data are calculated which support the ionic conductivity data.

  19. Halogen acid electrolysis in solid polymer electrolyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Balko, E.N.; McElroy, J.F.; LaConti, A.B.

    1981-01-01

    The use of solid polymer electrolyte systems has been extended to the electrolysis of aqueous HCl and HBr. The reduced internal losses in these cells permits the production of hydrogen and the halogen at an energy consumption considerably less than that reported previously. Data are presented for the operational characteristics of the solid polymer electrolyte acid electrolysers operating over a range of current densities, pressures, feedstock compositions, and temperatures.

  20. Surface Structure and Relaxation at the Pt(110)/Electrolyte Interface

    Science.gov (United States)

    Lucas, C. A.; Marković, N. M.; Ross, P. N.

    1996-12-01

    In situ x-ray scattering studies of the Pt(110) electrode show that a stable 1×2 reconstruction is present over a wide electrode potential range and that the topmost rows of Pt atoms are expanded into the electrolyte. Additional expansion occurs upon the potential-induced adsorption of hydroxyl or hydrogen atoms. The presence and stability of the 1×2 reconstruction have an important influence on some of the surface reactions that can occur in electrolyte.

  1. The interaction between two charged plates in electrolyte solutions

    Science.gov (United States)

    Jiang, Yu

    1996-12-01

    The HNC theory has been used to study the double-layer interaction between two charged plates immersed into a restricted primitive model electrolyte, under a wide variety of boundary conditions. It is found that the unbalance of the surface charge density on different sides of the plate may cause dramatic change in the behavior of the interaction force. The local electroneutrality will not be valid, and there exits strong correlation between the electrolyte inside the slit and that outside it.

  2. Formation of porous Ge using HF-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Flamand, Giovanni; Poortmans, Jef [Microsystems, Components and Packaging Division, IMEC vzw, Kapeldreef 75, 3001 Leuven (Belgium); Dessein, Kristof [Umicore Electro-Optic Materials, Watertorenstraat 33, 2250 Olen (Belgium)

    2005-06-01

    We have performed an extensive study of the porosification of germanium by anodization in HF-based electrolytes. Both n- and p-doped Ge substrates (with varying doping levels) were used, as well as different electrolyte concentrations, anodization currents and times. We will review the conclusions we were able to draw from this series of experiments. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Parameter Estimates for a Polymer Electrolyte Membrane Fuel Cell Cathode

    OpenAIRE

    Guo, Qingzhi; Sethuraman, Vijay A.; White, Ralph E.

    2013-01-01

    Five parameters of a model of a polymer electrolyte membrane fuel cell cathode (the porosity of the gas diffusion layer, the porosity of the catalyst layer, the exchange current density of the oxygen reduction reaction, the effective ionic conductivity of the electrolyte, and the ratio of the effective diffusion coefficient of oxygen in a flooded spherical agglomerate particle to the squared particle radius) were determined by the least square fitting of experimental polarization curves. The ...

  4. Electrolytic production and dispensing of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  5. Solid biopolymer electrolytes came from renewable biopolymer

    Science.gov (United States)

    Wang, Ning; Zhang, Xingxiang; Qiao, Zhijun; Liu, Haihui

    2009-07-01

    Solid polymer electrolytes (SPEs) have attracted many attentions as solid state ionic conductors, because of their advantages such as high energy density, electrochemical stability, and easy processing. SPEs obtained from starch have attracted many attentions in recent years because of its abundant, renewable, low price, biodegradable and biocompatible. In addition, the efficient utilization of biodegradable polymers came from renewable sources is becoming increasingly important due to diminishing resources of fossil fuels as well as white pollution caused by undegradable plastics based on petroleum. So N, N-dimethylacetamide (DMAc) with certain concentration ranges of lithium chloride (LiCl) is used as plasticizers of cornstarch. Li+ can complexes with the carbonyl atoms of DMAc molecules to produce a macro-cation and leave the Cl- free to hydrogen bond with the hydroxyl or carbonyl of starch. This competitive hydrogen bond formation serves to disrupt the intra- and intermolecular hydrogen bonding existed in starch. Therefore, melt extrusion process conditions are used to prepare conductive thermoplastic starch (TPS). The improvements of LiCl concentration increase the water absorption and conductance of TPS. The conductance of TPS containing 0.14 mol LiCl achieve to 10-0.5 S cm-1 with 18 wt% water content.

  6. Electrolyte profile of Malaysian mothers' milk.

    Science.gov (United States)

    Alaudeen, S; Muslim, N; Faridah, K; Azman, A; Arshat, H

    1988-12-01

    The influence of socioeconomic status (ethnicity, income and parity) on electrolyte composition (sodium and potassium) in human milk is little known. We have thus quantitatively analyzed approximately 700 samples of milk (1-90 days postpartum) obtained from healthy Malaysian mothers' (Malay, Chinese and Indians) of full term infants. Results show that the mean concentration (mmol/l) of sodium is highest (48.2+or-1.7, Mean+or-SEM) in the Malaysian mothers' colostrum and this value decreased by 30% in their transitional milk and remained constant throughout subsequent days of lactation (mature milk). Ethnically, it is found that the level of sodium in colostrum of Malay and Chinese mothers were similar while the Indian mothers' colostrum showed apparently higher value (52.7+or-3.4 mmol/l) that is statistically insignificant. The transitional milk of all 3 ethnic groups studied exhibited similar levels of sodium. On subsequent days of lactation (mature milk) the Malay mothers exhibited lowest concentration (25.9+or-2.6 mmol/l) of sodium that is significantly (P0.05) different from that of Chinese and Indian mothers. Income and parity do not significantly affect the sodium level in Malaysian mothers' milk during all stages of lactation studied. The level of potassium, however did not change significantly with days of lactation. Like sodium, potassium too was not influenced by income and parity. (Author's).

  7. Low Mach number fluctuating hydrodynamics for electrolytes

    Science.gov (United States)

    Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.

  8. A constitutive theory of reacting electrolyte mixtures

    Science.gov (United States)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  9. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    Science.gov (United States)

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  10. Fire-extinguishing organic electrolytes for safe batteries

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Watanabe, Eriko; Takada, Koji; Tateyama, Yoshitaka; Yamada, Atsuo

    2018-01-01

    Severe safety concerns are impeding the large-scale employment of lithium/sodium batteries. Conventional electrolytes are highly flammable and volatile, which may cause catastrophic fires or explosions. Efforts to introduce flame-retardant solvents into the electrolytes have generally resulted in compromised battery performance because those solvents do not suitably passivate carbonaceous anodes. Here we report a salt-concentrated electrolyte design to resolve this dilemma via the spontaneous formation of a robust inorganic passivation film on the anode. We demonstrate that a concentrated electrolyte using a salt and a popular flame-retardant solvent (trimethyl phosphate), without any additives or soft binders, allows stable charge-discharge cycling of both hard-carbon and graphite anodes for more than 1,000 cycles (over one year) with negligible degradation; this performance is comparable or superior to that of conventional flammable carbonate electrolytes. The unusual passivation character of the concentrated electrolyte coupled with its fire-extinguishing property contributes to developing safe and long-lasting batteries, unlocking the limit toward development of much higher energy-density batteries.

  11. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  12. Whole body acid-base and fluid-electrolyte balance: a mathematical model.

    Science.gov (United States)

    Wolf, Matthew B

    2013-10-15

    A cellular compartment was added to our previous mathematical model of steady-state acid-base and fluid-electrolyte chemistry to gain further understanding and aid diagnosis of complex disorders involving cellular involvement in critically ill patients. An important hypothesis to be validated was that the thermodynamic, standard free-energy of cellular H(+) and Na(+) pumps remained constant under all conditions. In addition, a hydrostatic-osmotic pressure balance was assumed to describe fluid exchange between plasma and interstitial fluid, including incorporation of compliance curves of vascular and interstitial spaces. The description of the cellular compartment was validated by close comparison of measured and model-predicted cellular pH and electrolyte changes in vitro and in vivo. The new description of plasma-interstitial fluid exchange was validated using measured changes in fluid volumes after isoosmotic and hyperosmotic fluid infusions of NaCl and NaHCO3. The validated model was used to explain the role of cells in the mechanism of saline or dilutional acidosis and acid-base effects of acidic or basic fluid infusions and the acid-base disorder due to potassium depletion. A module was created that would allow users, who do not possess the software, to determine, for free, the results of fluid infusions and urinary losses of water and solutes to the whole body.

  13. Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor.

    Science.gov (United States)

    Wang, Zhe; Lin, Peiling; Baker, Gary A; Stetter, Joseph; Zeng, Xiangqun

    2011-09-15

    A simple Clark-type online electrochemical cell design, consisting of a platinum gauze working electrode and incorporating ionic liquids (IL) as electrolytes, has been successfully applied for the amperometric sensing of oxygen. Studying ILs comprising the bis(trifluoromethylsulfonyl)imide anion, the obtained analytical parameters were found to be strongly dependent on the choice of cation. Compared with a conventional Clark cell design based on an aqueous supporting electrolyte, the modified oxygen sensor achieves substantial improvements in performance and stability. A limit of detection for oxygen as low as 0.05 vol %, linearity over an oxygen partial pressure between 0% and 20%, and a steady-state response time of 2 min was demonstrated, with a stable analytical response shown over the examined period of 90 days with no obvious fouling of the electrode surface. Based on the attractive physical attributes of ionic liquids (e.g., thermal stability beyond 150 °C), one can envision intriguing utility in nonstandard conditions and long-term online applications, as well as extension to the determination of other gases, such as methane and nitric oxide.

  14. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells

    Science.gov (United States)

    Garnett, Pamela J.; Treagust, David F.

    This research investigated students' understanding of electrochemistry following a 7-9-week course of instruction. A list of conceptual and propositional knowledge statements was formulated, and this provided the framework for semistructured interviews that were conducted with 32 students in their final year of high school chemistry, following instruction in electrochemistry. Three misconceptions identified in this study and five which have been reported earlier are incorporated into an alternative framework about electric current. The framework is grounded on the notion that a current always involves drifting electrons, even in solution. Another area where students' misconceptions were prevalent was in relation to the sign of the anode and cathode. Students who thought the anode was negatively charged believed cations would move toward it, and those who thought it was positively charged were unable to explain why electrons move away from it. Electrolytic cells also proved troublesome for students. Many students did not associate the positions of the anode and cathode with the polarity of the applied electromotive force (e.m.f.). Other students attempted to reverse features of electrochemical cells and apply the reversals to electrolytic cells. The implications of the research relate to students' interpretation of the language that is used to describe scientific phenomena and the tendency for students to overgeneralize, due to comments made by teachers or statements in textbooks.

  15. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    Science.gov (United States)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  16. Solid state NMR investigation of a novel Li ion ceramic electrolyte. Li doped BPO sub 4

    CERN Document Server

    Dodd, A J

    2002-01-01

    Over the last decade lithium ion conducting batteries have emerged as the leading technology in battery materials. Their performance, however, is limited to applications below around 50 deg C by the liquid nature of the electrolytes used. In the quest for a solid state electrolyte for use in high temperature applications the nano-crystalline ceramic lithium doped boron phosphate material was developed. Solid state nuclear magnetic resonance (NMR) has been employed to investigate some of the fundamental properties of this material including ionic mobility, defect structure, sample purity and ionic distribution. The findings of this work show that when synthesised at a reaction temperature above 600 deg C the loss of boron from the structure results in the incorporation of vacancy sites about which the Li ions gather in small clusters. Multiple-pulse multiple-quantum spin counting techniques are employed in an effort to count the number of quadrupolar sup 7 Li nuclei interacting in a cluster though it is ultima...

  17. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  18. Photoactive TiO{sub 2} coatings obtained by Plasma Electrolytic Oxidation in refrigerated electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Silvia, E-mail: silvia.franz@polimi.it; Perego, Daniele; Marchese, Ottavia; Lucotti, Andrea; Bestetti, Massimiliano

    2016-11-01

    Highlights: • Submicrometric TiO{sub 2} coatings by Plasma Electrolytic Oxidation. • TiO{sub 2} high photoactivity in the UV range. • Low temperature oxidation. • Short processing times with respect to traditional anodic oxidation. - Abstract: The effect of synthesis conditions on the properties of nanoporous TiO{sub 2} coatings obtained by PEO in refrigerated electrolytes have been investigated. Linear sweep voltammetry was carried out on the TiO{sub 2} coatings, in dark and under UV-C irradiation, in order to assess the photoelectrochemical behavior of samples. The largest photocurrents (0.18 mA/cm{sup 2}) were measured on TiO{sub 2} coatings obtained by PEO in refrigerated aqueous solutions. UV–vis spectra revealed that lowering the processing temperature from 20 to −3.5 °C induced a blue-shift of the absorption band of the TiO{sub 2} coatings from 3.05 to 3.42 eV. The main advantage of PEO in refrigerated aqueous solutions over current approaches, based on anodic oxidation and thermal treatments, is that the synthesis of photoactive TiO{sub 2} coatings can be carried out in a relatively easy, quick and reproducible way, without annealing pre- and post-treatments. Furthermore, by controlling the solution temperature in PEO process, the photocurrent of the resulting TiO{sub 2} coating reaches quite high values.

  19. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    Science.gov (United States)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from drug

  20. Nitrogen dissociation during RF sputtering of Lipon electrolyte for all-solid-states batteries

    DEFF Research Database (Denmark)

    Stamate, Eugen; Christiansen, Ane Sælland; Holtappels, Peter

    2013-01-01

    films in nitrogen gas is investigated by mass appearance spectrometry, optical emission spectroscopy and electrostatic probes and the results are correlated with electrochemical properties of the films. Low pressure and moderate power are found to be most beneficial for the growth of good quality films......Small size and high power density secondary batteries are desired for a large number of applications based on miniature wireless devices and sensors that need to be compatible with the microelectronic fabrication technology. This fact resulted in the development of solid electrolytes, like lithium...... phosphorus oxynitride (Lipon), that can be compacted with the anode and cathode electrodes in an all-solid-states structure where the nitrogen incorporation is considered one of the key parameters for controlling the ionic conductivity. In this work the nitrogen dissociation during RF sputtering of Lipon...

  1. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    Science.gov (United States)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  2. Accelerated Aging in Electrolytic Capacitors for Prognostics

    Science.gov (United States)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  3. Ionic liquids behave as dilute electrolyte solutions.

    Science.gov (United States)

    Gebbie, Matthew A; Valtiner, Markus; Banquy, Xavier; Fox, Eric T; Henderson, Wesley A; Israelachvili, Jacob N

    2013-06-11

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force-distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin-Landau-Verwey-Overbeek theory with an additive repulsive steric (entropic) ion-surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high-free-ion density ionic liquids and ionic liquid blends.

  4. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition

    Science.gov (United States)

    Lee, Dong Ki; Choi, Kyoung-Shin

    2018-01-01

    As the performance of photoelectrodes used for solar water splitting continues to improve, enhancing the long-term stability of the photoelectrodes becomes an increasingly crucial issue. In this study, we report that tuning the composition of the electrolyte can be used as a strategy to suppress photocorrosion during solar water splitting. Anodic photocorrosion of BiVO4 photoanodes involves the loss of V5+ from the BiVO4 lattice by dissolution. We demonstrate that the use of a V5+-saturated electrolyte, which inhibits the photooxidation-coupled dissolution of BiVO4, can serve as a simple yet effective method to suppress anodic photocorrosion of BiVO4. The V5+ species in the solution can also incorporate into the FeOOH/NiOOH oxygen-evolution catalyst layer present on the BiVO4 surface during water oxidation, further enhancing water-oxidation kinetics. The effect of the V5+ species in the electrolyte on both the long-term photostability of BiVO4 and the performance of the FeOOH/NiOOH oxygen-evolution catalyst layer is systematically elucidated.

  6. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  7. ELECTROLYTIC-PLASMA TREATMENT OF INNER SURFACE OF TUBULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Yu. G. Alekseev

    2016-01-01

    Full Text Available While manufacturing a number of important tubular products stringent requirements have been imposed on quality of their inner surfaces. The well-known methods for inner surface treatment of pipes include sandblasting, chemical cleaning with acid reagents (oxalic, formic, sulfamic, orthophosphoric acids and electrochemical polishing. Disadvantages of the chemical method are cleaning-up irregularities, high metal removal, limited number of reagent application, complicated selection of reagent chemical composition and concentration, complicated and environmentally harmful recycling of waste chemicals, high cost of reagents. Low productivity at a high cost, as well as hazardous impact on personnel due to high dispersion of abrasive dust are considered as disadvantages of sandblasting. Electrochemical polishing is characterized by the following disadvantages: low processing productivity because supply of high currents is rather difficult due to electrolyte scattering capacity away from the main electrode action zone, limited length of the cavity to be treated due to heating of flexible current leads at operating current densities, application of expensive aggressive electrolytes and high costs of their recycling. A new method for polishing and cleaning of inner surfaces of tubular products based on electrolyte-plasma treatment has been developed. In comparison with the existing methods the proposed methods ensures quality processing with high intensity while applying non-toxic, environmentally friendly and cheap electrolytes. The paper presents results of investigations on technological specific features of electrolyte-plasma treatment for inner surfaces of tubular products: influence of slotted nozzle width, electrolyte flow and rate on stability of gas-vapor blanket, current density and productivity. Results of the research have made it possible to determine modes that provide stability and high productivity in the process of electrolyte

  8. Incorporating Spirituality in Primary Care.

    Science.gov (United States)

    Isaac, Kathleen S; Hay, Jennifer L; Lubetkin, Erica I

    2016-06-01

    Addressing cultural competency in health care involves recognizing the diverse characteristics of the patient population and understanding how they impact patient care. Spirituality is an aspect of cultural identity that has become increasingly recognized for its potential to impact health behaviors and healthcare decision-making. We consider the complex relationship between spirituality and health, exploring the role of spirituality in primary care, and consider the inclusion of spirituality in existing models of health promotion. We discuss the feasibility of incorporating spirituality into clinical practice, offering suggestions for physicians.

  9. Incorporation of additives into polymers

    Science.gov (United States)

    McCleskey, T. Mark; Yates, Matthew Z.

    2003-07-29

    There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.

  10. Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shubha, Nageswaran [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Prasanth, Raghavan [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute - NTU (ERI-N) Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM-CREATE Center for Electromobility, Nanyang Technological University, Singapore 637553 (Singapore); Hoon, Hng Huey [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Srinivasan, Madhavi, E-mail: madhavi@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute - NTU (ERI-N) Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM-CREATE Center for Electromobility, Nanyang Technological University, Singapore 637553 (Singapore)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► P(VdF-co-HFP)–clay nanocomposite based electrospun membranes are prepared. ► The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ► The composite PGE shows ionic conductivity of 5.5 mS cm{sup −1} at room temperature. ► Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup −1}. ► The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) without compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The charge–discharge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.

  11. Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    Science.gov (United States)

    Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.

    2016-01-01

    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of

  12. A high-resolution, analytical study of the anodic film formed on GaAs in a tungstate electrolyte

    Science.gov (United States)

    Habazaki, H.; Skeldon, P.; Ghidaoui, D.; Lyon, S. B.; Shimizu, K.; Thompson, G. E.; Wood, G. C.

    1996-10-01

    The anodic film formed in aqueous tungstate electrolyte at 0022-3727/29/10/004/img10, to about 295 nm thickness, on 0022-3727/29/10/004/img11-type GaAs at high faradaic efficiency, about 94%, has been examined by analytical transmission electron microscopy, using ultramicrotomed film sections, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, electron probe micro-analysis and scanning electron microscopy. The film is revealed to be amorphous and to comprise a uniform distribution of units of 0022-3727/29/10/004/img12 and 0022-3727/29/10/004/img13 across the main film thickness, with possible gallium enrichment in the outermost 10 nm or so of the film. Gallium and arsenic are incorporated into the anodic film at the alloy/film interface in the substrate proportions, without development of a layer enriched either in gallium or in arsenic just beneath the anodic film. The formation ratio for the film is about 0022-3727/29/10/004/img14. The film, formed by migration both of cations and of anions across its thickness, is enriched in arsenic relative to the substrate composition, the level of enrichment suggesting that 0022-3727/29/10/004/img15 ions migrate outwards in the film about 2.4 times faster than do 0022-3727/29/10/004/img16 ions, based on a cation transport number of 0.2. The 0022-3727/29/10/004/img15 ions may be ejected, to the electrolyte, under the electric field, on reaching the film/electrolyte interface, with limited formation of an outer layer of essentially 0022-3727/29/10/004/img12 at the film/electrolyte interface, or form a layer of 0022-3727/29/10/004/img12, up to about 10% of the total film thickness, which is thinned after anodizing by exposure to the electrolyte and the rinse water. Significantly, the outer layer of film material developed by the faster migrating 0022-3727/29/10/004/img15 ions prevents loss of 0022-3727/29/10/004/img16 ions from the film during film growth. However, during prolonged exposure to aqueous

  13. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  14. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  15. A Key concept in Magnesium Secondary Battery Electrolytes.

    Science.gov (United States)

    Bertasi, Federico; Hettige, Chaminda; Sepehr, Fatemeh; Bogle, Xavier; Pagot, Gioele; Vezzù, Keti; Negro, Enrico; Paddison, Stephen J; Greenbaum, Steve G; Vittadello, Michele; Di Noto, Vito

    2015-09-21

    A critical roadblock toward practical Mg-based energy storage technologies is the lack of reversible electrolytes that are safe and electrochemically stable. Here, we report on high-performance electrolytes based on 1-ethyl-3-methylimidazolium chloride (EMImCl) doped with AlCl3 and highly amorphous δ-MgCl2 . The phase diagram of the electrolytes reveals the presence of four thermal transitions that strongly depend on salt content. High-level density functional theory (DFT)-based electronic structure calculations substantiate the structural and vibrational assignment of the coordination complexes. A 3D chloride-concatenated dynamic network model accounts for the outstanding redox behaviour and the electric and magnetic properties, providing insight into the conduction mechanism of the electrolytes. Mg anode cells assembled using the electrolytes were cyclically discharged at a high rate (35 mA g(-1) ), exhibiting an initial capacity of 80 mA h g(-1) and a steady-state voltage of 2.3 V. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nickel-hydrogen battery with oxygen and electrolyte management features

    Science.gov (United States)

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  17. Oral rehydration therapy for preoperative fluid and electrolyte management.

    Science.gov (United States)

    Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae

    2011-01-01

    Preoperative fluid and electrolyte management is usually performed by intravenous therapy. We investigated the safety and effectiveness of oral rehydration therapy (ORT) for preoperative fluid and electrolyte management of surgical patients. The study consisted of two studies, designed as a prospective observational study. In a pilot study, 20 surgical patients consumed 1000 mL of an oral rehydration solution (ORS) until 2 h before induction of general anesthesia. Parameters such as serum electrolyte concentrations, fractional excretion of sodium (FENa) as an index of renal blood flow, volume of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with ORT were assessed. In a follow-up study to assess the safety of ORT, 1078 surgical patients, who consumed ORS until 2 h before induction of general anesthesia, were assessed. In the pilot study, water, electrolytes, and carbohydrate were effectively and safely supplied by ORT. The FENa value was increased at 2 h following ORT. The volume of EPGF collected following the induction of anesthesia was 5.3±5.6 mL. In the follow-up study, a small amount of vomiting occurred in one patient, and no aspiration occurred in the patients. These results suggest that ORT is a safe and effective therapy for the preoperative fluid and electrolyte management of selected surgical patients.

  18. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.

    Science.gov (United States)

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A

    2014-10-01

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  19. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R.

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  20. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  1. Study of the carbon material / electrolyte interface; Etude de l`interface materiau carbone / electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Genies, S.; Yazami, R. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France); Frison, J.C. [CNET, Centre de Recherches de Lannion, 22 (France); Ledran, J. [CNET, 92 - Issy-les-Moulineaux (France)

    1996-12-31

    The aim of this work is the comparative study of the properties of the natural graphite/liquid organic electrolyte interface by impedance spectroscopy with respect to different lithium salts (LiX with X = ClO{sub 4}{sup -}, BF{sub 4}{sup -}, CF{sub 3}SO{sub 3}{sup -}, N(CF{sub 3}SO{sub 2}){sub 2}{sup -}, PF{sub 6}{sup -}). The evolution of the interface properties during the first electrochemical reduction suggests different mechanisms of formation of passivation films. A more stable, thin and homogenous film seems to develop when the LiN(CF{sub 3}SO{sub 2}){sub 2} or LiPF{sub 6} lithium salts are used. The chemical diffusion coefficient of lithium in graphite has been determined by impedance spectroscopy. (J.S.) 16 refs.

  2. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    Science.gov (United States)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  3. Advanced window incorporating vacuum glazing

    Science.gov (United States)

    Asano, Osamu; Misonou, Masao; Kato, Hidemi; Nagasaka, Shigeki

    1999-10-01

    Vacuum glazing product named SPACIATM, being an unique product with very high levels of thermal insulation properties in a very small thickness, is described in detail. The construction and manufacturing process of SPACIATM are reported. Its design, which was originally established by R.E. Collins et al. of the University of Sydney, has been adjusted in order to meet the requirements of the Japanese market and the requirements of mass production process. SPACIATM is found to have several unique features including airborne sound insulation as well as thermal insulation. Energy required for air conditioning was simulated for Japanese houses with various glazings, and it was revealed that SPACIATM could save the energy efficiently. Finally, hybrid IG unit, where vacuum glazing is incorporated into a conventional IG unit, is proposed for further improvement of thermal insulation.

  4. Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ye [Wildcat Discovery Technologies, San Diego, CA (United States); Yang, Johnny [Wildcat Discovery Technologies, San Diego, CA (United States); Cheng, Gang [Wildcat Discovery Technologies, San Diego, CA (United States); Carroll, Kyler [Wildcat Discovery Technologies, San Diego, CA (United States); Clemons, Owen [Wildcat Discovery Technologies, San Diego, CA (United States); Strand, Diedre [Wildcat Discovery Technologies, San Diego, CA (United States)

    2016-09-09

    Substantial improvement in the energy density of rechargeable lithium batteries is required to meet the future needs for electric and plug-in electric vehicles (EV and PHEV). Present day lithium ion battery technology is based on shuttling lithium between graphitic carbon and inorganic oxides. Non-graphitic anodes, such as silicon can provide significant improvements in energy density but are currently limited in cycle life due to reactivity with the electrolyte. Wildcat/3M proposes the development of non-carbonate electrolyte formulations tailored for silicon alloy anodes. Combining these electrolytes with 3M’s anode and an NMC cathode will enable up to a 20% increase in the volumetric cell energy density, while still meeting the PHEV/EV cell level cycle/calendar life goals.

  5. The Impact of Strong Cathodic Polarization on SOC Electrolyte Materials

    DEFF Research Database (Denmark)

    Kreka, Kosova; Hansen, Karin Vels; Jacobsen, Torben

    2016-01-01

    of impurities at the grain boundaries, electrode poisoning, delamination or cracks of the electrolyte etc., have been observed in cells operated at such conditions, lowering the lifetime of the cell1,2. High polarizations are observed at the electrolyte/cathode interface of an electrolysis cell operated at high...... current density. In case of a cell voltage above 1.6 V, p-type and n-type electronic conductivity are often observed at the anode and cathode respectively3. Hence, a considerable part of the current is lost as leakage through the electrolyte, thus lowering the efficiency of the cell considerably.......One of the most promising reversible energy conversion/storage technologies is that of Solid Oxide Fuel/Electrolysis Cells (SOFC/SOEC, collectively termed SOC). Long term durability is typically required for such devises to become economically feasible, hence considerable amount of work has...

  6. Intermetallics as cathode materials in the electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Stojic, D.L.; Maksic, A.D.; Kaninski, M.P.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physical Chemistry; Cekic, B.D. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physics; Miljanic, S.S. [Belgrade Univ. (Serbia and Montenegro). Faculty of Physical Chemistry

    2005-01-01

    The intermetallics of transition metals have been investigated as cathode materials for the production of hydrogen by electrolysis from water-KOH solutions, in an attempt to increase the electrolytic process efficiency. We found that the best effect among all investigated cathodes (Hf{sub 2}Fe, Zr-Pt, Nb-Pd(I), Pd-Ta, Nb-Pd(II), Ti-Pt) exhibits the Hf{sub 2}Fe phase. These materials were compared with conventional cathodes (Fe and Ni), often used in the alkaline electrolysis. A significant upgrade of the electrolytic efficiency using intermetallics, either in pure KOH electrolyte or in combination with ionic activators added in situ, was achieved. The effects of these cathode materials on the process efficiency were discussed in the context of transition metal features that issue from their electronic configuration. (Author)

  7. Electrical Interconnection Of Superconducting Strands By Electrolytic CU Deposition.

    CERN Document Server

    Scheuerlein, C; Heck, S; Ams, A

    2011-01-01

    The electrical interconnection of Nb3Sn/Cu strands is a key issue for the construction of superconducting devices such as Nb3Sn based insertion devices for third generation light sources. As an alternative connection method for brittle superconducting strands like Nb3Sn/Cu, test joints have been produced by electrolytic deposition of Cu. The resistance of first test joints produced by electrolytic Cu deposition with a strand overlap length of 3 cm at 4.2 K is about 10 n$\\omega$, similar to the resistance measured for joints produced by soft soldering with the same strand overlap length. Interconnection by electrolytic Cu deposition can be done before or after the reaction heat treatment, and it produces a mechanically strong connection. Simulations have been performed with Comsol multiphysics in order to estimate the influence of deposit imperfections on the joint resistance, and to compare the resistance of joints made with different techniques

  8. Electrolytic decontamination of conductive materials for hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-12-31

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.

  9. Electroless copper electrolytes and its surface characteristics for semiconductor interconnects

    Science.gov (United States)

    Lee, Hong-Kee; Hur, Jin-Young

    2013-07-01

    In this research, to develop proper electroless copper electrolytes for semiconductor interconnects, the concentration and amount of additives are varied. Then, the stability, reactivity, deposition rate, leveling effect, and surface structure are examined. After a virgin makeup solution with suitable deposition characteristics is obtained, an electroless copper coating layer of high uniformity and adhesion strength was achieved using the stabilizer, catalyst, buffer, and pH adjuster as additives and surfactant on Ru diffusion barriers. Through annealing, resistance characteristics could be enhanced. Moreover, by measuring the cyclic voltammetry stripping and mixed potential of the electroless Cu electrolyte, its surface reactivity is electrochemically evaluated, and the result is in agreement with the deposition reaction. When the electrolyte developed in this study is applied on a trench pattern wafer with A/R 3.5 and a line width of 30 nm, it is possible to observe immaculate filling with improved leveling.

  10. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  11. Development of high performance proton-conducting solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Kopitzke, R.W. [Florida Solar Energy Center, Cocoa, FL (United States)

    1998-08-01

    This work seeks to improve the efficiency of fuel cell and electrolyzer operation by developing solid electrolytes that will function at higher temperatures. Two objectives were pursued: (1) determine the mechanism of hydrolytic decomposition of aromatic sulfonic acid ionomers, with the intent of identifying structural weaknesses that can be avoided in future materials; and (2) identify new directions in solid electrolyte development. After evaluating a number of aromatic sulfonates, it became apparent that no common mechanism was going to be found; instead, each polymer had its own sequence of degradation steps, involving some combination of desulfonation and/or chain scission. For electrochemical cell operation at temperatures > 200 C, it will be necessary to develop solid electrolytes that do not require sulfonic acids and do not require water to maintain its conductivity mechanism.

  12. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  13. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingsong; Ping, Ping; Sun, Jinhua [State Key Laboratory of Fire Science, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui (China); Chen, Chunhua [Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui (China)

    2010-11-01

    To enhance the safety of lithium ion battery, cresyl diphenyl phosphate (CDP) is explored as an additive in 1.0 M LiPF{sub 6}/ethylene carbonate (EC) + diethyl carbonate (DEC) (1:1 wt.). The electrochemical performances of LiCoO{sub 2}/CDP-electrolyte/C cells are tested. At the thermal aspect, the thermal stability of the electrolyte with CDP is detected firstly by using a C80 micro-calorimeter, and then the charged LiCoO{sub 2}/CDP-electrolyte/C cells are disassembled and wrapped to detect the thermal behaviors. The results indicate that CDP-containing electrolyte enhances the thermal stabilities of electrolyte and lithium ion battery, and the electrochemical performances of LiCoO{sub 2}/CDP-electrolyte/C cell become slightly worse by using CDP in the electrolyte. Furthermore, the cell with 10% (wt.) CDP-containing electrolyte shows better cycle efficiency than that of other CDP-containing electrolyte, such as containing 5% (wt.) CDP and 15% (wt.) CDP. This maybe because that the mass ratio between CDP and electrolyte is close to the reaction stoichiometric ratio in the 10% (wt.) CDP-containing electrolyte, where stable solid electrolyte interphase (SEI) is formed. Therefore, 10% CDP-containing electrolyte improves the safety of lithium ion battery and keeps its electrochemical performance. (author)

  14. Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C

    Science.gov (United States)

    Brandon, Erik; Smart, Marshall; West, William

    2010-01-01

    A previous NASA Tech Brief ["Low-Temperature Supercapacitors" (NPO-44386) NASA Tech Briefs, Vol. 32, No 7 (July 2008), page 32] detailed ongoing efforts to develop non-aqueous supercapacitor electrolytes capable of supporting operation at temperatures below commercially available cells (which are typically limited to charging and discharging at > or equal to -40 C). These electrolyte systems may enable energy storage and power delivery for systems operating in extreme environments, such as those encountered in the Polar regions on Earth or in the exploration of space. Supercapacitors using these electrolytes may also offer improved power delivery performance at moderately low temperatures (e.g. -40 to 0 C) relative to currently available cells, offering improved cold-cranking and cold-weather acceleration capabilities for electrical or hybrid vehicles. Supercapacitors store charge at the electrochemical double-layer, formed at the interface between a high surface area electrode material and a liquid electrolyte. The current approach to extending the low-temperature limit of the electrolyte focuses on using binary solvent systems comprising a high-dielectric-constant component (such as acetonitrile) in conjunction with a low-melting-point co-solvent (such as organic formates, esters, and ethers) to depress the freezing point of the system, while maintaining sufficient solubility of the salt. Recent efforts in this area have led to the identification of an electrolyte solvent formulation with a freezing point of -85.7 C, which is achieved by using a 1:1 by volume ratio of acetonitrile to 1,3-dioxolane

  15. EVALUATING MORTALITY RATE CAUSED BY ELECTROLYTE ABNORMALITIES IN PATIENTS HOSPITALIZED

    Directory of Open Access Journals (Sweden)

    B. Khorasani

    2008-05-01

    Full Text Available Adjustment of composition of body fluids and electrolytes is one of the most important aspects of patients care. Sodium and Potassium are the most important body cations, the improper adjustment of them will cause sever disorders in neuromuscular, gastrointestinal, respiratory and cardiovascular systems. Acute renal failure indicated by increase in creatinine and nitrogen urea, brings an accumulation of fluids, salts and metabolites of nitrogen in body. This study intends to assess the status of electrolyte abnormalities and mortality rates of the patients hospitalized in ICU wards in our country. This is a descriptive and retrospective study on the records of 378 patients hospitalized in ICU. A questionnaire was prepared and the data were entered in SPSS system. They were statistically analyzed by using chi-square and fisher's Exact test methods. Out of 378 patients hospitalized in ICU, over 2/3 of them were male and over half of them were>45 years old. Frequency distribution of electrolyte abnormalities was as follows: Hyponatremia 59% hypernatremia 23% hypokalemia 37% hyperkalemia 28%, 35% and 21% of patients had respectively BUN and creatinine more than the normal range. 26% of patients hospitalized in ICU had nonsurgical problems and 74% of the patients had surgical problems. Average time of hospitalization in ICU was 85 days and mortality rate was 35%. The most common electrolyte abnormality was related to variation in serum sodium levels in the form of hyponatremia. And the highest prevalence electrolyte abnormality in dead patients was hyponatremia. This study proves that the prevalence of electrolyte abnormalities is directly related to mortality and increase in hospitalization period and those having undergone surgical operations during hospitalization in ICU, manifested more abnormalities.

  16. Serum electrolyte derangements in patients with traumatic brain injury.

    Science.gov (United States)

    Rafiq, Mirza Faisal Ahmed; Ahmed, Noor; Khan, Adil Aziz

    2013-01-01

    Electrolyte derangements are common sequel of traumatic brain injury. Use of intravenous fluids, diuretics, syndrome of inappropriate ADH secretion and cerebral salt washing are some of the factors responsible for this. Proper in time detection followed by appropriate treatment not only improves neurological status but also decrease morbidity and mortality. This study was conducted to know serum derangements of different electrolytes in patients with traumatic brain injury. This cross-sectional study was conducted in Pakistan Institute of Medical Sciences. Islamabad, Pakistan from Feb 2009 to Feb 2010. All adult patients with traumatic brain injury who presented to Neurosurgical department with severe head injury (GCS < 8) and who need monitoring in high dependency unit, were included in this study. Initially twice daily serum electrolyte monitoring for one week then once daily for remaining period of hospital stay was carried out. All samples were sent to Pathology department of Pakistan Institute of Medical Sciences, Islamabad. Patients who need corrective measures for imbalance had repetition of sampling after giving appropriate therapy. Statistical analysis was performed on SPSS-16. Total 215 patients presented with severe head injury that were managed in high dependency unit. Out of which 127 (59.1%) were male and 88 (40.9%) were females. Most of them were adults between 21-40) years of age (21.4%; 24.7%). Sodium was the main electrolyte that underwent change & out of which hyper-natremia was major abnormality that occurred in 140 (65.1%) of patients. This is followed by hypo-kalemia that occurred in 79 (36.7%) of patients. Serum calcium & magnesium levels show little derangements. Electrolyte imbalance following traumatic head injury is an important cause to look for in patient monitoring. Sodium is the chief electrolytes of concern. Serum potassium and calcium levels also under goes notable changes.

  17. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q L; Fu, C J; Chan, S H [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Pasciak, G, E-mail: qlliu@ntu.edu.s [Electrotechnical Institute Division of Electrotechnology and Materials Science (Poland)

    2011-06-15

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm x 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 {mu}m in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO{sub 3}-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm{sup 2} at 800 deg. C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  18. Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media.

    Science.gov (United States)

    Stergiopoulos, T; Ghicov, A; Likodimos, V; Tsoukleris, D S; Kunze, J; Schmuki, P; Falaras, P

    2008-06-11

    Dye-sensitized solar cells (DSSCs) were prepared using TiO(2) nanotubes, grown by controlled Ti anodic oxidation in non-aqueous media. Smooth, vertically oriented TiO(2) nanotube arrays, presenting a high degree of self-organization and a length of 20 µm, have been grown using ethylene glycol electrolyte containing HF. As-grown nanotubes exhibit an amorphous structure, which transforms to the anatase TiO(2) crystalline phase upon post-annealing in air at 450 °C. Atomic force microscopy (AFM) revealed the porous morphology together with high roughness and fractality of the surface. The annealed tubes were sensitized by the standard N719 ruthenium dye and the adsorption was characterized using resonance micro-Raman spectroscopy and adsorption-desorption measurements. The sensitized tubes were further used as active photoelectrodes after incorporation in sandwich-type DSSCs using both liquid and solidified electrolytes. The efficiencies obtained under air mass (AM) 1.5 conditions, using a back-side illumination geometry, were very promising: 0.85% using a composite polymer redox electrolyte, while the efficiency was further increased up to 1.65% using a liquid electrolyte.

  19. Fuel cell system with separating structure bonded to electrolyte

    Science.gov (United States)

    Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  20. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  1. Aluminum ion electrolyte for enhanced electrochromism of polyaniline

    Science.gov (United States)

    Yao, Peijian; Ye, Meidan; Guo, Wenxi; Liu, Xiangyang

    2017-08-01

    Electrolytes influence the electrochemical behaviors of active materials in the electrochromism. In our work, it is demonstrated that the trivalent ion, aluminum ion (Al3+), can be used as an efficient insertion ion of polyaniline (PANI) electrodeposited on the FTO-coated glass, which brings the desired large optical contrast (ΔT), long-term cyclic (coloration/bleaching) stability and high coloration efficiency compared with that based on the H+ electrolyte. Differing from the usual degradation by repeated doping/dedoping, the Al3+ insertion may introduce strong electrostatic forces, which on some degree stabilize the polymer chain structure and consequently yield enhanced electrochromic performances.

  2. Development and Characterization of Temperature-resistant Polymer Electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    1999-01-01

    Acid-doped PBI polymer electrolyte membranes have been developed and characterized for fuel cell applications at temperatures up to 200°C. Electric conductivity as high as 0.13 S/cm is obtained at 160°C at high doping levels. The water osmotic drag coefficient of the polymer electrolyte is found...... to be virtually zero, which allows a fuel cell to operate with no external humidification. At operational temperatures up to 200°C, a fuel cell based on this polymer membrane exhibits promising performance....

  3. Ion Motion in Electrolytic Cells: Anomalous Diffusion Evidences.

    Science.gov (United States)

    Lenzi, E K; Zola, R S; Ribeiro, H V; Vieira, Denner S; Ciuchi, F; Mazzulla, A; Scaramuzza, N; Evangelista, L R

    2017-04-06

    In this study, we argue that ion motion in electrolytic cells containing Milli-Q water, weak electrolytes, or liquid crystals may exhibit unusual diffusive regimes that deviate from the expected behavior, leading the system to present an anomalous diffusion. Our arguments lie on the investigation of the electrical conductivity and its relationship with the mean square displacement, which may be used to characterize the ionic motion. In our analysis, the Poisson-Nernst-Planck diffusional model is used with extended boundary conditions to simulate the charge transfer, accumulation, and/or adsorption-desorption at the electrode surfaces.

  4. Preservation of Methane Hydrates Prepared from Dilute Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2009-01-01

    Full Text Available The anomalous or self-preservation of methane hydrate at atmospheric pressure and temperatures below the ice point was investigated to determine whether this phenomenon might have applications in the storage and transportation of natural gas. Particular attention was paid to the effects of dilute electrolytes, as the presence of impurities in water is unavoidable in commercial transportation processes. The presence of electrolytes had a marked effect on the decomposition kinetics of methane hydrate at temperatures between 243 and 269 K. It was also found that chloride and sulfate ions may exhibit greater effects than do sodium and magnesium ions.

  5. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  6. Changes in plasma electrolytes during acclimatization at high altitude.

    Science.gov (United States)

    Khan, D A; Aslam, M; Khan, Z U

    1996-06-01

    The effects on plasma electrolytes and related hormones were determined in non-acclimatized low lander males, exposed for 96 hours to an altitude of 4424 meters. Twenty healthy soldiers aged 18-34 years travelled by road from an altitude of 2303 meters to 4424 meters over a period of 10 hours. Plasma sodium levels (142.09 +/- 1.14 mmol/1) and aldosterone (16.61 +/- 5.70 ng/ml) decreased to 139.69 mmol/1 and 11.6 +/- 4.60 ug/ml respectively after 96 hours of acute exposure to high altitude (p electrolytes.

  7. Graphene quantum dots as the electrolyte for solid state supercapacitors

    Science.gov (United States)

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  8. High temperature lithium cells with solid polymer electrolytes

    Science.gov (United States)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  9. Anion Conduction in Solid Electrolytes Probed by Water Transport Measurement

    OpenAIRE

    Takahashi, Hiroki; Takeguchi, Tatsuya; Yamanaka, Toshiro; Ueda, Wataru

    2010-01-01

    The application of inorganic materials as electrolyte of alkaline fuel cell is an important task to achieve noble-metal-free and high-temperature-resistant fuel cells. In the present study, water transport during ion conduction through solid electrolyte was measured to seek inorganic materials with anion conduction. We discovered the anion conduction in layered oxide NaCo2O4. Although LiCoO2 has the similar layered structure to NaCo2O4, this oxide showed cation conduction.

  10. Effect of background electrolytes on gypsum dissolution

    Science.gov (United States)

    Burgos-Cara, Alejandro; Putnis, Christine; Ruiz-Agudo, Encarnacion

    2015-04-01

    Knowledge of the dissolution behaviour of gypsum (CaSO4· 2H2O) in aqueous solutions is of primary importance in many natural and technological processes (Pachon-Rodriguez and Colombani, 2007), including the weathering of rocks and gypsum karst formations, deformation of gypsum-bearing rocks, the quality of drinking water, amelioration of soil acidity, scale formation in the oil and gas industry or measurement of water motion in oceanography. Specific ions in aqueous solutions can play important but very different roles on mineral dissolution. For example, the dissolution rates and the morphology of dissolution features may be considerably modified by the presence of the foreign ions in the solution, which adsorb at the surface and hinder the detachment of the ions building the crystal. Dissolution processes in the aqueous environment are closely related to the rearrangement of water molecules around solute ions and the interaction between the solvent molecules themselves. The rearrangement of water molecules with respect to solute species has been recognized as the main kinetic barrier for crystal dissolution in many systems (Davis, 2000; De Yoreo and Dove 2004; Wasylenki et al. 2005). Current research suggest that the control that electrolytes exert on water structure is limited to the local environment surrounding the ions and is not related to long-range electric fields emanating from the ions but results from effects associated with the hydration shell(s) of the ions (Collins et al. 2007) and the ions' capacity to break or structure water (i.e. chaotropic and kosmotropic ions, respectively). These effects will ultimately affect the kinetics of crystal dissolution, and could be correlated with the water affinity of the respective background ions following a trend known as the lyotropic or Hofmeister series (Kunz et al. 2004; Dove and Craven, 2005). In situ macroscopic and Atomic Force Microscopy (AFM) flow-through dissolution experiments were conducted at a

  11. 49 CFR 572.190 - Incorporated materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.190 Section 572.190... Dummy, Small Adult Female § 572.190 Incorporated materials. (a) The following materials are hereby... Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part...

  12. 49 CFR 572.80 - Incorporated materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth in full are hereby incorporated in this part by reference. These materials are thereby made part of this...

  13. 49 CFR 587.5 - Incorporated materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 587.5 Section 587.5... Barrier § 587.5 Incorporated materials. (a) The drawings and specifications referred to in this regulation that are not set forth in full are hereby incorporated in this part by reference. These materials are...

  14. 49 CFR 572.30 - Incorporated materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...

  15. 49 CFR 572.180 - Incorporated materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.180 Section 572.180... Dummy, 50th Percentile Adult Male § 572.180 Incorporated materials. (a) The following materials are... Federal Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1...

  16. Numeral Incorporation in Japanese Sign Language

    Science.gov (United States)

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  17. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  18. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries.

    Science.gov (United States)

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P

    2016-04-28

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

  19. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S.

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  20. Electrolytic reduction of mixed (Fe, Ti) oxide using molten calcium chloride electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, Mrutyunjay, E-mail: mp@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577 (Japan); Iizuka, Atsushi; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577 (Japan)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Tan et al. have electrolyzed mixtures of TiO{sub 2} and Fe{sub 2}O{sub 3} to produce alloys containing Fe-Ti intermetallic phases such as FeTi and Fe{sub 2}Ti using the FFC process. However, the produced alloys have a porous structure with many carbon impurities, e.g., titanium carbide (TiC). Most of the carbon contamination could be caused by the presence of carbon particles in the porous alloy structure. They did not mention any obvious ways of excluding carbon and other impurities, and only suggested that the use of mixed oxides with refined structures or using a single phase, namely ilmenite (FeO{center_dot}TiO{sub 2}), were methods of decreasing impurities in the formed alloys. For future industrialization, there is an urgent need for obvious ways of producing purer Fe-Ti alloys with dense structures, rather than porous structures, as these absorb carbon impurities. Black-Right-Pointing-Pointer Finally, we successfully reduced to a highly purified Fe-Ti intermetallic alloy of FeTi and {beta}-Ti (FeTi{sub 4}) phases. FeTi phases of size around 5-10 {mu}m were dispersed in a matrix of the {beta}-Ti (FeTi{sub 4}) phase. The carbon content of the electrolyzed alloy was as low as less than 0.01 mass%. It was suggested that the dense structure of the alloy of FeTi and {beta}-Ti (FeTi{sub 4}) avoided the inclusion of carbon particle impurities, unlike the porous alloy structure. - Abstract: The production of high-purity metals or alloys using effective technologies is critical for future industrialization. With this aim in mind, a fundamental study of electrolysis in molten CaCl{sub 2} electrolytes was conducted to develop a new production process for ferrotitanium (Fe-Ti) intermetallic alloys. Mixed solid oxides of TiO{sub 2} and Fe{sub 2}O{sub 3} were used in a molar ratio of 5.44:1.00. In this composition of Ti and Fe, FeTi and {beta}-Ti containing iron can co-exist in equilibrium. A mixed solid (Fe, Ti) oxide was reduced

  1. Electrolytes supramolecular interactions and non-equilibrium phenomena in concentrated solutions

    CERN Document Server

    Aseyev, Georgii Georgievich

    2014-01-01

    Electrolyte solutions play a key role in traditional chemical industry processes as well as other sciences such as hydrometallurgy, geochemistry, and crystal chemistry. Knowledge of electrolyte solutions is also key in oil and gas exploration and production, as well as many other environmental engineering endeavors. Until recently, a gap existed between the electrolyte solution theory dedicated to diluted solutions, and the theory, practice, and technology involving concentrated solutions.Electrolytes: Supramolecular Interactions and Non-Equilibrium Phenomena in Concentrated Solutions addresse

  2. General characteristics of patients with electrolyte imbalance admitted to emergency department

    OpenAIRE

    Balcı, Arif Kadri; Koksal, Ozlem; Kose, Ataman; Armagan, Erol; Ozdemir, Fatma; Inal, Taylan; Oner, Nuran

    2013-01-01

    BACKGROUND: Fluid and electrolyte balance is a key concept to understand for maintaining homeostasis, and for a successful treatment of many metabolic disorders. There are various regulating mechanisms for the equilibrium of electrolytes in organisms. Disorders of these mechanisms result in electrolyte imbalances that may be life-threatening clinical conditions. In this study we defined the electrolyte imbalance characteristics of patients admitted to our emergency department. METHODS: This s...

  3. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  4. INCORPORATING GRAMMAR INTO TRANSLATION CLASSROOM

    Directory of Open Access Journals (Sweden)

    Gurendi Wiwoho

    2017-12-01

    Full Text Available This paper discusses the teaching of translation. It is important to lay a strong foundation in translating for the second year students of English Department. The main goal of this study is to identify and improve students‘ grammar awareness and their grammatical adjustment ability especially in translating Indonesian sentences and short paragraphs into English. The data used in this study were students‘ translation assignments in Translation I course at the English Department of the Favulty of Languages and Culture, University of 17 Agustus 1945 Semarang, academic year 2015-2016. The findings of the research showed that the second year students still made a lot of grammatical mistakes especially in translating Indonesian sentences and short paragraphs into English. The greatest problem faced by the students was related with the use of verbs and tenses, followed by other problems related with the use of parts of speech and function words. This implies that incorporating grammar in teaching translation is important, in which students‘ awareness and knowledge of grammar should be taken with care. Therefore, in addition to these findings, a general model of grammatical instruction in translation teaching was presented to be useful for translation teachers.

  5. Ensemble learning incorporating uncertain registration.

    Science.gov (United States)

    Simpson, Ivor J A; Woolrich, Mark W; Andersson, Jesper L R; Groves, Adrian R; Schnabel, Julia A

    2013-04-01

    This paper proposes a novel approach for improving the accuracy of statistical prediction methods in spatially normalized analysis. This is achieved by incorporating registration uncertainty into an ensemble learning scheme. A probabilistic registration method is used to estimate a distribution of probable mappings between subject and atlas space. This allows the estimation of the distribution of spatially normalized feature data, e.g., grey matter probability maps. From this distribution, samples are drawn for use as training examples. This allows the creation of multiple predictors, which are subsequently combined using an ensemble learning approach. Furthermore, extra testing samples can be generated to measure the uncertainty of prediction. This is applied to separating subjects with Alzheimer's disease from normal controls using a linear support vector machine on a region of interest in magnetic resonance images of the brain. We show that our proposed method leads to an improvement in discrimination using voxel-based morphometry and deformation tensor-based morphometry over bootstrap aggregating, a common ensemble learning framework. The proposed approach also generates more reasonable soft-classification predictions than bootstrap aggregating. We expect that this approach could be applied to other statistical prediction tasks where registration is important.

  6. Incorporation of heparin into biomaterials.

    Science.gov (United States)

    Sakiyama-Elbert, Shelly E

    2014-04-01

    This review provides an overview of the incorporation of heparin into biomaterials with a focus on drug delivery and the use of heparin-based biomaterials for self-assembly of polymer networks. Heparin conjugation to biomaterials was originally explored to reduce the thrombogenicity of materials in contact with blood. Many of the conjugation strategies that were developed for these applications are still popular today for other applications. More recently heparin has been conjugated to biomaterials for drug delivery applications. Many of the delivery approaches have taken advantage of the ability of heparin to bind to a wide variety of growth factors, protecting them from degradation and potentiating interactions with cell surface receptors. More recently, the use of heparin as a base polymer for scaffold fabrication has also been explored, often utilizing non-covalent binding of heparin with peptides or proteins to promote self-assembly of hydrogel networks. This review will highlight recent advances in each of these areas. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Incorporating transgenerational testing and epigenetic ...

    Science.gov (United States)

    A number of environmental chemicals have been shown to alter markers of epigenetic change. Some published multi-generation rodent studies have identified effects on F2 and greater generations after chemical exposures solely to F0 dams, but were not focused on chemical safety. We were interested in how outcomes related to epigenetic changes could be identified and incorporated into chemical testing and risk assessment. To address this question, we conducted a systematic literature review to identify transgenerational (TG) epigenetic studies in rodents. These were analyzed to characterize the methods and observed outcomes, and to evaluate strengths, limitations, and biases. Our analysis found that test substances were administered to pregnant F0 dams; endpoints assessed in F1 to F4 generation offspring included growth, puberty timing, steroid hormone levels, abdominal adiposity, organ weights, histopathology, and epigenetic biomarkers. Biases were minimized through, e.g., randomization procedures, avoiding sibling or cousin matings, and independent multiple reviews of histopathology data. However, the numbers of litters assigned to control and test groups were not always transparently reported, nested statistical analyses of data was not always utilized to address litter effects, and “blind” testing was seldom performed. Many of these studies identified chemicals or combinations of chemicals that produced TG effects and/or adult-onset diseases, but there is a

  8. Effects of Duty Cycle, Current Frequency, and Current Density on Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on 6061 Al Alloy in Artificial Seawater

    Science.gov (United States)

    Vakili-Azghandi, Mojtaba; Fattah-alhosseini, Arash

    2017-10-01

    In this study, the effects of duty cycle, current frequency, and current density on corrosion behavior of the plasma electrolytic oxidation (PEO) coatings on 6061 Al alloy in artificial seawater (3.5 wt pct NaCl solution) were investigated. To serve this purpose, the electrical parameters of a unipolar pulsed current were applied during the PEO process on 6061 Al alloy in alkaline silicate electrolyte with and without Al2O3 nanoparticles. The coating morphology and microstructure were characterized by the scanning electron microscopy. The corrosion behavior and electrochemical response of the specimens treated by plasma electrolytic oxidation were analyzed by the electrochemical impedance spectroscopy and the potentiodynamic polarization in artificial seawater. It was found that PEO coatings formed in the presence of Al2O3 nanoparticle had lower porosity and exhibited better corrosion behavior compared with the coatings formed in the absence of Al2O3 nanoparticle in the structure. This can be attributed to the nanoparticles' incorporation and penetration through the PEO coatings. On the other hand, the decrease in the current density and increases in the duty cycle and frequency lead to further reduction of the nanoparticles' incorporation and distribution on the coating surface.

  9. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  10. Effect of strong electrolytes on edible oils part III: viscosity of canola ...

    African Journals Online (AJOL)

    Effect of strong electrolytes on the viscosity of canola oil in 1,4 dioxane was undertaken. The viscosity of oil in 1,4 dioxane was found to increase with the concentration of oil and decrease with rise in temperature. Strong electrolytes reduce the rate of flow of oil in 1,4 dioxane. It was noted that amongst these electrolytes, ...

  11. Effect of sulfites on the performance of LiBOB/{gamma}-butyrolactone electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Ping; Wang, Qingsong; Sun, Jinhua [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui (China); Feng, Xuyong; Chen, Chunhua [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui (China)

    2011-01-15

    {gamma}-Butyrolactone (GBL) increases the irreversible capacity of lithium ion battery when it is employed as the solvent for the lithium bis(oxalate)borate (LiBOB)-based electrolyte. To solve this problem, four sulfites are introduced to the electrolyte. The effects of ethyl sulfite (ES), propylene sulfite (PS), dimethyl sulfite (DMS) and diethyl sulfite (DES) on the LiBOB/GBL-based electrolytes are studied. The ionic conductivity, electrochemical stability, cycle performance and thermal stability of the sulfite containing electrolytes are tested and compared with that of the common electrolyte and the 1 M LiBOB/GBL electrolyte. The results indicate that the cyclic sulfites ES and PS show little benefit to the performance of the electrolyte. However, the linear sulfites DMS and DES could increase the ionic conductivity of the electrolyte and form an effective SEI film on the anode surface. In particular, the 1 M LiBOB/GBL+DMS (3:1 wt.) electrolyte mitigates the irreversible capacity and enhances the first coulomb efficiency and the capacity retention. The thermal stability of the DMS containing electrolyte is also improved and is better than that of the common electrolyte. These beneficial effects make them possibly to be a promising cosolvent for the LiBOB/GBL electrolyte. (author)

  12. Modeling of electrolytic solutions and implementation of the models in Flowbat

    OpenAIRE

    Hautala, M. (Mia)

    2016-01-01

    Abstract The purpose of this thesis was to create a Flowbat program for the calculation of the activity coefficients of species in different electrolyte solutions. In these solutions, electrolytes have dissociated into ions, which greatly increases the non-ideality of the solution even in small concentrations. Modeling of electrolytic solutions becomes esse...

  13. 40 CFR 424.60 - Applicability; description of the electrolytic manganese products subcategory.

    Science.gov (United States)

    2010-07-01

    ... electrolytic manganese products subcategory. 424.60 Section 424.60 Protection of Environment ENVIRONMENTAL... CATEGORY Electrolytic Manganese Products Subcategory § 424.60 Applicability; description of the electrolytic manganese products subcategory. The provisions of this subpart are applicable to discharges...

  14. 78 FR 54269 - Electrolytic Manganese Dioxide From Australia and China; Institution of Five-Year Reviews

    Science.gov (United States)

    2013-09-03

    ... COMMISSION Electrolytic Manganese Dioxide From Australia and China; Institution of Five-Year Reviews AGENCY...)) (the Act) to determine whether revocation of the antidumping duty orders on electrolytic manganese... electrolytic manganese dioxide from Australia and China (73 FR 58537-58539). The Commission is conducting...

  15. 40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.

    Science.gov (United States)

    2010-07-01

    ... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...

  16. Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells

    Science.gov (United States)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2012-11-01

    Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.

  17. Cardiac arrhythmias and electrolyte disturbances in colic horses.

    Science.gov (United States)

    Hesselkilde, Eva Z; Almind, Mette E; Petersen, Jesper; Flethøj, Mette; Præstegaard, Kirstine F; Buhl, Rikke

    2014-10-02

    Despite increased focus on cardiac arrhythmias in horses, the nature and prevalence is still poorly described. Case reports suggest that arrhythmias occurring secondary to systemic disease are seen more commonly in the clinic than arrhythmias caused by cardiac disease. The aim of this study was to investigate the prevalence of arrhythmias in colic horses referred for hospital treatment. Associations between electrolyte disturbances and arrhythmias were also investigated. Heart rate was 37.4 ± 3.7 bpm in the control group, and 51.6 ± 11.8 bpm, in the colic group, which was significantly different (P cardiac arrhythmias and electrolytes concentrations in colic horses compared to healthy controls. Although we only observed VPCs in the colic horses, no significant differences between colic horses and controls were found. Despite the colic horses having electrolyte changes at admission no correlation was found between the electrolyte disturbances and cardiac arrhythmias. Although no clear conclusions can be drawn from the present study, the results indicate that relatively mild colic per se is not pro-arrhythmogenic, whereas severe colic probably are more likely to result in ventricular arrhythmia.

  18. Salting Out Effect of Electrolyte Solutions in The Extraction of ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: The salting-out effect of various solutions of electrolyte in the extraction of tantalum and niobium using aqueous biphasic system (ABS) was ... using X-ray fluorescence method. The results show that the percentage ... Liquid/ liquid extraction separates the components of a homogeneous liquid mixture on the ...

  19. Effects of Dietary Xylopia aethiopica on Serum Electrolytes and ...

    African Journals Online (AJOL)

    The control rats received normal rat feed, while test animals were fed with three graded diet doses that contained Xylopia aethiopica at 1.5% w/w, 2.5% w/w and 5% w/w. Both control and test ... These alterations point to the positive effect of the spice on blood electrolyte homeostasis and its trace element ions content.

  20. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  1. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    with salicylic acid it has recently been found (Sekhon et al 2003) that the change in conductivity with polymer addition also depends upon the donor numbers of the solvent used. Solvent with high and low donor number show different conductivity behaviour in polymer gel electrolytes. On the basis of different experimental ...

  2. Liquid-liquid interfacial tension of electrolyte solutions

    NARCIS (Netherlands)

    Bier, Markus; Zwanikken, J.W.; van Roij, R.H.H.G.

    2008-01-01

    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as (-) for small I and as (±I) for large I. The former regime is dominated by the electrostatic potential due to an unequal

  3. Effect of Hibiscus sabdariffa on Blood Pressure and Electrolyte ...

    African Journals Online (AJOL)

    Effect of Hibiscus sabdariffa on Blood Pressure and Electrolyte Profile of Mild to Moderate Hypertensive Nigerians: A Comparative Study with ... Results: At the end of treatment, both HCTZ and HS significantly (P < 0.001) reduced systolic BP, diastolic BP, mean arterial pressure and serum Na+ compared to placebo.

  4. Polymer Electrolyte Membranes for Water Photo-Electrolysis.

    Science.gov (United States)

    Aricò, Antonino S; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-04-29

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion(®) 115) and quaternary ammonium-based (Fumatech(®) FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion(®)-based cell when just TiO₂ anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion.

  5. The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions

    DEFF Research Database (Denmark)

    Bondarenko, A.S.; Stephens, Ifan; Hansen, Heine Anton

    2011-01-01

    The Pt(111)/electrolyte interface has been characterized during the oxygen reduction reaction (ORR) in 0.1 M HClO4 using electrochemical impedance spectroscopy. The surface was studied within the potential region where adsorption of OH* and O* species occur without significant place exchange...

  6. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  7. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  8. The effect of electrolytes on emulsions stabilized by nonionic surfactants

    NARCIS (Netherlands)

    Boomgaard, van den A.

    1985-01-01

    The objective of this study was to investigate the effect of high electrolyte concentrations on the stability of oil-in-water- emulsions stabilized by nonionic surfactants.

    In chapter 1 several stability mechanisms are briefly outlined and the distinction between coalescence and

  9. Scaling Analysis of the Screening Length in Concentrated Electrolytes

    Science.gov (United States)

    Lee, Alpha A.; Perez-Martinez, Carla S.; Smith, Alexander M.; Perkin, Susan

    2017-07-01

    The interaction between charged objects in an electrolyte solution is a fundamental question in soft matter physics. It is well known that the electrostatic contribution to the interaction energy decays exponentially with object separation. Recent measurements reveal that, contrary to the conventional wisdom given by the classic Poisson-Boltzmann theory, the decay length increases with the ion concentration for concentrated electrolytes and can be an order of magnitude larger than the ion diameter in ionic liquids. We derive a simple scaling theory that explains this anomalous dependence of the decay length on the ion concentration. Our theory successfully collapses the decay lengths of a wide class of salts onto a single curve. A novel prediction of our theory is that the decay length increases linearly with the Bjerrum length, which we experimentally verify by surface force measurements. Moreover, we quantitatively relate the measured decay length to classic measurements of the activity coefficient in concentrated electrolytes, thus showing that the measured decay length is indeed a bulk property of the concentrated electrolyte as well as contributing a mechanistic insight into empirical activity coefficients.

  10. Page 1 Studies on Electrolytic Conductance 73 structure-making ...

    Indian Academy of Sciences (India)

    Studies on Electrolytic Conductance 73 structure-making behaviour and small size of Nations. Nal ions according to hole theory are fitted in the holes among the water structure without any disruption of structure. In the case of potassium halide-mannitol-water systems, transition is of the order KCl KBr Kl. This may also be ...

  11. Endovascular therapy of arteriovenous fistulae with electrolytically detachable coils

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, O.; Doerfler, A.; Forsting, M.; Hartmann, M.; Kummer, R. von; Tronnier, V.; Sartor, K. [Dept. of Neuroradiology, University of Heidelberg Medical School (Germany)

    1999-12-01

    We report our experience in using Guglielmi electrolytically detachable coils (GDC) alone or in combination with other materials in the treatment of intracranial or cervical high-flow fistulae. We treated 14 patients with arteriovenous fistulae on brain-supplying vessels - three involving the external carotid or the vertebral artery, five the cavernous sinus and six the dural sinuses - by endovascular occlusion using electrolytically detachable platinum coils. The fistula was caused by trauma in six cases. In one case Ehlers-Danlos syndrome was the underlying disease, and in the remaining seven cases no aetiology could be found. Fistulae of the external carotid and vertebral arteries and caroticocavernous fistulae were reached via the transarterial route, while in all dural fistulae a combined transarterial-transvenous approach was chosen. All fistulae were treated using electrolytically detachable coils. While small fistulae could be occluded with electrolytically detachable coils alone, large fistulae were treated by using coils to build a stable basket for other types of coil or balloons. In 11 of the 14 patients, endovascular treatment resulted in complete occlusion of the fistula; in the remaining three occlusion was subtotal. Symptoms and signs were completely abolished by this treatment in 12 patients and reduced in 2. On clinical and neuroradiological follow-up (mean 16 months) no reappearance of symptoms was recorded. (orig.)

  12. Electrolyte Solutions and Specific Ion Effects on Interfaces

    Science.gov (United States)

    Friedman, Ran

    2013-01-01

    Introductory general and physical chemistry courses often deal with colligative properties of solutions and do not discuss nonideal solutions in detail. Yet, a growing body of evidence reveals that even at physiological concentrations electrolyte solutions cannot be treated as ideal when a charged or partially charged solute (such as a protein) is…

  13. Polymer electrolyte membrane fuel cell control with feed-forward ...

    African Journals Online (AJOL)

    Feed-forward and feedback control is developed in this work for Polymer electrolyte membrane (PEM) fuel cell stacks. The feed-forward control is achieved using different methods, including look-up table, fuzzy logic and neural network, to improve the fuel cell stack breathing control and prevent the problem of oxygen ...

  14. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    Science.gov (United States)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  15. Common Student Misconceptions in Electrochemistry: Galvanic, Electrolytic, and Concentration Cells.

    Science.gov (United States)

    Sanger, Michael J.; Greenbowe, Thomas J.

    1997-01-01

    Investigates student (N=16) misconceptions concerning electrochemistry related to galvanic, electrolytic, and concentration cells. Findings indicate that most students demonstrating misconceptions were still able to calculate cell potentials correctly. Discusses common misconceptions and possible sources of these. Contains 33 references.…

  16. Potential-specific structure at the hematite-electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter; Rosso, Kevin M.

    2018-02-21

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe2O3) (110$\\bar{2}$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.

  17. Lithium-Ion Electrolytes with Fluoroester Co-Solvents

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, G. K. Surya (Inventor); Smith, Kiah (Inventor); Bhalla, Pooja (Inventor)

    2014-01-01

    An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.

  18. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  19. Evaluation of plasma electrolyte concentration in pregnant Nigerian ...

    African Journals Online (AJOL)

    The renal function status in relation to electrolyte homeostasis was evaluated in a total of one hundred pregnant Nigerian women (volunteers) and thirty ... Nutrition, environmental condition and child's spacing may have influenced the parameters and their implications with respect to proper fetal development are discussed.

  20. Electrified Microscopic and Conventional Interfaces between Two Immiscible Electrolyte Solutions

    Science.gov (United States)

    1991-06-24

    Supporting electrolytes 0.02 mol 1-1 LiCI in 1120 and 0.02 mol 1-1 TBATPB i- nitrobenzene. Fig. 12 Potentiometry of sodium dodecyl sulfate in water...0.02 mol 1-1 TBATPB in nitrobenzene. Fig. 13 Potentiometry of sodium dodecyl sulfate SDS in aqueous poly(ethylene) glycol/dextran system. The graph

  1. The Pattern Of Packed Cell Volume, Plasma Electrolytes And ...

    African Journals Online (AJOL)

    Fifty-two patients (27 males, 25 females aged 25 ±: 18.4 years) with Plasmodium falciparum infection and 53 healthy control subjects (27 males, 26 females aged 28.3 ± 19.2 years) were recruited for the study. Plasma electrolytes (Na+, K+, Cl-), glucose and HCO3- were respectively analyzed colorimetrically and ...

  2. Low hydrostatic head electrolyte addition to fuel cell stacks

    Science.gov (United States)

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  3. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct ...

    Indian Academy of Sciences (India)

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous ...

  4. STIR: Improved Electrolyte Surface Exchange via Atomically Strained Surfaces

    Science.gov (United States)

    2015-09-03

    Planck system modified to include reaction terms was built in COMSOL Multiphysics to describe the mass and charge fluxes related to electrons and both...oxide electrolyte system being studied here. A continuum model describing the microelectrode impedance measurements was built using COMSOL

  5. Polyethylene glycol-electrolyte solution (PEG-ES)

    Science.gov (United States)

    ... ES is in a class of medications called osmotic laxatives. It works by causing watery diarrhea so that -the stool can be emptied from the colon. The medication also contains electrolytes to prevent dehydration and other serious side effects that may be ...

  6. Effect of management on serum electrolytes, urea and creatinine in ...

    African Journals Online (AJOL)

    Primary nephrotic syndrome (NS) and acute glomerulonephritis (AGN) are known to cause varying degrees of renal insufficiency depending on the severity. Certain drugs and management strategies used in these two disorders also have profound effect on the serum electrolyte and urea profiles. This study determines the ...

  7. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  8. Study of lithium glassy solid electrolyte/electrode interface by ...

    Indian Academy of Sciences (India)

    Unknown

    †Present address: Departamento de Engenharia de Materiais, Instituto Superior Technico, Av. Rovisco Pais. 1049-001, LISBOA Codex. MS received 7 April 2000. Abstract. Cells of lithium ion conducting glassy electrolyte Li2SO4–Li2O–B2O3 with different combinations of electrodes (stainless steel blocking electrode, ...

  9. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    Ioannis eGaragounis

    2014-01-01

    Full Text Available Developed in the early 1900's, the Haber-Bosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  10. Lithium ion conducting solid polymer blend electrolyte based on bio ...

    Indian Academy of Sciences (India)

    vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and ...

  11. Phase composition of perlite steel modified by electrolyte plasma nitriding

    Science.gov (United States)

    Popova, Natalya; Erygina, Lyudmila; Nikonenko, Elena; Skakov, Mazhin

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of phase composition of the type 0.34C-1Cr-1Ni-1Mo-Fe steel after the modification by electrolyte plasma nitriding performed in a nitrogen aqueous solution for 5 min and under voltage of 600 V. Two states of the steel specimens are investigated: 1) before nitriding (original state) and 2) after nitriding the specimen surface layer. TEM investigations show that electrolyte plasma nitriding results in substantial structural modifications such as phase composition and the number of phases involved. In the original state, the specimen structure represents lamellar perlite, ferritic-carbide mix, and fragmented ferrite. After electrolyte plasma nitriding, the structure is lamellar non-fragmented perlite and fragmented ferrite. The former is present in three states, namely: ideal lamellar perlite, lamellar perlite with fractured cementite laminae, and defect lamellar perlite. The particles of alloyed cementite M3C and nitride Fe3Mo3N are observed in each state. The structure of fragmented ferrite contains the particles of nitride Fe3Mo3N, carbonitride Cr2C0.61N0.39 and alloyed cementite M3C. The investigation also determines that electrolyte plasma nitriding leads to the increase in scalar density of dislocations in α-matrix and long-range (internal) plastic stresses.

  12. Electrolyte Disturbance and the Type of Malarial Infection.

    Science.gov (United States)

    Rani, Asima; Akhtar, Shahnaz; Nawaz, Syed Kashif; Irfan, Shazia; Azam, Sadia; Arshad, Muhammad

    2015-11-01

    Electrolytes play an important role in the normal functioning of human body. Electrolyte imbalance and mineral disturbances is the common clinical manifestation in several infectious diseases including malaria. Malaria is a mosquito borne serious infectious disease of the world. Plasmodium vivax and P. falciparum are the main agents responsible for malaria in Pakistan. Electrolyte imbalance in malarial infection may lead towards the severity of disease. The present study analyzed the electrolytes levels (Na, K, Ca and Mg) in malarial patients and healthy individuals. Patients were categorized into two groups, P. falciparum and P. vivax, based on causative species of Plasmodium. Study consisted of 173 individuals, out of which 73 were malarial patients and 100 were normal healthy individuals. Concentrations of Na, K, and Ca were low in the blood of malarial patients as compared to healthy individuals (Pelectrolytes exists between P. falciparum and P. vivax infected groups (P>0.05). The concentration of Mg was changed based on exposure to the type of parasite. In P. falciparum infection, the level of Mg was lower than healthy individuals was (Pelectrolytes levels due to gender differences (P>0.05). Variation in Mg levels occurs due to exposure of Plasmodium depending on its type. The levels of Na, K and Ca are also changed due to Plasmodium, regardless of its type.

  13. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  14. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  15. Effects of Cataranthus roseus on Electrolyte Derangement Induced ...

    African Journals Online (AJOL)

    Effects of Cataranthus roseus on Electrolyte Derangement Induced by ... Group B received Diabinese in a dose of 1.6mg/kg body weight of rat while group C ... a significant (P<0.05) reduction in serum potassium ion and sodium which is well ...

  16. Stability of Standard Electrolytic Conductivity Solutions in Glass Containers

    National Research Council Canada - National Science Library

    Shreiner, Rubina H

    2002-01-01

    The stability of solutions having an electrolytic conductivity, κ , of 5 μS/cm to 100 000 μS/cm packaged in glass screw-cap bottles, glass serum bottles, and glass ampoules was monitored for 1 year to 2 years...

  17. Reference Values for Plasma Electrolytes and Urea in Nigerian ...

    African Journals Online (AJOL)

    Reference values for plasma electrolytes and urea have been defined for Nigerian children and adolescents residing in Abeokuta and its environs, a location in southern Nigeria, by estimating plasma sodium, potassium bicarbonate and urea concentrations in a reference population. The study group comprised three ...

  18. Serum electrolyte values of cows during third trimester of pregnancy ...

    African Journals Online (AJOL)

    Some serum electrolyte values of 170 cows in eight settled cattle herds in Zaria, Northern Nigeria during the third trimester of pregnancy and first two weeks of lactation were determined. The cows were sampled once weekly during the third trimester of pregnancy and early lactation (first two weeks) periods for two ...

  19. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 6. Pulsed nanocrystalline plasma electrolytic boriding as a novel method for corrosion protection of CP-Ti (Part 1: Different frequency and duty cycle). M Kh Aliev A Saboor. Alloys and Steels Volume 30 Issue 6 December 2007 pp 601-605 ...

  20. Electrolyte profiles in Nigerian patients with essential hypertension

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... rich and poor societies although with differing pathoge- netic basis (Amory and Strouser, 1996; Fuentes et al.,. 2000; Van den Hoogen et al., 2000; Kearney et al. ... renal defects, whether primary or secondary, may adversely affect electrolyte and water balance leading to hypertension (Blaustein et al., 1991; ...

  1. comparative analysis of salivary glucose and electrolytes in diabetic ...

    African Journals Online (AJOL)

    periodontitis. COMPARATIVE ANALYSIS OF SALIVARY GLUCOSE AND ELECTROLYTES IN. DIABETIC INDIVIDUALS WITH PERIODONTITIS. 1. Department of Physiology, University of Ibadan, Ibadan. 2. Department of Medicine, Endocrinology Unit, University College Hospital, Ibadan. T.J. Lasisi1 and A.A. Fasanmade2.

  2. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  3. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  4. Lithium air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  5. Li-air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  6. Assessment of renal function and electrolytes in patients with thyroid ...

    African Journals Online (AJOL)

    Results: among the renal function tests, serum uric acid, and creatinine mean values were significantly decreased in hyperthyroid patients; whereas, eGFR mean value was significantly increased in hyperthyroid study patients (P<0.05). Meanwhile, from the electrolyte measurements made, only the mean serum sodium ...

  7. Aeromonas hydrophila disturbs water and electrolyte transport in ...

    African Journals Online (AJOL)

    Fish diseases create a menace to aquaculture farms. They provoke disastrous economic losses and sanitary risks for the consumer. The present study aims to investigate the effect of the bacteria, Aeromonas hydrophila on water and electrolyte (Na+, K+, Cl-, HCO3 -) flux of Mugil cephalus (L, 1758) intestine. Anterior, middle ...

  8. Stable lithium electrodeposition in salt-reinforced electrolytes

    Science.gov (United States)

    Lu, Yingying; Tu, Zhengyuan; Shu, Jonathan; Archer, Lynden A.

    2015-04-01

    Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  9. Multiple Electrolyte and Metabolic Emergencies in a Single Patient

    Directory of Open Access Journals (Sweden)

    Caprice Cadacio

    2017-01-01

    Full Text Available While some electrolyte disturbances are immediately life-threatening and must be emergently treated, others may be delayed without immediate adverse consequences. We discuss a patient with alcoholism and diabetes mellitus type 2 who presented with volume depletion and multiple life-threatening electrolyte and metabolic derangements including severe hyponatremia (serum sodium concentration [SNa] 107 mEq/L, hypophosphatemia (“undetectable,” <1.0 mg/dL, and hypokalemia (2.2 mEq/L, moderate diabetic ketoacidosis ([DKA], pH 7.21, serum anion gap [SAG] 37 and hypocalcemia (ionized calcium 4.0 mg/dL, mild hypomagnesemia (1.6 mg/dL, and electrocardiogram with prolonged QTc. Following two liters of normal saline and associated increase in SNa by 4 mEq/L and serum osmolality by 2.4 mosm/Kg, renal service was consulted. We were challenged with minimizing the correction of SNa (or effective serum osmolality to avoid the osmotic demyelinating syndrome while replacing volume, potassium, phosphorus, calcium, and magnesium and concurrently treating DKA. Our management plan was further complicated by an episode of significant aquaresis. A stepwise approach was strategized to prioritize and correct all disturbances with considerations that the treatment of one condition could affect or directly worsen another. The current case demonstrates that a thorough understanding of electrolyte physiology is required in managing complex electrolyte disturbances to avoid disastrous outcomes.

  10. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    Science.gov (United States)

    2014-09-01

    Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite...Gorlov, M. Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells. RSC DaltonTrans. 2008, 20, 2655–2666. 7. Zakeeruddin, S. M.; Wang, P.; Humphry

  11. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, M. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saminathan, K., E-mail: ksaminath@gmail.com [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Siva, P. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saha, P. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, India-769008 (India); Rajendran, V. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India)

    2016-04-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na{sub 2}SO{sub 4}. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  12. Reference values for serum protein and electrolyte study from Rwanda

    African Journals Online (AJOL)

    Objective: To estimate reference values of serum proteins and electrolytes in a student population in Butare, Rwanda (altitude: 1768 m; barometric pressure: 629 mm Hg). Design: A laboratory based cross-sectional study. Setting: The units of physiology and clinical chemistry, department of medical biology, Butare University ...

  13. Study of lithium glassy solid electrolyte/electrode interface by ...

    Indian Academy of Sciences (India)

    Cells of lithium ion conducting glassy electrolyte Li2SO4–Li2O–B2O3 with different combinations of electrodes (stainless steel blocking electrode, lithium non-blocking electrode and TiS2 electrode) have been prepared. The a.c. impedance measurements of the cells have been studied at elevated temperature as a function ...

  14. Effect of multiparity on electrolyte composition and blood pressure ...

    African Journals Online (AJOL)

    Pregnancy affects the physiology of the pregnant woman particularly the endocrine, cardiovascular and the renal systems. This work was therefore set to ascertain the state of electrolytes in pregnancy and how it affects blood pressure using multiparity as a factor. One hundred and twenty (120) women were used in this ...

  15. Solubility of non-polar gases in electrolyte solutions

    Science.gov (United States)

    Walker, R. L., Jr.

    1970-01-01

    Solubility theory describes the effects of both concentration and temperature on solute activity coefficients. It predicts the salting-out effect and the decrease in solubility of non-polar gases with increased electrolyte concentration, and can be used to calculate heats of solution, entropies, and partial molal volumes of dissolved gases

  16. Non-aqueous electrolyte for lithium-ion battery

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  17. Sweating, thirst perception and plasma electrolyte composition in ...

    African Journals Online (AJOL)

    Thirst is a perception, the subjective experience evoked by fluid deficits. Exercise induces sweating and subsequently electrolyte loss and thirst but there is little documented on post exercise thirst perception in women of varying body mass indices. 40 apparently healthy young women (19-25years) in the follicular phase of ...

  18. Electrolyte balance and crude protein requirement of laying Japanese quail

    Directory of Open Access Journals (Sweden)

    Danilo Vargas Gonçalves Vieira

    2015-12-01

    Full Text Available The objective of this study was to evaluate the effects of two levels of crude protein and five levels of electrolyte balance on the performance and egg-quality of laying Japanese quail. Six hundred 45-day-oldquails were distributed in a randomized-block design with a 5 × 2 factorial arrangement comprising ten treatments, five replicates, and 12 birds per experimental unit. The electrolyte balance levels were 50, 125, 200, 275, and 350 mEq kg–1of diet, and crude protein (CP levels were 210 and 240 g kg-1. The performance and egg-quality variables assessed were: feed intake, feed conversion, egg-laying percentage, egg weight and mass, and albumin, yolk and shell weight. There were no interactions among the studied factors. The electrolyte balance and crude protein levels did not significantly affect the performance variables. However, increased shell weight of eggs stored for seven days was observed at an electrolyte balance level of 200 mEq kg–1. With regard to the CP levels, increased egg weight was observed at 28 days at a level of 210 g kg-1, whereas increased albumin weight was observed at 35 days of storage at a level of 240 g kg-1. A tendency toward an increase in egg albumin weight during the storage period of 14 days was observed. Based on the findings of this study, it is recommended that the diet for Japanese quails in the laying phase be formulated with an electrolyte balance of 50 mEq kg–1and 240 g kg-1 of crude protein This diet did not have a negative effect on productive performance, and by increasing the weight of egg albumin, eggs can be stored for a longer duration, thus demonstrating an alternative method to increase the shelf life of eggs.

  19. The effects of electrolytes on the rates of hydroxyapatite formation at 25 and 38 degrees C.

    Science.gov (United States)

    Brown, P W; Fulmer, M

    1996-07-01

    The effects of electrolytes on the rates of hydroxyapatite (HAp) formation at 25 and 38 degrees C were investigated. Solutions were selected to contain ions in common with HAp lattice ions or to contain ions capable of substituting into HAp. The effects of phosphate, calcium, chloride, and fluoride were studied in particular. The reactants from which HAp was formed were a mixture of the particulate solids CaHPO4 and Ca4(PO4)2O. These reactants were proportioned to form the calcium deficient composition Ca9HPO4(PO4)5OH at complete reaction. The rates of HAp formation were examined by determining rates of heat liberation at 25 and 38 degrees C using isothermal calorimetry and by analyzing the variations in solution chemistry. HAp formation initially occurs by a mechanism which is interfacially controlled. However, because the reactants dissolve incongruently, HAp overgrows these particles and eventually the conversion becomes diffusionally controlled. The presence of electrolytes influences HAp formation but in differing ways. Solutions containing phosphate salts initially accelerate the rate of HAp formation by reducing the incongruency of the CaHPO4 dissolution. Sodium fluoride accelerates reaction by improving the crystallinity of the apatite overgrowths as a result of fluoride incorporation into the HAp, thereby making them less effective as diffusion barriers. Calcium chloride solutions tend to reduce the proportion of HAp formed prior to the onset of the diffusionally controlled reactions. Although the reactants used were proportioned to produce calcium-deficient HAp at complete reaction, no evidence was obtained to indicate the uptake of calcium and chloride from CaCl2 solutions to form a chloroapatite having a Ca/P ratio > 1.5.

  20. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.

    Science.gov (United States)

    Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David

    2017-04-22

    Biomass-derived polymers, such as lignin, contain quinone/ hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge-storage properties. However, their performance has been only studied in acidic aqueous media limiting their applications mainly to supercapacitors. Here, we show that PEDOT/lignin (PEDOT: poly(3,4-ethylenedioxythiophene)) biopolymers are electroactive in aprotic ionic liquids (ILs) and we move a step further by assembling sodium full cell batteries using PEDOT/lignin as electrode material and IL electrolytes. Thus, the electrochemical activity and cycling of PEDOT/lignin electrodes was investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) IL electrolytes. The effects of water and sodium salt addition to the ILs were investigated to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/lignin cathode with imidazolium-based IL electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg-1 . Our results demonstrate that PEDOT/lignin composites can serve as low cost and sustainable cathode materials for sodium batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.