WorldWideScience

Sample records for sulfonic acid group

  1. Preparation and characterization of proton exchange poly (ether sulfone)s membranes grafted propane sulfonic acid on pendant phenyl groups

    International Nuclear Information System (INIS)

    Lim, Youngdon; Seo, Dongwan; Hossain, Md. Awlad; Lee, Soonho; Lim, Jinseong; Jang, Hohyoun; Hong, Taehoon; Kim,; Kim, Whangi

    2014-01-01

    Poly(ether sulfone)s containing hexaphenyl (PHP) was prepared by 1,2-bis(4-hydroxyphenyl)-3,4,5,6-tetraphenylbenzene, 4,4-hydroxyphenylsulfone, and 4,4-fluorophenylsulfone, followed bromination on phenyl groups to produce brominated PHP (Br-PHP). Grafted sulfonated poly(ether sulfone)s containing hexaphenyl (GSPHP) were prepared from Br-PHP and 3-bromopropane sulfonic acid with potassium salt and copper powder. The salt form was converted to free acid using 1 M sulfuric acid solution. All these membranes were cast from dimethylacetamide (DMAc). The structural properties of the synthesized polymers were investigated by 1 H-NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, Fenton test, and proton conductivity. These grafted polymer membranes were compared with normal sulfonated poly(ether sulfone)s and Nafion

  2. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  3. Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers

    International Nuclear Information System (INIS)

    Tsuneda, Satoshi; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Makuuchi, Keizo

    1993-01-01

    The sulfonic acid (SO 3 H) group was readily introduced into a polyethylene (PE) membrane by radiation-induced cografting of sodium styrenesulfonate (SSS) with hydrophilic monomers such as acrylic acid (AAc) and hydroxyethyl methacrylate (HEMA). The density of SSS grafted onto the PE membrane was determined as a function of molar ratio of hydrophilic monomer to SSS in the monomer mixture. Immersion of the electron-beam-irradiated PE membrane into the mixture of SSS and HEMA for 5 h at 323 K provided to the SO 3 H density of 2.5 mol/kg of the H-type product

  4. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    Science.gov (United States)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  5. Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Iulianelli, A.; Clarizia, G.; Gugliuzza, A.; Ebrasu, D.; Basile, A. [Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Bevilacqua, A. [Research Centre Italsistemi S.r.l., Via Avogadro, 88900 Crotone (KR) (Italy); Trotta, F. [Department of Organic Chemistry, University of Torino, C.So M. D' Azeglio 48, 10125 Torino (TO) (Italy)

    2010-11-15

    The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chloro-sulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40 x 10{sup -3} S/cm{sup -1} as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a T{sub g} ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees. (author)

  6. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Science.gov (United States)

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid... acid) may safely be used in the production of cocoa butter substitute from palm oil (1-palmitoyl-2...

  7. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  8. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  9. Structure and properties of compositions based on petroleum sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)

    1995-03-01

    Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.

  10. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  11. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  12. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  13. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  14. Thermodynamics of dinonylnaphthalene sulfonic acid (HD)

    International Nuclear Information System (INIS)

    Raieh, M.A.; Aly, H.F.

    1980-01-01

    The effect of temperature on the extraction of the trivalent actinides Am 3+ , Cm 3+ and Cf 3+ with the liquid cation exchanger dinonylnaphtalenesulphonic acid (HD) in toluene is studied. The different thermodynamic functions of this system are determined from the experimental results. It is found that the free energy variation for the extraction of these metal ions by HD is mainly determined by the entropic terms arising from the hydration-dehydration process of the exchanged ions. (author)

  15. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Science.gov (United States)

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  17. Bis-sulfonic Acid Ionic Liquids for the Conversion of Fructose to 5-Hydroxymethyl-2-furfural

    Directory of Open Access Journals (Sweden)

    Sangho Koo

    2012-10-01

    Full Text Available Homogenous bis-sulfonic acid ionic liquids (1 mol equiv. in DMSO (10 mol equiv. at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

  18. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash; Schieda, Mauricio; Shahi, Vinod Kumar; Nunes, Suzana Pereira

    2011-01-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  19. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  20. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  1. Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

    DEFF Research Database (Denmark)

    Li, Wei; Guo, Xiaoxia; Aili, David

    2015-01-01

    . A series of sulfonated copolyimides (SPI) are prepared via random copolymerizatio of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis...

  2. Uptake and utilization of sulfonic acids in the cyanobacterial strains Anabaena variabilis and Plectonema 73110

    International Nuclear Information System (INIS)

    Biedlingmaier, S.; Schmidt, A.

    1987-01-01

    Growth of several cyanobacteria was examined on ethane sulfonate and taurine as only sulfur source. Comparing two strains with differential utilization of sulfonic acids (Anabaena variabilis and Synechococcus 6301) demonstrated that actual growth was coupled to the presence of an active sulfonate transport system due to species specific properties and nutritional conditions. Sulfonate uptake in Anabaena variabilis was characterized by a pH optimum of 6.5, a structural specificity for sulfonates, missing Na + dependence, and phosphate stimulation. Radiolabeled ethane sulfonate and taurine was metabolized to products of normal sulfur metabolism. Also considerable amounts of 35 S-labeled volatiles (mercaptanes and sulfide) could be detected, suggesting a degradation mechanism via reduction to mercaptanes and cleavage of the C-S bond. (orig.)

  3. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.

  4. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    Science.gov (United States)

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  5. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    Science.gov (United States)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  6. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS

    NARCIS (Netherlands)

    Esperza, X.; Moyano, E.; de Boer, J.; Galceran, M.T.; van Leeuwen, S.P.J.

    2011-01-01

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases.

  7. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Science.gov (United States)

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  8. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  9. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  10. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  11. Prophylactic and therapeutic effect of Punica granatum in trinitrobenzene sulfonic acid induced inflammation in rats.

    Science.gov (United States)

    Riaz, Azra; Khan, Rafeeq Alam; Afroz, Syeda; Mallick, Neelam

    2017-01-01

    Pomegranate (Punica granatum L., Punicaceae) contains varieties of antioxidants and phytochemicals; there are evidences that phytochemicals and antioxidants play a vital role in reducing inflammation. Hence this investigation was planned to assess the outcome of Punica granatum on trinitrobenzene sulfonic acid provoked colitis in rats at 2, 5 and 8ml/kg of the body weight. The effect of P. granatum was assessed in two group i.e. prophylaxis as pre-colitis and therapeutic as post-colitis. After completion of dosing in both the groups, macroscopic and histological examination of colon was carried out along with estimation of serum myeloperoxidase, glutathione, alkaline phosphate, fibrinogen and C-reactive protein. In prophylactic procedure P. granatum revealed significant (Pgranatum have a role in prevention as well as treatment of inflammation.

  12. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  13. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  14. Synthesis and ATRP of novel fluorinated aromatic monomer with pendant sulfonate group

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Novel, fluorinated monomer with pendant sulfonate group was synthesized utilizing a two-step derivatization of 2,3,4,5,6-pentafluorostyrene (FS). The first step was a nucleophilic substitution of the fluorine atom in para position by hydroxyl group followed by sulfopropylation. The monomer...... was polymerized under aqueous ATRP conditions to yield phenyl-fluorinated aromatic homopolymer bearing pendant sulfonates on each repeating unit. Furthermore, this polymer was used as macroinitiator for the ATRP of poly(ethylene glycol) methacrylate. The polymers were characterized by 1H NMR, SEC and FTIR...

  15. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  16. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    International Nuclear Information System (INIS)

    Barroso-Bujans, F.; Verdejo, R.; Lozano, A.; Fierro, J.L.G.; Lopez-Manchado, M.A.

    2008-01-01

    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy

  17. Study on properties of cation-exchange membranes containing sulfonate groups

    International Nuclear Information System (INIS)

    Zu Jianhua; Wu Minghong; Qiu Shilong; Yao Side; Ye Yin

    2004-01-01

    Strong acid cation-exchange membranes were obtained by irradiation grafting of acrylic acid (AA) and sodium styrene sulfonate (SSS) onto high-density polyethylene (HDPE). Thermal and chemical stability of the cation-exchange membranes was investigated. The effectiveness of sulfonate-containing films was conformed in inducing high resistance to oxidative degradation. Thermal stability of the grafted HDPE was weaker than HDPE as detected by TGA analyzing technique. Char residue by TGA of the grafted HDPE is greater than that of HDPE. It shows that the branch chains including -SO 3 Na and -COOH was grafted onto the backbone of HDPE, and thus give a catalytic impetus to the charing. Crystallinity of the grafted membranes decreased with increasing grafting yield of the membrane samples. It is supposed that the decreased crystallinity is due to collective effects of the inherent crystallinity dilution by the amorphous grafted chains and disruption of spherulitic crystallites of the HDPE component

  18. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  19. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  20. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics

    NARCIS (Netherlands)

    Mariman, R.; Kremer, S.H.A.; Erk, M. van; Lagerweij, T.; Koning, F.; Nagelkerken, L.

    2012-01-01

    Background: Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis

  1. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Polystyrene was grafted on carbon foam with a melted polypropylene film predeposited on the surface. Polystyrene was subsequently sulfonated by chlorosulfonic acid. The effect of the temperature, time of grafting and concentration of radical initiator was studied. The materials were characterized by

  2. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  3. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    Science.gov (United States)

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  5. Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity.

    Science.gov (United States)

    Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien

    2017-03-22

    Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.

  6. Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele

    2002-01-01

    We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium

  7. Microstructures of the Sulfonic Acid-Functionalized Ionic Liquid/Sulfuric Acid and Their Interactions: A Perspective from the Isobutane Alkylation.

    Science.gov (United States)

    Zheng, Weizhong; Huang, Chizhou; Sun, Weizhen; Zhao, Ling

    2018-02-01

    The all-atom force field for concentrated sulfuric acid (98.30 wt %) was developed in this work based on ab initio calculations. The structural and dynamical properties of sulfuric acid and the mixing behaviors of sulfuric acid with ionic liquids (ILs), i.e., SFIL (1-methyl-3-(propyl-3-sulfonate) imidazolium bisulfate ([PSMim][HSO 4 ])) and non-SFIL (1-methyl-3-propyl imidazolium bisulfate ([PMim][HSO 4 ])), were investigated using a molecular dynamics simulation. For sulfuric acid, most H 3 O + ions were found beside HSO 4 - ions, forming a contact ion pair with the HSO 4 - ions, and three-dimensional hydrogen-bonding networks existed in the sulfuric acid. Analyses indicate that both ILs could be miscible with sulfuric acid with a strong exothermic character. The new strong interaction site between the sulfonic acid group of SFIL and an H 2 SO 4 molecule through a strong hydrogen-bonding interaction was observed, which was beneficial to the catalytic activity and stability of the sulfuric acid. This observation is in good agreement with the experimental results that indicate SFILs could enhance the reusability of sulfuric acid for the isobutane alkylation about 4-fold compared to that of non-SFILs. Hopefully this work will provide insights into the screening and designing of new isobutane alkylation catalysts based on sulfuric acid and SFILs.

  8. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  9. Poly(p-Phenylene Sulfonic Acids). PEMs with frozen-in free volume

    Energy Technology Data Exchange (ETDEWEB)

    Litt, Morton [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-01-21

    Early work with rigid rod aromatic polyelectrolytes implied that steric hindrance in packing of the rigid rods left unoccupied volumes that could absorb and hold water molecules strongly. We called this “frozen in free volume). It is illustrated and contrasted with the packing of flexible backbone polyelectrolytes (Reference 5 of this report). This was quantified for poly(biphenylene disulfonic acid) (PBDSA) and poly(phenylene disulfonic acid) (PPDSA). We found that PPDSA held three water molecules per acid group down to 11% relative humidity (RH) and had very high conductivity even at these low RHs. (Reference 1 of report.) The frozen-in free volume was calculated to be equivalent to a λ of 3.5. The work reported below concentrated on studying these polymers and their copolymers with biphenylene disulfonic acid. As expected, the polyelectrolytes are water soluble. Several approaches towards making water stable films were studied. Grafting alkyl benzene substituents on sulfonic acid groups had worked for PBPDSA (1) so it was tried with PPDSA and a 20%/80% copolymer of BPDSA and PDSA (B20P80). T-butyl, n-octyl and n-dodecyl benzene were grafted. Good films could be made. Water absorption and conductivity were studied as a function of RH and temperature (Reference 2). When less than 20% of the sulfonic acid groups were grafted, conductivity was much higher than that of Nafion NR212 at all RHs. At low graft levels, conductivity was ten times higher. Mechanical properties and swelling were acceptable below 90% RH. However, all the films were unstable in water and slowly disintegrated. The proposed explanation was that the molecules formed nano-aggregates in solution held together by hydrophobic bonding. Their cast films disintegrated when placed in water since hydrophobic bonding between the nano-aggregates was poor. We then shifted to crosslinking as a method to produce water stable films (References 3 and 4). Biphenyl could easily be reacted with the polymer

  10. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  11. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  12. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    Science.gov (United States)

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  13. IR Laser Ablative Degradation of Poly(phenylene ether sulfone): Deposition of Films Containing Sulfone, Sulfoxide and Sulfide Groups

    Czech Academy of Sciences Publication Activity Database

    Blazevska-Gilev, J.; Bastl, Zdeněk; Šubrt, Jan; Stopka, Pavel; Pola, Josef

    2009-01-01

    Roč. 94, č. 2 (2009), s. 196-200 ISSN 0141-3910 R&D Projects: GA AV ČR IAA400720619 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : laser ablation * laser-induced degradation * poly(1,4-phenylene ether-sulfone) Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.154, year: 2009

  14. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum

    NARCIS (Netherlands)

    Jusko, T.A.; Oktapodas, M.; Palkovičová Murinová, L.; Babjaková, J.; Verner, M.A.; DeWitt, J.C.; Babinská, K.; Thevenet-Morrison, K.; Čonka, K.; Drobná, B.; Thurston, S.W.; Lawrence, B.P.; Dozier, A.M.; Jarvinen-Seppo, K.M.; Patayová, H.; Trnovec, T.; Legler, J.; Hertz-Picciotto, I.; Lamoree, M.H.

    2016-01-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184

  15. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  16. Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jiangwei [The; Center; Shi, Wenyan [The; Zhang, Fan [The; Liu, Dong [The; Tang, Shan [The; Wang, Huamin [The; Lin, Xiao-Min [Center; Lei, Aiwen [The

    2017-05-25

    An,electrooxidative direct arylsulfonlylation of yones sulfintc acids via a radical tandem cyclization strategy has been developed for the construction of sulfonated ilicIenones:under oxidant, free conditions. This method provides a simple and efficient approach to prepare various sulfonylindenones in good to,excellent:Tyidds,, demonstrating the tremendous prospect of utilizing electrocatalysis in oxidative coupling, Notably, this reaction could Be easily scaled up with good, efficiency.

  17. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Science.gov (United States)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  18. Biotransformation of indigo carmine to isatin sulfonic acid by ...

    African Journals Online (AJOL)

    Indigo carmine (IC) was biotrasformed to 5-isatinsulfonic acid using intracellular and associated enzymes from Trametes versicolor lyophilized mycelia; even when extracellular enzymes were absent, in high concentration solutions of IC (4 000 mg L-1) and non-sterile condition. T. versicolor was grown in wheat strew and ...

  19. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    Science.gov (United States)

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  20. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland)

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8 kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8 kJ/mol). - Graphical abstract: Modeling of boldine adsorption onto unmodified and propyl-sulfonic acid-modified mesoporous adsorbents. - Highlights: • The process of boldine adsorption onto SBA-15, SBA-16 and MCF silicas was examined. • Siliceous adsorbents were functionalized with propyl-sulfonic acid groups. • The equilibrium adsorption data were analyzed using several isotherm models. • Both linear regression and nonlinear fitting analysis were carried out.

  1. Fully Aromatic Block Copolymers for Fuel Cell Membranes with Densely Sulfonated Nanophase Domains

    DEFF Research Database (Denmark)

    Takamuku, Shogo; Jannasch, Patrick; Lund, Peter Brilner

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully...... tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclu- sively placed in ortho positions to the many sulfone bridges, giving these locks IECs of 4.1 and 4.6 meqg1, respectively. Copolymer...

  2. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    Directory of Open Access Journals (Sweden)

    Hideyuki Arimitsu

    Full Text Available Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e, a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.

  3. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  4. Radiolytical Preparation of a Poly(Vinylbenzyl Sulfonic Acid)-Grafted FEP Membrane and Characterization as Polymer Electrolytes for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y -C; Shin, J; Sohn, J -Y; Fei, G [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-09-15

    In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP-g-PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride(VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base-catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM-EDX. A chemical stability study performed with Fenton's reagent (3% H{sub 2}O{sub 2} solution containing 4 ppm of Fe{sup 2+}) at 70 deg. C revealed that FEP-g-PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)-grafted membranes (FEP-g-PSSA). An EDX analysis was also used to observe the cross-sectional distribution behaviors of the hydrophilic sulfonic acid groups and hydrophobic fluorine groups. The characteristics of an ion-exchange capacity (IEC), water and methanol uptake, methanol permeability, and proton conductivity as a function of the degree of grafting were also studied. The IECs and water uptakes of membranes with different degrees of grafting (36-102%) were measured to be in the range of 0.8-1.62 meq/g, and 10-30%, respectively. When the degree of grafting reached 60% the proton conductivity was higher than that of a Nafion (registered) 212 membrane (6.1E-02 S/cm). The methanol permeability and uptake of the FEP-g-PVBSA membrane was significantly lower than that of the Nafion (registered) 212 membrane, and even the degree of grafting reached 102%. (author)

  5. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps

    DEFF Research Database (Denmark)

    Clausen, S K; Sobhani, S; Poulsen, O M

    2000-01-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfact......The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice...

  6. Effect of sodium aromatic sulfonate group in anionic polymer dispersant on the viscosity of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Toshio Kakui; Hidehiro Kamiya [Lion Corporation, Tokyo (Japan). Chemicals Research Laboratories, Chemicals Division

    2004-06-01

    This paper focused on the effect of sodium aromatic sulfonate in anionic polymer dispersants on the viscosity of coal-water mixtures (CWMs) with a Tatung coal powder. To determine the optimum molecular structure of a polymer dispersant for the minimum viscosity of a CWM, various anionic co-polymers with different hydrophilic and hydrophobic groups or different molecular weights were prepared, using various types of monomers. Anionic co-polymers with sodium aromatic sulfonate, such as sodium styrene-sulfonate and sodium naphthalene-sulfonate, reduced the viscosity of dense CWMs. In particular, a co-polymer of sodium styrene-sulfonate and sodium acrylate with a molar ratio of 70:30 and a molecular weight of {approximately} 10 000 gave the minimum viscosity of a 70 wt % CWM. To obtain a low viscosity for a CWM, a large electrostatic repulsive force with an absolute value of the zeta potential of the coal particles of {gt} 70 mV and {gt} 6.5 mg/g of adsorbed polymer on the coal surface were needed. The mixture of sodium polystyrene-sulfonate and sodium polyacrylate with a weight ratio of 50:50 also gave a low viscosity of 70 wt % CWM. On the basis of the results, the adsorption behavior of polymer dispersants on the coal surface is examined by measuring the wettability of coal powder pellets. 27 refs., 8 figs., 3 tabs.

  7. Solvent extraction of hafnium(IV) by dinonylnaphthalene sulfonic acid from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Hala, J.; Piperkovova, H.

    1979-01-01

    The extraction of hafnium(IV) by heptane and toluene solutions of dinonylnaphthalene sulfonic acid (HD) from mixed aqueous-organic solutions has been studied. Alcohols, ketones, carboxylic acids, cyclic ethers, dimethylsulfoxide and dimethylformamide were used as the organic component of the mixed phase. Methanol, ethanol, formic acid and dioxane increased the extractability of Hf(IV) whereas other solvents showed only an antagonistic effect. The results were discussed from the point of view of the changes in micellar structure of HD, and compared with the uptake of Hf(IV) by resinous cation exchangers. The solubilization by HD of alcohols, carboxylic acids and dimethylsulfoxide was demonstrated by using the corresponding 14 C and 35 S labelled compounds. (author)

  8. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    Science.gov (United States)

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  9. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    Science.gov (United States)

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  10. Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2009-01-01

    Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.

  11. Patterning of electrically conductive poly(aniline-co-aniline sulfonic acid) and its application in the immobilization of cytochrome c

    International Nuclear Information System (INIS)

    Oh, Se Young; Oh, Il Soo; Choi, Jeong-Woo

    2004-01-01

    We have synthesized poly(aniline-co-aniline sulfonic acid) and then investigated the feasibility of application as a specific and electrically conductive binding template for biomolecules. Poly(aniline-co-aniline sulfonic acid)s were prepared by oxidation polymerization of aniline and aniline sulfonic acid under various ratios. A fine pattern of the conducting copolyaniline was obtained by using a deep UV lithographic technique. Cytochrome c was immobilized onto the photochemically patterned conducting copolyaniline with a self-assembly method. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were studied from atomic force microscopy and cyclic voltammetry. The self-assembled cytochrome c monolayer immobilized onto the copolyaniline with a high electrical conductivity showed a high electrochemical activity

  12. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  14. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment.

    Science.gov (United States)

    Xing, Zhenni; Lu, Jianjiang; Liu, Zilong; Li, Shanman; Wang, Gehui; Wang, Xiaolong

    2016-10-21

    Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography-mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population.

  15. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment

    Directory of Open Access Journals (Sweden)

    Zhenni Xing

    2016-10-01

    Full Text Available Although perfluorooctanoic acid (PFOA and perfluorooctane sulfonate (PFOS have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography–mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1% and mean concentrations (24.5 and 31.8 ng/L of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively. For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population.

  16. Molecular dynamics in conducting polyaniline protonated by camphor sulfonic acid as seen by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Djurado, D.; Combet, J.; Bee, M.; Rannou, P.; Dufour, B.; Pron, A.; Travers, J. P.

    2002-01-01

    Using incoherent quasielastic neutron scattering techniques, the molecular motions were investigated in fully hydrogenated and partially deuterated polyaniline protonated by camphor sulfonic acid (CSA) conducting samples. The obtained results show that on the 10 -9 -10 -12 s time scale the polymer chains do not exhibit any diffusive motions: the whole observed quasielastic scattering has accordingly to be attributed to motions of CSA ions. From our measurements two molecular movements could be differentiated. A rapid one has been attributed to the three-site rotation of methyl groups present on camphor moieties of CSA and a slower one that has been modeled as a rigid body motion of the whole CSA molecule. Due to the disordered character of the system, the methyl rotors appeared to be dynamically nonequivalent. Their dynamics was then described in terms of a log gaussian distribution of correlation times. This description allowed a good fitting of experimental data and gave an activation energy of 12.5 kJ mol-1. However, two different regimes in temperature could be distinguished. At high temperatures (T>280 K) the width of the distribution is nearly zero and thus, the methyl rotors are dynamically equivalent while it turned larger and larger when temperature is decreased below 250 K revealing that the rotors are more and more sensitive to their local environment. In the conducting samples the slowest motion clearly exists in the 280-330 K temperature range and is blocked at temperatures inferior to 250 K. This transition occurs in the temperature range in which the metal-insulator transition also happens

  17. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)

  18. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.

  19. Composite electrolytes composed of Cs-substituted phosphotungstic acid and sulfonated poly(ether-ether ketone) for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Song-Yul, E-mail: ms089203@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Yoshida, Toshihiro; Kawamura, Go [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan); Sakai, Mototsugu [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2010-10-15

    Composite electrolytes composed of cesium hydrogen sulfate containing phosphotungstic acids (CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40}) and sulfonated poly(ether-ether ketone) (SPEEK) were prepared by casting the corresponding precursor for application in fuel cells. Partially Cs-substituted phosphotungstic acids (Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}) were formed in the CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40} system by mechanochemical treatment. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Flexible composite electrolytes were obtained and their electrochemical properties were markedly improved with the addition of Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, into the SPEEK matrix. A maximum power density of 213 mW cm{sup -2} was obtained from the single cell test for 50H{sub 3}PW{sub 12}O{sub 40}-50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolyte at 80 deg. C and at 80 RH%. Electrochemical properties and transmission electron microscopy (TEM) results suggest that three-dimensional cluster particles were formed and homogeneously distributed in the SPEEK matrix. The mechanochemically synthesized Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40} incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. The composite electrolytes were successfully formed with Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, which consist of hydrogen bonding between surface of inorganic solid acids and not only -HSO{sub 4}{sup -} dissociated from CsHSO{sub 4} but also -SO{sub 3}H groups in the SPEEK.

  20. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  1. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper

    2015-01-01

    ) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post...

  2. Sulfonic acid-functionalized golf nanoparticles: A colloid-bound catalyst for soft lithographic application on self-assembled monolayers

    NARCIS (Netherlands)

    Li, X.; Paraschiv, V.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC11H22S)2 (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na+) was used as a ligand for

  3. Evaluation of the toxicological effects of perfluorooctane sulfonic acid in the common carp (Cyprinus carpio)

    International Nuclear Information System (INIS)

    Hoff, P.T.; Dongen, W. van; Esmans, E.L.; Blust, R.; Coen, W.M. de

    2003-01-01

    In the present study we evaluated the toxicological effects of a scarcely documented environmental pollutant, perfluorooctane sulfonic acid (PFOS), on selected biochemical endpoints in the common carp, Cyprinus carpio. Juvenile organisms were exposed to PFOS through a single intraperitoneal injection (liver concentrations ranging from 16 to 864 ng/g after 5 days of exposure) and after 1 and 5 days effects were assessed in liver and serum of the exposed organisms. The investigation of the hepatotoxicity of PFOS included the determination of the peroxisome proliferating potential (peroxisomal palmitoyl CoA oxidase and catalase activity) and the compounds influence on the average DNA basepair length (ABPL) by agarose gel electrophoresis. Total antioxidant activity (TAA), cholesterol and triglyceride levels were monitored in the serum. After 1 day of exposure the ABPL was significantly increased in the 270 and 864 ng/g treatment groups. After 5 days of exposure significant increases relative to the control were observed for the 16, 270 and 864 ng/g treatment groups. Enzyme leakage from the liver was investigated by measurement of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the serum. At 561, 670 and 864 ng/g PFOS a significant increase in serum ALT activity became apparent after 5 days of exposure with values ranging from 159 to 407% relative to the control. For serum AST activity a significant increase for the 864 ng/g treatment group was observed with a value of 112% relative to the control. Determination of the polymorphonuclear leukocyte migration into liver tissue as assessed through myeloperoxidase (MPO) activity in liver, was used as an indicator for inflammation. It appeared that inflammation was not involved in the observed membranous enzyme leakage for the 561, 670 and 864 ng/g PFOS treatment groups. The results of this study suggest that PFOS induces inflammation-independent enzyme leakage through liver cell membranes

  4. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  5. Determination of trace elements by neutron activation analysis using dinonylnaphtalene sulfonic acid as a preconcentrating agent

    International Nuclear Information System (INIS)

    Yang, M.H.; Chen, P.Y.; Tseng, C.L.; Yeh, S.J.; Weng, P.S.

    1977-01-01

    Dinonylnaphthalene sulfonic acid (HD) has been used as a preconcentrating agent to enrich trace metal ions and to separate the interfering elements such as Na, K, Cl and Br, which normally exist in the natural aqueous systems. Experiments were performed by extracting the ions in the aqueous medium with HD in n-hexane and subsequently backextracted into a minimal volume of acid solution. Factors influencing the extraction efficiency of the ions of interest were investigated. The preconcentration technique has been successfully applied to the determination by neutron activation analysis of trace elements in natural water and biological materials. Both short-lived nuclides (Mg, Al, Ca, Mn) and long-lived nuclides (Sm, Eu, Zn, La, Cr, Sc, Fe, Co) in the ppb-level concentrations were determined. (T.G.)

  6. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  7. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  8. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    Science.gov (United States)

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  9. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  10. Spectrophotometric Determination of Zinc Using 7-(4-Nitrophenylazo-8-Hydroxyquinoline-5-Sulfonic Acid

    Directory of Open Access Journals (Sweden)

    Korn Maria das Graças Andrade

    1999-01-01

    Full Text Available A sensitive and selective spectrophotometric method is proposed for the rapid determination of zinc(II using an 8-hydroxyquinoline derivative, 7-(4-nitrophenylazo-8-hydroxyquinoline-5-sulfonic acid (p-NIAZOXS, as a new spectrophotometric reagent. The reaction between the p-NIAZOXS and zinc(II is instantaneous at pH 9.2 (borax buffer and the absorbance remains stable for over 24 h. The method allows the determination of zinc over the range of 0.05-1.0 mug mL-1 with a molar absorptivity of 3.75x10(4 L mol-1 cm-1 and features a detection limit of 15 ng mL-1. The proposed method has been successfully applied to the determination of zinc in several pharmaceutical preparations and copper alloys. The precision (R.S.D. < 2% and the accuracy obtained were satisfactory.

  11. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films

    International Nuclear Information System (INIS)

    Rizzo, G.; Arena, A.; Donato, N.; Latino, M.; Saitta, G.; Bonavita, A.; Neri, G.

    2010-01-01

    A stable chlorobenzene dispersion of conducting polyaniline (PANI) has been obtained by doping emeraldine base with dodecylbenzene sulfonic acid (DBSA) and studied by spectrophotometric measurements in the UV-vis-IR range. The electrical properties of PANI: DBSA films obtained from the above dispersion have been investigated under different temperature and relative humidity conditions. All-organic chemoresistive devices have been developed by spin-coating the PANI: DBSA dispersion on flexible substrates, and then by depositing electrodes on the top, from a carbon nanotube conducting ink. Sensing tests performed under exposition to calibrated amounts of ammonia reveal that these simple and inexpensive sensors are able to detect ammonia at room temperature in a reliable way, with a sensitivity linearly related to concentration in the range between 5 ppm and 70 ppm.

  12. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  13. Proton-transfer compounds of 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) with 4-chloroaniline and 4-bromoaniline.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D; Healy, Peter C

    2007-07-01

    The crystal structures of the proton-transfer compounds of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) with 4-chloroaniline and 4-bromoaniline, namely 4-chloroanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)ClN(+) x C(9)H(5)INO(4)S(-) x H(2)O, and 4-bromoanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)BrN(+) x C(9)H(5)INO(4)S(-) x H(2)O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen-bonded cations, anions and water molecules which are extended into a three-dimensional framework structure through centrosymmetric R(2)(2)(10) O-H...N hydrogen-bonded ferron dimer interactions.

  14. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mutagenic and Cytotoxic Properties of 6-Thioguanine, S6-Methylthioguanine, and Guanine-S6-sulfonic Acid*S⃞

    OpenAIRE

    Yuan, Bifeng; Wang, Yinsheng

    2008-01-01

    Thiopurine drugs, including 6-thioguanine (SG), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of SG nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. SG in DNA can be methylated by S-adenosyl-l-methionine to give S6-methylthioguanine (S6mG) and oxidized by UVA light to render guanine-S6-sulfonic acid ...

  16. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  18. Perfluorooctanoic acid and perfluorooctane sulfonate in Michigan and New York waters

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, E.; Kannan, K. [Wadsworth Center, Albany, NY (United States); Taniyasu, Sachi; Yamashita, Nobuyoshi [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    Perfluorooctane sulfonate (PFOS), a perfluorinated organic contaminant, has become the subject of many recent investigations. PFOS and its precursor compounds have been used in a wide variety of consumer and industrial products. Other related perfluorinated compounds have also been reported to occur in the environment. For example, perfluorohexane sulfonate (PFHxS) is an impurity associated with PFOS. Perfluorooctanoic acid (PFOA) has found widespread use as an emulsifier for polymerization of fluoropolymers. These perfluorinated alkylated substances (PASs) are known to be resistant to degradation. Water analysis of PFOS and PFOA has been carried out with several methods. The most commonly used methods involve solid phase extraction (SPE) followed by HPLC-MS-MS. Method detection limits for PFOS and PFOA varied between 5 and 17 ng/L and 9 and 25 ng/L respectively. Generally PFOS and PFOA concentrations in ambient waters, with no point source of pollution, are less than 5 ng/L. We have developed a method using the Oasis HLB solid phase cartridge to achieve the required method detection limits. We have measured PFOS and PFOA concentration in surface waters collected from Michigan and New York. PFOS and PFOA have been detected in the blood and liver of fish at {mu}g/L concentrations both in Japan and the USA. The current ion-pairing, liquid/liquid extraction method is suitable for these concentrations and we have measured PFOS and PFOA in the livers of fish from Michigan and New York waters. We have compared the data for fish and water concentrations and calculated bioaccumulation factors.

  19. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Saccharin Sulfonic Acid as an Efficient Catalyst for the Preparation and Deprotection of 1,1-Diacetates

    International Nuclear Information System (INIS)

    Shirini, F.; Mamaghani, M.; Mostashari-Rad, T.; Abedini, M.

    2010-01-01

    Saccharin sulfonic acid can be used as an efficient catalyst for the acylation of aldehydes using acetic anhydride. This is also a suitable catalyst for the regeneration of aldehydes from the related acylals in the presence of wet SiO 2 . The significant advantages of this methodology are mild, solvent-free reaction conditions, relatively short reaction times, high yields of the products, selectivity and easy work-up. The Protection and deprotection of organic functional groups are important procceses during multi-step organic synthesis. The choice of a method which is used for the functional group transformations depends on its simplicity, high yields of the desired products, short reaction times, low cost of the process and ease of the work-up procedure. Between the several methods available for the protection of aldehydes, acylal formation is often preferred due to the ease of preparation and the stability of the produced 1,1-diacetate towards basic and neutral conditions. In addition, 1,1-diacetates serve as valuable precursors for asymmetric allylic alkylation and synthesis of natural products as well as for the synthesis of 1-acetoxydienes and 2,2-dichlorovinylacetates for Diels-Alder reactions. Acylals have also been used as cross-linking agents for cellulose in cotton and as bleaching activators in wine-stained fabrics. Moreover, the acylal functionality can be converted to other functional groups by reaction with appropriate nucleophiles

  1. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  2. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  3. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    International Nuclear Information System (INIS)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A.; Silveira, F.Z.

    2010-01-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  4. A novel isoindoline, porritoxin sulfonic acid, from Alternaria porri and the structure-phytotoxicity correlation of its related compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Ohnishi, Keiichiro; Iwase, Noriyasu; Nakajima, Yoshikazu; Tounai, Kenji; Yamashita, Masakazu; Yamada, Yasumasa

    2003-07-01

    Novel zinniol-related compound 3, named porritoxin sulfonic acid, with an isoindoline skeleton was isolated from the culture liquid of Alternaria porri. The structure was determined to be 2-(2"-sulfoethyl)-4-methoxy-5-methyl-6-(3'-methyl-2'-butenyloxy)-2,3-dihydro-1H-isoindol-1-one. The phytotoxic activities of three isoindolines (1-3) were evaluated in a seedling-growth assay against stone leek and lettuce.

  5. Characterization of reactive intermediates in laser photolysis of nucleoside using of sodium salt anthraquinone-2-sulfonic acid as photosensitizer

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizhen; Wang Wenfeng; Han Zhenhui; Yao Side; Lin Nianyun

    1999-01-01

    The interaction of triplet state of sodium salt of anthraquinone-2-sulfonic acid (AQS) with nucleosides has been investigated in CH 3 CN using KrF(248 nm) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet AQS and nucleoside demonstrated that the primary ionic radical pair, radical cation of nucleosides and radical anion of AQS has been detected simultaneously for the first time

  6. Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice.

    Science.gov (United States)

    Wu, Shih-Lu; Chen, Jaw-Chyun; Li, Chia-Cheng; Lo, Hsin-Yi; Ho, Tin-Yun; Hsiang, Chien-Yun

    2009-08-01

    Inflammatory bowel disease (IBD) is chronic inflammatory and relapsing disease of the gut. It has been known that activation of nuclear factor-kappaB (NF-kappaB) and production of proinflammatory cytokines play important roles in the pathogenesis of IBD. In this study, the effect of vanillin (4-hydroxy-3-methoxybenzaldehyde), a potent nuclear factor-kappaB (NF-kappaB) inhibitor, was evaluated in mice with trinitrobenzene sulfonic acid (TNBS)-induced colitis. Oral administration of vanillin improved macroscopic and histological features of TNBS-induced colitis in a dose-dependent manner. Vanillin not only prevented TNBS-induced colitis but also ameliorated the established colitis. By in vivo NF-kappaB bioluminescence imaging, electrophoretic mobility shift assay, and Western blot, we found that vanillin suppressed in vivo NF-kappaB activities through the inhibition of p65 translocation, inhibitor of nuclear factor-kappaB(IkappaB)-alpha phosphorylation, and IkappaB kinase activation. Furthermore, vanillin reduced the expressions of proinflammatory cytokines [interleukin (IL)-1beta, IL-6, interferon-gamma, and tumor necrosis factor-alpha] and stimulated the expression of anti-inflammatory cytokine (IL-4) in colonic tissues. In conclusion, this work identified vanillin as an anti-inflammatory compound with the capacity to prevent and ameliorate TNBS-induced colitis. Due to its safety, vanillin could be a potent candidate for the treatment of IBD.

  7. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  9. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  10. Colorimetric detection of Cd"2"+ using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles

    International Nuclear Information System (INIS)

    Huang, Pengcheng; Liu, Bowen; Jin, Weiwei; Wu, Fangying; Wan, Yiqun

    2016-01-01

    A colorimetric assay has been developed for facile, rapid, and sensitive detection of Cd"2"+ using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles (ANS-AgNPs). The presence of Cd"2"+ induces the aggregation of ANS-AgNPs through cooperative metal–ligand interaction. As a result, the characteristic surface plasmon resonance (SPR) peak of ANS-AgNPs at 390 nm was red-shifted to 580 nm, yielding a color change from bright yellow to reddish-brown. The color change is monitored by UV–Vis spectrometer and can be directly read out by the naked eye. Under the optimized conditions, a good linear relationship (correlation coefficient R = 0.997) was obtained between the ratio of the absorbance at 580 nm to that at 390 nm (A_5_8_0_n_m/A_3_9_0_n_m) and the concentration of Cd"2"+ over the range of 1.0–10 μM with detection limit of 87 nM. The proposed method is simple and efficient, which has been applied for determining Cd"2"+ in milk powder, serum, and lake water with satisfactory results.

  11. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.

    Science.gov (United States)

    Dong, Zhaomin; Bahar, Md Mezbaul; Jit, Joytishna; Kennedy, Bruce; Priestly, Brian; Ng, Jack; Lamb, Dane; Liu, Yanju; Duan, Luchun; Naidu, Ravi

    2017-08-01

    On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure. Copyright © 2017. Published by Elsevier Ltd.

  12. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    Science.gov (United States)

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interaction of 1-pyrene sulfonic acid sodium salt with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Steblecka, Malgorzata, E-mail: gosia@mitr.p.lodz.pl; Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.pl; Szajdzinska-Pietek, Ewa, E-mail: espietek@mitr.p.lodz.pl

    2016-04-15

    Steady state and time-resolved techniques of optical spectroscopy were applied to examine the interaction between 1-pyrene sulfonic acid (PSA) sodium salt and human serum albumin (HSA). This work is directed towards finding a convenient fluorescent marker (or blocker) of hydrophobic binding sites within the protein, to be used in the in vitro studies of HSA−drug systems. The observed variation of PSA absorbance with HSA concentration was interpreted in terms of two possible probe/protein binding modes with the binding constants K{sub b,1}=(6.5±0.6)∙10{sup 6} M{sup −1} (a specific receptor site), and K{sub b,2}=(3.8±0.8)∙10{sup 5} M{sup −1} (non-specific binding of up to three probe molecules). The PSA fluorescence is quenched by the albumin (via both static and dynamic mechanisms), and also the HSA–Trp214 fluorescence is quenched by PSA (via resonance energy transfer). These results indicate that the probe is bound in the domain IIA of the secondary HSA structure. At lower [PSA]/[HSA] ratios the PSA fluorescence lifetime is longer than that in homogeneous buffer solutions (not containing HSA). Therefore, we conclude that lower affinity binding sites are distant from the tryptophan residue. This is confirmed by complementary studies on the transient T–T absorbance and on luminescence of the photosensitized singlet oxygen.

  14. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  15. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes

    International Nuclear Information System (INIS)

    Selvarani, G.; Sahu, A.K.; Choudhury, N.A.; Sridhar, P.; Pitchumani, S.; Shukla, A.K.

    2007-01-01

    A method, to anchor phenyl-sulfonic acid functional groups with the platinum catalyst supported onto a high surface-area carbon substrate, is reported. The use of the catalyst in the electrodes of a polymer electrolyte fuel cell (PEFC) helps enhancing its performance. Characterization of the catalyst by Fourier transform infra red (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and point-of-zero-charge (PZC) studies suggests that the improvement in performance of the PEFC is facilitated not only by enlarging the three-phase boundary in the catalyst layer but also by providing ionic-conduction paths as well as by imparting negative charge to platinum sites with concomitant oxidation of sulfur present in the carbon support. It is argued that the negatively charged platinum sites help repel water facilitating oxygen to access the catalyst sites. The PEFC with modified carbon-supported platinum catalyst electrodes exhibits 40% enhancement in its power density as compared to the one with unmodified carbon-supported platinum catalyst electrodes

  16. Sulfonated 1,3-bis(4-pyridylpropane

    Directory of Open Access Journals (Sweden)

    Ore Kuyinu

    2011-06-01

    Full Text Available In the title compound, 4-[3-(3-sulfonatopyridin-1-ium-4-ylpropyl]pyridin-1-ium-3-sulfonate, C13H14N2O6S2, the molecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N atom. Also, the structure adopts a butterfly-like conformation with the sulfonate groups on opposite sides of the `wings'. The dihedral angle between the two pyridinium rings is 83.56 (7°, and this results in the molecule having a chiral conformation and packing. There is strong intermolecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining molecules. In addition, there are weaker intermolecular C—H...O interactions.

  17. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  18. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  19. Synergic extraction of some lanthanide and actinide elements by a mixture of bis(2-ethyl hexyl) phosphoric acid and dinonylnapthalene - sulfonic acid in aromatic diluents

    International Nuclear Information System (INIS)

    Raieh, M.A.; El-Dessouky, M.M.

    1985-01-01

    Extraction of lanthanides and actinides were found to be synergetically enhanced by a mixture of bis(2-ethyl hexyl) phosphoric acid (HA) and dinonylnaphthalene sulfonic acid (HD) in aromatic diluents covering a wide range of dielectric constants. The main extracted species is found to be MAsub(2)Hsub(m-1)Dsub(m). Experimental results indicate that the extraxtion mechanism is governed by the extraction of HD in the organic phase. (author)

  20. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  1. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis.

    Science.gov (United States)

    Liang, Lu; Dong, Chunlan; Chen, Xiaojun; Fang, Zhihong; Xu, Jie; Liu, Meng; Zhang, Xiaoguang; Gu, Dong Sheng; Wang, Ding; Du, Weiting; Zhu, Delin; Han, Zhong Chao

    2011-01-01

    Mesenchymal stem cells (MSCs), which are poorly immunogenic and have potent immunosuppressive activities, have emerged as a promising candidate for cellular therapeutics for the treatment of disorders caused by abnormal immune responses. In this study we investigated whether human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could ameliorate colitis in a trinitrobenzene sulfonic acid (TNBS)-induced colitis model. TNBS-treated colitic mice were infused with hUC-MSCs or vehicle control. The mice were sacrificed on day 1, 3, and 5 after infusion, and their clinical and pathological conditions were evaluated by body weight, colon length, and histological analysis. The expression levels of proinflammatory cytokine proteins in colon were examined by ELISA. The homing of hUC-MSCs was studied by live in vivo imaging and immunofluorescent microscopy. hUC-MSCs were found to migrate to the inflamed colon and effectively treated the colitic mice with improved clinical and pathological signs. The levels of IL-17 and IL-23 as well as IFN-γ and IL-6 were significantly lower in the colon tissues of the hUC-MSC-treated mice in comparison with the vehicle-treated mice. Coculture experiments showed that hUC-MSCs not only could inhibit IFN-γ expression but also significantly inhibit IL-17 production by lamina propria mononuclear cells (LPMCs) or splenocytes of the colitic mice or by those isolated from normal animals and stimulated with IL-23. Systemically infused hUC-MSCs could home to the inflamed colon and effectively ameliorate colitis. In addition to the known suppressive effects on Th1-type immune responses, hUC-MSC-mediated modulation of IL-23/IL-17 regulated inflammatory reactions also plays an important role in the amelioration of colitis.

  2. Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars.

    Science.gov (United States)

    Zhao, Nan; Yang, Xixiang; Zhang, Jing; Zhu, Ling; Lv, Yizhong

    2017-09-22

    Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700). Brunaer-Emmett-Teller N₂ surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA). The microscopic adsorption mechanisms were studied by using infrared spectra, 13 C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m²/g and 0.2302 cm³/g) were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N) ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The q max values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.

  3. Adsorption Mechanisms of Dodecylbenzene Sulfonic Acid by Corn Straw and Poplar Leaf Biochars

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2017-09-01

    Full Text Available Biochar is an eco-friendly, renewable, and cost-effective material that can be used as an adsorbent for the remediation of contaminated environments. In this paper, two types of biochar were prepared through corn straw and poplar leaf pyrolysis at 300 °C and 700 °C (C300, C700, P300, P700. Brunaer–Emmett–Teller N2 surface area, scanning electron microscope, elemental analysis, and infrared spectra were used to characterize their structures. These biochars were then used as adsorbents for the adsorption of dodecylbenzene sulfonic acid (DBSA. The microscopic adsorption mechanisms were studied by using infrared spectra, 13C-nuclear magnetic resonance spectra, and electron spin resonance spectra. The surface area and pore volume of C700 (375.89 m2/g and 0.2302 cm3/g were the highest among all samples. Elemental analysis results showed that corn straw biochars had a higher aromaticity and carbon to nitrogen (C/N ratio than the poplar leaf biochars. High temperature caused the increase of carbon content and the decrease of oxygen content, which also gave the biochars a higher adsorption rate. Pseudo-second order kinetic provided a better fit with the experimental data. Adsorption isotherm experiments showed that the adsorption isotherm of C300 fit the linear model. For other biochars, the adsorption isotherms fitted Langmuir model. Biochars with high temperatures exhibited enhanced adsorption capacity compared with ones at low temperatures. The qmax values of biochars to DBSA followed the order of P700 > C700 > P300. The adsorption mechanisms were complex, including partition, anion exchange, the formation of H bonds, covalent bonds, and charge transfer. The adsorption by covalent bonding might be the key mechanism determining the adsorption capacity of P700.

  4. Controlled Modulation of Serum Protein Binding and Biodistribution of Asymmetric Cyanine Dyes by Variation of the Number of Sulfonate Groups

    Directory of Open Access Journals (Sweden)

    Franziska M. Hamann

    2011-07-01

    Full Text Available To assess the suitability of asymmetric cyanine dyes for in vivo fluoro-optical molecular imaging, a comprehensive study on the influence of the number of negatively charged sulfonate groups governing the hydrophilicity of the DY-67x family of asymmetric cyanines was performed. Special attention was devoted to the plasma protein binding capacity and related pharmacokinetic properties. Four members of the DY-67x cyanine family composed of the same main chromophore, but substituted with a sequentially increasing number of sulfonate groups (n = 1−4; DY-675, DY-676, DY-677, DY-678, respectively, were incubated with plasma proteins dissolved in phosphate-buffered saline. Protein binding was assessed by absorption spectroscopy, gel electrophoresis, ultrafiltration, and dialysis. Distribution of dye in organs was studied by intraveneous injection of 62 nmol dye/kg body weight into mice (n = 12; up to 180 minutes postinjection using whole-body near-infrared fluorescence imaging. Spectroscopic studies, gel electrophoresis, and dialysis demonstrated reduced protein binding with increasing number of sulfonate groups. The bovine serum albumin binding constant of the most hydrophobic dye, DY-675, is 18 times higher than that of the most hydrophilic fluorophore, DY-678. In vivo biodistribution analysis underlined a considerable influence of dye hydrophilicity on biodistribution and excretion pathways, with the more hydrophobic dyes, DY-675 and DY-676, accumulating in the liver, followed by strong fluorescence signals in bile and gut owing to accumulation in feces and comparatively hydrophilic DY-678-COOH accumulating in the bladder. Our results demonstrate the possibility of selectively controlling dye-protein interactions and, thus, biodistribution and excretion pathways via proper choice of the fluorophore's substitution pattern. This underlines the importance of structure-property relationships for fluorescent labels. Moreover, our data could provide the

  5. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    Science.gov (United States)

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  6. Separation of transition-metal and 8-hydroxyquinoline-5-sulfonic acid complexes using ion-pair liquid chromatography

    International Nuclear Information System (INIS)

    Basova, E.M.; Demurov, L.M.; Shpigun, O.A.; Van Iyuchun'

    1994-01-01

    The retention of chelates of Fe(3), Cu(2), Co(2), Ni(2), Zn(2), Cd(2), Hg(2), and Pb)(2) with 8-hydroxyquinoline-5-sulfonic acid depending on the concentration of cetyltrimethylammonium bromide, acetonitrile, and pH of the mobile phase was investigated using the ion-pair reversed-phase high-performance liquid chromatography on separon C 18 . Under the optimum conditions, the separation of mixtures of Fe(3), Co(2) and Ni(2) is performed within 8 to 12 min

  7. Synthesis and characterization of sulfonated polyesters derived from glycerol; Sintese e caracterizacao de poliesteres sulfonados obtidos a partir do glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Fiuza, R.P. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Quimica

    2010-07-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  8. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Liquid chromatography-tandem mass spectrometry analysis of perfluorooctane sulfonate and perfluorooctanoic Acid in fish fillet samples.

    Science.gov (United States)

    Paiano, Viviana; Fattore, Elena; Carrà, Andrea; Generoso, Caterina; Fanelli, Roberto; Bagnati, Renzo

    2012-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic (PFOA) acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV) of the method ranged from 8% to 20%. Limits of detection (LOD) were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  10. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Fish Fillet Samples

    Directory of Open Access Journals (Sweden)

    Viviana Paiano

    2012-01-01

    Full Text Available Perfluorooctane sulfonate (PFOS and perfluorooctanoic (PFOA acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV of the method ranged from 8% to 20%. Limits of detection (LOD were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  11. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    Science.gov (United States)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  12. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  13. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Carretta, N.; Tricoli, V.; Picchioni, F.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  14. Polymer sulfonation- a versatile route to prepare proton-conducting membrane material for advanced technologies

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    2003-01-01

    Sulfonation of polymers is a viable method for making proton exchange membranes used in electrochemical devices. Polyether-ether ketone was modified by using concentrated sulfuric acid (97.4%) to produce ion-containing polymers bearing HSO3 groups. The sulfonated polymer was characterized for IEC, HNMR, DSC and water uptake etc. The degree of sulfonation of sulfonated PEEK was found to vary from 40 to 80 mol%. The PEEK became amorphous after sufonation (as evidenced from DSC and WXRD), which enhanced its solubility in organic solvents such as DMF. The glass transition temperature, Tg increased from 151C for pure PEEK to 217C upon sulfonation. The water uptake was also increased with sulfonation level, which provides formation of water-mediated pathways for protons involving SO3H groups. The membranes from these polymers have a high potential for use in electrochemical devices such as polymer fuel cell and electrodialysis. (author)

  15. Multidrug Resistance Proteins and the Renal Elimination of Inorganic Mercury Mediated by 2,3-Dimercaptopropane-1-Sulfonic Acid and Meso-2,3-dimercaptosuccinic Acid

    Science.gov (United States)

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2008-01-01

    Current therapies for inorganic mercury (Hg2+) intoxication include administration of a metal chelator, either 2,3-dimercaptopropane-1-sulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA). After exposure to either chelator, Hg2+ is rapidly eliminated from the kidneys and excreted in the urine, presumably as an S-conjugate of DMPS or DMSA. The multidrug resistance protein 2 (Mrp2) has been implicated in this process. We hypothesize that Mrp2 mediates the secretion of DMPS- or DMSA-S-conjugates of Hg2+ from proximal tubular cells. To test this hypothesis, the disposition of Hg2+ was examined in control and Mrp2-deficient TR− rats. Rats were injected i.v. with 0.5 μmol/kg HgCl2 containing 203Hg2+. Twenty-four and 28 h later, rats were injected with saline, DMPS, or DMSA. Tissues were harvested 48 h after HgCl2 exposure. The renal and hepatic burden of Hg2+ in the saline-injected TR− rats was greater than that of controls. In contrast, the amount of Hg2+ excreted in urine and feces of TR− rats was less than that of controls. DMPS, but not DMSA, significantly reduced the renal and hepatic content of Hg2+ in both groups of rats, with the greatest reduction in controls. A significant increase in urinary and fecal excretion of Hg2+, which was greater in the controls, was also observed following DMPS treatment. Experiments utilizing inside-out membrane vesicles expressing MRP2 support these observations by demonstrating that DMPS- and DMSA-S-conjugates of Hg2+ are transportable substrates of MRP2. Collectively, these data support a role for Mrp2 in the DMPS- and DMSA-mediated elimination of Hg2+ from the kidney. PMID:17940195

  16. Investigation of the Effects of Perfluorooctanoic Acid (PFOA and Perfluorooctane Sulfonate (PFOS on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Yuan Cui

    2015-12-01

    Full Text Available This study aimed to explore the effects of perfluorooctanoic acid (PFOA and perfluorooctane sulfonate (PFOS on apoptosis and cell cycle in a zebrafish (Danio rerio liver cell line (ZFL. Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05. Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells.

  17. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  18. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    Science.gov (United States)

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.

  19. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process.

    Science.gov (United States)

    Sun, Zhuyu; Zhang, Chaojie; Chen, Pei; Zhou, Qi; Hoffmann, Michael R

    2017-12-15

    Iodide photolysis under UV illumination affords an effective method to produce hydrated electrons (e aq - ) in aqueous solution. Therefore, UV/Iodide photolysis can be utilized for the reductive degradation of many recalcitrant pollutants. However, the effect of naturally occurring organic matter (NOM) such as humic and fulvic acids (HA/FA), which may impact the efficiency of UV/Iodide photoreduction, is poorly understood. In this study, the UV photoreductive degradation of perfluorooctane sulfonate (PFOS) in the presence of I - and HA is studied. PFOS undergoes a relatively slow direct photoreduction in pure water, a moderate level of degradation via UV/Iodide, but a rapid degradation via UV/Iodide/HA photolysis. After 1.5 h of photolysis, 86.0% of the initial [PFOS] was degraded in the presence of both I - and HA with a corresponding defluorination ratio of 55.6%, whereas only 51.7% of PFOS was degraded with a defluorination ratio of 4.4% via UV/Iodide illumination in the absence of HA. The relative enhancement in the presence of HA in the photodegradation of PFOS can be attributed to several factors: a) HA enhances the effective generation of e aq - due to the reduction of I 2 , HOI, IO 3 - and I 3 - back to I - ; b) certain functional groups of HA (i.e., quinones) enhance the electron transfer efficiency as electron shuttles; c) a weakly-bonded association of I - and PFOS with HA increases the reaction probability; and d) absorption of UV photons by HA itself produces e aq - . The degradation and defluorination efficiency of PFOS by UV/Iodide/HA process is dependent on pH and HA concentration. As pH increases from 7.0 to 10.0, the enhancement effect of HA improves significantly. The optimal HA concentration for the degradation of 0.03 mM PFOS is 1.0 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  1. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  2. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites.

    Science.gov (United States)

    Liu, Xiao; Gilmore, Kerry J; Moulton, Simon E; Wallace, Gordon G

    2009-12-01

    The purpose of this work was to investigate for the first time the potential biomedical applications of novel polypyrrole (PPy) composites incorporating a large polyelectrolyte dopant, poly (2-methoxy-5 aniline sulfonic acid) (PMAS). The physical and electrochemical properties were characterized. The PPy/PMAS composites were found to be smooth and hydrophilic and have low electrical impedance. We demonstrate that PPy/PMAS supports nerve cell (PC12) differentiation, and that clinically relevant 250 Hz biphasic current pulses delivered via PPy/PMAS films significantly promote nerve cell differentiation in the presence of nerve growth factor (NGF). The capacity of PPy/PMAS composites to support and enhance nerve cell differentiation via electrical stimulation renders them valuable for medical implants for neurological applications.

  3. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  4. Preparation and studying acid - base properties of the compound a -mono thiosemicarbazide isatin-5-Sodium sulfonate (α-MTI-5-SO3Na)

    International Nuclear Information System (INIS)

    Al-Azrak, A.

    2015-01-01

    This research aims to prepare organic compounds containing functional groups and have analytical properties to use as analytical reagents for determination of metal ions by spectrophotometric methods as acid-base indicators and as indicators for metal ions in EDTA titrations in this paper was prepared the compound ((α-mono thiosemicarbazide isatien -5-sodium sulfonate) it showed analytical properties and significant practical applications this compound has in acidic medium yellow color while in the basic medium sharply changes its color to red color the value of pKa of this compound has been calculated by spectrophotometric method and was equal to (8.860±0.054) the pH transition range was between (8.20 to 9.8) the indicator was used for determination the end point of the titration standard samples of solution (0.1M, NaOH) with standard solution of 0.1M, HCI, and in titration standard samples of solution (0.1M, CH 3 COOH) with standard solution of 0.1M NaOH the results were compared with the results obtained by reference titrimetric methods the statistical treatment for allresults shows that the end point determination using acid - base ((α-MTI-5-SO 3 Na) is the most accurate. (author)

  5. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-01-01

    Full Text Available Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H with a pore size of 6 nm was proven to be an efficient heterogeneous nanoporous solid acid catalyst in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones from the reaction of aromatic aldehydes with 3-amino-1,2,4-triazole (or 2-aminobenzimidazole and dimedone under solvent free conditions.

  6. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  7. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.

    Science.gov (United States)

    Dacquin, J P; Lee, A F; Pirez, C; Wilson, K

    2012-01-07

    Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility. This journal is © The Royal Society of Chemistry 2012

  8. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. An erythrosin B-based "turn on" fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples.

    Science.gov (United States)

    Cheng, Zhen; Du, Lingling; Zhu, Panpan; Chen, Qian; Tan, Kejun

    2018-05-04

    Because of the serious harm to animals and the environment associated with perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a rapid, sensitive and low-cost method for detecting PFOS and PFOA is of great importance. In this paper, a novel sensing method has been proposed for the highly sensitive detection of PFOS and PFOA in environmental water samples based on the "turn-on" switch of erythrosine B (EB)-hexadecyltrimethylammonium bromide (CTAB) system. In pH 8.55 Britton-Robinson (BR) buffer, EB can react with CTAB by electrostatic attraction, resulting in a strong fluorescence quenching of EB. With a subsequent addition of the CTAB, a red-shift occurred (11 nm), followed by a significant increase in fluorescence at high surfactant concentrations. It was found that PFOS and PFOA can obviously enhance fluorescence intensity of EB-CTAB system. The enhanced fluorescence intensity is proportional to the concentration of PFOS and PFOA in the range of 0.05-10 μM with detection limit of 12.8 nM and 11.8 nM (3σ), respectively. The presented assay has been successfully applied to sensing PFOS and PFOA in real water samples with RSD ≤ 4.3% and 2.9%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    Science.gov (United States)

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.

  11. p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties

    Directory of Open Access Journals (Sweden)

    ASHOK K. SHARMA

    2013-04-01

    Full Text Available Composites of polyaniline and carbon nanotube (CNT were prepared by in-situ chemical polymerization method using various aniline concentrations in the initial polymerization solution with p-toluene sulfonic acid (PTS as secondary dopant and mechanical mixing of the PANI and CNT using different weight ratios of PANI and CNTs. The structural characterizations of the composites were done by Fourier transform infrared (FTIR and Ultra violet visible spectroscopy (UV-Visible. Scanning electron microscopy (SEM was used to characterize the surface morphology of the composites. It was found that the composites prepared by in-situ chemical polymerization had smoother surface morphology in comparison to the composites obtained by mechanical mixing. The capacitive studies reveal that the in-situ composite has synergistic effect and the specific capacitance of the composite calculated from cyclic voltammogram (CV was 385.1 F/g. Thermal studies indicate that the composites are stable as compared to PANI alone showing that the CNT contributes towards thermal stability in the PANI-CNT composites.

  12. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  13. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang, E-mail: chunxl@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); He, Shuqing [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Feng [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2013-08-15

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  14. Colorimetric detection of Cd{sup 2+} using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengcheng; Liu, Bowen; Jin, Weiwei; Wu, Fangying, E-mail: fywu@ncu.edu.cn; Wan, Yiqun [Nanchang University, College of Chemistry (China)

    2016-11-15

    A colorimetric assay has been developed for facile, rapid, and sensitive detection of Cd{sup 2+} using 1-amino-2-naphthol-4-sulfonic acid functionalized silver nanoparticles (ANS-AgNPs). The presence of Cd{sup 2+} induces the aggregation of ANS-AgNPs through cooperative metal–ligand interaction. As a result, the characteristic surface plasmon resonance (SPR) peak of ANS-AgNPs at 390 nm was red-shifted to 580 nm, yielding a color change from bright yellow to reddish-brown. The color change is monitored by UV–Vis spectrometer and can be directly read out by the naked eye. Under the optimized conditions, a good linear relationship (correlation coefficient R = 0.997) was obtained between the ratio of the absorbance at 580 nm to that at 390 nm (A{sub 580nm}/A{sub 390nm}) and the concentration of Cd{sup 2+} over the range of 1.0–10 μM with detection limit of 87 nM. The proposed method is simple and efficient, which has been applied for determining Cd{sup 2+} in milk powder, serum, and lake water with satisfactory results.

  15. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction

    Science.gov (United States)

    Yang, Fan; Xu, Gang; Dou, Yibo; Wang, Bin; Zhang, Heng; Wu, Hui; Zhou, Wei; Li, Jian-Rong; Chen, Banglin

    2017-11-01

    The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal-organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (-SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its -SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10-1 S cm-1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

  16. The effect of Saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Lee, Sang Kil; Kim, Youn Wha; Chi, Sung-Gil; Joo, Yeong-Shil; Kim, Hyo Jong

    2009-02-01

    Saccharomyces boulardii (S. boulardii) has beneficial effects in the treatment of intestinal inflammation; however, little is known about the mechanisms by which these effects occur. We investigated the effects of S. boulardii on the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and interleukin-8 (IL-8), using human HT-29 colonocytes and a rat model of trinitrobenzene sulfonic acid (TNBS)-induced colitis. The effect of S. boulardii on gene expression was assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Northern blot and Western blot assays. Pharmacological inhibitors for various signaling pathways were used to determine the signaling pathways implicated in the S. boulardii regulation of PPAR-gamma and IL-8. We found that S. boulardii up-regulated and down-regulated PPAR-gamma and IL-8 expression at the transcription level, both in vitro and in vivo (P Saccharomyces boulardii blocked tumor necrosis factor-alpha (TNF-alpha) regulation of PPAR-gamma and IL-8 through disruption of TNF-alpha-mediated nuclear factor kappa B (NF-kappaB) activation. Furthermore, S. boulardii suppressed colitis and expression of pro-inflammatory cytokine genes in vivo (P boulardii reduces colonic inflammation and regulates inflammatory gene expression.

  17. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum

    Science.gov (United States)

    Jusko, Todd A.; Oktapodas, Marina; Murinová, L’ubica Palkovičová; Babinská, Katarina; Babjaková, Jana; Verner, Marc-André; DeWitt, Jamie C.; Thevenet-Morrison, Kelly; Čonka, Kamil; Drobná, Beata; Chovancová, Jana; Thurston, Sally W.; Lawrence, B. Paige; Dozier, Ann M.; Järvinen, Kirsi M.; Patayová, Henrieta; Trnovec, Tomáš; Legler, Juliette; Hertz-Picciotto, Irva; Lamoree, Marja H.

    2017-01-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184 colostrum samples collected from women participating in a cohort study in eastern Slovakia between 2002 and 2004. During their hospital delivery stay, mothers completed a food frequency questionnaire, and demographic and reproductive data were also collected. PFOS and PFOA predictors were identified by optimizing multiple linear regression models using Akaike’s information criterion (AIC). The geometric mean concentration in colostrum was 35.3 pg/ml for PFOS and 32.8 pg/ml for PFOA., In multivariable models, parous women had 40% lower PFOS (95% CI: −56 to −17%) and 40% lower PFOA (95% CI: −54 to −23%) concentrations compared with nulliparous women. Moreover, fresh/frozen fish consumption, longer birth intervals, and Slovak ethnicity were associated with higher PFOS and PFOA concentrations in colostrum. These results will help guide the design of future epidemiologic studies examining milk PFAS concentrations in relation to health endpoints in children. PMID:27244128

  18. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China.

    Science.gov (United States)

    Chen, Hong; Han, Jianbo; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin

    2018-06-04

    Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from

  19. Construction and Study of Hetreojunction Solar Cell Based on Dodecylbenzene Sulfonic Acid-Doped Polyaniline/n-Si

    Directory of Open Access Journals (Sweden)

    I. Morsi

    2012-01-01

    Full Text Available Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag structure was investigated by using current-voltage (I-V, capacitance-voltage (C-V, and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (oc, short-circuit current density (sc, fill factor (FF, and energy conversion efficiency (η were calculated. The highest sc, oc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is 3.5×1014 and 1.0×1015/cm3 for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.

  20. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum

    International Nuclear Information System (INIS)

    Bots, Jessica; De Bruyn, Luc; Snijkers, Tom; Van den Branden, Bert; Van Gossum, Hans

    2010-01-01

    We evaluated whether life-time exposure to PFOS affects egg development, hatching, larval development, survival, metamorphosis and body mass of Enallagma cyathigerum (Insecta: Odonata). Eggs and larvae were exposed to five concentrations ranging from 0 to 10 000 μg/L. Our results show reduced egg hatching success, slower larval development, greater larval mortality, and decreased metamorphosis success with increasing PFOS concentration. PFOS had no effect on egg developmental time and hatching or on mass of adults. Eggs were the least sensitive stage (NOEC = 10 000 μg/L). Larval NOEC values were 1000 times smaller (10 μg/L). Successful metamorphosis was the most sensitive response trait studied (NOEC < 10 μg/L). The NOEC value suggests that E. cyathigerum is amongst the most sensitive freshwater organisms tested. NOEC for metamorphosis is less than 10-times greater than the ordinary reported environmental concentrations in freshwater, but is more than 200-times smaller than the greatest concentrations measured after accidental releases. - Long-term laboratory exposure to perfluorooctane sulfonic acid reduces survival and interferes with metamorphosis of Enallagma cyathigerum (Insecta: Odonata).

  1. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum

    Energy Technology Data Exchange (ETDEWEB)

    Bots, Jessica, E-mail: Jessica.bots@ua.ac.b [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); De Bruyn, Luc, E-mail: luc.debruyn@ua.ac.b [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels (Belgium); Snijkers, Tom, E-mail: tomsnijkers@gmail.co [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Van den Branden, Bert, E-mail: bvandenbranden@gmail.co [Department PIH Environment, University College West Flanders (HOWEST), Graaf K. 11 de Goedelaan 5, B-8500 Kortrijk (Belgium); Van Gossum, Hans, E-mail: hans.vangossum@ua.ac.b [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2010-03-15

    We evaluated whether life-time exposure to PFOS affects egg development, hatching, larval development, survival, metamorphosis and body mass of Enallagma cyathigerum (Insecta: Odonata). Eggs and larvae were exposed to five concentrations ranging from 0 to 10 000 mug/L. Our results show reduced egg hatching success, slower larval development, greater larval mortality, and decreased metamorphosis success with increasing PFOS concentration. PFOS had no effect on egg developmental time and hatching or on mass of adults. Eggs were the least sensitive stage (NOEC = 10 000 mug/L). Larval NOEC values were 1000 times smaller (10 mug/L). Successful metamorphosis was the most sensitive response trait studied (NOEC < 10 mug/L). The NOEC value suggests that E. cyathigerum is amongst the most sensitive freshwater organisms tested. NOEC for metamorphosis is less than 10-times greater than the ordinary reported environmental concentrations in freshwater, but is more than 200-times smaller than the greatest concentrations measured after accidental releases. - Long-term laboratory exposure to perfluorooctane sulfonic acid reduces survival and interferes with metamorphosis of Enallagma cyathigerum (Insecta: Odonata).

  2. Novel non-covalent sulfonated multiwalled carbon nanotube from p-toluenesulfonic acid/glucose doped polypyrrole for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Q.B.; Gao, B.; Hao, L.; Lu, X.J.; Yang, S.D.; Zhang, X.G. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Material Science and Engineering

    2010-07-01

    Polypyrrole (PPy) is considered as one of the most promising electrode materials for electrochemical capacitors due to its environmental stability and fast doping and dedoping capacity. Carbon nanotube (CNT) and PPy hybrids can work synergistically to achieve the advantages of an electric double layer capacitor and faradaic pseudocapacitor. Sulfonation can be used to increase the dispersion of CNTs. In this study, multiwalled CNTs (MWCNTs) were modified with a high -SOH{sub 3}H loading carbonaceous material. Pyrolle monomers were absorbed on the surface of the MWCNT-SO{sub 3}H composite through strong electron and hydrogen bonding interactions between the -SO{sub 3}H group and the amino group of pyrrole. The pyrrole was then in-situ polymerized on the surface of the MWCNTs with the addition of an initiator. The study showed that the specific capacitance loss of the MWCNTs-SO{sub 3}H/PPy was only 3 per cent after 1000 cycles. Results of the study suggested that the composite is a promising electrode material for electrochemical capacitors. 2 refs., 2 figs.

  3. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid.

    Science.gov (United States)

    Yuan, Bifeng; Wang, Yinsheng

    2008-08-29

    Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.

  4. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  5. DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains

    Directory of Open Access Journals (Sweden)

    Nobutaka Endo

    2016-08-01

    Full Text Available Polymer electrolyte membranes (PEMs for direct methanol fuel cell (DMFC applications were prepared from a graft-copolymer (PSF-g-PSSA consisting of a polysulfone (PSF main chain and poly(styrene sulfonic acid (PSSA side chains with various average distances between side chains (Lav and side chain lengths (Lsc. The polymers were synthesized by grafting ethyl p-styrenesulfonate (EtSS on macro-initiators of chloromethylated polysulfone with different contents of chloromethyl (CM groups, and by changing EtSS content in the copolymers by using atom transfer radical polymerization (ATRP. The DMFC performance tests using membrane electrode assemblis (MEAs with the three types of the PEMs revealed that: a PSF-g-PSSA PEM (SF-6 prepared from a graft copolymer with short average distances between side chains (Lav and medium Lsc had higher DMFC performance than PEMs with long Lav and long Lsc or with short Lav and short Lsc. SF-6 had about two times higher PDmax (68.4 mW/cm2 than Nafion® 112 at 30 wt % of methanol concentration. Furthermore, it had 58.2 mW/cm2 of PDmax at 50 wt % of methanol concentration because of it has the highest proton selectivity during DMFC operation of all the PSF-g-PSSA PEMs and Nafion® 112.

  6. Treating shale oil to obtain sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, H

    1921-01-21

    The process shows as its principal characteristics: (1) treating the oil with chlorsulfonic acid at a temperature of about 100/sup 0/C; (2) the transformation of the sulfonic acid obtained into salts; (3) as new industrial products, the sulfonates obtained and their industrial application as disinfectants for hides and wood.

  7. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Dong Cai

    2015-09-01

    Full Text Available A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H2SO4. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, 1H-NMR, 13C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  8. Simultaneous quantification of acetanilide herbicides and their oxanilic and sulfonic acid metabolites in natural waters.

    Science.gov (United States)

    Heberle, S A; Aga, D S; Hany, R; Müller, S R

    2000-02-15

    This paper describes a procedure for simultaneous enrichment, separation, and quantification of acetanilide herbicides and their major ionic oxanilic acid (OXA) and ethanesulfonic acid (ESA) metabolites in groundwater and surface water using Carbopack B as a solid-phase extraction (SPE) material. The analytes adsorbed on Carbopack B were eluted selectively from the solid phase in three fractions containing the parent compounds (PCs), their OXA metabolites, and their ESA metabolites, respectively. The complete separation of the three compound classes allowed the analysis of the neutral PCs (acetochlor, alachlor, and metolachlor) and their methylated OXA metabolites by gas chromatography/mass spectrometry. The ESA compounds were analyzed by high-performance liquid chromatography with UV detection. The use of Carbopack B resulted in good recoveries of the polar metabolites even from large sample volumes (1 L). Absolute recoveries from spiked surface and groundwater samples ranged between 76 and 100% for the PCs, between 41 and 91% for the OXAs, and between 47 and 96% for the ESAs. The maximum standard deviation of the absolute recoveries was 12%. The method detection limits are between 1 and 8 ng/L for the PCs, between 1 and 7 ng/L for the OXAs, and between 10 and 90 ng/L for the ESAs.

  9. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Hacer; Inan, Tuelay Y.; Unveren, Elif [The Scientific and Technological Research Council of Turkey (TUeBiTAK), Marmara Research Center, Chemistry Institute, P.K. 21, 41470 Gebze-Kocaeli (Turkey); Kaya, Metin [DEMIRDOeKUeM A.S. 4 Eyluel Mah, ismet inoenue Cad. No:245 Bozueyuek/Bilecik (Turkey)

    2010-08-15

    We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 x 10{sup -7} cm{sup 2}/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 x 10{sup -1} S/cm was achieved at 80 C under 100% RH. The weight loss at 900 C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion {sup registered}. (author)

  10. Study of poly (acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogel using gamma radiation initiation

    International Nuclear Information System (INIS)

    Zhang, C.; Easteal, A.J.

    1998-01-01

    Full text: Poly (acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid ) (PAAM-co-AMPS) polyelectrolyte hydrogels were formed by using γ-radiation to initiate polymerization and cross-linking. The dependence of chain growth and cross-linking of liquid-like gel on absorbed dose was observed by viscosity measurement. It was found that the viscosity of liquid-like gel increased non-linearly with increasing radiation dose. Crosslinking took place at about 2,300 Gy. It was noted that an ageing effect occurred, such that the viscosity of liquid-like gels decreased significantly on standing. X-ray diffraction revealed that after dehydration the dried gels were amorphous, suggesting that radiation polymerization occurs by random initiation and propagation. Differential scanning calorimetry (DSC) indicated a clear distinction between the thermal behaviour of the homopolymer gels formed by irradiation, and the behaviour of the copolymer gels. PAAM-co-AMPS gels have enhanced thermal stability in comparison to PAAM and PAMPS. The melting points of water in the gels initially increase with increasing dose, and decrease slightly at very high radiation dose. Those trends can be explained by the variation in the numbers of solute molecules or ions in the gels with absorbed dose. Melting points of water in gels can be used for observation of the polymerization process associated with irradiation. Copolymer composition (expressed by either f 1 (AAM molal fraction ) or f 2 (AMPS molal fraction) ) associated with radiation dose was determined by both elemental analysis and FTIR. Both methods show that f 1 increases to a maximum with increasing dose, and subsequently decreases. It is concluded that PAAM-co-AMPS hydrogels were synthesised successfully by gamma radiation initiation, and that copolymer compositions are dependent on radiation dose

  11. Determination of perfluorinated sulfonate and perfluorinated acids in tissues of free-living European beaver (castor fiber L.) by d-SPE/ micro-UHPLC-MS/MS.

    Science.gov (United States)

    Surma, Magdalena; Giżejewski, Zygmunt; Zieliński, Henryk

    2015-10-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the main representatives of an rising class of persistent organic pollutants (POPs), perfluorochemicals (PFCs). In this study, determination of selected PFCs concentration in liver, brain, tail, adipose and peritoneum tissues of free-living European beaver (Castor fiber L.) was addressed. Tissue samples, collected from beavers living in Masurian Lakeland (NE Poland), were analyzed by dispersive Solid Phase Extraction (d-SPE) with micro-UHPLC-MS/MS system. In a group of ten selected pefrluorinated compounds only two perfluorinated acids (PFOA and PFNA) and one perfluorinated sulfonate (PFOS) were quantified. PFOA was detected in all analysed tissue samples in both female and male beavers in a range from 0.55 to 0.98ngg(-1) ww whereas PFOS was identified in all analyzed female beaver tissues and only in liver, subcutaneous adipose and peritoneum tissues of male beavers at the concentration level from 0.86 to 5.08ngg(-1) ww. PFNA was only identified in female beaver tissues (liver, subcutaneous adipose and peritoneum) in a range from 1.50 to 6.61ngg(-1) ww. This study demonstrated the bioaccumulation of PFCs in tissue samples collected from beavers living in area known as green lungs of Poland. The results provided in this study indicate for the increasing risk of PFCs occurrence in the environment and the level of PFCs in tissue of free-living European beavers may serve as bioindicator of environmental pollution by these compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  14. Radiation-induced crosslinking of poly(styrene–butadiene–styrene) block copolymers and their sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Young [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Song, Ju-Myung; Sohn, Joon-Yong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shul, Yong-Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2013-12-01

    Highlights: • The c-SBS films were prepared using a gamma ray or electron beam. • The crosslinking degree of the c-SBS films were increased with the irradiation dose. • The prepared c-SBS films were sulfonated with various concentration of CSA. • The sulfonation of the c-SBS film is largely dependent on the concentration of CSA. • The sulfonation process is progressed from the surface to the inner part of c-SBS film. -- Abstract: Several crosslinked poly(styrene–butadiene–styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  15. Total glucosides of peony attenuates 2,4,6-trinitrobenzene sulfonic acid/ethanol-induced colitis in rats through adjustment of TH1/TH2 cytokines polarization.

    Science.gov (United States)

    Zhang, Yabing; Zhou, Rui; Zhou, Feng; Cheng, Hong; Xia, Bing

    2014-01-01

    The present study is to investigate effects of total glucosides of peony (TGP) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol-induced colitis in rats and to explore potential clinical use of TGP for treatment of inflammatory bowel disease. Sixty Sprague-Dawley rats were randomly grouped into normal controls, model controls, sulfasalazine (SASP) controls (100 mg/kg/day), and low, medium, and high-dose TGP groups (25, 50, and 100 mg/kg/day, respectively). 24 h following colonic instillation of TNBS, TGP, and SASP were given by gastric gavage three times a day for 7 days. Disease activity index (DAI), colon macroscopic damage index (CMDI), histopathological score (HPS), and myeloperoxidase (MPO) activity were evaluated. Levels of serum TNF-α, IL-1β, and IL-10 were measured by ELISA, and expression of TNF-α, IL-1β, and IL-10 mRNA and protein in colonic tissues was detected by RT-PCR and western blot, respectively. Compared with rats in the model controls, TGP (50 or 100 mg/kg/day)-treated rats with TNBS/ethanol-induced colitis showed significant improvements of DAI, CMDI, HPS, and MPO activity. Moreover, administration of TGP (50 or 100 mg/kg/day) decreased the up-regulated levels of serum TNF-α and IL-1β, and expression of TNF-α and IL-1β mRNA and protein in colonic tissues, and increased the serum IL-10 and colonic IL-10 mRNA and protein level. And there was no significant difference compared with administration of SASP (P > 0.05). TGP attenuates TNBS/ethanol-induced colitis in rats and its efficacy is similar to SASP, the potential mechanism might be related to the adjustment of Th1/Th2 cytokines polarization by decreasing pro-inflammatory cytokine TNF-α and IL-1β, and increasing anti-inflammatory cytokine IL-10.

  16. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  17. How strong are strong poly(sulfonic acids)? An example of the poly(2-acrylamido-2-methyl-1-propanesulfonic acid)

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Omelchenko, Olga

    2016-01-01

    Roč. 74, January (2016), s. 130-135 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-14791S Institutional support: RVO:61389013 Keywords : polyelectrolytes * strong poly(acids) * proton conductors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.531, year: 2016

  18. Synthesis and characterization of sulfonic acid membranes based on interpenetrating polymer networks for application in fuel cells; Sintese e caracterizacao de membranas sulfonadas baseadas em redes polimericas interpenetrantes para aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Lyzed Toloza; Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, the synthesis and characterization of sulfonic membranes based on interpenetrating polymer networks (IPN). In order to obtain such systems, the diglycidyl ether of bisphenol A (DGEBA) was polymerized in presence of polyethyleneimine (PEI). These membranes were submitted to sulfonation reactions, originating IPN-SO{sub 3}H membranes. The characterization by FTIR evidenced the formation of a Semi-IPN structure, while sulfonation reactions resulted in systems containing -SO{sub 3}H groups covalently bonded to the chains. The membranes exhibited water retention up to 200 degree C, in a temperature range sufficient for application in PEMFC under hydration. (author)

  19. Differential pulse polarographic determination of trace antimony in standard biological samples after preconcentration using 2-nitroso-1-naphthol-4-sulfonic acid

    International Nuclear Information System (INIS)

    Taher, M. A.

    2003-01-01

    A highly selective, rapid and economical differential polarographic method has been developed for the determination of trace amounts of antimony in various standard alloys and biological samples after of its 2-naphthol-4 sulfonic acid tetradecyl dimethylbenzylammonium chloride on microcrystalline naphthalene in the ph range of 7.5-11.0. After filtration, the solid mass is shaken with 8-10 ml of 1 M hydrochloric acid (with preconcentration factor of 10) and antimony is determined by differential pulse polarography. Antimony can alternatively be quantitatively absorbed on 2-nitroso-1-naphthol-4-sulfonic acid tetradecyl dimethylbenzylammonium-naphthalene absorbed packed in a column (with preconcentration factor of 30) and determined similarly. In this case, 1.5 μg of antimony can be concentrated in a column from 300 ml of aqueous sample, where its concentration is as low as 5 ng/ml. Characterization of the electro active process included an examination of the degree of reversibility. The results show that the irreversibility of antimony. Various parameters such as the effect of ph, volume of aqueous phase, HCl concentration, reagent concentration, naphthalene concentration, shaking time and interference of a number of metal ions on the determination of antimony have been studied in detail to optimize the conditions for determination in standard alloys and standard biological samples

  20. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  1. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  2. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice.

    Science.gov (United States)

    Sheng, Nan; Zhou, Xiujuan; Zheng, Fei; Pan, Yitao; Guo, Xuejiang; Guo, Yong; Sun, Yan; Dai, Jiayin

    2017-08-01

    Due to their structural similarities, 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA) are often used as alternatives to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), respectively. With limited health risk data and 6:2 FTSA detection in water and sludge, the toxicity of these chemicals is of growing concern. Here, adult male mice were exposed with 5 mg/kg/day of 6:2 FTCA or 6:2 FTSA for 28 days to investigate their hepatotoxicological effects. In contrast to 6:2 FTCA, 6:2 FTSA was detected at high and very high levels in serum and liver, respectively, demonstrating bioaccumulation potential and slow elimination. Furthermore, 6:2 FTSA induced liver weight increase, inflammation, and necrosis, whereas 6:2 FTCA caused no obvious liver injury, with fewer significantly altered genes detected compared with that of 6:2 FTSA (39 vs. 412). Although PFOA and PFOS commonly activate peroxisome proliferator-activated receptor α (PPARα), 6:2 FTSA induced an increase in PPARγ and related proteins, but not in lipid metabolism-related genes such as PPARα. Our results showed that 6:2 FTCA and 6:2 FTSA exhibited weak and moderate hepatotoxicity, respectively, compared with that reported for legacies PFOA and PFOS.

  3. Visceral hypersensitivity is provoked by 2,4,6-trinitrobenzene sulfonic acid-induced ileitis in rats

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Shah

    2016-07-01

    Full Text Available Background and Aims: Crohn’s Disease (CD, a chronic Inflammatory Bowel Disease, can occur in any part of the gastrointestinal tract, but most frequently in the ileum. Visceral hypersensitivity contributes for development of chronic abdominal pain in this disease. Currently, the understanding of the mechanism underlying hypersensitivity of Crohn’s ileitis has been hindered by a lack of specific animal model. The present study is undertaken to investigate the visceral hypersensitivity provoked by 2,4,6-trinitrobenzene sulfonic (TNBS-induced ileitis rats.Methods: Male Sprague-Dawley rats were anaesthetized and laparotomized for intraileal injection of TNBS (0.6 ml, 80 mg/kg body weight in 30% ethanol, n = 48, an equal volume of 30% Ethanol (n = 24 and Saline (n = 24, respectively. Visceral hypersensitivity was assessed by visceromotor responses (VMR to 20, 40, 60, 80 and 100 mmHg colorectal distension pressure (CRD at day 1, 3, 7, 14, 21 and 28. Immediately after CRD test, the rats were euthanized for collecting the terminal ileal segment for histopathological examinations and ELISA of myleoperoxidase and cytokines (TNF-α, IL-1β, IL-6, and dorsal root ganglia (T11 for determination of calcitonin gene-related peptide by immunohistochemistry, respectively. Results: Among all groups, TNBS-treatment showed transmural inflammation initially at 3 days, reached maximum at 7 days and persisted up to 21 days. The rats with ileitis exhibited (P < 0.05 VMR to CRD at day 7 to day 21. The calcitonin gene-related peptide-immunoreactive positive cells increased (P < 0.05 in dorsal root ganglia at day 7 to 21, which was persistently consistent with visceral hypersensitivity in TNBS-treated rats.Conclusions: TNBS injection into the ileum induced transmural ileitis including granuloma and visceral hypersensitivity. As this model mimics clinical manifestations of CD, it may provide a road map to probe the pathogenesis of gut inflammation and visceral

  4. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia

    International Nuclear Information System (INIS)

    Pandey, Indu; Jha, Shashank Shekhar

    2015-01-01

    Highlights: • Pencil graphite electrode was non-covalently functionalized by C-dots. • Electrochemically synthesized ferrocene-sulfonic acid doped PANI film was used as chiral recognition element. • Electrochemical chiral sensing of L-ascorbic acid and D-ascorbic acid was carried out. • L-ascorbic acid determination was done in aqueous, biological and pharmaceutical samples at nM level. - Abstract: A simple and novel method is proposed for chiral separation of L-ascorbic acid and D-ascorbic acid in human cerebrospinal fluids and blood plasma samples. Electro-polymerized molecularly imprinted poly-aniline ferrocenesulfonic acid-C-dots modified pencil graphite electrodes was successfully applied for separation and quantification of D-/L-ascorbic acid in aqueous and some biological samples. Parameters, important to control the performance of the electrochemical sensor were investigated and optimized, including the effects of pH, monomer- template ratios, electropolymerization cycles and scan rates. The molecularly imprinted film exhibited a high chiral selectivity and sensitivity towards D-ascorbic acid and L-ascorbic acid respectively. The surface morphologies and electrochemical properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry, chrono-amperometry and electrochemical impedance spectroscopy. L-ascorbic acid selective sensor shows excellent selectivity towards the L-ascorbic acid in comparison to D- ascorbic acid vice versa for D- ascorbic acid selective sensor. Under optimal conditions the linear range of the calibration curve for L- ascorbic acid and D- ascorbic acid was 6.0–165.0 nM and 6.0–155.0 nM, with the detection limit of 0.001 nM and 0.002 nM. Chiral detection of L-ascorbic acid was successfully carried out in pharmaceuticals and human plasma samples (pregnant women and non pregnant women) via proposed sensor with good selectivity and sensitivity.

  5. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    Wang, Zhiqiang; Wang, Hui; Zhang, Zhihao; Yang, Xiaojing; Liu, Gang

    2014-01-01

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL −1 with a detection limit of 0.05 μgL −1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  6. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song Lingjie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao Jie; Yang Huawei; Jin Jing; Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-10-15

    This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O{sub 2} plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124{sup o} to 26{sup o} with the increasing grafting density of poly(AMPS) from 0 to 884.2 {mu}g cm{sup -2}, while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 {mu}g cm{sup -2}); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.

  7. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Philippe Tony [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: philippe.hoff@ua.ac.be; Van Campenhout, Karen [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van de Vijver, Kristin [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Antwerp University, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bervoets, Lieven [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Moens, Lotte [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Huyskens, Geert [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Goemans, Geert [Institute for Forestry and Game Management, Duboislaan 14, B-1560 Groenendaal (Belgium); Belpaire, Claude [Institute for Forestry and Game Management, Duboislaan 14, B-1560 Groenendaal (Belgium); Blust, Ronny [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim de [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2005-09-15

    A perfluorooctane sulfonic acid (PFOS) assessment was conducted on gibel carp (Carassius auratus gibelio), carp (Cyprinus carpio), and eel (Anguilla anguilla) in Flanders (Belgium). The liver PFOS concentrations in fish from the Ieperlee canal (Boezinge, 250-9031 ng/g wet weight, respectively) and the Blokkersdijk pond (Antwerp, 633-1822 ng/g wet weight) were higher than at the Zuun basin (Sint-Pieters-Leeuw, 11.2-162 ng/g wet weight) and among the highest in feral fish worldwide. Eel from the Oude Maas pond (Dilsen-Stokkem) and Watersportbaan basin (Ghent) had PFOS concentrations ranging between 212 and 857 ng/g wet weight. The hepatic PFOS concentration was significantly and positively related with the serum alanine aminotransferase activity, and negatively with the serum protein content in eel and carp. The hepatic PFOS concentration in carp correlated significantly and negatively with the serum electrolyte concentrations whereas a significant positive relation was found with the hematocrit in eel. Although 13 organochlorine pesticides, 22 polychlorinated biphenyl (PCB) congeners and 7 polybrominated diphenyl ethers (PBDEs) were also measured in the liver tissue, only PCB 28, PCB 74, {gamma}-hexachlorocyclohexane ({gamma}-HCH) and hexachlorobenzene (HCB) were suggested to contribute to the observed serological alterations in eel. - Hepatic perfluorooctane sulfonic acid contamination in Flanders (Belgium) might affect serological endpoints in feral carp and eel.

  8. Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.Y.; Yoshida, T.; Kawamura, G.; Sakai, M.; Matsuda, A. [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, H. [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan)

    2010-09-15

    Inorganic-organic composite electrolytes were fabricated from partially Cs{sup +}-substituted heteropoly acids (Cs-HPAs) and sulfonated poly(ether-ether ketone) (SPEEK) for application in fuel cells. Heteropoly acids, such as phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40}:WPA), and silicotungstic acid (H{sub 4}SiW{sub 12}O{sub 40}:WSiA), were mechanochemically treated with cesium hydrogen sulfate (CsHSO{sub 4}) to obtain the form of Cs-HPAs. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Water durability and surface structure of HPAs were modified by introducing Cs{sup +} into HPAs. Flexible and hot water stable composite electrolytes were obtained, and their electrochemical properties were markedly improved with the addition of Cs-HPAs into the SPEEK matrix. Maximum power densities of 245 and 247 mW cm{sup -2} were obtained for 50WPA.50CsHSO{sub 4} and 50WSiA.50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolytes, respectively, from single cell tests at 80 C and 80 RH%. These results suggest that a three-dimensional proton-conductive path was formed among homogeneously distributed Cs-HPAs particles in the SPEEK matrix. The Cs-HPAs incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. These observations imply that the mechanochemically synthesized Cs-HPAs, which consist of hydrogen bondings between Cs-HPAs and -HSO{sub 4}{sup -}, dissociated from CsHSO{sub 4}, are promising materials as inorganic fillers in inorganic-organic composite. (author)

  9. 3-[(3-(Trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Jetti

    2017-05-01

    Full Text Available An efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H-ones and thiones through one-pot three-component reaction of ethyl acetoacetate, aryl aldehyde and urea or thiourea in ethanol using 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as catalyst is described. The use of 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as a catalyst offers several advantages such as high yields, short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

  10. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement.

    Science.gov (United States)

    Li, ChunYan; Huang, ZhiGang; Liu, ZheShuo; Ci, LiQian; Liu, ZhePeng; Liu, Yu; Yan, XueYing; Lu, WeiYue

    Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs) demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN) in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S) were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050), good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA) assay of IFN demonstrated that PBNP-S could stay in the vagina and maintain intravaginal IFN level for much longer time than IFN solution (24 hours vs several hours) without obvious histological irritation to vaginal mucosa after vaginal administration to mice. In summary, good stability, easy loading and controllable release of protein therapeutics, in vitro and in vivo mucoadhesive properties and local safety of PBNP-S suggested it as a promising nanoscale mucoadhesive drug delivery

  11. A novel branched side-chain-type sulfonated polyimide membrane with flexible sulfoalkyl pendants and trifluoromethyl groups for vanadium redox flow batteries

    Science.gov (United States)

    Li, Jinchao; Liu, Suqin; He, Zhen; Zhou, Zhi

    2017-04-01

    A novel branched side-chain-type sulfonated polyimide (6F-s-bSPI) membrane with accessible branching agents of melamine, hydrophobic trifluoromethyl groups (sbnd CF3), and flexible sulfoalkyl pendants is prepared by a high-temperature polycondensation and post-sulfonation method for use in vanadium redox flow batteries (VRFBs). The chemical structure of the 6F-s-bSPI membrane is confirmed by ATR-FTIR and 1H NMR spectra. The physico-chemical properties of the as-prepared 6F-s-bSPI membrane are systematically investigated and found to be strongly related to the specially designed structure. The 6F-s-bSPI membrane offers a reduced cost and possesses a significantly lowered vanadium ion permeability (1.18 × 10-7 cm2 min-1) compared to the linear SPI (2.25 × 10-7 cm2 min-1) and commercial Nafion 115 (1.36 × 10-6 cm2 min-1) membranes, prolonging the self-discharge duration of the VRFBs. In addition, the VRFB assembled with a 6F-s-bSPI membrane shows higher coulombic (98.3%-99.7%) and energy efficiencies (88.4%-66.12%) than that with a SPI or Nafion 115 membrane under current densities ranging from 20 to 100 mA cm-2. Moreover, the VRFB with a 6F-s-bSPI membrane delivers a stable cycling performance over 100 cycles with no decline in coulombic and energy efficiencies. These results show that the branched side-chain-type structure is a promising design to prepare excellent proton conductive membranes.

  12. β–Cyclodextrin–Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents

    Directory of Open Access Journals (Sweden)

    Yan Ran

    2015-11-01

    Full Text Available Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl-N,N-dimethylaniline (5g was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard.

  13. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes

    Directory of Open Access Journals (Sweden)

    Kundu Kshama

    2014-01-01

    Full Text Available (±-Camphor-10-sulfonic acid (CSA catalyzed condensation of 2-naphthol with both aliphatic/aromatic aldehydes at 80°C yielded 14-alkyl/aryl-dibenzoxanthenes as the sole product in high yields. However, the same condensation with benzaldehyde at 25°C afforded a mixture of intermediate 1,1-bis-(2-hydroxynaphthylphenylmethane and 14-phenyl-dibenzoxanthene while the condensation with aliphatic aldehydes at 25°C furnished the corresponding 14-alkyl-dibenzoxanthenes as the sole product. Moreover, condensation of 2-naphthol with aromatic/aliphatic aldehydes with low catalyst loading (2 mol% was greatly accelerated under microwave irradiation to afford the corresponding 14-aryl/alkyl-dibenzoxanthenes as the sole product in high yields.

  14. Preparation of 2-acrylamido-2 methyl propane-1-sulfonic acid/bentonite composite by radiation polymerization for adsorption of basic violet dye from aqueous solution

    International Nuclear Information System (INIS)

    Sokker, H.H.; Younes, M.M.; Abdel-Kareem, M.; Zohdy, K.

    2010-01-01

    Water uptake and the sorption properties of composite made by radiation polymerization of 2-acrylamido-2- methyl propane -1-sulfonic acid (AMPS) and a clay such as bentonite were investigated as a function of composition (2,6 and 10% w.t %) of bentonite and radiation dose. The prepared composite was characterized by FTIR and SEM. Swelling experiments were performed in water at 25 degree C. The prepared composite was applied for adsorption of basic violet dye at different ph values and the results showed that the prepared composite of composition (10% wt % of bentonite) showed the highest removal percent of basic violet dye at ph=9 compared with other compositions. Also, the adsorption capacity of basic violet at ph 3,7 and 9 were 3.5, 9 and 50 mg/g, respectively. The adsorption process of basic violet follows both Freundlich and Langmuir models and followed pseudo second order kinetic model

  15. Visible light driven photocatalytic degradation of methylene blue using novel camphor sulfonic acid doped polycarbazole/g-C3N4 nanocomposite

    Science.gov (United States)

    Praveena, P.; Dhanavel, S.; Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2018-04-01

    A novel polycabazole(PCz)/graphitic carbon nitride(g-C3N4) nanocomposite was synthesized via chemical oxidative polymerization method. In the present work, camphor sulfonic acid (CSA) was used as a dopantand ammonium peroxydisulphate (APS) was used as an oxidizing agent. The PCz/g-C3N4 nanocompositewas characterizedusing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV-Visible spectroscopy (UV-Vis). The obtained results confirm the successful formation of PCz/g-C3N4 nanocomposite. Visible light induced photocatalytic activity of the novel catalyst was demonstrated using methylene blue as a target pollutant. The results suggestthat PCz/g-C3N4 nanocomposite can be used as an effective catalyst for the degradation of organic pollutants from waste water.

  16. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdelraheem, Wael H.M. [Chemistry Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); He, Xuexiang; Duan, Xiaodi [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus)

    2015-01-23

    Graphical abstract: - Highlights: • UV-254 nm/H{sub 2}O{sub 2} AOP was utilized for the degradation and mineralization of PBSA and BSA. • Promotion of k{sub obs} with [H{sub 2}O{sub 2}]{sub 0} ≤ 4 mM and inhibition at higher [H{sub 2}O{sub 2}]{sub 0} were observed. • The S and N were released and monitored as SO{sub 4}{sup 2−} and NH{sub 4}{sup +}, respectively. • Br{sup −} inhibited both the degradation and mineralization much more significantly than Cl{sup −}. • There was an increase in [NH{sub 4}{sup +}] at higher [H{sub 2}O{sub 2}]{sub 0} and its further destruction at higher UV fluence. - Abstract: Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254 nm/H{sub 2}O{sub 2} advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0 mM [H{sub 2}O{sub 2}]{sub 0}, a complete removal of 40.0 μM parent PBSA and 25% decrease in TOC were achieved with 190 min of UV irradiation; SO{sub 4}{sup 2−} was formed and reached its maximum level while the release of nitrogen as NH{sub 4}{sup +} was much lower (around 50%) at 190 min. Sulfate removal was strongly enhanced by increasing [H{sub 2}O{sub 2}]{sub 0} in the range of 0–4.0 mM, with slight inhibition in 4.0–12.0 mM. Faster and earlier ammonia formation was observed at higher [H{sub 2}O{sub 2}]{sub 0}. The presence of Br{sup −} slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl{sup −}. Our study provides important technical and fundamental results on the HO{sup ·} based degradation and

  17. Flexible camphor sulfonic acid-doped PAni/α-Fe{sub 2}O{sub 3} nanocomposite films and their room temperature ammonia sensing activity

    Energy Technology Data Exchange (ETDEWEB)

    Bandgar, D.K. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Navale, S.T. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Navale, Y.H.; Ingole, S.M. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Stadler, F.J. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Ramgir, N.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Babha Atomic Research Centre, Mumbai, M.S. (India); Mane, R.S. [School of Physical Sciences, SRTM University, Nanded 431606 (India); Patil, V.B., E-mail: drvbpatil@gmail.com [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India)

    2017-03-01

    Composite nanostructures play a crucial role in gas sensing applications owing to their tunable properties and sizes. The main goal of this article is to prepare camphor sulfonic acid (10–50 wt%)-doped PAni/α-Fe{sub 2}O{sub 3} (PFC) composite nanostructured films on flexible polyethylene terephthalate (PET) substrate through in-situ polymerization process and study their gas sensing activity towards various gases. Structural and morphological measurements along with gas sensing properties in terms of selectivity, response, stability, and response-recovery times are investigated and reported. The gas selectivity tests of flexible PFC nanostructured composite films are performed towards different gases such as NO{sub 2}, NH{sub 3}, LPG, CH{sub 3}OH, and C{sub 2}H{sub 5}OH etc., wherein all the flexible PFC (10–50%) films demonstrate a superior selectivity towards NH{sub 3} gas even in the presence of other test gases. Among the different compositions, 30% PFC flexible film exhibits highest response of 72% to 100 ppm NH{sub 3} with good response time of 65 s. The systematic study between PFC flexible nanocomposite films and NH{sub 3} gas is conducted and reported. In addition, the interfacial charge transfer kinetics across NH{sub 3} and PFC film interface was investigated by means of impendence spectroscopy study. - Highlights: • Novel route of preparation of camphor sulfonic acid doped PAni-Fe{sub 2}O{sub 3} (PFC) flexible films. • XRD, FTIR, and RAMAN analysis confirms the formation of PFC composites. • PFC films are highly selective towards NH{sub 3} gas at room temperature. • PFC films able to detect as low as 2.5 ppm concentration of NH{sub 3} gas. • 30% PFC flexible film exhibits highest response of 72%–100 ppm NH{sub 3} gas with good response time of 65 s.

  18. Side-chain sulfonated poly(ether sulfone)s for PEM applications

    Energy Technology Data Exchange (ETDEWEB)

    Meier-Haack, J.; Butwilowski, W.; Quetschke, A.; Vogel, C. [Leibniz Institute of Polymer Research Dresden, Dresden (Germany)

    2010-07-01

    Copoly(arylene ether sulfone)s from bis-(4-fluoro phenyl)sulfone (DFDPhS), bis(4-trimethylsiloxy phenyl)sulfone (DHDPhS), and 2,5-diphenylhydroquinone trimethylsilylether (Bis-TMS-DPhHQ) were obtained by nucleophilic displacement polycondensation with high molecular weights (M{sub n} up to 70,000 g/mol; {eta}{sub inh} up to 0.93 dl/g) and narrow molecular weight distributions (2.1 - 2.9). All copolymers showed a single glass-transition temperature (T{sub g}) around 230 C. Upon sulfonation with concentrated sulfuric acid, the T{sub g}s (from samples in the protonated form) were shifted to higher temperatures (+ 35 {+-} 5 C). NMR spectra and the determined ion-exchange capacities (IEC; 1.46 - 2.05 mmol/g), which were close to the theoretical values, indicating that only the pendant phenyl rings of the 2,5- diphenylhydroquinone moieties in the polymer backbone were sulfonated. Membranes prepared from N-methyl- 2-pyrrolidone (NMP) solutions were transparent and soft. The water-uptake at room temperature increased from 30% to 80% with increasing IEC. Samples from random copolymers with an IEC {>=} 1.8 mmol/g were soluble in water at 90 C. While the proton conductivity of the low IEC samples (random copolymer) (1.46 mmol/g) was lower than that of Nafion {sup registered}, the conductivities of the high IEC samples were superior to Nafion {sup registered}. In general membranes from blockcopolymers showed lower water-uptake, higher dimensional stability and higher proton conductivities as compared to samples from random copolymers with similar monomer composition and ion-exchange capacities. (orig.)

  19. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    Science.gov (United States)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  20. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  1. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  2. Synthesis of Polystyrene-Based Random Copolymers with Balanced Number of Basic or Acidic Functional Groups

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    for the functionalization were applied. The first one involved direct functionalization of the template backbone through alkylation of the phenolic groups with suitable reagents. The second modification approach was based on "click" chemistry, where the introduction of alkyne groups onto the template backbone was followed......Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches...... by copper-catalyzed 1,3 cycloaddition of aliphatic sulfonate- or amine-contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by H-1-NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced...

  3. Sulfonate-modified phenylboronic acid-rich nanoparticles as a novel mucoadhesive drug delivery system for vaginal administration of protein therapeutics: improved stability, mucin-dependent release and effective intravaginal placement

    Directory of Open Access Journals (Sweden)

    Li CY

    2016-11-01

    Full Text Available ChunYan Li,1 ZhiGang Huang,2 ZheShuo Liu,1 LiQian Ci,3 ZhePeng Liu,3 Yu Liu,2 XueYing Yan,1 WeiYue Lu2 1School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 2Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 3School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China Abstract: Effective interaction between mucoadhesive drug delivery systems and mucin is the basis of effective local placement of drugs to play its therapeutic role after mucosal administration including vaginal use, which especially requires prolonged drug presence for the treatment of gynecological infectious diseases. Our previous report on phenylboronic acid-rich nanoparticles (PBNPs demonstrated their strong interaction with mucin and mucin-sensitive release profiles of the model protein therapeutics interferon (IFN in vitro, but their poor stability and obvious tendency to aggregate over time severely limited future application. In this study, sulfonate-modified PBNPs (PBNP-S were designed as a stable mucoadhesive drug delivery system where the negative charges conferred by sulfonate groups prevented aggregation of nanoparticles and the phenylboronic acid groups ensured effective interaction with mucin over a wide pH range. Results suggested that PBNP-S were of spherical morphology with narrow size distribution (123.5 nm, polydispersity index 0.050, good stability over a wide pH range and 3-month storage and considerable in vitro mucoadhesion capability at vaginal pH as shown by mucin adsorption determination. IFN could be loaded to PBNP-S by physical adsorption with high encapsulation efficiency and released in a mucin-dependent manner in vitro. In vivo near-infrared fluorescent whole animal imaging and quantitative vaginal lavage followed by enzyme-linked immunosorbent assay (ELISA assay of

  4. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  5. Direct catalytic olefination of alcohols with sulfones.

    Science.gov (United States)

    Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2014-10-06

    The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ionomers based on multisulfonated perylene dianhydride: Synthesis and properties of water resistant sulfonated polyimides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Li, Nanwen [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Suobo; Li, Shenghai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2010-04-15

    A novel locally and densely sulfonated dianhydride with four sulfonic acid groups, 1,6,7,12-tetra[4-(sulfonic acid)phenoxy]perylene-3,4,9,10-tetracarboxylic dianhydride (SPTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 1,6,7,12-tetraphenoxyperylene-3,4,9,10-tetracarboxylic dianhydride (PTDA). Sulfonated copolyimides were prepared from SPTDA, nonsulfonated dianhydride 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianydride, 4,4'-diaminodiphenyl ether (a) or dodecane-1,12-diamine (b). The synthesized copolymers, with the -SO{sub 3}H group on the polymer side chain, possess high molecular weights and high viscosities, and they form tough, flexible membranes. The copolymer membrane with an ion exchange capacity of 2.69 mequiv. g{sup -1} had a proton conductivity of 0.126 S cm{sup -1} at 20 C and 0.292 S cm{sup -1} at 100 C; the latter is much higher than that of Nafion {sup registered} 117 under the same conditions. The mechanical properties of the copolymer membranes were almost unchanged after accelerated water stability testing at 140 C for 100 h; this indicates excellent hydrolytic stability of the synthesized copolyimides. (author)

  7. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA)

    International Nuclear Information System (INIS)

    Ting, W.-P.; Lu, M.-C.; Huang, Y.-H.

    2008-01-01

    A new approach for promoting ferric reduction efficiency using a different electrochemical cell and the photoelectro-Fenton process has been developed. The use of UVA light and electric current as electron donors can efficiently initiate the Fenton reaction. Benzene sulfonic acid (BSA) was the target compound in this study. The parameters investigated to evaluate the reactor design include the electrode working area, electrode distance, energy consumption. Furthermore, the study also contains the intermediates and the mineralization efficiency of electrolysis, Fenton, electro-Fenton and photoelectro-Fenton process. Oxalic acid, the major intermediate of aromatic compound degradation, can complex with ferric ions. Meanwhile, a double cathode reactor could increase the current efficiency by 7%, which would translate to greater ferrous production and a higher degradation rate. Although the current efficiency of an electrode distance 5.5 cm device is 19% higher than 3.0 cm, results show that after 2 h of electrolysis the electronic expense using an electrode gap of 5.5 cm is much higher than 3.0 cm. The final TOC removal efficiency was 46, 64 and 72% using the Fenton, electro-Fenton and photoelectron-Fenton processes, respectively

  8. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  9. Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2009-10-01

    Perfluorinated acids (PFAs) are an emerging class of environmental contaminants present in various environmental and biological matrices. Two major PFA subclasses are the perfluorinated sulfonic acids (PFSAs) and carboxylic acids (PFCAs). The physicochemical properties and partitioning behavior for the linear PFA members are poorly understood and widely debated. Even less is known about the numerous branched congeners with varying perfluoroalkyl chain lengths, leading to confounding issues around attempts to constrain the properties of PFAs. Current computational methods are not adequate for reliable multimedia modeling efforts and risk assessments. These compounds are widely present in surface, ground, marine, and drinking waters at concentrations that vary from pg L(-1) to microg L(-1). Concentration gradients of up to several orders of magnitude are observed in all types of aquatic systems and reflect proximity to known industrial sources concentrated near populated regions. Some wastewaters contain PFAs at mg L(-1) to low g L(-1) levels, or up to 10 orders of magnitude higher than present in more pristine receiving waters. With the exception of trifluoroacetic acid, which is thought to have both significant natural and anthropogenic sources, all PFSAs and PFCAs are believed to arise from human activities. Filtration and sorption technologies offer the most promising existing removal methods for PFAs in aqueous waste streams, although sonochemical approaches hold promise. Additional studies need to be conducted to better define opportunities from evaporative, extractive, thermal, advanced oxidative, direct and catalyzed photochemical, reductive, and biodegradation methods. Most PFA treatment methods exhibit slow kinetic profiles, hindering their direct application in conventional low hydraulic residence time systems.

  10. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  11. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    Science.gov (United States)

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  12. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    International Nuclear Information System (INIS)

    Lu, Jinlin; Song, Hua; Li, Suning; Wang, Lin; Han, Lu; Ling, Han; Lu, Xuehong

    2015-01-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO 2 ) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO 2 nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO 2 nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO 2 and the synergistic effect between the inorganic nano-TiO 2 and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO 2 nanocomposite film by electropolymerization • PEDOT:PSS/TiO 2 film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO 2 film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO 2 film displays a good stability for electrochromic application

  13. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  14. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells.

    Science.gov (United States)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-15

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  15. [Saccharomyces boulardii reduced intestinal inflammation in mice model of 2,4,6-trinitrobencene sulfonic acid induced colitis: based on microarray].

    Science.gov (United States)

    Lee, Sang Kil; Kim, Hyo Jong; Chi, Sung Gil

    2010-01-01

    Saccharomyces boulardii has been reported to be beneficial in the treatment of inflammatory bowel disease. The aim of this work was to evaluate the effect of S. boulardii in a mice model of 2,4,6-trinitrobencene sulfonic acid (TNBS) induced colitis and analyze the expression of genes in S. boulardii treated mice by microarray. BALB/c mice received TNBS or TNBS and S. boulardii treatment for 4 days. Microarray was performed on total mRNA form colon, and histologic evaluation was also performed. In mice treated with S. boulardii, the histological appearance and mortality rate were significantly restored compared with rats receiving only TNBS. Among 330 genes which were altered by both S. boulardii and TNBS (>2 folds), 193 genes were down-regulated by S. boulardii in microarray. Most of genes which were down-regulated by S. bouardii were functionally classified as inflammatory and immune response related genes. S. boulardii may reduce colonic inflammation along with regulation of inflammatory and immune responsive genes in TNBS-induced colitis.

  16. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinlin, E-mail: jinlinlu@hotmail.com [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Song, Hua [School of Mechanical Engineering and Automation, University of Science and Technology, Liaoning, Anshan 114051 (China); Li, Suning; Wang, Lin; Han, Lu [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Ling, Han; Lu, Xuehong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-06-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO{sub 2}) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO{sub 2} nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO{sub 2} nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO{sub 2} and the synergistic effect between the inorganic nano-TiO{sub 2} and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO{sub 2} nanocomposite film by electropolymerization • PEDOT:PSS/TiO{sub 2} film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO{sub 2} film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO{sub 2} film displays a good stability for electrochromic application.

  17. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    Science.gov (United States)

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    Science.gov (United States)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  19. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  20. Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3-hydroxynaphthalene sulfonic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-10-01

    Full Text Available A new method for determination of salbutamol sulfate has been developed using poly(4-amino-3-hydroxynaphthalene sulfonic acid/GCE. Cyclic voltammetric investigation of the electrochemical behavior of salbutamol sulfate at the polymer modified glassy carbon unveiled electrocatalytic activity of the modifier towards irreversible oxidation of salbutamol sulfate. Dependence of peak current predominantly on scan rate than on square root of scan rate, and peak potential shift with pH demonstrated that oxidation of salbutamol sulfate at the polymer modified electrode follows adsorption reaction kinetics with proton participation.Under optimized solution and differential pulse voltammetric parameters, the oxidative peak current showed linear dependence on salbutamol sulfate concentration in the range 0.2 to 8 μM with method detection limit (3s/m and determination coefficient (R2 of 6.8 × 10−8 M and 0.99786, respectively. Low method detection limit, relatively wide linear range, and recovery results of spiked standard salbutamol sulfate in syrup samples in the range 96.7–98.9% validated the method for determination of salbutamol sulfate in pharmaceutical formulations.Differential pulse voltammetric analysis of salbutamol sulfate syrup formulation for its salbutamol sulfate content revealed 98.8 to 99.3% of the labeled value confirming the applicability of the developed method for determination of salbutamol sulfate in real samples. Keywords: Electrochemistry, Analytical chemistry

  1. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    Energy Technology Data Exchange (ETDEWEB)

    Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.

    2010-01-01

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.

  2. Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application

    International Nuclear Information System (INIS)

    Lim, Youngdon; Lee, Hyunchul; Lee, Soonho; Jang, Hohyoun; Hossain, Md. Awlad; Cho, Younggil; Kim, Taeho; Hong, Youngtaik; Kim, Whangi

    2014-01-01

    A new sulfonated poly(phenylene sulfone) polymer (SPPS) was synthesized by Diels-Alder polymerization from 1,4-bis(2,4,5-triphenylcyclopentadienone)benzene (BTPCPB) and 4,4′-diethynylphenylsulfone, and followed by sulfonation reaction with chlorosulfuric acid. A series of sulfonated poly(phenylene sulfone)s (SPPS) with different degrees of sulfonation was prepared in a controllable manner with chlorosulfuric acid. These polymers showed good solubility in aprotic polar solvents, dimethyl acetamide (DMAC) and dimethyl sulfoxide (DMSO). Three different polymer membranes were studied by 1 H NMR spectroscopy, and thermogravimetric analysis (TGA). The ion exchange capacity (IEC) and proton conductivity of SPPS were evaluated according to the degrees of sulfonation. The water uptake (WU) of the synthesized SPPS membranes ranged from 38%∼75%, compared with 32% for Nafion 211 ® at 80 °C. The SPPS membranes exhibited proton conductivities (at 80 °C under 90% RH) of 110.2 mS/cm compared with 102.7 mS/cm for Nafion 211 ® . Power density was performed by single cell and showed similar to Nafion value

  3. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Xu, Jingmei; Ma, Li; Han, Hailan; Ni, Hongzhe; Wang, Zhe; Zhang, Huixuan

    2014-01-01

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1 H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm −1 , which was higher than that of Nafion ® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10 −7 cm 2 s −1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10 −7 cm 2 s −1 ). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  4. Enchansing the Ionic Purity of Hydrophilic Channels by Blending Fully Sulfonated Graft Copolymers with PVDF Homopolymer

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated...

  5. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  6. Analysis and detection of the herbicides dimethenamid and flufenacet and their sulfonic and oxanilic acid degradates in natural water

    Science.gov (United States)

    Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.

    2002-01-01

    Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 μg/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.

  7. Simultaneous Decolorization and Biohydrogen Production from Xylose by Klebsiella oxytoca GS-4-08 in the Presence of Azo Dyes with Sulfonate and Carboxyl Groups

    Science.gov (United States)

    Cao, Ming-yue; Wang, Peng-tao; Wang, Shi; Yue, Ying-rong; Yuan, Wen-duo; Qiao, Wei-chuan; Wang, Fei

    2017-01-01

    ABSTRACT Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter−1 of xylose as the substrate, a maximum xylose utilization rate (URxyl) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H2 mol of xylose−1, respectively, were obtained. Biohydrogen kinetics and electron equivalent (e− equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes. IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such

  8. Crystal Structures of KPC-2[beta]-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Pagadala, Sundar Ram Reddy; Nottingham, Micheal; Fernandez, Daniel; Buynak, John D.; Bonomo, Robert A.; van den Akker, Focco (Case Western); (Stokes); (SMU)

    2012-08-01

    Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by {beta}-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two {beta}-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-{angstrom} resolution. 3-NPBA demonstrated a Km value of 1.0 {+-} 0.1 {micro}M (mean {+-} standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-{angstrom} resolution. PSR-3-226 displayed a K{sub m} value of 3.8 {+-} 0.4 {micro}M for KPC-2, and the inactivation rate constant (kinact) was 0.034 {+-} 0.003 s{sup -1}. When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first {beta}-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.

  9. Studies on the Electrical Properties of Graphene Oxide-Reinforced Poly (4-Styrene Sulfonic Acid) and Polyvinyl Alcohol Blend Composites

    Science.gov (United States)

    Deshmukh, Kalim; Sankaran, Sowmya; Basheer Ahamed, M.; Khadheer Pasha, S. K.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Ali Almaadeed, Mariam; Chidambaram, K.

    In the present study, graphene oxide (GO)-reinforced poly (4-styrenesulfonic acid) (PSSA)/polyvinyl alcohol (PVA) blend composite films were prepared using colloidal blending technique at various concentrations of GO (0-3wt.%). The morphological investigations of the prepared composites were carried out using polarized optical microscopy and scanning electron microscopy. The electrical properties of composites were evaluated using an impedance analyzer in the frequency range 50Hz to 20MHz and temperature in the range 40-150∘C. Morphological studies infer that GO was homogeneously dispersed in the PSSA/PVA blend matrix. Investigations of electrical property indicate that the incorporation of GO into PSSA/PVA blend matrix resulted in the enhancement of the impedance (Z) and the quality factor (Q-factor) values. A maximum impedance of about 4.32×106Ω was observed at 50Hz and 90∘C for PSSA/PVA/GO composites with 3wt.% GO loading. The Q-factor also increased from 8.37 for PSSA/PVA blend to 59.8 for PSSA/PVA/GO composites with 3wt.% GO loading. These results indicate that PSSA/PVA/GO composites can be used for high-Q capacitor applications.

  10. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  11. Sulfonic acid functionalized boron nitride nanomaterials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Arul; Gengan, R.M., E-mail: genganrm@dut.ac.za; Krishnan, Anand

    2017-02-15

    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under microwave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity. - Highlights: • One-pot Synthesis of Knoevenagel and Michel type reactions. • Synthesis of Sulfonic acid Functionalized Boron nitride nano materials. • Synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives under Microwave irradiation. • Molecular docking studies were performed on piperazinyl-quinolinyl acridine derivatives using DNA.

  12. Properties of sulfonated cation-exchangers made from petroleum asphaltites

    International Nuclear Information System (INIS)

    Pokonova, Yu.V.; Pol'kin, G.B.; Proskuryakov, V.A.

    1982-01-01

    The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to γ radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper

  13. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  14. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.

  15. Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation

    International Nuclear Information System (INIS)

    Sun, Chia-Liang; Tang, Jui-Shiang; Brazeau, Nicolas; Wu, Jhing-Jhou; Ntais, Spyridon; Yin, Chung-Wei; Chou, Hung-Lung; Baranova, Elena A.

    2015-01-01

    Highlights: • Pt colloidal nanoparticles with five mean diameters are synthesized. • Size-selected Pt nanoparticles are loaded on sulfonated graphene (sG). • Sulfonic acid functional groups atop graphene donate charge to Pt. • Pt-sG catalysts are used for ethanol oxidation reaction (EOR). • Pt-sG(2.5 nm) has the highest peak current density in EOR. - Abstract: Fuel cells are promising alternative in automobile and stationary power generation. Direct ethanol fuel cells (DEFCs) offer significant advantages due to the non-toxicity and renewability of ethanol as well as its high power density. Development of the efficient catalysts for ethanol oxidation reaction (EOR) has attracted great attention and represents one of the major challenges in electrocatalysis. Graphene, one-atom thick nanocarbon materials, has attracted much attention recently in a variety of applications. The sulfonation of graphene is able to make it hydrophilic, which enhances its dispersibility in aqueous solvents. Furthermore, sulfonation increases the adsorption and uniform distribution of the Pt nanoparticles, which increases both the electrocatalytic activity and the durability. In this study, theoretical calculations demonstrated that the sulfonate functional group can donate charge to Pt, enhanced the adsorption energy of Pt, and then reduce the adsorption energy of CO on Pt. Then experimentally five kinds of Pt/sulfonated-graphene (Pt/sG) catalysts were synthesized via the control of pH values during the preparation of five-selected colloidal nanoparticles. Among all catalysts, Pt-sG(2.5 nm) has the highest peak current density in EOR

  16. Two-step sulfonation process for the conversion of polymer fibers to carbon fibers

    Science.gov (United States)

    Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.; Bernius, Mark T.

    2017-11-14

    Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.

  17. On the Importance of Purification of Sodium Polystyrene Sulfonate

    OpenAIRE

    Sen, Akhil K.; Roy, Sandip; Juvekar, Vinay A.

    2012-01-01

    Ion exchange is commonly employed for purification of sodium polystyrene sulfonate (NaPSS), a molecule widely used as a model polyelectrolyte. However, the present work demonstrates that the ion exchange process itself may introduce some extraneous species into NaPSS samples by two possible mechanisms: (i) chemical transformation of polystyrene sulfonic acid (HPSS), a relatively unstable intermediate formed during ion exchange and (ii) release of small amount of “condensed” acid from cationic...

  18. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  19. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene

    International Nuclear Information System (INIS)

    Kitaeva, N.K.; Duflot, V.R.; Ilicheva, N.S.

    2013-01-01

    Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FTIR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa). (author)

  20. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  1. Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Unveren, Elif Erdal; Erdogan, Tuba; Inan, Tulay Y. [Chemistry Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli (Turkey); Celebi, Serdar S. [Professor Emeritus, Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5-25 C. Sulfonated polymers were characterized by FTIR, {sup 1}H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 C with conc. H{sub 2}SO{sub 4} based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm{sup -1} which is higher than that of Nafion 117 (133.3 mS cm{sup -1}) measured at 80 C and relative humidity 100%. (author)

  2. Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Masoud

    2010-07-01

    Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has been fully studied and used for polymer flooding processes in several oil field, e.g. Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) may be a good choice for high temperature condition with no oxygen and no divalent ions presence. At high temperature and high salinity conditions, polymer may precipitates and loss their viscosyfing properties. Also adsorption and retention of polymer in porous medium may change rheological properties of polymers. Thus, the viscosyfing property of polymers is influenced by several important parameters, e.g. salinity, hardness, temperature, adsorption, retention, polymer structure, and etc. By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of high salinity/hardness and temperature seems to be reduced specially for the samples with higher percentage of AMPS co-monomer. The ultimate aim of this work is to develop an understanding of the sulfonated polyacrylamide copolymers with a range of different sulfonation and molecular weight at high salinity and high temperature conditions. Most of the work in this thesis deals with viscosity and adsorption/retention measurements of the sulfonated copolymers and HPAM. The factors which may affect the viscosity of the polymers and have been identified in this work as most likely influencing also adsorption and retention of the polymers are shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl concentration, divalent ion concentration, and temperature. (Author)

  3. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  4. Problem Definition Studies on Potential Environmental Pollutants. 4. Physical, Chemical, Toxicological, and Biological Properties of Benzene; Toluene; Xylenes; and para-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone

    Science.gov (United States)

    1976-06-01

    microorganisms. The presence of nitro, amino or sulfonic acid groups or halogens on the ring will almost always render benzene and related compounds...benzoquinone --- muconic acid Their later experiments with tea and grape leaf homogenates support this * conclusion. 12 2 Tkhelidze 1 2 3 showed that grape ...of such chemicals as phenol, aniline, cumene, adipic acid , diphenyl, and ethyl- * benzene, each of which is a starting material for other products

  5. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    Science.gov (United States)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  6. Functionalized carbon nanofibers as solid acid catalysts for transesterification

    NARCIS (Netherlands)

    Stellwagen, D.R.; van der Klis, Frits; van Es, D.S.; de Jong, K.P.; Bitter, J.H.

    2013-01-01

    Carbon nanofibers (CNFs) were functionalized with aryl sulfonic acid groups using in situ diazonium coupling. The use of diazonium coupling yielded an acidic carbon material, in which the introduced acidic groups are readily accessible to the triglyceride substrate. The material is an efficient

  7. Functionalized carbon nanofibers as solid-acid catalysts for transesterification

    NARCIS (Netherlands)

    Stellwagen, D.R.; Klis, van der F.; Es, van D.S.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Carbon nanofibers (CNFs) were functionalized with aryl sulfonic acid groups using in situ diazonium coupling. The use of diazonium coupling yielded an acidic carbon material, in which the introduced acidic groups are readily accessible to the triglyceride substrate. The material is an efficient

  8. Preparation of Water-Soluble Homo and Copolymers of Bithiophene with 3,4-Ethylene Dioxythiophene and 3-Dodecylthiophene in Presence of Polystyrene Sulfonic Acid: Structure, Morphology, Thermal Stability

    Directory of Open Access Journals (Sweden)

    Bakhshali Massoumi

    2015-04-01

    Full Text Available Conductive polymers based on water-soluble polythiophenes were prepared. In this respect, alkylation reaction was carried out to synthesize the monomer 3-dodecylthiophene using 3-bromothiophene, bromododecane and magnesium. The monomer 2,2′-bithiophene was also prepared from 2-bromothiophene. Then, poly(2,2′-bithiophene, poly(3,4-ethylenedioxythiophene and poly(3-dodecylthiophene homopolymers were prepared at room temperature by successive chemical oxidation in the presence of polystyrene sulfonic acid and ammonium persulfate and water, as dopant, oxidant and solvent, respectively, under vigorous stirring. Under similar conditions, 2,2′-bithiophene copolymers with 3-dodecylthiophene and 3,4-ethylenedioxythiophene, copolymers with 3-dodecylthiophene were prepared at different molar ratios. To purify and dry the prepared polymers, dialysis tubs and freezing dry processes were applied. Structure of homo and copolymers were investigated by Fourier transform infrared (FTIR. Conjugated and planar structures of polymers were studied by Ultravoilet (UV-vis spectroscopy. The electrical conductivity of synthesized polymers was measured by four probe technique. The morphology and thermal stability of the products were studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. Finally, solubility of homo and copolymers were tested in some organic solvents and water. Electro- activity of the prepared polymers was studied by cyclic voltammetry (CV on the glassy carbon (GC in LiClO4/CH3CN electrolyte solution and their electro-activity was confirmed. Electro-conductivity and electro-activity of homo and co polymers were low due topresence of polystyrene sulfonic acid which reduced the immobility of the polymers.

  9. Electrochemical detection of dopamine using water-soluble sulfonated graphene

    International Nuclear Information System (INIS)

    Li, Su-Juan; He, Jun-Zhi; Zhang, Meng-Jie; Zhang, Rong-Xia; Lv, Xia-Lei; Li, Shao-Hua; Pang, Huan

    2013-01-01

    Graphical abstract: DPV responses of dopamine (DA) at sulfonated graphene based glassy carbon electrode in the presence of ascorbic acid (AA) and uric acid (UA). The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. -- Abstract: In the present study, a biosensor was prepared using the water-soluble sulfonated graphene with the aim of achieving the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA). The aromatic π–π stacking and electrostatic attraction between positively charged DA and negatively charged sulfonated graphene can accelerate the electron transfer whereas weakening AA and UA oxidation on the sulfonated graphene-modified electrode. Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the successful synthesis of sulfonated graphene sheets. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. A broad linear range, low detection limit, along with good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA) were obtained. The as-prepared sulfonated graphene sheets exhibited superior performance over conventional negatively charged Nafion films, such as flexible film thickness, unique nanostructure, excellent anti-interference ability, high sensitivity and selectivity. The proposed method was used to detect DA in real hydrochloride injection sample, human urine and serum samples with satisfactory recovery results

  10. Evaluation of sulfonated carbon as catalyst in reactive distillation

    International Nuclear Information System (INIS)

    Orjuela, Alvaro; Civetta, Nicolas; Rivera, Jairo; Boyaca, Alejandro; Diaz, Jesus

    2004-01-01

    A packed bed using sulfonated coal catalytic pellets was prepared using a Colombian anthracitic coal. Such pellets were introduced in a semi batch distillation column to which acetic acid and ethanol were fed in order to determine experimentally the feasibility of obtaining ethyl acetate by reactive distillation operation. The carbonaceous catalytic packing was characterized by total exchange capacity, potentiometric titration and BET area. Experimental tests were carried out using three acid/alcohol ratios. Results of such process are shown by reaction conversion and concentration in distillate and bottom products. The sulfonated coal showed catalytic activity in this esterification reaction, with conversions between 29-45%

  11. Controlled sulfonation of poly(ether sulfone using phthalic anhydride as catalyst and its membrane performance for fuel cell application

    Directory of Open Access Journals (Sweden)

    Seikh Jiyaur Rahaman

    2016-09-01

    Full Text Available Proton exchange membrane (PEM fuel cells are one of the most emerging alternative energy technologies under development. A novel proton exchange membrane sulfonated polyethersulfone (SPES was developed by homogeneous method using phthalic anhydride as catalyst and chlorosulfonic acid as sulfonating agent to control the sulfonation reaction. The method of sulfonation was optimized by varying the reaction time and concentration of the catalyst. The structure of the SPES was studied by 1H-Nuclear Magnetic Resonance, Fourier Transform Infra Red Spectroscopy and X-ray diffraction. The extent of sulfonation was determined by ion exchange capacity studies. The thermal and mechanical stabilities were studied using thermogravimetric analysis (TGA and Dynamic Mechanical Analysis (DMA respectively. DMA results show that the storage modulus increased with increase in degree of sulfonation (DS and water uptake of SPES increased with DS. The proton conductivity of SPES (34% DS measured by impedance spectroscopy was found to be 0.03S/cm at 80%RH and 100°C. Also, current-voltage polarization characteristics of SPES membranes offer a favourable alternative PEM due to the thermal stability and cost effective than perfluorinated ionomers.

  12. Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; He, Meinan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Redfern, Paul [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Curtiss, Larry A. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Liao, Chen [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Burrell, Anthony K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Zhengcheng [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA

    2016-02-16

    Organic sulfone compounds have been widely used as high-voltage electrolytes for lithium-ion batteries for decades. However, owing to the complexity of the synthesis of new sulfones, only a few commercially available sulfones have been studied. In this paper, we report the synthesis of new sulfone compounds with various substituent groups and the impact of the substituent group on the oxidation stability of sulfones. Electrochemical floating tests using a 5 V LiNi0.5Mn1.5O4 spinel cathode and density functional theory calculations showed that the cyclopentyl-substituted sulfone McPS suffered from oxidation instability, starting from 4.9 V versus Li+/Li, as observed by the large leakage currents. On the other hand, the isopropyl-substituted sulfone MiPS and tetramethylene substituted sulfone TMS showed much improved oxidation stability under identical testing conditions. The substitution structure of the sulfone plays a significant role in the determination of its oxidative stability and should first be considered for the development of new sulfone-based electrolytes for high-voltage, high-energy lithium-ion batteries.

  13. Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-04-01

    Full Text Available Sulfonic organosilica nanotubes with different acidity densities could be synthesized through the co-condensation of ethenyl- or phenylene-bridged organosilane and 3-mercaptopropyltrimethoxysilane followed by sulfhydryl (–SH oxidation. Transmission electron microscopy (TEM analysis and nitrogen adsorption-desorption experiment clearly exhibit the hollow nanotube structures with the diameters of about 5 nm. The compositions of the nanotube frameworks are confirmed by solid state 13C nuclear magnetic resonance (NMR while X-ray photoelectron spectroscopy (XPS shows that about 60–80% of SH groups were oxidized to sulfonic acid (SO3H. The acid contents were measured by both elemental analysis (CHNS mode and acid-base titration experiment, which revealed that the acid density was in the range of 0.74 to 4.37 μmol·m−2 on the solid. These nanotube-based acid catalysts exhibited excellent performances in the hydrolysis of cellobiose with the highest conversion of 92% and glucose selectivity of 96%. In addition, the catalysts could maintain high activity (65% conversion with 92% selectivity even after six recycles.

  14. Trimesic acid dimethyl sulfoxide solvate: space group revision

    Directory of Open Access Journals (Sweden)

    Sylvain Bernès

    2008-07-01

    Full Text Available The structure of the title solvate, C9H6O6·C2H6OS, was determined 30 years ago [Herbstein, Kapon & Wasserman (1978. Acta Cryst. B34, 1613–1617], with data collected at room temperature, and refined in the space group P21. The present redetermination, based on high-resolution diffraction data, shows that the actual space group is more likely to be P21/m. The crystal structure contains layers of trimesic acid molecules lying on mirror planes. A mirror plane also passes through the S and O atoms of the solvent molecule. The molecules in each layer are interconnected through strong O—H...O hydrogen bonds, forming a two-dimensional supramolecular network within each layer. The donor groups are the hydroxyls of the trimesic acid molecules, while the acceptors are the carbonyl or the sulfoxide O atoms.

  15. The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Nikouei, Mohammad Ali; Oroujzadeh, Maryam; Mehdipour-Ataei, Shahram

    2017-01-01

    Proton exchange membrane as the heart of fuel cell has been the topic of many research activities in recent years. Finding a suitable alternative for Nafion membranes is one of the most important issues of interest. This study is dedicated to sulfonated poly(ether ketone) and poly(ether sulfone) membranes. For synthesis of these two groups of polymers, two different isomeric biphenols (meta- and para-) were used and each group of membranes with three different degree of sulfonation (25, 35, and 45%) was synthesized. In this way, twelve different membrane samples were obtained and their properties were evaluated. Since each membrane had some strong and some weak points of properties in comparison to the other ones, using a rational analysis for choosing the best membrane between prepared samples was inevitable. For this purpose a PROMETHEE based multiple criteria decision making approach was applied and for evaluation of the weight of each criterion, Shannon entropy method was used. Final results showed that poly(ether ketone) membranes in selected criteria were better than poly(ether sulfone) membranes and as expected, membranes with the highest degree of sulfonation (45%) were placed at the top ranking levels. - Highlights: • Sulfonated poly(ether ketone)s and Poly(ether sulfone)s were synthesized. • Related membranes for PEMFC were prepared. • The properties of membranes were measured. • Multiple criteria decision making approach was used to ranking the membranes. • PROMETHEE based approach selected poly(ether ketone)s as better choices.

  16. Colitis induced by sodium polystyrene sulfonate in sorbitol: A report of six cases.

    Science.gov (United States)

    Jacob, Sheba S K; Parameswaran, Ashok; Parameswaran, Sarojini Ashok; Dhus, Ubal

    2016-03-01

    Drug-related injury has been noted in virtually all organ systems, and recognition of the patterns of injury associated with medication enables modification of treatment and reduces the morbidity associated with the side effects of drugs. With the large number of new drugs being developed, documentation of the morphology of the changes seen as an adverse effect becomes important to characterize the pattern of injury. The pathologist is often the first to identify these abnormalities and correlate them with a particular drug. Kayexalate or sodium polystyrene sulfonate (SPS), a linear polymer derived from polystyrene containing sulfonic acid and sulfonate functional groups is used to treat hyperkalemia. It is usually administered with an osmotic laxative sorbitol orally or as retention enema. This combination has been implicated in causing damage to different parts of the gastrointestinal (GI) tract especially the colon and causes an established pattern of injury, recognizable by the presence of characteristic crystals, is presented to create a greater awareness of the Kayexalate colitis. This entity should be included in the differential diagnosis of lower GI mucosal injury in a setting of uremia and hyperkalemia.

  17. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar.

    Science.gov (United States)

    Cao, Leichang; Yu, Iris K M; Chen, Season S; Tsang, Daniel C W; Wang, Lei; Xiong, Xinni; Zhang, Shicheng; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol; Poon, Chi Sun

    2018-03-01

    Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO 3 H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preparation and study of novel poly(sulfone-ester-amide)s

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, M. [Institute of Macromolecular Chemistry, Isai (Romania)], Mercer, F. [Raychem Corporation, Menlo Park, CA (United States); Gronewald, S. [Southwest Texas State Univ., San Marcos, TX (United States)] [and others

    1995-12-31

    A series of novel poly(ester-amide)s containing sulfone groups in the main chain have been prepared and compared with related polymers which do not have sulfone bridges. Incorporation of sulfone moieties into the polymer backbone improved the solubility of these polymers without significant loss of their high thermal stability, and provided a large {open_quotes}window{close_quotes} between T{sub g} and decomposition temperature. Solutions of poly(sulfone-ester-amide)s in NMP have been cast into flexible films, having low dielectric constant. The synthesis and characterization of these new polymers will be presented.

  19. Bio-esters formation in transesterification and esterification reactions on carbon and silica supported organo-sulfonic acids-polyaniline solid catalysts

    Czech Academy of Sciences Publication Activity Database

    Kalemba-Jaje, Z.; Drelinkiewicz, A.; Lalik, E.; Konyushenko, Elena; Stejskal, Jaroslav

    2014-01-01

    Roč. 135, 1 November (2014), s. 130-145 ISSN 0016-2361 Institutional support: RVO:61389013 Keywords : sufonic acids * transesterification * triacetin Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.520, year: 2014

  20. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    Science.gov (United States)

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    Science.gov (United States)

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  2. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    Science.gov (United States)

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  3. Sulfonated polyphenyl ether by electropolymerization

    International Nuclear Information System (INIS)

    Hou Hongying; Vacandio, Florence; Di Vona, Maria Luisa; Knauth, Philippe

    2012-01-01

    Highlights: ► Sulfonated polyphenyl ether was for the first time electropolymerized. ► This technique allows the economical preparation of ionomeric membranes for electrochemical energy technologies. ► The mechanism of electropolymerization was discussed in detail. - Abstract: Electropolymerization of sulfonated phenol was for the first time achieved and studied by cyclic voltammetry (CV) and chronoamperometry on stainless steel substrates. The obtained sulfonated polyphenyl ether was characterized in terms of impedance spectroscopy, nuclear magnetic resonance (NMR), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and Fourier-Transform Infrared (FTIR) spectroscopy. Dense films of micrometer thickness can be obtained; the proton conductivity is about 3 mS/cm at room temperature.

  4. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h{sup -1} from a {sup 60}Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  5. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2011-01-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h -1 from a 60 Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  6. Acid Stress Response Mechanisms of Group B Streptococci

    Directory of Open Access Journals (Sweden)

    Sarah Shabayek

    2017-09-01

    Full Text Available Group B streptococcus (GBS is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review

  7. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    Science.gov (United States)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  8. Opinion of the Scientific Panel on Contaminants in the Food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts

    NARCIS (Netherlands)

    Benford, D.; de Boer, J.; Carere, A.; di Domenico, A.; Johansson, N.; Schrenk, D.; Schoeters, G.; de Voogt, P.; Dellatte, E.

    2008-01-01

    Perfluoroalkylated substances (PFAS) is the collective name for a vast group of fluorinated compounds, including oligomers and polymers, which consist of neutral and anionic surface active compounds with high thermal, chemical and biological inertness. Perfluorinated compounds are generally

  9. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  10. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  11. Stopped-flow studies of changes in fluorescence of 8-anilino-1-naphthalene sulfonic acid caused by magnesium and salt binding to yeast enolase.

    Science.gov (United States)

    Brewer, J M

    1976-12-11

    Stopped-flow studies of magnesium and salt (potassium chloride and acetate) effects on yeast enolase were carried out by following 8-anilino-1-naphthalenesulfonic acid fluorescence changes. The fluorescence changes appear to be largely caused by subunit association and dissociation, though there is evidence in some reactions for large changes in fluorescence occurring within the dead time of the stopped-flow measurements. These data are combined with measurements of initial enzyme activity after incubation in various solvents with or without magnesium to obtain subunit association and dissociation rates. From these, it is concluded that magnesium and the salts act by directly changing the affinities of the subunits for each other, apparently by producing a rapid change in protein conformation.

  12. Investigation into chemism of multivalent element ions reactions with organic reagents. XXXII. Extractable indium complex with alizarin-3-sulfonic acid and diphenylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Biryuk, E A; Nazarenko, V A [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; AN Ukrainskoj SSR, Odessa. Inst. Obshchej i Neorganicheskoj Khimii)

    1975-09-01

    Spectrophotometric investigations have been made in to the interaction of indium with alizarin red S (alizarin-3-sulphonic acid) when extracting it with chloroform. The complex is extracted as an ion association with diphenylguanidine, in which the ratio In:Aliz:DPG = 1:3:3. The central ion In/sup 3 +/ substitutes three protons in three particles of the ligand. The structure of the complex being extracted is discussed. Molar absorbancy index of the complex in the chloroform extract (2.8x10/sup 4/) is twice as great as in the aqueous solution. The effect of the pH value on the formation of the indium complexes extracted is studied.

  13. Physical ageing and molecular mobilities of sulfonated polysulfone for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lixon Buquet, C. [LECAP EA 4528, Institute for Materials Research FED 4114, Universite de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); PBS Department, UMR 6270 CNRS, MPBM, FR 3038, Universite de Rouen, Boulevard Maurice de Broglie, 76821 Mont Saint Aignan Cedex (France); Hamonic, F.; Saiter, A. [LECAP EA 4528, Institute for Materials Research FED 4114, Universite de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Dargent, E., E-mail: eric.dargent@univ-rouen.fr [LECAP EA 4528, Institute for Materials Research FED 4114, Universite de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Langevin, D.; Nguyen, Q.T. [PBS Department, UMR 6270 CNRS, MPBM, FR 3038, Universite de Rouen, Boulevard Maurice de Broglie, 76821 Mont Saint Aignan Cedex (France)

    2010-09-20

    The thermal behaviour, the physical ageing and the amorphous phase dynamics of polysulfone (PSU) and sulfonated polysulfone (SPSU) are characterized by thermogravimetric analysis and temperature modulated differential scanning calorimetry. The sulfonic group introduction (the sulfonation degree is 70%) in the polymer implies a drastic decrease of the thermal decomposition temperature (220 and 517 {sup o}C for SPSU and PSU respectively) and a modification of calorimetric parameters (for SPSU, the heat capacity in the glassy state is lower and the glass transition temperature T{sub g} is higher than for PSU). In terms of molecular dynamics, the amorphous phase heterogeneities are greater and the cooperative rearranging region size at the glass transition temperature is smaller for SPSU than for PSU. Moreover, after a physical ageing process, the enthalpy recovery kinetic has slowed down by sulfonation. These results can be explained from the existence of sulfonic domains confining the amorphous phase domains.

  14. Aryl sulfonate based anticancer alkylating agents.

    Science.gov (United States)

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  15. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  16. Selective solid phase extraction and pre-concentration of heavy metals from seawater by physically and chemically immobilized 4-amino-3-hydroxy-2-(2-chlorobenzene)-azo-1-naphtalene sulfonic acid silica gel

    International Nuclear Information System (INIS)

    Mahmoud, M.E.; Soayed, A.A.; Hafez, O.F.

    2003-01-01

    4-Amino-3-hydroxy-2 - (2-chlorobenzene)-azo-l-naphthalene sulfonic acid (AHCANSA) was used as a chelating modifier to improve the reactivity of the silica gel surface in terms of selective binding and extraction of heavy metal ions. The surface cover-age values were found to be 0.488 and 0.473 mmol g -1 for the newly modified physically adsorbed silica gel phase (I) and chemically immobilized-AHCANSA phase (II), respectively. The modified silica gel phases (I, II) were tested for stability in different acidic buffer solutions (pH 1-6) and found to be highly resistant to hydrolysis and leaching by buffer solutions above pH 2. The application of these two phases as solid extractors for a series of mono-, di-, and tri-valent metal ions from aqueous solutions was also performed with different controlling factors such as the pH value of metal ion solutions and equilibrium shaking time. The mmol g -1 metal capacity values determined by silica gel phases (I, II) were found to confirm high affinity and selectivity characters for binding with heavy metal ions such as Cr 3+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ and Pb 2+ in a range of 0.250-0.483. The tested alkali and alkaline earth metals, Na + , K + , Mg 2+ and Ca 2+ , were found to exhibit little interaction and binding ability with the modified silica gel phases. The selectivity characters incorporated into the modified silica gel phases were further utilized and applied in solid phase extraction and pre-concentration of trace concentration levels (∼1.0 μg mL -1 and 2.00-2.50 ng mL -1 ) from real seawater samples. The percentage recovery values determined for Cr 3+ , Cu 2+ , Zn 2+ , Cd 2+ and Pb 2+ were found to be in the range of 95.2-98.1 ± 2.0-5.0 %, and the pre-concentration recovery values for the same tested heavy metal ions were found to be in the range of 92.5-97.1 ± 3.0-6.0 % for the two newly modified silica gel phases with a pre-concentration factor of 500. Refs. 25 (author)

  17. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s)

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Ryan M. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Sampaio, Renato N. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Li, Guocan [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Johansson, Patrik G. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Ward, Cassandra L. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Meyer, Gerald J. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

    2016-03-10

    Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [RuII(btfmb)2(LL)]2+, [RuII(dtb)2(LL)]2+, and [RuII(bpy)2(LL)]2+, where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa’s of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [RuIII(btfmb–)L2]2+* localized excited state and a [RuIII(dcb–)L2]2+* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s).

  18. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  19. Properties of polypyrrole doped with alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Skaarup, Steen; West, Keld

    2001-01-01

    -standing 10 mu m thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states...... are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p......-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate....

  20. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Science.gov (United States)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  1. DFT Study of Binding and Electron Transfer from a Metal-Free Dye with Carboxyl, Hydroxyl, and Sulfonic Anchors to a Titanium Dioxide Nanocluster

    Directory of Open Access Journals (Sweden)

    Corneliu I. Oprea

    2013-01-01

    Full Text Available We report results of density functional theory (DFT calculations of a metal-free dye, 5-(4-sulfophenylazosalicylic acid disodium salt, known as Mordant Yellow 10 (MY-10, used as sensitizer for TiO2 dye-sensitized solar cells (DSSCs. Given the need to better understand the behavior of the dyes adsorbed on the TiO2 nanoparticle, we studied various single and double deprotonated forms of the dye bound to a TiO2 cluster, taking advantage of the presence of the carboxyl, hydroxyl, and sulfonic groups as possible anchors. We discuss various binding configurations to the TiO2 substrate and the charge transfer from the pigment to the oxide by means of DFT calculations. In agreement with other reports, we find that the carboxyl group tends to bind in bidentate bridging configurations. The salicylate uses both the carboxyl and hydroxyl substituent groups for either a tridentate binding to adjacent Ti(IV ions or a bidentate Ti-O binding together with an O-H-O binding, due to the rotation of the carboxyl group out of the plane of the dye. The sulfonic group prefers a tridentate binding. We analyze the propensity for electron transfer of the various dyes and find that for MY-10, as a function of the anchor group, the DSSC performance decreases in the order hydroxyl + carboxyl > carboxyl > sulfonate.

  2. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response.

    Science.gov (United States)

    Liu, Wen; Guo, Wenjie; Guo, Lele; Gu, Yanhong; Cai, Peifen; Xie, Ning; Yang, Xiaoling; Shu, Yongqian; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2014-06-01

    Inflammatory bowel disease (IBD) is a chronic, relapsing and remitting condition of inflammation involves overproduction of pro-inflammatory cytokines and excessive functions of inflammatory cells. However, current treatments for IBD may have potential adverse effects including steroid dependence, infections and lymphoma. Therefore new therapies for the treatment of IBD are desperately needed. In the present study, we aimed to examine the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on murine experimental colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Andrographolide sulfonate was administrated through intraperitoneal injection to mice with TNBS-induced colitis. TNBS-induced body weight loss, myeloperoxidase activity, shortening of the colon and colonic inflammation were significantly ameliorated by andrographolide sulfonate. Both the mRNA and protein levels of pro-inflammatory cytokines were reduced by andrographolide sulfonate administration. Moreover, andrographolide sulfonate markedly suppressed the activation of p38 mitogen-activated protein kinase as well as p65 subunit of nuclear factor-κB (NF-κB). Furthermore, CD4(+) T cell infiltration as well as the differentiation of Th1 (CD4(+)IFN-γ(+)) and Th17 (CD4(+)IL17A(+)) subset were inhibited by andrographolide sulfonate. In summary, these results suggest that andrographolide sulfonate ameliorated TNBS-induced colitis in mice through inhibiting Th1/Th17 response. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell

    International Nuclear Information System (INIS)

    Das, Suparna; Kumar, Piyush; Dutta, Kingshuk; Kundu, Patit Paban

    2014-01-01

    Highlights: • Synthesis of sulfonated PVdF-co-HFP by reacting with chlorosulfonic acid. • Maximum degree of sulfonation and best properties were obtained for 7 h reaction. • A maximum water uptake value of 20% was obtained. • A maximum IEC value of 0.42 meq g −1 was obtained. • A methanol permeability of 2.44 × 10 −7 cm 2 s −1 was obtained. - Abstract: Sulfonation of PVdF-co-HFP was conducted by treating the copolymer with chlorosulfonic acid. The efficiency of this sulfonated copolymer towards application as a polymer electrolyte membrane in direct methanol fuel cell (DMFC) was evaluated. For this purpose, we determined the thermal stability, water uptake, ion exchange capacity (IEC), methanol crossover, and proton conductivity of the prepared membranes as functions of duration and degree of sulfonation. The characteristic aromatic peaks obtained in the FT-IR spectra confirmed the successful sulfonation of PVdF-co-HFP. The effect of sulfonation on the semi-crystalline nature of pure PVdF-co-HFP was determined from XRD analysis. Water uptake results indicated that a sulfonation time of 7 h produced maximum water uptake value of about 20%, with a corresponding IEC and proton conductivity values of about 0.42 meq g −1 and 0.00375 S cm −1 respectively. The maximum current density was recorded to be 30 mA cm −2 at 0.2 V potential

  4. Enhanced antifouling and antibacterial properties of poly (ether sulfone) membrane modified through blending with sulfonated poly (aryl ether sulfone) and copper nanoparticles

    Science.gov (United States)

    Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun

    2018-03-01

    A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.

  5. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

    Directory of Open Access Journals (Sweden)

    Jinfan Yang

    2018-01-01

    Full Text Available The aim of this study was to develop an effective carbonaceous solid acid for synthesizing green fuel additive through esterification of lignocellulose-derived levulinic acid (LA and n-butanol. Two different sulfonated carbons were prepared from glucose-derived amorphous carbon (GC400 and commercial active carbon (AC400. They were contrastively studied by a series of characterizations (N2 adsorption, X-ray diffraction, elemental analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and NH3 temperature programmed desorption. The results indicated that GC400 possessed stronger acidity and higher –SO3H density than AC400, and the amorphous structure qualified GC400 for good swelling capacity in the reaction solution. Assessment experiments showed that GC400 displayed remarkably higher catalytic efficiency than AC400 and other typical solid acids (HZSM-5, Hβ, Amberlyst-15 and Nafion-212 resin. Up to 90.5% conversion of LA and 100% selectivity of n-butyl levulinate could be obtained on GC400 under the optimal reaction conditions. The sulfonated carbon retained 92% of its original catalytic activity even after five cycles.

  6. Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.

    Science.gov (United States)

    Kwon, Hyuck Joon; Yasuda, Kazunori

    2013-01-01

    Many studies have demonstrated that sulfur-containing acidic groups induce chondrogenesis in vitro and in vivo. Recently, it is increasingly clear that mechanical properties of cell substrates largely influence cell differentiation. Thus, the present study investigated how mechanical properties of sulfonate-coated hydrogels influences chondrogenesis of mesenchymal stem cells (MSCs). Sulfonate-coated polyacrylamide gels (S-PAAm gels) which have the elastic modulus, E, of about 1, 15 and 150 kPa, were used in this study. MSCs cultured on the high stiffness S-PAAm gels (E=∼150 kPa) spread out with strong expression of stress fibers, while MSCs cultured on the low stiffness S-PAAm gels (E=∼1 kPa) had round shapes with less stress fibers but more cortical actins. Importantly, even in the absence of differentiation supplements, the lower stiffness S-PAAm gels led to the higher mRNA levels of chondrogenic markers such as Col2a1, Agc and Sox9 and the lower mRNA levels of an undifferentiation marker Sca1, indicating that the mechanical properties of S-PAAm gels strongly influence chondrogenesis. Blebbistatin which blocks myosin II-mediated mechanical sensing suppressed chondrogenesis induced by the low stiffness S-PAAm gels. The present study demonstrates that the soft S-PAAm gels effectively drive MSC chondrogenesis even in the absence of soluble differentiation factors and thus suggests that sulfonate-containing hydrogels with low stiffness could be a powerful tool for cartilage regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity

    Directory of Open Access Journals (Sweden)

    Krzysztof M. Borys

    2012-02-01

    Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

  8. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  9. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.

    Science.gov (United States)

    Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego

    2017-03-01

    Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.

  10. Distribution of 14 elements from two solutions simulating Hanford HLW Tank 102-SY (acid-dissolved sludge and acidified supernate) on four cation exchange resins and five anion exchange resins having different functional groups

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs

  11. Bioisosteric modifications of 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet O; Peters, Dan

    2004-01-01

    2-Arylureidobenzoic acids (AUBAs) have recently been presented as the first series of selective noncompetitive GluR5 antagonists. In this paper we have modified the acidic moiety of the AUBAs by introducing different acidic and neutral groups, and similarly, we have replaced the urea linker...... of the AUBAs with other structurally related linkers. Replacing the acid with neutral substituents led to inactive compounds in all instances, showing that an acidic moiety is necessary for activity. Replacing the carboxylic moiety in 2a with a sulfonic acid (5c) or a tetrazole ring (5d) improved the potency...

  12. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of β2-amino acids

    Science.gov (United States)

    Sibi, Mukund P.; Patil, Kalyani

    2006-01-01

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to β2-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized β2-amino acids in modest selectivity. PMID:16799704

  13. Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2006-02-20

    We have investigated the effect of nitrogen protecting groups in radical addition trapping experiments leading to beta(2)-amino acids. Of the three N-protecting groups examined, the phthalimido group was optimal with respect to both yields and enantioselectivity. Additionally, radical additions to more complex acrylates were also investigated, which provided access to functionalized beta(2)-amino acids in modest selectivity.

  14. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads

    Directory of Open Access Journals (Sweden)

    Igor Rocha

    2018-03-01

    Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  15. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    Science.gov (United States)

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  16. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  17. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  18. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  19. Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani [MNR Post Graduate College, Kukatpally, Hyderabad (India). Dept. of Chemistry]. E-mail: sarbani277@yahoo.com

    2008-07-01

    A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)

  20. Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates

    International Nuclear Information System (INIS)

    Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani

    2008-01-01

    A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)

  1. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    International Nuclear Information System (INIS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-01-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  2. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    Science.gov (United States)

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  3. Comparison of folic acid levels in schizophrenic patients and control groups

    Science.gov (United States)

    Arthy, C. C.; Amin, M. M.; Effendy, E.

    2018-03-01

    Folic acid deficiency is a risk factor for schizophrenia through epidemiology, biochemistry and gene-related studies. Compared with healthy people, schizophrenic patients may have high homocysteine plasma values and homocysteine or low levels of folic acid, which seems to correlate with extrapyramidal motor symptoms caused by neuroleptic therapy and with symptoms of schizophrenia. In this present study, we focus on the difference of folic acid level between schizophrenic patient and control group. The study sample consisted of schizophrenic patients and 14 people in the control group and performed blood sampling to obtain the results of folic acid levels. The folic acid level in both groups was within normal range, but the schizophrenic patient group had lower mean folic acid values of 5.00 ng/ml (sb 1.66), compared with the control group with mean folic acid values of 10.75 ng/ml (sb 4.33). there was the group of the control group had a higher value of folic acid than the schizophrenic group.

  4. Ultrasonic irradiation to modify the functionalized bionanocomposite in sulfonated polybenzimidazole membrane for fuel cells applications and antibacterial activity.

    Science.gov (United States)

    Esmaeilzade, Banafshe; Esmaielzadeh, Sheida; Ahmadizadegan, Hashem

    2018-04-01

    In this article the new proton exchange membranes were prepared from sulfonated polybenzimidazole (s-PBI) and various amounts of sulfonated titania/cellulose nanohybrids (titania/cellulose-SO 3 H) via ultrasonic waves. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. Ultrasonic irradiation has a very strong mixing and dispersion effect, much stronger than conventional stirring, which can improve the dispersion of titania/cellulose-SO 3 H nanoparticles in the polymer matrix. The strong -SO 3 H/-SO 3 H interaction between s-PBI chains and titania/cellulose-SO 3 H hybrids leads to ionic cross-linking in the membrane structure, which increases both the thermal stability and methanol resistance of the membranes. After acid doping with phosphoric acid, s-PBI/titania/cellulose-SO 3 H nanocomposite membranes exhibit depressions on methanol permeability and enhancements on proton conductivity comparing to the pristine s-PBI membrane. The chemical structure of the functionlized titania was characterized with FTIR, and energy-dispersive X-ray. Imidazole and sulfonated groups on the surface of modified nanoparticles forming linkages with s-PBI chains, improved the compatibility between s-PBI and nanoparticles, and enhanced the mechanical strength of the prepared nanocomposite membranes. From SEM and TEM analysis could explain the homogeneous dispersion of titania/cellulose-SO 3 H in nanocomposite membranes. Moreover, the membranes exhibited excellent antibacterial activities against S. aureus and E. coli. A. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode

    OpenAIRE

    Shahrokhian, Saeed; Saberi, Reyhaneh-Sadat

    2011-01-01

    A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enla...

  6. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    Science.gov (United States)

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  7. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  8. Thermochemical Properties of Group IVB and VB Transition Metal Alloys with Platinum Group Metals: Acid - Stabilization.

    Science.gov (United States)

    Cima, Michael John

    Solid-state galvanic cell measurements and oxide equilibration experiments are used to derive thermochemical quantities for a variety of acid-base stabilized alloys such as Nb-Pd, Nb-Rh, Ti-Pd, and Ti-Rh. The experiments have effectively resulted in the titration of palladium by niobium metal. The excess partial molar Gibbs energy of niobium at infinite dilution was determined to be -62 kcal/mole at 1000^circ C and the Gibbs energy of formation of {rm NbPd}_{3.55} is -42 kcal/mole. These results and those for the other systems are used to assess the importance of crystal field effects in the context of the generalized Lewis acid-base theory.

  9. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2013-01-01

    Full Text Available A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported.ResultsReactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 muM.DiscussionThe compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  10. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ziarani Ghodsi Mohammadi

    2013-01-01

    Full Text Available Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM. Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  11. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Nordiana; Ali, Ab Malik Marwan [Ionic Material and Devices Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Lepit, Ajis; Rasmidi, Rosfayanti [Faculty of Applied Sciences, Universiti Teknologi MARA Sabah, Beg Berkunci 71, 88997 Kota Kinabalu (Malaysia); Subban, Ri Hanum Yahaya [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur (Malaysia)

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  12. Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Saeed Shahrokhian

    2011-01-01

    Full Text Available A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE was used for the determination of acetaminophen (AC in the presence of codeine and ascorbic acid (AA. In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enlarged microscopic surface area of the electrode. The effect of the experimental conditions on the electrode response, such as types of counter ion, pyrrole and counter ion concentration, potential and number of cycles in the polymerization procedure, amount of MWCNT, and the pH, were investigated. Under the optimized conditions, the calibration curve was obtained over two concentration ranges of 2 × 10−7–6 × 10−6 M and 4 × 10−5–1 × 10−4 M of AC with a linear correlation coefficient (R2 of 0.9959 and 0.9947, respectively. The estimated detection limit (3σ for AC was obtained as 5 × 10−8 M. The developed method was successfully applied to analyze the pharmaceutical preparations of AC, and a recovery of 95% with a relative standard deviation of 0.98% was obtained for AC.

  13. Sulfonate-grafted porous polymer networks for preferential CO(2) adsorption at low pressure

    NARCIS (Netherlands)

    Lu, W.; Yuan, D.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H.-C.

    2011-01-01

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO3H) and its lithium salt (PPN-6-SO3Li) exhibit significant increases in isosteric heats of CO2 adsorption and CO2-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO2/N2 ratio at 295 K and 1 bar

  14. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    Science.gov (United States)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.; Lachgar, Abdessadek; Li, Yunchao; Naskar, Amit K.; Paranthaman, Mariappan Parans

    2018-02-06

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  15. The radiation chemistry of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate

    International Nuclear Information System (INIS)

    Burchill, C.E.; Smith, D.M.; Charlton, J.L.

    1976-01-01

    The 60 Co γ-radiolysis of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate has been studied in acidic, unbuffered, and alkaline conditions and with addition of N 2 O and 2-propanol. Mechanisms are proposed to account for the yields of H 2 O 2 and hydroxylated anthraquinone sulfonates. In neutral solution, in the absence of O 2 , the OH and e - adducts undergo preferential cross termination. Reduction of the OH adduct leads to dehydration and regeneration of the quinone. (author)

  16. A route for oxygen isotope enrichment of α-COOH groups in amino acids

    International Nuclear Information System (INIS)

    Steinschneidner, A.; St Armour, T.; Valentine, B.; Burgar, M.I.; Fiat, D.

    1981-01-01

    Oxygen-17 was introduced into leucine, proline, phenylalanine and tyrosine. The corresponding tert-butyloxycarbonyl amino acids were first converted to their O-methyl esters. Following saponification with Na 17 OH, the tert-butyloxycarbonyl group was removed to yield free amino acid enriched with oxygen-17 by approximately 1000-fold. Oxygen-17 NMR revealed well-resolved peaks for the labelled amino acids. The chemical shifts are reported. (author)

  17. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  18. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  19. Functional groups and reactivity of size-fractionated Aldrich humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Tadao, E-mail: tanaka.tadao26@jaea.go.jp [Nuclear Safety Research Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai, Naka, Ibaraki, 319-1195 (Japan)

    2012-03-20

    The complexation affinity of the Aldrich Chemicals humic acid with {sup 60}Co was examined with respect to molecular size of humic acid. Correlations between the affinity and the structures of humic acid were studied. At low humic acid concentration range, {sup 60}Co was interacted with the humic acid of size fraction over 100k Da (HA(100<)). With increasing humic acid concentration, the {sup 60}Co was preferentially interacted with the 30k-100k Da of humic acid (HA(30-100)). Fractionated HA(100<) and HA(30-100) were characterized from their FTIR (Fourier Transform Infra-Red), {sup 13}C NMR spectral analyses and acid-base titration curves. The HA(10<) having aliphatic branched structure, smaller amount of COOH group and large proton exchangeable capacity, seem to show low covalent bonding nature and high ion exchangeability in the complexation. In addition, steric hindrance may affect on the complexation, by winding up like random coils from the branched structure. The HA(30-100) is dominated with the aromatic COOH group and OH group and it may preferentially coordinate to {sup 60}Co by covalent binding. These presumptions were supported by XPS analysis, in which the biding energy of cobalt-humates was discussed.

  20. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  1. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    Science.gov (United States)

    Jiang, Yijun; Li, Xiutao; Cao, Quan; Mu, Xindong

    2011-02-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that -SO3H, -COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  2. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    International Nuclear Information System (INIS)

    Jiang Yijun; Li Xiutao; Cao Quan; Mu Xindong

    2011-01-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that –SO 3 H, –COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  3. Synthesis and characterization of sulfonated bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Gi; Seo, Dong-Wan; Lim, Young-Don; Jin, Hyun-Mi; Islam Mollah, M.S. [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of); Ur, Soon-Chul [Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk 380-702 (Korea, Republic of); Pyun, Sang-Yong [Department of Chemistry, Pukyong National University, Pusan 608-737 (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of)

    2010-01-25

    Novel polymer electrolyte membranes containing the sulfonic acid groups attached on polymer backbone and side group simultaneously were synthesized. The bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer (BrcoPPO) was prepared by oxidative coupling polymerization with 2,6-dimethyl phenol, 2,6-diphenyl phenol, CuCl(I) and pyridine, and followed by bromination with bromine. Copolymer was maintained in 2,6-diphenyl phenol 10 mol% and 2,6-dimethyl phenol 90 mol%. Sulfonation of BrcoPPO (S-BrcoPPO) was carried out in a chlorobenzene solvent using chlorosulfonic acid. The polymeric membranes were cast from dimethylsulfoxide solution. The membranes were studied by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. S-BrcoPPO membranes exhibited proton conductivities from 2.3 x 10{sup -3} to 1.4 x 10{sup -2} S/cm, water uptake from 7.00 to 49.43%, IEC from 0.58 to 1.38 mequiv./g, methanol permeability from 1.9 x 10{sup -7} to 3.5 x 10{sup -7} cm{sup 2}/S.

  4. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    Science.gov (United States)

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  6. Solving nucleic acid structures by molecular replacement: examples from group II intron studies

    International Nuclear Information System (INIS)

    Marcia, Marco; Humphris-Narayanan, Elisabeth; Keating, Kevin S.; Somarowthu, Srinivas; Rajashankar, Kanagalaghatta; Pyle, Anna Marie

    2013-01-01

    Strategies for phasing nucleic acid structures by molecular replacement, using both experimental and de novo designed models, are discussed. Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts

  7. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    Science.gov (United States)

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-08

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Estimation of Physical Properties of Amino Acids by Group-Contribution Method

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Liang, Xiaodong; Gani, Rafiqul

    2018-01-01

    In this paper, we present group-contribution (GC) based property models for estimation of physical properties of amino acids using their molecular structural information. The physical properties modelled in this work are normal melting point (Tm), aqueous solubility (Ws), and octanol....../water partition coefficient (Kow) of amino acids. The developed GC-models are based on the published GC-method by Marrero and Gani (J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183-184, 183-208) with inclusion of new structural parameters (groups and molecular weight of compounds). The main objective...... of introducing these new structural parameters in the GC-model is to provide additional structural information for amino acids having large and complex structures and thereby improve predictions of physical properties of amino acids. The group-contribution values were calculated by regression analysis using...

  9. Dehydration of D-xylose to furfural using acid-functionalized MWCNTs catalysts

    Science.gov (United States)

    Termvidchakorn, Chompoopitch; Itthibenchapong, Vorranutch; Songtawee, Siripit; Chamnankid, Busaya; Namuangruk, Supawadee; Faungnawakij, Kajornsak; Charinpanitkul, Tawatchai; Khunchit, Radchadaporn; Hansupaluk, Nanthiya; Sano, Noriaki; Hinode, Hirofumi

    2017-09-01

    Acid-functionalized multi-wall carbon nanotubes (MWCNTs) catalysts were prepared by a wet chemical sonication with various acid solutions, i.e. H2SO4, H3PO4, HNO3, and HCl. Sulfonic groups and carboxyl groups were detected on MWCNTs with H2SO4 treatment (s-MWCNTs), while only carboxyl groups were presented from other acid treatments. The catalytic dehydration of D-xylose into furfural was evaluated using a batch reactor at 170 °C for 3 h under N2 pressure of 15 bar. The highest furfural selectivity was achieved around 57% by s-MWCNTs catalyst, suggesting a positive role of the sulfonic functionalized groups. The effect of Co species was related to their Lewis acid property resulting in the enhancement of xylose conversion with low selectivity to furfural product. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  10. Synthesis and characterization of sulfonated polymers for ionomeric membranes based on styrene copolymers; Sintese e caracterizacao de precursores sulfonados para membranas polimericas a base de copolimeros estirenicos

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.M.; Forte, M.M.C.; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Lab. de Materiais Polimericos (LAPOL)], e-mail: crismbecker@yahoo.com.br, e-mail: mmcforte@ufrgs.br, e-mail: amico@ufrgs.br; Vargas, J.V.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], e-mail: jvargas@demec.ufpr.br

    2006-07-01

    Polymer electrolyte membrane fuel cell (PEMFC) have emerged strongly as a viable alternative for power source owing to their high energy efficiency and environmental friendliness. Currently, Nafion is the most frequently used membrane even though it has a high cost. The objective of this work is to synthesize sulfonated polymers, based on styrene copolymers, with different sulfonation degrees as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the resulting polymers were characterized by Fourier Transform Infra-red (FTIR), thermogravimetric analysis (TGA) and degree of substitution or sulfonation (DS). The polyelectrolytes were evaluated regarding their ion exchange capacity (IEC) and conductivity. The results demonstrated that increasing the sulfonic acid content of the polymer results in higher IEC, conductivity and water uptake. (author)

  11. Amino Acid Profile, Group of Functional and Molecular Weight Distribution of Goat Skin Gelatin That Produced Through Acid Process

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Said

    2012-02-01

    Full Text Available Gelatin is a product of hydrolysis of collagen protein from animals that are partially processed.  Gelatin used in food and non food industries.  Gelatin is produced when many import of raw skins and bones of pigs and cows.  Goat skins potential as a raw material substitution that still doubt its halal. Process production of gelatin determine the properties of gelatin. The objectives of this research were to determine amino acid profile, group of functional and molecular weight distribution of gelatin made from goat skins which was produced through a process of acid. The skin of male Bligon goat, 1.5 to 2.5 year old was used as raw materials. Process production of gelatin was using acid type acetic acid (CH3COOH 0.5 M (v/v as curing material. The experimental design applied in this study and commercial gelatin was used as control. The results showed that gelatin produced from goat skin through the process of acid had properties identical with commercial gelatin. It can be concluded that the gelatin has the potential substitute product of commercial gelatin. Keywords: collagen, gelatin, goat skin, curing, acid process

  12. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.

    Science.gov (United States)

    Hazarika, Mousumi; Arunbabu, Dhamodaran; Jana, Tushar

    2010-11-15

    We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells.

    Science.gov (United States)

    Mendil-Jakani, H; Zamanillo Lopez, I; Legrand, P M; Mareau, V H; Gonon, L

    2014-06-21

    The structure of a commercial sulfonated poly(ether ether ketone) (sPEEK) membrane was analyzed by Small-Angle X-Ray Scattering (SAXS) for different water uptakes obtained after immersion in liquid water at various temperatures. For low membrane swelling, the SAXS profile displays only a wide-angle peak in the 0.2-0.3 Å(-1) region. As the membrane swells, two supplementary correlation peaks arise and shift towards small angles, which are the signature of a structural evolution of the membrane, whereas the wide angle peak remains stable. The SAXS spectra of sPEEK membranes can thus display three correlation peaks simultaneously. Therefore we propose a new interpretation of these SAXS spectra which conclude that the two small angle peaks are attributed to the so-called matrix and ionomer peaks and the wide-angle peak is ascribed to the mean separation distance between sulfonic acid groups grafted onto the polymer backbone. This peak attribution implies that the sPEEK nano-phase separation is triggered by an immersion in hot water (ionomer peak apparition). Our new peak attribution was confirmed by studying the impact of temperature, electron density contrast and ionic exchange capacity.

  14. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products.

    Science.gov (United States)

    Ruiz-Palomero, Celia; Soriano, M Laura; Valcárcel, Miguel

    2016-01-08

    This paper reports a simple approach to Analytical Nanoscience and Nanotechnology (AN&N) that integrates the nanotool, sulfonated nanocellulose (s-NC), and nanoanalyte, silver nanoparticles (AgNPs), in the same analytical process by using an efficient, environmentally friendly dispersive micro solid-phase extraction (D-μSPE) capillary electrophoresis (CE) method with s-NC as sorbent material. Introducing negatively charged sulfate groups onto the surface of cellulose enhances its surface chemistry and enables the extraction and preconcentration of AgNPs of variable diameter (10, 20 and 60nm) and shell composition (citrate and polyvinylpyrrolidone coatings) from complex matrices into a cationic surfactant. In this way, AgNPs of diverse nature were successfully extracted onto the s-NC sorbent and then desorbed into an aqueous solution containing thiotic acid (TA) prior to CE without the need for any labor-intensive cleanup. The ensuing eco-friendly D-μSPE method exhibited a linear response to AgNPs with a limit of detection (LOD) of 20μg/L. Its ability to specifically recognize AgNPs of different sizes was checked in orange juice and mussels, which afforded recoveries of 70.9-108.4%. The repeatability of the method at the limit of quantitation (LOQ) level was 5.6%. Based on the results, sulfonated nanocellulose provides an efficient, cost-effective analytical nanotool for the extraction of AgNPs from food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  16. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  17. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  18. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  19. Perfluorooctane sulfonate (PFOS) depletion in beef cattle

    Science.gov (United States)

    Perfluorooctane sulfonate (PFOS) is an industrial chemical that is used as a surfactant in several manufactured consumer products but is also a breakdown product from other chemical surfactants. As a result of its extensive use, PFOS is ubiquitous in the environment and is often detected in biosoli...

  20. Toxicity of pyrolysis gases from polyether sulfone

    Science.gov (United States)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  1. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  2. An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host

    International Nuclear Information System (INIS)

    Hendy, Gillian M.; Breslin, Carmel B.

    2012-01-01

    Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.

  3. Membranes of polyindene sulfonated and PVA for use as polymer electrolyte; Membranas mistas de poli(indeno) sulfonado e PVA para uso como eletrolito polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Loser, N.; Silva, B.B.R. da; Brum, F.J.B.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul - Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    This study is focused on developing polymer poly electrolytes for fuel cell PEM and aims to evaluate the efficiency of sulfonated polyindene as A polymer electrolyte in blends with poly (vinyl alcohol) (PVA). For this, polyindene synthesized in the lab was functionalized with sulfonic groups (-SO{sub 3}H), using as sulfonation agent acetyl sulfate in 1,2-dichloroethane. The membranes of sulfonated polyindene (SPInd) and PVA were prepared in aqueous medium, using glutaraldehyde as a PVA cross linker. The membranes SPInd/PVA were evaluated on the content of sulfonic groups, ion exchange capacity (IEC), degree of swelling in water and thermal stability (TGA). Electrochemical impedance analysis was used for ionic conductivity evaluation and DMA for the mechanical strength of the membranes. Preliminary results show that the membranes showed ion exchange capacity about 3.2 m equiv/g and degree of swelling in water of 550%. (author)

  4. Prediction of acid dissociation constants of organic compounds using group contribution methods

    DEFF Research Database (Denmark)

    Zhou, Teng; Jhamb, Spardha; Liang, Xiaodong

    2018-01-01

    data-points with average absolute error of 0.23; (b) a non-linear GC model for organic compounds using 1622 data-points with average absolute error of 1.18; (c) an artificial neural network (ANN) based GC model for the organic compounds with average absolute error of 0.17. For each of the developed......In this paper, group contribution (GC) property models for the estimation of acid dissociation constants (Ka) of organic compounds are presented. Three GC models are developed to predict the negative logarithm of the acid dissociation constant pKa: (a) a linear GC model for amino acids using 180...

  5. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  6. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong, E-mail: yj@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2017-02-15

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  7. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    International Nuclear Information System (INIS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-01-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  8. Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder.

    Science.gov (United States)

    Carosia, Mariana Fronja; Okada, Dagoberto Yukio; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2014-09-01

    The aim of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) in an anaerobic fluidized bed reactor (AFBR) treating wastewater containing soap powder as LAS source. At Stage I, the AFBR was fed with a synthetic substrate containing yeast extract and ethanol as carbon sources, and without LAS; at Stage II, soap powder was added to this synthetic substrate obtaining an LAS concentration of 14 ± 3 mg L(-1). The compounds of soap powder probably inhibited some groups of microorganisms, increasing the concentration of volatile fatty acids (VFA) from 91 to 143 mg HAc L(-1). Consequently, the LAS removal rate was 48 ± 10% after the 156 days of operation. By sequencing, 16S rRNA clones belonging to the phyla Proteobacteria and Synergistetes were identified in the samples taken at the end of the experiment, with a remarkable presence of Dechloromonas sp. and Geobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The Usefulness of Contact Angle in Following the Ionization of Surface Functionality

    Science.gov (United States)

    1985-08-01

    additional check, we converted granular PE-CO 2H to granular PE-CO 2CH3 by acid -catalyzed esterification. This material had no titrable groups. Upon...Task No. NR-631-840 TECHNICAL REPORT NO. 85-1 Acid -Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The...34I Acid -Base Behavior K-142 ofCarboxylicAcidGroupsAttached...______________________ 12. PERSIIMAL AUTHOR IS) S.R. Holmes-Farly., R.H. Reamey, T.J

  10. Investigation of ion exchangers with groups of aminoethylphosphonium acids and their derivatives

    International Nuclear Information System (INIS)

    Lejkin, Yu.A.; Ratajchak, V.; Korshak, V.V.

    1977-01-01

    Acid-base equilibrium has been investigated on polymeric chelate compounds with groups of aminoethylphosphonium acids, AEP-3, their monoesters, AEP-2 and diesters, AEP-1. Values of the acid-base equilibrium constants of the chelate compounds have been calculated, and schemes of consecutive protonation of the ion exchangers investigated are suggested. Sorption characteristics for the series of U, Fe, Co, Ca, Th metals have been investigated. Values of the distribution coefficients and capacity from acid-base media of various concentration are given. Assumptions are made, which explain an increase in the selectivity and affinity in the series of the chelate compounds investigated. In the AEP-3 > AEP series-2 > AEP-1 weakening of the affinity to U, Fe, Th is observed

  11. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-11-20

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.

  12. A nitrous acid biosynthetic pathway for diazo group formation in bacteria.

    Science.gov (United States)

    Sugai, Yoshinori; Katsuyama, Yohei; Ohnishi, Yasuo

    2016-02-01

    Although some diazo compounds have bioactivities of medicinal interest, little is known about diazo group formation in nature. Here we describe an unprecedented nitrous acid biosynthetic pathway responsible for the formation of a diazo group in the biosynthesis of the ortho-diazoquinone secondary metabolite cremeomycin in Streptomyces cremeus. This finding provides important insights into the biosynthetic pathways not only for diazo compounds but also for other naturally occurring compounds containing nitrogen-nitrogen bonds.

  13. Quantitative determination of acidic groups in functionalized graphene by direct titration

    Czech Academy of Sciences Publication Activity Database

    Ederer, J.; Janoš, P.; Ecorchard, Petra; Štengl, Václav; Bělčická, Zuzana; Šťastný, Martin; Pop-Georgievski, Ognen; Dohnal, V.

    2016-01-01

    Roč. 103, JUN (2016), s. 44-53 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 ; RVO:61389013 Keywords : Acid-base titration * Carboxylic functional groups * Graphene oxide * Phenolic functional groups * Proton-binding model Subject RIV: CA - Inorganic Chemistry ; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 3.151, year: 2016

  14. Oxidation of an activated carbon commercial and characterization of the content of superficial acid groups

    International Nuclear Information System (INIS)

    Cortes, Juan Carlos; Giraldo Liliana; Garcia, Andres A; Garcia, Cesar; Moreno, Juan C

    2008-01-01

    The changes of the surface acid groups of an activated commercial carbon after placing it under oxidation treatment with nitric acid are studied. The time used was in the range 1.5 and 9 hours, the concentrations range was from 4 to 7 molL -1 . The study included the determination of immersion enthalpy. Boehm's type titrations, FTIR, and pH at the point of zero charge, pH p zc. It was found that total acid groups are in a range from 0.207 mmolg -1 to 1.247 mmolg -1 , and that they are proportional to the immersion enthalpy in NaOH that are between 40 and 54Jg -1 . The pH p zc decreases with the oxidation treatment and have values between 8.3 and 4.3

  15. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen

    2015-01-01

    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt%...

  16. Study of amino acid disorders among a high risk group of Egyptian ...

    African Journals Online (AJOL)

    Aim of the work: The present work aimed at investigating infants (In neonatal and post neonatal period) and children suspected of having inborn errors of metabolism with unexplained mental retardation. The frequency pattern of the various amino acid disorders, in a group of selected infants and children was done to ...

  17. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor.

    Science.gov (United States)

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Al Muqarrabin, Laode Muhammad Ramadhan; Zaki, Hamizah Mohd; Ahmat, Norizan; Nasir, Abdul; Khan, Fahad

    2016-10-01

    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Amino acids analysis using grouping and parceling of neutrons cross sections techniques

    International Nuclear Information System (INIS)

    Voi, Dante Luiz Voi; Rocha, Helio Fenandes da

    2002-01-01

    Amino acids used in parenteral administration in hospital patients with special importance in nutritional applications were analyzed to compare with the manufactory data. Individual amino acid samples of phenylalanine, cysteine, methionine, tyrosine and threonine were measured with the neutron crystal spectrometer installed at the J-9 irradiation channel of the 1 kW Argonaut Reactor of the Instituto de Engenharia Nuclear (IEN). Gold and D 2 O high purity samples were used for the experimental system calibration. Neutron cross section values were calculated from chemical composition, conformation and molecular structure analysis of the materials. Literature data were manipulated by parceling and grouping neutron cross sections. (author)

  19. Improving the Efficacy of Conventional Therapy by Adding Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Xiuhui Li

    2013-01-01

    Full Text Available Background. Herb-derived compound andrographolide sulfonate (called Xiyanping injection recommended control measure for severe hand, foot, and mouth disease (HFMD by the Ministry of Health (China during the 2010 epidemic. However, there is a lack of good quality evidence directly comparing the efficacy of Andrographolide Sulfonate combination therapy with conventional therapy. Methods. 230 patients were randomly assigned to 7–10 days of Andrographolide Sulfonate 5–10 mg/Kg/day and conventional therapy, or conventional therapy alone. Results. The major complications occurred less often after Andrographolide Sulfonate (2.6% versus 12.1%; risk difference [RD], 0.94; 95% CI, 0.28–1.61; P=0.006. Median fever clearance times were 96 hours (CI, 80 to 126 for conventional therapy recipients and 48 hours (CI, 36 to 54 for Andrographolide Sulfonate combination-treated patients (χ2=16.57, P<0.001. The two groups did not differ in terms of HFMD-cause mortality (P=1.00 and duration of hospitalization (P=0.70. There was one death in conventional therapy group. No important adverse event was found in Andrographolide Sulfonate combination therapy group. Conclusions. The addition of Andrographolide Sulfonate to conventional therapy reduced the occurrence of major complications, fever clearance time, and the healing time of typical skin or oral mucosa lesions in children with severe HFMD.

  20. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  1. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  2. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  3. Characterization of acid tars

    International Nuclear Information System (INIS)

    Leonard, Sunday A.; Stegemann, Julia A.; Roy, Amitava

    2010-01-01

    Acid tars from the processing of petroleum and petrochemicals using sulfuric acid were characterized by gas chromatography/mass spectrometry (GC/MS), inductively coupled plasma/optical emission spectrometry (ICP/OES), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectrometry, and scanning electron microscopy/energy dispersive X-ray (SEM/EDX) micro-analysis. Leaching of contaminants from the acid tars in 48 h batch tests with distilled water at a liquid-to-solid ratio 10:1 was also studied. GC/MS results show that the samples contained aliphatic hydrocarbons, cyclic hydrocarbons, up to 12 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs), and numerous other organic groups, including organic acids (sulfonic acids, carboxylic acids and aromatic acids), phenyl, nitrile, amide, furans, thiophenes, pyrroles, and phthalates, many of which are toxic. Metals analysis shows that Pb was present in significant concentration. DSC results show different transition peaks in the studied samples, demonstrating their complexity and variability. FTIR analysis further confirmed the presence of the organic groups detected by GC/MS. The SEM/EDX micro-analysis results provided insight on the surface characteristics of the samples and show that contaminants distribution was heterogeneous. The results provide useful data on the composition, complexity, and variability of acid tars; information which hitherto have been scarce in public domain.

  4. Characterization of acid tars

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Sunday A., E-mail: sunday.leonard@ucl.ac.uk [Department of Civil Environmental and Geomatic Engineering, University College London, Chadwick Building, Gower Street, London, WC1E 6BT (United Kingdom); Stegemann, Julia A. [Department of Civil Environmental and Geomatic Engineering, University College London, Chadwick Building, Gower Street, London, WC1E 6BT (United Kingdom); Roy, Amitava [J. Bennett Johnston, Sr., Centre for Advance Microstructures and Devices (CAMD), 6980 Jefferson Highway, Louisiana State University, Baton Rouge, LA, 70806 (United States)

    2010-03-15

    Acid tars from the processing of petroleum and petrochemicals using sulfuric acid were characterized by gas chromatography/mass spectrometry (GC/MS), inductively coupled plasma/optical emission spectrometry (ICP/OES), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectrometry, and scanning electron microscopy/energy dispersive X-ray (SEM/EDX) micro-analysis. Leaching of contaminants from the acid tars in 48 h batch tests with distilled water at a liquid-to-solid ratio 10:1 was also studied. GC/MS results show that the samples contained aliphatic hydrocarbons, cyclic hydrocarbons, up to 12 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs), and numerous other organic groups, including organic acids (sulfonic acids, carboxylic acids and aromatic acids), phenyl, nitrile, amide, furans, thiophenes, pyrroles, and phthalates, many of which are toxic. Metals analysis shows that Pb was present in significant concentration. DSC results show different transition peaks in the studied samples, demonstrating their complexity and variability. FTIR analysis further confirmed the presence of the organic groups detected by GC/MS. The SEM/EDX micro-analysis results provided insight on the surface characteristics of the samples and show that contaminants distribution was heterogeneous. The results provide useful data on the composition, complexity, and variability of acid tars; information which hitherto have been scarce in public domain.

  5. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  6. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  8. Biological evaluation of dopamine analogues containing phenylboronic acid group as new boron carriers

    International Nuclear Information System (INIS)

    Ito, Y.; Mizuno, T.; Yoshino, K.; Ban, H.S.; Nakamura, H.; Hiratsuka, J.; Ishikawa, A.; Ohki, H.

    2011-01-01

    As new BNCT reagents, we designed and synthesized dopamine analogues containing phenylboronic acid group, N-3,4-dihydroxyphenethyl-4-dihydroxyborylbenzamide (dopamine–PCBA) and N-[2-(3,4-dihydroxyphenetyl)ethyl]-3-(4-dihydroxyborylphenyl)promionamide (dopamine–CEBA). The efficacies of these compounds have not been investigated for biological samples. Therefore we have carried out experiments with cultured tumor cells and tumor-bearing mice, and evaluated possibility of these compounds as boron carriers. Dopamine–PCBA and dopamine–CEBA were synthesized by coupling between p-carboxyphenylboronic acid (PCBA) or 4-(2-carboxyethyl)benzeneboronic acid (CEBA) and 3,4-(dibenzyloxy)phenethylamine hydrochloride (DBPA-HCl) followed by catalytic hydrogenation using Pd catalyst. The effect of compounds on cell vitality was determined by MTT assay in various cells. In vivo biodistribution of compounds was determined in Balb/c and DDY mice in bearing implanted CT26 cells. These results have demonstrated that dopamine–CEBA was less toxic. - Highlights: ► Dopamine analogues containing phenylboronic acid are synthesized as BNCT reagents. ► Their cytotoxicity is almost lower than that of BSH. ► Boron uptake with dopamine–PCBA is larger than that of BSH. ► Dopamine analogs showed lesser boron accumulation property into spleen than BPA.

  9. Syntheses and characterizations of secondary Pb-O bonding supported Pb(II)-sulfonate complexes

    Science.gov (United States)

    Huang, Guo-Zhen; Zou, Xin; Zhu, Zhi-Biao; Deng, Zhao-Peng; Huo, Li-Hua; Gao, Shan

    2018-06-01

    The reaction of Pb(II) salts and mono- or disulfonates leads to the formation of eight new Pb(II)-mono/disulfonate complexes, [Pb(L1)(H2O)]2 (1), [Pb4(L2)2(AcO)2]n·5nH2O (2), [Pb(L3)(H2O)]2 (3), [Pb(HL4)(H2O)2]n·nH2O (4), [Pb(HL5)(H2O)2]n·2nH2O (5), [Pb(H2L6)(H2O)]n·nDMF·2nH2O (6), [Pb2(H3L7)4(H2O)6]·2H2O (7) and [Pb(H2L7)(H2O)]n·nH2O (8) (H2L1= 2-hydroxy-5-methyl-benzenesulfonic acid, H3L2= 2-hydroxyl-5-methyl- 1,3-benzenedisulfonic acid, H2L3= 2-hydroxy-5-nitro-benzenesulfonic acid, H3L4= 2-hydroxyl-5-bromo-1,3- benzenedisulfonic acid, H3L5= 2-hydroxyl-5-carboxyl-benzenesulfonic acid, H4L6= 2,5-dihydroxyl-3-carboxyl- benzenesulfonic acid, H4L7= 2,4-dihydroxyl-5-carboxyl-benzenesulfonic acid, DMF = N,N'-dimethyl-formamide, AcO- = acetate), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. In view of the primary Pb-O bonds, these eight complexes exhibit diverse dinuclear (1, 3 and 7), helical chain (4), wave-like chain (5), linear chain (6), zigzag chain (8) and layer structure (2), in which the Pb(II) cations present different hemi-directed geometries. Taking the secondary Pb-O bonds into account, chain structure for complex 7, layer motifs for complexes 1 and 3-6, as well as 3-D framework for complex 8 are observed with Pb(II) cations showing more intricate holo-directed geometries. The various coordination modes of these seven different mono/disulfonate anions are responsible for the formation of these multiple structures. Furthermore, the introduction of hydroxyl and carboxyl groups increases the coordination ability of sulfonate to the p-block metal cation. Luminescent analyses indicate that complex 7 presents purple emission at 395 nm at room temperature.

  10. Polyether sulfone membrane modeling and construction for the ...

    African Journals Online (AJOL)

    Polyether sulfone membrane modeling and construction for the removal of nitrate from water using ion interference sulfate and iron nano-particle. ... The aim of this study was constructed the polyether sulfone membrane and modelling it, and for checking impact pressure, the amount of iron nanoparticles and sulfate iron ...

  11. Sulfonated carbon black-based composite membranes for fuel cell

    Indian Academy of Sciences (India)

    Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton ...

  12. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as identified in this section may be safely used as an article or...

  13. Undoped poly (phenyl sulfone) for radiation detection

    International Nuclear Information System (INIS)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Kitamura, Hisashi; Takahashi, Sentaro

    2015-01-01

    Undoped aromatic ring polymers are potential scintillation materials. Here, we characterise poly (phenyl sulfone) (PPSU) for radiation detection. The amber-coloured transparent resin emits bluish-white fluorescence with 390-nm maximum. It has an excitation maximum of 340 nm, and has a density of 1.29 g/cm 3 . The effective refractive index based on its emission spectrum is 1.75. The light yield is almost equal to that of poly (ethylene terephthalate), which is a transparent resin. These results demonstrate that PPSU can be used as a component substrate in polymer blends for altering optical characteristics. - Highlights: • Poly (phenyl sulfone) (PPSU) has suitable characteristics as a scintillation material. • PPSU is an amber-coloured transparent resin that emits bluish white fluorescence with 390-nm maximum. • The 1.75 effective refractive index over the emission spectrum is relatively high. • The light yield is 0.95 times that of poly (ethylene terephthalate), which is a transparent resin. • PPSU can potentially alter optical characteristics in polymer blends

  14. Quinolinium 8-hy-droxy-7-iodo-quinoline-5-sulfonate 0.8-hydrate.

    Science.gov (United States)

    Smith, Graham

    2012-12-01

    In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy-droxy-7-iodo-quinoline-5-sulfonic acid), C9H7N(+)·C9H5INO4S(-)·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π-π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy-droxy O-H⋯O and quinolinium N-H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H⋯O hydrogen-bonding inter-actions along b, giving a two-dimensional network.

  15. Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2012-12-01

    Full Text Available In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid, C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37 lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6 Å]. The cations and anions are linked into chains extending along c through hydroxy O—H...O and quinolinium N—H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H...O hydrogen-bonding interactions along b, giving a two-dimensional network.

  16. Selective displacement of the tributylstannyl group to form [125I]phenylboronic acid derivatives

    International Nuclear Information System (INIS)

    Kinsey, B.M.; Kassis, A.I.

    1990-01-01

    Three radioiodinated phenylboronic acid derivatives (1a, 2a, 3a) were prepared at the no-carrier-added level by selective displacement of the corresponding tributylstannyl group. The tributylstannyl compounds 1b, 2b, and 3b were synthesized from the bromo derivatives 1c, 2c and 3c. Radioiodination was accomplished using Na 125 I and either Chloramine-T or peracetic acid to give 1a, 2a and 3a in radiochemical yields of 46, 26, and 67% respectively after HPLC purification. Compounds 1a, 2a and 3a were concentrated in vitro preferentially in HT-29 human colon carcinoma cells compared to V79 Chinese hamster lung fibroblasts, with 3a having the highest uptake

  17. Electrochemical properties of polyolefin nonwoven fabric modified with carboxylic acid group for battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Kwang-Pill E-mail: kplee@kyungpook.ac.kr

    2001-07-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at {approx}132 deg. C and no more than about 40% of a second polypropylene having a lower melting temperature at {approx}162 deg. C, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  18. Electrochemical properties of polyolefine nonwoven fabric modified with carboxylic acid group for battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Park, Keung-Shik; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Pill-Kwang [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at {approx}132degC and no more than about 40% of a second polypropylene having a lower melting temperature at {approx}162degC, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  19. Continuous-Flow Monolithic Silica Microreactors with Arenesulphonic Acid Groups: Structure–Catalytic Activity Relationships

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciemięga

    2017-08-01

    Full Text Available The performance of monolithic silica microreactors activated with sulphonic acid groups and a packed bed reactor with Amberlyst 15 resin were compared in the esterification of acetic acid with n-butanol. The monolithic microreactors were made of single silica rods with complex pore architecture, differing in the size of mesopores, and in particular, flow-through macropores which significantly affected the flow characteristic of the continuous system. The highest ester productivity of 105.2 mol·molH+−1·h−1 was achieved in microreactor M1 with the largest porosity, characterized by a total pore volume of 4 cm3·g−1, mesopores with 20 nm diameter, and large flow-through macropores 30–50 μm in size. The strong impact of the permeability of the monoliths on a reaction kinetics was shown.

  20. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para-phenylene and ......Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para...

  1. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    International Nuclear Information System (INIS)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang; Huang, Changjiang; Yang, Dongren

    2016-01-01

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  2. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Yang, Dongren, E-mail: yangdongren@yahoo.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China)

    2016-07-15

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  3. Bisphenol A sulfonation is impaired in metabolic and liver disease

    International Nuclear Information System (INIS)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta

    2016-01-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  4. Bisphenol A sulfonation is impaired in metabolic and liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu; King, Roberta, E-mail: rking@uri.edu

    2016-02-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  5. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  6. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior

    International Nuclear Information System (INIS)

    Park, Soo-Jin; Kim, Byung-Joo

    2005-01-01

    The gas phase ozone treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces. The ozone treatment on carbon fibers was varied with the ozone concentration and treatment time. Surface analyses of the carbon fibers before and after treatments were performed by FT-IR, X-ray photoelectron spectrometer (XPS), and dynamic contact angle measurements. Mechanical interfacial properties of the fibers/polymer composites were investigated by using critical stress intensity factor (K IC ) and critical energy release rate (G IC ) measurements. From the results of FT-IR and XPS, it was observed that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the ozone treatment. The mechanical interfacial properties of the composites also showed higher values than those of untreated composites. Ozone treatment is attributed to the increase of both the acidic functional groups and the degree of adhesion at interfaces between the fibers and polymeric resin in composites

  7. Acidic surface functional groups and mineral elements in Lakra coal (Sindh, Pakistan)

    International Nuclear Information System (INIS)

    Saeed, K.; Ishaq, M.; Ahjmad, I.; Shakirullah, M.; Haider, S.

    2010-01-01

    Surface acidity of virgin coal (Lakra Sindh, Pakistan) and variously extracted/leached coal samples with HNO/sub 3/ NaOH, and KMnO/sub 4/, were investigated by aqueous potentiometric titration employing KOH as a titrant. The titration curve of virgin coal showed that its surface might contain carboxylic, carbonyl, phenolic and other weak acidic functional groups such as enols and C-H bond. The titration curves of leached coal samples showed inflections at pH 4-11, being not similar the inflections of carboxylic groups. This inflection might be given by functional groups like CO/sub 2/, phenolic, enols and C-H. Mineral matter such as Fe, K, Zn, Mn and Ni were determined in the ash of coal by atomic absorption spectrophotometer and was found that Fe (3104 micro g/g) in the highest and Ni (36.05 micro g/g) in the lowest quantity is present in virgin coal sample. (author)

  8. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  9. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  10. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    Science.gov (United States)

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  12. Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones

    Directory of Open Access Journals (Sweden)

    Yingting Wang

    2018-02-01

    Full Text Available A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.

  13. Amphoteric surfactants containing ?-hydroxy ester group and an amino acid residue

    Directory of Open Access Journals (Sweden)

    Eissa, A. M. F.

    2006-09-01

    Full Text Available A series of amphoteric surfactants containing α-hydroxy ester group and an amino acid residue were prepared with the addition of epoxy derivatives (which were prepared from epoxidation of alkyl methacrylate to different types of amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid.The structures of the prepared compounds were confirmed by infrared spectra, proton magnetic resonance spectra, Mass spectra and elementary analysis. Surface tension, Kraft point, foaming power, critical micelle concentration emulsion and Ca++ stabilities were determined. Antimicrobial activity and biodegradability were also screened.Se prepararon una serie de tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido por adición de derivados epoxy (obtenidos mediante epoxidación de metacrilato de alquilo a diferentes tipos de aminoácidos (glicina, alanina, valina, isoleucina, fenilalanina, tirosina, serina, treonina y ácidos aspártico y antranílico. Las estructuras de los compuestos preparados se confirmaron por los espectros de infrarrojo, de masa, resonancia magnética nuclear de protones y análisis elemental. Se determinaron la tensión superficial, el punto de Kraft, el poder espumante, la concentración micelar crítica en emulsión y las estabilidades de Ca++. También se estudiaron la actividad antimicrobiana y la biodegradabilidad.

  14. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-01-01

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES

  15. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  16. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune

    2013-03-01

    The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p  0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. Copyright © 2012 SETAC.

  17. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    International Nuclear Information System (INIS)

    Mabrouk, W.; Ogier, L.; Matoussi, F.; Sollogoub, C.; Vidal, S.; Dachraoui, M.; Fauvarque, J.F.

    2011-01-01

    Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g -1 (1.3 H + per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm -1 at room temperature in aqueous H 2 SO 4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  18. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fish populations in a large group of acid-stressed lakes

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, H H

    1975-01-01

    The purpose of this study was to determine the effects of environmental stress on the number and diversity of fish species in a group of acid-stressed lakes. The study area was the La Cloche Mountains, a series of quartzite ridges covering 1,300 km/sup 2/ along the north shore of Georgian Bay and north channel of Lake Huron. Within these ridges are 173 lakes; 68 of the largest of these made up the study sample. The lakes of the La Cloche Mountains are undergoing rapid acidification. Coincident with this there has been the loss of sport fishes from several lakes. Lakes such as Nellie, Lumsden, O.S.A., Acid and Killarney supported good sport fisheries for the lake trout, (Salvelinus namaycush) for many years, but have ceased to do so in the last 5 to 15 years. Other sport fishes, notably the walleye (Stizostedion vitreum) and smallmouth bass (micropterus dolomieu) have disappeared from some of the La Cloche Lakes. Thus recreational fishing alone could not have been the cause of the change. Beamish (1974) recorded the extreme sparcity of the three remaining fish species in O.S.A. Lake. Many of the lakes of the La Cloche mountains are accessible only with difficulty and little or no information exists for these lakes prior to this study. This precluded simple comparison of these lakes before and during acidification. This lack of historic data determined in part the approach taken in this study; a comparison of the fish communities of a group of lakes differing in degree of acid stress.

  20. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...... antagonists at group I mGluRs. Here we report the synthesis and molecular pharmacology of HIBO analogues 9b-h containing different 4-aryl substituents. All of these compounds possess antagonist activity at group I mGluRs but are inactive at group II and III mGluRs....

  1. Population pharmacokinetics of modafinil acid and estimation of the metabolic conversion of modafinil into modafinil acid in 5 major ethnic groups of China.

    Science.gov (United States)

    Wu, Ke-hua; Guo, Tao; Deng, Chen-hui; Guan, Zheng; Li, Liang; Zhou, Tian-yan; Lu, Wei

    2012-11-01

    To describe the population pharmacokinetic profile of modafinil acid and to compare the extent of metabolism of modafinil into modafinil acid in 5 major ethnic groups (Han, Mongolian, Korean, Uygur, and Hui) of China. In a multi-center, open-label, single dose clinical trial, 49 healthy volunteers from the 5 ethnic groups received 200 mg of modafinil orally. Blood samples for pharmacokinetic evaluation of modafinil and modafinil acid were drawn before and at different time after the administration. Systematic population pharmacokinetic (PopPK) modeling for modafinil acid was conducted, integrating with our previous PopPK model for modafinil. The influence of ethnicity, gender, height, body weight and body mass index (BMI) was estimated. The extent of metabolism of modafinil into modafinil acid, expressed as the relative conversion fraction, was estimated and compared among the 5 ethnic groups. When combined with the PopPK model of modafinil, the concentration of modafinil acid versus time profile was best described with a one-compartment model. The typical clearance and volume of distribution for modafinil acid were 4.94 (l/h) and 2.73 (l), respectively. The Korean group had 25% higher clearance, and the Uygur and Hui groups had 12% higher clearance than the Han group. The median for the relative conversion fraction was 0.53 for Koreans, and 0.24 for the other 4 ethnicities. Ethnicity has significant influence on the clearance of modafinil acid. When patients in the 5 ethnic groups are administered drugs or prodrugs catalyzed by esterases and/or amidases, the variability in the extent of drug metabolism should be considered.

  2. THE SULFONATION STUDY OF REACTION MECHANISM ON PAPAVERINE ALKALOID BY GC-MS AND FT-IR

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this research was to prove theoretical mechanism reaction on the sulfonation of papaverine alkaloid and the result could be used as a reference on the transformation of these alkaloid to the other derivatives. Theoriticaly sulfonation of papaverine (1 by HO-SO2Cl could produced papaverine sulfonyl chloride (1a. The formation of this product was analyzed by analytical thin layer chromatography GC-MS, and FT-IR. These analysis showed the formation of product (1a more favorable than the other. Tlc showed product (1a less polar than papaverine, and supported by GC-MS and infrared which showed molecular ion at m/z 412 due to the presence of -SO2Cl and vibration at 1153,4 dan 1265,2 Cm-1 due to absorption of sulfonyl group.   Keywords: reaction mechanism, sulfonation, papaverine alkaloid.

  3. Propagation/depropagation equilibrium and structural factors in the radiation degradation of poly(olefin sulfone)s

    International Nuclear Information System (INIS)

    Bowmer, T.N.; O'Donnell, J.H.

    1981-01-01

    The principal volatile products observed after γ irradiation of nine different poly(olefin sulfone)s in the solid state were the two comonomers, i.e., the respective olefin and sulfur dioxide. An exponential increase in yield, G (volatile products), with increasing irradiation temperature, T/sub irr/, was observed for each copolymer through the ceiling temperature, T/sub c/, for the corresponding propagation/depropagation equilibrium. Thus the G value increased by ca. 3 orders of magnitude from T/sub irr/ = 0.7 T/sub c/ to T/sub irr/ = 1.3 T/sub c/ for all of the poly(olefin sulfone)s. Depropagation sensitivity was considered to be best measured by G(SO 2 ) since radiation induced, cationic homopolymerization of the product olefin occurred to a variable extent. Five of the poly(olefin sulfone)s had similar rates of depropagation at their respective T/sub c's/ but the polysulfones of 1-hexene, cyclohexene and 2-butene showed anomalously high depropagation rates. This may be related to greater steric hinderance to segmental chain mobility in the polysulfones of the 1,2 disubstituted olefins. Poly(1-hexene sulfone) appears to be anomalous, as in other respects

  4. Facile synthesis of reduced graphene oxide nanosheets by a sodium diphenylamine sulfonate reduction process and its electrochemical property

    International Nuclear Information System (INIS)

    Ji, Yunzhou; Liu, Qi; Cheng, Meiling; Lai, Lifang; Li, Zhanfeng; Peng, Yuxin; Yang, Yong

    2013-01-01

    We report a new method to convert graphene oxide (GO) to stable colloidal dispersion of reduced graphene oxide nanosheets (RGONS) using sodium diphenylamine sulfonate (SDAS) as a reductant, as well as itself and its redox product as the stabilizer. The as-prepared RGONS have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV–visible spectroscopy, thermo-gravimetric analysis, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy and Raman spectroscopy. The results indicate that the bulk of oxygen-containing functional groups from GO have been removed. Based on the cyclic voltammogram (CV) analyses, it is found that the RGONS-based material exhibits better electrochemical activity in sensing ascorbic acid than GO. The simple method provides a new efficient route for the synthesis of water-soluble RGONS on a large scale and novel composites. - Highlights: • We report a new environment-friendly reductant for the reduction of graphene oxide. • The reduction process needn't use other stabilizer except for using reductant. • The reduced graphene oxide nanosheet (RGONS) aqueous dispersion is stable. • The RGONS shows a high electrochemical activity in sensing ascorbic acid

  5. Clinical Efficacy of Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease (HFMD) is Dependent upon Inhibition of Neutrophil Activation.

    Science.gov (United States)

    Wen, Tao; Xu, Wenjun; Liang, Lianchun; Li, Junhong; Ding, Xiaorong; Chen, Xiao; Hu, Jianhua; Lv, Aiping; Li, Xiuhui

    2015-08-01

    Andrographolide sulfonate treatment has been shown to improve clinical severe hand, foot, and mouth disease (HFMD) efficacies when combined with conventional therapy. However, the mechanisms for its therapeutic effects remain elusive. In this study, we aimed to investigate whether andrographolide sulfonate exerts its efficacy by acting on neutrophil activation. We obtained serial plasma samples at two time points (before and after 5 days of therapy) from 28 HFMD patients who received conventional therapy and 18 patients who received combination therapy (andrographolide sulfonate plus conventional therapy). Then, we measured plasma myeloperoxidase (MPO), S100A8/A9, histone, and inflammatory cytokine levels. Furthermore, we examined if andrographolide sulfonate had direct effects on neutrophil activation in vitro. We observed that MPO and S100A8/A9 levels were markedly elevated in the HFMD patients before clinical treatment. At 5 days post-medication, the MPO, S100A8/A9, histone, and interleukin-6 levels were markedly lower in the combination therapy group compared with the conventional therapy group. In vitro studies showed that andrographolide sulfonate inhibited lipopolysaccharide-stimulated neutrophil activation, demonstrated by the decreased production of reactive oxygen species and cytokines. These data indicate that neutrophil activation modulation by andrographolide sulfonate may be a critical determinant for its clinical HFMD treatment efficacy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium Brønsted acids.

    Science.gov (United States)

    Martín-Sómer, Ana; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2015-01-21

    The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids.

  7. Controlled disulfonated poly(arylene ether sulfone) multiblock copolymers for direct methanol fuel cells.

    Science.gov (United States)

    Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung

    2014-04-23

    Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.

  8. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  9. USE OF NEAR INFRARED TECHNOLOGY TO PREDICT FATTY ACID GROUPS IN COMMERCIAL GROUND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Sofia Ton

    2015-09-01

    Full Text Available Near infrared transmittance (NIT, 850 to 1048 nm spectroscopy was used to predict groups of fatty acids (FA, namely saturated FA (SFA, monounsaturated FA (MUFA and polyunsaturated FA (PUFA, in commercial ground meat samples aiming to develope a fast and reliable method for their determination in support of label declaration by the new EC Regulation 1169/2011. Dataset was built using 81 samples of commercial ground meat from different species: beef, pork, chicken and turkey. In some samples, meat was mixtured with different ingredients such as bread, cheese, spices and additives. Samples were first analysed by NIT instrument for spectral information and reference FA values were obtained by gas chromatographic analysis. Prediction models for SFA, MUFA and PUFA expressed on total FA exhibited coefficients of determination of calibration of 0.822, 0.367 and 0.780 on intact samples, and 0.879, 0.726 and 0.908 on minced samples, respectively. Good results were also obtained when FA groups were expressed as g/100g of fresh meat: the coefficient of determination of calibration increased to values larger than 0.915. Moreover, comparing the slightly lower coefficient of determination in crossvalidation of intact compared with minced meat suggested that equations developed for minced samples were more accurate than those built for intact products. Results highlighted the effectiveness of NIT spectroscopy to predict the major FA groups in commercial meat products.

  10. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, A.; Lee, S.; Tartamella, T.

    2002-04-01

    Dimethyl ether (DME) can be produced much more efficiently in a single-stage, liquid-phase process from natural gas-based syngas as compared to the conventional process via dehydration of methanol. This process, based on dual catalysts slurried in inert oil, alleviates the chemical equilibrium limitation governing the methanol synthesis reaction and concurrently improves per-pass syngas conversion and reactor productivity. The potential, therefore, for production of methyl acetate via dimethyl ether carbonylation is of industrial importance. In the present study, conversion of dimethyl ether and carbon monoxide to methyl acetate is investigated over a variety of group VIII metal-substituted phosphotungstic acid salts. Experimental results of this catalytic reaction using rhodium, iridium, ruthenium, and palladium catalysts are evaluated and compared in terms of selectivity toward methyl acetate. The effects of active metal, support types, multiple metal loading, and feed conditions on carbonylation activity of DME are examined. Iridium metal substituted phosphotungstic acid supported on Davisil type 643 (pore size 150 A, surface area 279 m{sup 2}/g, mesh size 230-425) silica gel shows the highest activity for DME carbonylation. (author)

  11. Is the fenamate group a polymorphophore?: contrasting the crystal energy landscapes of fenamic and tolfenamic acids

    NARCIS (Netherlands)

    Uzoh, O.G.; Cruz-Cabeza, A.J.; Price, S. L.

    2012-01-01

    The concept of a polymorphophore was investigated by contrasting the crystal energy landscapes of monomorphic fenamic acid (2-(phenylamino)-benzoic acid, FA) and one of its highly polymorphic derivatives, tolfenamic acid (2-[(3-chloro-2-methylphenyl)amino]-benzoic acid, TA). The crystal energy

  12. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    to their potential applications in proton exchange membrane fuel cells (PEMFCs) ... is highly sulfonated and has high water uptake property.11,12 The proton conductivity ... SPSU membranes have lower gas permeability and liquid. (water and ...

  13. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli; Nunes, Suzana Pereira

    2017-01-01

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl

  14. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  15. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea

    2001-01-01

    Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (i......GluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was shown...... to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments...

  16. succinimide-n-sulfonic acid as an efficient recyclable catalyst

    African Journals Online (AJOL)

    In view of the pharmaceutical importance of heterocyclic compounds containing coumarin moiety, various approaches toward the synthesis of this class of compounds have been explored. [13-17]. Although these methods are quite satisfactory, most of these methods suffer from extended reaction times, low yields, use of ...

  17. 6-Methoxy-2-phenyl-4,4a,6,7,8,8a-hexahydro-2H-pyrano[3,2-d][1,3]dioxine-7,8-diyl bis(4-methylbenzene-1-sulfonate

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2012-03-01

    Full Text Available In the title α-D-glucopyranoside derivative, C28H30O10S2, each heterocyclic ring adopts a chair conformation. In the trisubstituted ring, the methoxy and one sulfonate group occupy axial positions, whereas the second sulfonate group occupies an axial position. The phenyl group on the other ring is in an equatorial position. In the crystal, supramolecular chains propagating along [100] are formed through C—H...O and C—H...π interactions.

  18. Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment.

    Science.gov (United States)

    Porsch, Katharina; Meier, Jutta; Kleinsteuber, Sabine; Wendt-Potthoff, Katrin

    2009-05-01

    Iron- and sulfate-reducing microorganisms play an important role for alkalinity-generating processes in mining lakes with low pH. In the acidic mining lake 111 in Lusatia, Germany, a passive in situ remediation method was tested in a large scale experiment, in which microbial iron and sulfate reduction are stimulated by addition of Carbokalk (a mixture of the nonsugar compounds of sugar beets and lime) and straw. The treated surface sediment consisted of three layers of different pH and geochemical composition. The top layer was acidic and rich in Fe(III), the second and third layer both showed moderately acidic to circum-neutral pH values, but only the second was rich in organics, strongly reduced and sulfidic. Aim of the study was to elucidate the relative importance of neutrophilic heterotrophic, acidophilic heterotrophic, and acidophilic autotrophic iron-reducing microorganisms in each of the three layers. In order to distinguish between them, the effect of their respective characteristic electron donors acetate, glucose, and elemental sulfur on potential iron reduction rates was investigated. Limitation of iron reduction by the availability of Fe(III) was revealed by the addition of Fe(OH)(3). The three groups of iron-reducing microorganisms were quantified by most probable number (MPN) technique and their community composition was analyzed by cloning and sequencing of 16S rRNA genes. In the acidic surface layer, none of the three electron donors stimulated iron reduction; acetate even had an inhibiting effect. In agreement with this, no decrease of the added electron donors was observed. Iron reduction rates were low in comparison to the other layers. Iron reduction in layers 2 and 3 was enhanced by glucose and acetate, accompanied by a decrease of these electron donors. Addition of elemental sulfur did not enhance iron reduction in either layer. Layer 2 exhibited the highest iron reduction rate (4.08 mmol dm(-3) d(-1)) and the highest cell numbers in MPN

  19. Effects of Different Solvents on the Surface Acidic Oxygen-containing Functional Groups on Xanthoceras sorbifolia Shell

    Directory of Open Access Journals (Sweden)

    Linan Liu

    2014-03-01

    Full Text Available This study reports the preparation of a novel biomaterial from a forestry residue - Xanthoceras sorbifolia shell (XSS - by solvent modification. The effects of acid and base (hydrochloric acerbic, acetic acid, sodium hydroxide, ammonia water and some organic solvents (ethanol, acetone, ethyl acetate, chloroform, petroleum ether, and n-hexane on the surface acidic functional groups (SAFGs on XSS were investigated. The amount of SAFGs was quantified using acid and alkali chemical titration methods, and the characteristics of virgin XSS were compared with treated ones by FT-IR spectroscopy. It was found that acid solutions can increase the concentration of SAFGs, while alkaline solutions reduce it. The XSS treated in 0.5 M HCl has the largest number of total acidic functional groups and phenolic hydroxyl groups. The shell extracted with 2 M acetic acid has the highest concentration of carboxyl. The SAFG contents were remarkably increased by treatments with ethanol and acetone, due to the outstanding enhancement of phenolic hydroxyl. These changes in the SAFGs of XSS brought about by treatments with various solutions could be a theoretical foundation for modifying this residue to create a new type of highly efficient absorbent material.

  20. Evaluation of the number of ionogenic groups of inulinase by acid-base titration.

    Science.gov (United States)

    Kovaleva, T A; Holyavka, M G; Rezvan, S G; Kozhedub, S V

    2008-06-01

    Acid base titration showed that Aspergillus awamori inulinase includes 178 asparaginic and glutamic acid residues, 20 histidine, 10 serine, and 34 lysine and tyrosine residues. Denaturation temperature for this enzyme was calculated using analysis of the proportion of stabilizing and destabilizing amino acids in the molecule.

  1. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    International Nuclear Information System (INIS)

    Pal, Amalendu; Chauhan, Nalin

    2011-01-01

    Densities, ρ, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V φ , partial molar volume at infinite dilution, V φ o , and experimental slope, S V were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the (∂V φ 0 /∂T) P values. The partial molar volume of transfer, ΔV φ 0 from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V φ 0 with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH 3 + COO - , and CH 2 groups to V φ 0 .

  2. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amalendu, E-mail: palchem@sify.co [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India); Chauhan, Nalin [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India)

    2011-02-15

    Densities, {rho}, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V{sub {phi}}, partial molar volume at infinite dilution, V{sub {phi}}{sup o}, and experimental slope, S{sub V} were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the ({partial_derivative}V{sub {phi}}{sup 0}/{partial_derivative}T){sub P} values. The partial molar volume of transfer, {Delta}V{sub {phi}}{sup 0} from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V{sub {phi}}{sup 0} with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH{sub 3}{sup +}COO{sup -}, and CH{sub 2} groups to V{sub {phi}}{sup 0}.

  3. Preparation of Macroporous Poly (vinyl alcohol-co-triallyl isocyanurate) Beads Bearing Aminocarboxylic Acid as Functional Groups by Suspension Polymerization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Macroporous poly (vinyl acetate-co-triallyl isocyanurate) beads were prepared with suspension polymerization method. The copolymer beads were then transformed into poly (vinyl alcohol-co-triallyl isocyanurate) by ester exchange reaction. Aminocarboxylic acids were immobilized on the copolymer beads by the esterification of hydroxyl groups with diethyl-lenetriaminepentaacetic bisanhydride. The weak acid exchange capacities, specific surface areas and mean pore diameters of the resultant resin beads were measured.

  4. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Manman [Tianjin University, School of Science (China); Yan, Xilong; Li, Yang; Chen, Ligong, E-mail: lgchen@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2017-04-15

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m{sup 2}/g) and large pore volume (0.77 cm{sup 3}/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  5. Divergent Reactivity of Alkyl Aryl Sulfones with Bases: Selective Functionalization of ortho-Aryl and alpha-Alkyl Units Enabled by a Unique Carbanion Transmetalation

    Czech Academy of Sciences Publication Activity Database

    Řehová, Lucie; Císařová, I.; Jahn, Ullrich

    2014-01-01

    Roč. 2014, č. 7 (2014), s. 1461-1476 ISSN 1434-193X R&D Projects: GA ČR GAP207/11/1598 Institutional support: RVO:61388963 Keywords : sulfones * transmetalation * lithiation * deprotonation * alkylation * acidity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  6. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    Directory of Open Access Journals (Sweden)

    Rajesh Munirathinam

    2013-08-01

    Full Text Available Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS. XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  7. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin

    2017-06-14

    Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.

  8. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Science.gov (United States)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  9. ANALYSIS OF SULFONATES IN AQUEOUS SAMPLES BY ION-PAIR LC/ESI-MS/MS WITH IN-SOURCE CID FOR ADDUCT PEAK ELIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    OUYANG,S.; VAIRAVAMURTHY,M.A.

    1999-06-13

    Determination of low-molecular-weight organic sulfonates (e.g. taurine and cysteic acid) in aqueous solutions is important in many applications of biological, environmental and pharmaceutical sciences. These compounds are difficult to be determined by commonly used reversed-phase liquid chromatographic separation combined with UV-Visible detection because of their high solubility and the lack chromophoric moieties. Here the authors report a method combining ion-pair liquid chromatography and electrospray ionization tandem mass spectrometry (IPLC/ESI-MS/MS)for determining sulfonates. The ability of low-molecular-weight sulfonates to form ion-pairs with quaternary ammonium cations in aqueous solutions allowed LC separation with a C{sub 18} column. Detection of the sulfonates was accomplished with ESI-MS that lends a universal mode of mass detection for polar, water soluble compounds. An in-source collision induced dissociation (CID) was applied to eliminate the adduct peaks in mass spectra. Characteristic marker ions showed in the second stage mass spectra lent a method for identifying sulfonates.

  10. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chun-En [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); Lin, Chi-Wen [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin (China); Hwang, Bing-Joe [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); National Synchrotron Radiation Research Center, Hsinchu 300 (China)

    2010-04-15

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO{sub 3}H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 x 10{sup -2} S cm{sup -1} at room temperature from one of the synthesized membranes, higher than that of the Nafion {sup registered} membrane. Methanol permeability of the synthesized membranes measures about 1 x 10{sup -7} cm{sup 2} S{sup -1}, about one order of magnitude lower than that of the Nafion {sup registered} membrane. (author)

  11. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-leiden CETP mice

    NARCIS (Netherlands)

    Bijland, S.; Rensen, P.C.N.; Pieterman, E.J.; Maas, A.C.E.; Hoorn, J.W. van der; Erk, M.J. van; Havekes, L.M.; Dijk, K.W. van; Chang, S.C.; Ehresman, D.J.; Butenhoff, J.L.; Princen, H.M.G.

    2011-01-01

    Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) are stable perfluoroalkyl sulfonate (PFAS) surfactants, and PFHxS and PFOS are frequently detected in human biomonitoring studies. Some epidemiological studies have shown modest positive

  12. Elucidating and Regulating the Acetoin Production Role of Microbial Functional Groups in Multispecies Acetic Acid Fermentation.

    Science.gov (United States)

    Lu, Zhen-Ming; Liu, Na; Wang, Li-Juan; Wu, Lin-Huan; Gong, Jin-Song; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2016-10-01

    Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. However, the specific microorganisms responsible for acetoin formation in this centuries-long repeated batch fermentation have not yet been clearly identified. Here, the microbial distribution discrepancy in the diacetyl/acetoin metabolic pathway of vinegar microbiota was revealed at the species level by a combination of metagenomic sequencing and clone library analysis. The results showed that Acetobacter pasteurianus and 4 Lactobacillus species (Lactobacillus buchneri, Lactobacillus reuteri, Lactobacillus fermentum, and Lactobacillus brevis) might be functional producers of acetoin from 2-acetolactate in vinegar microbiota. Furthermore, A. pasteurianus G3-2, L. brevis 4-22, L. fermentum M10-3, and L. buchneri F2-5 were isolated from vinegar microbiota by a culture-dependent method. The acetoin concentrations in two cocultures (L. brevis 4-22 plus A. pasteurianus G3-2 and L. fermentum M10-3 plus A. pasteurianus G3-2) were obviously higher than those in monocultures of lactic acid bacteria (LAB), while L. buchneri F2-5 did not produce more acetoin when coinoculated with A. pasteurianus G3-2. Last, the acetoin-producing function of vinegar microbiota was regulated in situ via augmentation with functional species in vinegar Pei After 72 h of fermentation, augmentation with A. pasteurianus G3-2 plus L. brevis 4-22, L. fermentum M10-3, or L. buchneri F2-5 significantly increased the acetoin content in vinegar Pei compared with the control group. This study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota. Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. Thus, it is of interest to

  13. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore it is impor......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...

  14. Phytochemical analysis, antioxidant activity, fatty acids composition, and functional group analysis of Heliotropium bacciferum.

    Science.gov (United States)

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  15. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.

    Science.gov (United States)

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L

    2017-12-01

    Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Hexaaquamagnesium(II bis(d-camphor-10-sulfonate

    Directory of Open Access Journals (Sweden)

    Dejan Jeremić

    2008-07-01

    Full Text Available The structure of the title complex, [Mg(H2O6](C10H15O4S2, consists of regular octahedral [Mg(H2O6]2+ cations and d-camphor-10-sulfonate anions. A three-dimensional supramolecular architecture is formed via hydrogen-bond interactions [O—H...O = 2.723 (2–2.833 (2 Å] to give alternating layers of [Mg(H2O6]2+ cations and d-camphor-10-sulfonate anions. The title compound is isomorphous with the zinc, copper, cadmium and nickel analogues.

  17. Effects of Concentration of Organically Modified Nanoclay on Properties of Sulfonated Poly(vinyl alcohol Nanocomposite Membranes

    Directory of Open Access Journals (Sweden)

    Apiradee Sanglimsuwan

    2011-01-01

    Full Text Available Electrolyte nanocomposite membranes for proton exchange membrane fuel cells and direct methanol fuel cells were prepared by carrying out a sulfonation of poly(vinyl alcohol with sulfosuccinic acid and adding a type of organically modified montmorillonite (layered silicate nanoclay commercially known as Cloisite 93A. The effects of the different concentrations (0, 2, 4, 6, 8 wt. % of the organoclay in the membranes on water uptake, ion exchange capacity (IEC, proton conductivity, and methanol permeability were measured, respectively, via gravimetry, titration, impedance analysis, and gas chromatography techniques. The IEC values remained constant for all concentrations. Water uptakes and proton conductivities of the nanocomposite membranes changed with the clay content in a nonlinear fashion. While all the nanocomposite membranes had lower methanol permeability than Nafion115, the 6% concentration of Cloisite 93A in sulfonated poly(vinyl alcohol membrane displayed the greatest proton conductivity to methanol permeability ratio.

  18. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  19. Effect of alkyl chain length in the terminal ester group on mesomorphic properties of new chiral lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Kohout, M.; Bubnov, Alexej; Šturala, J.; Novotná, Vladimíra; Svoboda, J.

    2016-01-01

    Roč. 43, č. 10 (2016), s. 1472-1485 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007 Institutional support: RVO:68378271 Keywords : chiral liquid crystal * lactic acid derivative * terminal ester group * mesomorphic properties * dielectric spectroscopy * layer shrinkage Subject RIV: JJ - Other Materials Impact factor: 2.661, year: 2016

  20. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    Science.gov (United States)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  1. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  2. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    Science.gov (United States)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  4. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    Science.gov (United States)

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  5. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis of Heliotropium bacciferum

    Directory of Open Access Journals (Sweden)

    Sohail Ahmad

    2014-01-01

    Full Text Available Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL and then several dilutions (50, 100, 150, 200, and 250 mg/mL of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00, stem (50.19 ± 0.92 to 89.42 ± 1.10, and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02 divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%, eicosadienoic acid (15.12%, oleic acid (8.72%, and palmitic acid (8.14% were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model.

  6. 40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.

    Science.gov (United States)

    2010-07-01

    ... solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment... POINT SOURCE CATEGORY SO3 Solvent and Vacuum Sulfonation Subcategory § 417.110 Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. The provisions of this subpart are...

  7. Environmental contamination by perfluorinated carboxylates and sulfonates following the use of fire-fighting foam in Tomakomai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Horii, Yuichi; Hanari, Nobuyasu; Okazawa, Tsuyoshi [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kannan, K. [Wadsworth Center, New York State Department of Health, Albany, NY (United States); Petrick, G. [Kiel Univ. (Germany). Inst. for Marine Research

    2004-09-15

    On September 26, 2003, a magnitude (M) 8.3 offshore earthquake struck Hokkaido, Japan. The earthquake and ensuing tsunami injured hundreds of people and resulted in significant damage to port and coastal communities. Immediately following the earthquake, a major fire occurred at an oil storage facility of a refinery (Idematsu Kosan Company Ltd) located in the west part of Tomakomai, a Pacific coast city in southern Hokkaido. Idemitsu Kosan Company is the second largest oil refinery in Japan, with a capacity of 140,000 barrels per day (bpd) in Tomakomai. Forty five of the 105 oil storage tanks were damaged following the earthquake and resulted in release of petroleum naphtha, which ignited accidentally. The first fire was reported immediately after the earthquake on 26 September 2003 and was extinguished after 7 hours. The second fire occurred on 28 September and lasted for 44 h. More than three hundred fireman and about one hundred fire engines were brought from several prefectures by air carriers to extinguish the fire. More than 130,000 L of fire fighting foams (FFF) was delivered to extinguish these fires and at least 40,000 L was used. Detailed information regarding the type of FFF used was not available, but aqueous film forming foams (AFFF) have been used in the control of fuel-related fires. Perfluorooctane sulfonate (PFOS) and related perfluorinated acids are a component of AFFF. The issue of environmental pollution by perfluorinated compounds (PFCs) including perfluorinated carboxylates and sulfonates has received much attention in the last four years. PFCs possess unique physicochemical properties and exhibit a wide range of volatility/ water solubility depending on the functional group. Environmental dynamics of PFCs is complex due to their unique characteristics and to their release from multitude of sources with various compositions. Previous studies have reported on environmental contamination by PFCs due to accidental release of AFFF. Large amount of

  8. Associations of in Utero Exposure to Perfluorinated Alkyl Acids with Human Semen Quality and Reproductive Hormones in Adult Men

    DEFF Research Database (Denmark)

    Vested, Anne; Ramlau-Hansen, Cecilia Høst; Olsen, Sjurdur Frodi

    2013-01-01

    Perfluorinated alkyl acids (PFAAs), persistent chemicals with unique water-, dirt-, and oil-repellent properties, are suspected of having endocrine-disrupting activity. The PFAA compounds perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are found globally in humans; because...

  9. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature.

    Science.gov (United States)

    Bhunia, Subhajit; Banerjee, Biplab; Bhaumik, Asim

    2015-03-25

    We have designed a new hypercrosslinked supermicroporous polymer (HMP-1) with a BET surface area of 913 m(2) g(-1) by FeCl3 via a catalyzed Friedel-Crafts alkylation reaction between carbazole and α,α'-dibromo-p-xylene. Upon sulfonation HMP-1 yielded a very efficient solid acid catalyst for the production of biodiesels via esterification/transesterification of free fatty acids (FFA)/esters at room temperature.

  10. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhai, Haiyun; Liang, Zhixian; Chen, Zuanguang; Wang, Haihang; Liu, Zhenping; Su, Zihao; Zhou, Qing

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • A novel and reliable AgNPs/SF-GR modified glassy carbon electrode was constructed and characterized. • The AgNPs/SF-GR/GCE was successfully applied in the shrimp for simultaneous determination of MTZ and CAP. • Under optimized conditions, common substances such as UA, AA, DA and ion did not interfered in the electrode performance. • The modified electrode exhibited considerable sensitivity, stability and reproducibility. • This fabricated electrode achieved a satisfactory level compared with other electrodes toward MTZ and CAP. -- Abstract: A novel silver nanoparticles/sulfonated functionalized graphene modified glassy carbon electrode (AgNPs/SF-GR/GCE) was fabricated to determine chloramphenicol and metronidazole simultaneously. Taking advantage of sulfonic group, AgNPs were successfully electrodeposited on functionalized GR immobilized on the surface of a GCE. Scanning electron microscopy and energy spectrum analysis results confirmed that AgNPs were deposited on the functionalized GR film. Compared to the bare GCE or the pristine SF-GR modified electrode, AgNPs/SF-GR/GCE exhibited excellent electroreduction towards chloramphenicol and metronidazole. In addition, the two antibacterial drugs were separated completely in 0.10 M citric acid-sodium citrate buffer (pH 4.0) by differential pulse stripping voltammetry under optimum conditions. The cathodic current was linearly related with 0.02∼20.0 μM chloramphenicol and 0.10∼20.0 μM metronidazole, with the detection limits of 0.01 μM and 0.05 μM respectively. Furthermore, AgNPs/SF-GR/GCE was applied to the simultaneous determination of chloramphenicol and metronidazole in an aquatic product

  11. Ammonia IRMS-TPD measurements and DFT calculation on acidic hydroxyl groups in CHA-type zeolites.

    Science.gov (United States)

    Suzuki, Katsuki; Sastre, German; Katada, Naonobu; Niwa, Miki

    2007-12-07

    Brønsted acidity of H-chabazite (CHA) zeolites (Si : Al(2) = 4.2) was investigated by means of ammonia infrared-mass spectrometry/temperature-programmed desorption (IRMS-TPD) methods and density functional calculations. Four IR bands were observed at 3644, 3616, 3575 and 3538 cm(-1), and they were ascribable to the acidic OH groups on four nonequivalent oxygen sites in the CHA structure. The absorption band at 3538 cm(-1) was attributed to the O(4)H in the 6-membered ring (MR), and ammonia adsorption energy (DeltaU) of this OH group was the lowest among the 4 kinds of OH groups. The other 3 bands were assigned to the acidic OH groups in 8MR. It was observed that the DeltaU in 8 and 6MR were 131 (+/-3) and 101 kJ mol(-1), respectively. On the other hand, the density functional theory (DFT) calculations within periodic boundary conditions yielded the adsorption energies on these OH groups in 8 and 6MR to be ca. 130 and 110 kJ mol(-1), respectively, in good agreement with the experimentally-observed values.

  12. Detection of Group B Streptococci in Lim Broth by Use of Group B Streptococcus Peptide Nucleic Acid Fluorescent In Situ Hybridization and Selective and Nonselective Agars▿

    Science.gov (United States)

    Montague, Naomi S.; Cleary, Timothy J.; Martinez, Octavio V.; Procop, Gary W.

    2008-01-01

    The sensitivity, specificity, and positive and negative predictive values for the detection of group B streptococci from Lim enrichment broth with sheep blood agar (SBA), with selective Streptococcus agar (SSA), and by a peptide nucleic acid fluorescent in situ hybridization (PNA FISH) assay were as follows: for culture on SBA, 68.4%, 100%, 100%, and 87.9%, respectively; for culture on SSA, 85.5%, 100%, 100%, and 94.1%, respectively; and for the PNA FISH assay, 97.4%, 98.3%, 96.1%, and 98.9%, respectively. PMID:18667597

  13. Detection of group B streptococci in Lim broth by use of group B streptococcus peptide nucleic acid fluorescent in situ hybridization and selective and nonselective agars.

    Science.gov (United States)

    Montague, Naomi S; Cleary, Timothy J; Martinez, Octavio V; Procop, Gary W

    2008-10-01

    The sensitivity, specificity, and positive and negative predictive values for the detection of group B streptococci from Lim enrichment broth with sheep blood agar (SBA), with selective Streptococcus agar (SSA), and by a peptide nucleic acid fluorescent in situ hybridization (PNA FISH) assay were as follows: for culture on SBA, 68.4%, 100%, 100%, and 87.9%, respectively; for culture on SSA, 85.5%, 100%, 100%, and 94.1%, respectively; and for the PNA FISH assay, 97.4%, 98.3%, 96.1%, and 98.9%, respectively.

  14. Improved oral absorption of cilostazol via sulfonate salt formation with mesylate and besylate

    Directory of Open Access Journals (Sweden)

    Seo JH

    2015-07-01

    Full Text Available Jae Hong Seo, Jung Bae Park, Woong-Kee Choi, Sunhwa Park, Yun Jin Sung, Euichaul Oh, Soo Kyung Bae College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea Objective: Cilostazol is a Biopharmaceutical Classification System class II drug with low solubility and high permeability, so its oral absorption is variable and incomplete. The aim of this study was to prepare two sulfonate salts of cilostazol to increase the dissolution and hence the oral bioavailability of cilostazol.Methods: Cilostazol mesylate and cilostazol besylate were synthesized from cilostazol by acid addition reaction with methane sulfonic acid and benzene sulfonic acid, respectively. The salt preparations were characterized by nuclear magnetic resonance spectroscopy. The water contents, hygroscopicity, stress stability, and photostability of the two cilostazol salts were also determined. The dissolution profiles in various pH conditions and pharmacokinetic studies in rats were compared with those of cilostazol-free base.Results: The two cilostazol salts exhibited good physicochemical properties, such as nonhygroscopicity, stress stability, and photostability, which make it suitable for the preparation of pharmaceutical formulations. Both cilostazol mesylate and cilostazol besylate showed significantly improved dissolution rate and extent of drug release in the pH range 1.2–6.8 compared to the cilostazol-free base. In addition, after oral administration to rats, cilostazol mesylate and cilostazol besylate showed increases in Cmax and AUCt of approximately 3.65- and 2.87-fold and 3.88- and 2.94-fold, respectively, compared to cilostazol-free base.Conclusion: This study showed that two novel salts of cilostazol, such as cilostazol mesylate and cilostazol besylate, could be used to enhance its oral absorption. The findings warrant further preclinical and clinical studies on cilostazol mesylate and

  15. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  16. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  17. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  18. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  19. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.

    2004-01-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27

  20. Toxicokinetics of perfluorooctane sulfonate in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Rainbow trout (Oncorhynchus mykiss) confined to respirometer-metabolism chambers were dosed with perfluorooctane sulfonate (PFOS) by intra-arterial injection and sampled to obtain concentration time-course data for plasma, and either urine or expired water. The data were then an...

  1. Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid.

    Science.gov (United States)

    Banda, Kalyan; Gregg, Christopher J; Chow, Renee; Varki, Nissi M; Varki, Ajit

    2012-08-17

    Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.

  2. Ion-Exchange Membranes Based on Polynorbornenes with Fluorinated Imide Side Chain Groups

    Directory of Open Access Journals (Sweden)

    Arlette A. Santiago

    2012-01-01

    Full Text Available The electrochemical characteristics of cation-exchange membranes based on polynorbornenes with fluorinated and sulfonated dicarboximide side chain groups were reported. This study was extended to a block copolymer containing structural units with phenyl and 4-oxybenzenesulfonic acid, 2,3,5,6-tetrafluorophenyl moieties replacing the hydrogen atom of the dicarboximide group. A thorough study on the electrochemical characteristics of the membranes involving electromotive forces of concentration cells and proton conductivity is reported. The proton permselectivity of the membranes is also discussed.

  3. Specific acid catalyzed deuteration of the acetyl groups of 2,4-diacetyldeuterohemin-OMe

    International Nuclear Information System (INIS)

    Oster, O.; Neireiter, G.W.; Gurd, F.R.N.

    1975-01-01

    The methyl group of the acetyl groups in 2,4-diacetyldeuterohemin-OMe has been selectively deuterated. After removal of the iron, D 6 -2,4-diacetyl-deuteroporphyrin-OMe can be reduced to the corresponding hematoporphyrin and subsequent dehydration gives deuterated vinylic groups for protoporphyrin IX-OMe. (orig.) [de

  4. Synthetic approach of norbadione A: new preparation of alcohols from sulfones and boron compounds

    International Nuclear Information System (INIS)

    Billaud, C.

    2005-12-01

    The synthetic approach of norbadione A, a pigment from mushrooms related to pulvinic acids, was studied. This compound has the property to complex caesium and has shown an antioxidant activity. The first strategy, based on a double Suzuki-Miyaura coupling between a naphtho-lactone with two boron functions and two pulvinic moieties with a triflate was unsuccessful and has shown a deactivating effect of the lactone. Modifications aimed to inhibit the electro-attracting character of the lactone permitted to obtain a bis(coupled) product with a poor yield. A second approach based on a the cyclization of enol aryl-acetates was studied in order to build the pulvinic moiety in several steps. The important reaction of introduction of an alkyl-acetate from a triflate was realised by a palladium-mediated coupling. The cyclization attempts carried out using a naphthalenic compound allowed us to isolate a monocyclised product. A parallel study was to first build a tetronic moiety and then to construct the exocyclic double bond by a method developed in the laboratory for the preparation of an iodated pulvinic compound. Finally, a new preparation of alcohols from sulfones and boron compounds was developed. Two known reactions in the chemistry of boron were combined. The first one is the reaction between anions of sulfones and tri-alkyl-boranes, the second one is a thermal isomerization which places the boron atom in a terminal position. A new preparation of primary alcohols was thus carried out. (author)

  5. Improvement in silicon-containing sulfonated polystyrene/acrylate membranes by blending and crosslinking

    International Nuclear Information System (INIS)

    Zhong Shuangling; Cui Xuejun; Dou Sen; Liu Wencong; Gao Yan; Hong Bo

    2010-01-01

    Silicon-containing sulfonated polystyrene/acrylate-poly(vinyl alcohol) (Si-sPS/A-PVA) and Si-sPS/A-PVA-phosphotungstic acid (Si-sPS/A-PVA-PWA) composite membranes were fabricated by solution blending and physical and chemical crosslinking methods to improve the properties of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) membranes. FTIR spectra clearly show the existence of various interactions and a crosslinked silica network in composite membranes. The potential of the composites to act as proton exchange membranes in direct methanol fuel cells (DMFCs) was assessed by studying their thermal and hydrolytic stability, swelling, methanol diffusion coefficient, proton conductivity and selectivity. TGA measurements show that the composite membranes possess good thermal stability up to 190 o C, satisfying the requirement for fuel cell operation. Compared to the unmodified membrane, the composites exhibit less swelling and a superior methanol barrier. Most importantly, all of the composite membranes have significantly lower methanol diffusion coefficients and significantly higher selectivity than those of Nafion 117. The Si-sPS/A-20PVA-20PWA membrane is the best applicant for use in DMFCs because it exhibits an optimized selectivity value (5.93 x 10 5 Ss cm -3 ) that is approximately 7.8 times of that of the unmodified membrane and is 27.8 times higher than that of Nafion 117.

  6. Photoinduced Birefringent Pattern and Photoinactivation of Liquid-Crystalline Copolymer Films with Benzoic Acid and Phenylaldehyde Side Groups.

    Science.gov (United States)

    Kawatsuki, Nobuhiro; Inada, Shogo; Fujii, Ryosuke; Kondo, Mizuho

    2018-02-06

    In situ formation of N-benzylideneaniline (NBA) side groups achieved photoinduced cooperative reorientation of photoinactive copolymers with phenylaldehyde (PA) and benzoic acid (BA) side groups doped with 4-methoxyaniline (AN) molecules. Thermally stimulated molecular reorientation of the side groups was generated due to the axis-selective photoreaction of the NBA moieties. Selective coating with AN on the copolymer film formed NBA moieties in the desired region, resulting in a photoinduced birefringent pattern. Additionally, postannealing at an elevated temperature for a long time attained photoinactivation of the reoriented film, and recoating with AN to form NBA achieved the multiple birefringent patterns and repatterning of the reoriented structures. The slow thermal hydrolysis of NBA, which was 50 times slower than the thermally stimulated self-organization of the side groups due to the presence of BA side groups, contributed to the photodurability of the reoriented film and multiple birefringent patterns.

  7. Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties

    International Nuclear Information System (INIS)

    Li, Yongli; Nguyen, Quang Trong; Schaetzel, Pierre; Lixon-Buquet, Camille; Colasse, Laurent; Ratieuville, Vincent

    2013-01-01

    Five blend membranes were prepared by solvent evaporation from solutions of the synthesized sulfonated polyetheretherketone (SPEEK) and sulfonated polyethersulfone-cardo (SPESc). Their ion exchange capacity and degree of sulfonation determined by acid–base titration and by thermogravimetric analysis were consistent. The blends glass transition behavior obtained by differential scanning calorimetry suggests that the two sulfonated polymers are compatible in the whole composition range. The values of the activation energy for proton transport determined by conductivity measurements on the SPEEK-based blend membranes were in the range of 13–34 kJ mol −1 , which suggest a mixed transport mechanism that involves both proton jumps on ionic sites and water of hydration and diffusion of proton–water complex in hydrophilic domains. The water vapor sorption in the membranes exhibits sigmoid-shape isotherms which were well fitted by the “new dual mode sorption” model, and the fitted parameters values were successfully used to model the change in the water permeation flux with the upstream water activity using the first Fick's diffusion equation. The fast increase in the permeation flux beyond a critical value of activity (0.5) was owing to the exponential concentration-dependent diffusion coefficient. These modelings allowed us to show a strong increase in the limit diffusion coefficient of water and a decrease in the water-diffusion plasticization coefficient with the SPEEK content in the polymer blends

  8. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; Stack, Andrew G.; van Duin, Adri C. T.; Logan, Bruce E.

    2014-01-01

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  9. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.

    2014-12-02

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  10. [Folic acid fortified foods available in Spain: types of products, level of fortification and target population groups].

    Science.gov (United States)

    Samaniego Vaesken, M L; Alonso-Aperte, E; Varela-Moreiras, G

    2009-01-01

    Folic acid is a potentially relevant factor in the prevention of a number of pathologies (congenital abnormalities, cardiovascular disease, colorectal cancer and neurocognitive decline). This has led to the introduction of different strategies in order to increase folate intake: nutritional education, pharmacological supplementation and mandatory or voluntary fortification of staple foods with folic acid. In Spain there is a growing number of folic acid fortified products on a voluntary basis, but there is also a lack of reliable data to assess their impact on the population's dietary folate intakes. To gather a better knowledge of folic acid food fortification practices in Spain. A Food Composition Database was developed using data from a market study. Also, previously published data of unfortified staple foods from Food Composition Tables was reviewed. The Database included 260 folic acid fortified food items and it was periodically updated. Food groups included were primarily "Cereals and derivatives" (52%) followed by "Dairy products". Most of these foodstuffs lacked a target population for their consumption (37%) or were aimed at "Weight control" (28%) and "Children" (23%), but only 2% targeted women at a reproductive age. Number of unfortified foods included was 690. Fortification levels declared by manufacturers ranged between 15 and 430% of the Recommended Dietary Allowances (RDA) for folic acid per 100 g/ml, and simultaneous addition of B6 and B12 vitamins was observed in 75% of the products. Currently, Spain market offers a significant number of folic acid fortified products on a voluntary basis and at a level > or = 15% of the RDA per 100 g/ml or serving declared by manufacturers.

  11. Group I mGlu receptors potentiate synaptosomal [3H]glutamate release independently of exogenously applied arachidonic acid

    International Nuclear Information System (INIS)

    Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J.

    1999-01-01

    In the current study, we have characterized group I metabotropic glutamate (mGlu) receptor enhancement of 4-aminopyridine (4AP)-evoked [ 3 H]glutamate release from rat cerebrocortical synaptosomes. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD, 10 μM) increased 4AP-evoked [ 3 H]glutamate release (143.32±2.73% control) only in the presence of exogenously applied arachidonic acid; an effect reversed by the inclusion of bovine serum albumin (BSA, fatty acid free). In contrast, the selective group I mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated (EC 50 =1.60±0.25 μM; E max =147.61±10.96% control) 4AP-evoked [ 3 H]glutamate release, in the absence of arachidonic acid. This potentiation could be abolished by either the selective mGlu 1 receptor antagonist (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA, 1 mM) or the selective PKC inhibitor (Ro 31-8220, 10 μM) and was BSA-insensitive. The selective mGlu 5 receptor agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG, 300μM) was without effect. DHPG (100 μM) also potentiated both 30 mM and 50 mM K + -evoked [ 3 H]glutamate release (121.60±12.77% and 121.50±4.45% control, respectively). DHPG (100 μM) failed to influence both 4AP-stimulated 45 Ca 2+ influx and 50 mM K + -induced changes in synaptosomal membrane potential. Possible group I mGlu receptor suppression of tonic adenosine A 1 receptor, group II/III mGlu receptors or GABA B receptor activity is unlikely since 4AP-evoked [ 3 H]glutamate release was insensitive to the selective inhibitory receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine, (R,S)-α-cyclopropyl-4-phosphonophenylglycine or CGP55845A, respectively. These data suggest an 'mGlu 1 receptor-like' receptor potentiates [ 3 H]glutamate release from cerebrocortical synaptosomes in the absence of exogenously applied arachidonic acid. This PKC dependent effect is unlikely to be via modulation of synaptosomal membrane

  12. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    International Nuclear Information System (INIS)

    Sun Xiaoguang; Hou Jun; Kerr, John B.

    2005-01-01

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li + salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE 8 -co-E 3 SO 3 Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE 8 -g-E n SO 3 Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10 -7 S cm -1 was obtained for the PAE 8 -co-E 3 SO 3 Li with a salt concentration of EO/Li = 40. The conductivity of PAE 8 -g-E 3 SO 3 Li is lower than that of PAE 8 -co-E 3 SO 3 Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li + . The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE 8 -g-E 2 SO 3 Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm -2 at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer

  13. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  14. Evaluation and improvement of gamma-ray stability of chelating resins containing oxy-acid groups of phosphorus

    International Nuclear Information System (INIS)

    Jyo, Akinori; Yamabe, Kazunori; Shuto, Taketomi

    1998-01-01

    Chelating resins containing oxy-acid groups of phosphorus, such as phosphonic and phosphoric acid groups have been studied from the point of view of solvent extraction processes for the separation of nuclear fuel elements as well as of fission product ones. The present work was planned to evaluate the effect of gamma-ray on properties of the resins and to obtain directional information for design of the resins having high stability to gamma-ray. It was clarified that gamma-ray stability of the resins is not high; tolerance limit is ca. 2.3x10 3 C/kg. The present work also clarified that polymers crosslinked with divinylbenzene have much higher gamma-ray stability than ones crosslinked with dimetacrylate esters of oligo (ethylene glycol)s. (J.P.N.)

  15. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    Science.gov (United States)

    Haynes, Barton F [Durham, NC; Gao, Feng [Durham, NC; Korber, Bette T [Los Alamos, NM; Hahn, Beatrice H [Birmingham, AL; Shaw, George M [Birmingham, AL; Kothe, Denise [Birmingham, AL; Li, Ying Ying [Hoover, AL; Decker, Julie [Alabaster, AL; Liao, Hua-Xin [Chapel Hill, NC

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  16. Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China.

    Science.gov (United States)

    Wang, Yawei; Fu, Jianjie; Wang, Thanh; Liang, Yong; Pan, Yuanyuan; Cai, Yaqi; Jiang, Guibin

    2010-11-01

    Perfluorinated compounds (PFCs) can be released to the surrounding environment during manufacturing and usage of PFC containing products, which are considered as main direct sources of PFCs in the environment. This study evaluates the release of perfluorooctane sulfonate (PFOS) and other PFCs to the ambient environment around a manufacturing plant. Among the nine PFCs analyzed, only PFOS, perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) were found in dust, water, soil, and chicken eggs. Very high concentrations of PFOS and PFOA were found in dust from the production storage, raw material stock room, and sulfonation workshop in the manufacturing facility, with the highest value at 4962 μg/g (dry weight) for PFOS and 160 μg/g for PFOA. A decreasing trend of the three PFCs concentrations in soils, water, and chicken eggs with increasing distance from the plant was found, indicating the production site to be the primary source of PFCs in this region. Risk quotients (RQs) assessment for surface water >500 m away from the plant were less than unity. Risk assessment of PFOS using predicted no-effect concentration (PNEC, 3.23 ng/g on a logarithmic scale) indicated no immediate ecological risk of a reduction in offspring survival. PFOS concentrations in most egg samples did not exceed the benchmark concentration derived in setting a reference dose for noncancer health effects (0.025 μg/(kgxd)).

  17. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    International Nuclear Information System (INIS)

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  18. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud Nasef, Mohamed, E-mail: mahmoudeithar@fkkksa.utm.m [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Saidi, Hamdani [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Mohd Dahlan, Khairul Zaman [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2011-01-15

    Graft copolymerization of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films was investigated to find out a simple preparation process for sulfonic acid proton exchange membranes with respect to monomer concentration, absorbed dose, temperature, film thickness and storage time. The reaction order of the monomer concentration and absorbed dose of grafting was found to be 2.84 and 1.20, respectively. The overall activation energy for graft copolymerization reaction was calculated to be 11.36 kJ/mol. The initial rate of grafting was found to decrease with an increase in the film thickness. The trapped radicals in the irradiated PVDF films remained effective in initiating the reaction without considerable loss in grafting level up to 180 days, when stored under -60 {sup o}C. The presence and distribution of polystyrene sulfonate grafts in the obtained membranes were observed by Fourier transform infrared (FTIR) spectroscopic analysis, scanning optical microscope and scanning transmission electron microscopy (STEM) coupled with X-ray energy dispersive (EDX), respectively.

  19. Partially sulfonated polyaniline: conductivity and spectroscopic study

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Suchánková, A.; Watzlová, E.; Prokeš, J.; Pop-Georgievski, Ognen

    2017-01-01

    Roč. 71, č. 2 (2017), s. 329-338 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polyaniline * aniline * orthanilic acid Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  20. Animated sulfonated or sulformethylated lignins as cement fluid loss control additives

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1991-05-07

    This patent describes a method of cementing a zone in a well penetrating a subterranean formation comprising injecting down the well and positioning in the zone to be cemented a hydraulic aqueous cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and a fluid loss control additive comprising from about 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been aminated by reacting it with between about 2-5 moles of a polyamine and 2-5 moles of an aldehyde per 1,000g of the lignin, and 0.1 to 1.5 parts of a compound selected from the group consisting of sodium carbonate, sodium metasilicate, sodium phosphate, sodium sulfite and sodium naphthalene sulfonate and a combination thereof.

  1. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kordoghli, Bessem [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Khiari, Ramzi, E-mail: khiari_ramzi2000@yahoo.fr [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France); Mhenni, Mohamed Farouk [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Sakli, Faouzi [Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Belgacem, Mohamed Naceur [LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. Black-Right-Pointing-Pointer The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. Black-Right-Pointing-Pointer We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO{sub 3}H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  2. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    International Nuclear Information System (INIS)

    Kordoghli, Bessem; Khiari, Ramzi; Mhenni, Mohamed Farouk; Sakli, Faouzi; Belgacem, Mohamed Naceur

    2012-01-01

    Highlights: ► In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. ► The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. ► We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO 3 H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  3. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  4. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    International Nuclear Information System (INIS)

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo; De la Cruz-Hernandez, Wencel; Gomez-Salazar, Sergio

    2014-01-01

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH 3 COO) 2 Cr + ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. 13 C, 29 Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level

  5. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    Science.gov (United States)

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p mantle > adductor muscle for the STX-group toxins and foot > digestive gland for the OA-group toxins. These results gave a better understanding of the variability and compartmentalisation of STX-group and OA-group toxins in different

  6. Preliminary assessment of developmental toxicity of Perfluorinated Phosphonic Acid in mice

    Science.gov (United States)

    Perfluorinated phosphonic acids (PFPAs) are a third member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. These emerging chemicals have recently been detected in the environment, particularl...

  7. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  8. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    Science.gov (United States)

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  9. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    Science.gov (United States)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  11. Pharmacokinetics and metabolic rates of acetyl salicylic acid and its metabolites in an Otomi ethnic group of Mexico.

    Science.gov (United States)

    Lares-Asseff, Ismael; Juárez-Olguín, Hugo; Flores-Pérez, Janett; Guillé-Pérez, Adrian; Vargas, Arturo

    2004-05-01

    The objective of this study was to determine pharmacokinetic differences of acetyl salicylic acid (ASA) and its metabolites: gentisic acid (GA), salicylic acid (SA) and salicyluric acid (SUA) between Otomies and Mesticians healthy subjects. Design. Ten Otomies and 10 Mesticians were included. After a single dose of aspirin given orally (15 mg/kg), blood and urine samples were collected at different times. Results. Pharmacokinetic parameters of salicylates showed significant differences, except distribution volume of SA, and elimination half-life of SUA. Metabolic rates of ASA showed significant differences for all rates between both groups. On the other hand, percentages of dose excreted were more reduced for SA and SUA for the Otomies than for the Mesticians. Conclusion. Results reflect differences in the hydrolysis way i.e. from ASA to SA and aromatic hydroxylation i.e. from SA to GA, which were slower in Otomies subjects, showing a possible pharmacokinetic differences about the capabilities of ASA biotransformation as a consequence of ethnic differences.

  12. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms.

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-02-10

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.

  13. Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms*

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-01-01

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614

  14. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an a